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Viraf E. Engineer, M.S., May 1994, Geology.

Apparent Dispersion of a Contaminant Plume Under Transient
Groundwater Flow Conditionsélél%y &)~
(79 pp.)

Director: Dr. William Woessner

This study attempts to quantify and understand the
effects of velocity and flowpath variations on the apparent
longitudinal dispersion of a contaminant plume. This is done
by varying the groundwater flow direction and magnitude of the
groundwater velocity, during the transport of a slug injected
plume. Apparent dispersion is defined as the spreading of a
contaminant plume caused by flow field transients, changes in
the flow direction and velocity.

A numerical groundwater flow model of a high hydraulic
conductivity aquifer was developed using MODFLOW. The solute
transport code MT3D was then used to model plume transport.

Values of longitudinal and transverse dispersivity were
fixed at 10 ft. and 1 £ft. respectively. Mocdel generated
breakthrough curves of the plumes were examined wusing
analytical curve matching techniques developed by Sauty
(1980) . The resulting longitudinal dispersivity values were
then compared to the numerically modeled value of 10 £ft. to
determine if apparent longitudinal dispersion had occured.

The model first simulated solute travelling in a straight
line under a constant (magnitude and direction) velocity.
Another run allowed for a variable magnitude of velocity but
maintained a constant flow direction. This was done in order
to quantify and understand the effect of the variatiomn in the
magnitude of velocity on the longitudinal dispersion of the
plume.

The model was then constructed with the magnitude of
velocity held constant and the direction of the groundwater
flow allowed to vary from 0 to 90 degrees. This was used to
quantify and understand the effect of flowpath variation on
the longitudinal dispersion of the plume.

Overall the results of this study indicate that
variations in groundwater flow direction and magnitude of
groundwater velocity within an unconfined aquifer system,
cause a increase in the longitudinal dispersivity of a slug
injected contaminant plume. These flow field changes allow for
a large portion of the the solute to move tramsversly to the
flow direction, thus causing more plume dispersion.

ii
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1.0 INTRODUCTION

Identifying, characterizing and predicting the fate of
groundwater contamination has become the primary focus of
private industry and regulatory agencies. Hydrogeologists are
often asked to predict the future spatial extent of plumes of
contaminants. The accuracy of their predictions depends
primarily upon the accuracy of the conceptual model, the
groundwater flow within that system, and the chemical changes
that will occur during transport.

Many (if not most) analyses of field-scale solute
transport problems assume that an average or steady state
groundwater flow field prevails (Goode and Konikow, 19390) . The
usefulness of this assumption has been challenged as plumes in
the assumed steady state flow field may also be spread during
small variations in the flow field. Thus, estimates of plume
spreading mechanisms are incompletely represented and the
future predictions of plume behavior are in error.

Naff et al. (1989) postulated that small scale velocity
transients may be responsible for large transverse spreading
observed at two intensively studied sites. They concluded that
changes in the flow field call for adjustments in the
transverse digpersion component.

Kinzelbach and Ackerer (1986) illustrated the ability of
a steady-flow model to incorporate the dispersive effects of
transient flow on solute transport by increasing transverse

dispersion (Goode and Konikow, 1990).
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Recently Goode and Konikow (1990) examined the effects of
transient conditions on the longitudinal and transverse
dispersion of a plume at the Idaho National Engineering
Laboratory (INEL) modelled earlier by Robertson (1974). They
postulated that measurable apparent transverse spreading would
be found. However, changes in model design and the actual
source history obscured the effect of transient conditions on
model results.

Their work concludes that when flow field transients are
not recognized or accounted for in solute transport
simulations, field-data derived estimates of transverse and
longitudinal dispersivity are significantly overestimated. As
a result, predictions based on these values are incorrect
(Goode and Konikow, 1990).

This study makes an attempt to quantify and understand
the effects of velocity and flowpath variations (transient
conditions) on the apparent longitudinal dispersion of a
contaminant plume. In general, this study attemps to quantify
the error involved in predicting the longitudinal dispersive
properties of aquifers when transient conditions such as
changing velocities and flowpaths in a groundwater flow system
are neglected. I use flowpath to mean the actual or true path
of the plume in the field. The plume disperses along its
flowpath.

Generally, a constant velocity and straight line flowpath

is assumed when analyzing plume geometry and breakthrough
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curves. But 1in reality, for a plume that actually travels
along a path due that has minor and major transient variations
in the magnitude and orientation of vwvelocity ‘ectors,
additional dispersion occurs. Comparisons of numerically
simulated plumes and analytical plume models provide a method
to quantify the "apparent dispersion".

I use apparent dispersion as the values of dispersion
calculated from analysis of plume gecmetry, assuming the plume
traveled along a linear flowpath from the source to its
observed location.

The plumes are modeled as a slug of the solute, injected
into a high hydraulic conductivity unconfined aquifer.

Mechanical dispersion is assumed to be the principal
process operating. The solute is assumed to be a non-reactive
or a conservative solute for the purpose of this research.

The model is run first with the solute travelling in a
straight 1line under a constant (magnitude and direction)
velocity and then with solute travelling through a field
having variable magnitude of velocity but constant direction.
This was done in order to quantify and understand the effect
of the variation in the magnitude of velocity on the
longitudinal dispersion of the plume.

The model was then run with the magnitude of velocity
held constant and the direction or the flowpath of the
groundwater was made to vary from 0 to S0 degrees. This was

done in order to quantify and understand the effect of
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flowpath variation on the longitudinal dispersion of the
plume.

The analytically derived results of longitudinal
dispersivity were then compared to each other and to the model
input value for longitudinal dispersivity which was 10 feet.

My work shows traditional technigques used to analyse
plume spreading behavior in a variable velocity field and
plumes that have undergone shifts in flowpath directions
during transport, yield apparent longitudinal dispersion

values that exceed the model input value.

1.1 PROJECT GOAL AND OBJECTIVES

The goal of this project is to quantify the effects, that
fluctuations in groundwater velocity and flowpath have on the
magnitude of field-based predicted values of apparent
longitudinal dispersion.

