#### University of Montana

### ScholarWorks at University of Montana

Graduate Student Theses, Dissertations, & Professional Papers

**Graduate School** 

1997

### Attenuated poliovirus bacteriophage and bromide transport through a coarse-grained aquifer western Montana

Quinn T. Kiley The University of Montana

Follow this and additional works at: https://scholarworks.umt.edu/etd Let us know how access to this document benefits you.

#### **Recommended Citation**

Kiley, Quinn T., "Attenuated poliovirus bacteriophage and bromide transport through a coarse-grained aquifer western Montana" (1997). *Graduate Student Theses, Dissertations, & Professional Papers*. 9236. https://scholarworks.umt.edu/etd/9236

This Thesis is brought to you for free and open access by the Graduate School at ScholarWorks at University of Montana. It has been accepted for inclusion in Graduate Student Theses, Dissertations, & Professional Papers by an authorized administrator of ScholarWorks at University of Montana. For more information, please contact scholarworks@mso.umt.edu.



## Maureen and Mike MANSFIELD LIBRARY

# The University of MONTANA

Permission is granted by the author to reproduce this material in its entirety, provided that this material is used for scholarly purposes and is properly cited in published works and reports.

\*\* Please check "Yes" or "No" and provide signature \*\*

Yes, I grant permission No, I do not grant permission Author's Signature Date

Any copying for commercial purposes or financial gain may be undertaken only with the author's explicit consent.

### Attenuated Poliovirus, Bacteriophage, and Bromide Transport Through a Coarse-Grained Aquifer, Western Montana.

by

Quinn T. Kiley

B.S., Washington & Lee University, Lexington, Virginia

Presented in partial fulfillment of the requirements for the

degree of Master of Science.

University of Montana

April, 1997

Approved by:

Chairman, Thesis Committee

Dean, Graduate School

5-19-97

Date

UMI Number: EP40038

All rights reserved

INFORMATION TO ALL USERS The quality of this reproduction is dependent upon the quality of the copy submitted.

In the unlikely event that the author did not send a complete manuscript and there are missing pages, these will be noted. Also, if material had to be removed, a note will indicate the deletion.



UMI EP40038

Published by ProQuest LLC (2013). Copyright in the Dissertation held by the Author.

Microform Edition © ProQuest LLC. All rights reserved. This work is protected against unauthorized copying under Title 17, United States Code



ProQuest LLC. 789 East Eisenhower Parkway P.O. Box 1346 Ann Arbor, MI 48106 - 1346 Quinn T. Kiley, M.S., April 1997

Attenuated Poliovirus, Bacteriophage, and Bromide Transport Through a Coarse-Grained Aquifer, Western Montana.

Chairman: Dr. William W. Woessner

# Abstract WWW 5-19-17

Microbial contamination of groundwater supply wells causes 50% of the outbreaks associated with waterborne diseases each year. The transport of the bacteriophages MS2, PRD1,  $\emptyset$ X174, the attenuated enterovirus poliovirus type-1 (CHAT strain), and bromide in a cold water, sand and gravel aquifer was studied under natural gradient conditions near Missoula, MT. The average transport velocity for bromide was 25-30m/d. Bacteriophages were observed at concentrations of 10<sup>3</sup> PFU/ml 40.5m from the injection well. After 8 hours of transport approximately 97% of the injected attenuated poliovirus and 35-79% of the bacteriophages adsorbed to the aquifer material. Although adsorption occurs, a portion of the viruses appears to act conservatively creating breakthrough curves similar to bromide, though with long tails. Virus were persistent, as seeded viruses were observed 185 days after injection.

### **Acknowledgments**

I would like to thank the National Water Resources Institute and the US EPA for their joint funding of this research. The Montana State Fish, Wildlife, and Parks Department was instrumental in allowing us access to the Erskine site, without which none of this work would have been possible.

My utmost thanks goes to Bill Woessner for guiding me throughout this project. He gave me a controlling hand at the field site, but was wary of whether or not everything was "under control". Bill's editing, seemingly continuous, I hope has resulted in clear document that truly expresses the breadth and scope of the work we did at the Erskine site. Dan DeBorde, who kept us hydrogeologists from losing sight of the virological aspect of the study, and whose work in the laboratory with PhD. candidate Pat Ball was both laborious, productive, and efficient. Johnnie Moore who served on the committee and in the midst of all of his other commitments was willing to help me through my tenure in Missoula.

I would be doing a great injustice if I did not mention the legions of students who aided me in the field and the laboratory, sampling and analyzing, and instrumenting the sight. Lynn Biegelsen, who was always ready for another tracer test. Loreene Skeel and Judy Fitzner who helped me wade through the bureaucracy and stay afloat for two years.

### **Table of Contents**

| Abstract                                         | ii           |
|--------------------------------------------------|--------------|
| Acknowledgments                                  | iii          |
| List of Figures                                  | $\mathbf{v}$ |
| List of Tables                                   | vii          |
| List of Appendices                               | viii         |
| 1.0 Introduction                                 | 1            |
| 2.0 Methods                                      | 3            |
| 2.1 Site Description                             | 3            |
| 2.2 Field Methods                                | 3            |
| 2.3 Analytical Methods                           | 8            |
| 3.0 Results                                      | 10           |
| 4.0 Discussion                                   | 29           |
| 4.1 Comparison of Virus and Bromide Distribution | 29           |
| 4.2 Conservative Virus Sub-Population            | 30           |
| 4.3 Comparison of Transport Rates                | 30           |
| 5.0 Conclusion                                   | 35           |
| References Cited                                 | 37           |
| Appendix A                                       | 40           |
| Appendix B                                       | 42           |
| Appendix C                                       | 84           |
| Appendix D                                       | 92           |

### List of Figures

| Figure 1  | Site Map                                        | 4  |
|-----------|-------------------------------------------------|----|
| Figure 2  | Sampling Well Network                           | 5  |
| Figure 3  | Concentration Reduction from Well I4            | 12 |
| Figure 4  | Breakthrough Curves for Well M-2                | 14 |
| Figure 5  | Breakthrough Curves for Well M-7                | 15 |
| Figure 6  | Breakthrough Curves for Well M-14               | 16 |
| Figure 7  | Breakthrough Curves for Well M-17               | 17 |
| Figure 8  | 72hr PRD1 Plume 0.6m Below Water Table          | 19 |
| Figure 9  | 36hr Bromide Plume 0.6m Below Water Table       | 20 |
| Figure 10 | 72hr PRD1 Plume 1.5m Below Water Table          | 21 |
| Figure 11 | 72hr PRD1 Plume Cross-section                   | 22 |
| Figure 12 | 8hr Bromide Plume 0.6m Below Water Table        | 24 |
| Figure 13 | 8hr MS2 Plume 0.6m Below Water Table            | 25 |
| Figure 14 | 8hr PRD1 Plume 0.6m Below Water Table           | 26 |
| Figure 15 | 8hr ØX174 Plume 0.6m Below Water Table          | 27 |
| Figure 16 | 8hr Poliovirus Plume 0.6m Below Water Table     | 28 |
| Figure 17 | Relative Concentration v. Distance from Well I4 | 33 |
| Figure 18 | Bromide and Poliovirus Comparison               | 34 |
| Figure B1 | Water Level Monitoring Wells                    | 45 |
| Figure B2 | Potentiometric Map                              | 46 |
| Figure B3 | Hydrograph                                      | 47 |

| Figure B4-13  | Time-Drawdown Plots, Pumping W1    | 61  |
|---------------|------------------------------------|-----|
| Figure B14-23 | 3 Time-Drawdown Plots, Pumping W2  | 72  |
| Figure B24    | Time-Drawdown Plot, Pumping W3     | 83  |
| Figure C1     | Well Designs                       | 87  |
| Figure C2     | Phase 1 Well Network               | 88  |
| Figure C3     | Phase 2 Well Network               | 91  |
| Figure D1     | Rhodamine-wt Plumes                | 98  |
| Figure D2     | Bromide Plumes                     | 99  |
| Figure D3     | MS2 Plume 3/28/96                  | 100 |
| Figure D4     | MS2 Plume 8/22/96                  | 101 |
| Figure D5     | Bromide Plume 9ft Depth 9/20/96    | 102 |
| Figure D6     | Bromide Plume 12ft Depth 9/20/96   | 103 |
| Figure D7     | MS2 Plume 9ft Depth 10/2/96        | 105 |
| Figure D8     | MS2 Plume 12ft Depth 10/2/96       | 106 |
| Figure D9     | PRD1 Plume 9ft Depth 10/2/96       | 113 |
| Figure D10    | PRD1 Plume 12ft Depth 10/2/96      | 114 |
| Figure D11    | ØX174 Plume 9ft Depth 10/2/96      | 121 |
| Figure D12    | ØX174 Plume 12ft Depth 10/2/96     | 122 |
| Figure D13    | Poliovirus Plume 9ft Depth 10/2/96 | 129 |
| Figure D14    | MS2 Plume Cross-Section 10/2/96    | 136 |
| Figure D15    | PRD1 Plume Cross-Section 10/2/96   | 137 |
| Figure D16    | ØX174 Plume Cross-Section 10/2/96  | 138 |
|               |                                    |     |

### List of Tables

| Table 1  | Aquifer Characteristics                          | 6   |
|----------|--------------------------------------------------|-----|
| Table 2  | Initial Concentration of Injected Tracers        | 6   |
| Table 3  | Transport Velocities                             | 13  |
| Table 4  | Percent Tracer Adsorbed and in the Aqueous Phase | 23  |
| Table B1 | Water Level Data                                 | 48  |
| Table B2 | Calculated Conductivities                        | 58  |
| Table B3 | Conductivity from Time-Drawdown W1, W2           | 59  |
| Table B4 | Time-Drawdown Data W1                            | 60  |
| Table B5 | Time-Drawdown Data W2                            | 71  |
| Table B6 | Time-Drawdown Data W3                            | 82  |
| Table C1 | Instrument Description                           | 89  |
| Table D1 | Tracer Test Summary                              | 97  |
| Table D2 | Bromide Tracer Test Data                         | 104 |
| Table D3 | MS2 Tracer Test Data                             | 107 |
| Table D4 | PRD1 Tracer Test Data                            | 115 |
| Table D5 | ØX174 Tracer Test Data                           | 123 |
| Table D6 | Poliovirus Tracer Test Data                      | 131 |

### List of Appendices

| Appendix A | 40 |
|------------|----|
| Appendix B | 42 |
| Appendix C | 84 |
| Appendix D | 92 |

#### **1. Introduction**

Microbial contamination of groundwater supplies causes over half the waterborne disease outbreaks in the United States (Keswick and Gerba, 1980). Wellhead protection from microbial contamination, especially viruses, has been a major topic of research in recent years (Welling et al, 1975; Mathess and Pekdeger, 1981; Pekdeger and Mathess, 1983; Bitton et al, 1984; Yates et al, 1985; Jansons et al, 1989a,b; Bales et al, 1995; Rossi et al, 1994). These studies have led to a greater understanding of the physical and chemical factors controlling the transport and survival of viruses in groundwater. Temperature, pH, adsorption, and dispersion have been identified as major controls of virus fate and transport. Lower groundwater temperature allows for greater persistence of viruses (Yahya et al, 1993; Yates and Yates, 1987). Groundwater pH has been reported to influence virus adsorption. Viruses more readily adsorb to sediments when the groundwater pH is less than 5 and adsorb less effectively when the pH is greater than 5 (Goyal and Gerba, 1979; Bales et al, 1993). In addition to the varying chemical characteristics in an aquifer, one virus strain will adsorb more strongly to an aquifer matrix than another under identical conditions because of the differences in viral surface properties (Goyal and Gerba, 1979). The mechanism of adsorption as described by Gerba(1984) results from the virus adsorbing ions onto its surface layer and then affixing to an oppositely charged medium, the aquifer material. The lowering of pH decreases the thickness of the layer of ions, allowing van der Waals forces to effectively bond the virus to the dispersive medium (Gerba, 1984).

Though these basic transport and survival processes have been documented for indicator bacteriophages and some strains of poliovirus in laboratory settings, relatively few multiple virus seeding experiments have been conducted at the field scale (Alhajjar et al, 1987; Jansons et al, 1989a,b; Bales et al, 1989; Bales et al, 1995; Rossi et al, 1994). Unfortunately, field assessments often include insufficient hydrogeologic data to allow reasonable transferability of study results to similar hydrogeologic settings. In addition, research completed in well characterized sand and gravel **dominated aquifers is** costly (weeks of sampling and complex assay procedures). As a result, well documented virus plumes and peaks have been limited to about a 15m travel distance (Bales et al, 1995). These limitations have forced regulators assessing the adequacy of existing and proposed set back distances used to protect groundwater supply wells to extrapolate the available data by applying poorly calibrated predictive models (HydroGeoLogic, 1994a, 1994b; Yates and Yates, 1989; Macler, 1995; Macler and Pontius, 1995; U.S. EPA, 1994).

This work documents the behavior of four viruses seeded into a well characterized cold water, highly conductive, unconfined aquifer. The experiment design and site conditions allowed for: 1) rapid collection of tracer data (72 hr.), 2) control of virus inactivation, 3) detailed resolution of the virus plumes and peak travel times. The hydrogeologic setting was chosen to represent a "worst case" scenario for virus transport through unfractured porous media, permitting direct observation of transport over the suggested 30m separation between a virus source and a water supply well. The field experiment included the simultaneous injection of the bacteriophages MS2, PRD1, and ØX174, and attenuated poliovirus type-1 (CHAT strain). The CHAT strain of polio is attenuated and not pathogenic. It is similar to the Sabin live vaccine in that it is alive and infectious, but has been altered so as to not cause the disease poliomyelitis. The migration of the viral plume through the sampling well network was monitored for 72hrs. Virus

transport was observed over a distance of 40 m, with a 6 log reduction in the titer over that distance.

#### 2.0 Methods

#### 2.1 Site Description

The study was conducted in the grassland flood plain of the Clark Fork River at the Erskine Fishing Access near Missoula, MT. (Figure 1). The shallow, unconfined, flood plain aquifer contains clast supported cobbles and gravel with a medium- to coarse-grained sand matrix to a depth of 6m, where the aquifer material fines and becomes predominantly sand. The hydrologic properties were determined from tracer tests and aquifer tests (Table 1). The water table varied between 2.1 to 2.5m below ground surface. The 10°C groundwater is a calcium bicarbonate type (Appendix B).

#### 2.2 Field Methods

An area of 240m by 285m was instrumented with 89 monitoring wells and 10 staff gauges in low lying areas and sloughs (Appendix C). Seven tracer tests using bromide and rhodamine-wt were used in conjunction with water table maps constructed from monthly head measurements to determine the south westerly flow path in the vicinity of injection well I4 (Appendix D). The multilevel monitoring well network was designed such that the tracer would pass through the arcs of multilevel monitoring wells at distances of 7.5, 19.5, 30, and 40.5 m from injection well I4 (Figure 2). Each multilevel monitoring well was built with 0.5cm diameter high-density polyethylene (HDPE) tubing affixed to a 1.3cm diameter PVC pipe. These sampling ports are 1.8, 2.7, 3.6, and 4.5m below the surface. The tubing



Figure 1. Erskine Research Site near Missoula, MT.



Figure 2. Sampling well network consisting of 20 multilevel wells (M) in arcs 7.5, 19.5, 30, and 40.5m from injection well I4.

| Hydrologic P      | roperties  | Water              | <sup>·</sup> Chemistry |
|-------------------|------------|--------------------|------------------------|
| Porosity          | 0.2        | Water Type         | Calcium, Bicarbonate   |
| Gradient          | 0.00043    | Spec. Conductivity | 288 mS/cm^2            |
| Avg. K (m/d)      | 400-45,000 | DO                 | 3.5 mg/l               |
| GW Velocity (m/d) | 27         | pH                 | 7.2                    |
|                   |            | Temp. (C)          | 10.3                   |

### Table 2. initial concentration of injected tracers

| MS2      | PRD1     | ΦΧ174    | Attenuated Polio | Bromide |
|----------|----------|----------|------------------|---------|
| PFU/ml   | PFU/ml   | PFU/ml   | PFU/ml           | mg/l    |
| 5.60E+10 | 5.40E+09 | 2.90E+07 | 3.40E+06         | 1143    |

was perforated over 5cm and screened with nylon mesh (Appendix C). Flexible tubing was dedicated to each piece of HDPE for use with a peristaltic pump.

The multiple virus seeding was preceded one week by a bromide tracer test. In both tests 18.9 liters of groundwater from a background well up gradient from the injection well were used to create the tracer solution. The solution was gravity drained into injection well I4 over a period of 10 to 12 minutes. Injection well I4 is a 3.18cm diameter steel sand point screened from 2.1 to 2.7m. Initial concentrations of the tracers injected are shown in Table 2. Prior to virus injection, the use of the selected viruses was approved by the University Biohazards Committee, Missoula City-County Health Department, Montana Department of Environmental Quality, and Region 8 EPA. In addition, a Montana Environmental Impact Statement was submitted at the request of the land steward, Montana Department of Fish, Wildlife, and Parks.

Sampling for the tracer experiments covered a 36 hr period for bromide, and a 72 hr period for the virus seeding. Samples were collected with peristaltic pumps from 14 and all 20 multilevel monitoring well ports at the 2.7, 3.6, and 4.5m depths; which corresponded to 0.6, 1.5, and 2.4m below the water table. The sampling schedule was designed to capture expected peak arrivals at each arc of wells. Wells were sampled from expected lowest concentration to expected highest concentration to further reduce the risk of cross contamination. Bromide samples were collected in HDPE 50 ml bottles, filtered (0.45 µm) and analyzed using a standard ion chromatography technique (Pfaff, 1993). An analytical error of 2% was calculated for the ion chromatography technique used. Bromide concentrations were reported in mg/l to an instrument detection limit of 0.01mg/l. Virus samples were collected in sterile 50 ml polypropylene tubes, immediately

placed on ice, and transported in ice-filled coolers to the laboratory where they were stored at 4° C.

#### 2.3 Analytical Methods

The coliphages MS2, PRD1, and  $\emptyset$ X174 were assayed using host bacteria specific to each virus. A single layer assaying method was employed to assay all three coliphages because of its relative simplicity and efficiency (Adams, 1959). The single agar procedure was performed as follows: 1) host cultures were grown to mid-log phase and placed on ice to quench any further growth; 2) 1ml of host bacteria was added to 10ml. of sample (groundwater) and placed in a 37° C water bath for 3 to 5 minutes; 3) 11ml. of soft agar was added to the sample and bacteria mixture; 4) 10ml. of the mixture was plated onto each of two 100mm petri dishes. After the agar sets the dishes were inverted in a 37°C incubator. The titer in plaque forming units per milliliter (PFU/ml) was then determined by counting the number of plaques on the plates. The detection limits for the assay of the bacteriophages is 1 virus in 10ml of sample.

Although not reported in the majority of previously published virus transport papers, there is significant error associated with the infectious assay for bacteriophages. Analysis of 10 duplicate samples from a single sampling port permitted error calculations to confidence levels of 95%. A minimum error of 15% was calculated for the assay of bacteriophages. Error was calculated using the standard method for examinations of water and waste water (Eaton et al, 1995).

Prior to assay for attenuated poliovirus, 5 to 7ml. of field sample were filtered through a 0.45 micron filter and diluted in ELAH at a 1:1 dilution. These samples were

stored in 15 ml polypropylene tubes at -70° C. The use of controls showed that this procedure had no detrimental effects on the virus recovery and did not lower the titer.

The attenuated poliovirus was assayed on 3 to 5 day old Buffalo Green Monkey Kidney (BGM) cells that were grown in 25 cm<sup>2</sup> tissue culture flasks (Smith and Gerba, 1982). The cells were prepared for the assay with the proper adjustments made to compensate for the difference in the volumes of tissue culture flasks. One ml of sample, diluted one to one with ELAH containing antibiotics without calf serum, was added to BGM cells. The inoculum was exposed to the BGM host cells for 90 minutes at room temperature to initiate viral attachment. The 1 ml inoculum was then removed and 10ml. of an agar-medium overlay was added to the flasks. The agar-medium overlay was held in a 41° C water bath during use. After the overlay was added, the flasks were covered to protect them from light and allowed to harden before they were inverted and put in a 37° C incubator. The flasks were monitored for five days, with plaques counted on a daily basis. The titer was then determined when plaque development was complete. The detection limit of this method is 1 virus in 2ml of sample.

Analytical errors were calculated for the infectious assay of attenuated poliovirus with the same methods used for the bacteriophages. Minimum error is not known, but an estimated minimum of 20% is used here.

A mass balance was performed using the 8 hour data for the virus and bromide plumes. There was no tracer detected at the 3.6m sampling port, 1.5m below the water table. An area bounded by two lines of known concentration was calculated. The concentration of that area was the average of the known concentration boundaries delineating the area. Using an estimated aquifer porosity of 0.20 and assuming the plume was 0.9m thick, the amount of tracer in aqueous phase was determined (Johnson, 1992).

#### 3. Results

A bromide tracer was injected at the water table using well I4 on September 22, 1996. The viruses MS2, PRD1,  $\emptyset$ X174, and attenuated poliovirus type-1 (CHAT strain) were also injected at the water table, one week later on October 2, 1996, using well I4. The plume centers for both injections passed through wells M2, M7, M14, and M17. The transport of viruses through groundwater is controlled by all the hydrologic properties of the aquifer, and the sorptive nature of the virus itself. The viruses moving through the aquifer that are not adsorbed onto the aquifer material are affected by mechanical dispersion. The longitudinal dispersivity was determined to be 0.42m using a Peclet number of 18 based on the breakthrough data for well M2, located 7.5m from well I4 (Sauty, 1980). Transverse spreading properties were not calculated.

Plume sizes and peak concentrations varied partly as a function of initial concentration. The plumes for all viruses and Br<sup>-</sup> showed slight vertical migration, with a maximum of 1.8m over 30m of horizontal transport. The lowest sampling port (4.5m depth) was generally below the plume and served to establish a vertical zero concentration boundary. The 2hr sampling frequency and well locations permitted identification of plume distribution, peak arrivals, and determination of transport rates.

Previously observed dispersion of bromide and virus tracers and their resulting distribution and concentrations at this site suggested sampling over a 36hr period for bromide and a 72hr period for viruses would capture the peak arrivals throughout the sampling network. Virus inactivation was determined to be insignificant in this aquifer over the short duration of the test. A vial filled with groundwater from the site and a known concentration of seeded virus was immersed in an unused well for the duration of the experiment. No change in concentration over the 72hr experiment was detectable.

The concentration of virus injected into I4 declined more rapidly than bromide over time (Figure3). The concentration of bromide declined one log in 28hr, where the poliovirus concentration dropped one log in 5hr. The bacteriophage concentrations declined one log in 15-20hr

The sampling plan effectively captured the tracer concentrations as the plumes moved through each arc of wells, and away from I4 (Figure 3). Peak arrival times at a given well were similar for the four viruses. The bromide peak appears to arrive after the virus peaks during the first 7.5m of transport (Table 3; Figure 4). Due to the error associated with measuring tracer concentrations, peak identification can be difficult. At monitoring well M2 definable virus peaks were observed, but the peak arrival time for bromide cannot be accurately identified. Analysis of breakthrough curve data collected at well M2 suggest that poliovirus is transported faster than bromide and the bacteriophages. The peak arrival of attenuated poliovirus occurs two hours prior to the arrival of the bromide and bacteriophage peaks. Peak arrival times for each tracer could not be distinguished due the over lap of error bars at maximum concentrations at wells M7 and M14 (Figure 5, 6). Therefore, a range of transport rates for the peaks was calculated at these wells (Table 3). A similar approach was used to interpret peak arrivals at well M17. Trace concentrations of bromide and attenuated poliovirus were sporadically detected in the wells at the 30m and 40.5m arcs, but breakthrough curves could not be constructed due to paucity of data (Figures 6, 7).



Figure 3. Concentration reduction with time for injection well I4. Virus concentrations in PFU/mI, bromide concentrations in mg/l.

# Table 3. Transport velocities (m/d) calculated from breakthrough curves

| Tracer           | M2 7.5m | M7 19.5m  | M14 30m |
|------------------|---------|-----------|---------|
| Bromide          | 22.5-30 | 26-29.25  | NA      |
| MS2              | 30      | 23.4-39   | 25.7-36 |
| PRD1             | 30      | 26-39     | 36      |
| Ф <b>Х174</b>    | 30      | 33.4-39   | 18-36   |
| Attenuated Polio | 45      | 33.4-58.5 | NA      |



Figure 4. Breakthrough curves for well M-2, 0.6m below water table, 7.5m from I4. Virus concentrations in PFU/mI, bromide concentrations in mg/l.

14



Figure 5. Breakthrough curves for well M-7, 0.6m below water table, 19.5m from I4. Virus concentrations in PFU/ml, bromide concentrations in mg/l.



Figure 6. Breakthrough curves for well M-14, 0.6m below water table, 30m from I4. Virus concentrations in PFU/mI, bromide concentration in mg/l.



Figure 7. Breakthrough curves for well M-17, 0.6m below water table, 40.5m from I4. Virus concentrations in PFU/mI, bromide concentration in ppm.

Plume sizes and shapes differed between viruses mainly in relation to initial concentrations. Virus plumes exceeding 40m in length and 16m in width were observed throughout the well network at the end of the 72hr sampling period (Appendix D). The plumes follow the same flow path and had similar distributions across the well network. The PRD1 plume can be used to represent the distribution of viruses for comparison to the bromide plumes (Figures 8,9). Although little vertical plume migration was observed, an areal plume was defined at a depth of 3.6m (Figure 10). The 72 hr data was used to develop the cross-sections for MS2, PRD1, and  $\emptyset$ X174 at their greatest distribution through the well field. The similarity of the cross-sections is such that they can be represented by the PRD1 plume (Figure 11). Concentrations at the 2.7m ports, 0.6m below the water table, are higher than those at the 3.6m ports, 1.5m below the water table, with the exception of those measured at well M13. The highest observed concentrations are at the injection well throughout the experiment.

Plumes were plotted from the data collected 8 hours after injection (Table 4; Figures 12-16). The bromide plume covered an area of  $51.8m^2$  and represented 87% of the total bromide injected. The MS2 plume detected 8hrs after injection was much larger than the plumes for the other tracers,  $1270.6m^2$ . The 8hr MS2 plume represents 64,2% of the total MS2 injected, this apparent conservative behavior may be the cause of the large plume. The 8hr PRD1 plume, covering  $62.7m^2$  and representing 24.4% of the initial virus injected, is much smaller than the MS2 plume. ØX174 is similar to PRD1 in that its plume,  $71.1m^2$ , represents 21.2% of the initial amount injected suggesting a greater portion of the injectate was adsorbed. The attenuated poliovirus was apparently adsorbed at a faster rate than the other viruses. Only 3% of the poliovirus injected is in aqueous



Figure 8. 72hr PRD-1 plume 0.6m below water table from 10/2/96 virus seeding experiment. Groundwater is flowing from east to west.



Figure 9. 36hr bromide plume 0.6m below water table from 9/22/96 tracer experiment. Groundwater is flowing from east to west.



Figure 10. 72hr PRD-1 plume 1.5m below water table from 10/2/96 virus seeding experiment. Groundwater is flowing from east to west.



Distance from Injection Well (m)

Figure 11. 72hr PRD-1 plume cross-section from 10/2/96 virus seeding experiment. Flow direction is to the west.

### Table 4. Percent of tracer adsorbed and in the aqueous phase

| Tracer     | % Adsorbed % in Aqueous Phase |      |  |
|------------|-------------------------------|------|--|
| Bromide    | Conservative                  | 87   |  |
| MS2        | 35.8                          | 64.2 |  |
| PRD1       | 75.6                          | 24.4 |  |
| ФХ174      | 78.8                          | 21.2 |  |
| Poliovirus | 97                            | 3    |  |



Figure 12. 8hr Bromide plume at 9ft from 9/20/96 tracer test, concentration in mg/l. Flow direction is to the west.



Figure 13. 8hr MS2 plume at 9ft depth from 10/2/96 seeding experiment. Concentration in PFU/ml, flow direction to the west.



Figure 14. 8hr PRD1 plume at 9ft depth from 10/2/96 seeding experiment. Concentration in PFU/ml, flow direction to the west.



Figure 15. 8hr PhiX174 plume at 9ft depth from 10/2/96 seeding experiment. Concentrations in PFU/ml, flow direction to the west.



Figure 16. 8hr Polivirus plume at 9ft depth from 10/2/96 seeding experiment. Concentrations in PFU/mi, flow direction to the west

phase 8 hours after injection. The larger plume size, 109.4m<sup>2</sup>, may be a result of the difference between assay techniques used for poliovirus and those used for the bacteriophages.

### 4.0 Discussion

The highest concentrations of tracers were measured in wells I4, M2, M7, M14, and M17. Tracer tests and aquifer tests performed in the well field suggest that there is zone of extremely high hydraulic conductivity, 13,500m/d, intersecting the injection well I4 and monitoring wells M2 and M7. The cause of this zone could be a very coarse-grained buried channel or gravel bar deposit. The wide range of hydraulic conductivity derived from aquifer tests and the depositional environment suggests a heterogeneous flow field. Flow through the sampling network is controlled by a coarse-grained zone of high hydraulic conductivity. This high velocity zone creates a preferential flow path through the sampling network. Such zones are characteristic of high energy, gravel deposits in this region (Miller, 1991; Smith, 1992).

### 4.1 Comparison of Virus and Bromide Distribution

While bromide and viruses follow the same flow path; virus plumes are detected over areas much greater than the bromide plume. This is in part a function of our ability to resolve bromide and virus plumes. In an effort to avoid density effects, bromide was injected a 10<sup>3</sup> mg/l and detectable to 0.1mg/l. Bacteriophages were injected at 10<sup>7</sup>-10<sup>10</sup> PFU/ml and detectable to 0.1 PFU/ml, and poliovirus was injected at 10<sup>6</sup> PFU/ml and detectable to 0.5 PFU/ml. This suggests that the use of bromide as a predictive tracer for viral contamination may not be appropriate. The use of bromide to predict virus transport would most likely underestimate the areal extent of viral contamination. However, this

study illustrates the utility of the use of bromide to predict virus flow paths and peak transport rates.

### 4.2 Conservative Virus Sub-Population

Based on breakthrough curve analyses, a portion of the injected viruses were observed to be traveling at average rates similar to the conservative bromide ion. This group of virus have not been retarded by adsorbing to the aquifer material, and appear to behave conservatively. The reasons for this conservative behavior are unknown, but there are several possibilities. There may be a genetic sub-population of viruses that express their genetic differences in their protein coats, yielding different adsorptive properties. This sub-population may be less likely to adsorb to the aquifer material and thus are transported in a conservative manner (Goyal and Gerba, 1979). Another possibility is that the portion of viruses that moves conservatively down gradient may be adsorbing to colloidal material in the groundwater. The viruses could then "piggy back" through the aquifer. These viruses would not be adsorbing differently than those attached to the aquifer material, but would appear to be acting conservatively.

### 4.3 Comparison of Transport Rates

Virus peaks appear to move at or faster than the average groundwater flow velocity as defined by bromide. This phenomenon has been observed by other workers. Bales et al (1989) documented the bacteriophages MS2 and f2 traveling at 1.6 to 1.9 times the velocity of conservative tracers through sand columns in the laboratory. Bales et al (1995) reported bromide and PRD1 moving at the same rate in a sand and gravel aquifer. If the viruses represented by the peaks identified in the breakthrough curves are behaving conservatively and moving faster than the bromide, further explanation is needed. A

difference in effective flow path length for viruses and bromide could account for this disparity. Tortuosity (T) is the relative difference between the observed straight line flow path (L) and the actual interpore flow path ( $L_e$ ), such that  $T = L_e L$  (Fetter, 1993). L is the same for bromide and viruses, however  $L_e$  may be quite different. Bromide is an ion 1.96 angstroms in diameter, and therefore it is subject to flow through tortuous pathways and pore sizes down to the molecular level. Viruses are between 20 and 300nm in diameter and are subject to pore size exclusion (Pekdeger and Mathess, 1983). Some pores that the bromide ion can enter are smaller than the diameter of viruses. The effect of pore size exclusion on an individual virus is macropore flow and lower tortuosity. Pore size exclusion, or filtration, has been identified as a major control of microbial flow (Wood and Ehrlich, 1978; Pekdeger and Mathess, 1983). Viruses flow is thus concentrated through larger pores that may have a shorter effective flow path length (L<sub>e</sub>). This would result in the virus peak arriving before the bromide peak. If viruses are adsorbed onto colloidal material, they too would be affected by pore size exclusion.

The hypothesis of pore size exclusion is based on the premise that viruses are indeed being transported through the aquifer faster than the average groundwater flow velocity as defined with bromide. By plotting error bars on the breakthrough curves it becomes obvious that distinct transport velocities cannot be differentiated. Responsible reporting of the data results in ranges of transport velocities that overlap, and therefore one cannot assert that the rates are any different (Table 3).

The exception to this statement is the comparison of transport rates for bromide and attenuated poliovirus. Poliovirus peaks arrive before bromide peaks at wells M2 and M7, 7.5 and 19.5m from injection well I4. The use of standard solute transport analysis would result in a calculated average transport rate for polioviruses that is faster than that calculated for bromide. A plausible mechanism for this faster transport has been previously discussed, however pore size exclusion should affect all the viruses not just poliovirus. Although the attenuated poliovirus peak does arrive before the bromide peak, an alternative explanation is that the poliovirus transport is not actually faster than bromide transport.

Poliovirus adsorbs more readily than the other viruses, as represented by relative concentration plots and mass balances (Figure 17). The breakthrough curves for poliovirus also indicate different adsorptive properties for poliovirus. The tailing effect observed for the bacteriophages is not present in the polio curve. A sharp decline in concentration after the peaks suggests that the poliovirus is adsorbing more completely to the aquifer material than the bacteriophages, and the adsorbed mass of poliovirus is not desorbing as fast as the mass of adsorbed bacteriophages. The strong adsorptive characteristics of attenuated poliovirus manifests itself in the peaks identified in the breakthrough curves. The high percentage of poliovirus adsorbed to the aquifer material and the rapid rate at which it adsorbs limits the amount of attenuated poliovirus in the aqueous phase. If bromide concentration is being affected only by mechanical dispersion, then the differences in plots of C/Co for bromide and poliovirus are due to the rate of poliovirus adsorption. This rate, expressed as C/Co vs. time and plotted as negative values for clarity, is illustrated by the adsorption function in Figure 18. The non-linear rate of poliovirus adsorption vs. Its transport rate would result in a truncation of the breakthrough curve shifting the peak towards the left. The resulting earlier peak will be misinterpreted as an overall faster rate of transport. Without better resolution of virus



Figure 17. Plot of relative concentration (C/Co) v. distance from injection well I4, 0.6m below water table in wells I4, M2, M7, M14, and M17.



Figure 18. Relative concentration of attenuated poliovirus and bromide over time, observed at well M2. The adsorption function is the difference between the two curves.

34

breakthrough curves, it seems more likely the poliovirus is moving at an average rate typical of the bacteriophages.

### 5.0 Conclusion

A preferential flow path identified in the sampling network appears to result from a coarse-grained zone of high hydraulic conductivity. In addition to allowing average transport rate over 30m/d the cold groundwater negated virus die off, allowing it to remain infectious for at least 185 days in the system.

The use of four viruses and bromide to evaluate virus behavior and transport in a sand and gravel aquifer has yielded some interesting findings: 1) the average rate of transport for a portion of seeded virus is as fast as the average groundwater flow velocity defined with bromide; 2) the adsorption and desorption of viruses at different rates may affect observed virus peak arrival times; 3) to properly interpret virus transport the error inherent in infectious assays must be analyzed and reported; 4) each virus demonstrated different adsorptive properties. But perhaps most importantly, the research at the Erskine site has defined the difference between peak arrival times and solute transport rates in respect to viruses. The application of standard solute transport analysis to determine solute transport rates may be inappropriate for virus transport. The use of the breakthrough curve to calculate average transport rate for the solute assumes that the peak represents the average transport of the entire mass. That peak represents a portion of the total virus injected, and in the case of poliovirus it may not properly represent its rate of transport.

This "worst-case" scenario at the Erskine research site documents viruses being transported at faster rates and higher concentrations over distance than has been previously reported. A portion of viruses seeded into this groundwater system moved at an average rate of over 30 m/d. Long tails seen in breakthrough data imply re-release of sorbed virus for large periods of time. This re-release of sorbed viruses affects the virus peaks and contributes to long term survival of the viruses seeded into this system. Hydrogeologically based natural disinfection distances (source well separation distances) would need to exceed the traditional 30m values in this coarse-grained system. The results further suggest that the use of bromide to assess the threat posed by viral contamination would insufficiently represent virus transport in a coarse-grained aquifer.

### **References Cited**

Adams, M.H., 1959, Bacteriophages, Wiley-Interscience, New York.

- Alhajjar, B.J., S.L. Stamer, D.O. Cliver, and J.M. Harkin, 1988, Transport Modeling of Biological Tracers from Septic Systems, Water Research, v22, n7, p907-915.
- Alhajjar, B.J., J.M. Harkin, D.O. Cliver, and S.L. Streamer, 1987, Biological Tracer Plumes from Septic Systems, 4th Annual Eastern Regional Ground Water Conference, July 14-17, p247-277.
- Bales, R.C. and Shimn Li, 1993, MS2 and Poliovirus Transport in Porous Media; Hydrophobic Effects and Chemical Perturbations, WRR, v29, n4, p957-963.
- Bales, R.C., C.P. Gerba, G.H. Grondin, and S.L. Jensen, 1989, Bacteriophage Transport in Sandy Soil and Fractured Tuff, Applied and Environmental Microbiology, v55, n8, p2061-2067.
- Bales, R.C., S. Li, K.M. Maguire, M.T. Yahya, C.P. Gerba, and R.W. Harvey, 1995, Virus and Bacteria Transport in a Sandy Aquifer, Cape Cod, MA., Ground Water, v33, n4, July-August, p653-661.
- Bitton, G, S.R., Farrah, R.H. Ruskin, J. Butner, and Y.J. Chou, 1983, Survival of Pathogenic and Indicator Organisms in Ground Water, Ground Water, v21, n4, July-August, p405-410.
- Davis, S.N., G.M. Thompson, H.W. Bentley, and G. Stiles, 1980, Ground-Water Tracers - A Short Review, Ground Water, 18:1, pp14-23.
- Driscoll, F.G., 1986, Groundwater and Wells, 2<sup>nd</sup> ed., Johnson Filtration Systems, Inc. St. Paul, MN, 1108pp.
- Ed. Eaton, A.D., , L.S. Clesceri, and A.E. Greenberg, 1995, Standard Methods for Examination of Water and Waste Water, American Public Health Association, p9-58.
- Fetter, C.W., 1993, Contaminant Hydrogeology, Prentice-Hall, Inc., 458 p.
- Gerba, C.P., D.K. Powelson, M.T. Yahya, L.G. Wilson, G.L. Amy, 1991, Fate of Viruses in Treated Sewage Effluent During Soil Aquifer Treatment Designed for Wastewater Reclamation and Reuse, Water Science Technology, v24, n9, p95-102.
- Gerba, C.P., 1984, Applied and Theoretical Aspects of Virus Adsorption to Surfaces, Advances in Applied Microbiology, v30, p133-168.
- Gilbert, R.G., C.P. Gerba, R.C., Rice, H. Bouwer, C. Wallis, and J.L. Melnick, 1976, Virus and Bacteria Removal from Wastewater by Land Treatment, Applied Environmental Microbiology, v32, n3, Sept., p333-338.
- Goyal, S.M. and C.P. Gerba, 1979, Comparative Adsorption of Human Enteroviruses, Simian Rotavirus, and Selected Bacteriophages to Soils, *Applied and Environmental Microbiology*, 38:2, pp241-47.
- HydroGeoLogic, Inc., 1994a, Viralt, Version 3.0, Documentation and User's Guide, 130p.
- HydroGeoLogic, Inc., 1994b, Canvas, Version 2.0, Documentation and User's Guide, 132p.

- Isotok, J.D. and M.D. Humphrey, 1995, Laboratory Investigation of Buoyancy-Induced Flow (Plume Sinking) During Two-Well Tracer Tests, Ground Water, 33:4, pp.597-604.
- Jansons, J., L.W. Edmonds, B. Speight, and M.R. Bucens, 1989a, Movement of Viruses After Artificial Recharge, Water Research, v23, n3, p293-299.
- Jansons, J., L.W. Edmonds, B. Speight, and M.R. Bucens, 1989b, Survival of Viruses in Groundwater, Water Research, v23, n3, p301-306.
- Johnson, A.I., 1992, Specific Yield Compilation of Specific Yields for Varioous Materials, USGS Water-Supply Paper 1662-D.
- LeBlanc, D.R., S.P. Garabedian, K.M. Hess, L.W. Gelhar, R.D. Quadri, K.G. Stollerwerk, and W.W. Wood, 1991, Large-Scale Natural Gradient Tracer Test in Sand and Gravel, Cape Cod, Massachusetts: 1. Experimental Design and Observed Tracer Movement, Water Resources Research, 27:5, pp.895-910.
- Levine, A.J., 1992, Viruses, Scientific American Library, New York, 240p.
- Macler, B.A., 1995, Developing a National Drinking Water Regulation for Disinfection of Ground Water, Ground Water Monitoring and Remediation, p77-84.
- Macler, B.A and F.W. Pontius, In Publication, Update on the Groundwater Disinfection Rule, JAWWA.
- Mathess, G. and A. Pekdeger, 1985, Survival and Transport of Pathogenic Bacteria and Viruses in Ground Water, Ground Water Quality, John Wiley & Sons, New York, pp.472-82.
- Mills, W.B., S. Lui, and F.K. Fong, 1991, Literature Review and Model (COMET) for Colloid/Metals Transport in Porous Media, Ground Water, v29, n2, April, p199, 208.
- Miller, Ross D., 1991, A Numerical Flow Model of the Missoula Aquifer: Interpretation of Aquifer Properties and River Interaction, Master's Thesis, University of Montana, Missoula.
- Pekdeger, A. and G. Mathess, 1983, Factors of Bacteria and Virus Transport in Groundwater, *Environmental Geology*, 5:2, pp.49-52.
- Pfaff, J.D., 1993, Method 300.0, Determination of Inorganic Anions by Ion Chromatography, Office of Research and Development, US EPA, August, 30 p.
- Rossi, P., A. De Carvalho-Dill, I, Müller, and M. Aragno, 1994, Comparative tracing Experiments in a Porous Aquifer Using Bacteriophages and Fluorescent Dye on a Test Field Located at Wilerwald (Switzerland) and Simultaneously Surveyed in Detail on a Local Scale by Radio-magneto-tellury (12-240 kHz), Environmental Geology, v23, p192-200.
- Sauty, J.P., 1980, An Analysis of Hydrodispersive Transfer in Aquifers, Ground Water, 16:1, pp.145-58.
- Smart, P.L. and L.M.S. Laidlaw, 1977, An Evaluation of Some Fluorescent Dyes for Water Tracing, Water Resources Research, 13:1, pp15-32.
- Smith, Clifford, 1992, The Hydrogeology of the Central and Northwestern Missoula Valley, Master's Thesis, University of Montana, Missoula.
- Smith, E.M. and C.P. Gerba, 1982, Laboratory Methods for Growth and Detection of Animal Viruses, Methods in Environmental Virology, Marcel Dekker, New York, pp15-47.

- Stramer, S.L., and D.O. Cliver, 1984, Septage Treatments to Reduce the Numbers of Bacteria and Polioviruses, Applied and Environmental Microbiology, v48, n3, September, p566-572.
- Tim, U.S. and S Mostaghimi, 1991, Model for Predicting Virus Movement Through Soils, Ground Water, v29, n2, p251-259.
- US EPA, VIRALT Version 3.0: Documentation and User's Guide, Office of Drinking Water, Washington, D.C.
- US EPA, Groundwater Disinfection Rule, Workshop on Predicting Microbial Contamination of Groundwater Systems, July 10-11, 1996, Proceedings Report, September, 1996.
- Wellings, F.M., A.L. Lewis, C.W. Mountain, and L.V., Pierce, 1975, Demonstration of Virus in Groundwater after Effluent Discharge onto Soil, Applied Microbiology, v29, n6, p751-757.
- Wood, W.W. and Ehrlich, 1978, Use of Baker's Yeast to Trace Microbial Movement in Ground Water, *Ground Water*, 16, pp.398-403.
- Yahya, M.T., L. Galsomies. C.P. Gerba, and R.C. Bales, 1993, Survival of Bacteriophages MS-2 and PRD-1 in Ground Water, Water Science Technology, v27, n3-4, p409-412.
- Yates, M.V., C.P. Gerba, and L.M. Kelley, 1985, Virus Persistence in Groundwater, Applied and Environmental Biology, v49, n4, April, p778-781.
- Yates, M.V. and S.R. Yates, 1987, A Comparison of Geostatistical Methods for Estimating Virus Inactivation Rates in Ground Water, Water Research, v21, n9, p1119-1125.
- Yates, M.V. and S.R. Yates, 1989, Septic Tank Setback Distances: A way to minimize Virus Contamination of Drinking Water, Ground Water, v27, n2, p202-208.

### Appendix A

### Viruses and Health Risks

Viruses are microorganisms, 20 to 300nm in diameter, composed of a genetic core containing RNA or DNA and surrounded by a protein coat, with more complex viruses encased in lipids (Levine, 1992). Viruses can only reproduce in living host cells that they have infected. Viruses can infect animals, plants, and bacteria (bacteriophages). Bacteriophages, first identified by Frederick Twort in 1912, infect and reproduce in bacteria. Three bacteriophages were injected into the aquifer to study virus transport in groundwater. The "phages" pose no threat to human health because they are infectious to bacteria, not animal cells.

Attenuated poliovirus type-1 (CHAT strain) was also used as a viral tracer. An attenuated virus is still infectious, but does not produce a pathology or disease in an infected organism. The strain used in this experiment is similar to, but weaker than, the Sabin live vaccine. Because this attenuated virus is still infectious, cautions were taken in the field to limit exposure to virus laden groundwater. All groundwater pumped during the experiment was collected and chlorinated on site with chlorine bleach.

### Modeling

Several attempts to model virus transport have been made (Mills et al, 1991; Alhajjar et al, 1988; Tim and Mostaghimi, 1991). These models have had limited success. Mills et al (1991) developed a colloid transport model, COMET. Viruses range in size from 20 to 300nm, well within the range of colloids, and the model COMET although directed towards solid waste, is still applicable to viruses. Mills work despite being only a few years old, points out the lack of knowledge about colloidal attachment to solids. This is important because attachment is believed to be a major control of virus and colloid transport. COMET deals primarily with predicting the transport of contaminants adsorbed onto colloids, and the mechanisms used in the models may affect viruses and their transport in water. Therefore, COMET may be useful for predicting virus transport. A stochastic model focused on biological tracers was developed by Alhajjar et al (1988). The researchers hoped to use indicator bacteria fecal streptococci and total and fecal coliforms as indicators for the presence of viruses. Field studies demonstrated that these indicators did not travel or survive in a similar fashion to poliovirus, which was also introduced into the system. This study is important because it illustrates the fact that viruses behave differently than other biological tracers. Modeling efforts must specifically geared towards viruses for them to be accurate. VIROTRANS, CANVAS, and VIRALT are models specific to virus transport and use numeric solutions to model virus laden waste water percolating through soils (Tim and Mostaghimi, 1991; HydrGeoLogic, 1994a, 1994b). These models, although designed for virus transport are severely limited by the lack of knowledge about how viruses are transported in varying hydrogeologic settings. Very few common characteristics have been identified that can be applied to different virus types, in fact the behavior of a single virus type may vary from system to system.

### Appendix B

### Water Table Variations

The Erskine Fishing Access near Frenchtown, MT. lies in the flood plain of the Clark Fork River. The close proximity of the site to a major river results in a shallow water table that is under the influence of the river stage. To monitor the water table fluctuations, determine direction of flow, and observe the surface water influence on the shallow aquifer, water levels were measured periodically during the study in 44 wells and 10 staff gauges. The wells and staff gauges are noted on each potentiometric map, and can be seen in Figure B1. A typical potentiometric map generated from these measurements illustrates a westerly flow direction and low gradient (Figure B2). The combination of a continuous water level recorder and periodic water level measurements were taken from November 1995 to September 1996 and are relative to a 100ft elevation datum on the surface (Table B1).

