An Invader Differentially Affects Leaf Physiology of Two Natives Across a Gradient in Diversity

Pamela Kittelson, Gustavus Adolphus College
John L. Maron, University of Montana - Missoula
Marilyn J. Marler, University of Montana - Missoula


Little is known about how exotics influence the ecophysiology of co-occurring native plants or how invader impact on plant physiology may be mediated by community diversity or resource levels. We measured the effect of the widespread invasive forb spotted knapweed (Centaurea maculosa) on leaf traits (leaf dry matter content, specific leaf area, leaf nitrogen percentage, leaf C:N ratios, and δ13C as a proxy for water use efficiency) of two co-occurring native perennial grassland species, Monarda fistulosa (bee balm) and Koeleria macrantha (Junegrass). The impact of spotted knapweed was assessed across plots that varied in functional diversity and that either experienced ambient rainfall or received supplemental water. Impact was determined by comparing leaf traits between identical knapweed-invaded and noninvaded assemblages. Virtually all M. fistulosa leaf traits were affected by spotted knapweed. Knapweed impact, however, did not scale with its abundance; the impact of knapweed on M. fistulosa was similar across heavily invaded low-diversity assemblages and lightly invaded high-diversity assemblages. In uninvaded assemblages, M. fistulosa δ13C, leaf nitrogen, and C:N ratios were unaffected by native functional group richness, whereas leaf dry matter content significantly increased and specific leaf area significantly decreased across the diversity gradient. The effects of spotted knapweed on K. macrantha were weak; instead native functional group richness strongly affected K. macrantha leaf C:N ratio, δ13C, and specific leaf area, but not leaf dry matter content. Leaf traits for both species changed in response to spotted knapweed or functional richness, and in a manner that may promote slower biomass accumulation and efficient conservation of resources. Taken together, our results show that an invader can alter native plant physiology, but that these effects are not a simple function of how many invaders exist in the community.