Specific objectives include the following
1) Development of a simplified one layer, two dimensional,
steady state flow model of a highly conductive, unconfined
sand and gravel aquifer within which contaminant plume
behavior using plume spreading properties (mechanical
dispersion) could be evaluated;
2) Development of a submodel that reflects the characteristics
of a more regional model, and to examine the effects of cell
discretization on analysis of plume spreading properties

(mechanical dispersion);
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3) Application of standard analytical tools to assess plume
break through curves;

4) Determination of the magnitude of apparent and true
longitudinal dispersivity values, resulting from variations in
magnitude and orientation of velocity and,

5) Assess the implications of study results on predicting
contaminant behavior in a highly conductive, sand and gravel

agquifer.

1.2 FIELD SITE BACKGROUND

I have chosen to test the influence of velocity changes
and flowpath variation on plume behavior for the high
hydraulic conductivity, unconfined Missoula Aquifer located in
western Montana. This aquifer consists of sand, gravel and
cobbles deposited by high energy fluvial systems or also
referred to as river deposits, along with lake deposits due to
the emptying and filling of Glacial Lake Missoula (Alt and
Hyndman, 1986).

I have chosen to simulate flow in a sub-region of the
aquifer in which large seasonal variations in flow direction
occur naturally. I will attempt to evaluate the importance and
study the effect of both magnitude and orientation of velocity
variations on the dispersion of a thecoretical contaminant
plume.

This two square mile sub-region of the aquifer is located

along the northern edge of the Missoula intermontaine basin,
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near the confluence of Grant Creek and the Missoula valley
(Figure 1). The alluvial fan deposits associated with Grant
Creek are predominantly sand and gravel on the surface and
contain some clay lenses at depth. These deposits interfinger
with coarse sand, gravel and cobbles from the Clark Fork River
system (Figure 2).

Pottinger (1988) showed that groundwater flow directions
in the study area fluctuated from approximately due south in
June 1985 to west-southwest in January 1986 (Figures 3 & 4).
He reported that the recharge from Grant Creek in spring and
early summer created a groundwater high in the northern
section of the study area and forced the groundwater to flow
south. During the fall and winter the rate of recharge from
the influent Grant Creek declined, allowing the development of
a westward component of flow in the southern section of the
study area. This caused the overall direction of groundwater
flow to be changed to the west-southwest direction. This flow
field has a seasonal flow direction variation of approximately
60 degrees. Goode and Konikow (1990) showed a cyclic variation
in a theoretical flow field that varied 20 degrees and caused
measurable apparent dispersion to occur.

Clark (1986) determined the following generalized
hydrologic properties for the entire Missoula Valley Aquifer:
19.7% for porosity, 11.5% for specific yield, 8.2% for
specific retention, and 1,386 ft/d for average hydraulic

conductivity.
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Armstrong (1991), set porosity values at 20 % for coarse
grained layers (Woessner, 1988), and at 35 % for fine grained
layers. He states that both these values are representative of
porosity for unconsolidated sediments (Davis and DeWiest,
1966; Freeze and Cherry, 1979).

Pottinger (1988) determined the average hydraulic
conductivity to be 696 ft/d along with his calibrated values
that ranged from 100 ft/d to 1400 ft/d. His average
transmissivity value was 767,375 ft/d for the study site.

Miller (1990) states that his values of hydraulic
conductivity generally agree with Pottinger’s (1988) values,
with the exception of the area near the Clark Fork where his

values ranged from 3000 to 9000 ft/d4d.
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Figure 1. Site map showing the Clark Fork River
and Grant Creek.
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Figure 3. Pottinger’s computer generated potentiometric NS
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2.0 PREVIOUS RESEARCH

Dissolved solids are carried alcng with flowing
groundwater. When the concentration of the solute in the
groundwater remains constant in time, and only moves along
with the general groundwater flow, then this process is called
advection. However, when the invading solute-containing water
is not all travelling at the same velocity, mixing occurs
along the flowpath. Hence a zone of mixing gradually develops
around the position of the advective front. This mixing is
called mechanical dispersion and it results in a greater
dilution of the original concentration of the solute in time.

The partial differential governing equation used ¢to
describe three-dimensional transport of contaminants in
groundwater also known as the advection-dispersion equation
can be written as:

(1)

Ea vC’]+ sc-A(C cr B

C" —_—
B3t~ 3, P ax ) B

where C = Concentration of contaminants dissolved in
groundwater, ML™ ;
t = time, (T) ;
x, = Distance along the respective Cartesian
coordinate axis, L ;
D,, = Hydrodynamic Dispersion coeffecient, L*T™ ;
V, = Seepage or linear pore water velocity, LT ;
g, = Volumetric flux of water per unit volume of

12
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aquifer representing sources (positiwve: and
sinks ‘negative), T

C, = Concentration of socurces or sinks, ML .

O
i

Porosity of the pcorous medium, dimensionless ;
f»= Bulk density of the porous medium, ML ;
C = Concentration of contamimnants scrbed in the
porous medium, MM ;
l = Rate cocnstant for the first-order rate
reactions, T
R = Retardation factor.
(MT3D document, page 2-2, 1990).

Equation (1) 1s the governing equation underlying the
numerical and analytical solute transport model, MT3D (Zheng,
1990) .

The transport equation is linked to the flow equation
through the relationship (MT3D document, pp. 2-2, 1990)

X;; oh
! 8 dx, (2)

1

where, K,, = Principal component of the hydraulic
conductivity tensor, LT
h = Hydraulic head, L.
The hydraulic head is obtained from the solution of the three-
dimensicnal groundwater flow equation (MT3D document, pp. 2-3,
1990)
where, S, = Specific storage of the porous materials, L™

13
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-i ah?+ = .@_‘2
Zl,j axl Kl:'a’ZJ de Ssat (3)

Note that the hydraulic conductivity tensor (K) actually
has nine components. However it is generally assumed that the
principal components of the hydraulic conductivity tensor

(K,

11/

K

or K v

ot K..) are aligned with the x, vy, and =z
coordinate axis so that the non-principal components become
zero. This assumption is incorporated in most commonly used
flow models, including MODFLOW (Mcdonald and Harbaugh, 1988)
which is used in this study.

