Functionality Variables and Accelerometry Energy Expenditure Estimate Improvement in Individuals with Locomotor Dysfunction

Rodolfo Villarreal

University of Montana - Missoula, rodolfo.villarreal-calderon@umontana.edu

Follow this and additional works at: https://scholarworks.umt.edu/umcur

Let us know how access to this document benefits you.

https://scholarworks.umt.edu/umcur/2014/poster_1/7

This Poster is brought to you for free and open access by ScholarWorks at University of Montana. It has been accepted for inclusion in University of Montana Conference on Undergraduate Research (UMCUR) by an authorized administrator of ScholarWorks at University of Montana. For more information, please contact scholarworks@mso.umt.edu.
Functionality Variables and Accelerometry Energy Expenditure Estimate Improvement in Individuals with Locomotor Dysfunction

Rodolfo Villarreal-Calderon & Dr. James J. Laskin PT PhD

1University of Montana Davidson Honors College, 2School of Physical Therapy and Rehabilitation Science at the University of Montana, Missoula, MT

ABSTRACT

• age, sex, weight, and height
• Current Actical algorithms underpredict EE estimates in individuals with abnormal gait

Table 3: Regressions A–E

Variable	Age	Gender	Height	Weight	30CS	6MWT	10mW-p	10mW-f	10mW-dif	6MWT-p	6MWT-f	6MWT-dif	30CS-p	30CS-f	30CS-dif	6MWT-p	6MWT-f	6MWT-dif	30CS-p	30CS-f	30CS-dif	6MWT-p	6MWT-f	6MWT-dif	30CS-p	30CS-f	30CS-dif			
A																														
B																														
C																														
D																														
E																														

Fig. 1: The Gait Cycle

Fig. 5: 4SB (4 Stage Balance Test)

Fig. 6: TUG (Timed Up-and-Go)

Fig. 7: 10mW (10 Meter Walk)

METHODS

• Two cohorts of ambulatory subjects with diverse degrees of gait impairment - ranging from mild to severe, requiring use of assistive devices and rehabilitation interventions

CONCLUSIONS

• Actual® accelerometers underpredict energy expenditure estimates when used by individuals with locomotor dysfunction (abnormal gait)
• Regression equations with variables of the 5 functional tests (30CS, 6MWT, 10mW, and 6MWT) - as well as with the conventional age, sex, weight, and height – produce improved energy expenditure estimates for gait impaired individuals in comparison to Actual® estimates - these standard and simple tests are fitting variables to be incorporated into Actual® calculations for those with abnormal gait - future studies with much larger sample sizes would be desired to improve R² values