### **Hydrologic Properties**

The hydrologic properties of the aquifer were derived by two methods including bromide tracer tests and aquifer tests. The tracer tests are described in Appendix D. The data from the September 1996 bromide tracer tests were used to calculate hydraulic conductivity (K) using the equation:

42

$$K = VI/n$$

where V is velocity, n is estimated porosity, and I is measured hydraulic gradient (Table B2). Aquifer test data was subjected to time-drawdown, recovery, and steady state analysis. Steady state calculations used a version of the Thiem equation:

$$\mathbf{K} = [\mathbf{Q} \log(\mathbf{r}_2/\mathbf{r}_1)] \div [1.366(\mathbf{h}_2^2 - \mathbf{h}_1^2)]$$

where K is in m/d, Q is pumping rate in m<sup>3</sup>/d,  $r_1$  and  $h_1$  are the radial distance in meters and the head in meters measured from the bottom of the aquifer, during pumping, for a near monitoring well, and  $r_2$  and  $h_2$  are for a distant monitoring well (Table B2) (Driscoll, 1986). This equation was used for steady state data from the pumping of well W1 and W2. Another version of the Thiem equation from Driscoll (1986) was used to analyze steady state drawdown in the pumping well for well W0 and W3:

$$K = [Q \log(R/r)] \div [1.366(H^2 - h^{2})]$$

where the variables are as described above and H is the static head in meters measured from the bottom of the aquifer, h is the head in meters measured from the bottom of the aquifer while pumping, R is the radius of the cone of depression (estimated to be 30m) and r is the radius of the pumping well, all in meters (Table B2).

Time-drawdown data was analyzed using Driscoll's version of the Theis equation rearranged to yield  $\mathbf{K}$  in m/d:

$$\mathbf{K} = (0.183 \text{ Q}) \div (\Delta s b)$$

where  $\Delta s$  is drawdown in meters over one log-cycle of time, and b is aquifer thickness in meter (Table B3-6, Figures B4-24).

The final analysis on this pumping data focused on water level recovery in the pumping wells W1, W2, and W3. Using the Theis concepts, Driscoll's equation is as follows:

 $K = (0.183 \text{ Q}) \div (s-s') \text{ b}$ 

where (s-s') is the difference between the pumping water level and the recovered water level in meters.

The results of these analyses indicate a heterogeneous flow field over the study site. However, the correlation of the calculated K from the tracer data and the aquifer test at W1 suggest that the hydraulic conductivity between the injection well I4 and W1 is approximately 13,200 m/d. In an attempt to generalize the hydrologic properties of the site, the results from all methods of calculation were pooled. The average K over the entire site is 4,000 m/d, with a median value of 1,000 m/d. The K calculated for the area from I4 to W1 is likely a zone of high conductivity, closer to the maximum for the site 13,000 m/d than the minimum of 120 m/d.



Figure B1: Wells and staff gauges used in water level measurments



Figure B2. Potentiometric map for 9/24/96 with flow lines, 0.05 countour interval relative to a 100 ft datum.



### Figure B3. Hydrograph illustrating yearly water table fluctuation at Erskine site.

### Table B1. Water levels measured at the Erskine Site, 11/95 to 3/97

| Water Levels     | 11/11/95 |                |                                       |                |            |
|------------------|----------|----------------|---------------------------------------|----------------|------------|
| Note: Most wells |          | due to snow co | over.                                 |                |            |
| East             | North    |                | Water Depth                           | Elevation      | Well       |
| 1219.568         | 874.648  | 93.67          | 6.82                                  | 100.489        | ee6        |
| 918.547          | 739.817  | 93.49          |                                       | 102.141        | p10        |
| 792.682          | 1221.803 | 93.30          |                                       | 99.251         | <u>p10</u> |
| 905.245          | 1163.351 | 93.41          | 5.45                                  | 98.862         | p13<br>p12 |
| 914.848          | 1049.168 | 93.62          |                                       | 99.718         | p12        |
| 1094.061         | 1177.213 | 93.67          |                                       | 99.616         | pri        |
| 1034.001         | 1177.215 |                | 0.85                                  | 33.010         |            |
| Water Levels     | 03/01/96 |                |                                       |                |            |
| Note: Some well  |          | ozen to casing | and wells could                       | not be measure | ed.        |
| East             | North    |                | Water Depth                           | Elevation      | Well etc.  |
| 1225.707         | 864.441  | 94.16          |                                       | 101.803        | i1         |
| 1231.516         | 874.006  | 94.00          |                                       | 101.204        | i2         |
| 1234.793         | 882.396  | 94.02          | 6.99                                  | 101.011        | i3         |
| 1236.548         | 892.545  | 94.03          | 6.60                                  | 100.627        | i4         |
| 1236.159         | 900.458  | 94.05          | 6.48                                  | 100.526        | i5         |
| 1219.568         | 874.648  | 93.99          | 6.50                                  | 100.489        | ee6        |
| 918.547          | 739.817  | 93.76          | 8.38                                  | 102.141        | p10        |
| 792.682          | 1221.803 | 93.67          | 5.58                                  | 99.251         | p13        |
| 905.245          | 1163.351 | 93.80          | 5.06                                  | 98.862         | p10        |
| 977.175          | 890.369  | 93.95          | 7.96                                  | 101.906        | p88        |
| 1034.129         | 1050.801 | 93.93          | 6.31                                  | 101.300        | p86        |
| 1094.061         | 1177.213 | 93.98          | 5.64                                  | 99.616         | poo<br>ee3 |
| 1103.073         | 905.007  | 93.00          | 7.70                                  | 100.697        | <br>p37    |
| 1224.489         | 879.406  | 93.00          | 7.70                                  | 100.097        | p37        |
|                  |          | 92.91          | 6.95                                  | 99.878         |            |
| 1218.305         | 873.538  |                |                                       |                | p7         |
| 1217.773         | 871.124  | 93.03          | 6.85                                  | 99.876         | p22        |
| 1219.025         | 866.452  | 93.08          | 6.70                                  | 99.78          | p21        |
| 1216.230         | 886.691  | 92.87          | 7.25                                  | 100.122        | p40        |
| 1196.364         | 869.961  | 92.88          | 6.83                                  | 99.713         | p28        |
| 1200.810         | 880.029  | 93.06          | 6.56                                  | 99.617         | p27        |
| 1209.500         | 892.306  | 93.16          | 6.75                                  | 99.907         | p25        |
| 1213.913         | 897.854  | 92.73          | 7.38                                  | 100.11         | p24        |
| 1162.498         | 879.049  | 93.12          | 7.43                                  | 100.55         | p30        |
| 1171.965         | 890.739  | 93.14          | 6.92                                  | 100.056        | p31        |
| 1182.469         | 904.202  | 92.73          | 6.73                                  | 99.462         | p32        |
| 1180.937         | 935.710  | 92.91          | 6.99                                  | 99.896         | p33        |
| 1149.977         | 932.964  | 92.76          |                                       | 99.362         | p34        |
| 1125.994         | 933.070  | 94.16          |                                       | 101.455        | p85        |
| 1138.914         | 969.006  | 92.07          | 7.98                                  | 100.045        | p38        |
| 1075.786         | 966.912  | 92.79          | 6.62                                  | 99.41          | p39        |
| Nater Levels     | 03/06/96 |                |                                       |                |            |
| East             | North    | Water Table    | Water Depth                           | Elevation      | Well etc.  |
| 1225.707         | 864.441  | 94.39          | · · · · · · · · · · · · · · · · · · · | 101.803        | i1         |
| 1231.516         | 874.006  | 94.39          |                                       | 101.204        | i2         |
| 1236.548         |          |                |                                       | 101.204        | i4         |
| 1236.548         | 892.545  | 93.75          |                                       |                | i4<br>i5   |
| 1236.159         | 900.458  | 93.73          |                                       | 100.526        |            |
| 1219.000         | 874.648  | 93.65          | 6.84                                  | 100.489        | ee6        |

| 918.547                                                                                                                                                                                                                                                                                       | 739.817                                                                                                                                                                                                                                 | 93.59                                                                                                                                                                                                             | 8.55                                                                                                                                                                | 102.141                                                                                                                                                                                                       | p10                                                                                                                                                                 |
|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 792.682                                                                                                                                                                                                                                                                                       | 1221.803                                                                                                                                                                                                                                | 93.41                                                                                                                                                                                                             | 5.84                                                                                                                                                                | 99.251                                                                                                                                                                                                        | p13                                                                                                                                                                 |
| 905.245                                                                                                                                                                                                                                                                                       | 1163.351                                                                                                                                                                                                                                | 93.52                                                                                                                                                                                                             | 5.35                                                                                                                                                                | 98.862                                                                                                                                                                                                        | p12                                                                                                                                                                 |
| 977.175                                                                                                                                                                                                                                                                                       | 890.369                                                                                                                                                                                                                                 | 94.16                                                                                                                                                                                                             | 7.75                                                                                                                                                                | 101.906                                                                                                                                                                                                       | p88                                                                                                                                                                 |
| 1034.129                                                                                                                                                                                                                                                                                      | 1050.801                                                                                                                                                                                                                                | 93.65                                                                                                                                                                                                             | 6.59                                                                                                                                                                | 100.236                                                                                                                                                                                                       | p86                                                                                                                                                                 |
| 1103.073                                                                                                                                                                                                                                                                                      | 905.007                                                                                                                                                                                                                                 | 92.72                                                                                                                                                                                                             | 7.98                                                                                                                                                                | 100.697                                                                                                                                                                                                       | p37                                                                                                                                                                 |
| 1224.489                                                                                                                                                                                                                                                                                      | 879.406                                                                                                                                                                                                                                 | 92.83                                                                                                                                                                                                             | 7.42                                                                                                                                                                | 100.254                                                                                                                                                                                                       | p23                                                                                                                                                                 |
| 1218.305                                                                                                                                                                                                                                                                                      | 873.538                                                                                                                                                                                                                                 | 92.65                                                                                                                                                                                                             | 7.23                                                                                                                                                                | 99.878                                                                                                                                                                                                        | p7                                                                                                                                                                  |
| 1217.773                                                                                                                                                                                                                                                                                      | 871.124                                                                                                                                                                                                                                 | 92.76                                                                                                                                                                                                             | 7.12                                                                                                                                                                | 99.876                                                                                                                                                                                                        | p22                                                                                                                                                                 |
| 1219.025                                                                                                                                                                                                                                                                                      | 866.452                                                                                                                                                                                                                                 | 92.81                                                                                                                                                                                                             | 6.97                                                                                                                                                                | 99.78                                                                                                                                                                                                         | p21                                                                                                                                                                 |
| 1216.230                                                                                                                                                                                                                                                                                      | 886.691                                                                                                                                                                                                                                 | 92.71                                                                                                                                                                                                             | 7.42                                                                                                                                                                | 100.122                                                                                                                                                                                                       | p40                                                                                                                                                                 |
| 1196.364                                                                                                                                                                                                                                                                                      | 869.961                                                                                                                                                                                                                                 | 92.62                                                                                                                                                                                                             | 7.10                                                                                                                                                                | 99.713                                                                                                                                                                                                        | p28                                                                                                                                                                 |
| 1200.810                                                                                                                                                                                                                                                                                      | 880.029                                                                                                                                                                                                                                 | 90.40                                                                                                                                                                                                             | 9.22                                                                                                                                                                | 99.617                                                                                                                                                                                                        | p27                                                                                                                                                                 |
| 1209.500                                                                                                                                                                                                                                                                                      | 892.306                                                                                                                                                                                                                                 | 92.93                                                                                                                                                                                                             | 6.98                                                                                                                                                                | 99.907                                                                                                                                                                                                        | p25                                                                                                                                                                 |
| 1213.913                                                                                                                                                                                                                                                                                      | 897.854                                                                                                                                                                                                                                 | 92.45                                                                                                                                                                                                             | 7.66                                                                                                                                                                | 100.11                                                                                                                                                                                                        | p24                                                                                                                                                                 |
| 1162,498                                                                                                                                                                                                                                                                                      | 879.049                                                                                                                                                                                                                                 | 92.36                                                                                                                                                                                                             | 8.19                                                                                                                                                                | 100.55                                                                                                                                                                                                        | p30                                                                                                                                                                 |
| 1171.965                                                                                                                                                                                                                                                                                      | 890.739                                                                                                                                                                                                                                 | 92.92                                                                                                                                                                                                             | 7.14                                                                                                                                                                | 100.056                                                                                                                                                                                                       | p31                                                                                                                                                                 |
| 1182.469                                                                                                                                                                                                                                                                                      | 904.202                                                                                                                                                                                                                                 | 92.48                                                                                                                                                                                                             | 6.98                                                                                                                                                                | 99.462                                                                                                                                                                                                        | p32                                                                                                                                                                 |
| 1180.937                                                                                                                                                                                                                                                                                      | 935.710                                                                                                                                                                                                                                 | 92.64                                                                                                                                                                                                             | 7.26                                                                                                                                                                | 99.896                                                                                                                                                                                                        | p33                                                                                                                                                                 |
| 1149.977                                                                                                                                                                                                                                                                                      | 932.964                                                                                                                                                                                                                                 | 92.47                                                                                                                                                                                                             | 6.89                                                                                                                                                                | 99.362                                                                                                                                                                                                        | p34                                                                                                                                                                 |
| 1125.994                                                                                                                                                                                                                                                                                      | 933.070                                                                                                                                                                                                                                 | 94.02                                                                                                                                                                                                             | 7.44                                                                                                                                                                | 101.455                                                                                                                                                                                                       | p85                                                                                                                                                                 |
| 1138.914                                                                                                                                                                                                                                                                                      | 969.006                                                                                                                                                                                                                                 | 91.81                                                                                                                                                                                                             | 8.24                                                                                                                                                                | 100.045                                                                                                                                                                                                       | p38                                                                                                                                                                 |
| 1075.786                                                                                                                                                                                                                                                                                      | 966.912                                                                                                                                                                                                                                 | 92.49                                                                                                                                                                                                             | 6.92                                                                                                                                                                | 99.41                                                                                                                                                                                                         | p39                                                                                                                                                                 |
| 671.185                                                                                                                                                                                                                                                                                       | 1221.394                                                                                                                                                                                                                                | 93.36                                                                                                                                                                                                             | 4.80                                                                                                                                                                | 98.159                                                                                                                                                                                                        | ee4                                                                                                                                                                 |
| 1139.948                                                                                                                                                                                                                                                                                      | 911.955                                                                                                                                                                                                                                 | 92.28                                                                                                                                                                                                             | 7.85                                                                                                                                                                | 100.132                                                                                                                                                                                                       | p35                                                                                                                                                                 |
| 4440 404                                                                                                                                                                                                                                                                                      | 000 070                                                                                                                                                                                                                                 |                                                                                                                                                                                                                   |                                                                                                                                                                     |                                                                                                                                                                                                               |                                                                                                                                                                     |
| 1116.401                                                                                                                                                                                                                                                                                      | 863.672                                                                                                                                                                                                                                 | 92.39                                                                                                                                                                                                             | 8.11                                                                                                                                                                | 100.501                                                                                                                                                                                                       | p36                                                                                                                                                                 |
| 1116.401                                                                                                                                                                                                                                                                                      | 863.672                                                                                                                                                                                                                                 | 92.39                                                                                                                                                                                                             | 8.11                                                                                                                                                                | 100.501                                                                                                                                                                                                       | p36                                                                                                                                                                 |
| 1116.401<br>Water Levels                                                                                                                                                                                                                                                                      | 03/15/96                                                                                                                                                                                                                                | 92.39                                                                                                                                                                                                             | 8.11                                                                                                                                                                | 100.501                                                                                                                                                                                                       | p36                                                                                                                                                                 |
|                                                                                                                                                                                                                                                                                               |                                                                                                                                                                                                                                         | 92.39                                                                                                                                                                                                             | 8.11                                                                                                                                                                | 100.501                                                                                                                                                                                                       | p36                                                                                                                                                                 |
|                                                                                                                                                                                                                                                                                               |                                                                                                                                                                                                                                         | 92.39<br>Water Table                                                                                                                                                                                              | 8.11<br>Water Depth                                                                                                                                                 | 100.501<br>Elevation                                                                                                                                                                                          | p36<br>Well etc.                                                                                                                                                    |
| Water Levels                                                                                                                                                                                                                                                                                  | 03/15/96                                                                                                                                                                                                                                |                                                                                                                                                                                                                   |                                                                                                                                                                     |                                                                                                                                                                                                               | · · · · · · · · · · · · · · · · · · ·                                                                                                                               |
| Water Levels<br>East                                                                                                                                                                                                                                                                          | 03/15/96<br>North                                                                                                                                                                                                                       | Water Table                                                                                                                                                                                                       | Water Depth                                                                                                                                                         | Elevation                                                                                                                                                                                                     | Well etc.                                                                                                                                                           |
| Water Levels<br>East<br>1219.568                                                                                                                                                                                                                                                              | 03/15/96<br>North<br>874.648                                                                                                                                                                                                            | Water Table<br>94.39                                                                                                                                                                                              | Water Depth<br>6.10                                                                                                                                                 | Elevation<br>100.489                                                                                                                                                                                          | Well etc.<br>ee6                                                                                                                                                    |
| Water Levels<br>East<br>1219.568<br>918.547                                                                                                                                                                                                                                                   | 03/15/96<br>North<br>874.648<br>739.817                                                                                                                                                                                                 | Water Table<br>94.39<br>94.20                                                                                                                                                                                     | Water Depth<br>6.10<br>7.94                                                                                                                                         | Elevation<br>100.489<br>102.141                                                                                                                                                                               | Well etc.<br>ee6<br>p10                                                                                                                                             |
| Water Levels<br>East<br>1219.568<br>918.547<br>792.682                                                                                                                                                                                                                                        | 03/15/96<br>North<br>874.648<br>739.817<br>1221.803                                                                                                                                                                                     | Water Table<br>94.39<br>94.20<br>94.05                                                                                                                                                                            | Water Depth<br>6.10<br>7.94<br>5.20                                                                                                                                 | Elevation<br>100.489<br>102.141<br>99.251                                                                                                                                                                     | <b>Well etc.</b><br>ee6<br>p10<br>p13                                                                                                                               |
| East           1219.568           918.547           792.682           905.245                                                                                                                                                                                                                 | 03/15/96<br>North<br>874.648<br>739.817<br>1221.803<br>1163.351                                                                                                                                                                         | Water Table<br>94.39<br>94.20<br>94.05<br>94.20                                                                                                                                                                   | Water Depth<br>6.10<br>7.94<br>5.20<br>4.66                                                                                                                         | Elevation<br>100.489<br>102.141<br>99.251<br>98.862                                                                                                                                                           | Well etc.<br>ee6<br>p10<br>p13<br>p12                                                                                                                               |
| East           1219.568           918.547           792.682           905.245           977.175                                                                                                                                                                                               | 03/15/96<br>North<br>874.648<br>739.817<br>1221.803<br>1163.351<br>890.369                                                                                                                                                              | Water Table<br>94.39<br>94.20<br>94.05<br>94.20<br>94.34                                                                                                                                                          | Water Depth<br>6.10<br>7.94<br>5.20<br>4.66<br>7.57                                                                                                                 | Elevation<br>100.489<br>102.141<br>99.251<br>98.862<br>101.906                                                                                                                                                | Well etc.<br>ee6<br>p10<br>p13<br>p12<br>p88                                                                                                                        |
| East           1219.568           918.547           792.682           905.245           977.175           1034.129                                                                                                                                                                            | 03/15/96<br>North<br>874.648<br>739.817<br>1221.803<br>1163.351<br>890.369<br>1050.801                                                                                                                                                  | Water Table<br>94.39<br>94.20<br>94.05<br>94.20<br>94.34<br>94.34                                                                                                                                                 | Water Depth<br>6.10<br>7.94<br>5.20<br>4.66<br>7.57<br>5.88                                                                                                         | Elevation<br>100.489<br>102.141<br>99.251<br>98.862<br>101.906<br>100.236                                                                                                                                     | Well etc.<br>ee6<br>p10<br>p13<br>p12<br>p88<br>p86                                                                                                                 |
| Water Levels<br>East<br>1219.568<br>918.547<br>792.682<br>905.245<br>977.175<br>1034.129<br>1103.073                                                                                                                                                                                          | 03/15/96<br>North<br>874.648<br>739.817<br>1221.803<br>1163.351<br>890.369<br>1050.801<br>905.007                                                                                                                                       | Water Table<br>94.39<br>94.20<br>94.05<br>94.20<br>94.34<br>94.36<br>93.42                                                                                                                                        | Water Depth<br>6.10<br>7.94<br>5.20<br>4.66<br>7.57<br>5.88<br>7.28                                                                                                 | Elevation<br>100.489<br>102.141<br>99.251<br>98.862<br>101.906<br>100.236<br>100.697                                                                                                                          | Well etc.<br>ee6<br>p10<br>p13<br>p12<br>p88<br>p86<br>p37                                                                                                          |
| Water Levels<br>East<br>1219.568<br>918.547<br>792.682<br>905.245<br>977.175<br>1034.129<br>1103.073<br>1196.364                                                                                                                                                                              | 03/15/96<br>North<br>874.648<br>739.817<br>1221.803<br>1163.351<br>890.369<br>1050.801<br>905.007<br>869.961                                                                                                                            | Water Table<br>94.39<br>94.20<br>94.05<br>94.20<br>94.34<br>94.34<br>94.36<br>93.42<br>93.31                                                                                                                      | Water Depth<br>6.10<br>7.94<br>5.20<br>4.66<br>7.57<br>5.88<br>7.28<br>6.40                                                                                         | Elevation<br>100.489<br>102.141<br>99.251<br>98.862<br>101.906<br>100.236<br>100.697<br>99.713                                                                                                                | Well etc.<br>ee6<br>p10<br>p13<br>p12<br>p88<br>p86<br>p37<br>p28                                                                                                   |
| Water Levels<br>East<br>1219.568<br>918.547<br>792.682<br>905.245<br>977.175<br>1034.129<br>1103.073<br>1196.364<br>1200.810                                                                                                                                                                  | 03/15/96<br>North<br>874.648<br>739.817<br>1221.803<br>1163.351<br>890.369<br>1050.801<br>905.007<br>869.961<br>880.029                                                                                                                 | Water Table<br>94.39<br>94.20<br>94.05<br>94.20<br>94.34<br>94.36<br>93.42<br>93.31<br>93.48                                                                                                                      | Water Depth<br>6.10<br>7.94<br>5.20<br>4.66<br>7.57<br>5.88<br>7.28<br>6.40<br>6.14                                                                                 | Elevation<br>100.489<br>102.141<br>99.251<br>98.862<br>101.906<br>100.236<br>100.697<br>99.713<br>99.617                                                                                                      | Well etc.<br>ee6<br>p10<br>p13<br>p12<br>p88<br>p86<br>p37<br>p28<br>p28<br>p27                                                                                     |
| East           1219.568           918.547           792.682           905.245           977.175           1034.129           1103.073           1196.364           1200.810           1209.500                                                                                                | 03/15/96<br>North<br>874.648<br>739.817<br>1221.803<br>1163.351<br>890.369<br>1050.801<br>905.007<br>869.961<br>880.029<br>892.306                                                                                                      | Water Table<br>94.39<br>94.20<br>94.05<br>94.20<br>94.34<br>94.34<br>94.36<br>93.42<br>93.31<br>93.48<br>95.89                                                                                                    | Water Depth<br>6.10<br>7.94<br>5.20<br>4.66<br>7.57<br>5.88<br>7.28<br>6.40<br>6.14<br>4.02                                                                         | Elevation<br>100.489<br>102.141<br>99.251<br>98.862<br>101.906<br>100.236<br>100.697<br>99.713<br>99.617<br>99.907                                                                                            | Well etc.<br>ee6<br>p10<br>p13<br>p12<br>p88<br>p86<br>p37<br>p28<br>p27<br>p25                                                                                     |
| Water Levels<br>East<br>1219.568<br>918.547<br>792.682<br>905.245<br>977.175<br>1034.129<br>1103.073<br>1196.364<br>1200.810<br>1209.500<br>1213.913                                                                                                                                          | 03/15/96<br>North<br>874.648<br>739.817<br>1221.803<br>1163.351<br>890.369<br>1050.801<br>905.007<br>869.961<br>880.029<br>892.306<br>897.854                                                                                           | Water Table<br>94.39<br>94.20<br>94.05<br>94.20<br>94.34<br>94.36<br>93.42<br>93.31<br>93.48<br>95.89<br>93.15                                                                                                    | Water Depth<br>6.10<br>7.94<br>5.20<br>4.66<br>7.57<br>5.88<br>7.28<br>6.40<br>6.14<br>4.02<br>6.96                                                                 | Elevation<br>100.489<br>102.141<br>99.251<br>98.862<br>101.906<br>100.236<br>100.697<br>99.713<br>99.617<br>99.907<br>100.11                                                                                  | Well etc.<br>ee6<br>p10<br>p13<br>p12<br>p88<br>p86<br>p37<br>p28<br>p27<br>p25<br>p24                                                                              |
| Water Levels<br>East<br>1219.568<br>918.547<br>792.682<br>905.245<br>977.175<br>1034.129<br>1103.073<br>1196.364<br>1200.810<br>1209.500<br>1213.913<br>1182.469                                                                                                                              | 03/15/96<br>North<br>874.648<br>739.817<br>1221.803<br>1163.351<br>890.369<br>1050.801<br>905.007<br>869.961<br>880.029<br>892.306<br>897.854<br>904.202                                                                                | Water Table<br>94.39<br>94.20<br>94.05<br>94.20<br>94.34<br>94.36<br>93.42<br>93.31<br>93.48<br>95.89<br>93.15<br>93.17                                                                                           | Water Depth<br>6.10<br>7.94<br>5.20<br>4.66<br>7.57<br>5.88<br>7.28<br>6.40<br>6.14<br>4.02<br>6.96<br>6.29                                                         | Elevation<br>100.489<br>102.141<br>99.251<br>98.862<br>101.906<br>100.236<br>100.697<br>99.713<br>99.617<br>99.907<br>100.11<br>99.462                                                                        | Well etc.<br>ee6<br>p10<br>p13<br>p12<br>p88<br>p86<br>p37<br>p28<br>p27<br>p25<br>p24<br>p32                                                                       |
| East           1219.568           918.547           792.682           905.245           977.175           1034.129           1103.073           1196.364           1200.810           1209.500           1213.913           1182.469           1180.937                                       | 03/15/96<br>North<br>874.648<br>739.817<br>1221.803<br>1163.351<br>890.369<br>1050.801<br>905.007<br>869.961<br>880.029<br>892.306<br>897.854<br>904.202<br>935.710                                                                     | Water Table<br>94.39<br>94.20<br>94.05<br>94.20<br>94.34<br>94.36<br>93.42<br>93.31<br>93.48<br>95.89<br>93.15<br>93.17<br>93.35                                                                                  | Water Depth<br>6.10<br>7.94<br>5.20<br>4.66<br>7.57<br>5.88<br>7.28<br>6.40<br>6.14<br>4.02<br>6.96<br>6.29<br>6.55                                                 | Elevation<br>100.489<br>102.141<br>99.251<br>98.862<br>101.906<br>100.236<br>100.697<br>99.713<br>99.617<br>99.907<br>100.11<br>99.462<br>99.896                                                              | Well etc.<br>ee6<br>p10<br>p13<br>p12<br>p88<br>p86<br>p37<br>p28<br>p27<br>p28<br>p27<br>p25<br>p24<br>p32<br>p33                                                  |
| East           1219.568           918.547           792.682           905.245           977.175           1034.129           1103.073           1196.364           1200.810           1209.500           1213.913           1182.469           1149.977                                       | 03/15/96<br>North<br>874.648<br>739.817<br>1221.803<br>1163.351<br>890.369<br>1050.801<br>905.007<br>869.961<br>880.029<br>892.306<br>897.854<br>904.202<br>935.710<br>932.964                                                          | Water Table<br>94.39<br>94.20<br>94.05<br>94.20<br>94.34<br>94.36<br>93.42<br>93.31<br>93.48<br>95.89<br>93.15<br>93.15<br>93.17<br>93.35<br>93.30                                                                | Water Depth<br>6.10<br>7.94<br>5.20<br>4.66<br>7.57<br>5.88<br>7.28<br>6.40<br>6.14<br>4.02<br>6.96<br>6.29<br>6.55<br>6.06                                         | Elevation<br>100.489<br>102.141<br>99.251<br>98.862<br>101.906<br>100.236<br>100.697<br>99.713<br>99.617<br>99.907<br>100.11<br>99.462<br>99.896<br>99.362                                                    | Well etc.<br>ee6<br>p10<br>p13<br>p12<br>p88<br>p86<br>p37<br>p28<br>p27<br>p25<br>p24<br>p32<br>p33<br>p34                                                         |
| Water Levels           East           1219.568           918.547           792.682           905.245           977.175           1034.129           1103.073           1196.364           1209.500           1213.913           1182.469           1149.977           1125.994                | 03/15/96<br>North<br>874.648<br>739.817<br>1221.803<br>1163.351<br>890.369<br>1050.801<br>905.007<br>869.961<br>880.029<br>892.306<br>897.854<br>904.202<br>935.710<br>932.964<br>933.070                                               | Water Table<br>94.39<br>94.20<br>94.05<br>94.20<br>94.34<br>94.36<br>93.42<br>93.31<br>93.48<br>95.89<br>93.15<br>93.15<br>93.17<br>93.35<br>93.30<br>93.85                                                       | Water Depth<br>6.10<br>7.94<br>5.20<br>4.66<br>7.57<br>5.88<br>7.28<br>6.40<br>6.14<br>4.02<br>6.96<br>6.29<br>6.55<br>6.06<br>7.61                                 | Elevation<br>100.489<br>102.141<br>99.251<br>98.862<br>101.906<br>100.236<br>100.697<br>99.713<br>99.617<br>99.907<br>100.11<br>99.462<br>99.896<br>99.362<br>101.455                                         | Well etc.<br>ee6<br>p10<br>p13<br>p12<br>p88<br>p86<br>p37<br>p28<br>p27<br>p25<br>p24<br>p32<br>p33<br>p34<br>p85                                                  |
| Water Levels<br>East<br>1219.568<br>918.547<br>792.682<br>905.245<br>977.175<br>1034.129<br>1103.073<br>1196.364<br>1200.810<br>1209.500<br>1213.913<br>1182.469<br>1180.937<br>1149.977<br>1125.994<br>1138.914                                                                              | 03/15/96<br>North<br>874.648<br>739.817<br>1221.803<br>1163.351<br>890.369<br>1050.801<br>905.007<br>869.961<br>880.029<br>892.306<br>897.854<br>904.202<br>935.710<br>932.964<br>933.070<br>969.006                                    | Water Table<br>94.39<br>94.20<br>94.05<br>94.20<br>94.20<br>94.34<br>93.31<br>93.42<br>93.31<br>93.48<br>95.89<br>93.15<br>93.15<br>93.15<br>93.17<br>93.35<br>93.30<br>93.85<br>92.47                            | Water Depth<br>6.10<br>7.94<br>5.20<br>4.66<br>7.57<br>5.88<br>7.28<br>6.40<br>6.14<br>4.02<br>6.96<br>6.29<br>6.55<br>6.06<br>7.61<br>7.58                         | Elevation<br>100.489<br>102.141<br>99.251<br>98.862<br>101.906<br>100.236<br>100.697<br>99.713<br>99.617<br>99.907<br>100.11<br>99.462<br>99.896<br>99.362<br>101.455<br>100.045                              | Well etc.<br>ee6<br>p10<br>p13<br>p12<br>p88<br>p86<br>p37<br>p28<br>p27<br>p25<br>p24<br>p32<br>p33<br>p34<br>p85<br>p38                                           |
| East           1219.568           918.547           792.682           905.245           977.175           1034.129           1103.073           1196.364           1209.500           1213.913           1182.469           1180.937           1149.977           1138.914           1075.786 | 03/15/96<br>North<br>874.648<br>739.817<br>1221.803<br>1163.351<br>890.369<br>1050.801<br>905.007<br>869.961<br>880.029<br>892.306<br>897.854<br>904.202<br>935.710<br>932.964<br>933.070<br>969.006<br>966.912                         | Water Table<br>94.39<br>94.20<br>94.05<br>94.20<br>94.34<br>94.36<br>93.42<br>93.31<br>93.48<br>95.89<br>93.15<br>93.15<br>93.17<br>93.35<br>93.30<br>93.85<br>93.30<br>93.85<br>92.47<br>93.19                   | Water Depth<br>6.10<br>7.94<br>5.20<br>4.66<br>7.57<br>5.88<br>7.28<br>6.40<br>6.14<br>4.02<br>6.96<br>6.29<br>6.55<br>6.06<br>7.61<br>7.58<br>6.22                 | Elevation<br>100.489<br>102.141<br>99.251<br>98.862<br>101.906<br>100.236<br>100.697<br>99.713<br>99.617<br>99.907<br>100.11<br>99.462<br>99.896<br>99.362<br>101.455<br>100.045<br>99.41                     | Well etc.<br>ee6<br>p10<br>p13<br>p12<br>p88<br>p86<br>p37<br>p28<br>p27<br>p25<br>p24<br>p32<br>p33<br>p34<br>p85<br>p38<br>p38<br>p38<br>p39                      |
| Water Levels<br>East<br>1219.568<br>918.547<br>792.682<br>905.245<br>977.175<br>1034.129<br>1103.073<br>1196.364<br>1200.810<br>1209.500<br>1213.913<br>1182.469<br>1180.937<br>1149.977<br>1125.994<br>1138.914<br>1075.786<br>671.185                                                       | 03/15/96<br>North<br>874.648<br>739.817<br>1221.803<br>1163.351<br>890.369<br>1050.801<br>905.007<br>869.961<br>880.029<br>892.306<br>897.854<br>904.202<br>935.710<br>932.964<br>933.070<br>969.006<br>966.912<br>1221.394             | Water Table<br>94.39<br>94.20<br>94.05<br>94.20<br>94.34<br>94.36<br>93.42<br>93.31<br>93.48<br>95.89<br>93.15<br>93.15<br>93.15<br>93.15<br>93.30<br>93.85<br>93.30<br>93.85<br>92.47<br>93.19<br>94.02<br>94.37 | Water Depth<br>6.10<br>7.94<br>5.20<br>4.66<br>7.57<br>5.88<br>7.28<br>6.40<br>6.14<br>4.02<br>6.96<br>6.29<br>6.55<br>6.06<br>7.61<br>7.58<br>6.22<br>4.14         | Elevation<br>100.489<br>102.141<br>99.251<br>98.862<br>101.906<br>100.236<br>100.697<br>99.713<br>99.617<br>99.907<br>100.11<br>99.462<br>99.896<br>99.362<br>101.455<br>100.045<br>99.41<br>98.159           | Well etc.<br>ee6<br>p10<br>p13<br>p12<br>p88<br>p86<br>p37<br>p28<br>p27<br>p25<br>p24<br>p32<br>p33<br>p34<br>p33<br>p34<br>p85<br>p38<br>p39<br>ee4               |
| Water Levels<br>East<br>1219.568<br>918.547<br>792.682<br>905.245<br>977.175<br>1034.129<br>1103.073<br>1196.364<br>1200.810<br>1209.500<br>1213.913<br>1182.469<br>1180.937<br>1149.977<br>1125.994<br>1138.914<br>1075.786<br>671.185<br>1094.061                                           | 03/15/96<br>North<br>874.648<br>739.817<br>1221.803<br>1163.351<br>890.369<br>1050.801<br>905.007<br>869.961<br>880.029<br>892.306<br>897.854<br>904.202<br>935.710<br>932.964<br>933.070<br>969.006<br>966.912<br>1221.394<br>1177.213 | Water Table<br>94.39<br>94.20<br>94.05<br>94.20<br>94.34<br>94.36<br>93.42<br>93.31<br>93.48<br>95.89<br>93.15<br>93.15<br>93.15<br>93.17<br>93.35<br>93.30<br>93.85<br>93.30<br>93.85<br>92.47<br>93.19<br>94.02 | Water Depth<br>6.10<br>7.94<br>5.20<br>4.66<br>7.57<br>5.88<br>7.28<br>6.40<br>6.14<br>4.02<br>6.96<br>6.29<br>6.55<br>6.06<br>7.61<br>7.58<br>6.22<br>4.14<br>5.25 | Elevation<br>100.489<br>102.141<br>99.251<br>98.862<br>101.906<br>100.236<br>100.697<br>99.713<br>99.617<br>99.907<br>100.11<br>99.462<br>99.896<br>99.362<br>101.455<br>100.045<br>99.41<br>98.159<br>99.616 | Well etc.<br>ee6<br>p10<br>p13<br>p12<br>p88<br>p86<br>p37<br>p28<br>p27<br>p25<br>p24<br>p32<br>p33<br>p34<br>p32<br>p33<br>p34<br>p85<br>p38<br>p39<br>ee4<br>ee3 |