Hydrodynamic dispersion coeffecient or the coefficient of
dispersion is used to describe the solute spreading processes
of mechanical dispersion and moclecular diffusion as
groundwater moves 1in the £low system. The coefficient of

dispersion can be represented by the equation shown below

{Anderson, 1984)

Dij=D;;+Dy
where D°,, = Coefficient of hydrodynamic dispersion,

D,, = Coefficient of mechanical dispersion, and

1)
D, = Coefficient of molecular diffusion.

For the purpose of this research the solute was
considered to be a conservative solute (non-reactive) and the
effect of molecular diffusion (D) on solute spreading was
considered negligible. Thus the resulting hydrodynamic
dispersion coeffecient (D°,,) 1s only composed of the

mechanical dispersion component, D,,.

14
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The process of mechanical dispersion operates both in the
direction cf flow (longitudinal dispersion) and perpendicular
to the flow direction (transverse dispersion). These processes
are active along a groundwater flowpath regardless of its
position in space.

I refer to apparent dispersion as the magnitude of
spreading (apparent longitudinal dispersion in this study)
derived from field plumes in groundwater, when a straight line
flowpath and constant velocity are assumed in the field. In
reality the plume follows a directionally varying flowpath and
the magnitude of its velocity is not constant. Thus, true
digpersion can be defined as the magnitude of dispersion of a
contaminant plume when the actual flowpath (straight line or
varying) and the true velocity distribution 1is properly
defined. I use flowpath to mean the actual path the plume
follows in the field as it moves and disperses along with the
bulk direction of groundwater flow. The actual path can be a
straight line or curved path depending on the existing flow
field.

Describing every point in the varying flowpath of the
plume and the exact velocity field is impractical for field
scale problems and thus straight line flowpaths and constant
velocities are generally assumed. The use of a constant
velocity and straight line path versus the varying velocity
and flowpath distribution of the groundwater flow system 1is

believed to result in an overestimation of the field scale

15
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dispersicn.

A one-dimensional analysis of the governing equation

assuming that the tracer was conservative (i.e.

non-reactive,

no molecular diffusion), instantanecus in time with a slug

source of injection (as opposed to a continuous source of

injection), was performed by Sauty (1980) in which he derived

the following equations

K p n
C(t,, P)=———exp(-—=t,(1-t.)"]
RTR (£,) L2 Pl R

R
where t, = Dimensionless time

and

= ( Camax) 1/%€XD [

Rmax

where

Eamax™ (L+P2)/2-p71

where tp.. = time of peak concentration.
and Ce = C/Chax

where C,, = peak concentration.

and
P=(x/a)
where P = Peclet number
o = aquifer dispersivity
x = distance of plume travel.

(1-Epmax) 2]

(5)

(6)

(7)

(8)

Normalised breakthrough curves are prepared using this

equation and plume breakthrough curves

16

are

analysed to
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determine the value of longitudinal dispersivity.

In the paper by Sauty ‘1%80) he states that important
differences occur between cone and two dimensional flow fields
when the Peclet number (P) is less than 10. It also states
that the use of the correct solution to match field conditions
becomes crucial when the Peclet number is less than 10.

Sauty (1980) states that when sampling is done close to
the flow axis it leads to better velocity and thus better
dispersivity evaluaticn. Also the finer the discretisation the
better the results (less error involved). But, the degree of
discretization used for the model grid has to comply with the
smallest practical grid spacing that model restrictions,
computer storage and available data will allow (Davis, 1987).

Hence, in this research it was important to discretise
the grid finer, and align it in the direction of flow to
increase accuracy in determining values of dispersivity and
noct a two dimensicnal analysis of the same data.

Sauty (1980), concluded that dispersivity obtained from
tracer tests is an increasing function of the distance between
injection well and sampling well. He concluded that, this
function stabilizes when a certain characteristics value is
reached, which is the scale of contreolling hetercgeneity.

Sudicky (1986) examined the effects that the spatial
variabilities of hydraulic conductivity had on a leong-term
tracer test performed in the Borden aquifer. He related the

spatial variability of Thydraulic conductivity to the

17
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dispersion of the tracer at the site.

Billings (1992) ccnducted a tracer test at the Elk Cresk
aquifer site at the Lubrecht Experimental Forest near
Missoula, Montana. He related the spatial variability of
hydraulic conductivity to the dispersion of the tracer.

"Values calculated from the data close to the point of
injection are lower than values calculated from data recorded
at larger distances" (Billings, 1993). This trend is
consistent with the observed scaling effect of dispersivity
described by Cherry et al. (1975), Bredehoeft (1976), Domenico
and Robbins (1984), Davis (1986), Newnman (1990) and others.

The general consensus is that dispersion is Fickian near
the source of the contaminant, and therefore for small times
or small distances from the source, the standard form of the
advection-dispersion equation does not apply (Anderson, 1984).

Large variability in dispersion parameters for what
appear to be similar aquifers are common.

The standard representation of the dispersion process has
ever been called into question, and stochastic and fractal
geometry have been called upon to define the dispersion
process (Fetter, 1993).

Recently Goode and Konikow (1990) examined the effects of
transient conditions on the longitudinal and transverse
dispersion of a plume at the Idaho National Engineering
Laboratory (INEL) modelled earlier by Robertson (1974). They

postulated that measurable apparent transverse spreading would

18
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be found. However, their work concluded that transient
conditions had little effect on model results.

Naff et al. (1989) postulated that small scale velocity
transients may be responsible for large transverse spreading
observed at two intensively studied sites. They concluded that
changes in the flow field call for adjustments in the
transverse dispersion component.

