Document Type

Article

Publication Title

Applied and Environmental Microbiology

Publication Date

1-2011

Volume

77

Issue

1

Disciplines

Biology | Life Sciences

Abstract

A novel microcalorimetric approach was used to analyze the responses of a metal-tolerant soil bacterium (Pseudomonas putida strain KT2440) to metal resistance gene deletions in cadmium-amended media. As hypothesized, under cadmium stress, the wild-type strain benefited from the resistance genes by entering the exponential growth phase earlier than two knockout strains. In the absence of cadmium, strain KT1, carrying a deletion in the main component (czcA1) of a Cd/Zn chemiosmotic efflux transporter (CzcCBA1), grew more efficiently than the wild type and released similar to 700 kJ (per mole of biomass carbon) less heat than the wild-type strain, showing the energetic cost of maintaining CzcCBA1 in the absence of cadmium. A second mutant strain (KT4) carrying a different gene deletion, Delta cadA2, which encodes the main Cd/Pb efflux transporter (a P-type ATPase), did not survive beyond moderate cadmium concentrations and exhibited a decreased growth yield in the absence of cadmium. Therefore, CadA2 plays an essential role in cadmium resistance and perhaps serves an additional function. The results of this study provide direct evidence that heavy metal cation efflux mechanisms facilitate shorter lag phases in the presence of metals and that the maintenance and expression of tolerance genes carry quantifiable energetic costs and benefits.

DOI

10.1128/AEM.01187-10

Included in

Biology Commons

Share

COinS