### Table B1. Water levels measured at the Erskine Site, 11/95 to 3/97

| 898.149                                                                                                                                                                                                                                                          | 1109.307                                                                                                                                                                                                                           | 94.25                                                                                                                                                                                                          | 4.90                                                                                                                                                                                                        | 99.153                                                                                                                                                                                                                 | ee2                                                                                                                                                                                                                                                                        |
|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
|                                                                                                                                                                                                                                                                  |                                                                                                                                                                                                                                    |                                                                                                                                                                                                                |                                                                                                                                                                                                             |                                                                                                                                                                                                                        |                                                                                                                                                                                                                                                                            |
| Water Levels                                                                                                                                                                                                                                                     | 04/03/96                                                                                                                                                                                                                           |                                                                                                                                                                                                                |                                                                                                                                                                                                             |                                                                                                                                                                                                                        | · · · · · · · · · · · · · · · · · · ·                                                                                                                                                                                                                                      |
| East                                                                                                                                                                                                                                                             | North                                                                                                                                                                                                                              | Water Table                                                                                                                                                                                                    | Water Depth                                                                                                                                                                                                 | Elevation                                                                                                                                                                                                              | Well                                                                                                                                                                                                                                                                       |
| 1219.568                                                                                                                                                                                                                                                         | 874.648                                                                                                                                                                                                                            | 93.75                                                                                                                                                                                                          | 6.74                                                                                                                                                                                                        | 100.489                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                            |
| 918.547                                                                                                                                                                                                                                                          | 739.817                                                                                                                                                                                                                            | 93.58                                                                                                                                                                                                          | 8.56                                                                                                                                                                                                        | 102.141                                                                                                                                                                                                                | ee6                                                                                                                                                                                                                                                                        |
| 792.682                                                                                                                                                                                                                                                          | 1221.803                                                                                                                                                                                                                           | 93.58                                                                                                                                                                                                          | 5.24                                                                                                                                                                                                        | 99.251                                                                                                                                                                                                                 | <u>p10</u><br>p13                                                                                                                                                                                                                                                          |
| 905.245                                                                                                                                                                                                                                                          | 1163.351                                                                                                                                                                                                                           | 93.54                                                                                                                                                                                                          | 5.33                                                                                                                                                                                                        | 98.862                                                                                                                                                                                                                 | p13                                                                                                                                                                                                                                                                        |
| 977.175                                                                                                                                                                                                                                                          | 890.369                                                                                                                                                                                                                            | 93.67                                                                                                                                                                                                          | 8.24                                                                                                                                                                                                        | 101.906                                                                                                                                                                                                                | p12<br>p88                                                                                                                                                                                                                                                                 |
| 1034.129                                                                                                                                                                                                                                                         | 1050.801                                                                                                                                                                                                                           | 90.80                                                                                                                                                                                                          | 9.44                                                                                                                                                                                                        | 101.900                                                                                                                                                                                                                | p86                                                                                                                                                                                                                                                                        |
| 1103.073                                                                                                                                                                                                                                                         | 905.007                                                                                                                                                                                                                            | 90.80                                                                                                                                                                                                          | 8.01                                                                                                                                                                                                        | 100.230                                                                                                                                                                                                                | p88<br>p37                                                                                                                                                                                                                                                                 |
| 1209.500                                                                                                                                                                                                                                                         | 892.306                                                                                                                                                                                                                            | 92.09                                                                                                                                                                                                          | 6.97                                                                                                                                                                                                        | 99.907                                                                                                                                                                                                                 | p37<br>p25                                                                                                                                                                                                                                                                 |
| 1213.913                                                                                                                                                                                                                                                         | 897.854                                                                                                                                                                                                                            | 92.59                                                                                                                                                                                                          | 7.52                                                                                                                                                                                                        | 100.11                                                                                                                                                                                                                 | <u>p25</u><br>p24                                                                                                                                                                                                                                                          |
| 1125.994                                                                                                                                                                                                                                                         | 933.070                                                                                                                                                                                                                            | 93.82                                                                                                                                                                                                          | 7.64                                                                                                                                                                                                        | 101.455                                                                                                                                                                                                                | p24<br>p85                                                                                                                                                                                                                                                                 |
| 671.185                                                                                                                                                                                                                                                          | 1221.394                                                                                                                                                                                                                           | 93.34                                                                                                                                                                                                          | 4.82                                                                                                                                                                                                        | 98.159                                                                                                                                                                                                                 | ee4                                                                                                                                                                                                                                                                        |
| 1094.061                                                                                                                                                                                                                                                         | 1177.213                                                                                                                                                                                                                           | 93.69                                                                                                                                                                                                          | 5.93                                                                                                                                                                                                        | 99.616                                                                                                                                                                                                                 | <u>ee4</u>                                                                                                                                                                                                                                                                 |
| 854.066                                                                                                                                                                                                                                                          | 886.200                                                                                                                                                                                                                            | 93.61                                                                                                                                                                                                          | 6.67                                                                                                                                                                                                        | 100.276                                                                                                                                                                                                                | ee5                                                                                                                                                                                                                                                                        |
| 898.149                                                                                                                                                                                                                                                          | 1109.307                                                                                                                                                                                                                           | 93.55                                                                                                                                                                                                          | 5.60                                                                                                                                                                                                        | 99.153                                                                                                                                                                                                                 | ee3                                                                                                                                                                                                                                                                        |
| 1225.707                                                                                                                                                                                                                                                         | 864.441                                                                                                                                                                                                                            | 93.89                                                                                                                                                                                                          | 7.91                                                                                                                                                                                                        | 101.803                                                                                                                                                                                                                | i1                                                                                                                                                                                                                                                                         |
| 1231.516                                                                                                                                                                                                                                                         | 874.006                                                                                                                                                                                                                            | 93.72                                                                                                                                                                                                          | 7.48                                                                                                                                                                                                        | 101.204                                                                                                                                                                                                                | i2                                                                                                                                                                                                                                                                         |
| 1234.793                                                                                                                                                                                                                                                         | 882.396                                                                                                                                                                                                                            | 93.71                                                                                                                                                                                                          | 7.30                                                                                                                                                                                                        | 101.011                                                                                                                                                                                                                | i3                                                                                                                                                                                                                                                                         |
| 1236.548                                                                                                                                                                                                                                                         | 892.545                                                                                                                                                                                                                            | 93.73                                                                                                                                                                                                          | 6.90                                                                                                                                                                                                        | 100.627                                                                                                                                                                                                                | i3i4                                                                                                                                                                                                                                                                       |
| 1236.159                                                                                                                                                                                                                                                         | 900.458                                                                                                                                                                                                                            | 93.78                                                                                                                                                                                                          | 6.75                                                                                                                                                                                                        | 100.526                                                                                                                                                                                                                | i5                                                                                                                                                                                                                                                                         |
| 1171.965                                                                                                                                                                                                                                                         | 890.739                                                                                                                                                                                                                            | 92.91                                                                                                                                                                                                          | 7.15                                                                                                                                                                                                        | 100.056                                                                                                                                                                                                                | i3<br>p31                                                                                                                                                                                                                                                                  |
| 1116.401                                                                                                                                                                                                                                                         | 863.672                                                                                                                                                                                                                            | 92.39                                                                                                                                                                                                          | 8.11                                                                                                                                                                                                        | 100.501                                                                                                                                                                                                                | p36                                                                                                                                                                                                                                                                        |
| 1110.401                                                                                                                                                                                                                                                         | 000.012                                                                                                                                                                                                                            | 52.00                                                                                                                                                                                                          | 0.11                                                                                                                                                                                                        | 100.001                                                                                                                                                                                                                | p30                                                                                                                                                                                                                                                                        |
|                                                                                                                                                                                                                                                                  |                                                                                                                                                                                                                                    |                                                                                                                                                                                                                |                                                                                                                                                                                                             |                                                                                                                                                                                                                        |                                                                                                                                                                                                                                                                            |
| Nater Levels                                                                                                                                                                                                                                                     | 04/29/96                                                                                                                                                                                                                           |                                                                                                                                                                                                                |                                                                                                                                                                                                             |                                                                                                                                                                                                                        |                                                                                                                                                                                                                                                                            |
| Water Levels                                                                                                                                                                                                                                                     | 04/29/96                                                                                                                                                                                                                           |                                                                                                                                                                                                                |                                                                                                                                                                                                             |                                                                                                                                                                                                                        |                                                                                                                                                                                                                                                                            |
| East                                                                                                                                                                                                                                                             | 04/29/96<br>North                                                                                                                                                                                                                  | Water Table                                                                                                                                                                                                    | Water Depth                                                                                                                                                                                                 | Elevation                                                                                                                                                                                                              | Well                                                                                                                                                                                                                                                                       |
| East<br>1176.399                                                                                                                                                                                                                                                 | North<br>1008.644                                                                                                                                                                                                                  | 95.172                                                                                                                                                                                                         | 5.440                                                                                                                                                                                                       | 100.612                                                                                                                                                                                                                | Well<br>sp10                                                                                                                                                                                                                                                               |
| East<br>1176.399<br>1121.854                                                                                                                                                                                                                                     | North<br>1008.644<br>930.621                                                                                                                                                                                                       | 95.172<br>95.098                                                                                                                                                                                               |                                                                                                                                                                                                             | 100.612<br>100.868                                                                                                                                                                                                     |                                                                                                                                                                                                                                                                            |
| East<br>1176.399<br>1121.854<br>1101.197                                                                                                                                                                                                                         | North<br>1008.644<br>930.621<br>879.184                                                                                                                                                                                            | 95.172<br>95.098<br>95.113                                                                                                                                                                                     | 5.440<br>5.770<br>6.060                                                                                                                                                                                     | 100.612<br>100.868<br>101.173                                                                                                                                                                                          | sp10<br>sp12<br>sp3                                                                                                                                                                                                                                                        |
| East<br>1176.399<br>1121.854                                                                                                                                                                                                                                     | North<br>1008.644<br>930.621                                                                                                                                                                                                       | 95.172<br>95.098                                                                                                                                                                                               | 5.440<br>5.770                                                                                                                                                                                              | 100.612<br>100.868                                                                                                                                                                                                     | sp10<br>sp12<br>sp3<br>sp18                                                                                                                                                                                                                                                |
| East<br>1176.399<br>1121.854<br>1101.197                                                                                                                                                                                                                         | North<br>1008.644<br>930.621<br>879.184                                                                                                                                                                                            | 95.172<br>95.098<br>95.113                                                                                                                                                                                     | 5.440<br>5.770<br>6.060                                                                                                                                                                                     | 100.612<br>100.868<br>101.173                                                                                                                                                                                          | sp10<br>sp12<br>sp3                                                                                                                                                                                                                                                        |
| East<br>1176.399<br>1121.854<br>1101.197<br>1062.006                                                                                                                                                                                                             | North<br>1008.644<br>930.621<br>879.184<br>809.544                                                                                                                                                                                 | 95.172<br>95.098<br>95.113<br>95.149<br>94.971<br>97.635                                                                                                                                                       | 5.440<br>5.770<br>6.060<br>6.750                                                                                                                                                                            | 100.612<br>100.868<br>101.173<br>101.899                                                                                                                                                                               | sp10<br>sp12<br>sp3<br>sp18                                                                                                                                                                                                                                                |
| East<br>1176.399<br>1121.854<br>1101.197<br>1062.006<br>1018.782<br>1009.840<br>1104.939                                                                                                                                                                         | North<br>1008.644<br>930.621<br>879.184<br>809.544<br>678.859<br>655.506<br>741.457                                                                                                                                                | 95.172<br>95.098<br>95.113<br>95.149<br>94.971<br>97.635<br>95.127                                                                                                                                             | 5.440<br>5.770<br>6.060<br>6.750<br>6.030<br>2.276<br>6.470                                                                                                                                                 | 100.612<br>100.868<br>101.173<br>101.899<br>101.001<br>99.911<br>101.597                                                                                                                                               | sp10<br>sp12<br>sp3<br>sp18<br>sp17<br>g5<br>sp4                                                                                                                                                                                                                           |
| East<br>1176.399<br>1121.854<br>1101.197<br>1062.006<br>1018.782<br>1009.840<br>1104.939<br>1393.880                                                                                                                                                             | North<br>1008.644<br>930.621<br>879.184<br>809.544<br>678.859<br>655.506<br>741.457<br>502.552                                                                                                                                     | 95.172<br>95.098<br>95.113<br>95.149<br>94.971<br>97.635<br>95.127<br>97.148                                                                                                                                   | 5.440<br>5.770<br>6.060<br>6.750<br>6.030<br>2.276<br>6.470<br>2.240                                                                                                                                        | 100.612<br>100.868<br>101.173<br>101.899<br>101.001<br>99.911<br>101.597<br>99.388                                                                                                                                     | sp10<br>sp12<br>sp3<br>sp18<br>sp17<br>g5<br>sp4<br>g6                                                                                                                                                                                                                     |
| East<br>1176.399<br>1121.854<br>1101.197<br>1062.006<br>1018.782<br>1009.840<br>1104.939<br>1393.880<br>1287.557                                                                                                                                                 | North<br>1008.644<br>930.621<br>879.184<br>809.544<br>678.859<br>655.506<br>741.457<br>502.552<br>743.596                                                                                                                          | 95.172<br>95.098<br>95.113<br>95.149<br>94.971<br>97.635<br>95.127<br>97.148<br>95.284                                                                                                                         | 5.440<br>5.770<br>6.060<br>6.750<br>6.030<br>2.276<br>6.470<br>2.240<br>5.350                                                                                                                               | 100.612<br>100.868<br>101.173<br>101.899<br>101.001<br>99.911<br>101.597<br>99.388<br>100.634                                                                                                                          | sp10<br>sp12<br>sp3<br>sp18<br>sp17<br>g5<br>sp4<br>g6<br>sp5                                                                                                                                                                                                              |
| East<br>1176.399<br>1121.854<br>1101.197<br>1062.006<br>1018.782<br>1009.840<br>1104.939<br>1393.880<br>1287.557<br>1292.828                                                                                                                                     | North<br>1008.644<br>930.621<br>879.184<br>809.544<br>678.859<br>655.506<br>741.457<br>502.552<br>743.596<br>858.144                                                                                                               | 95.172<br>95.098<br>95.113<br>95.149<br>94.971<br>97.635<br>95.127<br>97.148<br>95.284<br>95.209                                                                                                               | 5.440<br>5.770<br>6.060<br>6.750<br>6.030<br>2.276<br>6.470<br>2.240<br>5.350<br>5.940                                                                                                                      | 100.612<br>100.868<br>101.173<br>101.899<br>101.001<br>99.911<br>101.597<br>99.388<br>100.634<br>101.149                                                                                                               | sp10<br>sp12<br>sp3<br>sp18<br>sp17<br>g5<br>sp4<br>g6<br>sp5<br>sp6                                                                                                                                                                                                       |
| East<br>1176.399<br>1121.854<br>1101.197<br>1062.006<br>1018.782<br>1009.840<br>1104.939<br>1393.880<br>1287.557<br>1292.828<br>1225.707                                                                                                                         | North<br>1008.644<br>930.621<br>879.184<br>809.544<br>678.859<br>655.506<br>741.457<br>502.552<br>743.596<br>858.144<br>864.441                                                                                                    | 95.172<br>95.098<br>95.113<br>95.149<br>94.971<br>97.635<br>95.127<br>97.148<br>95.284<br>95.209<br>95.183                                                                                                     | 5.440<br>5.770<br>6.060<br>6.750<br>6.030<br>2.276<br>6.470<br>2.240<br>5.350<br>5.940<br>6.620                                                                                                             | 100.612<br>100.868<br>101.173<br>101.899<br>101.001<br>99.911<br>101.597<br>99.388<br>100.634<br>101.149<br>101.803                                                                                                    | sp10           sp12           sp3           sp18           sp17           g5           sp4           g6           sp5           sp6           i1                                                                                                                           |
| East<br>1176.399<br>1121.854<br>1101.197<br>1062.006<br>1018.782<br>1009.840<br>1104.939<br>1393.880<br>1287.557<br>1292.828<br>1225.707<br>1231.516                                                                                                             | North<br>1008.644<br>930.621<br>879.184<br>809.544<br>678.859<br>655.506<br>741.457<br>502.552<br>743.596<br>858.144<br>864.441<br>874.006                                                                                         | 95.172<br>95.098<br>95.113<br>95.149<br>94.971<br>97.635<br>95.127<br>97.148<br>95.284<br>95.209<br>95.183<br>95.164                                                                                           | 5.440<br>5.770<br>6.060<br>6.750<br>6.030<br>2.276<br>6.470<br>2.240<br>5.350<br>5.940<br>6.620<br>6.040                                                                                                    | 100.612<br>100.868<br>101.173<br>101.899<br>101.001<br>99.911<br>101.597<br>99.388<br>100.634<br>101.149<br>101.803<br>101.204                                                                                         | sp10<br>sp12<br>sp3<br>sp18<br>sp17<br>g5<br>sp4<br>g6<br>sp5<br>sp6<br>i1<br>i2                                                                                                                                                                                           |
| East<br>1176.399<br>1121.854<br>1101.197<br>1062.006<br>1018.782<br>1009.840<br>1104.939<br>1393.880<br>1287.557<br>1292.828<br>1225.707<br>1231.516<br>1234.793                                                                                                 | North<br>1008.644<br>930.621<br>879.184<br>809.544<br>678.859<br>655.506<br>741.457<br>502.552<br>743.596<br>858.144<br>864.441<br>874.006<br>882.396                                                                              | 95.172<br>95.098<br>95.113<br>95.149<br>94.971<br>97.635<br>95.127<br>97.148<br>95.284<br>95.209<br>95.183<br>95.164<br>95.181                                                                                 | 5.440<br>5.770<br>6.060<br>6.750<br>6.030<br>2.276<br>6.470<br>2.240<br>5.350<br>5.940<br>6.620<br>6.040<br>5.830                                                                                           | 100.612<br>100.868<br>101.173<br>101.899<br>101.001<br>99.911<br>101.597<br>99.388<br>100.634<br>101.149<br>101.803<br>101.204<br>101.011                                                                              | sp10<br>sp12<br>sp3<br>sp18<br>sp17<br>g5<br>sp4<br>g6<br>sp5<br>sp6<br>i1<br>i2<br>i3                                                                                                                                                                                     |
| East<br>1176.399<br>1121.854<br>1101.197<br>1062.006<br>1018.782<br>1009.840<br>1104.939<br>1393.880<br>1287.557<br>1292.828<br>1225.707<br>1231.516<br>1234.793<br>1236.548                                                                                     | North<br>1008.644<br>930.621<br>879.184<br>809.544<br>678.859<br>655.506<br>741.457<br>502.552<br>743.596<br>858.144<br>864.441<br>874.006<br>882.396<br>892.545                                                                   | 95.172<br>95.098<br>95.113<br>95.149<br>94.971<br>97.635<br>95.127<br>97.148<br>95.284<br>95.209<br>95.183<br>95.164<br>95.181<br>95.187                                                                       | 5.440<br>5.770<br>6.060<br>6.750<br>6.030<br>2.276<br>6.470<br>2.240<br>5.350<br>5.940<br>6.620<br>6.040<br>5.830<br>5.830<br>5.440                                                                         | 100.612<br>100.868<br>101.173<br>101.899<br>101.001<br>99.911<br>101.597<br>99.388<br>100.634<br>101.149<br>101.803<br>101.204<br>101.011<br>100.627                                                                   | sp10<br>sp12<br>sp3<br>sp18<br>sp17<br>g5<br>sp4<br>g6<br>sp5<br>sp6<br>i1<br>i2<br>i3<br>i4                                                                                                                                                                               |
| East<br>1176.399<br>1121.854<br>1101.197<br>1062.006<br>1018.782<br>1009.840<br>1104.939<br>1393.880<br>1287.557<br>1292.828<br>1225.707<br>1231.516<br>1234.793<br>1236.548<br>1236.159                                                                         | North<br>1008.644<br>930.621<br>879.184<br>809.544<br>678.859<br>655.506<br>741.457<br>502.552<br>743.596<br>858.144<br>864.441<br>874.006<br>882.396<br>892.545<br>900.458                                                        | 95.172<br>95.098<br>95.113<br>95.149<br>94.971<br>97.635<br>95.127<br>97.148<br>95.284<br>95.209<br>95.183<br>95.164<br>95.181<br>95.187<br>95.187                                                             | 5.440<br>5.770<br>6.060<br>6.750<br>6.030<br>2.276<br>6.470<br>2.240<br>5.350<br>5.940<br>6.620<br>6.040<br>5.830<br>5.830<br>5.440<br>5.330                                                                | 100.612<br>100.868<br>101.173<br>101.899<br>101.001<br>99.911<br>101.597<br>99.388<br>100.634<br>101.149<br>101.803<br>101.204<br>101.011<br>100.627<br>100.526                                                        | sp10           sp12           sp3           sp18           sp17           g5           sp4           g6           sp5           sp6           i1           i2           i3           i4           j5                                                                       |
| East<br>1176.399<br>1121.854<br>1101.197<br>1062.006<br>1018.782<br>1009.840<br>1104.939<br>1393.880<br>1287.557<br>1292.828<br>1225.707<br>1231.516<br>1234.793<br>1236.548<br>1236.159<br>1219.568                                                             | North<br>1008.644<br>930.621<br>879.184<br>809.544<br>678.859<br>655.506<br>741.457<br>502.552<br>743.596<br>858.144<br>864.441<br>874.006<br>882.396<br>892.545<br>900.458<br>874.648                                             | 95.172<br>95.098<br>95.113<br>95.149<br>94.971<br>97.635<br>95.127<br>97.148<br>95.284<br>95.209<br>95.183<br>95.164<br>95.181<br>95.181<br>95.187<br>95.196<br>94.999                                         | 5.440<br>5.770<br>6.060<br>6.750<br>6.030<br>2.276<br>6.470<br>2.240<br>5.350<br>5.940<br>6.620<br>6.040<br>5.830<br>5.440<br>5.330<br>5.440                                                                | 100.612<br>100.868<br>101.173<br>101.899<br>101.001<br>99.911<br>101.597<br>99.388<br>100.634<br>101.149<br>101.803<br>101.204<br>101.011<br>100.627<br>100.526<br>100.489                                             | sp10<br>sp12<br>sp3<br>sp18<br>sp17<br>g5<br>sp4<br>g6<br>sp5<br>sp6<br>i1<br>i2<br>i3<br>i4<br>i5<br>ee6                                                                                                                                                                  |
| East<br>1176.399<br>1121.854<br>1101.197<br>1062.006<br>1018.782<br>1009.840<br>1104.939<br>1393.880<br>1287.557<br>1292.828<br>1225.707<br>1231.516<br>1234.793<br>1236.548<br>1236.159<br>1219.568<br>1212.873                                                 | North<br>1008.644<br>930.621<br>879.184<br>809.544<br>678.859<br>655.506<br>741.457<br>502.552<br>743.596<br>858.144<br>864.441<br>874.006<br>882.396<br>892.545<br>900.458<br>874.648<br>935.155                                  | 95.172<br>95.098<br>95.113<br>95.149<br>94.971<br>97.635<br>95.127<br>97.148<br>95.284<br>95.209<br>95.183<br>95.164<br>95.181<br>95.181<br>95.187<br>95.196<br>94.999<br>95.182                               | 5.440<br>5.770<br>6.060<br>6.750<br>6.030<br>2.276<br>6.470<br>2.240<br>5.350<br>5.940<br>6.620<br>6.040<br>5.830<br>5.440<br>5.330<br>5.490<br>5.740                                                       | 100.612<br>100.868<br>101.173<br>101.899<br>101.001<br>99.911<br>101.597<br>99.388<br>100.634<br>101.149<br>101.803<br>101.204<br>101.011<br>100.627<br>100.526<br>100.489<br>100.922                                  | sp10         sp12         sp3         sp18         sp17         g5         sp4         g6         sp5         sp6         i1         i2         i3         i4         i5         ee6         sp11                                                                          |
| East<br>1176.399<br>1121.854<br>1101.197<br>1062.006<br>1018.782<br>1009.840<br>1104.939<br>1393.880<br>1287.557<br>1292.828<br>1225.707<br>1231.516<br>1234.793<br>1236.548<br>1236.548<br>1236.159<br>1219.568<br>1212.873<br>1192.176                         | North<br>1008.644<br>930.621<br>879.184<br>809.544<br>678.859<br>655.506<br>741.457<br>502.552<br>743.596<br>858.144<br>864.441<br>874.006<br>882.396<br>892.545<br>900.458<br>874.648<br>935.155<br>894.811                       | 95.172<br>95.098<br>95.113<br>95.149<br>94.971<br>97.635<br>95.127<br>97.148<br>95.284<br>95.209<br>95.183<br>95.164<br>95.181<br>95.181<br>95.187<br>95.187<br>95.196<br>94.999<br>95.182<br>95.172           | 5.440<br>5.770<br>6.060<br>6.750<br>6.030<br>2.276<br>6.470<br>2.240<br>5.350<br>5.940<br>6.620<br>6.040<br>5.830<br>5.440<br>5.330<br>5.440<br>5.330<br>5.440<br>5.330                                     | 100.612<br>100.868<br>101.173<br>101.899<br>101.001<br>99.911<br>101.597<br>99.388<br>100.634<br>101.149<br>101.803<br>101.204<br>101.011<br>100.627<br>100.526<br>100.489<br>100.922<br>100.342                       | sp10         sp12         sp3         sp18         sp17         g5         sp4         g6         sp5         sp6         i1         i2         i3         i4         i5         ee6         sp11         sp1                                                              |
| East<br>1176.399<br>1121.854<br>1101.197<br>1062.006<br>1018.782<br>1009.840<br>1104.939<br>1393.880<br>1287.557<br>1292.828<br>1225.707<br>1231.516<br>1234.793<br>1236.548<br>1236.548<br>1236.159<br>1219.568<br>1212.873<br>1192.176<br>1170.461             | North<br>1008.644<br>930.621<br>879.184<br>809.544<br>678.859<br>655.506<br>741.457<br>502.552<br>743.596<br>858.144<br>864.441<br>874.006<br>882.396<br>892.545<br>900.458<br>874.648<br>935.155<br>894.811<br>867.896            | 95.172<br>95.098<br>95.113<br>95.149<br>94.971<br>97.635<br>95.127<br>97.148<br>95.284<br>95.209<br>95.183<br>95.164<br>95.181<br>95.181<br>95.187<br>95.187<br>95.182<br>95.182<br>95.182<br>95.172<br>95.075 | 5.440<br>5.770<br>6.060<br>6.750<br>6.030<br>2.276<br>6.470<br>2.240<br>5.350<br>5.940<br>6.620<br>6.040<br>5.830<br>5.830<br>5.440<br>5.330<br>5.440<br>5.330<br>5.440<br>5.330                            | 100.612<br>100.868<br>101.173<br>101.899<br>101.001<br>99.911<br>101.597<br>99.388<br>100.634<br>101.149<br>101.803<br>101.204<br>101.011<br>100.627<br>100.526<br>100.489<br>100.922<br>100.342<br>101.505            | sp10         sp12         sp3         sp18         sp17         g5         sp4         g6         sp5         sp6         i1         i2         i3         i4         i5         ee6         sp11         sp1         sp16                                                 |
| East<br>1176.399<br>1121.854<br>1101.197<br>1062.006<br>1018.782<br>1009.840<br>1104.939<br>1393.880<br>1287.557<br>1292.828<br>1225.707<br>1231.516<br>1234.793<br>1236.548<br>1236.548<br>1236.159<br>1219.568<br>1212.873<br>1192.176<br>1170.461<br>1145.109 | North<br>1008.644<br>930.621<br>879.184<br>809.544<br>678.859<br>655.506<br>741.457<br>502.552<br>743.596<br>858.144<br>864.441<br>874.006<br>882.396<br>892.545<br>900.458<br>874.648<br>935.155<br>894.811<br>867.896<br>834.939 | 95.172<br>95.098<br>95.113<br>95.149<br>94.971<br>97.635<br>95.127<br>97.148<br>95.284<br>95.209<br>95.183<br>95.164<br>95.181<br>95.187<br>95.187<br>95.182<br>95.172<br>95.172<br>95.172<br>95.075<br>95.136 | 5.440<br>5.770<br>6.060<br>6.750<br>6.030<br>2.276<br>6.470<br>2.240<br>5.350<br>5.940<br>6.620<br>6.040<br>5.830<br>5.440<br>5.330<br>5.440<br>5.330<br>5.440<br>5.330<br>5.440<br>5.330<br>5.440<br>5.330 | 100.612<br>100.868<br>101.173<br>101.899<br>101.001<br>99.911<br>101.597<br>99.388<br>100.634<br>101.149<br>101.803<br>101.204<br>101.011<br>100.627<br>100.526<br>100.489<br>100.922<br>100.342<br>101.505<br>101.726 | sp10         sp12         sp3         sp18         sp17         g5         sp4         g6         sp5         sp6         i1         i2         i3         i4         i5         ee6         sp11         sp1         sp1         sp1         sp1         sp16         sp2 |
| East<br>1176.399<br>1121.854<br>1101.197<br>1062.006<br>1018.782<br>1009.840<br>1104.939<br>1393.880<br>1287.557<br>1292.828<br>1225.707<br>1231.516<br>1234.793<br>1236.548<br>1236.548<br>1236.159<br>1219.568<br>1212.873<br>1192.176<br>1170.461             | North<br>1008.644<br>930.621<br>879.184<br>809.544<br>678.859<br>655.506<br>741.457<br>502.552<br>743.596<br>858.144<br>864.441<br>874.006<br>882.396<br>892.545<br>900.458<br>874.648<br>935.155<br>894.811<br>867.896            | 95.172<br>95.098<br>95.113<br>95.149<br>94.971<br>97.635<br>95.127<br>97.148<br>95.284<br>95.209<br>95.183<br>95.164<br>95.181<br>95.181<br>95.187<br>95.187<br>95.182<br>95.182<br>95.182<br>95.172<br>95.075 | 5.440<br>5.770<br>6.060<br>6.750<br>6.030<br>2.276<br>6.470<br>2.240<br>5.350<br>5.940<br>6.620<br>6.040<br>5.830<br>5.830<br>5.440<br>5.330<br>5.440<br>5.330<br>5.440<br>5.330                            | 100.612<br>100.868<br>101.173<br>101.899<br>101.001<br>99.911<br>101.597<br>99.388<br>100.634<br>101.149<br>101.803<br>101.204<br>101.011<br>100.627<br>100.526<br>100.489<br>100.922<br>100.342<br>101.505            | sp10         sp12         sp3         sp18         sp17         g5         sp4         g6         sp5         sp6         i1         i2         i3         i4         i5         ee6         sp11         sp1         sp16                                                 |

|                                                                                                                                           |                                                                                                                                             |                                                                                                                                                    |                                                                                                                   |                                                                                                                                           | <u> </u>                                                                        |
|-------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------|
| 965.795                                                                                                                                   | 668.214                                                                                                                                     | 98.467                                                                                                                                             | 1.823                                                                                                             | 100.29                                                                                                                                    | g4                                                                              |
| 854.066                                                                                                                                   | 886.200                                                                                                                                     | 94.996                                                                                                                                             | 5.280                                                                                                             | 100.276                                                                                                                                   | ee5                                                                             |
| 704.938                                                                                                                                   | 977.757                                                                                                                                     | 94.828                                                                                                                                             | 6.190                                                                                                             | 101.018                                                                                                                                   | sp15                                                                            |
| 668.469                                                                                                                                   | 958.624                                                                                                                                     | 98.557                                                                                                                                             | 2.760                                                                                                             | 101.317                                                                                                                                   | g3                                                                              |
| 671.185                                                                                                                                   | 1221.394                                                                                                                                    | 94.669                                                                                                                                             | 3.490                                                                                                             | 98.159                                                                                                                                    | ee4                                                                             |
| 629.841                                                                                                                                   | 1330.282                                                                                                                                    | 93.603                                                                                                                                             | 2.448                                                                                                             | 96.051                                                                                                                                    | g2                                                                              |
| 679.076                                                                                                                                   | 1343.180                                                                                                                                    | 94.388                                                                                                                                             | 4.340                                                                                                             | 98.728                                                                                                                                    | sp20                                                                            |
| 792.682                                                                                                                                   | 1221.803                                                                                                                                    | 94.781                                                                                                                                             | 4.470                                                                                                             | 99.251                                                                                                                                    | p13                                                                             |
| 905.245                                                                                                                                   | 1163.351                                                                                                                                    | 94.942                                                                                                                                             | 3.920                                                                                                             | 98.862                                                                                                                                    | p12                                                                             |
| 898.149                                                                                                                                   | 1109.307                                                                                                                                    | 94.913                                                                                                                                             | 4.240                                                                                                             | 99.153                                                                                                                                    | ee2                                                                             |
| 992.385                                                                                                                                   | 958.430                                                                                                                                     | 95.099                                                                                                                                             | 5.440                                                                                                             | 100.539                                                                                                                                   | sp14                                                                            |
| 977.175                                                                                                                                   | 890.369                                                                                                                                     | 95.106                                                                                                                                             | 6.800                                                                                                             | 101.906                                                                                                                                   | p88                                                                             |
| 1034.129                                                                                                                                  | 1050.801                                                                                                                                    | 95.126                                                                                                                                             | 5.110                                                                                                             | 100.236                                                                                                                                   | p86                                                                             |
| 1022.218                                                                                                                                  | 1134.289                                                                                                                                    | 95.027                                                                                                                                             | 4.140                                                                                                             | 99.167                                                                                                                                    | p87                                                                             |
| 1094.061                                                                                                                                  | 1177.213                                                                                                                                    | 95.066                                                                                                                                             | 4.550                                                                                                             | 99.616                                                                                                                                    | ee3                                                                             |
| 1221.998                                                                                                                                  | 1293.534                                                                                                                                    | 95.290                                                                                                                                             | 4.570                                                                                                             | 99.86                                                                                                                                     | sp19                                                                            |
| 1312.709                                                                                                                                  | 1194.455                                                                                                                                    | 95.832                                                                                                                                             | 2.250                                                                                                             | 98.082                                                                                                                                    | g1                                                                              |
| 1346.346                                                                                                                                  | 1115.699                                                                                                                                    | 95.404                                                                                                                                             | 5.170                                                                                                             | 100.574                                                                                                                                   | sp8                                                                             |
| 1214.864                                                                                                                                  | 1068.079                                                                                                                                    | 95.298                                                                                                                                             | 2.385                                                                                                             | 97.683                                                                                                                                    | g7                                                                              |
| 1178.298                                                                                                                                  | 1140.265                                                                                                                                    | 95.172                                                                                                                                             | 4.240                                                                                                             | 99.412                                                                                                                                    | sp9                                                                             |
| 1318.114                                                                                                                                  | 975.460                                                                                                                                     | 95.234                                                                                                                                             | 4.665                                                                                                             | 99.899                                                                                                                                    | sp7                                                                             |
|                                                                                                                                           |                                                                                                                                             |                                                                                                                                                    |                                                                                                                   |                                                                                                                                           | · • •                                                                           |
| Water Levels                                                                                                                              | 05/05/96                                                                                                                                    |                                                                                                                                                    | -                                                                                                                 |                                                                                                                                           |                                                                                 |
|                                                                                                                                           |                                                                                                                                             |                                                                                                                                                    |                                                                                                                   |                                                                                                                                           |                                                                                 |
| East                                                                                                                                      | North                                                                                                                                       | Water Table                                                                                                                                        | Water Depth                                                                                                       | Elevation                                                                                                                                 | Well                                                                            |
| 1176.399                                                                                                                                  | 1008.644                                                                                                                                    | 94.852                                                                                                                                             | 5.760                                                                                                             | 100.612                                                                                                                                   | sp10                                                                            |
| 1121.854                                                                                                                                  | 930.621                                                                                                                                     | 94.768                                                                                                                                             | 6.100                                                                                                             | 100.868                                                                                                                                   | sp12                                                                            |
| 1101.197                                                                                                                                  | 879.184                                                                                                                                     | 94.803                                                                                                                                             | 6.370                                                                                                             | 101.173                                                                                                                                   | sp3                                                                             |
| 1062.006                                                                                                                                  | 809.544                                                                                                                                     | 94.829                                                                                                                                             | 7.070                                                                                                             | 101.899                                                                                                                                   | sp18                                                                            |
| 1018.782                                                                                                                                  | 678.859                                                                                                                                     | 94.631                                                                                                                                             | 6.370                                                                                                             | 101.001                                                                                                                                   | sp17                                                                            |
| 1009.840                                                                                                                                  | 655.506                                                                                                                                     | 97.536                                                                                                                                             | 2.375                                                                                                             | 99.911                                                                                                                                    | g5                                                                              |
| 1104.939                                                                                                                                  | 741.457                                                                                                                                     | 94.797                                                                                                                                             | 6.800                                                                                                             | 101.597                                                                                                                                   | sp4                                                                             |
| 1393.880                                                                                                                                  | 502.552                                                                                                                                     | 97.044                                                                                                                                             | 2.344                                                                                                             | 99.388                                                                                                                                    | g6                                                                              |
| 1287.557                                                                                                                                  | 743.596                                                                                                                                     | 94.954                                                                                                                                             | 5.680                                                                                                             | 100.634                                                                                                                                   | sp5                                                                             |
| 1292.828                                                                                                                                  | 858.144                                                                                                                                     | 94.879                                                                                                                                             | 6.270                                                                                                             | 101.149                                                                                                                                   | sp6                                                                             |
| 1225.707                                                                                                                                  | 864.441                                                                                                                                     | 94.853                                                                                                                                             | 6.950                                                                                                             | 101.803                                                                                                                                   | i1                                                                              |
| 1231.516                                                                                                                                  | 004.441                                                                                                                                     | 94.000                                                                                                                                             | 0.500                                                                                                             | 101.0001                                                                                                                                  |                                                                                 |
| 1201.010                                                                                                                                  | 874.006                                                                                                                                     | 94.853                                                                                                                                             | 6.380                                                                                                             | 101.204                                                                                                                                   | i2                                                                              |
| 1234.793                                                                                                                                  |                                                                                                                                             |                                                                                                                                                    |                                                                                                                   |                                                                                                                                           | i2<br>i3                                                                        |
|                                                                                                                                           | 874.006                                                                                                                                     | 94.824                                                                                                                                             | 6.380                                                                                                             | 101.204                                                                                                                                   |                                                                                 |
| 1234.793                                                                                                                                  | 874.006<br>882.396                                                                                                                          | 94.824<br>94.841                                                                                                                                   | 6.380<br>6.170                                                                                                    | 101.204<br>101.011                                                                                                                        | i3                                                                              |
| 1234.793<br>1236.548                                                                                                                      | 874.006<br>882.396<br>892.545                                                                                                               | 94.824<br>94.841<br>94.857                                                                                                                         | 6.380<br>6.170<br>5.770                                                                                           | 101.204<br>101.011<br>100.627                                                                                                             | i3<br>i4                                                                        |
| 1234.793<br>1236.548<br>1236.159                                                                                                          | 874.006<br>882.396<br>892.545<br>900.458                                                                                                    | 94.824<br>94.841<br>94.857<br>94.846                                                                                                               | 6.380<br>6.170<br>5.770<br>5.680                                                                                  | 101.204<br>101.011<br>100.627<br>100.526                                                                                                  | i3<br>i4<br>i5                                                                  |
| 1234.793<br>1236.548<br>1236.159<br>1219.568                                                                                              | 874.006<br>882.396<br>892.545<br>900.458<br>874.648                                                                                         | 94.824<br>94.841<br>94.857<br>94.846<br>94.779                                                                                                     | 6.380<br>6.170<br>5.770<br>5.680<br>5.710                                                                         | 101.204<br>101.011<br>100.627<br>100.526<br>100.489                                                                                       | i3<br>i4<br>i5<br>ee6                                                           |
| 1234.793<br>1236.548<br>1236.159<br>1219.568<br>1212.873                                                                                  | 874.006<br>882.396<br>892.545<br>900.458<br>874.648<br>935.155                                                                              | 94.824<br>94.841<br>94.857<br>94.846<br>94.779<br>94.862                                                                                           | 6.380<br>6.170<br>5.770<br>5.680<br>5.710<br>6.060                                                                | 101.204<br>101.011<br>100.627<br>100.526<br>100.489<br>100.922                                                                            | i3<br>i4<br>i5<br>ee6<br>sp11                                                   |
| 1234.793<br>1236.548<br>1236.159<br>1219.568<br>1212.873<br>1192.176                                                                      | 874.006<br>882.396<br>892.545<br>900.458<br>874.648<br>935.155<br>894.811                                                                   | 94.824<br>94.841<br>94.857<br>94.846<br>94.779<br>94.862<br>94.862<br>94.842                                                                       | 6.380<br>6.170<br>5.770<br>5.680<br>5.710<br>6.060<br>5.500                                                       | 101.204<br>101.011<br>100.627<br>100.526<br>100.489<br>100.922<br>100.342                                                                 | i3<br>i4<br>i5<br>ee6<br>sp11<br>sp1<br>sp16                                    |
| 1234.793<br>1236.548<br>1236.159<br>1219.568<br>1212.873<br>1192.176<br>1170.461                                                          | 874.006<br>882.396<br>892.545<br>900.458<br>874.648<br>935.155<br>894.811<br>867.896                                                        | 94.824<br>94.841<br>94.857<br>94.846<br>94.779<br>94.862<br>94.862<br>94.842<br>94.755                                                             | 6.380<br>6.170<br>5.770<br>5.680<br>5.710<br>6.060<br>5.500<br>6.750                                              | 101.204<br>101.011<br>100.627<br>100.526<br>100.489<br>100.922<br>100.342<br>101.505                                                      | i3<br>i4<br>i5<br>ee6<br>sp11<br>sp1<br>sp16<br>sp2                             |
| 1234.793<br>1236.548<br>1236.159<br>1219.568<br>1212.873<br>1192.176<br>1170.461<br>1145.109                                              | 874.006<br>882.396<br>892.545<br>900.458<br>874.648<br>935.155<br>894.811<br>867.896<br>834.939<br>852.758                                  | 94.824<br>94.841<br>94.857<br>94.846<br>94.779<br>94.862<br>94.862<br>94.842<br>94.755<br>94.806<br>94.762                                         | 6.380<br>6.170<br>5.770<br>5.680<br>5.710<br>6.060<br>5.500<br>6.750<br>6.920<br>6.370                            | 101.204<br>101.011<br>100.627<br>100.526<br>100.489<br>100.922<br>100.342<br>101.505<br>101.726<br>101.132                                | i3<br>i4<br>i5<br>ee6<br>sp11<br>sp1<br>sp16<br>sp2<br>sp13                     |
| 1234.793<br>1236.548<br>1236.159<br>1219.568<br>1212.873<br>1192.176<br>1170.461<br>1145.109<br>1014.553                                  | 874.006<br>882.396<br>892.545<br>900.458<br>874.648<br>935.155<br>894.811<br>867.896<br>834.939                                             | 94.824<br>94.841<br>94.857<br>94.846<br>94.779<br>94.862<br>94.862<br>94.842<br>94.755<br>94.806<br>94.762<br>94.661                               | 6.380<br>6.170<br>5.770<br>5.680<br>5.710<br>6.060<br>5.500<br>6.750<br>6.920                                     | 101.204<br>101.011<br>100.627<br>100.526<br>100.489<br>100.922<br>100.342<br>101.505<br>101.726<br>101.132<br>102.141                     | i3<br>i4<br>i5<br>ee6<br>sp11<br>sp1<br>sp16<br>sp2<br>sp13<br>p10              |
| 1234.793<br>1236.548<br>1236.159<br>1219.568<br>1212.873<br>1192.176<br>1170.461<br>1145.109<br>1014.553<br>918.547<br>965.795            | 874.006<br>882.396<br>892.545<br>900.458<br>874.648<br>935.155<br>894.811<br>867.896<br>834.939<br>852.758<br>739.817<br>668.214            | 94.824<br>94.841<br>94.857<br>94.846<br>94.779<br>94.862<br>94.842<br>94.755<br>94.806<br>94.755<br>94.806<br>94.762<br>94.661<br>96.683           | 6.380<br>6.170<br>5.770<br>5.680<br>5.710<br>6.060<br>5.500<br>6.750<br>6.920<br>6.370<br>7.480<br>1.927          | 101.204<br>101.011<br>100.627<br>100.526<br>100.489<br>100.922<br>100.342<br>101.505<br>101.726<br>101.132<br>102.141<br>98.61            | i3<br>i4<br>i5<br>ee6<br>sp11<br>sp1<br>sp16<br>sp2<br>sp13<br>p10<br>g4        |
| 1234.793<br>1236.548<br>1236.159<br>1219.568<br>1212.873<br>1192.176<br>1170.461<br>1145.109<br>1014.553<br>918.547<br>965.795<br>854.066 | 874.006<br>882.396<br>892.545<br>900.458<br>874.648<br>935.155<br>894.811<br>867.896<br>834.939<br>852.758<br>739.817<br>668.214<br>886.200 | 94.824<br>94.841<br>94.857<br>94.846<br>94.779<br>94.862<br>94.842<br>94.755<br>94.806<br>94.755<br>94.806<br>94.762<br>94.661<br>96.683<br>94.666 | 6.380<br>6.170<br>5.770<br>5.680<br>5.710<br>6.060<br>5.500<br>6.750<br>6.920<br>6.370<br>7.480<br>1.927<br>5.610 | 101.204<br>101.011<br>100.627<br>100.526<br>100.489<br>100.922<br>100.342<br>101.505<br>101.726<br>101.132<br>102.141<br>98.61<br>100.276 | i3<br>i4<br>i5<br>ee6<br>sp11<br>sp1<br>sp16<br>sp2<br>sp13<br>p10<br>g4<br>ee5 |
| 1234.793<br>1236.548<br>1236.159<br>1219.568<br>1212.873<br>1192.176<br>1170.461<br>1145.109<br>1014.553<br>918.547<br>965.795            | 874.006<br>882.396<br>892.545<br>900.458<br>874.648<br>935.155<br>894.811<br>867.896<br>834.939<br>852.758<br>739.817<br>668.214            | 94.824<br>94.841<br>94.857<br>94.846<br>94.779<br>94.862<br>94.842<br>94.755<br>94.806<br>94.755<br>94.806<br>94.762<br>94.661<br>96.683           | 6.380<br>6.170<br>5.770<br>5.680<br>5.710<br>6.060<br>5.500<br>6.750<br>6.920<br>6.370<br>7.480<br>1.927          | 101.204<br>101.011<br>100.627<br>100.526<br>100.489<br>100.922<br>100.342<br>101.505<br>101.726<br>101.132<br>102.141<br>98.61            | i3<br>i4<br>i5<br>ee6<br>sp11<br>sp1<br>sp16<br>sp2<br>sp13<br>p10<br>g4        |
| 1234.793<br>1236.548<br>1236.159<br>1219.568<br>1212.873<br>1192.176<br>1170.461<br>1145.109<br>1014.553<br>918.547<br>965.795<br>854.066 | 874.006<br>882.396<br>892.545<br>900.458<br>874.648<br>935.155<br>894.811<br>867.896<br>834.939<br>852.758<br>739.817<br>668.214<br>886.200 | 94.824<br>94.841<br>94.857<br>94.846<br>94.779<br>94.862<br>94.842<br>94.755<br>94.806<br>94.755<br>94.806<br>94.762<br>94.661<br>96.683<br>94.666 | 6.380<br>6.170<br>5.770<br>5.680<br>5.710<br>6.060<br>5.500<br>6.750<br>6.920<br>6.370<br>7.480<br>1.927<br>5.610 | 101.204<br>101.011<br>100.627<br>100.526<br>100.489<br>100.922<br>100.342<br>101.505<br>101.726<br>101.132<br>102.141<br>98.61<br>100.276 | i3<br>i4<br>i5<br>ee6<br>sp11<br>sp1<br>sp16<br>sp2<br>sp13<br>p10<br>g4<br>ee5 |