Kinzelbach and Ackerer (1986) illustrated the ability of
a steady-flow model to incorporate the dispersive effects of
transient flow on solute transport by increasing transverse
dispersion (Goode and Konikow, 1990).

The paper by Goode and Konikow (1990) states that when
flow field transients are not recognized or accounted for in
steady state simulations, significant overestimates of
transverse and longitudinal dispersivity values during model
calibration may result, weakening predictive modelling. They
concluded that unrecognized flow field transients that change
the direction of flow of a plume cause an apparent increase in
transverse dispersivity because longitudinal dispersion is not
parallel to the assumed direction of flow. They also concluded
that increase in transverse dispersivity under transient flow
is primarily a function of the extent of change in flow
direction and the ratio of longitudinal to transverse
dispersivity.

Rehfeldt (1988) applied the stochastic small-perturbation

approach of Gelhar and Axness (1983) to investigate solute
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transport impacts of temporal wariability in the hydraulic
gradient (Goode and Konikow, 1990). Both longitudinal arnd
transverse dispersivity were increased by fluctations in
direction and magnitude of velocity, although the effect on
longitudinal dispersivity was generally insignificant.

Though research indicates the need to adjust values of
dispersivity as distance of travel increases, they have not
determined a unified method to make those adjustments.

Thus most previous research concludes that there is an
increase 1in the apparent longitudinal and/or transverse
dispersion of a contaminant plume, when subjected to changing
conditions of velocity and flowpath (transient conditions),
within the groundwater flow system. They also conclude that
dispersion of the tracer at a site is directly related to the
spatial variability of hydraulic conductivity.

Other researchers have raised the issue that though the
factors described above need to be considered, the magnitude
of plume spreading that occurs from fluctuating velocity and
flowpath within the field is not well explained.

Thus, estimates of plume spreading mechanisms
(dispersivities) are poorly approximated and the future
predictions of plume behavior are in error.

In this research, I attempt to quantify the effects of a
variable velocity field and complex flowpath history omn the

apparent longitudinal dispersivity calculations.
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3.0 METHODS

The main purpose of this research was to quantify the
longitudinal dispersion of a theoretical contaminant plume
when the groundwater flow field varies due to fluctuating
velocity and flowpath, within a highly transmissive unconfined
aquifer system.

A groundwater flow model, a solute transport model, a
data visualisation program, a worksheet program, and some
analytical solutions were applied, to quantify the degree of
apparent dispersion.

MODFLOW, a USGS (United States Geological Survey) three-
dimensional, finite-difference groundwater flow model is
versatile, portable (runs on a wide range of computers), has
excellent documentation, and has shown past success of other
workers in applying it to regional aquifer studies (McDonald
and Harbaugh, 1988).

I managed to successfully apply this model, to create all
the flow model input files. The execution was carried out
using the MODFLOW executable file (Modf.exe) that has been
incorporated within the three dimensional solute transport
model, MT3D (Zheng, 1990) and is designed to be used in
conjunction with the flow model.

The solute transport models were constructed and executed
using the code, MT3D (Zheng, 1990). This code was selected
because it 1is virtually free of numerical dispersion and

cscillations, flexible for a variety of field conditions, and
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is efficient with respect to computer memory and execution
time. The code uses a mixed Eulsrian-Lagrangian approach to
solve the advection-dispersion equation.

The graphics program SURFER (Golden Software, Inc., 1991)
was used to create potentiometric maps and plot plume
positions.

The worksheet program Quattro (Borland Internatinal,
Inc., 1987) was used to create graphs (breakthrough curves) of
the simulated concentration versus time data for each plume.

Breakthrough curves of the numerically simulated plumes
were graphed and matched with a set of dimensionless type
curves as described by Sauty (1980).

A one dimensional analysis was performed on the data in
order tc estimate the longitudinal dispersivity value.

In the paper by Sauty (1980) he states that important
differences occur between one and twe dimensional flow fields
when the Peclet number (P) is less than 10. It also states
that the use of the correct solution to match field conditions
becomes crucial when the Peclet number is less than 10.

The unusually high value of longitudinal dispersion in
Model # 1 was a problem that was solved by a finer
discretization of the model grid and aligning the groundwater
flow direction with the grid as seen in Models # 2 & 3, rather
than a two dimensional analysis of the same data. The results
of this can be seen when values of longitudinal dispersivity

in Model # 1 are compared to values in Model 2 & 3.
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A two dimensicnal analysis was nct necessary in mcdel #
2 and 3 as values of longitudinal dispersivity are nearly
identical to the one dimensional values stated in the paper by
Sauty (1980) .

Sauty (1980) states that when sampling is done close to
the flow axis it leads to better velocity and thus better
dispersivity evaluation. Also the finer the discretisation the
better the results (less error involved). But, the degree of
discretization used for the model grid has to comply with the
smallest practical grid spacing that model restrictions,
computer storage and available data will allow (Davis, 1987).
Thus, in this research it was important to discretise the grid
better and align it in the direction of flow to increase
accuracy in determining values of dispersivity and not a two
dimensional analysis of the same data.

The values of longitudinal dispersivity calculated from
curve matching was then compared to the value used as model
input and to one another.

Three basic models that comprised of both the flow and
solute transport simulations were developed for the analysis

and are described under sections 3.1, 3.2 and 3.3.

3.1 MODEL # 1 (FLOW AND SOLUTE TRANSPORT)
Model # 1 was constructed to represent Pottinger’s (1988)
field site. It was used to identify problems of working at a

typical field scale and as a tool to design generic small
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scale models.

A one layer, two dimensional, unconfined steady state
flow model was developed using Pottinger’s (1988) field data
and his PLASM (Prickett and Lonnguist, 1971) flow modeling
results. I converted his 27 rows by 26 columns variable grid
into a uniform grid with 47 rows and 52 columns (Figures 5 &
6) . Cell dimensions of the new medel grid were 500 feet by 500
feet. I also used Pottinger’s model boundary conditions
(Figure 7). The total area represented by the new model grid
remained the same. The Clark Fork River was simulated using
the river package, and leakage from Grant Creek was simulated
using the well package. The model simulated a one year period.
The various parameters and names of input files used in the
flow simulation are given in detail in Appendix A. The
resulting flow field matched with Pottinger’s average head
data for the year.

The resulting calibrated steady state flow field was used
as input to the solute transport code. A starting
concentration of 1000 mg/l was input as a slug at location
(25,23) = (Row,Col) of the grid (Figure 8). I assigned a
constant longitudinal dispersivity value of 10 feet, and the
ratio of transverse dispersivity to longitudinal dispersivity
was 0.1. The model simulated a three year period. The other
parameters and names of input files used in the solute
transport simulation are provided in detail in Appendix A.

The results of the solute transport run were then
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processed and two dimensional plume maps and breakthrough
curves for selected locations along the groundwater flowpath
were developed. Breakthrough curves observed at selected
distances along the flowpath were then matched to type Curves
developed from Sauty (1980).

The modeling effort would determine 1f model data
generated and analyzed at this scale would yield acceptable
values of apparent longitudinal dispersivity when compared to
the actual value used in the model.

In this model the grid and the groundwater flow
direction were not aligned. Hence, measuring distance from
input point to the centre of the plume was calculated using

the Pythagorean theorem approach.

3.2 MODEL # 2 (FLOW AND SOLUTE TRANSPORT)

A section ABCD (7000 feet by 7000 feet) of the initial
flow model (Figure 9) was then selected and further
discretized into a 70 rows by 70 columns grid with a uniform
grid spacing of 100 feet in both directions, for a more
detailed analysis of dispersivities calculated from Model # 1
(Figure 10).

This one layer, two dimensional, unconfined, steady state
model was used to obtain a more detailed analysis of the
changes in the magnitude of the interpreted longitudinal
dispersivity values.

In the paper by Sauty (1980) states that for tracer test
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interpretation if the sampling well is not close to the flow
axis it may introduce errcrs and result in an incorrect
evaluation of velocity and dispersivity. This model was
designed such that the flow direction was aligned with the
model grid, thus minimizing the error involved in calculating
distances. This would also allow testing of the effect of
velocity variation on the predicted plume dispersion under
steady state conditions with greater accuracy.

The second modeling effort involved assessing the
magnitude of longitudinal dispersivity that could be accounted
if the actual variable velocity distribution within the field
was poorly represented.

The equation V=Ki/n , shows the relationship between the
velocity (V), hydraulic conductivity (K), the gradient (i),
and porosity (n). The velocity of groundwater flow within a
system can be changed by changing cne or more of the above
parameters seen in the equation. Using this equation, the
following three scenarios were developed and run independently
in this model.

The first scenario involved evaluating the apparent
dispersion along a straight 1line flowpath in a constant
velocity flow field. The one layer, two dimensional,
unconfined, steady state system aquifer was treated as
isotropic and homogeneous. Hydraulic conductivity (K) was set
at 700 ft/d. Porcosity was a constant value of 0.2 through the

model. The resulting flow field is shown (without the overlain
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grid) in Figure 11.

In the second scenario, the hydraulic conductivicy (K)
was 700 ft/d for the first 3000 feet of the model, then
uniformly changed to 400 ft/d for the next 2000 feet and
finally was set to 700 ft/d for the last 2000 feet of flow.
Porosity remained at 0.2 throughout the model. As the flux in
and out of the model remained constant the flow model
simulated hydraulic gradients for each of the constant
hydraulic conductivity zones. This resulted in a constant
velocity that was less than that of the first scenario. The
resulting flow field (without overlain grid) is shown in
Figure 12.

The third scenario set hydraulic gradients within the
flow field using constant head boundaries. A constant value of
hydraulic conductivity (K) of 700 ft/d was assigned for the
entire model. Porosity remained at 0.2 through the model. This
created a model with a systematically varying velocity. The
resulting flow field (without overlain grid) is shown in
Figure 13.

The solute transport model # 2 had the same initial input
for the various parameters as described under "Flow and Solute
Transport model # 1". The input point or the point of
injection of the slug was (35,6)=(row,column) as shown in
Figure 10.

Appendix B contains the input parameters and names of the

flow and solute transport input files used in the three
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simulations.

The general overall procedure to obtain the poteticmetric
maps, maps ©0f the wvarious plumes, and the <wvalues of
longitudinal dispersivity employed here was the same as

decribed in Model # 1.

3.3 MODEL # 3 (FLOW AND SOLUTE TRANSPORT)

This model was used to evaluate the magnitude of apparent
and true longitudinal dispersion in a directionally varying
groundwater flow field (fluctuating flowpath).

This one layer, two dimensional, unconfined, transient
model had the same dimensions as in Model # 2 (Figure 10). The
model was designed with four different stress periods each
three months long. The flow model simulated a total period of
three years, repeating the same annual stress cycle (each
cycle = 1 year, each stress period = 3 months) for all three
years. By manipulating the two flux boundaries, I changed the
flow direction from 0 to 90 degrees. The resulting flow fields
for stress periods 1 to 4 (first year) are shown in Figures 14
to 17. The second and third year simulations repeat the same
stresses as in the first year cycle, and thus result in the
same flow fields as in the first year, and hence are not
shown.

The initial or starting heads used in the transient model
run were taken from the first scenario of model # 2

(Figure 11). The model represented isotropic and homogenous
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conditions with a average hydraulic conductivity of 700 ft/d.
The various parameters and names of flow and solute transport
model input files are given in detail in Appendix C.

In this model, the true distance (X,) is the actual
distance covered by the plume and is measured along the
variable flowpath taken by the plume which is its true
flowpath. The apparent distance (X,) is the distance measured
along a straight line between the source and plume center or
the plumes apparent flowpath as one would measure in the field
without prior or accurate knowledge of the groundwater flow
directions (Figure 18).

Thus, I calculated two values of longitudinal
dispersivity one along its true flowpath and one along its
apparent flowpath. They are referred to as true longitudinal
dispersivity and apparent longitudinal dispersivity.