| 792.682         1221.803         94.471         4.780         99.251         p13           905.245         1163.351         94.622         4.240         98.862         p12           992.385         958.430         94.729         5.810         100.539         sp14           1034.129         1050.601         94.806         5.430         100.236         p86           1022.218         1134.289         94.737         4.430         99.616         ee3           1221.998         1293.534         95.030         4.830         99.860         sp19           1312.709         1194.455         95.182         2.500         97.682         g1           1346.346         1115.699         95.104         5.470         100.574         sp8           1214.864         1068.079         94.909         4.990         99.899         sp7           1318.114         975.460         94.809         4.990         99.899         sp7           1318.114         975.460         94.890         4.990         99.899         sp1           1101.137         873.851         5.06         100.612         sp10           1172.854         1000.864         95.85         4.76                                                                     |                                       |          |        |       |         |            |
|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------|----------|--------|-------|---------|------------|
| 905.245         1163.351         94.622         4.240         98.862         p12           898.149         1109.307         94.533         4.560         99.153         ee2           992.385         958.430         94.729         5.810         100.539         sp14           1034.129         1050.801         94.806         5.430         100.236         p86           1022.218         1134.289         94.737         4.430         99.167         p87           1094.061         1177.213         94.762         5.500         97.682         g1           1346.346         1115.699         95.104         5.470         100.574         sp8           1214.864         1068.079         94.901         2.682         97.583         g7           1178.298         1140.265         94.862         4.550         99.412         sp9           1318.114         975.460         94.909         9.909         99.899         sp7           Water Levels         05/17/96               10121.284         93.0621         95.81         5.06         100.684         sp12           1101.197         879.184         95.84         5.33                                                                                                        |                                       |          |        | 4.620 | 98.728  |            |
| 898.149         1109.307         94.593         4.560         99.153         ee2           992.385         958.430         94.729         5.810         100.539         sp14           1034.129         1050.801         94.806         5.430         100.236         p86           1022.218         1134.289         94.737         4.430         99.167         p87           1094.061         1177.213         94.746         4.870         99.616         ee3           1221.988         129.534         95.030         4.830         99.860         sp19           1312.709         1194.455         95.182         2.500         97.682         g1           1346.346         1116.899         95.104         5.470         100.574         sp8           1214.864         1068.079         94.909         4.930         99.899         sp7           Water Levels         05/17/96                                                                                                                                                                                                                                                                                                                                                               |                                       |          |        |       |         |            |
| 992.385         958.430         94.729         5.810         100.539         sp14           1034.129         1050.801         94.806         5.430         100.236         p86           1022.18         1134.289         94.737         4.430         99.616         ec3           121.986         1221.998         123.534         95.030         4.830         99.660         sp19           1312.198         124.864         1068.079         94.901         2.682         97.583         g7           178.88         1140.265         94.862         4.550         99.412         sp8           1318.114         975.460         94.901         2.682         97.583         g7           178.288         1140.265         94.862         4.550         99.412         sp19           1318.114         975.460         94.901         9.689         sp7           Water Levels         05/17/96                                                                                                                                                                                                                                                                                                                                                    | 905.245                               | 1163.351 | 94.622 |       | 98.862  | p12        |
| 1034.129         1050.801         94.806         5.430         100.236         p86           1022.218         1134.289         94.737         4.430         99.167         p87           1094.061         1177.213         94.746         4.870         99.616         ee3           1221.998         1293.534         95.030         4.830         99.860         sp19           1312.709         1194.455         95.104         5.470         100.574         sp8           121.4864         1068.079         94.901         2.682         97.583         g7           1178.298         1140.265         94.862         4.550         99.412         sp9           1318.114         975.460         94.909         4.990         99.899         sp7           Water Levels         05/17/96             94.801         sp12         sp10           1121.854         930.621         95.81         5.06         100.868         sp12         1101         sp13           1062.006         809.544         95.87         6.03         101.899         sp18           1018.782         678.859         96.06         4.94         101.001         sp17                                                                                                  | 898.149                               | 1109.307 | 94.593 |       | 99.153  | ee2        |
| 1022.218         1134.289         94.737         4.430         99.167         p87           1094.061         1177.213         94.746         4.870         99.616         ee3           1221.998         1233.534         95.030         4.830         99.600         sp19           1312.709         1194.455         95.182         2.500         97.682         g1           1346.346         1115.699         94.901         2.682         97.583         g7           1178.298         1140.265         94.802         4.550         99.412         sp8           1214.4864         1068.079         94.909         4.990         99.899         sp7           1318.114         975.460         94.909         4.990         99.899         sp7           Water Levels         05/17/96             sp10           1121.854         930.621         95.81         5.06         100.868         sp12           1101.197         879.184         95.84         5.33         101.73         sp3           1062.006         809.544         95.87         6.03         101.899         sp18           1018.782         678.859         96.06                                                                                                           | 992.385                               | 958.430  | 94.729 | 5.810 | 100.539 | sp14       |
| $\begin{array}{ c c c c c c c c c c c c c c c c c c c$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 1034.129                              | 1050.801 | 94.806 | 5.430 |         | p86        |
| 1221.998         1293.534         95.030         4.830         99.860         sp19           1312.709         1194.455         95.182         2.500         97.682         g1           1346.346         1115.699         95.104         5.470         100.574         sp8           1214.864         1068.079         94.901         2.682         97.583         g7           1178.298         1140.265         94.862         4.550         99.412         sp9           1318.114         975.460         94.909         4.990         99.899         sp7           Water Levels         05/17/96               1176.399         1008.644         95.85         4.76         100.612         sp10           1121.854         930.621         95.81         5.06         100.868         sp12           1011.97         879.859         96.06         4.94         101.001         sp17           1009.840         655.506         99.39         0.52         99.911         g5           1104.939         741.457         95.86         5.74         101.697         sp4           1333.880         502.552         98.95         0.44         <                                                                                                     | 1022.218                              | 1134.289 | 94.737 | 4.430 | 99.167  | p87        |
| 1312.709         1194.455         95.182         2.500         97.682         g1           1346.346         1115.699         95.104         5.470         100.574         sp8           1214.864         1068.079         94.901         2.682         97.583         g7           1178.298         1140.265         94.862         4.550         99.412         sp9           1318.114         975.460         94.909         4.990         99.899         sp7           Water Levels         05/17/96                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                       |          |        |       |         |            |
| 1346.346         1115.699         95.104         5.470         100.574         sp8           1214.864         1068.079         94.901         2.682         97.583         g7           1176.298         1140.265         94.862         4.550         99.412         sp9           1318.114         975.460         94.909         4.990         99.899         sp7           Water Levels         05/17/96               1176.399         1008.644         95.85         4.76         100.612         sp10           1111.197         879.184         95.81         5.06         100.868         sp12           1101.197         879.184         95.87         6.03         101.899         sp13           1062.006         809.544         95.87         6.03         101.899         sp14           1018.782         678.859         96.06         4.94         101.01         sp5           1009.840         655.506         99.39         0.52         99.911         g5           1049.399         741.457         95.86         5.74         101.1697         sp4           1393.880         502.552         98.95         0.44 <td< td=""><td>1221.998</td><td>1293.534</td><td></td><td>4.830</td><td>99.860</td><td>sp19</td></td<>          | 1221.998                              | 1293.534 |        | 4.830 | 99.860  | sp19       |
| 1214.864         1068.079         94.901         2.682         97.583         g7           1176.298         1140.265         94.862         4.550         99.412         sp9           1318.114         975.460         94.909         4.990         99.899         sp7           Water Levels         05/17/96                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 1312.709                              | 1194.455 | 95.182 | 2.500 | 97.682  | g1         |
| 1178.298         1140.265         94.862         4.550         99.412         sp9           1318.114         975.460         94.909         4.990         99.899         sp7           Water Levels         05/17/96           Elevation         Well           1176.399         1008.644         95.85         4.76         100.612         sp10           1121.854         930.621         95.81         5.06         100.868         sp12           1101.197         879.184         95.84         5.33         101.173         sp3           1062.006         809.544         95.87         6.03         101.899         sp18           1018.782         678.859         96.06         4.94         101.001         sp17           1009.840         655.506         99.39         0.52         99.911         g5           1104.939         741.457         95.86         5.74         101.597         sp4           1393.880         502.552         98.95         0.44         99.388         g6           1225.707         864.441         95.88         5.33         101.149         sp6           1225.707         864.441         95.82         4.67                                                                                          | 1346.346                              | 1115.699 | 95.104 | 5.470 | 100.574 | sp8        |
| 1318.114         975.460         94.909         4.990         99.899         sp7           Water Levels         05/17/96                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 1214.864                              | 1068.079 | 94.901 | 2.682 | 97.583  | g7         |
| Water Levels         05/17/96           East         North         Water Table         Water Depth         Elevation         Well           1176.399         1008.644         95.85         4.76         100.612         sp10           1121.854         930.621         95.81         5.06         100.868         sp12           1101.197         879.184         95.87         6.03         101.899         sp18           1062.006         809.544         95.87         6.03         101.899         sp18           1018.782         678.859         96.06         4.94         101.001         sp17           1009.840         655.506         99.39         0.52         99.911         g5           1104.939         741.457         95.86         5.74         101.597         sp4           1393.880         502.552         98.95         0.44         99.388         g6           1225.707         864.441         95.88         5.92         101.803         i1           1231.516         874.006         95.86         5.13         101.011         i3           1236.548         892.545         95.87         4.76         100.627         i4           1236.54                                                                        |                                       |          | 94.862 | 4.550 |         | sp9        |
| East         North         Water Table         Water Depth         Elevation         Well           1176.399         1008.644         95.85         4.76         100.612         sp10           1121.854         930.621         95.81         5.06         100.868         sp12           1101.197         879.184         95.84         5.33         101.73         sp3           1062.006         809.544         95.87         6.03         101.899         sp18           1018.782         678.859         96.06         4.94         101.001         sp17           1009.840         655.506         99.39         0.52         99.911         g5           1104.939         741.457         95.86         5.74         101.597         sp4           1393.880         502.552         98.95         0.44         99.388         g6           1225.707         864.441         95.88         5.92         101.803         i1           1231.516         874.006         95.86         5.34         101.204         i2           1234.793         882.396         95.88         4.65         100.627         i4           1236.548         892.545         95.87         4.76                                                                      | 1318.114                              | 975.460  | 94.909 | 4.990 | 99.899  | sp7        |
| East         North         Water Table         Water Depth         Elevation         Well           1176.399         1008.644         95.85         4.76         100.612         sp10           1121.854         930.621         95.81         5.06         100.868         sp12           1101.197         879.184         95.84         5.33         101.73         sp3           1062.006         809.544         95.87         6.03         101.899         sp18           1018.782         678.859         96.06         4.94         101.001         sp17           1009.840         655.506         99.39         0.52         99.911         g5           1104.939         741.457         95.86         5.74         101.597         sp4           1393.880         502.552         98.95         0.44         99.388         g6           1225.707         864.441         95.88         5.92         101.803         i1           1231.516         874.006         95.86         5.34         101.204         i2           1234.793         882.396         95.88         4.65         100.627         i4           1236.548         892.545         95.87         4.76                                                                      |                                       |          |        |       |         |            |
| 1176.399         1008.644         95.85         4.76         100.612         sp10           1121.854         930.621         95.81         5.06         100.868         sp12           1101.197         879.184         95.84         5.33         101.173         sp3           1062.006         809.544         95.87         6.03         101.899         sp18           1018.782         678.859         96.06         4.94         101.001         sp17           1009.840         655.506         99.39         0.52         99.911         g5           1104.939         741.457         95.86         5.74         101.597         sp4           1393.880         502.552         98.95         0.44         99.388         g6           1287.557         743.596         96.04         4.59         100.634         sp5           1292.828         858.144         95.91         5.24         101.149         sp6           1225.707         864.441         95.88         5.92         101.803         i1           1231.516         874.006         95.86         5.34         101.204         i2           1234.793         882.396         95.87         4.76                                                                              | Water Levels                          | 05/17/96 |        |       |         |            |
| 1176.399         1008.644         95.85         4.76         100.612         sp10           1121.854         930.621         95.81         5.06         100.868         sp12           1101.197         879.184         95.84         5.33         101.173         sp3           1062.006         809.544         95.87         6.03         101.899         sp18           1018.782         678.859         96.06         4.94         101.001         sp17           1009.840         655.506         99.39         0.52         99.911         g5           1104.939         741.457         95.86         5.74         101.597         sp4           1393.880         502.552         98.95         0.44         99.388         g6           1287.557         743.596         96.04         4.59         100.634         sp5           1292.828         858.144         95.91         5.24         101.149         sp6           1225.707         864.441         95.88         5.92         101.803         i1           1231.516         874.006         95.86         5.34         101.204         i2           1234.793         882.396         95.87         4.76                                                                              |                                       |          |        |       |         |            |
| 1121.854         930.621         95.81         5.06         100.868         sp12           1101.197         879.184         95.84         5.33         101.173         sp3           1062.006         809.544         95.87         6.03         101.899         sp18           1018.782         678.859         96.06         4.94         101.001         sp17           1009.840         655.506         99.39         0.52         99.911         g5           1104.939         741.457         95.86         5.74         101.597         sp4           1393.880         502.552         98.95         0.44         99.388         g6           1287.557         743.596         96.04         4.59         100.634         sp5           1292.828         858.144         95.91         5.24         101.149         sp6           1225.707         864.441         95.88         5.92         101.803         i1           1231.516         874.006         95.86         5.34         101.204         i2           1234.793         882.396         95.87         4.76         100.627         i4           1236.548         892.545         95.86         5.06 <td< td=""><td></td><td></td><td></td><td></td><td></td><td></td></td<>         |                                       |          |        |       |         |            |
| 1101.197         879.184         95.84         5.33         101.173         sp3           1062.006         809.544         95.87         6.03         101.899         sp18           1018.782         678.859         96.06         4.94         101.001         sp17           1009.840         655.506         99.39         0.52         99.911         g5           1104.939         741.457         95.86         5.74         101.597         sp4           1393.880         502.552         98.95         0.44         99.388         g6           1287.557         743.596         96.04         4.59         100.634         sp5           1292.828         858.144         95.91         5.24         101.149         sp6           1225.707         864.441         95.88         5.13         101.011         i3           1236.548         892.545         95.87         4.76         100.627         i4           1236.548         892.545         95.86         5.06         100.922         sp11           1192.176         894.811         95.88         4.65         100.226         i5           1219.568         874.648         95.81         5.70 <td< td=""><td></td><td></td><td></td><td></td><td></td><td></td></td<>         |                                       |          |        |       |         |            |
| 1062.006         809.544         95.87         6.03         101.899         sp18           1018.782         678.859         96.06         4.94         101.001         sp17           1009.840         655.506         99.39         0.52         99.911         g5           1104.939         741.457         95.86         5.74         101.597         sp4           1393.880         502.552         98.95         0.44         99.388         g6           1287.557         743.596         96.04         4.59         100.634         sp5           1222.828         858.144         95.81         5.92         101.803         i1           1231.516         874.006         95.86         5.34         101.204         i2           1234.793         882.396         95.87         4.76         100.627         i4           1236.548         892.545         95.87         4.76         100.422         sp11           1236.548         892.545         95.86         5.06         100.922         sp11           11236.548         894.811         95.88         4.65         100.489         ee6           1219.568         874.648         95.81         5.70         <                                                                     |                                       | 100 C 1  |        |       |         |            |
| 1018.782         678.859         96.06         4.94         101.001         sp17           1009.840         655.506         99.39         0.52         99.911         g5           1104.939         741.457         95.86         5.74         101.597         sp4           1393.880         502.552         98.95         0.44         99.388         g6           1287.557         743.596         96.04         4.59         100.634         sp5           1292.828         858.144         95.91         5.24         101.149         sp6           1225.707         864.441         95.88         5.92         101.803         i1           1231.516         874.006         95.86         5.34         101.204         i2           1234.793         882.396         95.88         5.13         101.011         i3           1236.548         892.545         95.87         4.76         100.627         i4           1236.548         892.545         95.87         4.76         100.489         ee6           1219.568         874.648         95.82         4.67         100.492         sp11           1192.176         894.811         95.86         5.87         1                                                                         |                                       |          |        |       |         |            |
| 1009.840         655.506         99.39         0.52         99.911         g5           1104.939         741.457         95.86         5.74         101.597         sp4           1393.880         502.552         98.95         0.44         99.388         g6           1287.557         743.596         96.04         4.59         100.634         sp5           1292.828         858.144         95.91         5.24         101.149         sp6           1225.707         864.441         95.88         5.92         101.803         i1           1234.793         882.396         95.86         5.13         101.011         i3           1236.548         892.545         95.87         4.76         100.627         i4           1236.159         900.458         95.88         4.65         100.526         i5           1219.568         874.648         95.82         4.67         100.489         ee6           1212.873         935.155         95.86         5.06         100.922         sp11           1192.176         894.811         95.88         4.46         100.342         sp1           1170.461         867.896         95.81         5.70         10                                                                         |                                       |          |        |       |         |            |
| 1104.939         741.457         95.86         5.74         101.597         sp4           1393.880         502.552         98.95         0.44         99.388         g6           1287.557         743.596         96.04         4.59         100.634         sp5           1292.828         858.144         95.91         5.24         101.149         sp6           1225.707         864.441         95.88         5.92         101.803         i1           1231.516         874.006         95.86         5.34         101.204         i2           1234.793         882.396         95.88         5.13         101.011         i3           1236.548         892.545         95.87         4.76         100.627         i4           1236.159         900.458         95.88         4.65         100.526         i5           1219.568         874.648         95.82         4.67         100.489         ee6           1212.873         935.155         95.86         5.06         100.922         sp11           1192.176         894.811         95.88         4.46         100.342         sp1           1170.461         867.896         95.81         5.70         1                                                                         |                                       |          |        |       |         |            |
| 1393.880         502.552         98.95         0.44         99.388         g6           1287.557         743.596         96.04         4.59         100.634         sp5           1292.828         858.144         95.91         5.24         101.149         sp6           1225.707         864.441         95.88         5.92         101.803         i1           1231.516         874.006         95.86         5.34         101.204         i2           1234.793         882.396         95.88         5.13         101.011         i3           1236.548         892.545         95.87         4.76         100.627         i4           1236.159         900.458         95.88         4.65         100.526         i5           1219.568         874.648         95.82         4.67         100.489         ee6           1212.873         935.155         95.86         5.06         100.922         sp11           1192.176         894.811         95.88         4.46         100.342         sp1           1170.461         867.896         95.81         5.70         101.505         sp16           1145.109         834.939         95.86         5.87                                                                                  |                                       |          |        |       |         | g5         |
| 1287.557         743.596         96.04         4.59         100.634         sp5           1292.828         858.144         95.91         5.24         101.149         sp6           1225.707         864.441         95.88         5.92         101.803         i1           1231.516         874.006         95.86         5.34         101.204         i2           1234.793         882.396         95.88         5.13         101.011         i3           1236.548         892.545         95.87         4.76         100.627         i4           1236.548         892.545         95.87         4.76         100.489         ee6           1219.568         874.648         95.82         4.67         100.489         ee6           1212.873         935.155         95.86         5.06         100.922         sp11           1192.176         894.811         95.88         4.46         100.342         sp1           1170.461         867.896         95.81         5.70         101.505         sp16           1145.109         834.939         95.86         5.87         101.726         sp2           1014.553         852.758         95.80         5.33         <                                                                     |                                       |          |        |       |         |            |
| 1292.828         858.144         95.91         5.24         101.149         sp6           1225.707         864.441         95.88         5.92         101.803         i1           1231.516         874.006         95.86         5.34         101.204         i2           1234.793         882.396         95.88         5.13         101.011         i3           1236.548         892.545         95.87         4.76         100.627         i4           1236.159         900.458         95.88         4.65         100.526         i5           1219.568         874.648         95.82         4.67         100.489         ee6           1212.873         935.155         95.86         5.06         100.922         sp11           1192.176         894.811         95.88         4.46         100.342         sp1           1170.461         867.896         95.81         5.70         101.505         sp16           1145.109         834.939         95.86         5.87         101.726         sp2           1014.553         852.758         95.80         5.33         101.132         sp13           918.547         739.817         95.91         6.23 <t< td=""><td></td><td></td><td></td><td></td><td></td><td><b>g</b>6</td></t<> |                                       |          |        |       |         | <b>g</b> 6 |
| 1225.707       864.441       95.88       5.92       101.803       i1         1231.516       874.006       95.86       5.34       101.204       i2         1234.793       882.396       95.88       5.13       101.011       i3         1236.548       892.545       95.87       4.76       100.627       i4         1236.159       900.458       95.88       4.65       100.526       i5         1219.568       874.648       95.82       4.67       100.489       ee6         1212.873       935.155       95.86       5.06       100.922       sp11         1192.176       894.811       95.88       4.46       100.342       sp1         1170.461       867.896       95.81       5.70       101.505       sp16         1145.109       834.939       95.86       5.87       101.726       sp2         1014.553       852.758       95.80       5.33       101.132       sp13         918.547       739.817       95.91       6.23       102.141       p10         965.795       668.214       100.25       0.04       100.29       g4         854.066       886.200       95.74       4.54                                                                                                                                                           |                                       |          |        |       |         |            |
| 1231.516       874.006       95.86       5.34       101.204       i2         1234.793       882.396       95.88       5.13       101.011       i3         1236.548       892.545       95.87       4.76       100.627       i4         1236.548       892.545       95.87       4.76       100.627       i4         1236.548       892.545       95.88       4.65       100.526       i5         1219.568       874.648       95.82       4.67       100.489       ee6         1212.873       935.155       95.86       5.06       100.922       sp11         1192.176       894.811       95.88       4.46       100.342       sp1         1170.461       867.896       95.81       5.70       101.505       sp16         1145.109       834.939       95.86       5.87       101.726       sp2         1014.553       852.758       95.80       5.33       101.132       sp13         918.547       739.817       95.91       6.23       102.141       p10         965.795       668.214       100.25       0.04       100.29       g4         854.066       886.200       95.74       4.54                                                                                                                                                           |                                       |          |        |       |         |            |
| 1234.793       882.396       95.88       5.13       101.011       i3         1236.548       892.545       95.87       4.76       100.627       i4         1236.159       900.458       95.88       4.65       100.526       i5         1219.568       874.648       95.82       4.67       100.489       ee6         1212.873       935.155       95.86       5.06       100.922       sp11         1192.176       894.811       95.88       4.46       100.342       sp1         1170.461       867.896       95.81       5.70       101.505       sp16         1145.109       834.939       95.86       5.87       101.726       sp2         1014.553       852.758       95.80       5.33       101.132       sp13         918.547       739.817       95.91       6.23       102.141       p10         965.795       668.214       100.25       0.04       100.29       g4         854.066       886.200       95.74       4.54       100.276       ee5         704.938       977.757       94.52       6.50       101.018       sp15         671.185       1221.394       95.33       2.83                                                                                                                                                         |                                       |          |        |       |         |            |
| 1236.548       892.545       95.87       4.76       100.627       i4         1236.159       900.458       95.88       4.65       100.526       i5         1219.568       874.648       95.82       4.67       100.489       ee6         1212.873       935.155       95.86       5.06       100.922       sp11         1192.176       894.811       95.88       4.46       100.342       sp1         1170.461       867.896       95.81       5.70       101.505       sp16         1145.109       834.939       95.86       5.87       101.726       sp2         1014.553       852.758       95.80       5.33       101.132       sp13         918.547       739.817       95.91       6.23       102.141       p10         965.795       668.214       100.25       0.04       100.29       g4         854.066       886.200       95.74       4.54       100.276       ee5         704.938       977.757       94.52       6.50       101.018       sp15         671.185       1221.394       95.33       2.83       98.159       ee4         629.841       1330.282       93.80       2.25                                                                                                                                                         |                                       |          |        |       |         |            |
| 1236.159       900.458       95.88       4.65       100.526       i5         1219.568       874.648       95.82       4.67       100.489       ee6         1212.873       935.155       95.86       5.06       100.922       sp11         1192.176       894.811       95.88       4.46       100.342       sp1         1170.461       867.896       95.81       5.70       101.505       sp16         1145.109       834.939       95.86       5.87       101.726       sp2         1014.553       852.758       95.80       5.33       101.132       sp13         918.547       739.817       95.91       6.23       102.141       p10         965.795       668.214       100.25       0.04       100.29       g4         854.066       886.200       95.74       4.54       100.276       ee5         704.938       977.757       94.52       6.50       101.018       sp15         671.185       1221.394       95.33       2.83       98.159       ee4         629.841       1330.282       93.80       2.25       96.051       g2         679.076       1343.180       94.80       3.93                                                                                                                                                          |                                       |          |        |       |         |            |
| 1219.568         874.648         95.82         4.67         100.489         ee6           1212.873         935.155         95.86         5.06         100.922         sp11           1192.176         894.811         95.88         4.46         100.342         sp1           1170.461         867.896         95.81         5.70         101.505         sp16           1145.109         834.939         95.86         5.87         101.726         sp2           1014.553         852.758         95.80         5.33         101.132         sp13           918.547         739.817         95.91         6.23         102.141         p10           965.795         668.214         100.25         0.04         100.29         g4           854.066         886.200         95.74         4.54         100.276         ee5           704.938         977.757         94.52         6.50         101.018         sp15           671.185         1221.394         95.33         2.83         98.159         ee4           629.841         1330.282         93.80         2.25         96.051         g2           679.076         1343.180         94.80         3.93 <td< td=""><td></td><td></td><td></td><td></td><td></td><td></td></td<>         |                                       |          |        |       |         |            |
| 1212.873         935.155         95.86         5.06         100.922         sp11           1192.176         894.811         95.88         4.46         100.342         sp1           1170.461         867.896         95.81         5.70         101.505         sp16           1145.109         834.939         95.86         5.87         101.726         sp2           1014.553         852.758         95.80         5.33         101.132         sp13           918.547         739.817         95.91         6.23         102.141         p10           965.795         668.214         100.25         0.04         100.29         g4           854.066         886.200         95.74         4.54         100.276         ee5           704.938         977.757         94.52         6.50         101.018         sp15           671.185         1221.394         95.33         2.83         98.159         ee4           629.841         1330.282         93.80         2.25         96.051         g2           679.076         1343.180         94.80         3.93         98.728         sp20           792.682         1221.803         95.42         3.83 <td< td=""><td></td><td></td><td></td><td></td><td>-</td><td></td></td<>        |                                       |          |        |       | -       |            |
| 1192.176894.81195.884.46100.342sp11170.461867.89695.815.70101.505sp161145.109834.93995.865.87101.726sp21014.553852.75895.805.33101.132sp13918.547739.81795.916.23102.141p10965.795668.214100.250.04100.29g4854.066886.20095.744.54100.276ee5704.938977.75794.526.50101.018sp15671.1851221.39495.332.8398.159ee4629.8411330.28293.802.2596.051g2679.0761343.18094.803.9398.728sp20792.6821221.80395.423.8399.251p13905.2451163.35195.533.3398.862p12898.1491109.30795.833.3299.153ee2992.385958.43095.764.78100.236p86                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                       |          |        |       |         |            |
| 1170.461867.89695.815.70101.505sp161145.109834.93995.865.87101.726sp21014.553852.75895.805.33101.132sp13918.547739.81795.916.23102.141p10965.795668.214100.250.04100.29g4854.066886.20095.744.54100.276ee5704.938977.75794.526.50101.018sp15671.1851221.39495.332.8398.159ee4629.8411330.28293.802.2596.051g2679.0761343.18094.803.9398.728sp20792.6821221.80395.423.8399.251p13905.2451163.35195.533.3299.153ee2992.385958.43095.764.78100.539sp141034.1291050.80195.764.48100.236p86                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                                       |          |        |       |         |            |
| 1145.109834.93995.865.87101.726sp21014.553852.75895.805.33101.132sp13918.547739.81795.916.23102.141p10965.795668.214100.250.04100.29g4854.066886.20095.744.54100.276ee5704.938977.75794.526.50101.018sp15671.1851221.39495.332.8398.159ee4629.8411330.28293.802.2596.051g2679.0761343.18094.803.9398.728sp20792.6821221.80395.423.8399.251p13905.2451163.35195.533.3398.862p12898.1491109.30795.833.3299.153ee2992.385958.43095.764.78100.539sp141034.1291050.80195.764.48100.236p86                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                       |          |        |       |         |            |
| 1014.553852.75895.805.33101.132sp13918.547739.81795.916.23102.141p10965.795668.214100.250.04100.29g4854.066886.20095.744.54100.276ee5704.938977.75794.526.50101.018sp15671.1851221.39495.332.8398.159ee4629.8411330.28293.802.2596.051g2679.0761343.18094.803.9398.728sp20792.6821221.80395.423.8399.251p13905.2451163.35195.533.3398.862p12898.1491109.30795.833.3299.153ee2992.385958.43095.764.78100.539sp141034.1291050.80195.764.48100.236p86                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                       |          |        |       |         | i          |
| 918.547         739.817         95.91         6.23         102.141         p10           965.795         668.214         100.25         0.04         100.29         g4           854.066         886.200         95.74         4.54         100.276         ee5           704.938         977.757         94.52         6.50         101.018         sp15           671.185         1221.394         95.33         2.83         98.159         ee4           629.841         1330.282         93.80         2.25         96.051         g2           679.076         1343.180         94.80         3.93         98.728         sp20           792.682         1221.803         95.42         3.83         99.251         p13           905.245         1163.351         95.53         3.33         98.862         p12           898.149         1109.307         95.83         3.32         99.153         ee2           992.385         958.430         95.76         4.78         100.539         sp14           1034.129         1050.801         95.76         4.48         100.236         p86                                                                                                                                                    |                                       |          |        |       |         |            |
| 965.795668.214100.250.04100.29g4854.066886.20095.744.54100.276ee5704.938977.75794.526.50101.018sp15671.1851221.39495.332.8398.159ee4629.8411330.28293.802.2596.051g2679.0761343.18094.803.9398.728sp20792.6821221.80395.423.8399.251p13905.2451163.35195.533.3398.862p12898.1491109.30795.833.3299.153ee2992.385958.43095.764.78100.539sp141034.1291050.80195.764.48100.236p86                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                       |          |        |       |         |            |
| 854.066         886.200         95.74         4.54         100.276         ee5           704.938         977.757         94.52         6.50         101.018         sp15           671.185         1221.394         95.33         2.83         98.159         ee4           629.841         1330.282         93.80         2.25         96.051         g2           679.076         1343.180         94.80         3.93         98.728         sp20           792.682         1221.803         95.42         3.83         99.251         p13           905.245         1163.351         95.53         3.33         98.862         p12           898.149         1109.307         95.83         3.32         99.153         ee2           992.385         958.430         95.76         4.78         100.539         sp14           1034.129         1050.801         95.76         4.48         100.236         p86                                                                                                                                                                                                                                                                                                                                     |                                       |          |        |       |         |            |
| 704.938977.75794.526.50101.018sp15671.1851221.39495.332.8398.159ee4629.8411330.28293.802.2596.051g2679.0761343.18094.803.9398.728sp20792.6821221.80395.423.8399.251p13905.2451163.35195.533.3398.862p12898.1491109.30795.833.3299.153ee2992.385958.43095.764.78100.539sp141034.1291050.80195.764.48100.236p86                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                       |          |        |       |         |            |
| 671.1851221.39495.332.8398.159ee4629.8411330.28293.802.2596.051g2679.0761343.18094.803.9398.728sp20792.6821221.80395.423.8399.251p13905.2451163.35195.533.3398.862p12898.1491109.30795.833.3299.153ee2992.385958.43095.764.78100.539sp141034.1291050.80195.764.48100.236p86                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | · · · · · · · · · · · · · · · · · · · |          |        |       |         |            |
| 629.8411330.28293.802.2596.051g2679.0761343.18094.803.9398.728sp20792.6821221.80395.423.8399.251p13905.2451163.35195.533.3398.862p12898.1491109.30795.833.3299.153ee2992.385958.43095.764.78100.539sp141034.1291050.80195.764.48100.236p86                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                       |          |        |       |         |            |
| 679.0761343.18094.803.9398.728sp20792.6821221.80395.423.8399.251p13905.2451163.35195.533.3398.862p12898.1491109.30795.833.3299.153ee2992.385958.43095.764.78100.539sp141034.1291050.80195.764.48100.236p86                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                       |          |        |       |         |            |
| 792.6821221.80395.423.8399.251p13905.2451163.35195.533.3398.862p12898.1491109.30795.833.3299.153ee2992.385958.43095.764.78100.539sp141034.1291050.80195.764.48100.236p86                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                       |          |        |       |         |            |
| 905.2451163.35195.533.3398.862p12898.1491109.30795.833.3299.153ee2992.385958.43095.764.78100.539sp141034.1291050.80195.764.48100.236p86                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                       |          |        |       |         |            |
| 898.1491109.30795.833.3299.153ee2992.385958.43095.764.78100.539sp141034.1291050.80195.764.48100.236p86                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                                       |          |        |       |         |            |
| 992.385         958.430         95.76         4.78         100.539         sp14           1034.129         1050.801         95.76         4.48         100.236         p86                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                       |          |        |       |         |            |
| 1034.129 1050.801 95.76 4.48 100.236 p86                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                       |          |        | ·     |         |            |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                       |          | 95.76  |       |         | sp14       |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                       |          |        |       |         |            |
| <u>1022.216</u> 1134.289 95.60 3.57 99.167 p87                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 1022.218                              | 1134.289 | 95.60  | 3.57  | 99.167  | p87        |

| <b></b>      |          |             |             |           |        |
|--------------|----------|-------------|-------------|-----------|--------|
| 1094.061     | 1177.213 | 95.62       | 4.00        | 99.616    | ee3    |
| 1221.998     | 1293.534 | 95.48       | 4.38        | 99.86     | sp19   |
| 1312.709     | 1194.455 | 95.85       | 2.23        | 98.082    | g1     |
| 1346.346     | 1115.699 | 95.96       | 4.61        | 100.574   | sp8    |
| 1214.864     | 1068.079 | 95.60       | 2.08        | 97.683    | g7     |
| 1178.298     | 1140.265 | 95.72       | 3.69        | 99.412    | sp9    |
| 1318.114     | 975.460  | 95.88       | 4.02        | 99.899    | sp7    |
|              |          |             |             |           |        |
| Water Levels | 06/03/97 |             |             |           |        |
|              |          |             |             |           |        |
| East         | North    | Water Table | Water Depth | Elevation | Well   |
| 1176.399     | 1008.644 | 95.95       | 4.66        | 100.612   | sp10   |
| 1121.854     | 930.621  | 95.89       | 4.98        | 100.868   | sp12   |
| 1101.197     | 879.184  | 95.91       | 5.26        | 101.173   | sp3    |
| 1062.006     | 809.544  | 95.94       | 5.96        | 101.899   | sp18   |
| 1018.782     | 678.859  | 95.79       | 5.21        | 101.001   | sp17   |
| 1009.840     | 655.506  | 97.68       | 2.23        | 99.911    | g5     |
| 1104.939     | 741.457  | 95.92       | 5.68        | 101.597   | sp4    |
| 1393.880     | 502.552  | 97.62       | 1.77        | 99.388    | g6     |
| 1287.557     | 743.596  | 96.02       | 4.61        | 100.634   | sp5    |
| 1292.828     | 858.144  | 95.51       | 5.64        | 101.149   | sp6    |
| 1225.707     | 864.441  | 95.94       | 5.86        | 101.803   | i1     |
| 1231.516     | 874.006  | 95.92       | 5.28        | 101.204   | i2     |
| 1234.793     | 882.396  | 95.95       | 5.06        | 101.011   | i3     |
| 1236.548     | 892.545  | 95.95       | 4.68        | 100.627   | i4     |
| 1236.159     | 900.458  | 95.96       | 4.57        | 100.526   | i5     |
| 1219.568     | 874.648  | 95.88       | 4.61        | 100.489   | ee6    |
| 1212.873     | 935.155  | 95.96       | 4.96        | 100.922   | sp11   |
| 1192.176     | 894.811  | 95.95       | 4.39        | 100.342   | sp1    |
| 1170.461     | 867.896  | 95.87       | 5.64        | 101.505   | sp16   |
| 1145.109     | 834.939  | 95.93       | 5.80        | 101.726   | sp2    |
| 1014.553     | 852.758  | 95.89       | 5.24        | 101.132   | sp13   |
| 918.547      | 739.817  | 95.78       | 6.36        | 102.141   | p10    |
| 965.795      | 668.214  | 98.52       | 1.77        | 100.29    | g4     |
| 854.066      | 886.200  | 95.82       | 4.46        | 100.276   | ee5    |
| 704.938      | 977.757  | 95.70       | 5.32        | 101.018   | sp15   |
| 668.469      | 958.624  | 99.25       | 2.06        | 101.317   | <br>g3 |
| 671.185      | 1221.394 | 95.58       | 2.58        | 98.159    | ee4    |
| 629.841      | 1330.282 | 94.59       | 1.46        | 96.051    | g2     |
| 679.076      | 1343.180 | 95.35       | 3.38        | 98.728    | sp20   |
| 792.682      | 1221.803 | 95.61       | 3.64        | 99.251    | p13    |
| 905.245      | 1163.351 | 95.74       | 3.12        | 98.862    | p12    |
| 898.149      | 1109.307 | 95.77       | 3.38        | 99.153    | ee2    |
| 992.385      | 958.430  | 95.86       | 4.68        | 100.539   | sp14   |
| 977.175      | 890.369  | 95.86       | 6.05        | 101.906   | p86    |
| 1022.218     | 1134.289 | 95.87       | 3.30        | 99.167    | p87    |
| 1094.061     | 1177.213 | 95.87       | 3.75        | 99.616    | ee3    |
| 1221.998     | 1293.534 | 96.01       | 3.85        | 99.86     | sp19   |
| 1312.709     | 1194.455 | 96.62       | 1.46        | 98.082    | g1     |
| 1346.346     | 1115.699 | 96.11       | 4.46        | 100.574   | sp8    |
| 1214.864     | 1068.079 | 96.08       | 1.60        | 97.683    | g7     |
| 1178.298     | 1140.265 | 95.97       | 3.44        | 99.412    | sp9    |
|              |          |             |             |           |        |

### Table B1. Water levels measured at the Erskine Site, 11/95 to 3/97

| 1318.114             | 975.460            | 96.01          | 3.89         | 99.899             | sp7                |
|----------------------|--------------------|----------------|--------------|--------------------|--------------------|
| Water Levels         | 06/20/96           |                |              |                    |                    |
| East                 | North              | Water Table    | Water Depth  | Elevation          | Well               |
| 1176.399             | 1008.644           | 96.52          | 4.09         | 100.612            |                    |
| 1121.854             | 930.621            | 96.44          | 4.09         | 100.868            | <u>sp10</u>        |
| 1101.197             | 879.184            | 96.45          | 4.43         | 101.173            | sp12               |
| 1062.006             | 809.544            | 96.49          | 5.41         | 101.899            | sp3<br>sp18        |
| 1018.782             | 678.859            | 96.29          | 4.71         | 101.001            | sp18<br>sp17       |
| 1009.840             | 655.506            | 97.91          | 2.00         | 99.911             | <u>sp17</u> g5     |
| 1104.939             | 741.457            | 96.45          | 5.15         | 101.597            | _                  |
| 1393.880             | 502.552            | 97.46          | 1.93         | 99.388             | sp4<br>g6          |
| 1287.557             | 743.596            | 96.52          | 4.11         |                    |                    |
| 1292.828             |                    |                |              | 100.634            | sp5                |
|                      | 858.144            | 96.51          | 4.64         |                    | sp6<br>i1          |
| 1225.707<br>1231.516 | 864.441            | 96.47<br>96.46 | 5.33<br>4.74 | 101.803<br>101.204 | i1                 |
| 1231.516             | 874.006<br>882.396 | 96.40          | 4.74         | 101.204            | i3                 |
| 1236.548             | 892.545            | 96.49          | 4.52         | 101.011            | i3i4               |
| 1236.548             | 900.458            | 96.49          | 4.14         | 100.627            | i4<br>i5           |
| 1219.568             | 874.648            | 96.41          | 4.02         | 100.520            | <br>               |
| 1219.308             | 935.155            | 96.51          | 4.08         | 100.489            |                    |
| 1192.176             | 894.811            | 96.49          | 3.85         | 100.922            | sp11<br>sp1        |
| 1170.461             | 867.896            | 96.40          | 5.11         | 101.505            | sp16               |
| 1145.109             | 834.939            | 96.45          | 5.28         | 101.505            | sp10<br>sp2        |
| 1014.553             | 852.758            | 96.43          | 4.70         | 101.132            | sp2<br>sp13        |
| 918.547              | 739.817            | 96.35          | 5.79         | 101.132            | p10                |
| 965.795              | 668.214            | 98.77          | 1.52         | 100.29             | g4                 |
| 854.066              | 886.200            | 96.37          | 3.91         | 100.276            | <u>9</u> 4<br>ee5  |
| 704.938              | 977.757            | 96.26          | 4.76         | 101.018            | sp15               |
| 668.469              | 958.624            | 99.37          | 1.95         | 101.317            | g3                 |
| 671.185              | 1221.394           | 96.00          | 2.16         | 98.159             | <u>93</u>          |
| 629.841              | 1330.282           | 95.09          | 0.96         | 96.051             | <u></u>            |
| 679.076              | 1343.180           | 95.84          | 2.89         | 98.728             | <u>92</u>          |
| 792.682              | 1221.803           | 96.18          | 3.07         | 99.251             | <u>sp20</u><br>p13 |
| 905.245              | 1163.351           | 96.33          | 2.53         | 98.862             | p13                |
| 898.149              | 1109.307           | 96.31          | 2.33         | 99.153             | ee2                |
| 992.385              | 958.430            | 96.41          | 4.13         | 100.539            | sp14               |
| 977.175              | 890.369            | 96.32          | 5.59         | 101.906            |                    |
| 1022.218             | 1134.289           | 96.53          | 2.64         | 99.167             | p80<br>p87         |
| 1094.061             | 1177.213           | 96.43          | 3.19         | 99.616             | ee3                |
| 1221.998             | 1293.534           | 96.59          | 3.19         | 99.86              | sp19               |
| 1312.709             | 1194.455           | 97.29          | 0.79         | 98.082             | g1                 |
| 1346.346             | 1115.699           | 96.64          | 3.93         | 100.574            | <u>91</u><br>sp8   |
| 1214.864             | 1068.079           | 96.71          | 0.97         | 97.683             | spo<br>g7          |
| 1178.298             | 1140.265           | 96.53          | 2.88         | 99.412             |                    |
| 1318.114             | 975.460            | 96.56          | 3.34         | 99.899             | <u>spa</u><br>sp7  |
| 1310.114             | 510.400            | 90.00          | 3.34         | 33.033             | sh/                |
| Nater Levels         | 08/02/96           |                |              |                    |                    |
| East                 | North              | Water Table    | Water Depth  | Elevation          | Well               |
| 1176.399             | 1008.644           | 93.48          | 7.13         | 100.612            | sp10               |

| 1121.854                         | 930.621                       | 93.38                   |                      | 100.868                       |                  |
|----------------------------------|-------------------------------|-------------------------|----------------------|-------------------------------|------------------|
| 1101.197                         | 879.184                       | 93.41                   |                      | 101.173                       | sp3              |
| 1062.006                         | 809.544                       | 93.48                   | 8.42                 | 101.899                       | sp18             |
| 1018.782                         | 678.859                       | 93.27                   | 7.73                 | 101.001                       | sp17             |
| 1104.939                         | 741.457                       | 93.40                   | 8.20                 | 101.597                       | sp4              |
| 1287.557                         | 743.596                       | 93.53                   | 7.10                 | 100.634                       | sp5              |
| 1292.828                         | 858.144                       |                         | 7.64                 | 101.149                       | sp6              |
| 1225.707                         | 864.441                       | 93.45                   | 8.35                 | 101.803                       | i1               |
| 1231.516                         | 874.006                       |                         | 8.76                 | 101.204                       | i2               |
| 1234.793                         | 882.396                       |                         | 7.54                 | 101.011                       | i3               |
| 1236.548                         | 892.545                       |                         | 7.15                 | 100.627                       | i4               |
| 1236.159                         | 900.458                       |                         | 7.05                 | 100.526                       | i5               |
| 1212.873                         | 935.155                       |                         | 7.45                 | 100.922                       | sp11             |
| 1192.176                         | 894.811                       | 93.46                   | 6.88                 | 100.342                       | sp1              |
| 1170.461                         | 867.896                       |                         | 8.14                 | 101.505                       | sp16             |
| 1145.109                         | 834.939                       |                         | 8.32                 | 101.726                       | sp10             |
| 1014.553                         | 852.758                       | 93.39                   | 7.74                 | 101.132                       | sp13             |
| 854.066                          | 886.200                       | 93.31                   | 6.97                 | 100.276                       | sp15<br>ee5      |
| 704.938                          | 977.757                       | 93.19                   | 7.83                 | 101.018                       | sp15             |
| 671.185                          | 1221.394                      | 93.08                   | 5.08                 | 98.159                        | sp15<br>ee4      |
| 679.076                          | 1343.180                      | 92.99                   | 5.74                 | 98.728                        | sp20             |
| 792.682                          | 1221.803                      | 93.11                   | 6.14                 | 99.251                        | p13              |
| 905.245                          | 1163.351                      | 93.26                   | 5.60                 | 98.862                        | p13              |
| 898.149                          | 1109.307                      | 93.29                   | 5.86                 | 99.153                        | ee2              |
| 992.385                          | 958.430                       | 93.38                   | 7.16                 | 100.539                       | sp14             |
| 977.175                          | 890.369                       | 93.36                   | 8.55                 | 101.906                       | p88              |
| 1022.218                         | 1134.289                      | 93.37                   | 5.80                 | 99.167                        | p87              |
| 1094.061                         | 1177.213                      | 93.43                   | 6.19                 | 99.616                        | ee3              |
| 1221.998                         | 1293.534                      | 93.82                   | 6.04                 | 99.86                         | ee3              |
| 1346.346                         | 1115.699                      | 93.82                   | 6.75                 | 100.574                       | sp19<br>sp8      |
| 1178.298                         | 1140.265                      | 93.56                   | 5.85                 | 99.412                        |                  |
| 1318.114                         | 975.460                       | 93.53                   | 6.37                 | 99.899                        | sp9              |
| 1379.751                         | 486.204                       | 95.07                   | 26.50                | 99.899                        | sp7              |
| 1165.415                         | 606.592                       | 94.07                   | 4.50                 | 98.567                        |                  |
| 1172.071                         |                               | 94.07                   | 4.50                 |                               |                  |
| 823.199                          | <u>602.542</u><br>715.475     | 95.00                   | 5.36                 | 96.687                        | g9               |
| 820.553                          |                               |                         | 24.50                | 98.247<br>96.297              | sp23             |
| 020.555                          | 719.268                       | 94.26                   | 24.50                | 90.297                        | g10              |
| Water Levels                     | 08/28/96                      |                         |                      |                               |                  |
| Walei Leveis                     | 00/20/90                      |                         |                      |                               | ······           |
| East                             | North                         | Water Table             | Water Depth          | Elevation                     | Well             |
| 1176.399                         | 1008.644                      | 93.12                   | 7.49                 | 100.612                       | sp10             |
| 1121.854                         | 930.621                       | 93.01                   | 7.86                 | 100.868                       | <u>sp10</u>      |
| 1101.197                         | 879.184                       | 93.04                   | 8.13                 | 101.173                       | sp12<br>sp3      |
| 1018.782                         | 678.859                       | 92.89                   | 8.11                 | 101.001                       | sp3<br>sp17      |
| 1009.840                         | 655.506                       | 98.40                   | 2.78                 | 98.631                        | sp17<br>g5       |
|                                  |                               |                         | 8.56                 | 101.597                       | sp4              |
| 110/020                          | 7/1 /57                       | 0.2 0.4                 |                      | 1111 1 1977                   | 304              |
| 1104.939                         | 741.457                       | 93.04                   |                      |                               |                  |
| 1287.557                         | 743.596                       | 93.14                   | 7.49                 | 100.634                       | sp5              |
| 1287.557<br>1292.828             | 743.596<br>858.144            | 93.14<br>93.10          | 7.49<br>8.05         | 100.634<br>101.149            | sp5<br>sp6       |
| 1287.557<br>1292.828<br>1225.707 | 743.596<br>858.144<br>864.441 | 93.14<br>93.10<br>93.09 | 7.49<br>8.05<br>8.71 | 100.634<br>101.149<br>101.803 | sp5<br>sp6<br>i1 |
| 1287.557<br>1292.828             | 743.596<br>858.144            | 93.14<br>93.10          | 7.49<br>8.05         | 100.634<br>101.149            | sp5<br>sp6       |

|                                                                                                                                                                                                                                                                               |                                                                                                                                                                                                                                                            |                                                                                                                                                                                                                                                                                                                                                                                                                   |                                                                                                                                                                                                        | -                                                                                                                                                                                                                                                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 1219.568                                                                                                                                                                                                                                                                      | 874.648                                                                                                                                                                                                                                                    | 93.03                                                                                                                                                                                                                                                                                                                                                                                                             | 7.46                                                                                                                                                                                                   | 100.489                                                                                                                                                                                                                                                | ee6                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
| 1212.873                                                                                                                                                                                                                                                                      | 935.155                                                                                                                                                                                                                                                    | 93.08                                                                                                                                                                                                                                                                                                                                                                                                             | 7.84                                                                                                                                                                                                   | 100.922                                                                                                                                                                                                                                                | <u>sp</u> 11                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
| 1192.176                                                                                                                                                                                                                                                                      | 894.811                                                                                                                                                                                                                                                    | 93.11                                                                                                                                                                                                                                                                                                                                                                                                             | 7.23                                                                                                                                                                                                   | 100.342                                                                                                                                                                                                                                                | sp1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
| 1170.461                                                                                                                                                                                                                                                                      | 867.896                                                                                                                                                                                                                                                    | 92.99                                                                                                                                                                                                                                                                                                                                                                                                             | 8.52                                                                                                                                                                                                   | 101.505                                                                                                                                                                                                                                                | sp16                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| 1145.109                                                                                                                                                                                                                                                                      | 834.939                                                                                                                                                                                                                                                    | 93.03                                                                                                                                                                                                                                                                                                                                                                                                             | 8.70                                                                                                                                                                                                   | 101.726                                                                                                                                                                                                                                                | sp22                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| 1014.553                                                                                                                                                                                                                                                                      | 852.758                                                                                                                                                                                                                                                    | 93.04                                                                                                                                                                                                                                                                                                                                                                                                             | 8.09                                                                                                                                                                                                   | 101.132                                                                                                                                                                                                                                                | sp13                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| 918.547                                                                                                                                                                                                                                                                       | 739.817                                                                                                                                                                                                                                                    | 92.93                                                                                                                                                                                                                                                                                                                                                                                                             | 9.21                                                                                                                                                                                                   | 102.141                                                                                                                                                                                                                                                | p10                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
| 965.795                                                                                                                                                                                                                                                                       | 668.214                                                                                                                                                                                                                                                    | 98.37                                                                                                                                                                                                                                                                                                                                                                                                             | 2.84                                                                                                                                                                                                   | 98.61                                                                                                                                                                                                                                                  | g4                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
| 854.066                                                                                                                                                                                                                                                                       | 886.200                                                                                                                                                                                                                                                    | 92.96                                                                                                                                                                                                                                                                                                                                                                                                             | 7.32                                                                                                                                                                                                   | 100.276                                                                                                                                                                                                                                                | ee5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
| 671.185                                                                                                                                                                                                                                                                       | 1221.394                                                                                                                                                                                                                                                   | 92.77                                                                                                                                                                                                                                                                                                                                                                                                             | 5.39                                                                                                                                                                                                   | 98.159                                                                                                                                                                                                                                                 | ee4                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
| 792.682                                                                                                                                                                                                                                                                       | 1221.803                                                                                                                                                                                                                                                   | 92.85                                                                                                                                                                                                                                                                                                                                                                                                             | 6.40                                                                                                                                                                                                   | 99.251                                                                                                                                                                                                                                                 | p13                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
| 905.245                                                                                                                                                                                                                                                                       | 1163.351                                                                                                                                                                                                                                                   | 92.99                                                                                                                                                                                                                                                                                                                                                                                                             | 5.87                                                                                                                                                                                                   | 98.862                                                                                                                                                                                                                                                 | p12                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
| 898.149                                                                                                                                                                                                                                                                       | 1109.307                                                                                                                                                                                                                                                   | 92.95                                                                                                                                                                                                                                                                                                                                                                                                             | 6.20                                                                                                                                                                                                   | 99.153                                                                                                                                                                                                                                                 | ee2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
| 992.385                                                                                                                                                                                                                                                                       | 958.430                                                                                                                                                                                                                                                    | 93.02                                                                                                                                                                                                                                                                                                                                                                                                             | 7.52                                                                                                                                                                                                   | 100.539                                                                                                                                                                                                                                                | sp14                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| 1034.129                                                                                                                                                                                                                                                                      | 1050.801                                                                                                                                                                                                                                                   | 93.10                                                                                                                                                                                                                                                                                                                                                                                                             | 7.14                                                                                                                                                                                                   | 100.236                                                                                                                                                                                                                                                | p86                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
| 1022.218                                                                                                                                                                                                                                                                      | 1134.289                                                                                                                                                                                                                                                   | 93.08                                                                                                                                                                                                                                                                                                                                                                                                             | 6.09                                                                                                                                                                                                   | 99.167                                                                                                                                                                                                                                                 | p87                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
| 1094.061                                                                                                                                                                                                                                                                      | 1177.213                                                                                                                                                                                                                                                   | 93.10                                                                                                                                                                                                                                                                                                                                                                                                             | 6.52                                                                                                                                                                                                   | 99.616                                                                                                                                                                                                                                                 | ee3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
| 1221.998                                                                                                                                                                                                                                                                      | 1293.534                                                                                                                                                                                                                                                   | 93.51                                                                                                                                                                                                                                                                                                                                                                                                             | 6.35                                                                                                                                                                                                   | 99.86                                                                                                                                                                                                                                                  | sp19                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| 1346.346                                                                                                                                                                                                                                                                      | 1115.699                                                                                                                                                                                                                                                   | 93.45                                                                                                                                                                                                                                                                                                                                                                                                             | 7.12                                                                                                                                                                                                   | 100.574                                                                                                                                                                                                                                                | sp8                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
| 1178.298                                                                                                                                                                                                                                                                      | 1140.265                                                                                                                                                                                                                                                   | 93.21                                                                                                                                                                                                                                                                                                                                                                                                             | 6.20                                                                                                                                                                                                   | 99.412                                                                                                                                                                                                                                                 | sp9                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
| 1318.114                                                                                                                                                                                                                                                                      | 975.460                                                                                                                                                                                                                                                    | 93.18                                                                                                                                                                                                                                                                                                                                                                                                             | 6.72                                                                                                                                                                                                   | 99.899                                                                                                                                                                                                                                                 | sp7                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
| 1165.415                                                                                                                                                                                                                                                                      | 606.592                                                                                                                                                                                                                                                    | 93.71                                                                                                                                                                                                                                                                                                                                                                                                             | 4.86                                                                                                                                                                                                   | 98.567                                                                                                                                                                                                                                                 | sp22                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| 1172.071                                                                                                                                                                                                                                                                      | 602.542                                                                                                                                                                                                                                                    | 96.56                                                                                                                                                                                                                                                                                                                                                                                                             | 1.50                                                                                                                                                                                                   | 96.687                                                                                                                                                                                                                                                 | g9                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
|                                                                                                                                                                                                                                                                               |                                                                                                                                                                                                                                                            |                                                                                                                                                                                                                                                                                                                                                                                                                   |                                                                                                                                                                                                        |                                                                                                                                                                                                                                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
| Water Levels                                                                                                                                                                                                                                                                  | 09/24/96                                                                                                                                                                                                                                                   |                                                                                                                                                                                                                                                                                                                                                                                                                   |                                                                                                                                                                                                        |                                                                                                                                                                                                                                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
|                                                                                                                                                                                                                                                                               |                                                                                                                                                                                                                                                            |                                                                                                                                                                                                                                                                                                                                                                                                                   |                                                                                                                                                                                                        |                                                                                                                                                                                                                                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
|                                                                                                                                                                                                                                                                               | <b>NA</b> - <b>A</b>                                                                                                                                                                                                                                       |                                                                                                                                                                                                                                                                                                                                                                                                                   |                                                                                                                                                                                                        |                                                                                                                                                                                                                                                        | 101 10                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
| East                                                                                                                                                                                                                                                                          | North                                                                                                                                                                                                                                                      | Water Table                                                                                                                                                                                                                                                                                                                                                                                                       | Water Depth                                                                                                                                                                                            | Elevation                                                                                                                                                                                                                                              | Well                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| 1176.399                                                                                                                                                                                                                                                                      | 1008.644                                                                                                                                                                                                                                                   | 93.43                                                                                                                                                                                                                                                                                                                                                                                                             | 7.18                                                                                                                                                                                                   | 100.612                                                                                                                                                                                                                                                | sp10                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| 1176.399<br>1121.854                                                                                                                                                                                                                                                          | 1008.644<br>930.621                                                                                                                                                                                                                                        | 93.43<br>93.34                                                                                                                                                                                                                                                                                                                                                                                                    | 7.18<br>7.53                                                                                                                                                                                           | 100.612<br>100.868                                                                                                                                                                                                                                     | sp10<br>sp12                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
| 1176.399<br>1121.854<br>1101.197                                                                                                                                                                                                                                              | 1008.644<br>930.621<br>879.184                                                                                                                                                                                                                             | 93.43<br>93.34<br>93.38                                                                                                                                                                                                                                                                                                                                                                                           | 7.18<br>7.53<br>7.79                                                                                                                                                                                   | 100.612<br>100.868<br>101.173                                                                                                                                                                                                                          | sp10<br>sp12<br>sp3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
| 1176.399<br>1121.854<br>1101.197<br>1062.006                                                                                                                                                                                                                                  | 1008.644<br>930.621<br>879.184<br>809.544                                                                                                                                                                                                                  | 93.43<br>93.34<br>93.38<br>93.45                                                                                                                                                                                                                                                                                                                                                                                  | 7.18<br>7.53<br>7.79<br>8.45                                                                                                                                                                           | 100.612<br>100.868<br>101.173<br>101.899                                                                                                                                                                                                               | sp10<br>sp12<br>sp3<br>sp18                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
| 1176.399<br>1121.854<br>1101.197<br>1062.006<br>1018.782                                                                                                                                                                                                                      | 1008.644<br>930.621<br>879.184<br>809.544<br>678.859                                                                                                                                                                                                       | 93.43<br>93.34<br>93.38<br>93.45<br>93.45<br>93.19                                                                                                                                                                                                                                                                                                                                                                | 7.18<br>7.53<br>7.79<br>8.45<br>7.81                                                                                                                                                                   | 100.612<br>100.868<br>101.173<br>101.899<br>101.001                                                                                                                                                                                                    | sp10<br>sp12<br>sp3<br>sp18<br>sp17                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
| 1176.399<br>1121.854<br>1101.197<br>1062.006<br>1018.782<br>1009.840                                                                                                                                                                                                          | 1008.644<br>930.621<br>879.184<br>809.544<br>678.859<br>655.506                                                                                                                                                                                            | 93.43<br>93.34<br>93.38<br>93.45<br>93.19<br>95.96                                                                                                                                                                                                                                                                                                                                                                | 7.18<br>7.53<br>7.79<br>8.45<br>7.81<br>32.00                                                                                                                                                          | 100.612<br>100.868<br>101.173<br>101.899<br>101.001<br>98.631                                                                                                                                                                                          | sp10<br>sp12<br>sp3<br>sp18<br>sp17<br>g5                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
| 1176.399<br>1121.854<br>1101.197<br>1062.006<br>1018.782<br>1009.840<br>1104.939                                                                                                                                                                                              | 1008.644<br>930.621<br>879.184<br>809.544<br>678.859<br>655.506<br>741.457                                                                                                                                                                                 | 93.43<br>93.34<br>93.38<br>93.45<br>93.19<br>95.96<br>93.35                                                                                                                                                                                                                                                                                                                                                       | 7.18<br>7.53<br>7.79<br>8.45<br>7.81<br>32.00<br>8.25                                                                                                                                                  | 100.612<br>100.868<br>101.173<br>101.899<br>101.001<br>98.631<br>101.597                                                                                                                                                                               | sp10<br>sp12<br>sp3<br>sp18<br>sp17<br>g5<br>sp4                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
| 1176.399<br>1121.854<br>1101.197<br>1062.006<br>1018.782<br>1009.840<br>1104.939<br>1287.557                                                                                                                                                                                  | 1008.644<br>930.621<br>879.184<br>809.544<br>678.859<br>655.506<br>741.457<br>743.596                                                                                                                                                                      | 93.43<br>93.34<br>93.38<br>93.45<br>93.19<br>95.96<br>93.35<br>93.47                                                                                                                                                                                                                                                                                                                                              | 7.18<br>7.53<br>7.79<br>8.45<br>7.81<br>32.00<br>8.25<br>7.16                                                                                                                                          | 100.612<br>100.868<br>101.173<br>101.899<br>101.001<br>98.631<br>101.597<br>100.634                                                                                                                                                                    | sp10<br>sp12<br>sp3<br>sp18<br>sp17<br>g5<br>sp4<br>sp5                                                                                                                                                                                                                                                                                                                                                                                                                                             |
| 1176.399<br>1121.854<br>1101.197<br>1062.006<br>1018.782<br>1009.840<br>1104.939<br>1287.557<br>1292.828                                                                                                                                                                      | 1008.644<br>930.621<br>879.184<br>809.544<br>678.859<br>655.506<br>741.457<br>743.596<br>858.144                                                                                                                                                           | 93.43<br>93.34<br>93.38<br>93.45<br>93.19<br>95.96<br>93.35<br>93.47<br>93.42                                                                                                                                                                                                                                                                                                                                     | 7.18<br>7.53<br>7.79<br>8.45<br>7.81<br>32.00<br>8.25<br>7.16<br>7.73                                                                                                                                  | 100.612<br>100.868<br>101.173<br>101.899<br>101.001<br>98.631<br>101.597<br>100.634<br>101.149                                                                                                                                                         | sp10<br>sp12<br>sp3<br>sp18<br>sp17<br>g5<br>sp4<br>sp5<br>sp6                                                                                                                                                                                                                                                                                                                                                                                                                                      |
| 1176.399<br>1121.854<br>1101.197<br>1062.006<br>1018.782<br>1009.840<br>1104.939<br>1287.557<br>1292.828<br>1225.707                                                                                                                                                          | 1008.644<br>930.621<br>879.184<br>809.544<br>678.859<br>655.506<br>741.457<br>743.596<br>858.144<br>864.441                                                                                                                                                | 93.43<br>93.34<br>93.38<br>93.45<br>93.19<br>95.96<br>93.35<br>93.47<br>93.42<br>93.42<br>93.42                                                                                                                                                                                                                                                                                                                   | 7.18<br>7.53<br>7.79<br>8.45<br>7.81<br>32.00<br>8.25<br>7.16<br>7.73<br>8.38                                                                                                                          | 100.612<br>100.868<br>101.173<br>101.899<br>101.001<br>98.631<br>101.597<br>100.634<br>101.149<br>101.803                                                                                                                                              | sp10<br>sp12<br>sp3<br>sp18<br>sp17<br>g5<br>sp4<br>sp5<br>sp6<br>i1                                                                                                                                                                                                                                                                                                                                                                                                                                |
| 1176.399<br>1121.854<br>1101.197<br>1062.006<br>1018.782<br>1009.840<br>1104.939<br>1287.557<br>1292.828<br>1225.707<br>1231.516                                                                                                                                              | 1008.644<br>930.621<br>879.184<br>809.544<br>678.859<br>655.506<br>741.457<br>743.596<br>858.144<br>864.441<br>874.006                                                                                                                                     | 93.43<br>93.34<br>93.38<br>93.45<br>93.19<br>95.96<br>93.35<br>93.47<br>93.42<br>93.42<br>93.42<br>93.35                                                                                                                                                                                                                                                                                                          | 7.18<br>7.53<br>7.79<br>8.45<br>7.81<br>32.00<br>8.25<br>7.16<br>7.73<br>8.38<br>7.85                                                                                                                  | 100.612<br>100.868<br>101.173<br>101.899<br>101.001<br>98.631<br>101.597<br>100.634<br>101.149<br>101.803<br>101.204                                                                                                                                   | sp10<br>sp12<br>sp3<br>sp18<br>sp17<br>g5<br>sp4<br>sp5<br>sp6<br>i1<br>i2                                                                                                                                                                                                                                                                                                                                                                                                                          |
| 1176.399<br>1121.854<br>1101.197<br>1062.006<br>1018.782<br>1009.840<br>1104.939<br>1287.557<br>1292.828<br>1225.707<br>1231.516<br>1236.548                                                                                                                                  | 1008.644<br>930.621<br>879.184<br>678.859<br>655.506<br>741.457<br>743.596<br>858.144<br>864.441<br>874.006<br>892.545                                                                                                                                     | 93.43<br>93.34<br>93.38<br>93.45<br>93.19<br>95.96<br>93.35<br>93.47<br>93.42<br>93.42<br>93.42<br>93.35<br>93.40                                                                                                                                                                                                                                                                                                 | 7.18<br>7.53<br>7.79<br>8.45<br>7.81<br>32.00<br>8.25<br>7.16<br>7.73<br>8.38<br>7.85<br>7.23                                                                                                          | 100.612<br>100.868<br>101.173<br>101.899<br>101.001<br>98.631<br>101.597<br>100.634<br>101.149<br>101.803<br>101.204<br>100.627                                                                                                                        | sp10         sp12         sp3         sp18         sp17         g5         sp4         sp5         sp6         i1         i2         i3                                                                                                                                                                                                                                                                                                                                                             |
| 1176.399<br>1121.854<br>1101.197<br>1062.006<br>1018.782<br>1009.840<br>1104.939<br>1287.557<br>1292.828<br>1225.707<br>1231.516<br>1236.548<br>1236.159                                                                                                                      | 1008.644<br>930.621<br>879.184<br>809.544<br>678.859<br>655.506<br>741.457<br>743.596<br>858.144<br>864.441<br>874.006<br>892.545<br>900.458                                                                                                               | 93.43<br>93.34<br>93.38<br>93.45<br>93.19<br>95.96<br>93.35<br>93.47<br>93.42<br>93.42<br>93.42<br>93.35<br>93.40<br>93.40<br>93.43                                                                                                                                                                                                                                                                               | 7.18<br>7.53<br>7.79<br>8.45<br>7.81<br>32.00<br>8.25<br>7.16<br>7.73<br>8.38<br>7.85<br>7.23<br>7.10                                                                                                  | 100.612<br>100.868<br>101.173<br>101.899<br>101.001<br>98.631<br>101.597<br>100.634<br>101.149<br>101.803<br>101.204<br>100.627<br>100.526                                                                                                             | sp10         sp12         sp3         sp18         sp17         g5         sp4         sp5         sp6         i1         i2         i3         i5                                                                                                                                                                                                                                                                                                                                                  |
| 1176.399<br>1121.854<br>1101.197<br>1062.006<br>1018.782<br>1009.840<br>1104.939<br>1287.557<br>1292.828<br>1225.707<br>1231.516<br>1236.548<br>1236.159<br>1219.568                                                                                                          | 1008.644<br>930.621<br>879.184<br>809.544<br>678.859<br>655.506<br>741.457<br>743.596<br>858.144<br>864.441<br>874.006<br>892.545<br>900.458<br>874.648                                                                                                    | 93.43<br>93.34<br>93.38<br>93.45<br>93.19<br>95.96<br>93.35<br>93.47<br>93.42<br>93.42<br>93.42<br>93.42<br>93.42<br>93.42<br>93.42<br>93.42<br>93.42<br>93.55                                                                                                                                                                                                                                                    | 7.18<br>7.53<br>7.79<br>8.45<br>7.81<br>32.00<br>8.25<br>7.16<br>7.73<br>8.38<br>7.85<br>7.23<br>7.10<br>6.93                                                                                          | 100.612<br>100.868<br>101.173<br>101.899<br>101.001<br>98.631<br>101.597<br>100.634<br>101.149<br>101.803<br>101.204<br>100.627<br>100.526<br>100.489                                                                                                  | sp10<br>sp12<br>sp3<br>sp18<br>sp17<br>g5<br>sp4<br>sp5<br>sp6<br>i1<br>i2<br>i3<br>i5<br>ee6                                                                                                                                                                                                                                                                                                                                                                                                       |
| 1176.399<br>1121.854<br>1101.197<br>1062.006<br>1018.782<br>1009.840<br>1104.939<br>1287.557<br>1292.828<br>1225.707<br>1231.516<br>1236.548<br>1236.159<br>1219.568<br>1212.873                                                                                              | 1008.644<br>930.621<br>879.184<br>809.544<br>678.859<br>655.506<br>741.457<br>743.596<br>858.144<br>864.441<br>874.006<br>892.545<br>900.458<br>874.648<br>935.155                                                                                         | 93.43<br>93.34<br>93.38<br>93.45<br>93.19<br>95.96<br>93.35<br>93.47<br>93.42<br>93.42<br>93.42<br>93.35<br>93.40<br>93.43<br>93.56<br>93.44                                                                                                                                                                                                                                                                      | 7.18<br>7.53<br>7.79<br>8.45<br>7.81<br>32.00<br>8.25<br>7.16<br>7.73<br>8.38<br>7.85<br>7.23<br>7.10<br>6.93<br>7.48                                                                                  | 100.612<br>100.868<br>101.173<br>101.899<br>101.001<br>98.631<br>101.597<br>100.634<br>101.149<br>101.803<br>101.204<br>100.627<br>100.526<br>100.489<br>100.922                                                                                       | sp10         sp12         sp3         sp18         sp17         g5         sp4         sp5         sp6         i1         i2         i3         i5         ee6         sp11                                                                                                                                                                                                                                                                                                                         |
| 1176.399<br>1121.854<br>1101.197<br>1062.006<br>1018.782<br>1009.840<br>1104.939<br>1287.557<br>1292.828<br>1225.707<br>1231.516<br>1236.548<br>1236.159<br>1219.568<br>1212.873<br>1192.176                                                                                  | 1008.644<br>930.621<br>879.184<br>809.544<br>678.859<br>655.506<br>741.457<br>743.596<br>858.144<br>864.441<br>874.006<br>892.545<br>900.458<br>874.648<br>935.155<br>894.811                                                                              | 93.43<br>93.34<br>93.38<br>93.45<br>93.19<br>95.96<br>93.35<br>93.47<br>93.42<br>93.42<br>93.42<br>93.42<br>93.42<br>93.42<br>93.42<br>93.42<br>93.42<br>93.44<br>93.44<br>93.44                                                                                                                                                                                                                                  | 7.18<br>7.53<br>7.79<br>8.45<br>7.81<br>32.00<br>8.25<br>7.16<br>7.73<br>8.38<br>7.85<br>7.23<br>7.10<br>6.93<br>7.48<br>6.93                                                                          | 100.612<br>100.868<br>101.173<br>101.899<br>101.001<br>98.631<br>101.597<br>100.634<br>101.149<br>101.803<br>101.204<br>100.627<br>100.526<br>100.489<br>100.922<br>100.342                                                                            | sp10         sp12         sp3         sp18         sp17         g5         sp4         sp5         sp6         i1         i2         i3         i5         ee6         sp11         sp1                                                                                                                                                                                                                                                                                                             |
| 1176.399<br>1121.854<br>1101.197<br>1062.006<br>1018.782<br>1009.840<br>1104.939<br>1287.557<br>1292.828<br>1225.707<br>1231.516<br>1236.548<br>1236.548<br>1236.159<br>1219.568<br>1212.873<br>1192.176<br>1170.461                                                          | 1008.644<br>930.621<br>879.184<br>809.544<br>678.859<br>655.506<br>741.457<br>743.596<br>858.144<br>864.441<br>874.006<br>892.545<br>900.458<br>874.648<br>935.155<br>894.811<br>867.896                                                                   | 93.43<br>93.34<br>93.38<br>93.45<br>93.19<br>95.96<br>93.35<br>93.47<br>93.42<br>93.42<br>93.42<br>93.42<br>93.42<br>93.42<br>93.42<br>93.42<br>93.42<br>93.42<br>93.41<br>93.41<br>93.33                                                                                                                                                                                                                         | 7.18<br>7.53<br>7.79<br>8.45<br>7.81<br>32.00<br>8.25<br>7.16<br>7.73<br>8.38<br>7.85<br>7.23<br>7.10<br>6.93<br>7.48<br>6.93<br>8.18                                                                  | 100.612<br>100.868<br>101.173<br>101.899<br>101.001<br>98.631<br>101.597<br>100.634<br>101.149<br>101.803<br>101.204<br>100.627<br>100.526<br>100.489<br>100.922<br>100.342<br>101.505                                                                 | sp10         sp12         sp3         sp18         sp17         g5         sp4         sp5         sp6         i1         i2         i3         i5         ee6         sp11         sp1         sp16                                                                                                                                                                                                                                                                                                |
| 1176.399<br>1121.854<br>1101.197<br>1062.006<br>1018.782<br>1009.840<br>1104.939<br>1287.557<br>1292.828<br>1225.707<br>1231.516<br>1236.548<br>1236.548<br>1236.159<br>1219.568<br>1212.873<br>1192.176<br>1170.461<br>1145.109                                              | 1008.644<br>930.621<br>879.184<br>809.544<br>678.859<br>655.506<br>741.457<br>743.596<br>858.144<br>864.441<br>874.006<br>892.545<br>900.458<br>874.648<br>935.155<br>894.811<br>867.896<br>834.939                                                        | 93.43<br>93.34<br>93.38<br>93.45<br>93.19<br>95.96<br>93.35<br>93.47<br>93.42<br>93.42<br>93.42<br>93.42<br>93.42<br>93.42<br>93.42<br>93.42<br>93.42<br>93.42<br>93.42<br>93.42<br>93.43<br>93.56<br>93.44<br>93.41<br>93.33<br>93.37                                                                                                                                                                            | 7.18<br>7.53<br>7.79<br>8.45<br>7.81<br>32.00<br>8.25<br>7.16<br>7.73<br>8.38<br>7.85<br>7.23<br>7.10<br>6.93<br>7.48<br>6.93<br>8.18<br>8.36                                                          | 100.612<br>100.868<br>101.173<br>101.899<br>101.001<br>98.631<br>101.597<br>100.634<br>101.149<br>101.803<br>101.204<br>100.627<br>100.526<br>100.489<br>100.922<br>100.342<br>101.505<br>101.726                                                      | sp10         sp12         sp3         sp18         sp17         g5         sp4         sp5         sp6         i1         i2         i3         i5         ee6         sp11         sp1         sp16         sp2                                                                                                                                                                                                                                                                                    |
| 1176.399<br>1121.854<br>1101.197<br>1062.006<br>1018.782<br>1009.840<br>1104.939<br>1287.557<br>1292.828<br>1225.707<br>1231.516<br>1236.548<br>1236.159<br>1219.568<br>1212.873<br>1192.176<br>1170.461<br>1145.109<br>1014.553                                              | 1008.644<br>930.621<br>879.184<br>809.544<br>678.859<br>655.506<br>741.457<br>743.596<br>858.144<br>864.441<br>874.006<br>892.545<br>900.458<br>874.648<br>935.155<br>894.811<br>867.896<br>834.939<br>852.758                                             | 93.43<br>93.34<br>93.38<br>93.45<br>93.19<br>95.96<br>93.35<br>93.47<br>93.42<br>93.42<br>93.42<br>93.42<br>93.35<br>93.40<br>93.43<br>93.56<br>93.44<br>93.43<br>93.56<br>93.44<br>93.33<br>93.37<br>93.36                                                                                                                                                                                                       | 7.18<br>7.53<br>7.79<br>8.45<br>7.81<br>32.00<br>8.25<br>7.16<br>7.73<br>8.38<br>7.85<br>7.23<br>7.10<br>6.93<br>7.48<br>6.93<br>7.48<br>6.93<br>8.18<br>8.36<br>7.77                                  | 100.612<br>100.868<br>101.173<br>101.899<br>101.001<br>98.631<br>101.597<br>100.634<br>101.149<br>101.803<br>101.204<br>100.627<br>100.526<br>100.489<br>100.922<br>100.342<br>101.505<br>101.726<br>101.132                                           | sp10         sp12         sp3         sp18         sp17         g5         sp4         sp5         sp6         i1         i2         i3         i5         ee6         sp11         sp1         sp16         sp2         sp13                                                                                                                                                                                                                                                                       |
| 1176.399<br>1121.854<br>1101.197<br>1062.006<br>1018.782<br>1009.840<br>1104.939<br>1287.557<br>1292.828<br>1225.707<br>1231.516<br>1236.548<br>1236.159<br>1219.568<br>1212.873<br>1192.176<br>1170.461<br>1145.109<br>1014.553<br>918.547                                   | 1008.644<br>930.621<br>879.184<br>809.544<br>678.859<br>655.506<br>741.457<br>743.596<br>858.144<br>864.441<br>874.006<br>892.545<br>900.458<br>874.648<br>935.155<br>894.811<br>867.896<br>834.939<br>852.758<br>739.817                                  | 93.43<br>93.34<br>93.38<br>93.45<br>93.19<br>95.96<br>93.35<br>93.47<br>93.42<br>93.42<br>93.42<br>93.42<br>93.42<br>93.42<br>93.42<br>93.42<br>93.42<br>93.42<br>93.42<br>93.42<br>93.42<br>93.42<br>93.43<br>93.40<br>93.44<br>93.41<br>93.33<br>93.36<br>93.37<br>93.36<br>93.19                                                                                                                               | 7.18<br>7.53<br>7.79<br>8.45<br>7.81<br>32.00<br>8.25<br>7.16<br>7.73<br>8.38<br>7.85<br>7.23<br>7.10<br>6.93<br>7.48<br>6.93<br>7.48<br>6.93<br>8.18<br>8.36<br>7.77<br>8.95                          | 100.612<br>100.868<br>101.173<br>101.899<br>101.001<br>98.631<br>101.597<br>100.634<br>101.149<br>101.803<br>101.204<br>100.627<br>100.526<br>100.489<br>100.922<br>100.342<br>101.505<br>101.726<br>101.132<br>102.141                                | sp10         sp12         sp3         sp18         sp17         g5         sp4         sp5         sp6         i1         i2         i3         i5         ee6         sp11         sp1         sp16         sp2         sp13         p10                                                                                                                                                                                                                                                           |
| 1176.399<br>1121.854<br>1101.197<br>1062.006<br>1018.782<br>1009.840<br>1104.939<br>1287.557<br>1292.828<br>1225.707<br>1231.516<br>1236.548<br>1236.548<br>1212.873<br>1192.176<br>1170.461<br>1145.109<br>1014.553<br>918.547<br>965.795                                    | 1008.644<br>930.621<br>879.184<br>809.544<br>678.859<br>655.506<br>741.457<br>743.596<br>858.144<br>864.441<br>874.006<br>892.545<br>900.458<br>874.648<br>935.155<br>894.811<br>867.896<br>834.939<br>852.758<br>739.817<br>668.214                       | 93.43<br>93.34<br>93.38<br>93.45<br>93.19<br>95.96<br>93.35<br>93.47<br>93.42<br>93.42<br>93.42<br>93.42<br>93.42<br>93.42<br>93.42<br>93.42<br>93.42<br>93.42<br>93.42<br>93.42<br>93.42<br>93.42<br>93.42<br>93.42<br>93.42<br>93.42<br>93.42<br>93.43<br>93.56<br>93.44<br>93.43<br>93.56<br>93.44<br>93.33<br>93.37<br>93.36<br>93.19                                                                         | 7.18<br>7.53<br>7.79<br>8.45<br>7.81<br>32.00<br>8.25<br>7.16<br>7.73<br>8.38<br>7.85<br>7.23<br>7.10<br>6.93<br>7.48<br>6.93<br>8.18<br>8.36<br>7.77<br>8.95<br>26.52                                 | 100.612<br>100.868<br>101.173<br>101.899<br>101.001<br>98.631<br>101.597<br>100.634<br>101.149<br>101.803<br>101.204<br>100.627<br>100.526<br>100.489<br>100.922<br>100.342<br>101.505<br>101.726<br>101.132<br>102.141<br>98.61                       | sp10         sp12         sp3         sp18         sp17         g5         sp4         sp5         sp6         i1         i2         i3         i5         ee6         sp11         sp16         sp2         sp13         p10         g4                                                                                                                                                                                                                                                            |
| 1176.399<br>1121.854<br>1101.197<br>1062.006<br>1018.782<br>1009.840<br>1104.939<br>1287.557<br>1292.828<br>1225.707<br>1231.516<br>1236.548<br>1236.548<br>1236.159<br>1219.568<br>1212.873<br>1192.176<br>1170.461<br>1145.109<br>1014.553<br>918.547<br>965.795<br>854.066 | 1008.644<br>930.621<br>879.184<br>809.544<br>678.859<br>655.506<br>741.457<br>743.596<br>858.144<br>864.441<br>874.006<br>892.545<br>900.458<br>874.648<br>935.155<br>894.811<br>867.896<br>834.939<br>852.758<br>739.817<br>668.214<br>886.200            | 93.43<br>93.34<br>93.38<br>93.45<br>93.19<br>95.96<br>93.35<br>93.47<br>93.42<br>93.42<br>93.42<br>93.42<br>93.42<br>93.42<br>93.43<br>93.56<br>93.40<br>93.43<br>93.56<br>93.44<br>93.43<br>93.56<br>93.44<br>93.33<br>93.37<br>93.36<br>93.39<br>93.30                                                                                                                                                          | 7.18<br>7.53<br>7.79<br>8.45<br>7.81<br>32.00<br>8.25<br>7.16<br>7.73<br>8.38<br>7.85<br>7.23<br>7.10<br>6.93<br>7.48<br>6.93<br>7.48<br>6.93<br>8.18<br>8.36<br>7.77<br>8.95<br>26.52<br>6.99         | 100.612<br>100.868<br>101.173<br>101.899<br>101.001<br>98.631<br>101.597<br>100.634<br>101.149<br>101.803<br>101.204<br>100.627<br>100.526<br>100.489<br>100.922<br>100.342<br>101.505<br>101.726<br>101.132<br>102.141<br>98.61<br>100.276            | sp10         sp12         sp3         sp18         sp17         g5         sp4         sp5         sp6         i1         i2         i3         i5         ee6         sp11         sp16         sp2         sp13         p10         g4         ee5                                                                                                                                                                                                                                                |
| 1176.399<br>1121.854<br>1101.197<br>1062.006<br>1018.782<br>1009.840<br>1104.939<br>1287.557<br>1292.828<br>1225.707<br>1231.516<br>1236.548<br>1236.159<br>1219.568<br>1212.873<br>1192.176<br>1170.461<br>1145.109<br>1014.553<br>918.547<br>965.795<br>854.066<br>704.938  | 1008.644<br>930.621<br>879.184<br>809.544<br>678.859<br>655.506<br>741.457<br>743.596<br>858.144<br>864.441<br>874.006<br>892.545<br>900.458<br>874.648<br>935.155<br>894.811<br>867.896<br>834.939<br>852.758<br>739.817<br>668.214<br>886.200<br>977.757 | 93.43<br>93.34<br>93.38<br>93.45<br>93.19<br>95.96<br>93.35<br>93.47<br>93.42<br>93.42<br>93.42<br>93.42<br>93.42<br>93.42<br>93.42<br>93.42<br>93.42<br>93.42<br>93.42<br>93.42<br>93.42<br>93.42<br>93.42<br>93.42<br>93.42<br>93.42<br>93.42<br>93.42<br>93.42<br>93.42<br>93.42<br>93.42<br>93.42<br>93.42<br>93.42<br>93.43<br>93.35<br>93.49<br>93.43<br>93.33<br>93.37<br>93.36<br>93.19<br>93.29<br>93.19 | 7.18<br>7.53<br>7.79<br>8.45<br>7.81<br>32.00<br>8.25<br>7.16<br>7.73<br>8.38<br>7.85<br>7.23<br>7.10<br>6.93<br>7.48<br>6.93<br>7.48<br>6.93<br>8.18<br>8.36<br>7.77<br>8.95<br>26.52<br>6.99<br>7.83 | 100.612<br>100.868<br>101.173<br>101.899<br>101.001<br>98.631<br>101.597<br>100.634<br>101.149<br>101.803<br>101.204<br>100.627<br>100.526<br>100.489<br>100.922<br>100.342<br>101.505<br>101.726<br>101.132<br>102.141<br>98.61<br>100.276<br>101.018 | sp10         sp12         sp3         sp18         sp17         g5         sp4         sp5         sp6         i1         i2         i3         i5         ee6         sp11         sp1         g4         ee5         sp15 |
| 1176.399<br>1121.854<br>1101.197<br>1062.006<br>1018.782<br>1009.840<br>1104.939<br>1287.557<br>1292.828<br>1225.707<br>1231.516<br>1236.548<br>1236.548<br>1236.159<br>1219.568<br>1212.873<br>1192.176<br>1170.461<br>1145.109<br>1014.553<br>918.547<br>965.795<br>854.066 | 1008.644<br>930.621<br>879.184<br>809.544<br>678.859<br>655.506<br>741.457<br>743.596<br>858.144<br>864.441<br>874.006<br>892.545<br>900.458<br>874.648<br>935.155<br>894.811<br>867.896<br>834.939<br>852.758<br>739.817<br>668.214<br>886.200            | 93.43<br>93.34<br>93.38<br>93.45<br>93.19<br>95.96<br>93.35<br>93.47<br>93.42<br>93.42<br>93.42<br>93.42<br>93.42<br>93.42<br>93.43<br>93.56<br>93.40<br>93.43<br>93.56<br>93.44<br>93.43<br>93.56<br>93.44<br>93.33<br>93.37<br>93.36<br>93.39<br>93.30                                                                                                                                                          | 7.18<br>7.53<br>7.79<br>8.45<br>7.81<br>32.00<br>8.25<br>7.16<br>7.73<br>8.38<br>7.85<br>7.23<br>7.10<br>6.93<br>7.48<br>6.93<br>7.48<br>6.93<br>8.18<br>8.36<br>7.77<br>8.95<br>26.52<br>6.99         | 100.612<br>100.868<br>101.173<br>101.899<br>101.001<br>98.631<br>101.597<br>100.634<br>101.149<br>101.803<br>101.204<br>100.627<br>100.526<br>100.489<br>100.922<br>100.342<br>101.505<br>101.726<br>101.132<br>102.141<br>98.61<br>100.276            | sp10         sp12         sp3         sp18         sp17         g5         sp4         sp5         sp6         i1         i2         i3         i5         ee6         sp11         sp16         sp2         sp13         p10         g4         ee5                                                                                                                                                                                                                                                |

| 792.682      | 1221.803 | 93.10       | 6.15        | 99.251    | p13  |
|--------------|----------|-------------|-------------|-----------|------|
| 905.245      | 1163.351 | 93.26       | 5.60        | 98.862    | p12  |
| 898.149      | 1109.307 | 93.27       | 5.88        | 99.153    | ee2  |
| 992.385      | 958.430  | 93.35       | 7.19        | 100.539   | sp14 |
| 977.175      | 890.369  | 93.33       | 8.58        | 101.906   | p88  |
| 1034.129     | 1050.801 | 93.35       | 6.89        | 100.236   | p86  |
| 1022.218     | 1134.289 | 93.33       | 5.84        | 99.167    | p87  |
| 1094.061     | 1177.213 | 93.42       | 6.20        | 99.616    | ee3  |
| 1221.998     | 1293.534 | 93.85       | 6.01        | 99.86     | sp19 |
| 1346.346     | 1115.699 | 93.83       | 6.74        | 100.574   | sp8  |
| 1178.298     | 1140.265 | 93.55       | 5.86        | 99.412    | sp9  |
| 1318.114     | 975.460  | 93.50       | 6.40        | 99.899    | sp7  |
| 1165.415     | 606.592  | 94.04       | 4.53        | 98.567    | sp22 |
| 1172.071     | 602.542  | 95.06       | 19.50       | 96.687    | g9   |
|              |          |             |             |           |      |
| Water Levels | 03/26/97 |             |             |           |      |
|              |          |             |             |           |      |
| East         | North    | Water Table | Water Depth | Elevation | Well |
| 1176.399     | 1008.644 | 95.07       | 5.54        | 100.612   | sp10 |
| 1121.854     | 930.621  | 95.01       | 5.86        | 100.868   | sp12 |
| 1101.197     | 879.184  | 95.01       | 6.16        | 101.173   | sp3  |
| 1292.828     | 858.144  | 95.09       | 6.06        | 101.149   | sp6  |
| 1225.707     | 864.441  | 95.07       | 6.73        | 101.803   | i1   |
| 1231.516     | 874.006  | 95.04       | 6.16        | 101.204   | i2   |
| 1234.793     | 882.396  | 95.06       | 5.95        | 101.011   | i3   |
| 1236.548     | 892.545  | 95.07       | 5.56        | 100.627   | i4   |
| 1236.159     | 900.458  | 95.08       | 5.45        | 100.526   | i5   |
| 1219.568     | 874.648  | 95.00       | 5.49        | 100.489   | ee6  |
| 1212.873     | 935.155  | 95.08       | 5.84        | 100.922   | sp11 |
| 1192.176     | 894.811  | 95.07       | 5.27        | 100.342   | sp1  |
| 1170.461     | 867.896  | 94.98       | 6.53        | 101.505   | sp16 |
| 1145.109     | 834.939  | 95.03       | 6.70        | 101.726   | sp2  |
| 1014.553     | 852.758  | 94.99       | 6.14        | 101.132   | sp13 |
| 992.385      | 958.430  | 94.96       | 5.58        | 100.539   | sp14 |
| 1321.603     | 850.607  | 100.84      | 6.25        | 101.357   | W0   |
| 1169.418     | 885.477  | 101.55      | 7.09        | 102.137   | W1   |
| 1133.689     | 887.152  | 101.33      | 6.88        | 101.907   | W2   |
| 000,000      |          | 400.00      | 0.01        | 404 407   | 14/0 |
| 969.008      | 991.922  | 100.68      | 6.24        | 101.197   | W3   |

## Table B2. Hydraulic conductivity calculated using steadystate analysis.

#### Hydraulic conductivity calculated from bromide tracer test on 09/20/96.

|      | N=.20<br>x(ft) | l=.00043<br>t(hr) | v(fpd) | K(fpd) | K(mpd) |
|------|----------------|-------------------|--------|--------|--------|
| M2-9 | 25             | 6                 | 100    | 46512  | 13953  |
| M7-9 | 65             | 17                | 92     | 42681  | 12804  |
|      |                | Avg.              | 96     | 44,596 | 13,379 |

### Hydraulic conductivity calculated in a monitoring well using the steady state Thiem equation.

#### Pumping W1

| Aquifer B  | ottom=80.254 | ļ        | Q=98gpm |          |          |        |           |                   |
|------------|--------------|----------|---------|----------|----------|--------|-----------|-------------------|
| Well       | Х            | Y        | Elev    | Final WL | R        | Н      | K(ft/d)   | K(m/d)            |
| <b>W</b> 1 | 1169.418     | 885.4768 | 102.137 | 8.68     | 0.166667 | 13.203 | pumping w | ell               |
| W2         | 1133.689     | 887.1522 | 101.907 | 8.44     | 35.76788 | 13.213 | 121987.2  | 36596.15          |
| sp1        | 1192.176     | 894.811  | 100.342 | 6.85     | 24.59806 | 13.238 | 32392.39  | 9717.716          |
| SP24       | 1152.932     | 848.2309 | 101.097 | 7.61     | 40.73134 | 13.233 | 41615.08  | 12484.52          |
| M5         | 1174.388     | 873.2601 | 101.027 | 7.52     | 13.1891  | 13.253 | 19833.75  | 5950.124          |
| M6         | 1172.742     | 880.0665 | 101.197 | 7.68     | 6.350024 | 13.263 | 13759.13  | 4127.74           |
| M7         | 1171.795     | 886.873  | 101.427 | 7.95     | 2.75721  | 13.223 | 31865.9   | 9559.7 <b>6</b> 9 |
| M9         | 1172.181     | 901.6203 | 100.417 | 6.94     | 16.37818 | 13.223 | 52100     | 15630             |
|            |              |          |         |          |          | Avg K  | 44,793    | 13,438            |

#### Pumping W2

| Aquifer Bottom = 80.254ft |                  |          | Q=77gpm | n Saturated Thickness=13.093 |          |        |           |          |  |
|---------------------------|------------------|----------|---------|------------------------------|----------|--------|-----------|----------|--|
| Well                      | X                | Y        | Elev    | Fin <b>a</b> l WL            | R        | н      | K(ft/d)   | K(m/d)   |  |
| W2                        | 1133.689         | 887.1522 | 101.907 | 8.74                         | 0.166667 | 12.913 | umping we | 11       |  |
| M15                       | 1137.293         | 904.7617 | 100.907 | 7.49                         | 17.97454 | 13.163 | 3386.095  | 1015.829 |  |
| M14                       | 1136.563         | 894.2902 | 101.127 | 7.72                         | 7.694922 | 13.153 | 2888.976  | 866.6929 |  |
| M13                       | 1136.792         | 885.564  | 101.157 | 7.79                         | 3.485312 | 13.113 | 2754.541  | 826.3624 |  |
| M12                       | 1137.6 <b>46</b> | 877.7105 | 101.897 | 8.51                         | 10.23751 | 13.133 | 3388.997  | 1016.699 |  |
| M11                       | 1139.311         | 868.9843 | 101.777 | 8.38                         | 19.01788 | 13.143 | 3727.764  | 1118.329 |  |
| M10                       | 1143.83          | 854.1497 | 101.577 | 8.12                         | 34.52526 | 13.203 | 3321.02   | 996.306  |  |
| SP24                      | 1152.932         | 848.2309 | 101.097 | 7.71                         | 43.41827 | 13.133 | 4578.098  | 1373.429 |  |
| SP3                       | 1101.197         | 879.184  | 101.173 | 7.78                         | 33.45493 | 13.139 | 4246.73   | 1274.019 |  |
|                           |                  |          |         |                              |          | Avg K  | 3,537     | 1,061    |  |

### Hydraulic conductivity calculated in the pumping

well using the Thiem equation.

| Pumping W3 |        |        |     |          |         |        |  |  |  |  |  |
|------------|--------|--------|-----|----------|---------|--------|--|--|--|--|--|
| Q          | н      | h      | R   | r        | K(ft/d) | K(m/d) |  |  |  |  |  |
| 102.0667   | 14.403 | 14.023 | 100 | 0.166667 | 3,702   | 1,111  |  |  |  |  |  |
| Pumping V  | VO     |        |     |          |         |        |  |  |  |  |  |
| Q          | Н      | h      | R   | r        | K(ft/d) | K(m/d) |  |  |  |  |  |
| 61.625     | 13.368 | 10.913 | 100 | 0.17     | 404     | 121    |  |  |  |  |  |

#### Hydraulic conductivity calculated with the Theis

equation using recovery data.

| wo       | •  | •      | •        |         |        |
|----------|----|--------|----------|---------|--------|
| Drawdown | Q  | Ь      | T(ft²/D) | K(ft/d) | K(m/d) |
| 0.1      | 98 | 13.368 | 258720   | 2,587   | 776    |

# Table B2. Hydraulic conductivity calculated using steady state analysis.

| Q        | b                  | T(ft²/D)                             | K(ft/d)                                                             | K(m/d)                                                                                                                                |
|----------|--------------------|--------------------------------------|---------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------|
| 98       | 13.193             | 258720                               | 2,621                                                               | 786                                                                                                                                   |
|          |                    |                                      |                                                                     |                                                                                                                                       |
| Q        | b                  | T(ft²/D)                             | K(ft/d)                                                             | K(m/d)                                                                                                                                |
| 77       | 13.193             | 72600                                | 736                                                                 | 221                                                                                                                                   |
|          |                    |                                      |                                                                     |                                                                                                                                       |
| Q        | b                  | T(ft <sup>2</sup> /D)                | K(ft/d)                                                             | K(m/d)                                                                                                                                |
| 102.0667 | 14.403             | 70909.47                             | 658                                                                 | 197                                                                                                                                   |
|          | 98<br>Q<br>77<br>Q | 98 13.193<br>Q b<br>77 13.193<br>Q b | 98 13.193 258720<br>Q b T(ft²/D)<br>77 13.193 72600<br>Q b T(ft²/D) | 98 13.193 258720 <b>2,621</b><br>Q b T(ft <sup>2</sup> /D) K(ft/d)<br>77 13.193 72600 <b>736</b><br>Q b T(ft <sup>2</sup> /D) K(ft/d) |

Pumping W1

| Pumping W1 |          |          |                  | W1          | SP1         | M7         |          | 8     | M9          | M5          | MG          | SP16        | SP24        | W2          |
|------------|----------|----------|------------------|-------------|-------------|------------|----------|-------|-------------|-------------|-------------|-------------|-------------|-------------|
| hrs        | min      |          | t(min)           | s WL        | s WL        | s W        |          | WL    | s WL        | s WL        | s WL        | s WL        | s WL        | s WL        |
| 0          | 0        | 0        | 0.010            |             | 0.000 6.740 | 0.000 7.8  | 20 0.000 | 7.200 | 0.000 6.850 | 0.000 7.510 | 0.000 7.610 | 0.000 8.030 | 0.000 7.540 | 0.000 8.350 |
| 0          | 0        | 36       | 0.600            | 0.030 8.590 |             |            |          |       |             |             |             |             |             |             |
| 0          | 0        | 50       | 0.833            |             |             | 0.060 7.8  | 80       |       |             |             |             |             |             |             |
| 0          | 1        | 20       | 1.333            | 0.040 8.600 |             |            |          |       |             |             |             |             |             |             |
| 0          | 1        | 25       | 1.417            |             |             | 0.060 7.8  | 58       |       |             |             |             |             |             |             |
| 0          | 1        | 55       |                  | 0.040 8.600 |             | 0.000 7.0  |          |       |             |             |             |             |             |             |
| 0          | 2<br>3   | 25<br>10 | 2.417            | 0.050 8.610 |             | 0.060 7.8  | 80       |       |             |             |             |             |             |             |
| 0          | 4        | 15       | 4.250            | 0.060 8.620 |             |            |          |       |             |             |             |             |             |             |
| 0          | 4        | 30       | 4.200            | 0.000 8.620 |             | 0.080 7.90 | 00       |       |             |             |             |             |             |             |
| õ          | 5        | 30       |                  | 0.060 8.620 |             | 0.000 7.90 | 00       |       |             |             |             |             |             |             |
| ŏ          | 6        | 30       | 6.500            | 0.070 8.630 |             |            |          |       |             |             |             |             |             |             |
| ŏ          | 6        | 30       | 6.500            | 0.070 0.000 |             | 0.080 7.90 | 00       |       |             |             |             |             |             |             |
| õ          | 7        | 10       | 7.167            | 0.070 8.630 |             | 0.000 1.00 |          |       |             |             |             |             |             |             |
| ō          | 7        | 50       | 7.833            |             |             | 0.080 7.90 | 00       |       |             |             |             |             |             |             |
| ō          | 8        | 10       |                  | 0.070 8.630 |             |            |          |       |             |             |             |             |             |             |
| ō          | 9        | 0        | 9.000            |             |             | 0.080 7.9  | 00       |       |             |             |             |             |             |             |
| Ō          | 10       | 15       | 10.250           |             |             | 0.085 7.9  |          |       |             |             |             |             | -           |             |
| 0          | 10       | 55       | 10.917           | 0.080 8.640 |             |            |          |       |             |             |             |             |             |             |
| 0          | 11       | 20       | 11.333           |             |             | 0.090 7.9  | 10       |       |             |             |             |             |             |             |
| 0          | 12       | 30       | 12.500           |             | 0.065 6.805 |            |          |       |             |             |             |             |             |             |
| 0          | 13       | 15       | 13.250           |             |             |            |          |       |             |             |             |             | 0.050 7.590 |             |
| 0          | 13       | 45       | 13.750           |             |             |            |          |       |             |             |             |             |             | 0.070 8.420 |
| 0          | 14       | 30       | 14.500           |             | 0.070 6.810 |            |          |       |             |             |             |             |             |             |
| 0          | 15       | 10       | 15.167           | 0.080 8.640 |             |            |          |       |             |             |             |             |             |             |
| 0          | 28       | 30       | 28.500           |             | 0.090 6.830 |            |          |       |             |             |             |             |             |             |
| 0          | 29       |          | 29.250           |             |             |            |          |       |             |             |             |             | 0.070 7.610 |             |
| 0          | 29       | 40       | 29.667           |             |             |            |          |       |             |             |             |             |             | 0.070 8.420 |
| 0          | 30       | 30       |                  | 0.100 8.660 |             |            |          |       |             |             |             |             |             |             |
| 0          | 31       | 15       | 31.250           |             |             | 0.110 7.93 | 30       |       |             |             |             |             |             |             |
| 0          | 45       |          | 45.167           |             | 0.100 6.840 |            |          |       |             |             |             |             |             |             |
| 0          | 45       | 40       |                  | 0.110 8.670 |             |            |          |       |             |             |             |             |             |             |
| 0          | 46       |          | 46.250           |             |             | 0.130 7.9  | 50       |       |             |             |             |             | 0.080 7.620 |             |
| 0          | 46       | 55<br>20 | 46.917<br>47.333 |             |             |            |          |       |             |             |             |             |             | 0.100 8.450 |
| 0<br>1     | 47<br>12 | 20       | 72.000           |             | 0.110 6.850 |            |          |       |             |             |             |             |             | 0.100 8.450 |
| 1          | 13       | 0        |                  | 0.120 8.680 | 0.110 0.000 |            |          |       |             |             |             |             |             |             |
| 1          | 15       | õ        | 75.000           | 0.120 0.000 |             | 0.130 7.9  | 50       |       |             |             |             |             |             |             |
| i          | 16       | ŏ        | 76.000           |             |             | 0.100 7.00 |          |       |             |             |             |             | 0.080 7.620 |             |
| 1          | 16       | 30       | 76.500           |             |             |            |          |       |             |             |             |             |             | 0.100 8.450 |
| 1          | 32       | 0        | 92.000           |             | 0,110 6.850 |            |          |       |             |             |             |             |             |             |
| 1          | 33       | ō        |                  | 0.120 8.680 |             |            |          |       |             |             |             |             |             |             |
| 1          | 34       | ō        | 94.000           |             |             | 0.130 7.9  | 50       |       |             |             |             |             |             |             |
| 1          | 35       | 0        | 95.000           |             |             |            |          |       |             |             |             |             | 0.080 7.620 |             |
| 1          | 36       | 0        | 96.000           |             |             |            |          |       |             |             |             |             |             | 0.100 8.450 |
| 2          | 1        | 0        | ******           |             | 0.110 6.850 |            |          |       |             |             |             |             |             |             |
| 2          | 2        | 0        | ******           |             |             |            |          |       |             |             |             | 0.090 8.120 |             |             |
| 2          | 3        | 0        | ******           | 0.120 8.680 |             |            |          |       |             |             |             |             |             |             |
| 2          | 4        | 0        | ******           |             |             |            |          |       | 0.090 6.940 |             |             |             |             |             |
| 2          | 6        | 0        | ******           |             |             |            | 0.130    | 7.330 |             |             |             |             |             |             |
| 2          | 7        | 0        | ******           |             |             | 0.130 7.9  | 50       |       |             |             |             |             |             |             |
| 2          | 8        | 0        | ******           |             |             |            |          |       |             |             | 0.070 7.680 |             |             |             |
| 2          | 10       | 0        | *****            |             |             |            |          |       |             | 0.010 7.520 |             |             |             |             |
| 2          | 12       | 0        | ******           |             |             |            |          |       |             |             |             |             | 0.080 7.620 |             |
| 2          | 13       | 0        | ******           |             |             |            |          |       |             |             |             |             |             | 0.100 8.450 |



Figure B4. Time-drawdown plot observed in W1, pumping W1.



Figure B5. Time-drawdown plot observed in SP1, pumping W1.



Figure B6. Time-drawdown plot observed in M7, pumping W1.



Figure B7. Time-drawdown plot observed in M8, pumping W1.



Figure B8. Time-drawdown plot observed in M9, pumping W1.



Figure B9. Time-drawdown plot observed in M5, pumping W1.



Figure B10. Tlme-drawdown plot observed in M6, pumping W1.



Figure B11. Time-drawdown plot observed in SP16, pumping W1.



£

## Figure B12. Time-drawdown plot observed in SP24, pumping W1.



Figure B13. Time-drawdown plot observed in W2, pumping W1.