The general overall procedure to obtain the
potentiometric maps, maps of the various plumes, and values
for longitudinal dispersivity employed here was the same as in

Section 3.1, Model # 1.
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4.0 RESULTS AND DISCUSSION

The results of each mcdel shows the plume maps with their
configurations, breakthrough curves for each plume, and a
table summarizing the calculated values of longitudinal
dispersivity. A discussion of the results, goes with the
presentation.

Figure 19 1s a set of dimensionless time versus
concentration curves developed from Sauty (1980) for a one

dimensional analysis of longitudinal dispersion.

4.1 MODEL # 1

Figures 20 & 21 are maps of the plumes at one and two
years. Figures 22 to 26 are the breakthrough curves at point
of observation including at one and two years. Table 1
provides a summary of the calculated longitudinal dispersivity
values. The first model did not give any conclusive results
and the analytically derived results did not match with the
model input value of 10 feet for longitudinal dispersivity.
This was due to poor discretization of this model grid and not
having aligned the grid along the direction of flow of
groundwater. The above sequence of presenting the data 1is

repeated for Model # 2 & 3.

4.2 MODEL # 2

Figures 27 to 32 are three sets of plume maps for one and

two years for each of the three different scenarios under
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Model # 2. Figures 33 to 38 are three sets of breakthrough
curves for each of the three sets of plume maps above. Table
2 provides a summary of values of longitudinal dispersivity
for each of three scenarios in the model. On comparing the
longitudinal dispersivity values from the three scenariocs we
can see that all the values of longitudinal dispersivity agree
very closely with each other, and with the model input value
which was 10 feet, except, in the final scenario where
longitudinal dispersivity value is 40 feet for the second year
location.

In the first scenario, the hydraulic conductivity and
porosity were held constant. This resulted in one constant
velocity field throughtout the model. The grid was aligned
with the groundwater flow direction. Also, the grid was more
finely discretized than in Model # 1. The analytically derived
value of longitudinal dispersivity agreed very closely with
the modeled value, as the calculations were straight forward
in this case.

In the second scenario, the hydraulic conductivity was
made to vary within the model. The porosity was a constant
value of 0.2 throughout the model. As the flux remained
constant in and out of the model, the flow simulated hydraulic
gradients for each of the constant hydraulic conductivity
zones. This resulted in a constant velocity that was less than
of the first scenario. Here too the analytically derived value

of longitudinal dispersivity agreed very well with the
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modelled value and with the wvalues in the first scenaric as
seen in Table 2.

Also notice, that though the -alues of longitudinal
dispersivity agree well in both scenariocs when compared, the
distance covered by the plumes, for one and two years in the
first scenario, is more than that covered by the plumes in the
second scenario as expected.

In the third scenario, hydraulic gradients were set up
within the model, by using constant head boundaries and
aligned perpendicular to the direction of flow. The hydraulic
conductivity was kept a constant (K=700 ft/d) through the
model. The porosity was a constant of 0.2 . This varied the
velocity systematically within the model.

It can be seen from Table 3, that the location of the
first year longitudinal dispersivity value agrees well with
the modelled value of 10 feet and, with the first and second
scenarios results. But, the seccnd year location of the plume,
shows a value of longitudinal dispersivity that 1is very high
(40 feet), and does not agree with the modelled value of 10
feet. This wvalue of longitudinal dispersivity is also in
disagreement with the first two scenarios.

Typically under isotropic homogeneous conditions values
of transverse dispersivity are at least one order of magnitude
lower than the longitudinal dispersivity values (Cherry et
al., 1975; Goode and Konikow, 1890).

In the paper by Goode and Konikow (1990) they conclude
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that unrecognized flow field transients that change the
direction of flow of a plume cause an increase in the
transverse dispersivity because lcngitudinal dispersion is
acting in a direction that is not parallel to the assumed
direction of flow.

Thus, I hypothesies, that the high value of longitudinal
dispersivity (40 feet) in the third scenario, is due to the
constant head boundary within the model that increased the
transverse dispersion due to change in gradient and thus
velocity of the flow. I believe this to be so as the plume
travels from a higher velocity zone to a lower velocity zone.
The other explanation could be that the longitudinal
dispersion had actually increased as seen in Table 2 which is

contrary to my understanding.

4.3 MODEL # 3

I have presented the results of the transient Model # 3,
in the same format as the other models. Figures 39 to 46 are
maps showing the locations and extent of the various plumes in
time (including one and two years). Figures 47 to 54 are
breakthrough curves associated with the above plumes. Table 3
provides a summary of the calculated longitudinal dispersivity
values.

It can be seen from Table 3, that values calculated from
the data close to the point of injection are lower than values

calculated from data recorded at larger distances. Also, the
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value of true longitudinal dispersivity measured along the
true flowpath (X.) are higher than the apparent longitudinal
dispersivity values measured along a straight line or apparent
flowpath (X,).

In the paper by Goode and Konikow (1990) they conclude
that unrecognised flow field transients that change the
direction of flow of a plume cause an increase in the
transverse dispersivity because longitudinal dispersion is
acting in a direction that is not parallel to the assumed
direction of flow.