•

| Pumping W2 |     |     |        | W2    |       | SP24  |       | SP3   |       | W1    |       | M10   |       | M11   |       | M12   |       | M13   |       | M14   |       | M15   |       |
|------------|-----|-----|--------|-------|-------|-------|-------|-------|-------|-------|-------|-------|-------|-------|-------|-------|-------|-------|-------|-------|-------|-------|-------|
| hrs        | min | sec | t(min) | 5     | WL.   | s     | WL    | s     | WL    | 5     | WL    | 5     | WL    | S     | WL    | S     | WL.   | S     | WL    | s     | WL    | s     | WL    |
| 0          | 0   | 0   | 0.010  | 0.000 | 8.440 | 0.000 | 7.660 | 0.000 | 7.720 | 0.000 | 8.660 | 0.000 | 8.080 | 0.000 | 8.310 | 0.000 | 8.320 | 0.000 | 7.700 | 0.000 | 7.650 | 0.000 | 7.450 |
| 0          | 0   | 14  | 0.233  |       |       | 0.000 | 7.660 |       |       |       |       |       |       |       |       |       |       |       |       |       |       |       |       |
| 0          | 0   | 42  | 0.700  |       |       | 0.000 | 7.660 |       |       |       |       |       |       |       |       |       |       |       |       |       |       |       |       |
| 0          | 1   | 0   | 1.000  |       |       | 0.000 | 7.660 |       |       |       |       |       |       |       |       |       |       |       |       |       |       |       |       |
| 0          | 1   | 20  | 1.333  |       |       | 0.000 | 7.660 |       |       |       |       |       |       |       |       |       |       |       |       |       |       |       |       |
| 0          | 1   | 42  | 1.700  |       |       | 0.000 | 7.660 |       |       |       |       |       |       |       |       |       |       |       |       |       |       |       |       |
| 0          | 2   | 10  | 2.167  | 0.240 | 8.680 |       |       |       |       |       |       |       |       |       |       |       |       |       |       |       |       |       |       |
| 0          | 2   | 49  | 2.817  |       |       | 0.010 | 7.670 |       |       |       |       |       |       |       |       |       |       |       |       |       |       |       |       |
| 0          | 3   | 20  | 3.333  |       |       | 0.010 | 7.670 |       |       |       |       |       |       |       |       |       |       |       |       |       |       |       |       |
| 0          | 4   | 10  | 4.167  |       |       | 0.020 | 7.680 |       |       |       |       |       |       |       |       |       |       |       |       |       |       |       |       |
| 0          | 5   | 13  | 5.217  |       |       | 0.030 | 7.690 |       |       |       |       |       |       |       |       |       |       |       |       |       |       |       |       |
| 0          | 5   | 48  | 5.800  | 0.260 | 8.700 |       |       |       |       |       |       |       |       |       |       |       |       |       |       |       |       |       |       |
| 0          | 6   | 55  | 6.917  |       |       | 0.030 |       |       |       |       |       |       |       |       |       |       |       |       |       |       |       |       |       |
| 0          | 8   | 30  | 8.500  |       |       | 0.030 | 7.690 |       |       |       |       |       |       |       |       |       |       |       |       |       |       |       |       |
| 0          | 10  | 40  | 10.667 | 0.290 | 8.730 |       |       |       |       |       |       |       |       |       |       |       |       |       |       |       |       |       |       |
| 0          | 11  | 55  | 11.917 |       |       |       |       |       |       |       |       |       |       |       |       | 0.180 | 8.500 |       |       |       |       |       |       |
| 0          | 13  | 25  | 13.417 |       |       | 0.030 | 7.690 |       |       |       |       |       |       |       |       |       |       |       |       |       |       |       |       |
| 0          | 15  | 20  | 15.333 |       |       |       |       |       |       |       |       |       |       |       |       |       |       | 0.100 | 7.800 |       |       |       |       |
| 0          | 23  | 10  | 23.167 |       |       | 0.040 | 7.700 |       |       |       |       |       |       |       |       |       |       |       |       |       |       |       |       |
| 0          | 23  | 50  | 23.833 | 0.300 | 8.740 |       |       |       |       |       |       |       |       |       |       |       |       |       |       |       |       |       |       |
| 0          | 25  | 0   | 25.000 |       |       |       |       | 0.060 |       |       |       |       |       |       |       |       |       |       |       |       |       |       |       |
| 0          | 26  | 0   | 26.000 |       |       |       |       |       |       | 0.070 | 8.730 |       |       |       |       |       |       |       |       |       |       |       |       |
| 0          | 52  | 55  | 52.917 | 0.300 | 8.740 |       |       |       |       |       |       |       |       |       |       |       |       |       |       |       |       |       |       |
| 0          | 53  | 55  | 53.917 |       |       | 0.050 | 7.710 |       |       |       |       |       |       |       |       |       |       |       |       |       |       |       |       |
| 0          | 55  | 45  | 55.750 |       |       |       |       |       |       | 0.070 | 8.730 |       |       |       |       |       |       |       |       |       |       |       |       |
| 1          | 30  | 30  | 90.500 |       |       | 0.050 | 7.710 |       |       |       |       |       |       |       |       |       |       |       |       |       |       |       |       |
| 1          | 31  | 0   | 91.000 | 0.300 | 8.740 |       |       |       |       |       |       |       |       |       |       |       |       |       |       |       |       |       |       |
| 1          | 31  | 30  | 91.500 |       |       |       |       | 0.060 |       |       |       |       |       |       |       |       |       |       |       |       |       |       |       |
| 1          | 32  | 0   | 92.000 |       |       |       |       |       |       | 0.070 |       |       |       |       |       |       |       |       |       |       |       |       |       |
| 1          | 55  | D   | *****  |       |       |       |       |       |       | 0.070 | 8.730 |       |       |       |       |       |       |       |       |       |       |       |       |
| 1          | 55  | 30  | ****** |       |       | 0.050 |       |       |       |       |       |       |       |       |       |       |       |       |       |       |       |       |       |
| 1          | 56  | 0   | *****  |       |       |       |       | 0.060 | 7,780 |       |       |       |       |       |       |       |       |       |       |       |       |       |       |
| 1          | 56  | 30  | *****  | 0.300 | 8.740 |       |       |       |       |       |       |       |       |       |       |       |       |       |       |       |       |       |       |
| 1          | 58  | 30  | ###### |       |       |       |       |       |       |       |       | 0.040 | 8.120 |       |       |       |       |       |       |       |       |       |       |
| 2          | 2   | 0   | *****  |       |       |       |       |       |       |       |       |       |       | 0.070 |       |       |       |       |       |       |       |       |       |
| 2          | 5   | 0   | *****  |       |       |       |       |       |       |       |       |       |       |       |       | 0.190 |       |       |       |       |       |       |       |
| 2          | 11  | 0   | *****  |       |       |       |       |       |       |       |       |       |       |       |       |       |       | 0.100 |       |       |       |       |       |
| 2          | 12  | 0   | *****  |       |       |       |       |       |       |       |       |       |       |       |       |       |       |       |       | 0.070 |       |       |       |
| 2          | 14  | 0   | *****  |       |       |       |       |       |       |       |       |       |       |       |       |       |       |       |       |       |       | 0.040 | 7.490 |



Figure B14. Time-drawdown plot observed in pumping well W2.



Figure B15. Time-drawdown plot observed in SP24, pumping W2.



Figure B16. Time-drawdown plot observed in SP3, pumping W2.



Figure B17. Time-drawdown plot observed in W1, pumping W2.



Figure B18. Time-drawdown plot observed in M10, pumping W2.





Figure B20. Time-drawdown plot observed in M12, pumping W2.



Figure B21. Time-drawdown plot observed in M13, pumping W2.



Figure B22. Time-drawdown plot observed in M14, pumping W2.



Figure B23. Time-drawdown plot observed in M15, pumping in W2.

## Table B6. Time-drawdown data from aquifer test of W3.

| Pumpi | mg W3 |     |        | <b>W</b> 3 |       | W3 Pumping |            |
|-------|-------|-----|--------|------------|-------|------------|------------|
| hrs   | min   | sec | t(min) | s          | WL    |            | <b>W</b> 3 |
| 0     | 0     | 0   | 0.010  | 0.000      | 6.540 | Тор        | 101.20     |
| 0     | 1     | 30  | 1.500  | 0.330      | 6.870 | Static WL  | 6.54       |
| 0     | 3     | 10  | 3.167  | 0.340      | 6.880 | Q(gpm)     | 102.00     |
| 0     | 4     | 0   | 4.000  | 0.340      | 6.880 | s(ft)      | 0.038      |
| 0     | 5     | 30  | 5.500  | 0.350      | 6.890 | b(ft)      | 14.40      |
| 0     | · 6   | 30  | 6.500  | 0.350      | 6.890 | K(ft/d)    | 6,629.03   |
| 0     | 13    | 0   | 13.000 | 0.370      | 6.910 | K(m/d)     | 1,988.71   |
| 0     | 16    | 30  | 16.500 | 0.370      | 6.910 |            |            |
| 0     | 21    | 30  | 21.500 | 0.370      | 6.910 |            |            |
| 0     | 31    | 30  | 31.500 | 0.380      | 6.920 |            |            |
| 0     | 46    | 30  | 46.500 | 0.380      | 6.920 |            |            |
| 0     | 60    | 30  | 60.500 | 0.380      | 6.920 |            |            |
| 0     | 90    | 30  | 90.500 | 0.380      | 6.920 |            |            |



Figure B24. Time-drawdown plot observed in pumping well W3.

### Appendix C

### Site Instrumentation

The Erskine study site was instrumented in several stages using 5 different well designs and various placement strategies (Figure C1). The initial wells with the designation EE were installed to determine the general flow direction, depth to water, and to identify the aquifer material. These wells were installed in June 1995 using a 11.43cm diameter- hollow stem auger, and are located as in Figure C2. The EE wells are constructed of 5cm diameter PVC pipe and screened from 3 to 4.5m. The elevation of the top of the casing for each of the EE wells, and the elevation of their screened interval are relative to a 100 ft surface elevation datum (Table C1). The potentiometric map produced from water levels in the EE wells indicated a westerly groundwater flow direction.

A tracer field with 36 single level wells was constructed, the wells were driven with a jack-hammer to a depth of 2.7-3m (Figure C1) (Table C1). A 1.9cm steel pipe was driven into the ground and where possible a 1.27cm diameter PVC pipe was inserted into the steel pipe, and the steel pipe was extracted leaving a 1.27cm diameter PVC monitoring well in place. These wells were designated with a P. A row of injection wells was installed with a jack-hammer. The injection wells, designated I, were made from 4.4cm diameter steel pipe in 0.9m lengths, male threaded at both ends, joined by couplings. Two 0.9m sections of pipe were attached to a 0.75m sand point, screened over 0.6m. Seven tracer tests were performed in the well field (Appendix D).

To develop a more accurate knowledge of the flow path and plumes originating from the injection wells during tracer experiments, and further document the potentiometric surface, 24 sand points were installed with a Geoprobe®. These wells, labeled *SP*, were of similar construction to the injection wells. Two 0.9m lengths of 3.18cm diameter steel pipe were attached with couplings to a 0.9m sand point of the same diameter. The sand points are screened over the entire 0.9m length (Table C1). The addition of the *SP* wells completed the Phase 1 well network and provided a more accurate measurement of the water table (Figure C1) (Appendix A). Although tracer movement was observed in more detail in these wells, they also identified the need to install a network of multilevel wells before conducting an extensive four virus seeding experiment.

The multilevel wells, M, consisted of a 3m and 1.8m lengths of 1.27cm diameter PVC pipe attached with a PVC coupling and glue. The down hole end of this PVC was perforated for 5cm and wrapped in a screen fashioned from fine mesh paint strainers. Three lengths of 0.5cm diameter HDPE tubing, 2.1, 3.0, 3.9, and 5.1m were attached with steel wire to this main stem of PVC. The HDPE tubing was perforated and screened in the same manner as the PVC piping, over 5cm and covered with screen. To implant the multilevel sampler a drive rod was pushed to a depth of 6.75m. An interior drive rod was extracted and the multilevel sampler was inserted into the outer casing to a depth of 6.75m. The outer casing was then extracted from the hole, taking care to hold the multilevel sampler in place. The assemblage was designed to leave 0.3m of the well out of the ground positioning the sampling ports at 1.8, 2.7, 3.6, and 4.5m below the surface. Upon installing the multilevel well, a 4.8m length of HDPE tubing was inserted down the inside of the 1.27cm PVC stem to facilitate sampling. Nineteen multilevel wells were installed in arcs 7.5, 19.5, 30, and 40.5m, and one placed 0.45m from the injection well.

This Phase 2 well network was used for monitoring the transport of four viruses in a seeding experiment (Figure C2).

Four production wells were installed for use in aquifer tests and later forced gradient tracer tests. These wells, W, are 10.2cm diameter, 1.8m long blank steel casing attached to a 3m long, 40 slot steel screen. A well was placed up gradient to serve as a background well, at 19.5 and 30m in the Phase 2 well network, and down and cross gradient out of the known flow field.

All the wells sampled in tracer experiments had HDPE tubing dedicated to it for sampling purposes. Staff gauges were installed in low lying areas and the slough running to the south of the site to monitor surface water influences on the water table (Figure C1). The relative elevations of the top of the well casing, top and bottom of the screened interval, or sampling ports; and instrument construction details are listed in Table C1.



Figure C1. Well design at the Erskine site.

87



Figure C2. Phase 1 Well Network at the Erskine Study Site.

# Table C1. Instrument Description

#### Instrument Construction Data Sheet

| Weil         Type         Material         Diameter         p87         99.10         Top         Bottom           PE         Monitoring         PVC         5cm         p87         99.11         00.305         open hole           P         Monitoring         Steel or PVC         1.9cm or 1.3cm         sp1         100.342         94.342         91.342           SP         Sand Point         Steel         .3.2cm         sp2         101.73         95.173         92.173           M         Multilevel         HDPE & PVC         sp4         101.597         95.597         92.597           W         Production         Steel         10.2cm         sp5         100.637         95.414         92.148           ee2         99.153         89.153         84.153         sp9         99.412         93.412         90.412           ee4         98.159         88.159         83.159         sp11         100.622         94.922         94.922         94.922         94.922         94.922         94.922         94.922         94.922         94.922         94.922         94.922         94.923         94.922         94.922         94.922         94.922         94.922         94.922         94.922                                                                                                       | Instru | ment Construc      | tion Data Sheet    |                      |            |                | Scre            | en     |
|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------|--------------------|--------------------|----------------------|------------|----------------|-----------------|--------|
| EE         Monitoring         PVC         5cm         p88         101.906 open hole           P         Monitoring         Steel or PVC         1.9cm or 1.3cm         sp1         100.342         94.342         91.342           SP         Sand Point         Steel or Steel         3.2cm         sp2         101.726         95.726         92.726           G         Staff Gauge         Steel         sp3         101.173         95.173         92.173           M         Muttilevel         HDPE & PVC         sp4         100.634         94.634         91.634           VP roduction         Steel         10.2cm         sp5         100.634         94.634         91.542           ee2         99.153         89.153         84.153         sp9         99.412         93.412         90.412           ee4         98.159         88.159         83.159         sp11         100.922         94.634         91.539           i1         101.803         94.803         92.803         sp14         100.539         94.539         91.53           i2         101.204         94.204         92.204         sp15         101.018         95.018         92.018           i3         101.011                                                                                                                             |        |                    |                    |                      | Well       | Casing Top     | Тор             | Bottom |
| P         Monitoring         Steel or PVC         1.9cm or 1.3cm         sp1         100.342         94.342         91.342           SP         Sand Point         Steel         3.2cm         sp2         101.773         95.776         92.785           M         Multilevel         HDPE & PVC         sp4         101.597         95.597         92.597           W         Production         Steel         10.2cm         sp5         100.634         94.634         91.634           ee2         99.153         89.153         84.153         sp9         99.412         93.412         90.412           ee3         99.616         89.616         84.616         sp1         100.612         94.62         91.612           ee4         98.159         88.159         83.159         sp11         100.822         94.922         91.22           ee5         100.276         90.276         85.276         sp12         100.868         94.868         91.868           i1         101.803         94.803         92.803         sp14         100.539         94.539         91.388           i2         101.204         94.204         92.204         sp15         101.138         95.108         92.0                                                                                                                        | Well   | Туре               | Material           | Diameter             | p87        |                |                 |        |
| SP         Sand Point         Steel         3.2cm         sp2         101.726         95.726         92.726           G         Staff Gauge         Steel         sp3         101.177         95.597         92.597           M         Multilevel         IDPE & PVC         sp6         101.597         95.597         92.597           W         Production         Steel         10.2cm         sp5         100.634         94.634         91.634           ee2         99.615         89.616         84.153         sp9         99.412         93.412         90.412           ee3         99.616         89.616         84.616         sp11         100.922         94.922         94.922           ee4         98.159         83.159         83.159         sp11         100.922         94.922         94.922         94.922         94.922         94.922         94.922         94.922         94.922         94.922         94.922         94.922         94.922         94.922         91.533           i1         91.0204         94.204         92.204         sp11         100.525         95.505         92.018           i3         101.011         94.011         92.011         sp16         101.0150                                                                                                                | EE     | -                  | PVC                | 5cm                  | p88        | 101.906        | open hole       |        |
| G         Staff Gauge         Steel         sp3         101.173         95.173         92.173           M         Multilevel         HDPE & PVC         sp4         101.1597         95.597         92.597           W         Production         Steel         10.2cm         sp5         100.634         94.634         91.63           G         Streen         sp7         99.899         93.899         90.899         93.899         90.819           ee2         99.153         89.153         84.153         sp9         99.412         93.412         90.412           ee3         99.616         89.616         84.616         sp10         100.612         94.612         91.52           ee4         98.159         88.159         83.159         sp11         100.822         94.922         91.922           ee5         100.276         80.276         85.276         sp12         100.868         94.863         92.133           j1         101.803         94.803         92.804         sp13         101.132         95.132         92.133           j2         101.214         94.024         92.204         sp15         101.018         95.019         92.805         92.805                                                                                                                                      |        | Monitoring         | Steel or PVC       | 1.9cm or 1.3cm       | sp1        |                |                 | 91.342 |
| Multilevel         HDPE & PVC         sp4         101.597         95.597         92.597           W         Production         Steel         10.2cm         sp5         101.634         94.634         91.634           Screen         sp6         101.149         95.149         92.149           Casing Top         Top         Bottom         sp8         100.574         94.574         91.574           ee3         99.616         89.616         84.153         sp9         99.412         93.412         90.412           ee4         98.159         88.159         83.159         sp11         100.922         94.922         91.922           ee5         100.276         90.276         85.276         sp12         100.868         94.868         91.868           ee6         100.489         90.499         85.499         sp13         101.132         95.132         92.132           i1         101.803         94.803         92.803         sp14         100.539         94.539         91.539           i2         101.204         94.204         92.204         sp15         101.018         95.019         92.018           i3         101.2041         99.860         93.862                                                                                                                                      | SP     | Sand Point         | Steel              | 3.2cm                | sp2        | 101.726        | 95.726          | 92.726 |
| W         Production         Steel         10.2cm         sp5         100.634         94.634         91.634           sp6         101.149         95.149         92.149         92.149         92.149         92.149         92.149         92.149         92.149         92.149         92.149         92.149         92.149         92.149         92.149         92.149         92.149         92.149         92.149         92.149         92.149         92.149         92.149         92.149         92.149         93.899         90.899         90.899         93.899         90.899         90.899         90.899         99.412         93.412         90.412         93.412         90.412         93.412         90.412         94.634         91.638           ee4         98.159         88.159         83.159         sp11         100.612         94.632         91.52         91.52         91.52         91.52         91.52         91.53         91.53         91.53         91.53         91.53         91.53         91.53         91.53         91.53         91.53         91.53         91.53         91.53         91.53         91.53         91.53         91.53         92.01         15.50         92.01         92.01         15.50         92.01<                                                       | G      | Staff Gauge        | Steel              |                      | sp3        | 101.173        | 95.173          | 92.173 |
| Screen         sp6         101.149         95.149         92.149           Casing Top         Top         Bottom         sp7         99.899         93.899         90.899           well         Casing Top         Top         Bottom         sp8         100.574         94.574         91.574           ee2         99.153         89.153         89.153         84.155         sp9         99.412         93.412         90.412           ee3         99.616         89.616         84.616         sp1         100.612         94.612         91.612           ee4         98.159         88.159         83.159         sp11         100.922         94.922         91.922           ee5         100.276         90.276         85.276         sp12         100.688         94.668         91.808           ee6         100.489         90.489         85.489         sp13         101.132         95.132         92.132           i1         101.803         94.803         92.803         sp14         100.539         94.539         91.539           i2         101.011         94.011         92.011         sp16         101.55         95.555         92.555         92.557         93.557                                                                                                                                   | М      | Multilevel         | HDPE & PVC         |                      | sp4        | 101.597        | 95.597          | 92.597 |
| Screen         sp7         99.899         93.899         90.899           Weil         Casing Top         Top         Bottom         sp8         100.574         94.574         91.574           ee2         99.153         89.153         84.153         sp9         9.9412         93.412         90.412           ee3         99.616         89.616         84.616         sp10         100.612         94.612         91.612           ee4         98.159         88.159         83.159         sp11         100.922         94.922         91.922           ee5         100.276         90.276         85.276         sp12         100.868         94.868         91.868           ee6         100.489         90.489         85.489         sp13         101.132         95.132         92.133           i1         101.803         94.803         92.804         sp15         101.018         95.018         92.018           i2         101.204         94.204         92.204         sp17         101.001         95.605         92.505           i4         100.627         93.627         91.627         sp17         101.001         92.899           p7         99.878         92.                                                                                                                                         | W      | Production         | Steel              | 10.2cm               | sp5        | 100.634        | 94.634          | 91.634 |
| Well         Casing Top         Top         Bottom         sp8         100.574         94.574         91.574           ee2         99.153         89.153         84.153         sp9         99.412         93.412         90.412           ee3         99.616         89.616         84.616         sp10         100.612         94.612         91.612           ee4         98.159         88.159         83.159         sp11         100.922         94.922         91.922           ee5         100.276         90.276         85.276         sp12         100.868         94.668         91.868           ee6         100.489         90.489         85.489         sp13         101.132         95.132         92.132           i1         101.803         94.803         92.803         sp14         100.539         94.539         91.538           i2         101.204         94.204         92.014         sp16         101.505         95.505         92.505           i4         100.627         93.627         91.627         sp17         101.001         95.001         92.001           i5         100.526         93.526         91.526         sp13         99.860         93.860                                                                                                                                      |        |                    |                    |                      | sp6        | <b>101.149</b> | 95.149          | 92.149 |
| ee2         99.153         89.153         84.153         sp9         99.412         93.412         90.412           ee3         99.616         89.616         84.616         sp10         100.612         94.612         91.612           ee4         98.159         88.159         83.159         sp11         100.922         94.922         91.922           ee5         100.276         90.276         85.276         sp12         100.868         94.868         91.868           ee6         100.489         90.489         85.489         sp13         101.132         95.132         92.132           i1         101.803         94.803         92.803         sp14         100.539         94.539         91.539           i2         101.204         94.204         92.204         sp15         101.018         95.018         92.001           i5         100.526         93.526         91.526         sp17         101.001         95.019         92.001           i5         100.526         93.526         91.526         sp18         101.899         95.899         92.899           p1         99.783         92.878         90.876         sp21         99.557         93.557 <t< td=""><td></td><td></td><td>Sc</td><td>reen</td><td>sp7</td><td><b>99.899</b></td><td>93.8<b>9</b>9</td><td>90.899</td></t<>       |        |                    | Sc                 | reen                 | sp7        | <b>99.899</b>  | 93.8 <b>9</b> 9 | 90.899 |
| ee3         99.616         89.616         84.616         sp10         100.612         94.612         91.612           ee4         98.159         88.159         83.159         sp11         100.922         94.922         91.922           ee5         100.276         90.276         85.276         sp12         100.868         94.868         91.868           ee6         100.489         90.489         85.489         sp13         101.132         95.132         92.132           j1         101.803         94.803         92.803         sp14         100.539         94.539         91.539           j2         101.204         94.204         92.204         sp15         101.018         95.018         92.018           j3         101.011         94.011         92.011         sp16         101.505         95.055         92.505           j4         100.627         93.627         91.627         sp17         101.001         95.001         92.001           j5         100.526         93.526         91.526         sp18         101.899         95.899         92.899           p10         102.141 open hole         sp22         98.567         93.557         90.557         92.567 </td <td>Well</td> <td>Casing Top</td> <td>Тор</td> <td>Bottom</td> <td>•</td> <td></td> <td>94.574</td> <td>91.574</td> | Well   | Casing Top         | Тор                | Bottom               | •          |                | 94.574          | 91.574 |
| ee4         98.159         88.159         83.159         sp11         100.922         94.922         91.922           ee5         100.276         90.276         85.276         sp12         100.868         94.868         91.868           ee6         100.489         90.489         85.489         sp13         101.132         95.132         92.132           i1         101.803         94.803         92.803         sp14         100.539         94.539         91.533           j2         101.204         94.204         92.204         sp15         101.018         95.018         92.011           j5         100.627         93.627         91.627         sp17         101.001         95.001         92.001           j5         100.526         93.526         91.526         sp18         101.899         95.899         92.899           p10         102.141 open hole         sp20         98.728         92.728         89.728           p11         99.718         open hole         sp22         98.767         92.567         89.577           p2         98.953         92.953         90.953         sp24         101.097         95.097         92.907           p21                                                                                                                                         | ee2    | 99.153             | 89.153             | 8 84.153             | sp9        | 99.412         | 93.412          | 90.412 |
| ee5         100.276         90.276         85.276         sp12         100.868         94.868         91.868           ee6         100.489         90.489         85.489         sp13         101.132         95.132         92.132           i1         101.803         94.803         92.803         sp14         100.539         94.539         91.539           i2         101.014         94.014         92.204         sp15         101.018         95.018         92.018           i3         101.011         94.011         92.011         sp16         101.001         95.001         92.011           i5         100.526         93.526         91.526         sp17         101.001         95.001         92.001           i5         100.526         93.526         91.526         sp18         101.899         95.899         92.899           p7         99.878         92.878         90.878         sp19         99.860         93.860         90.860           p10         102.141 open hole         sp21         99.57         93.557         93.557         92.567         90.57           p13         99.251 open hole         sp23         98.247         92.247         89.247      <                                                                                                                             | ee3    | 99.616             | 89.616             | 84.616               | sp10       | 100.612        | 94.612          | 91.612 |
| ee6         100.489         90.489         85.489         sp13         101.132         95.132         92.132           i1         101.803         94.803         92.803         sp14         100.539         94.539         91.539           i2         101.204         94.204         92.204         sp15         101.018         95.018         92.018           i3         101.011         94.011         92.011         sp16         101.055         95.505         92.505           i4         100.627         93.627         91.627         sp17         101.001         95.001         92.001           j5         100.526         93.526         91.526         sp18         101.899         95.899         92.899           p7         98.878         92.878         90.876         sp19         99.860         93.860         90.860           p10         102.141 open hole         sp22         98.728         92.728         89.728           p11         99.718 open hole         sp22         98.567         93.557         90.557           p2         98.862 open hole         sp23         98.247         92.247         89.247           p2         99.953         92.953         90.                                                                                                                                | ee4    | <del>9</del> 8.159 | 88.159             | 83.159               | sp11       | 100.922        | 94.922          | 91.922 |
| i1       101.803       94.803       92.803       sp14       100.539       94.539       91.539         i2       101.204       94.204       92.204       sp15       101.018       95.018       92.018         i3       101.011       94.011       92.011       sp16       101.505       95.505       92.505         i4       100.627       93.627       91.627       sp17       101.001       95.001       92.001         i5       100.526       93.526       91.526       sp18       101.899       95.899       92.899         p7       99.878       92.878       90.878       sp19       99.860       93.860       90.860         p10       102.141 open hole       sp20       98.728       92.728       89.728         p11       99.718 open hole       sp21       99.557       93.557       90.557         p20       99.953       92.953       90.953       sp24       101.097       95.097       92.097         p21       99.780       92.780       90.780       g1       97.682       92.477       89.247       92.247       89.247         p22       99.876       92.876       90.876       g2       96.676       92.977 <td>ee5</td> <td>100.276</td> <td>90.276</td> <td>85.276</td> <td>sp12</td> <td>100.868</td> <td>94.868</td> <td>91.868</td>                                                                              | ee5    | 100.276            | 90.276             | 85.276               | sp12       | 100.868        | 94.868          | 91.868 |
| i2       101.204       94.204       92.204       sp15       101.018       95.018       92.018         i3       101.011       94.011       92.011       sp16       101.505       95.505       92.505         i4       100.627       93.627       91.627       sp17       101.001       95.001       92.001         i5       100.526       93.526       91.526       sp18       101.899       95.899       92.899         p7       99.878       92.878       90.878       sp19       99.860       93.860       90.860         p10       102.141 open hole       sp21       99.557       93.557       90.557         p12       98.862 open hole       sp22       98.567       92.567       89.247         p20       99.953       92.953       90.953       sp24       101.097       95.097       92.097         p21       99.766       92.876       90.876       g2       96.676       92.577       92.097         p22       99.876       92.876       90.876       g2       96.676       92.977       92.907       92.907       92.907       92.907       92.907       92.907       92.917       99.66.76       92.977       99.617       9                                                                                                                                                                                               | ee6    | 100.489            | 90.489             | 85.489               | sp13       | 101.132        | 95.132          | 92.132 |
| i3       101.011       94.011       92.011       sp16       101.505       95.505       92.505         i4       100.627       93.627       91.627       sp17       101.001       95.001       92.001         i5       100.526       93.526       91.526       sp18       101.899       95.899       92.899         p7       99.878       92.878       90.878       sp19       99.860       93.860       90.860         p10       102.141 open hole       sp20       98.728       92.728       89.728         p11       99.718 open hole       sp21       99.557       93.557       90.557         p13       99.251 open hole       sp22       98.647       92.247       89.247         p20       99.953       92.953       90.953       sp24       101.097       95.097       92.097         p21       99.780       92.780       90.780       g1       97.682       92.477       92.477       89.247         p22       99.876       92.876       90.876       g2       96.676       92.697       92.997         p23       100.254       93.254       91.254       g3       99.357       92.997         p26       99.606 <td>i1</td> <td>101.803</td> <td>94.803</td> <td>92.803</td> <td>sp14</td> <td>100.539</td> <td>94.539</td> <td>91.539</td>                                                                                      | i1     | 101.803            | 94.803             | 92.803               | sp14       | 100.539        | 94.539          | 91.539 |
| i4100.62793.62791.627sp17101.00195.00192.001i5100.52693.52691.526sp18101.89995.89992.899p799.87892.87890.878sp1999.86093.86090.860p10102.141 open holesp2098.72892.72889.728p1199.718 open holesp2199.55793.55790.557p1298.862 open holesp2298.56792.67789.567p1399.251 open holesp2398.24792.24789.247p2099.95392.95390.953sp24101.09795.09792.097p2199.78092.78090.780g197.682p2298.87692.87690.876g296.676p23100.25493.25491.254g399.357p24100.11093.11091.110g498.610p2599.90792.90790.907g598.631p2699.60692.60690.606g688.263p2799.61792.61790.617g797.583p2899.71392.71390.713g897.277p30100.55093.55091.555g1096.297p31100.05693.05691.056g1096.297p3299.46292.46290.462W0101.35795.357p3399.89692.89690.896W1102.137<                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | i2     | 101.204            | 94.204             | 92.204               | sp15       | 101.018        | 95.018          | 92.018 |
| i5         100.526         93.526         91.526         sp18         101.899         95.899         92.899           p7         99.878         92.878         90.878         sp19         99.860         93.860         90.860           p10         102.141 open hole         sp20         98.728         92.728         89.728           p11         99.718 open hole         sp21         99.557         93.557         90.557           p12         98.862 open hole         sp22         98.567         92.267         89.567           p13         99.251 open hole         sp23         98.247         92.247         89.247           p20         99.953         92.876         90.876         g2         96.676           p21         99.780         92.780         90.780         g1         97.682           p22         99.876         92.876         90.876         g2         96.676           p23         100.254         93.254         91.254         g3         99.357         92.97           p24         100.110         93.110         91.110         g4         98.610         98.610           p25         99.907         92.907         90.907         g5                                                                                                                                                      | i3     | 101.011            | <b>94.01</b> 1     | 92.011               | sp16       | 101.505        | 95.505          | 92.505 |
| p7         99.878         92.878         90.878         sp19         99.860         93.860         90.860           p10         102.141 open hole         sp20         98.728         92.728         89.728           p11         99.718 open hole         sp21         99.557         93.557         90.557           p12         98.862 open hole         sp22         98.567         92.567         89.567           p13         99.251 open hole         sp23         98.247         92.247         89.247           p20         99.953         92.953         90.953         sp24         101.097         95.097         92.097           p21         99.766         92.876         90.876         g2         96.676         92.97         92.097         92.097           p22         99.876         92.876         90.876         g2         96.676         92.97         92.097         92.097         99.907         92.097         99.8617         92.07         92.07         99.617         92.617         90.617         97         97.883         97.277         99.617         92.617         90.617         97         97.883         97.277         93.010.056         93.056         91.556         91.09         96.68                                                                                               | i4     | 100.627            | 93.627             | 91.627               | sp17       | 101.001        | 95.001          | 92.001 |
| p10102.141 open holesp2098.72892.72889.728p1199.718 open holesp2199.55793.55790.557p1298.862 open holesp2298.56792.56789.567p1399.251 open holesp2398.24792.24789.247p2099.95392.95390.953sp24101.09795.09792.097p2199.78092.78090.780g197.68292.97292.097p2299.87692.87690.876g296.67692.90792.097p23100.25493.25491.254g399.35798.63192.728p24100.11093.11091.110g498.61096.67696.67699.606p2599.90792.90790.907g598.63199.35799.90792.907p2699.60692.60690.606g698.26399.71392.71390.713g897.277p30100.55093.55091.550g996.68796.68799.90792.96292.46290.462W0101.35795.35785.357p31100.05693.05691.056g1096.29795.35785.35793.399.89692.89690.896W1102.13796.13786.137p3399.89692.89690.896W1102.13796.13786.13795.90785.907p35100.13293.13291.132W3<                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | i5     | 100.526            | 93.526             | <b>91.526</b>        | sp18       | 101.899        | 95.899          | 92.899 |
| p1199.718 open holesp2199.55793.55790.557p1298.862 open holesp2298.56792.56789.567p1399.251 open holesp2398.24792.24789.247p2099.95392.95390.953sp24101.09795.09792.097p2199.78092.78090.780g197.68292.24789.247p2299.87692.87690.876g296.67692.97390.95399.357p24100.11093.11091.110g498.61092.99799.90792.90799.90795.986.31p2599.90792.90790.907g598.63196.67696.67697.97.58397.27799.61792.61790.617g797.583p2899.71392.71390.713g897.27795.35785.35785.357p30100.55093.55091.550g996.68793.35795.35785.357p31100.05693.05691.056g1096.29795.35785.357p3399.89692.89690.896W1102.13796.13786.137p3499.36292.36290.362W2101.90795.90785.907p35100.13293.13291.132W3101.19795.19785.197                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | p7     | 99.878             | 92.878             | 3 <del>9</del> 0.878 | sp19       | 99.860         | 93.860          | 90.860 |
| p1298.862 open holesp2298.56792.56789.567p1399.251 open holesp2398.24792.24789.247p2099.95392.95390.953sp24101.09795.09792.097p2199.78092.78090.780g197.68292.78296.676p2299.87692.87690.876g296.67692.87692.97p24100.25493.25491.254g399.35798.631p2599.90792.90790.907g598.63192.77p2699.60692.60690.606g698.26398.263p2799.61792.61790.617g797.58399.357p30100.55093.55091.550g996.68796.687p31100.05693.05691.056g1096.29795.357p3299.46292.46290.462W0101.35795.357p3399.89692.89690.896W1102.13796.137p3499.36292.36290.362W2101.90795.907p35100.13293.13291.132W3101.19795.197                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | p10    | 102.141            | open hole          |                      | sp20       | 98.728         | 92.728          | 89.728 |
| p1399.251 open holesp2398.24792.24789.247p2099.95392.95390.953sp24101.09795.09792.097p2199.78092.78090.780g197.68292.24789.247p2299.87692.87690.876g296.67692.876p23100.25493.25491.254g399.35798.631p24100.11093.11091.110g498.61092.606p2599.90792.90790.907g598.63197.277p2699.60692.60690.606g698.26397.277p30100.55093.55091.550g996.68796.687p31100.05693.05691.056g1096.29795.35785.357p3299.46292.46290.462W0101.35795.35785.357p3399.89692.89690.896W1102.13796.13786.137p3499.36292.36290.362W2101.90795.90785.907p35100.13293.13291.132W3101.19795.19785.197                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | p11    | 99.718             | open hole          |                      | sp21       | 99.557         | 93.557          | 90.557 |
| p2099.95392.95390.953sp24101.09795.09792.097p2199.78092.78090.780g197.682p2299.87692.87690.876g296.676p23100.25493.25491.254g399.357p24100.11093.11091.110g498.610p2599.90792.90790.907g598.631p2699.60692.60690.606g698.263p2799.61792.61790.617g797.583p2899.71392.71390.713g897.277p30100.55093.55091.550g996.687p31100.05693.05691.056g1096.297p3299.46292.46290.462W0101.35795.35785.357p3399.89692.89690.896W1102.13796.13786.137p3499.36292.36290.362W2101.90795.90785.907p35100.13293.13291.132W3101.19795.19785.197                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | p12    | 98.862             | open hole          |                      | sp22       | 98.567         | 92.567          | 89.567 |
| p2099.95392.95390.953sp24101.09795.09792.097p2199.78092.78090.780g197.682p2299.87692.87690.876g296.676p23100.25493.25491.254g399.357p24100.11093.11091.110g498.610p2599.90792.90790.907g598.631p2699.60692.60690.606g698.263p2799.61792.61790.617g797.583p2899.71392.71390.713g897.277p30100.55093.55091.550g996.687p31100.05693.05691.056g1096.297p3299.46292.46290.462W0101.35795.35785.357p3399.89692.89690.896W1102.13796.13786.137p3499.36292.36290.362W2101.90795.90785.907p35100.13293.13291.132W3101.19795.19785.197                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | p13    | 99.251             | open hole          |                      | sp23       | 98.247         | 92.247          | 89.247 |
| p2199.78092.78090.780g197.682p2299.87692.87690.876g296.676p23100.25493.25491.254g399.357p24100.11093.11091.110g498.610p2599.90792.90790.907g598.631p2699.60692.60690.606g698.263p2799.61792.61790.617g797.583p2899.71392.71390.713g897.277p30100.55093.55091.550g996.687p31100.05693.05691.056g1096.297p3299.46292.46290.462W0101.35795.35785.357p3399.89692.89690.896W1102.13796.13786.137p3499.36292.36290.362W2101.90795.90785.907p35100.13293.13291.132W3101.19795.19785.197                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | p20    | 99.953             | 92.953             | 90.953               | sp24       | 101.097        | 95.097          | 92.097 |
| p2299.87692.87690.876g296.676p23100.25493.25491.254g399.357p24100.11093.11091.110g498.610p2599.90792.90790.907g598.631p2699.60692.60690.606g698.263p2799.61792.61790.617g797.583p2899.71392.71390.713g897.277p30100.55093.55091.550g996.687p31100.05693.05691.056g1096.297p3299.46292.46290.462W0101.35795.35785.357p3399.89692.89690.896W1102.13796.13786.137p3499.36292.36290.362W2101.90795.90785.907p35100.13293.13291.132W3101.19795.19785.197                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | p21    | 99.780             | 92.780             | 90.780               |            | 97.682         |                 |        |
| p23100.25493.25491.254g399.357p24100.11093.11091.110g498.610p2599.90792.90790.907g598.631p2699.60692.60690.606g698.263p2799.61792.61790.617g797.583p2899.71392.71390.713g897.277p30100.55093.55091.550g996.687p31100.05693.05691.056g1096.297p3299.46292.46290.462W0101.35795.35785.357p3399.89692.89690.896W1102.13796.13786.137p3499.36292.36290.362W2101.90795.90785.907p35100.13293.13291.132W3101.19795.19785.197                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | p22    | 99.876             | 92.876             | 90.876               | g2         | 96.676         |                 |        |
| p2599.90792.90790.907g598.631p2699.60692.60690.606g698.263p2799.61792.61790.617g797.583p2899.71392.71390.713g897.277p30100.55093.55091.550g996.687p31100.05693.05691.056g1096.297p3299.46292.46290.462W0101.35795.35785.357p3399.89692.89690.896W1102.13796.13786.137p3499.36292.36290.362W2101.90795.90785.907p35100.13293.13291.132W3101.19795.19785.197                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | p23    | 100.254            | 93.254             | 91.254               | g3         | 99.357         |                 |        |
| p2699.60692.60690.606g698.263p2799.61792.61790.617g797.583p2899.71392.71390.713g897.277p30100.55093.55091.550g996.687p31100.05693.05691.056g1096.297p3299.46292.46290.462W0101.35795.35785.357p3399.89692.89690.896W1102.13796.13786.137p3499.36292.36290.362W2101.90795.90785.907p35100.13293.13291.132W3101.19795.19785.197                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | p24    | 100.110            | 93.110             | ) 91.110             | g4         | 98.610         |                 |        |
| p2799.61792.61790.617g797.583p2899.71392.71390.713g897.277p30100.55093.55091.550g996.687p31100.05693.05691.056g1096.297p3299.46292.46290.462W0101.35795.35785.357p3399.89692.89690.896W1102.13796.13786.137p3499.36292.36290.362W2101.90795.90785.907p35100.13293.13291.132W3101.19795.19785.197                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | p25    | 99.907             | 92.907             | 90.907               | <b>g</b> 5 | 98.631         |                 |        |
| p2899.71392.71390.713g897.277p30100.55093.55091.550g996.687p31100.05693.05691.056g1096.297p3299.46292.46290.462W0101.35795.35785.357p3399.89692.89690.896W1102.13796.13786.137p3499.36292.36290.362W2101.90795.90785.907p35100.13293.13291.132W3101.19795.19785.197                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | p26    | 99.606             | 92.606             | 90.606               | <b>g</b> 6 | 98.263         |                 |        |
| p30100.55093.55091.550g996.687p31100.05693.05691.056g1096.297p3299.46292.46290.462W0101.35795.35785.357p3399.89692.89690.896W1102.13796.13786.137p3499.36292.36290.362W2101.90795.90785.907p35100.13293.13291.132W3101.19795.19785.197                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | p27    | 99.617             | 92.617             | 90.617               | g7         | 97.583         |                 |        |
| p31100.05693.05691.056g1096.297p3299.46292.46290.462W0101.35795.35785.357p3399.89692.89690.896W1102.13796.13786.137p3499.36292.36290.362W2101.90795.90785.907p35100.13293.13291.132W3101.19795.19785.197                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | p28    | 99.713             | 92.713             | 90.713               | g8         | 97.277         |                 |        |
| p3299.46292.46290.462W0101.35795.35785.357p3399.89692.89690.896W1102.13796.13786.137p3499.36292.36290.362W2101.90795.90785.907p35100.13293.13291.132W3101.19795.19785.197                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | р30    | 100.550            | 93.550             | ) 91.550             | g9         | 96.687         |                 |        |
| p3399.89692.89690.896W1102.13796.13786.137p3499.36292.36290.362W2101.90795.90785.907p35100.13293.13291.132W3101.19795.19785.197                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | p31    | 100.056            | 93.056             | 91.056               | g10        | 96.297         |                 |        |
| p3499.36292.36290.362W2101.90795.90785.907p35100.13293.13291.132W3101.19795.19785.197                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | p32    | 99.462             | 92.462             | 90.462               | WO         | 101.357        | <b>9</b> 5.357  | 85.357 |
| p35 100.132 93.132 91.132 W3 101.197 95.197 85.197                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | p33    | 99.896             | 92.896             | 90.896               | W1         | 102.137        | 96.137          | 86.137 |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | p34    | 99.362             | 92.362             | 90.362               | W2         | 101.907        | 95.907          | 85.907 |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | p35    | 100.132            | 93.132             | 2 <b>91.132</b>      | W3         | 101.197        | 95.197          | 85.197 |
| p36 100.501 93.501 91.501                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | p36    | 100.501            | 93.50 <sup>-</sup> | l 91.501             |            |                |                 |        |
| p37 100.697 93.697 91.697                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | p37    | 100.697            | 93.697             | 7 91.697             |            |                |                 |        |
| p38 100.045 93.045 91.045                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | p38    | 100.045            | 93.045             | 5 91.045             |            |                |                 |        |
| p39 99.410 92.410 90.410                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | p39    | 99.410             | 92.410             | 90.410               |            |                |                 |        |
| p40 100.122 93.122 91.122                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | p40    | 100.122            | 93.12              | 91.122               |            |                |                 |        |
| p41 100.356 93.356 91.356                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | p41    | 100.356            | 93.356             | <b>91.356</b>        |            |                |                 |        |
| p42 100.078 93.078 91.078                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | p42    |                    |                    | <b>91.078</b>        |            |                |                 |        |
| p85 101.455 open hole                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | -      |                    | •                  |                      |            |                |                 |        |
| p86 100.236 open hole                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | p86    | 100.236            | open hole          |                      |            |                |                 |        |

# **Table C1. Instrument Description**

| Well | Casing Top       | 6ft (1.8m) Port | 9ft(2.7m) Port | 12ft (3.6m) Port | 15ft (4.5m) Port |
|------|------------------|-----------------|----------------|------------------|------------------|
| MO   | 100.517          | 93.517          | 90.517         | 87.517           | 84.517           |
| M1   | 100.282          | 93.282          | 90.282         | 87.282           | 84.282           |
| M2   | 100.977          | 93.977          | 90.977         | 87.977           | 84.977           |
| М3   | 101.307          | 94.307          | 91.307         | 88.307           | 85.307           |
| M4   | 100.657          | 93.657          | 90.657         | 87.657           | 84.657           |
| M5   | 101.027          | 94.027          | 91.027         | 88.027           | 85.027           |
| M6   | 101.197          | 94.197          | 91.197         | 88.197           | 85.197           |
| M7   | 101. <b>42</b> 7 | 94.427          | 91.427         | 88.427           | 85.427           |
| M8   | 100.787          | 93.787          | 90.787         | 87.787           | 84.787           |
| M9   | 100.417          | 93.417          | 90.417         | 87.417           | 84.417           |
| M10  | 101.577          | 94.577          | <b>91.577</b>  | 88.577           | 85.577           |
| M11  | 101.777          | 94.777          | 91.777         | 88.777           | 85.777           |
| M12  | 101.897          | 94.897          | 91.897         | 88.897           | 85.897           |
| M13  | 101.157          | 94.157          | 91.157         | 88.157           | 85.157           |
| M14  | 101.127          | 94.127          | 91.127         | 88.127           | 85.127           |
| M15  | 100.907          | 93.907          | 90.907         | 87.907           | 84.907           |
| M16  | 102.107          | 95.107          | 92.107         | 89.107           | 86.107           |
| M17  | 100.977          | 93.977          | 90.977         | 87.977           | 84.977           |
| M18  | 100.797          | 93.797          | 90.797         | 87.797           | 84.797           |
| M19  | 100.337          | 93.337          | 90.337         | 87.337           | 84.337           |



Figure C3. Phase 2 Well Network consisting og Multilevel and Production Wells

### Appendix D

#### Rhodamine-wt

Tracer tests were the primary investigative tool used in the early stages of this research (Table D1). The fluorescent dye rhodamine-wt was used during construction of the Phase 1 well network primarily to identify flow paths from the injection wells (Figure D1). The injectate consisted of 50 to 100ml. of liquid concentrate added to 5 gallons of deionized water. Peak concentrations were observed and transport rates calculated. Rhodamine-wt and its analysis with a fluorimeter is inexpensive and quick, and for this reason it was used 5 times to determine flow paths and rates. Rhodamine-wt is an organic dye and adheres to, or stains, the aquifer material. This adsorptive process retards the transport of the tracer and underestimates average groundwater flow velocities. Another concerns in using rhodamine-wt is its organic nature. Because it is organic and bioavailabe it could possibly affect the survival of viruses once they are seeded into the system. To avoid this possibility, rhodamine-wt was not used immediately before virus seeding experiments. In general, rhodamine-wt is considered one of the most useful dyes for water tracing, and it was successfully used for that purpose in this study (Smart and Laidlaw, 1977).

#### Sodium Bromide

Sodium bromide, NaBr, is used as a tracer by many hydrogeologists due to its conservative nature (Davis et al, 1980). Bromide occurs naturally at low concentrations in some groundwater systems, but is not detectable at the Erskine site (<0.1mg/l). Bromide

was used to determine flow direction, average groundwater velocity, and hydrologic properties of the aquifer (Figure D2) (Table B2). To avoid density effects observed in the laboratory by Isotok et al (1995) and in field investigations by LeBlanc et al (1991), bromide was injected in concentrations ranging from 1000 to 1500 mg/l. Bromide effectively offers 4 orders of magnitude of resolution when analyzed using ion chromatography, and the high hydraulic conductivity at the Erskine site resulted in rapid dilution of the bromide plume. Due to dilution, the highest peak measured beyond the injection well was on the order of  $10^1$  mg/l. Low analytical sensitivity in bromide detection caused an underestimation of plume size and transport distance.

#### Viruses

Viruses were seeded on three separate occasions and their transport in the groundwater was monitored. To limit the risk associated with viruses, nonpathogenic viruses were used for this study. That is to say that the viruses used would not cause disease in humans. The bacteriophage MS2 was used in all three experiments. A bacteriophage is a virus that infects and reproduces only in bacteria. Unlike bromide and rhodamine-wt, MS2 offers highly sensitive analysis and large travel distances. MS2 was used to study the fate and transport of viruses in a groundwater system. The seeding of MS2 documented that its flow path was the same as bromide and rhodamine-wt. Because the analysis of viruses are very sensitive, one virus must be present in 10ml of sample to be detected, and the high concentrations injected,  $10^{10}$  PFU/ml, the plumes could be identified over a larger breadth and width than other tracers. In order to compare the behavior of different viruses in the same groundwater system the third and final virus seeding included not only MS2, but the bacteriophages PRD1 and  $\emptyset$ X174, as well as

poliovirus type-1 (CHAT strain). The CHAT strain of polio is attenuated and not pathogenic. It is similar to the Sabin live vaccine in that it is alive and infectious, but has been altered so as to not cause the disease poliomyelitis.

The use of viruses, and other microbial tracers, is advantageous because of the high resolution they provide. These tracers are ineffective for determining hydrologic properties because of their large size, at 20-300nm in diameter they are subject to pore size exclusion, and sorptive nature they travel at rates other than the average groundwater flow velocity. When used in conjunction with conservative tracers like bromide, virus transport can be quantified relative to the conservative agent.

### Summary of Tracer and Seeding Experiments Performed

One bromide and 2 rhodamine-wt tracer tests were conducted in December, 1995. These tests defined flow path variability from the injection locations, but sampling intervals were insufficient for the determination of aquifer properties. A tracer test was performed in March, 1996, with both rhodamine-wt and bromide injected into separate injection wells using a 6 to 12 hr sampling interval. Two weeks later a second bromide tracer test, with 1 to 11 hr sampling intervals, defined the flow path through the well system and was used to design a sampling schedule for a seeding experiment using the bacteriophage MS2. The preferential flow path from injection well I4 observed during this tracer test validated the early potentiometric maps.

The March 1996 MS2 seeding experiment was a test run for future multiple virus seeding experiments (Figure D3). However, the large measurable variability of virus concentrations revealed the need for further instrumentation. Twenty-four, 3.2cm steel

sand points, screened from 1.8-2.7m, were installed throughout the field site completing a Phase 1 well network.

Further use of rhodamine-wt and bromide injected in well I4 during June and July, 1996 confirmed the need for an extensive multilevel sampling network. Twenty multilevel samplers with sampling ports at 1.8,2.7,3.6, and 4.5m were driven into the aquifer with a Geoprobe<sup>®</sup>. After installing the first 11 multilevel samplers, a MS2 seeding experiment was conducted to determine additional well locations for the Phase 2 well network (Figure D4). MS2 was used because of its high resolution, with a detectable 11 orders of magnitude of concentration.

Upon completion of the multilevel monitoring wells, a bromide tracer test was performed. This bromide tracer test confirmed the flow path from injection well I4, and yielded the best measurement of hydrologic properties from a tracer test (Table 1). A 72hr plume was detected throughout the network of sampling wells, over an area exceeding 76.6m<sup>2</sup> (851ft<sup>2</sup>) 2ft below the water table (Table D2; Figure D5-D6). The plume was not detected below the 3.6m sampling port. The results of this test also provided a conservative transport comparison to the extensive virus seeding experiment that followed. MS2, ØX174, PRD1, and poliovirus type-1 (CHAT strain) were seeded and the rate of transport and plume distribution were observed. At the 2.7m (9ft) depth the MS2, PRD1, and  $\emptyset$ X174 the plumes covered area of 357.1m<sup>2</sup> (1190.3ft<sup>2</sup>), 267m<sup>2</sup> (890ft<sup>2</sup>), and 237m<sup>2</sup> (790ft<sup>2</sup>), respectively. The initial concentrations of the tracers varied by orders of magnitude in the injected volume (Table 2). The difference in plume size for each of the viruses seeded reflect the injected volume and the behavior of the viruses in the groundwater system. Plumes were detected and plotted at the 2.7 and 3.6m depths for MS2, PRD1, and  $\emptyset$ X174, and the 9ft depth for polio (Tables D3-6) (Figure D7-13).

Longitudinal cross-sections were plotted for the bacteriophages using the wells along the main flow path, I4, M2, M7, M14, and M17. The similarities between these cross-sections illustrates a downward vertical gradient 30m (100ft) from I4 (Figure D14-16). The three dimensional perspective provided by combining the plume maps and the cross-sections suggests that the plume is narrow and contained during the first 19.5m (65ft) of transport, expanding volumetrically beyond 30m (100ft).

,

| Date               | Tracer                         | Injection<br>Well | Test<br>Duration (hrs) | Transport<br>Velocities (ft/d) | Transport<br>Velocities (m/d) |
|--------------------|--------------------------------|-------------------|------------------------|--------------------------------|-------------------------------|
| December 8, 1995   | Rhodamine-wt                   | 11                | 48                     | plume data only                | plume data only               |
| December 15, 1996  | Rhodamine-wt                   | 13                | 334                    | 25                             | 8                             |
| December 27, 1999  | Sodium Bromide                 | 13                | 66                     | 36                             | 11                            |
| March 15, 1996     | Rhodamine-wt<br>Sodium Bromide | 15<br>14          | 48<br>48               | plume data only<br>78          | plume data only<br>23         |
| March 25, 1996     | Sodium Bromide                 | 14                | 26                     | 95                             | 29                            |
| March 28, 1996     | MS2                            | 14                | 636                    | 81                             | 54                            |
| June 25, 1996      | Sodium Bromide                 | P31               | 36                     | not detected                   | not detected                  |
| July 17, 1996      | Rhodamine-wt                   | 14                | 20                     | plume data only                | plume data only               |
| August 22, 1996    | MS2                            | 14                | 72                     |                                |                               |
| September 20, 1996 | Sodium Bromide                 | 14                | 36                     | 96                             | 29                            |
| October 2, 1996    | MS2                            | 14                | 72                     | 107                            | 32                            |
|                    | PRD1<br>Phi X174               | 14<br>14          |                        | 120                            | 36                            |
|                    |                                | 14<br>14          |                        | 107                            | 32                            |
|                    | Poliovirus type-1              | 14                |                        | 140                            | 42                            |

Table D1. Brief summary of all tracer tests at the Erskine site.

.



Figure D1. Rhodamine-wt plumes as detected in Phase 1 well network, flow direction to the west.



Figure D2. Bromide plumes detected in the Phase 1 well network, flow direction to the west.



Figure D3. 60hr plume from 3/28/96 MS2 seeding experiment. Concentrations in PFU/ml, flow direction to the west.



Figure D4. Plume from 8/22/96 MS2 seeding experiment. Concentrations in Log PFU/ml, flow direction to the west.



Figure D5. Bromide Plume at depth of 9ft from 9/20/96 tracer test. Concentration is in mg/l, flow direction is to the west.



Figure D6. Bromide plume at depth of 12ft from 9/20/96 tracer test. Concentration is in mg/l, flow direction is to the west.

| NA: Not Anal<br>Concentratio<br>Distance from                                                                                                                                         | ns in mg/l                                                                                                                          | 14:         | 0.45m        |              |                    | 7.5m         |              |                        |                         |                   |                  |                  |                         |                     |                     |                     |                     | 13.2m               | 19.5m               |             |              |              |                         |              |              |             |              |                |               |              |              |       |    |
|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------|-------------|--------------|--------------|--------------------|--------------|--------------|------------------------|-------------------------|-------------------|------------------|------------------|-------------------------|---------------------|---------------------|---------------------|---------------------|---------------------|---------------------|-------------|--------------|--------------|-------------------------|--------------|--------------|-------------|--------------|----------------|---------------|--------------|--------------|-------|----|
| Date & Time                                                                                                                                                                           |                                                                                                                                     | 14          | M0-9         |              | M0-15              |              |              | M1-15                  |                         |                   | M2-15            |                  |                         | M3-15               |                     | M4-12               |                     | SP1                 |                     |             | M5-15        |              | M6-12                   | M6-15        | M7-9         |             | M7-15        |                | M8-12         |              |              | M9-12 |    |
| 09/20/96                                                                                                                                                                              | Background                                                                                                                          |             | 0            | 0            | 0                  | NA           | NA           | NA                     | 0                       | 0                 | 0                | NA               | NA                      | NA                  | NA                  | NA                  | NA                  | 0                   | NA                  | NA          | NA           | NA           | NA                      | NA           | 0            | 0           | 0            | NA             | 0             | NA           | NA           | NA    | NA |
| 6:00                                                                                                                                                                                  | 0                                                                                                                                   | 1443        | 0            | 0            | 0                  |              |              |                        |                         |                   | -                |                  |                         |                     |                     |                     |                     |                     |                     |             |              |              |                         |              |              |             |              |                |               |              |              |       |    |
| 8:00                                                                                                                                                                                  | 2                                                                                                                                   |             | 0            | 0            | 0                  |              |              |                        | 0                       | 0                 | 0                |                  |                         |                     |                     |                     |                     |                     |                     |             |              |              |                         |              |              |             |              |                |               |              |              |       |    |
| 10:00                                                                                                                                                                                 | 4                                                                                                                                   |             | 0            | 0            | 0                  |              |              |                        | 3.97<br>6.26            | 0                 | 0                |                  |                         |                     |                     |                     |                     | 0<br>1.1            |                     |             |              |              |                         |              |              |             |              |                |               |              |              |       |    |
| 12:00                                                                                                                                                                                 | 6<br>8                                                                                                                              | 596         | 0            | 0            | 0                  | 0            | o            | 0                      | 0.20<br>5.9             | ő                 | ŏ                | 0                | 0                       | 0                   | 0                   | 0                   | 0                   | 2.28                | 0                   | 0           | o            | 0            | 0                       | Đ            | 0            | 0           | 0            | 0              | 0             | 0            | 0            | 0     | 0  |
| 14:00                                                                                                                                                                                 | 8<br>10                                                                                                                             | 290         | v            | v            | v                  |              | •            | v                      | 5.42                    | ŏ                 | ň                | v                | v                       | •                   | •                   | v                   | v                   | 3.62                | •                   | •           | •            | •            | •                       | v            | 0.92         | ŏ           | ň            | •              | v             | v            | v            |       | v  |
| 16:00<br>18:00                                                                                                                                                                        | 12                                                                                                                                  |             |              |              |                    |              |              |                        | 0.74                    | •                 | •                |                  |                         |                     |                     |                     |                     |                     |                     |             |              |              |                         |              | 1.43         | ŏ           | ō            | 0              | 0,698         | NA           | NA           | NA    | NA |
| 20:00                                                                                                                                                                                 | 14                                                                                                                                  |             |              |              |                    |              |              |                        |                         |                   |                  |                  |                         |                     |                     |                     |                     |                     |                     |             |              |              |                         |              | 1.81         | 0           | Ó            |                |               |              |              |       |    |
| 22:00                                                                                                                                                                                 | 16                                                                                                                                  |             |              |              |                    |              |              |                        |                         |                   |                  |                  |                         |                     |                     |                     |                     |                     |                     |             |              |              |                         |              | 2.1          | 0           | 0            | NA             | 1.031         | NA           | NA           | NA    | NA |
| 09/21/96                                                                                                                                                                              |                                                                                                                                     |             |              |              |                    |              |              |                        |                         |                   |                  |                  |                         |                     |                     |                     |                     |                     |                     |             |              |              |                         |              |              |             |              |                |               |              |              |       |    |
| 0:00                                                                                                                                                                                  | 18                                                                                                                                  |             |              |              |                    |              |              |                        |                         |                   |                  |                  |                         |                     |                     |                     |                     |                     |                     |             |              |              |                         |              | 2.1          |             |              | 0.89           | 1.119         | NA           | NA           | NA    | NA |
| 2:00                                                                                                                                                                                  | 20                                                                                                                                  | 426         | 0            | 0            | 0                  | 0            | 0            | 0                      | 2.2                     | 0                 | 0                | 0                | 0                       | 0                   | 0                   | 0                   | 0                   | 3.6                 | 0                   | 0           | 0            | 0            | o                       | 0            | 1.95         | 0           | 0            | 1.16           | 1.12          | 0            | 0            | 0     | 0  |
| 4:00                                                                                                                                                                                  | 22                                                                                                                                  |             |              |              |                    |              |              |                        |                         |                   |                  |                  |                         |                     |                     |                     |                     |                     |                     |             |              |              |                         |              |              |             |              |                |               |              |              |       |    |
| 6:00                                                                                                                                                                                  | 24                                                                                                                                  |             |              |              |                    |              |              |                        |                         |                   |                  |                  |                         |                     |                     |                     |                     |                     |                     |             |              |              |                         |              |              |             |              |                |               |              |              |       |    |
| 8:00<br>10:00                                                                                                                                                                         | 26<br>28                                                                                                                            |             |              |              |                    |              |              |                        |                         |                   |                  |                  |                         |                     |                     |                     |                     |                     |                     |             |              |              |                         |              |              |             |              |                |               |              |              |       |    |
| 12:00                                                                                                                                                                                 | 30                                                                                                                                  |             |              |              |                    |              |              |                        |                         |                   |                  |                  |                         |                     |                     |                     |                     |                     |                     |             |              |              |                         |              |              |             |              |                |               |              |              |       |    |
| 14:00                                                                                                                                                                                 | 32                                                                                                                                  |             |              |              |                    |              |              |                        |                         |                   |                  |                  |                         |                     |                     |                     |                     |                     |                     |             |              |              |                         |              |              |             |              |                |               |              |              |       |    |
| 16:00                                                                                                                                                                                 | 34                                                                                                                                  |             |              |              |                    |              |              |                        |                         |                   |                  |                  |                         |                     |                     |                     |                     |                     |                     |             |              |              |                         |              |              |             |              |                |               |              |              |       |    |
| 18:00                                                                                                                                                                                 | 36                                                                                                                                  | 37.13       | 0            | 0            | 0                  | NA           | NA           | NA                     | 1.08                    | 0                 | 0                | NA               | NA                      | NA                  | NA                  | NA                  | NA :                | 2.64(1.97)          | NA                  | NA          | NA           | NA           | NA                      | NA           | 0.98         | NA          | NA           | 1.511          | 0.763         | NA           | NA           | NA    | NA |
| 20:00                                                                                                                                                                                 | 38                                                                                                                                  |             |              |              |                    |              |              |                        |                         |                   |                  |                  |                         |                     |                     |                     |                     |                     |                     |             |              |              |                         |              |              |             |              |                |               |              |              |       |    |
| 22:00                                                                                                                                                                                 | 40                                                                                                                                  |             |              |              |                    |              |              |                        |                         |                   |                  |                  |                         |                     |                     |                     |                     |                     |                     |             |              |              |                         |              |              |             |              |                |               |              |              |       |    |
|                                                                                                                                                                                       |                                                                                                                                     |             |              |              |                    |              |              |                        |                         |                   |                  |                  |                         |                     |                     |                     |                     |                     |                     |             |              |              |                         |              |              |             |              |                |               |              |              |       |    |
|                                                                                                                                                                                       |                                                                                                                                     |             |              |              |                    |              |              |                        |                         |                   |                  |                  |                         |                     |                     |                     |                     |                     |                     |             |              |              |                         |              |              |             |              |                |               |              |              |       |    |
| tom Intertion                                                                                                                                                                         | well M.                                                                                                                             |             |              |              | 30m                |              |              |                        |                         |                   |                  |                  |                         |                     |                     |                     |                     |                     |                     |             |              |              | 40 5m                   |              |              |             |              |                |               |              |              |       |    |
| from Injection                                                                                                                                                                        |                                                                                                                                     | M19.9       | M19-12       | M19-15       | 30m<br>M10-9       | M10-12       | M10-15       | i M11-9                | M11-12                  | M11-18            | 5 M12-9          | M12-12           | M12-15                  | M13-9               | M13-12              | M13-15              | M14-9               | M14-12              | M14-15              | M15-9       | M15-12       | M15-15       | 40.5m<br>M16-9          | M16-12       | M16-15       | M17-9       | M17-12       | 1 M17-18       | M16-9         | M18-12       | M16-16       | ;     |    |
| Date & Time                                                                                                                                                                           | well (4:<br>Hour                                                                                                                    | M19-9<br>NA | M19-12<br>NA |              |                    | M10-12<br>NA | M10-15<br>NA | 6 M11-9<br>0           | M11-12<br>0             | M11-18<br>0       | 5 M12-9<br>D     | M12-12<br>0      | M12-15<br>0             | M13-9<br>NA         | M13-12<br>NA        | M13-15<br>NA        | M14-9<br>NA         | M14-12<br>NA        | M14-15<br>NA        | M15-9<br>NA | M15-12<br>NA | M15-15<br>NA |                         | M16-12<br>NA | M16-15<br>NA | M17-9<br>NA | M17-12<br>NA | 1 M17-18<br>NA | 5 M18-9<br>NA | M18-12<br>NA | M16-16<br>NA | ;     |    |
| Date & Time<br>09/20/96                                                                                                                                                               |                                                                                                                                     |             |              | M19-15<br>NA | M10-9              |              |              |                        |                         |                   |                  |                  |                         |                     |                     |                     |                     |                     |                     |             |              |              | M16-9                   |              |              |             |              |                |               |              |              | ;     |    |
| Date & Time                                                                                                                                                                           | Hour                                                                                                                                |             |              |              | M10-9              |              |              |                        |                         |                   |                  |                  |                         |                     |                     |                     |                     |                     |                     |             |              |              | M16-9                   |              |              |             |              |                |               |              |              | i     |    |
| Date & Time<br>09/20/96<br>6:00<br>6:00<br>10:00                                                                                                                                      | Hour<br>0<br>2<br>4                                                                                                                 |             |              |              | M10-9              |              |              |                        |                         |                   |                  |                  |                         |                     |                     |                     |                     |                     |                     |             |              |              | M16-9                   |              |              |             |              |                |               |              |              | i     |    |
| Date & Time<br>09/20/96<br>6:00<br>8:00<br>10:00<br>12:00                                                                                                                             | Hour<br>0<br>2<br>4<br>6                                                                                                            | NA          | NA           | NA           | M10-9<br>NA        | NA           | NA           | 0                      | C                       | 0                 | 0                | 0                | 0                       | NA                  | NA                  | NA                  | NA                  | NA                  | NA                  | NA          | NA           | NA           | M16-9<br>NA             | NA           | NA           | NA          | NA           | NA             | NA            | NA           | NA           | i     |    |
| Date & Time<br>09/20/96<br>6:00<br>8:00<br>10:00<br>12:00<br>14:00                                                                                                                    | Hour<br>0<br>2<br>4<br>6<br>8                                                                                                       |             |              |              | M10-9              |              |              |                        |                         |                   |                  |                  |                         |                     |                     |                     |                     |                     |                     |             |              |              | M16-9                   |              |              |             |              |                |               |              |              | i     |    |
| Date & Time<br>09/20/96<br>6:00<br>6:00<br>10:00<br>12:00<br>14:00<br>16:00                                                                                                           | Hour<br>0<br>2<br>4<br>6<br>8<br>10                                                                                                 | NA          | NA           | NA           | M10-9<br>NA        | NA           | NA           | 0                      | C                       | 0                 | 0                | 0                | 0                       | NA                  | NA                  | NA                  | NA                  | NA                  | NA                  | NA          | NA           | NA           | M16-9<br>NA             | NA           | NA           | NA          | NA           | NA             | NA            | NA           | NA           | i     |    |
| Date & Time<br>09/20/96<br>6:00<br>10:00<br>12:00<br>14:00<br>16:00<br>18:00                                                                                                          | Hour<br>0<br>2<br>4<br>5<br>8<br>10<br>12                                                                                           | NA          | NA           | NA           | M10-9<br>NA        | NA           | NA           | 0                      | C                       | 0                 | 0                | 0                | 0                       | NA                  | NA                  | NA                  | NA                  | NA                  | NA                  | NA          | NA           | NA           | M16-9<br>NA             | NA           | NA           | NA          | NA           | NA             | NA            | NA           | NA           | i     |    |
| Date & Time<br>09/20/96<br>6:00<br>6:00<br>10:00<br>12:00<br>14:00<br>16:00<br>18:00<br>20:00                                                                                         | Hour<br>0<br>2<br>4<br>6<br>8<br>10<br>12<br>14                                                                                     | NA          | NA           | NA           | M10-9<br>NA        | NA           | NA           | 0                      | 0                       | 0                 | 0                | 0                | 0                       | NA                  | NA                  | NA                  | NA                  | NA                  | NA                  | NA          | NA           | NA           | M16-9<br>NA             | NA           | NA           | NA          | NA           | NA             | NA            | NA           | NA           | i     |    |
| Date & Time<br>09/20/96<br>6:00<br>6:00<br>10:00<br>12:00<br>14:00<br>16:00<br>18:00<br>20:00<br>22:00                                                                                | Hour<br>0<br>2<br>4<br>5<br>8<br>10<br>12                                                                                           | NA          | NA           | NA           | M10-9<br>NA        | NA           | NA           | 0                      | C                       | 0                 | 0                | 0                | 0                       | NA                  | NA                  | NA                  | NA                  | NA                  | NA                  | NA          | NA           | NA           | M16-9<br>NA             | NA           | NA           | NA          | NA           | NA             | NA            | NA           | NA           | i     |    |
| Date & Time<br>09/20/96<br>6:00<br>10:00<br>12:00<br>14:00<br>16:00<br>18:00<br>20:00<br>22:00<br>09/21/96                                                                            | Hour<br>0<br>2<br>4<br>6<br>8<br>10<br>12<br>14<br>16                                                                               | NA          | NA           | NA           | M10-9<br>NA        | NA           | NA           | 0                      | 0                       | 0                 | 0                | 0                | 0                       | NA                  | NA                  | NA                  | NA                  | NA                  | NA                  | NA          | NA           | NA           | M16-9<br>NA             | NA           | NA           | NA          | NA           | NA             | NA            | NA           | NA           | i     |    |
| Date & Time<br>09/20/96<br>6:00<br>6:00<br>10:00<br>12:00<br>14:00<br>16:00<br>18:00<br>20:00<br>22:00                                                                                | Hour<br>0<br>2<br>4<br>6<br>8<br>10<br>12<br>14                                                                                     | NA          | NA           | NA           | M10-9<br>NA        | NA           | NA           | 0                      | 0                       | 0                 | 0                | 0                | 0                       | NA                  | NA                  | NA                  | NA                  | NA                  | NA                  | NA          | NA           | NA           | M16-9<br>NA             | NA           | NA           | NA          | NA           | NA             | NA            | NA           | NA           | ;     |    |
| Date & Time<br>09/20/36<br>6:00<br>8:00<br>10:00<br>14:00<br>16:00<br>18:00<br>20:00<br>22:00<br>09/21/96<br>0:00                                                                     | Hour<br>0<br>4<br>6<br>8<br>10<br>12<br>14<br>16<br>18<br>20<br>22                                                                  | NA<br>0     | NA           | NA           | M10-9<br>NA        | NA<br>0      | D            | 0<br>0<br>0<br>0       | 0<br>0<br>0             | 0<br>0<br>0       | 0<br>0<br>0      | 0<br>D<br>0<br>0 | 0<br>0<br>0             | NA<br>0<br>0        | NA<br>0<br>0        | NA<br>0<br>0        | NA<br>O<br>O        | NA<br>0             | NA<br>0<br>0        | NA<br>O     | NA<br>0      | NA<br>0      | M16-9<br>NA             | 0            | NA           | NA          | NA<br>0      | NA<br>0        | NA<br>0       | 0<br>0       | NA<br>O      | •     |    |
| Date & Time<br>09/20/96<br>6:00<br>8:00<br>10:00<br>14:00<br>16:00<br>18:00<br>20:00<br>22:00<br>09/21/96<br>0:00<br>2:00<br>4:00<br>6:00                                             | Hour<br>0<br>2<br>4<br>6<br>8<br>10<br>12<br>14<br>16<br>18<br>20<br>22<br>24                                                       | NA<br>0     | NA           | NA           | M10-9<br>NA        | NA<br>0      | D            | 0<br>0<br>0            | 0<br>0                  | 0                 | 0                | 0                | 0<br>0<br>0             | NA<br>0             | NA<br>0             | NA<br>0             | 0                   | NA<br>0             | NA<br>O             | NA<br>O     | NA<br>0      | NA<br>0      | M16-9<br>NA             | 0            | NA           | NA          | NA<br>0      | NA<br>0        | NA<br>0       | 0<br>0       | NA<br>O      | •     |    |
| Date & Time<br>09/20/96<br>6:00<br>10:00<br>12:00<br>14:00<br>16:00<br>18:00<br>22:00<br>09/21/96<br>0:00<br>2:00<br>4:00<br>6:00<br>6:00<br>8:00                                     | Hour<br>0<br>2<br>4<br>6<br>8<br>10<br>12<br>14<br>16<br>18<br>20<br>22<br>22<br>24<br>26                                           | NA<br>0     | NA           | NA           | M10-9<br>NA        | NA<br>0      | D            | 0<br>0<br>0<br>0       | O<br>O<br>O<br>NA       | O<br>D<br>O<br>NA | 0<br>0<br>0<br>0 | 0<br>0<br>0<br>0 | 0<br>0<br>0<br>NA       | NA<br>O<br>NA       | NA<br>O<br>NA       | NA<br>O<br>NA       | NA<br>O<br>NA       | NA<br>O<br>NA       | NA<br>O<br>NA       | NA<br>O     | NA<br>0      | NA<br>0      | M16-9<br>NA             | 0            | NA           | NA          | NA<br>0      | NA<br>0        | NA<br>0       | 0<br>0       | NA<br>O      | •     |    |
| Date & Time<br>09/20/96<br>6:00<br>8:00<br>10:00<br>12:00<br>14:00<br>18:00<br>20:00<br>22:00<br>09/21/96<br>0:00<br>2:00<br>4:00<br>6:00<br>8:00<br>10:00                            | Hour<br>0<br>2<br>4<br>6<br>8<br>10<br>12<br>14<br>16<br>18<br>20<br>22<br>24<br>26<br>28                                           | NA<br>0     | NA           | NA           | M10-9<br>NA        | NA<br>0      | D            | 0<br>0<br>0<br>0       | 0<br>0<br>0             | 0<br>0<br>0       | 0<br>0<br>0      | 0<br>D<br>0<br>0 | 0<br>0<br>0             | NA<br>0<br>0        | NA<br>0<br>0        | NA<br>0<br>0        | NA<br>O<br>O        | NA<br>0             | NA<br>0<br>0        | NA<br>O     | NA<br>0      | NA<br>0      | M16-9<br>NA             | 0            | NA           | NA          | NA<br>0      | NA<br>0        | NA<br>0       | 0<br>0       | NA<br>O      | •     |    |
| Date & Time<br>09/20/96<br>6:00<br>8:00<br>10:00<br>12:00<br>14:00<br>16:00<br>18:00<br>22:00<br>09/21/96<br>0:00<br>2:00<br>4:00<br>6:00<br>8:00<br>8:00<br>10:00                    | Hour<br>0<br>2<br>4<br>6<br>8<br>10<br>12<br>14<br>15<br>18<br>20<br>22<br>24<br>26<br>28<br>30                                     | NA<br>0     | NA           | NA           | M10-9<br>NA        | NA<br>0      | D            | 0<br>0<br>0<br>0       | O<br>O<br>O<br>NA       | O<br>D<br>O<br>NA | 0<br>0<br>0<br>0 | 0<br>0<br>0<br>0 | 0<br>0<br>0<br>NA       | NA<br>O<br>NA       | NA<br>O<br>NA       | NA<br>O<br>NA       | NA<br>O<br>NA       | NA<br>O<br>NA       | NA<br>O<br>NA       | NA<br>O     | NA<br>0      | NA<br>0      | M16-9<br>NA             | 0            | NA           | NA          | NA<br>0      | NA<br>0        | NA<br>0       | 0<br>0       | NA<br>O      |       |    |
| Date & Time<br>09/20/96<br>6:00<br>8:00<br>10:00<br>12:00<br>16:00<br>18:00<br>20:00<br>09/21/96<br>0:00<br>2:00<br>4:00<br>6:00<br>8:00<br>10:00<br>12:00<br>12:00                   | Hour<br>0<br>2<br>4<br>6<br>8<br>10<br>12<br>14<br>16<br>18<br>20<br>22<br>24<br>24<br>28<br>30<br>32                               | NA<br>0     | NA           | NA           | M10-9<br>NA        | NA<br>0      | D            | 0<br>0<br>0<br>0       | O<br>O<br>O<br>NA       | O<br>D<br>O<br>NA | 0<br>0<br>0<br>0 | 0<br>0<br>0<br>0 | 0<br>0<br>0<br>NA       | NA<br>O<br>NA       | NA<br>O<br>NA       | NA<br>O<br>NA       | NA<br>O<br>NA       | NA<br>O<br>NA       | NA<br>O<br>NA       | NA<br>O     | NA<br>0      | NA<br>0      | M16-9<br>NA             | 0            | NA           | NA          | NA<br>0      | NA<br>0        | NA<br>0       | 0<br>0       | NA<br>O      |       |    |
| Date & Time<br>09/20/96<br>6:00<br>8:00<br>10:00<br>12:00<br>14:00<br>18:00<br>20:00<br>22:00<br>09/21/96<br>0:00<br>2:00<br>4:00<br>6:00<br>8:00<br>10:00<br>12:00<br>14:00<br>16:00 | Hour<br>0<br>2<br>4<br>6<br>8<br>10<br>12<br>14<br>16<br>18<br>20<br>22<br>24<br>28<br>30<br>32<br>34                               | NA<br>0     | 0<br>0       | 0<br>0       | 6 M10-9<br>NA<br>D | <b>№</b>     | D            | 0<br>0<br>0<br>0<br>NA | 0<br>0<br>0<br>NA<br>NA | O<br>D<br>O<br>NA | 0<br>0<br>0<br>0 | 0<br>0<br>0<br>0 | 0<br>0<br>0<br>NA       | NA<br>O<br>NA<br>NA | NA<br>O<br>NA<br>NA | NA<br>0<br>NA<br>NA | NA<br>O<br>NA<br>NA | NA<br>O<br>NA<br>NA | NA<br>O<br>NA<br>NA | 0<br>0      | NA<br>0      | NA<br>0      | <b>M16-9</b><br>NA<br>0 | 0<br>0       | D<br>D       | 0<br>0      | 0<br>0       | NA<br>0        | NA<br>0       | 0            | NA<br>0      | •     |    |
| Date & Time<br>09/20/96<br>6:00<br>8:00<br>10:00<br>12:00<br>14:00<br>16:00<br>22:00<br>09/21/96<br>0:00<br>2:00<br>4:00<br>6:00<br>8:00<br>10:00<br>12:00<br>14:00<br>14:00<br>18:00 | Hour<br>0<br>2<br>4<br>6<br>8<br>10<br>12<br>14<br>16<br>18<br>20<br>22<br>24<br>26<br>28<br>24<br>26<br>28<br>30<br>32<br>34<br>35 | NA<br>0     | NA           | NA           | M10-9<br>NA        | NA<br>0      | D            | 0<br>0<br>0<br>0       | O<br>O<br>O<br>NA       | O<br>D<br>O<br>NA | 0<br>0<br>0<br>0 | 0<br>0<br>0<br>0 | 0<br>0<br>0<br>NA<br>NA | NA<br>O<br>NA       | NA<br>O<br>NA       | NA<br>O<br>NA       | NA<br>O<br>NA       | NA<br>O<br>NA       | NA<br>O<br>NA       | NA<br>O     | NA<br>0      | NA<br>0      | M16-9<br>NA             | 0            | NA           | NA          | NA<br>0      | NA<br>0        | NA<br>0       | 0<br>0       | NA<br>O      | :     |    |
| Date & Time<br>09/20/96<br>6:00<br>8:00<br>10:00<br>12:00<br>14:00<br>18:00<br>20:00<br>22:00<br>09/21/96<br>0:00<br>2:00<br>4:00<br>6:00<br>8:00<br>10:00<br>12:00<br>14:00<br>16:00 | Hour<br>0<br>2<br>4<br>6<br>8<br>10<br>12<br>14<br>16<br>18<br>20<br>22<br>24<br>28<br>30<br>32<br>34                               | NA<br>0     | 0<br>0       | 0<br>0       | 6 M10-9<br>NA<br>D | <b>№</b>     | D            | 0<br>0<br>0<br>0<br>NA | 0<br>0<br>0<br>NA<br>NA | O<br>D<br>O<br>NA | 0<br>0<br>0<br>0 | 0<br>0<br>0<br>0 | 0<br>0<br>0<br>NA<br>NA | NA<br>O<br>NA<br>NA | NA<br>O<br>NA<br>NA | NA<br>0<br>NA<br>NA | NA<br>O<br>NA<br>NA | NA<br>O<br>NA<br>NA | NA<br>O<br>NA<br>NA | 0<br>0      | NA<br>0      | NA<br>0      | <b>M16-9</b><br>NA<br>0 | 0<br>0       | D<br>D       | 0<br>0      | 0<br>0       | NA<br>0        | NA<br>0       | 0            | NA<br>0      | ;     |    |



Figure D7. 72hr MS2 Plume at 9ft depth from 10/2/96 seeding experiment. Concentration in PFU/ml, flow direction to the west.



Figure D8. 72hr MS2 plume at 12ft depth from 10/2/96 seeding experiment. Concentrations in PFU/ml, flow direction to the west.

### Table D3. Tracer test data from MS2 injected into well I4,October 2, 1996.

| Well              | Hour     | PFU/ml             | Well             | Hour     | PFU/ml  | Well           | Hour     | PFU/ml             |
|-------------------|----------|--------------------|------------------|----------|---------|----------------|----------|--------------------|
| 14-01d            | 0        |                    | ML0-12           | 6        |         | ML1-9          | 18       |                    |
| I4-New            | 0        |                    | ML0-12           | 8        | 0.0E+00 | ML1-9          | 20       | 0.0E+00            |
| Slug              | 0        | 3.9E+10            | ML0-12           | 10       |         | ML1-9          | 24       |                    |
| Injection         | 0        | 5.6E+10            | ML0-12           | 12       |         | ML1-9          | 26       |                    |
| 14                | 0        | 0.0E+00            | ML0-12           | 14       |         | ML1-9          | 32       |                    |
| 14                | 2        | 2.5E+10            | ML0-12           | 16       |         | ML1-9          | 36       |                    |
| 14                | 4        | 1.2E+10            | ML0-12           | 18       | 0.05.00 | ML1-9          | 40       |                    |
| 14                | 6        | 0.55.40            | ML0-12           | 20       | 0.0E+00 | ML1-9          | 44       |                    |
| 14                | 8        | 2.5E+10            | ML0-12           | 24       |         | ML1-9          | 48       |                    |
| 14<br>14          | 10       |                    | ML0-12           | 26       |         | ML1-9          | 52       |                    |
| 14                | 12       | 9 45 .00           | ML0-12           | 32       |         | ML1-9          | 56       |                    |
| 14                | 14       | 8.4E+09            | ML0-12           | 36       |         | ML1-9          | 60<br>70 | 4 45 04            |
| 14<br>14          | 16<br>18 |                    | ML0-12           | 40<br>44 |         | ML1-9          | 72       | 1.1E-01            |
| 14<br>14          | 20       | 4.0E+09            | ML0-12<br>ML0-12 | 44<br>48 |         | ML2-9<br>ML2-9 | 0        | 1.8E+03            |
| 14<br>14          | 20<br>28 | 4.0E+09<br>1.8E+09 | ML0-12<br>ML0-12 | 40<br>52 |         | ML2-9<br>ML2-9 | 2<br>4   | 2.3E+04<br>7.9E+07 |
| 14<br>14          | 20<br>32 | 1.02709            | ML0-12<br>ML0-12 | 52<br>56 |         | ML2-9<br>ML2-9 | 4<br>6   | 7.9E+07<br>1.6E+08 |
| 14                | 32<br>36 |                    | ML0-12<br>ML0-12 | 60       |         | ML2-9          | 8        | 9.6E+07            |
| 14                | 30<br>40 | 1.5E+09            | ML0-12<br>ML0-12 | 72       | 0.0E+00 | ML2-9<br>ML2-9 | 0<br>10  | 9.0E+07<br>8.7E+07 |
| 14<br>14          | 44       | 1.52+09            | ML0-12<br>ML0-15 | 0        | 9.5E+00 | ML2-9<br>ML2-9 | 12       | 0.7 6+07           |
| 14                | 48       | 7.6E+08            | ML0-15           | 2        | 9.52100 | ML2-9<br>ML2-9 | 14       | 5.0E+07            |
| 14                | 52       |                    | ML0-15           | 4        |         | ML2-9          | 16       | 5.0L · 07          |
| 4                 | 56       |                    | ML0-15           | 6        |         | ML2-9          | 18       |                    |
| I4                | 60       | 3.6E+08            | ML0-15           | 8        | 0.0E+00 | ML2-9          | 20       | 3.9E+07            |
| 14                | 72       | 1.9E+08            | ML0-15           | 10       | 0.02.00 | ML2-9          | 24       | 0.02.07            |
| ML0-9             | 0        | 2.5E+02            | ML0-15           | 12       |         | ML2-9          | 28       | 1.1E+07            |
| ML0-9             | 2        | 9.7E+04            | ML0-15           | 14       |         | ML2-9          | 32       | 1.12.01            |
| ML0-9             | 4        | 8.8E+04            | ML0-15           | 16       |         | ML2-9          | 36       |                    |
| ML0-9             | 6        | 6.0E+04            | ML0-15           | 18       |         | ML2-9          | 40       | 6.3E+06            |
| ML0-9             | 8        |                    | ML0-15           | 20       | 0.0E+00 | ML2-9          | 44       |                    |
| ML0-9             | 10       | 9.2E+03            | ML0-15           | 24       |         | ML2-9          | 48       | 6.4E+06            |
| ML0-9             | 12       |                    | ML0-15           | 26       |         | ML2-9          | 52       |                    |
| ML0-9             | 14       |                    | ML0-15           | 32       |         | ML2-9          | 56       |                    |
| ML0-9             | 16       |                    | ML0-15           | 36       |         | ML2-9          | 60       | 3.7E+06            |
| ML0-9             | 18       |                    | ML0-15           | 40       |         | ML2-9          | 72       | 2.0E+06            |
| ML0-9             | 20       | 1.2E+03            | ML0-15           | 44       |         | ML2-12         | 0        | 0.0E+00            |
| ML0-9             | 24       |                    | ML0-15           | 48       |         | ML2-12         | 2        |                    |
| ML0-9             | 26       |                    | ML0-15           | 52       |         | ML2-12         | 4        |                    |
| ML0-9             | 32       |                    | ML0-15           | 56       |         | ML2-12         | 6        |                    |
| ML0-9             | 36       |                    | ML0-15           | 60       |         | ML2-12         | 8        | 0.0E+00            |
| ML0- <del>9</del> | 40       | 8.8E+02            | ML0-15           | 72       |         | ML2-12         | 10       |                    |
| ML0-9             | 44       |                    | ML1-9            | 0        | 1.3E+01 | ML2-12         | 12       |                    |
| ML0-9             | 48       |                    | ML1-9            | 2        |         | ML2-12         | 14       |                    |
| ML0-9             | 52       |                    | ML1-9            | 4        |         | ML2-12         | 16       |                    |
| ML0-9             | 56       |                    | ML1-9            | 6        |         | ML2-12         | 18       |                    |
| ML0-9             | 60       |                    | ML1-9            | 8        | 0.0E+00 | ML2-12         | 20       | 0.0E+00            |
| ML0-9             | 72       | 4.8E+02            | ML1-9            | 10       |         | ML2-12         | 24       |                    |
| ML0-12            | 0        | 9.9E-01            | ML1-9            | 12       |         | ML2-12         | 26       |                    |
| ML0-12            | 2        |                    | ML1-9            | 14       |         | ML2-12         | 32       |                    |
| ML0-12            | 4        |                    | ML1-9            | 16       |         | ML2-12         | 36       |                    |
|                   |          |                    |                  |          |         |                |          |                    |

### Table D3. Tracer test data from MS2 injected into well I4,October 2, 1996.

| -,   |                 |      |         |        |      |         |        |      |         |
|------|-----------------|------|---------|--------|------|---------|--------|------|---------|
| W    | 'ell            | Hour | PFU/ml  | Well   | Hour | PFU/ml  | Well   | Hour | PFU/ml  |
| ML   | 2-12            | 40   |         | ML3-9  | 72   | 0.0E+00 | ML7-12 | 10   |         |
| ML   | 2-12            | 44   |         | ML6-9  | 0    | 1.1E-01 | ML7-12 | 12   |         |
| ML   | 2-12            | 48   |         | ML6-9  | 2    |         | ML7-12 | 14   |         |
| ML2  | 2-12            | 52   |         | ML6-9  | 4    |         | ML7-12 | 16   |         |
| ML2  | 2-12            | 56   |         | ML6-9  | 6    |         | ML7-12 | 18   |         |
| ML2  | 2-12            | 60   |         | ML6-9  | 8    | 0.0E+00 | ML7-12 | 20   | 0.0E+00 |
| ML2  | 2-12            | 72   | 1.1E-01 | ML6-9  | 10   |         | ML7-12 | 24   |         |
| ML2  | 2-15            | 0    | 0.0E+00 | ML6-9  | 12   |         | ML7-12 | 26   |         |
| ML2  | 2-15            | 2    |         | ML6-9  | 14   |         | ML7-12 | 32   |         |
| ML2  | 2-15            | 4    |         | ML6-9  | 16   |         | ML7-12 | 36   |         |
| ML2  | 2-15            | 6    |         | ML6-9  | 18   |         | ML7-12 | 40   |         |
| ML2  | 2-15            | 8    | 0.0E+00 | ML6-9  | 20   | 0.0E+00 | ML7-12 | 44   |         |
| ML2  | 2-15            | 10   |         | ML6-9  | 24   |         | ML7-12 | 48   |         |
| ML2  | 2-15            | 12   |         | ML6-9  | 26   |         | ML7-12 | 52   |         |
| ML2  | 2-15            | 14   |         | ML6-9  | 32   |         | ML7-12 | 56   |         |
| ML2  | 2-15            | 16   |         | ML6-9  | 36   |         | ML7-12 | 60   |         |
| ML2  | 2-15            | 18   |         | ML6-9  | 40   |         | ML7-12 | 72   | 3.3E-01 |
| ML2  | 2-15            | 20   | 0.0E+00 | ML6-9  | 44   |         | ML7-15 | 0    | 7.7E-01 |
| ML2  | 2-15            | 24   |         | ML6-9  | 48   |         | ML7-15 | 2    |         |
| ML2  | 2-15            | 26   |         | ML6-9  | 52   |         | ML7-15 | 4    |         |
| ML2  | 2-15            | 32   |         | ML6-9  | 56   |         | ML7-15 | 6    |         |
| ML2  | 2-15            | 36   |         | ML6-9  | 60   |         | ML7-15 | 8    | 0.0E+00 |
| ML2  | 2-15            | 40   |         | ML6-9  | 72   | 2.9E+01 | ML7-15 | 10   |         |
| ML2  | 2-15            | 44   |         | ML7-9  | 0    | 1.6E+03 | ML7-15 | 12   |         |
| ML2  | 2-15            | 48   |         | ML7-9  | 2    |         | ML7-15 | 14   |         |
| ML2  | 2-15            | 52   | •       | ML7-9  | 4    | 6.1E+02 | ML7-15 | 16   |         |
| ML2  | 2-15            | 56   |         | ML7-9  | 6    |         | ML7-15 | 18   |         |
| ML2  | 2-15            | 60   |         | ML7-9  | 8    | 1.4E+06 | ML7-15 | 20   | 0.0E+00 |
| ML2  | 2-15            | 72   | 1.1E-01 | ML7-9  | 10   | 6.1E+06 | ML7-15 | 24   |         |
| ML   | 3-9             | 0    |         | ML7-9  | 12   | 1.3E+07 | ML7-15 | 26   |         |
| ML   | 3-9             | 2    |         | ML7-9  | 14   | 1.6E+07 | ML7-15 | 32   |         |
| ML.  | 3-9             | 4    |         | ML7-9  | 16   | 1.4E+07 | ML7-15 | 36   |         |
| ML   | 3- <del>9</del> | 6    |         | ML7-9  | 18   | 1.2E+07 | ML7-15 | 40   |         |
| ML   | 3-9             | 8    | 0.0E+00 | ML7-9  | 20   | 1.1E+07 | ML7-15 | 44   |         |
| ML   | 3-9             | 10   |         | ML7-9  | 24   |         | ML7-15 | 48   |         |
| ML   | 3-9             | 12   |         | ML7-9  | 28   | 5.6E+06 | ML7-15 | 52   |         |
| ML   | 3-9             | 14   |         | ML7-9  | 32   |         | ML7-15 | 56   |         |
| ML   | 3-9             | 16   |         | ML7-9  | 36   |         | ML7-15 | 60   |         |
| ML.  | 3-9             | 18   |         | ML7-9  | 40   | 2.0E+06 | ML7-15 | 72   | 1.1E-01 |
| ML   | 3-9             | 20   | 0.0E+00 | ML7-9  | 44   |         | ML8-9  | 0    | 9.1E+02 |
| ML   | .3-9            | 24   |         | ML7-9  | 48   | 1.6E+06 | ML8-9  | 2    |         |
| ML   | .3-9            | 26   |         | ML7-9  | 52   |         | ML8-9  | 4    |         |
| ML   | .3-9            | 32   |         | ML7-9  | 56   |         | ML8-9  | 6    |         |
| ML   | .3-9            | 36   |         | ML7-9  | 60   | 7.2E+05 | ML8-9  | 8    | 0.0E+00 |
| ML   | .3-9            | 40   |         | ML7-9  | 72   | 4.0E+05 | ML8-9  | 10   |         |
| , ML | .3-9            | 44   |         | ML7-12 | 0    | 0.0E+00 | ML8-9  | 12   |         |
| ML   | .3-9            | 48   |         | ML7-12 | 2    |         | ML8-9  | 14   |         |
| ML   | .3-9            | 52   |         | ML7-12 | 4    |         | ML8-9  | 16   |         |
| ML   | .3-9            | 56   |         | ML7-12 | 6    |         | ML8-9  | 18   |         |
| ML   | _3-9            | 60   |         | ML7-12 | 8    | 0.0E+00 | ML8-9  | 20   | 0.0E+00 |
|      |                 |      |         |        | -    |         |        |      |         |