Thus, Model # 2 & 3 indicate that field derived values of
longitudinal dispersion should be increased to account for
flow field transients such as minor and major fluctuations in

velocity and flowpath.
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Frgnre 26 (row, cold-(32, 20) Model |
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TABLE 1.
Summary of calculated longitudinal dispersivity values (Model # 1)

{layer,row,column} X P |Long.Disp.= X/P
(feet) (feet)
{1,25,23} input
{1,26,22} 707 2 353
{1,27,22} 1207 5 241
{1,28,21} 1914 | 9 212
{1,29,21} 1 yr. 2414 | 13 185.6
{1.32,20} 2 yrs. 3532 | 20 176.6

X = Distance travelled by centre of plume
P = Peclet number retreived from curve matching
{layer,row,column} = points of observation
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Fregure 237 (row. col)=(35, 28) Model g 2 Third Scenarioc
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TABLE 2
Summary of calculated longitudinal dispersivity values (Mode!l # 2)

{layer,row column} X P |LongDisp.= X/P
(feet) {feer)

{1,35.6} input

First scenario

{1,35.25} 1 yr. 1900 | 200 8.5
{1.35.43} 2 yrs. 3700 | 350 10.6
Second scenario

{1,35.21} 1 yr. 1500 | 150 10
{1,35,36} 2yrs. | 3000 | 300 10
Third scenario

{1.35.28} 1 yr. 2200 | 200 11
{1.35.38} 2 yrs. 3200 | 80 40

X = Distance travelled by centre of plume
P = Peclet number retreived from curve matching
{layer,row,column} = points of observation
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Figure 40. Plume Map (Mode! #3, 182 days)
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Figanre 47 (row, col)=(35. 11) Mode]l # 2
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Figure 48 (row, col}=(38, 13) Model # 3
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Frere 500 (row. col)=(136, 30) Model 403
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TABLE 3

Summary of calculated longitudinal dispersivity values (model #3)
True and Apparent Longitudinal Dispersivity values are shown.

{layer,row,column}| Xt Xa P Long.Disp.= Xt /P | Long.Disp.=Xa/P
(feet) |(feet) (feet) (feet)

{1,35,6} input

{1,35,11} 500 200 25

{1,38,13} 860 70 12.3

{1,35,16} 1284 |1000 70 18.3 143
{1,35,20} 1 yr. 1684 {1400 80 21 17.5

{1,35,25} 2184 [1900 100 218 19

{1,38,28} 2608 100 26

{1,35,30} 2968 |2400 150 19.7 16
{1,35,33} 2 yrs. 3268 |2700 150 21.8 18

Xt = true distance travelled by centre of plume (along varying flowpath)
Xa = apparent distance travelled by centre of plume (straight line path assumed)

P = Peclet number retreived from curve matching

{layer,row,column} = points of observation




5.0 CONCLUSIONS AND RECOMMENDATIONS

The spreading process is pocrly represented when regicnal
scale flow model results are used as input to solute transpcres
codes (not easily reproduced with analytic solutions) .

When discretization of the initial field setting into 100
ft. * 100 ft. cells was used and a constant velocity field was
created, analtical solutions of modeled plumes for
longitudinal dispersivity matched input value.

When the velocity field is varied from 6.0 ft/d to 2.0
ft/d as in model # 2, scenario three, second year position,
the plume 1is spread such that the apparent longitudinal
dispersivity increased four times the actual modeled value.

The results of model # 3 indicate that a directionally
varying flow field (flowpath wvariation) with a constant
magnitude of velocity, results in an increase in predicted
true and apparent longitudinal dispersivity values.

Interestingly, mcdel # 3 also indicates that the value of
apparent longitudinal dispersivity (straight line distance) is
always less than the true longitudinal dispersivity calculated
using actual flowpath length.

Overall, the results indicate that wvariations 1in
magnitude of groundwater velocity or a directionally varying
flowfield within an unconfined aquifer system, can cause an
increase in the longitudinal dispersivity of a slug injected
contaminant plume. These flow field changes allow for a large

portion of the solute to move transversly to the flow
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direction, causing more plume dispersion.
I recommend the further research as follows
1) Vary the magnitude of -elocity in swmall increments 9o

determine when the significant changes 1in longitudinal

dispersion occur.

2) Vary the distance and angle of flowpath to determine when

the significant changes in longitudinal dispersion occur.

66

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



REFERENCES

Ackerer, P. , and W. Kinzelbach, 19$85. Mcdelisation du
transport de contaminant par la methode de marche au
hasard - Influence des variations du champ d’ecoulment au
cours du temps sur la dispersion. Paper presented at the
symposium on the stochastic approach to subsurface flow,
Int. Assoc. of Hyraul. Res., Montvillargenne, France,
June 3-6.

Alt, D., and Hyndman, D.W., 1986. Roadside Geology of Montana.
Mountain Press Publishing Company, Missoula, MT., pp.75-
76.

Anderson, M.P., 1984. Movement of contaminants in groundwater:
Groundwater Transport - Advection and Dispersion.
Groundwater Contamination (Studies in Geophysics), pp.
37-45.

Armstrong, K.G., 1991. The Distribution and Occurence of
Perchloroethylene in the Missoula Valley Aquifer. Univ.
of Montana, Master’s thesis, Dept. of geology,
unpublished, pp 134.

Bilings, J.B., 1992. Evaluating methods of determining the
Hydraulic Conductivity distribution in a Heterogenous
Unconfined Aquifer. Univ. of Montana, Master’s thesis,
Dept. of Geology, unpublished, pp 192.

Clark, K.W., 1986. Interactions between the Clark Fork River
and Missoula Agquifer, Missoula County, Montana. Univ. of

Montana, M.S. Thesis, Dept. of Geology, unpublished, pp

67

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



157.

Davis, A.D., 1986. Deterministic Modeling of Dispersion <n
Heterogeneous Permeable Media, Ground Water, +. 24, no.
5, pp. 609-615.

Dougherty, D.E., and A.C. Bagtzoglou, 1993. A caution on the
regulatory use of numerical soclute transport models,
GroundWater, v. 31, no. 6, Fp. 1007-1010.

Fetter, C.W., 1993. Contaminant Hydrogeology. Macmillan
Publishing company, New York, chapter 2.

Goode, D.J., and L.F. Konikow, October 1990, Apparent
dispersion in transient groundwater flow. Water Resources
Research, v. 26, no. 10, pp. 2339-2351.

Goode D.J., and L.F. Konikow, 1990. Reevaluation of large-
scale dispersivities for a waste chloride plume: effects
of transient flow. McdelCARE 90: Calibration and
reliability in groundwater modelling. IAHS Publ. no. 195,
pp. 417-426.

Goode, D.J., 1992. Modelling transport in transient ground-
water flow : An unacknowledge approximation, Ground
Water, v. 30, no. 2, pp. 257-261.

McDonald and Harbaugh, 1588. A Modular Three Dimensional
Finite-Difference Groundwater Flow Model (MODFLOW),
Techniques of Water Resources Investigation of the USGS,
Book 6, Modelling Techniques, Chapter Al.

Miller, R.D., 1991. A numerical flow mcdel of the Missoula

Aquifer : Interpretation of Aquifer properties and river

68

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



interaction. Univ. of Montana, Master’'s thesis,
unpublished, pp. 301.

Molz, F.J., O. Guven, and J.G. Melville, 1983. An
examination of scale-dependant dispersion coefficients,
Ground Water, v. 21, no. 6, pp. 715-725.

Naff, R.L., T.C.J. Yeh., and M.W. Kemblowski, 1989, Reply,
Water Resources Research., v. 25, no. 12, Pp. 2523-2525.

Pottinger, M.H., 1988. The source, fate and movement of
herbicides in an unconfined sand and gravel aquifer in
Missoula, Montana, Univ. Of Montana, Master’s thesis,
Dept. of Geclogy, unpublished, total pages 172.

Prickette, T.A., and Lonnquist, C.G., 1971. Selected digital
computer techniques for groundwater evaluation, Illinois
State Water Survey Bulletin 55, pp 62.

Robertson, J.B., 1974. Digital modelling of radioactive waste
and chemical transport in the Snake River Plain Aguifer
at The National Reactor Testing Station, Idaho. USGS Open

File Rep. IDO-22054.

Sauty, J.P., 1980. An analysis of hydrodispersive transfer in
aquifers, Water Resources Research, v. 16, n. 1, pp. 145-
158.

Sudicky, E.A., 1986. A natural gradient experiment on solute
transport in a sand aquifer : Saptial variability of
hydraulic conductivity and its role in the dispersicn

process, Water Resources Research, v. 22, n. 13, pp.

2069-2082.

69

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



Zheng, C., 1990. MT3D - A Modular Three-Demensional Transport
Model for Simulation Of Advection, Dispersion and
Chemical Reactions of Contaminants in Groundwater

Systems. S.S.Papadoupulos & Associates, Inc. Rockville,

Maryland 20852.

Zou, S., and A. Parr, 1993. Estimation of dispersion

parameters for two-dimensional plumes, Ground Water, v.

31, no. 3, pp. 389-392.

70

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



APPENDIX A - Input parameters and files to Flow
and Solute Transport Model # 1
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Values for the input parameters : Model # 1
Grid size = 47 rows, 52 columns

Cell width along rows = 500 feet

Cell width along columns = 500 feet

Layer thickness = 270 feet

Hydraulic Conductivity = 700 ft/d

Porosity = 0.2

Longitudinal dispersivity = 10 feet

Ratioc of horizontal and vertical transverse to longitudinal
dispersivity = 0.1

Input concentration (slug injection) = 1000 mg/l

Simulation time = 3 years
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Input Files : Flow Model # 1

BAS1
BCF1
WEL1
RIV1
GHB1
SIP1

OC1

Basic file

Block centered flow file

Well file (simulating Grant Creek)

River file (simulating Clark Fork River)
General head boundary file

Successive iteration file

Output control file

Input Files : Solute Transport Model # 1

BTN1

ADV1

DIS1

SSM1

SCi1

Note

Basic transport file
Advection file

Dispersion file

Sink and source mixing file

Starting concentration file

All flow and solute transport files input files for
Model # 1 on Plate 1.
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APPENDIX B - Input Parameters and Files to Flow
and Solute Transport Model # 2
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Values for the input parameters

Grid size = 70 rows,
Cell width along rows =
Cell width along cclumns
Layer thickness =

Porosity = 0.2

Longitudinal dispersivity =

Model # 2

70 columns

100 feer

= 100 feet

270 feet

10 feet

Ratio of horizontal and vertical transverse to longitudinal

dispersivity = 0.1
Input concentration

Simulation time =

First Scenario

L1}

Hydraulic Conductivity

Second Scenario

Hydraulic Conductivity
Third Scenario
Hydraulic Conductivity =

Constant head boundaries
1 to row 70.

(slug injection) =

1000 mg/1

3 years

700 fr/d (Constant)

varying (see input file BCF2)

700 ft/d

at column 30 and column 49, from row
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Input Files : Flow Model # 2

BAS2 - Basic file (first and second scenario)

BAS3 - Basic file (third scenario)

BCF2 - Block centered flow file (first and third scenario)
BCF3 - Block centered flow file (second scenario)

GHB2 - General head boundary file

SIP1 - Successive iteration file

OCl - Output control file

Input Files : Solute Transport Model # 2
BTN2 - Basic transport file

ADV1 - Advection file

DIS1 - Dispersion package

SSM2 - Sink and source mixing package (first and second
scenario)

SSM3 - Sink and source mixing package (third scenario)

SC2 - Starting concentration file

Note : All flow and solute transport input files for
Model # 2 on Plate 1.
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APPENDIX D - Input Parameters and Files to Flow
and Solute Transport Model # 3
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Values for the input parameters : Model # 3
Grid size = 70 rows, 70 columns

Cell width along rows = 100 feet

Cell width along columns = 100 feet

Layer thickness = 270 feet

Hydraulic Conductivity = 700 ft/d

Porosity = 0.2

Longitudinal dispersivity = 10 feet

Ratio of horizontal and vertical transverse to longitudinal
dispersivity = 0.1

Input concentration (slug injection) = 1000 mg/1l

Simulation time = 3 years
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Input Files : Flow Model # 3

BAS - Basic file

BCF - Block centered flow file
SHD - Starting head file

GHB - General head boundary file
SIP - Successive iteration file

OC - Output control file

Input Files : Solute Transport Model # 1
BTN - Basic transport file

ADV - Advection file

DIS - Dispersion file

SSM - Sink and source mixing file

SC - Starting concentration file

Note : All flow and solute transport input files for
Model # 3 on Plate 1.
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