#### Table D3. Tracer test data from MS2 injected into well I4,October 2, 1996.

| Well   | Hour | PFU/ml  | Well               | Hour | PFU/ml  | Well    | Hour | PFU/mi  |
|--------|------|---------|--------------------|------|---------|---------|------|---------|
| ML8-9  | 24   |         | ML8-15             | 48   |         | ML9-15  | 2    |         |
| ML8-9  | 26   |         | ML8-15             | 52   |         | ML9-15  | 4    |         |
| ML8-9  | 32   |         | ML8-15             | 56   |         | ML9-15  | 6    |         |
| ML8-9  | 36   |         | ML8-15             | 60   |         | ML9-15  | 8    | 0.0E+00 |
| ML8-9  | 40   |         | ML8-15             | 72   | 4.4E-01 | ML9-15  | 10   |         |
| ML8-9  | 44   |         | ML9-9              | 0    | 4.3E+01 | ML9-15  | 12   |         |
| ML8-9  | 48   |         | ML9-9              | 2    |         | ML9-15  | 14   |         |
| ML8-9  | 52   |         | ML9-9              | 4    |         | ML9-15  | 16   |         |
| ML8-9  | 56   |         | ML9-9              | 6    |         | ML9-15  | 18   |         |
| ML8-9  | 60   |         | ML9-9              | 8    | 0.0E+00 | ML9-15  | 20   | 0.0E+00 |
| ML8-9  | 72   | 3.9E+04 | ML9-9              | 10   |         | ML9-15  | 24   |         |
| ML8-12 | 0    | 5.3E+02 | ML9-9              | 12   |         | ML9-15  | 26   |         |
| ML8-12 | 2    |         | ML9-9              | 14   |         | ML9-15  | 32   |         |
| ML8-12 | 4    |         | ML9-9              | 16   |         | ML9-15  | 36   |         |
| ML8-12 | 6    |         | ML9-9              | 18   |         | ML9-15  | 40   |         |
| ML8-12 | 8    | 0.0E+00 | ML9-9              | 20   | 0.0E+00 | ML9-15  | 44   |         |
| ML8-12 | 10   |         | ML9-9              | 24   |         | ML9-15  | 48   |         |
| ML8-12 | 12   |         | ML9-9              | 26   |         | ML9-15  | 52   |         |
| ML8-12 | 14   |         | ML9-9              | 32   |         | ML9-15  | 56   |         |
| ML8-12 | 16   |         | ML <del>9</del> -9 | 36   |         | ML9-15  | 60   |         |
| ML8-12 | 18   |         | ML <del>9</del> -9 | 40   |         | ML9-15  | 72   | 4.4E-01 |
| ML8-12 | 20   | 0.0E+00 | ML <del>9</del> -9 | 44   |         | ML19-9  | 0    | 0.0E+00 |
| ML8-12 | 24   |         | ML9-9              | 48   |         | ML19-9  | 2    |         |
| ML8-12 | 26   |         | ML9-9              | 52   |         | ML19-9  | 4    |         |
| ML8-12 | 32   |         | ML9-9              | 56   |         | ML19-9  | 6    |         |
| ML8-12 | 36   |         | ML9-9              | 60   |         | ML19-9  | 8    | 0.0E+00 |
| ML8-12 | 40   |         | ML9-9              | 72   | 8.8E+03 | ML19-9  | 10   |         |
| ML8-12 | 44   |         | ML9-12             | 0    | 1.9E+02 | ML19-9  | 12   |         |
| ML8-12 | 48   |         | ML9-12             | 2    |         | ML19-9  | 14   |         |
| ML8-12 | 52   |         | ML9-12             | 4    |         | ML19-9  | 16   |         |
| ML8-12 | 56   |         | ML9-12             | 6    |         | ML19-9  | 18   |         |
| ML8-12 | 60   |         | ML9-12             | 8    | 0.0E+00 | ML19-9  | 20   | 0.0E+00 |
| ML8-12 | 72   | 9.4E+04 | ML9-12             | 10   |         | ML19-9  | 24   |         |
| ML8-15 | 0    | 0.0E+00 | ML9-12             | 12   |         | ML19-9  | 26   |         |
| ML8-15 | 2    |         | ML9-12             | 14   |         | ML19-9  | 32   |         |
| ML8-15 | 4    |         | ML9-12             | 16   |         | ML19-9  | 36   |         |
| ML8-15 | 6    |         | ML9-12             | 18   |         | ML19-9  | 40   |         |
| ML8-15 | 8    | 0.0E+00 | ML9-12             | 20   | 0.0E+00 | ML19-9  | 44   |         |
| ML8-15 | 10   |         | ML9-12             | 24   |         | ML19-9  | 48   |         |
| ML8-15 | 12   |         | ML9-12             | 26   |         | ML19-9  | 52   |         |
| ML8-15 | 14   |         | ML9-12             | 32   |         | ML19-9  | 56   |         |
| ML8-15 | 16   |         | ML9-12             | 36   |         | ML19-9  | 60   |         |
| ML8-15 | 18   |         | ML9-12             | 40   |         | ML19-9  | 72   | 0.0E+00 |
| ML8-15 | 20   | 0.0E+00 | ML9-12             | 44   |         | ML19-12 | 0    | 8.8E-01 |
| ML8-15 | 24   |         | ML9-12             | 48   |         | ML19-12 | 2    |         |
| ML8-15 | 26   |         | ML9-12             | 52   |         | ML19-12 | 4    |         |
| ML8-15 | 32   |         | ML9-12             | 56   |         | ML19-12 | 6    |         |
| ML8-15 | 36   |         | ML9-12             | 60   |         | ML19-12 | 8    | 0.0E+00 |
| ML8-15 | 40   |         | ML9-12             | 72   | 5.1E+04 | ML19-12 | 10   |         |
| ML8-15 | 44   |         | ML9-15             | 0    | 0.0E+00 | ML19-12 | 12   |         |
|        |      |         |                    | •    | 0.02.00 |         | •    |         |

#### Table D3. Tracer test data from MS2 injected into well 14,October 2, 1996.

| ,       |      |         |                    |      |         |         |      |         |
|---------|------|---------|--------------------|------|---------|---------|------|---------|
| Well    | Hour | PFU/ml  | Well               | Hour | PFU/ml  | Well    | Hour | PFU/ml  |
| ML19-12 | 14   |         | ML10-9             | 32   |         | ML11-12 | 56   |         |
| ML19-12 | 16   |         | ML10-9             | 36   |         | ML11-12 | 60   |         |
| ML19-12 | 18   |         | ML10-9             | 40   |         | ML11-12 | 72   | 0.0E+00 |
| ML19-12 | 20   | 0.0E+00 | ML10-9             | 44   |         | ML12-9  | 0    | 1.0E+01 |
| ML19-12 | 24   |         | ML10-9             | 48   |         | ML12-9  | 2    |         |
| ML19-12 | 26   |         | ML10-9             | 52   |         | ML12-9  | 4    |         |
| ML19-12 | 32   |         | ML10-9             | 56   |         | ML12-9  | 6    |         |
| ML19-12 | 36   |         | ML10-9             | 60   |         | ML12-9  | 8    | 5.1E+00 |
| ML19-12 | 40   |         | ML10-9             | 72   | 0.0E+00 | ML12-9  | 10   |         |
| ML19-12 | 44   |         | ML11-9             | 0    | 8.1E+00 | ML12-9  | 12   |         |
| ML19-12 | 48   |         | ML11-9             | 2    |         | ML12-9  | 14   | 7.0E+01 |
| ML19-12 | 52   |         | ML11-9             | 4    |         | ML12-9  | 16   |         |
| ML19-12 | 56   |         | ML11- <del>9</del> | 6    |         | ML12-9  | 18   |         |
| ML19-12 | 60   |         | ML11-9             | 8    | 0.0E+00 | ML12-9  | 20   | 1.0E+04 |
| ML19-12 | 72   | 0.0E+00 | ML11-9             | 10   |         | ML12-9  | 24   |         |
| ML19-15 | 0    | 6.6E-01 | ML11-9             | 12   |         | ML12-9  | 28   | 1.1E+04 |
| ML19-15 | 2    |         | ML11-9             | 14   |         | ML12-9  | 32   | 2.5E+04 |
| ML19-15 | 4    |         | ML11-9             | 16   |         | ML12-9  | 36   | 2.5E+04 |
| ML19-15 | 6    |         | ML11-9             | 18   |         | ML12-9  | 40   | 1.5E+04 |
| ML19-15 | 8    | 0.0E+00 | ML11-9             | 20   | 0.0E+00 | ML12-9  | 44   | 1.4E+04 |
| ML19-15 | 10   |         | ML11-9             | 24   |         | ML12-9  | 48   | 1.1E+04 |
| ML19-15 | 12   |         | ML11-9             | 26   |         | ML12-9  | 52   | 1.2E+04 |
| ML19-15 | 14   |         | ML11-9             | 32   |         | ML12-9  | 56   | 1.1E+04 |
| ML19-15 | 16   |         | ML11-9             | 36   |         | ML12-9  | 60   | 3.7E+03 |
| ML19-15 | 18   |         | ML11-9             | 40   |         | ML12-9  | 72   | 2.8E+03 |
| ML19-15 | 20   | 0.0E+00 | ML11-9             | 44   |         | ML12-12 | 0    | 7.3E+00 |
| ML19-15 | 24   |         | ML11-9             | 48   |         | ML12-12 | 2    |         |
| ML19-15 | 26   |         | ML11-9             | 52   |         | ML12-12 | 4    |         |
| ML19-15 | 32   |         | ML11-9             | 56   |         | ML12-12 | 6    |         |
| ML19-15 | 36   |         | ML11-9             | 60   |         | ML12-12 | 8    | 0.0E+00 |
| ML19-15 | 40   |         | ML11-9             | 72   | 2.2E+02 | ML12-12 | 10   |         |
| ML19-15 | 44   |         | ML11-12            | 0    | 0.0E+00 | ML12-12 | 12   |         |
| ML19-15 | 48   |         | ML11-12            | 2    |         | ML12-12 | 14   |         |
| ML19-15 | 52   |         | ML11-12            | 4    |         | ML12-12 | 16   |         |
| ML19-15 | 56   |         | ML11-12            | 6    |         | ML12-12 | 18   |         |
| ML19-15 | 60   |         | ML11-12            | 8    | 0.0E+00 | ML12-12 | 20   | 0.0E+00 |
| ML19-15 | 72   |         | ML11-12            | 10   |         | ML12-12 | 24   |         |
| ML10-9  | 0    | 2.2E+00 | ML11-12            | 12   |         | ML12-12 | 26   |         |
| ML10-9  | 2    |         | ML11-12            | 14   |         | ML12-12 | 32   |         |
| ML10-9  | 4    |         | ML11-12            | 16   |         | ML12-12 | 36   |         |
| ML10-9  | 6    |         | ML11-12            | 18   |         | ML12-12 | 40   |         |
| ML10-9  | 8    |         | ML11-12            | 20   | 0.0E+00 | ML12-12 | 44   |         |
| ML10-9  | 10   |         | ML11-12            | 24   |         | ML12-12 | 48   |         |
| ML10-9  | 12   |         | ML11-12            | 26   |         | ML12-12 | 52   |         |
| ML10-9  | 14   |         | ML11-12            | 32   |         | ML12-12 | 56   |         |
| ML10-9  | 16   |         | ML11-12            | 36   |         | ML12-12 | 60   |         |
| ML10-9  | 18   |         | ML11-12            | 40   |         | ML12-12 | 72   | 1.5E+03 |
| ML10-9  | 20   |         | ML11-12            | 44   |         | ML12-15 | 0    | 0.0E+00 |
| ML10-9  | 24   |         | ML11-12            | 48   |         | ML12-15 | 2    |         |
| ML10-9  | 26   |         | ML11-12            | 52   |         | ML12-15 | 4    |         |
|         |      |         |                    |      |         |         | -    |         |

#### Table D3. Tracer test data from MS2 injected into well I4, October 2, 1996.

| ,                  |          |                    |         |          |           |                    |          |         |
|--------------------|----------|--------------------|---------|----------|-----------|--------------------|----------|---------|
| Well               | Hour     | PFU/ml             | Well    | Hour     | PFU/ml    | Well               | Hour     | PFU/ml  |
| ML12-15            | 6        |                    | ML13-12 | 18       |           | ML14-9             | 40       | 1.8E+05 |
| ML12-15            | 8        | 0.0E+00            | ML13-12 | 20       | 0.0E+00   | ML14-9             | 44       | 4.8E+04 |
| ML12-15            | 10       |                    | ML13-12 | 24       |           | ML14-9             | 48       | 6.1E+04 |
| ML12-15            | 12       |                    | ML13-12 | 26       |           | ML14-9             | 52       | 2.5E+04 |
| ML12-15            | 14       |                    | ML13-12 | 32       |           | ML14-9             | 56       | 3.3E+04 |
| ML12-15            | 16       |                    | ML13-12 | 36       |           | ML14-9             | 60       | 6.8E+04 |
| ML12-15            | 18       |                    | ML13-12 | 40       |           | ML14-9             | 72       | 3.6E+04 |
| ML12-15            | 20       | 0.0E+00            | ML13-12 | 44       |           | ML14-12            | 0        | 1.2E+01 |
| ML12-15            | 24       |                    | ML13-12 | 48       |           | ML14-12            | 2        |         |
| ML12-15            | 26       |                    | ML13-12 | 52       |           | ML14-12            | 4        |         |
| ML12-15            | 32       |                    | ML13-12 | 56       |           | ML14-12            | 6        |         |
| ML12-15            | 36       |                    | ML13-12 | 60       |           | ML14-12            | 8        | 0.0E+00 |
| ML12-15            | 40       |                    | ML13-12 | 72       | 2.1E+04   | ML14-12            | 10       |         |
| ML12-15            | 44       |                    | ML13-15 | 0        | 1.1E+01   | ML14-12            | 12       |         |
| ML12-15            | 48       |                    | ML13-15 | 2        |           | ML14-12            | 14       | 0.0E+00 |
| ML12-15            | 52       |                    | ML13-15 | 4        |           | ML14-12            | 16       |         |
| ML12-15            | 56       |                    | ML13-15 | 6        |           | ML14-12            | 18       |         |
| ML12-15            | 60       |                    | ML13-15 | 8        | 0.0E+00   | ML14-12            | 20       | 0.0E+00 |
| ML12-15            | 72       | 0.0E+00            | ML13-15 | 10       |           | ML14-12            | 24       |         |
| ML13-9             | 0        | 8.8E-01            | ML13-15 | 12       |           | ML14-12            | 26       |         |
| ML13-9             | 2        |                    | ML13-15 | 14       |           | ML14-12            | 32       |         |
| ML13-9             | 4        |                    | ML13-15 | 16       |           | ML14-12            | 36       |         |
| ML13-9             | 6        |                    | ML13-15 | 18       |           | ML14-12            | 40       |         |
| ML13-9             | 8        | 0.0E+00            | ML13-15 | 20       | 0.0E+00   | ML14-12            | 44       |         |
| ML13-9             | 10       | 0.02.00            | ML13-15 | 24       | 0.02.00   | ML14-12            | 48       |         |
| ML13-9             | 12       |                    | ML13-15 | 26       |           | ML14-12            | 52       |         |
| ML13-9             | 14       | 2.2E-01            | ML13-15 | 32       |           | ML14-12            | 56       |         |
| ML13-9             | 16       |                    | ML13-15 | 36       |           | ML14-12            | 60       |         |
| ML13-9             | 18       |                    | ML13-15 | 40       |           | ML14-12            | 72       | 7.2E+03 |
| ML13-9             | 20       | 1.9E+00            | ML13-15 | 44       |           | ML14-12            | 0        | 7.3E+00 |
| ML13-9             | 24       |                    | ML13-15 | 48       |           | ML14-15            | 2        | 1.52.00 |
| ML13-9             | 28       | 1.7E+02            | ML13-15 | 52       |           | ML14-15            | 4        |         |
| ML13-9             | 32       | 0.0E+00            | ML13-15 | 56       |           | ML14-15            | 6        |         |
| ML13-9             | 36       | 1.6E+02            | ML13-15 | 60       |           | ML14-15            | 8        | 0.0E+00 |
| ML13-9             | 40       | 2.5E+02            | ML13-15 | 72       | 8.4E+03   | ML14-15            | 10       |         |
| ML13-9             | 44       | 7.2E+02            | ML14-9  | 0        | 6.8E+01   | ML14-15            | 12       |         |
| ML13-9             | 48       | 7.5E+01            | ML14-9  | 2        | 0.02.01   | ML14-15            | 14       |         |
| ML13-9             | 52       | 3.8E+01            | ML14-9  | 4        |           | ML14-15            | 16       |         |
| ML13-9             | 52<br>56 | 5.4E+01            | ML14-9  | 6        |           | ML14-15            | 18       |         |
| ML13-9             | 60       | 6.1E+01            | ML14-9  | 8        | 7.3E+01   | ML14-15            | 20       | 0.0E+00 |
| ML13-9<br>ML13-9   | 72       | 4.2E+01            | ML14-9  | 10       | 1.32+01   | ML14-15<br>ML14-15 | 20<br>24 | 0.02700 |
| ML13-12            | 0        | 4.2E+00<br>3.4E+01 |         | 12       |           | ML14-15<br>ML14-15 | 24<br>26 |         |
| ML13-12<br>ML13-12 | 2        | 3.46701            | ML14-9  |          | 1 15:04   | ML14-15<br>ML14-15 | 32       |         |
| ML13-12<br>ML13-12 | 4        |                    | ML14-9  | 14       | 1.1E+04   |                    |          |         |
| ML13-12<br>ML13-12 | 6        |                    | ML14-9  | 16       |           | ML14-15            | 36       |         |
| , ML13-12          | 8        |                    | ML14-9  | 18<br>20 |           | ML14-15            | 40       |         |
| ML13-12<br>ML13-12 | 。<br>10  | 0.0E+00            | ML14-9  | 20       | 4.4E+05   | ML14-15            | 44       |         |
| ML13-12<br>ML13-12 | 10       |                    | ML14-9  | 24       | 0 75 . 05 | ML14-15            | 48       |         |
| ML13-12<br>ML13-12 | 12       |                    | ML14-9  | 28       | 3.7E+05   | ML14-15            | 52       |         |
| ML13-12<br>ML13-12 | 14       |                    | ML14-9  | 32       | 2.9E+05   | ML14-15            | 56       |         |
| IVIL 13-12         | 10       |                    | ML14-9  | 36       | 2.3E+05   | ML14-15            | 60       |         |

#### Table D3. Tracer test data from MS2 injected into well I4, October 2, 1996.

| 1990.            |      |         |         |          |                  |      |      |          |
|------------------|------|---------|---------|----------|------------------|------|------|----------|
| Well             | Hour | PFU/ml  | Well    | Hour     | PFU/ml           | Well | Hour | PFU/ml   |
| ML14-15          | 72   | 1.8E+03 | ML18-9  | 10       |                  | W1   | 24   |          |
| ML17-9           | 0    | 1.1E-01 | ML18-9  | 12       |                  | W1   | 28   |          |
| ML17-9           | 2    |         | ML18-9  | 14       |                  | W1   | 32   |          |
| ML17-9           | 4    |         | ML18-9  | 16       |                  | W1   | 36   |          |
| ML17-9           | 6    |         | ML18-9  | 18       |                  | W1   | 40   | 1.8E+06  |
| ML17-9           | 8    | 8.8E+00 | ML18-9  | 20       | 3.5E+02          | W1   | 44   |          |
| ML17-9           | 10   |         | ML18-9  | 24       |                  | W1   | 48   |          |
| ML17-9           | 12   |         | ML18-9  | 26       |                  | W1   | 52   |          |
| ML17-9           | 14   |         | ML18-9  | 32       |                  | W1   | 56   |          |
| ML17-9           | 16   |         | ML18-9  | 36       |                  | W1   | 60   |          |
| ML17-9           | 18   |         | ML18-9  | 40       | 1.4E+04          | W1   | 72   | 5.2E+05  |
| ML17-9<br>ML17-9 | 20   | 4.3E+04 | ML18-9  | 44       | 1.42.04          | W2   | 0    | J.ZL 100 |
| ML17-9<br>ML17-9 | 24   | 4.52+04 | ML18-9  | 48       |                  | W2   | 2    |          |
|                  |      |         |         |          |                  | W2   | 4    | 0.05+00  |
| ML17-9           | 26   |         | ML18-9  | 52       |                  |      |      | 0.0E+00  |
| ML17-9           | 32   |         | ML18-9  | 56       |                  | W2   | 6    |          |
| ML17-9           | 36   | 0.05.04 | ML18-9  | 60       | 0.45.00          | W2   | 8    | 0.0E+00  |
| ML17-9           | 40   | 6.9E+04 | ML18-9  | 72       | 3.4E+03          | W2   | 10   |          |
| ML17-9           | 44   |         | ML18-12 | 0        | 1.2E+01          | W2   | 12   |          |
| ML17-9           | 48   |         | ML18-12 | 2        |                  | W2   | 14   | 7.2E+00  |
| ML17-9           | 52   |         | ML18-12 | 4        |                  | W2   | 16   |          |
| ML17-9           | 56   |         | ML18-12 | 6        |                  | W2   | 18   |          |
| ML17-9           | 60   |         | ML18-12 | 8        | 0.0E+00          | W2   | 20   | 4.7E+03  |
| ML17-9           | 72   | 1.2E+04 | ML18-12 | 10       |                  | W2   | 24   |          |
| ML17-12          | 0    | 1.3E+01 | ML18-12 | 12       |                  | W2   | 26   |          |
| ML17-12          | 2    |         | ML18-12 | 14       |                  | W2   | 32   |          |
| ML17-12          | 4    |         | ML18-12 | 16       |                  | W2   | 36   |          |
| ML17-12          | 6    |         | ML18-12 | 18       |                  | W2   | 40   |          |
| ML17-12          | 8    | 0.0E+00 | ML18-12 | 20       | 0.0E+00          | W2   | 44   |          |
| ML17-12          | 10   |         | ML18-12 | 24       |                  | W2   | 48   | 2.5E+03  |
| ML17-12          | 12   |         | ML18-12 | 26       |                  | W2   | 52   | 3.2E+03  |
| ML17-12          | 14   |         | ML18-12 | 32       |                  | W2   | 56   | 3.5E+03  |
| ML17-12          | 16   |         | ML18-12 | 36       |                  | W2   | 60   | 4.4E+03  |
| ML17-12          | 18   |         | ML18-12 | 40       |                  | W2   | 72   | 1.8E+04  |
| ML17-12          | 20   | 0.0E+00 | ML18-12 | 44       |                  |      |      |          |
| ML17-12          | 24   |         | ML18-12 | 48       |                  |      |      |          |
| ML17-12          | 26   |         | ML18-12 | 52       |                  |      |      |          |
| ML17-12          | 32   |         | ML18-12 | 56       |                  |      |      |          |
| ML17-12          | 36   |         | ML18-12 | 60       |                  |      |      |          |
| ML17-12          | 40   |         | ML18-12 | 72       | 2.8E+03          |      |      |          |
| ML17-12          | 44   |         | W1      | 0        |                  |      |      |          |
| ML17-12          | 48   |         | W1      | 2        |                  |      |      |          |
| ML17-12          | 52   |         | W1      | 4        | 2.2E+02          |      |      |          |
| ML17-12          | 56   |         | W1      | 6        |                  |      |      |          |
| ML17-12          | 60   |         | W1      | 8        | 4.6E+05          |      |      |          |
| ML17-12          | 72   | 1.2E+02 | W1      | 10       | 4.02.00          |      |      |          |
| ML18-9           | 0    | 1.7E+02 | W1      | 12       | 1.5E+07          |      |      |          |
| ML18-9           | 2    |         |         |          |                  |      |      |          |
| ML18-9           | 4    |         | W1      | 14<br>16 | 1. <b>4E+0</b> 7 |      |      |          |
| ML18-9           | 6    |         | W1      | 16<br>19 |                  |      |      |          |
| ML18-9<br>ML18-9 | 8    | 8.8E-01 | W1      | 18       | 7 05 . 00        |      |      |          |
|                  | J    | 0.02-01 | W1      | 20       | 7.9E+06          |      |      |          |





Figure D10. 72hr PRD-1 plume at 12ft depth from 10/2/96 seeding experiment. Concentration in PFU/ml, flow direction to west.

#### Table D4. Tracer test data from PRD1 injected into well I4, October 2, 1996.

| _,        |      |         |        |      |         |        |      |         |
|-----------|------|---------|--------|------|---------|--------|------|---------|
| Well      | Hour | PFU/ml  | Well   | Hour | PFU/ml  | Well   | Hour | PFU/ml  |
| l4-Old    | 0    | 0.0E+00 | ML0-12 | 6    |         | ML1-9  | 18   |         |
| l4-New    | 0    | 0.0E+00 | ML0-12 | 8    | 0.0E+00 | ML1-9  | 20   | 0.0E+00 |
| Slug      | 0    | 3.7E+09 | ML0-12 | 10   |         | ML1-9  | 24   |         |
| Injection | 0    | 5.4E+09 | ML0-12 | 12   |         | ML1-9  | 26   |         |
| 14        | 0    | 0.0E+00 | ML0-12 | 14   |         | ML1-9  | 32   |         |
| 14        | 2    | 2.1E+09 | ML0-12 | 16   |         | ML1-9  | 36   |         |
| 14        | 4    | 1.9E+09 | ML0-12 | 18   |         | ML1-9  | 40   |         |
| 14        | 6    |         | ML0-12 | 20   | 0.0E+00 | ML1-9  | 44   |         |
| 14        | 8    | 1.1E+09 | ML0-12 | 24   |         | ML1-9  | 48   |         |
| 14        | 10   |         | ML0-12 | 26   |         | ML1-9  | 52   |         |
| 14        | 12   |         | ML0-12 | 32   |         | ML1-9  | 56   |         |
| 14        | 14   | 6.7E+08 | ML0-12 | 36   |         | ML1-9  | 60   |         |
| 14        | 16   |         | ML0-12 | 40   |         | ML1-9  | 72   | 0.0E+00 |
| 14        | 18   |         | ML0-12 | 44   |         | ML2-9  | 0    | 0.0E+00 |
| 14        | 20   | 2.4E+08 | ML0-12 | 48   |         | ML2-9  | 2    | 1.0E+03 |
| 14        | 28   | 1.8E+08 | ML0-12 | 52   |         | ML2-9  | 4    | 6.5E+06 |
| 14        | 32   |         | ML0-12 | 56   |         | ML2-9  | 6    | 9.3E+06 |
| 14        | 36   |         | ML0-12 | 60   |         | ML2-9  | 8    | 6.5E+06 |
| 14        | 40   | 9.1E+07 | ML0-12 | 72   | 0.0E+00 | ML2-9  | 10   | 4.7E+06 |
| 14        | 44   |         | ML0-15 | 0    | 0.0E+00 | ML2-9  | 12   |         |
| 14        | 48   | 4.8E+07 | ML0-15 | 2    |         | ML2-9  | 14   | 3.4E+06 |
| 14        | 52   |         | ML0-15 | 4    |         | ML2-9  | 16   |         |
| 14        | 56   |         | ML0-15 | 6    |         | ML2-9  | 18   |         |
| 14        | 60   | 1.7E+07 | ML0-15 | 8    | 0.0E+00 | ML2-9  | 20   | 1.8E+06 |
| 14        | 72   | 4.3E+06 | ML0-15 | 10   |         | ML2-9  | 24   |         |
| ML0-9     | 0    | 0.0E+00 | ML0-15 | 12   |         | ML2-9  | 28   | 7.4E+05 |
| ML0-9     | 2    | 5.3E+03 | ML0-15 | 14   |         | ML2-9  | 32   |         |
| ML0-9     | 4    | 4.6E+03 | ML0-15 | 16   |         | ML2-9  | 36   |         |
| ML0-9     | 6    | 3.6E+03 | ML0-15 | 18   |         | ML2-9  | 40   | 6.0E+05 |
| ML0-9     | 8    |         | ML0-15 | 20   | 0.0E+00 | ML2-9  | 44   |         |
| ML0-9     | 10   | 9.0E+02 | ML0-15 | 24   |         | ML2-9  | 48   | 4.2E+05 |
| ML0-9     | 12   |         | ML0-15 | 26   |         | ML2-9  | 52   |         |
| ML0-9     | 14   |         | ML0-15 | 32   |         | ML2-9  | 56   |         |
| ML0-9     | 16   |         | ML0-15 | 36   |         | ML2-9  | 60   | 1.9E+05 |
| ML0-9     | 18   |         | ML0-15 | 40   |         | ML2-9  | 72   | 1.7E+05 |
| ML0-9     | 20   | 1.3E+02 | ML0-15 | 44   |         | ML2-12 | 0    | 0.0E+00 |
| ML0-9     | 24   |         | ML0-15 | 48   |         | ML2-12 | 2    |         |
| ML0-9     | 26   |         | ML0-15 | 52   |         | ML2-12 | 4    |         |
| ML0-9     | 32   |         | ML0-15 | 56   |         | ML2-12 | 6    |         |
| ML0-9     | 36   |         | ML0-15 | 60   |         | ML2-12 | 8    | 0.0E+00 |
| ML0-9     | 40   | 3.3E+01 | ML0-15 | 72   |         | ML2-12 | 10   |         |
| ML0-9     | 44   |         | ML1-9  | 0    | 0.0E+00 | ML2-12 | 12   |         |
| ML0-9     | 48   |         | ML1-9  | 2    |         | ML2-12 | 14   |         |
| ML0-9     | 52   |         | ML1-9  | 4    |         | ML2-12 | 16   |         |
| ML0-9     | 56   |         | ML1-9  | 6    |         | ML2-12 | 18   |         |
| ML0-9     | 60   |         | ML1-9  | 8    | 0.0E+00 | ML2-12 | 20   | 0.0E+00 |
| ML0-9     | 72   | 1.5E+01 | ML1-9  | 10   |         | ML2-12 | 24   |         |
| ML0-12    | 0    | 0.0E+00 | ML1-9  | 12   |         | ML2-12 | 26   |         |
| ML0-12    | 2    |         | ML1-9  | 14   |         | ML2-12 | 32   |         |
| ML0-12    | 4    |         | ML1-9  | 16   |         | ML2-12 | 36   |         |
|           |      |         | -      |      |         |        |      |         |

### Table D4. Tracer test data from PRD1 injected into well I4, October 2, 1996.

| _,     |      |         |        |      |           |                |      |         |
|--------|------|---------|--------|------|-----------|----------------|------|---------|
| Well   | Hour | PFU/ml  | Well   | Hour | PFU/ml    | Weli           | Hour | PFU/mI  |
| ML2-12 | 40   |         | ML3-9  | 72   | 0.0E+00   | ML7-12         | 10   |         |
| ML2-12 | 44   |         | ML6-9  | 0    | 0.0E+00   | ML7-12         | 12   |         |
| ML2-12 | 48   |         | ML6-9  | 2    |           | ML7-12         | 14   |         |
| ML2-12 | 52   |         | ML6-9  | 4    |           | ML7-12         | 16   |         |
| ML2-12 | 56   |         | ML6-9  | 6    |           | ML7-12         | 18   |         |
| ML2-12 | 60   |         | ML6-9  | 8    | 0.0E+00   | ML7-12         | 20   | 0.0E+00 |
| ML2-12 | 72   | 0.0E+00 | ML6-9  | 10   |           | ML7-12         | 24   |         |
| ML2-15 | 0    | 0.0E+00 | ML6-9  | 12   |           | ML7-12         | 26   |         |
| ML2-15 | 2    |         | ML6-9  | 14   |           | ML7-12         | 32   |         |
| ML2-15 | 4    |         | ML6-9  | 16   |           | ML7-12         | 36   |         |
| ML2-15 | 6    |         | ML6-9  | 18   |           | ML7-12         | 40   |         |
| ML2-15 | 8    | 0.0E+00 | ML6-9  | 20   | 0.0E+00   | ML7-12         | 44   |         |
| ML2-15 | 10   |         | ML6-9  | 24   |           | ML7-12         | 48   |         |
| ML2-15 | 12   |         | ML6-9  | 26   |           | ML7-12         | 52   |         |
| ML2-15 | 14   |         | ML6-9  | 32   |           | ML7-12         | 56   |         |
| ML2-15 | 16   |         | ML6-9  | 36   |           | ML7-12         | 60   |         |
| ML2-15 | 18   |         | ML6-9  | 40   |           | ML7-12         | 72   | 0.0E+00 |
| ML2-15 | 20   | 0.0E+00 | ML6-9  | 44   |           | ML7-15         | 0    | 0.0E+00 |
| ML2-15 | 24   |         | ML6-9  | 48   |           | ML7-15         | 2    |         |
| ML2-15 | 26   |         | ML6-9  | 52   |           | ML7-15         | 4    |         |
| ML2-15 | 32   |         | ML6-9  | 56   |           | ML7-15         | 6    |         |
| ML2-15 | 36   |         | ML6-9  | 60   |           | ML7-15         | 8    | 0.0E+00 |
| ML2-15 | 40   |         | ML6-9  | 72   | 2.4E+00   | ML7-15         | 10   |         |
| ML2-15 | 44   |         | ML7-9  | 0    | 0.0E+00   | ML7-15         | 12   |         |
| ML2-15 | 48   |         | ML7-9  | 2    |           | ML7-15         | 14   |         |
| ML2-15 | 52   |         | ML7-9  | 4    | 0.0E+00   | ML7-15         | 16   |         |
| ML2-15 | 56   |         | ML7-9  | 6    |           | ML7-15         | 18   |         |
| ML2-15 | 60   |         | ML7-9  | 8    | 9.7E+04   | ML7-15         | 20   | 0.0E+00 |
| ML2-15 | 72   | 0.0E+00 | ML7-9  | 10   | 4.8E+05   | ML7-15         | 24   |         |
| ML3-9  | 0    |         | ML7-9  | 12   | 1.3E+06   | ML7-15         | 26   |         |
| ML3-9  | 2    |         | ML7-9  | 14   | 1.2E+06   | ML7-15         | 32   |         |
| ML3-9  | 4    |         | ML7-9  | 16   | 9.6E+05   | ML7-15         | 36   |         |
| ML3-9  | 6    |         | ML7-9  | 18   | 1.1E+06   | ML7-15         | 40   |         |
| ML3-9  | 8    | 0.0E+00 | ML7-9  | 20   | 6.5E+05   | ML7-15         | 44   |         |
| ML3-9  | 10   |         | ML7-9  | 24   |           | ML7-15         | 48   |         |
| ML3-9  | 12   |         | ML7-9  | 28   | 2.6E+05   | ML7-15         | 52   |         |
| ML3-9  | 14   |         | ML7-9  | 32   |           | ML7-15         | 56   |         |
| ML3-9  | 16   |         | ML7-9  | 36   |           | ML7-15         | 60   |         |
| ML3-9  | 18   |         | ML7-9  | 40   | 1.4E+05   | ML7-15         | 72   | 0.0E+00 |
| ML3-9  | 20   | 0.0E+00 | ML7-9  | 44   |           | ML8-9          | 0    | 0.0E+00 |
| ML3-9  | 24   |         | ML7-9  | 48   | 1.3E+05   | ML8-9          | 2    |         |
| ML3-9  | 26   |         | ML7-9  | 52   |           | ML8-9          | 4    |         |
| ML3-9  | 32   |         | ML7-9  | 56   |           | ML8-9          | 6    |         |
| ML3-9  | 36   |         | ML7-9  | 60   | 9.0E+04   | ML8-9          | 8    | 0.0E+00 |
| ML3-9  | 40   |         | ML7-9  | 72   | 5.2E+04   | ML8-9          | 10   |         |
| ML3-9  | 44   |         | ML7-12 | 0    | 0.0E+00   | ML8-9          | 12   |         |
| ML3-9  | 48   |         | ML7-12 | 2    | 0.02.00   | ML8-9          | 14   |         |
| ML3-9  | 52   |         | ML7-12 | 4    |           | ML8-9          | 16   |         |
| ML3-9  | 56   |         | ML7-12 | 6    |           | ML8-9          | 18   |         |
| ML3-9  | 60   |         | ML7-12 | 8    | 0.0E+00   | ML8-9<br>ML8-9 | 20   | 0.0E+00 |
|        |      |         |        | 5    | J.UL ' UU | IAICO-3        | 20   | 5.52.00 |

#### Table D4. Tracer test data from PRD1 injected into well I4,October 2, 1996.

| -,     |      |         |        |      |         |         |      |         |
|--------|------|---------|--------|------|---------|---------|------|---------|
| Well   | Hour | PFU/ml  | Well   | Hour | PFU/ml  | Well    | Hour | PFU/ml  |
| ML8-9  | 24   |         | ML8-15 | 48   |         | ML9-15  | 2    |         |
| ML8-9  | 26   |         | ML8-15 | 52   |         | ML9-15  | 4    |         |
| ML8-9  | 32   |         | ML8-15 | 56   |         | ML9-15  | 6    |         |
| ML8-9  | 36   |         | ML8-15 | 60   |         | ML9-15  | 8    | 0.0E+00 |
| ML8-9  | 40   |         | ML8-15 | 72   | 0.0E+00 | ML9-15  | 10   |         |
| ML8-9  | 44   |         | ML9-9  | 0    | 0.0E+00 | ML9-15  | 12   |         |
| ML8-9  | 48   |         | ML9-9  | 2    |         | ML9-15  | 14   |         |
| ML8-9  | 52   |         | ML9-9  | 4    |         | ML9-15  | 16   |         |
| ML8-9  | 56   |         | ML9-9  | 6    |         | ML9-15  | 18   |         |
| ML8-9  | 60   |         | ML9-9  | 8    | 0.0E+00 | ML9-15  | 20   | 0.0E+00 |
| ML8-9  | 72   | 1.5E+04 | ML9-9  | 10   |         | ML9-15  | 24   |         |
| ML8-12 | 0    | 0.0E+00 | ML9-9  | 12   |         | ML9-15  | 26   |         |
| ML8-12 | 2    |         | ML9-9  | 14   |         | ML9-15  | 32   |         |
| ML8-12 | 4    |         | ML9-9  | 16   |         | ML9-15  | 36   |         |
| ML8-12 | 6    |         | ML9-9  | 18   |         | ML9-15  | 40   |         |
| ML8-12 | 8    | 0.0E+00 | ML9-9  | 20   | 0.0E+00 | ML9-15  | 44   |         |
| ML8-12 | 10   |         | ML9-9  | 24   |         | ML9-15  | 48   |         |
| ML8-12 | 12   |         | ML9-9  | 26   |         | ML9-15  | 52   |         |
| ML8-12 | 14   |         | ML9-9  | 32   |         | ML9-15  | 56   |         |
| ML8-12 | 16   |         | ML9-9  | 36   |         | ML9-15  | 60   |         |
| ML8-12 | 18   |         | ML9-9  | 40   |         | ML9-15  | 72   | 3.3E-01 |
| ML8-12 | 20   | 0.0E+00 | ML9-9  | 44   |         | ML19-9  | 0    | 0.0E+00 |
| ML8-12 | 24   |         | ML9-9  | 48   |         | ML19-9  | 2    |         |
| ML8-12 | 26   |         | ML9-9  | 52   |         | ML19-9  | 4    |         |
| ML8-12 | 32   |         | ML9-9  | 56   |         | ML19-9  | 6    |         |
| ML8-12 | 36   |         | ML9-9  | 60   |         | ML19-9  | 8    | 0.0E+00 |
| ML8-12 | 40   |         | ML9-9  | 72   | 1.8E+03 | ML19-9  | 10   |         |
| ML8-12 | 44   |         | ML9-12 | 0    | 0.0E+00 | ML19-9  | 12   |         |
| ML8-12 | 48   |         | ML9-12 | 2    |         | ML19-9  | 14   |         |
| ML8-12 | 52   |         | ML9-12 | 4    |         | ML19-9  | 16   |         |
| ML8-12 | 56   |         | ML9-12 | 6    |         | ML19-9  | 18   |         |
| ML8-12 | 60   |         | ML9-12 | 8    | 0.0E+00 | ML19-9  | 20   | 0.0E+00 |
| ML8-12 | 72   | 1.3E+04 | ML9-12 | 10   |         | ML19-9  | 24   |         |
| ML8-15 | 0    | 0.0E+00 | ML9-12 | 12   |         | ML19-9  | 26   |         |
| ML8-15 | 2    |         | ML9-12 | 14   |         | ML19-9  | 32   |         |
| ML8-15 | 4    |         | ML9-12 | 16   |         | ML19-9  | 36   |         |
| ML8-15 | 6    |         | ML9-12 | 18   |         | ML19-9  | 40   |         |
| ML8-15 | 8    | 0.0E+00 | ML9-12 | 20   | 0.0E+00 | ML19-9  | 44   |         |
| ML8-15 | 10   |         | ML9-12 | 24   |         | ML19-9  | 48   |         |
| ML8-15 | 12   |         | ML9-12 | 26   |         | ML19-9  | 52   |         |
| ML8-15 | 14   |         | ML9-12 | 32   |         | ML19-9  | 56   |         |
| ML8-15 | 16   |         | ML9-12 | 36   |         | ML19-9  | 60   |         |
| ML8-15 | 18   |         | ML9-12 | 40   |         | ML19-9  | 72   | 0.0E+00 |
| ML8-15 | 20   | 0.0E+00 | ML9-12 | 44   |         | ML19-12 | 0    | 0.0E+00 |
| ML8-15 | 24   |         | ML9-12 | 48   |         | ML19-12 | 2    |         |
| ML8-15 | 26   |         | ML9-12 | 52   |         | ML19-12 | 4    |         |
| ML8-15 | 32   |         | ML9-12 | 56   |         | ML19-12 | 6    |         |
| ML8-15 | 36   |         | ML9-12 | 60   |         | ML19-12 | 8    | 0.0E+00 |
| ML8-15 | 40   |         | ML9-12 | 72   | 5.2E+03 | ML19-12 | 10   |         |
| ML8-15 | 44   |         | ML9-15 | 0    | 0.0E+00 | ML19-12 | 12   |         |
|        |      |         |        |      |         |         |      |         |

### Table D4. Tracer test data from PRD1 injected into well I4, October 2, 1996.

| _,      |      |         |         |                |         |                    |      |         |
|---------|------|---------|---------|----------------|---------|--------------------|------|---------|
| Well    | Hour | PFU/mi  | Well    | Hour           | PFU/ml  | Well               | Hour | PFU/ml  |
| ML19-12 | 14   |         | ML10-9  | 32             |         | ML11-12            | 56   |         |
| ML19-12 | 16   |         | ML10-9  | 36             |         | ML11-12            | 60   |         |
| ML19-12 | 18   |         | ML10-9  | 40             |         | ML11-12            | 72   | 0.0E+00 |
| ML19-12 | 20   | 0.0E+00 | ML10-9  | 44             |         | ML12-9             | 0    | 0.0E+00 |
| ML19-12 | 24   |         | ML10-9  | 48             |         | ML12-9             | 2    |         |
| ML19-12 | 26   |         | ML10-9  | 52             |         | ML12-9             | 4    |         |
| ML19-12 | 32   |         | ML10-9  | 56             |         | ML12-9             | 6    |         |
| ML19-12 | 36   |         | ML10-9  | 60             |         | ML12-9             | 8    | 0.0E+00 |
| ML19-12 | 40   |         | ML10-9  | 72             | 0.0E+00 | ML12-9             | 10   |         |
| ML19-12 | 44   |         | ML11-9  | 0              | 0.0E+00 | ML12-9             | 12   |         |
| ML19-12 | 48   |         | ML11-9  | 2              |         | ML12-9             | 14   | 1.4E+00 |
| ML19-12 | 52   |         | ML11-9  | 4              |         | ML12-9             | 16   |         |
| ML19-12 | 56   |         | ML11-9  | 6              |         | ML12-9             | 18   |         |
| ML19-12 | 60   |         | ML11-9  | 8              | 0.0E+00 | ML12-9             | 20   | 1.2E+03 |
| ML19-12 | 72   | 0.0E+00 | ML11-9  | 10             |         | ML12-9             | 24   |         |
| ML19-15 | 0    | 0.0E+00 | ML11-9  | 12             |         | ML12-9             | 28   | 4.0E+03 |
| ML19-15 | 2    |         | ML11-9  | 14             |         | ML12-9             | 32   | 3.7E+03 |
| ML19-15 | 4    |         | ML11-9  | 16             |         | ML12-9             | 36   | 3.7E+03 |
| ML19-15 | 6    |         | ML11-9  | 18             |         | ML12-9             | 40   | 3.0E+03 |
| ML19-15 | 8    | 0.0E+00 | ML11-9  | 20             | 0.0E+00 | ML12-9             | 44   | 3.0E+03 |
| ML19-15 | 10   |         | ML11-9  | 24             |         | ML12-9             | 48   | 1.7E+03 |
| ML19-15 | 12   |         | ML11-9  | 26             |         | ML12-9             | 52   | 1.8E+03 |
| ML19-15 | 14   |         | ML11-9  | 32             |         | ML12-9             | 56   | 1.9E+03 |
| ML19-15 | 16   |         | ML11-9  | 36             |         | ML12-9             | 60   | 1.9E+03 |
| ML19-15 | 18   |         | ML11-9  | 40             |         | ML12-9             | 72   | 9.2E+02 |
| ML19-15 | 20   | 0.0E+00 | ML11-9  | 44             |         | ML12-12            | 0    | 0.0E+00 |
| ML19-15 | 24   |         | ML11-9  | 48             |         | ML12-12            | 2    |         |
| ML19-15 | 26   |         | ML11-9  | 52             |         | ML12-12            | 4    |         |
| ML19-15 | 32   |         | ML11-9  | 56             |         | ML12-12            | 6    |         |
| ML19-15 | 36   |         | ML11-9  | 60             |         | ML12-12            | 8    | 0.0E+00 |
| ML19-15 | 40   |         | ML11-9  | 72             | 4.0E+01 | ML12-12            | 10   |         |
| ML19-15 | 44   |         | ML11-12 | 0              | 0.0E+00 | ML12-12            | 12   |         |
| ML19-15 | 48   |         | ML11-12 | 2              |         | ML12-12            | 14   |         |
| ML19-15 | 52   |         | ML11-12 | 4              |         | ML12-12            | 16   |         |
| ML19-15 | 56   |         | ML11-12 | 6              |         | ML12-12            | 18   |         |
| ML19-15 | 60   |         | ML11-12 | 8              | 0.0E+00 | ML12-12            | 20   | 0.0E+00 |
| ML19-15 | 72   |         | ML11-12 | 10             |         | ML12-12            | 24   |         |
| ML10-9  | 0    | 0.0E+00 | ML11-12 | 12             |         | ML12-12            | 26   |         |
| ML10-9  | 2    |         | ML11-12 | 14             |         | ML12-12            | 32   |         |
| ML10-9  | 4    |         | ML11-12 | 16             |         | ML12-12            | 36   |         |
| ML10-9  | 6    |         | ML11-12 | 18             |         | ML12-12            | 40   |         |
| ML10-9  | 8    |         | ML11-12 | 20             | 0.0E+00 | ML12-12            | 44   |         |
| ML10-9  | 10   |         | ML11-12 | 24             |         | ML12-12            | 48   |         |
| ML10-9  | 12   |         | ML11-12 | 26             |         | ML12-12            | 52   |         |
| ML10-9  | 14   |         | ML11-12 | 32             |         | ML12-12            | 56   |         |
| ML10-9  | 16   |         | ML11-12 | 36             |         | ML12-12            | 60   |         |
| ML10-9  | 18   |         | ML11-12 | 40             |         | ML12-12            | 72   | 1.3E+02 |
| ML10-9  | 20   |         | ML11-12 | 44             |         | ML12-12            | 0    | 0.0E+00 |
| ML10-9  | 24   |         | ML11-12 | 48             |         | ML12-15<br>ML12-15 | 2    | 0.02.00 |
| ML10-9  | 26   |         | ML11-12 | <del>5</del> 2 |         | ML12-15<br>ML12-15 | 4    |         |
|         | -    |         |         | 52             |         | IVIL 12-13         | -4   |         |

### Table D4. Tracer test data from PRD1 injected into well I4,October 2, 1996.

| -,               |      |         |                    |          |         |                    |                      |         |
|------------------|------|---------|--------------------|----------|---------|--------------------|----------------------|---------|
| Well             | Hour | PFU/ml  | Well               | Hour     | PFU/ml  | Well               | Hour                 | PFU/ml  |
| ML12-15          | 6    |         | ML13-12            | 18       |         | ML14-9             | 40                   | 1.9E+04 |
| ML12-15          | 8    | 0.0E+00 | ML13-12            | 20       | 0.0E+00 | ML14-9             | 44                   | 1.3E+04 |
| ML12-15          | 10   |         | ML13-12            | 24       |         | ML14-9             | 48                   | 1.4E+04 |
| ML12-15          | 12   |         | ML13-12            | 26       |         | ML14-9             | 52                   | 6.6E+03 |
| ML12-15          | 14   |         | ML13-12            | 32       |         | ML14-9             | 56                   | 7.9E+03 |
| ML12-15          | 16   |         | ML13-12            | 36       |         | ML14-9             | 60                   | 1.0E+04 |
| ML12-15          | 18   |         | ML13-12            | 40       |         | ML14-9             | 72                   | 7.8E+03 |
| ML12-15          | 20   | 0.0E+00 | ML13-12            | 44       |         | ML14-12            | 0                    | 0.0E+00 |
| ML12-15          | 24   |         | ML13-12            | 48       |         | ML14-12            | 2                    |         |
| ML12-15          | 26   |         | ML13-12            | 52       |         | ML14-12            | 4                    |         |
| ML12-15          | 32   |         | ML13-12            | 56       |         | ML14-12            | 6                    |         |
| ML12-15          | 36   |         | ML13-12            | 60       |         | ML14-12            | 8                    | 0.0E+00 |
| ML12-15          | 40   |         | ML13-12            | 72       | 1.9E+03 | ML14-12            | 10                   |         |
| ML12-15          | 44   |         | ML13-15            | 0        | 0.0E+00 | ML14-12            | 12                   |         |
| ML12-15          | 48   |         | ML13-15            | 2        |         | ML14-12            | 14                   | 0.0E+00 |
| ML12-15          | 52   |         | ML13-15            | 4        |         | ML14-12            | 16                   |         |
| ML12-15          | 56   |         | ML13-15            | 6        |         | ML14-12            | 18                   |         |
| ML12-15          | 60   |         | ML13-15            | 8        | 0.0E+00 | ML14-12            | 20                   | 0.0E+00 |
| ML12-15          | 72   | 0.0E+00 | ML13-15            | 10       |         | ML14-12            | 24                   | ••••    |
| ML13-9           | 0    | 0.0E+00 | ML13-15            | 12       |         | ML14-12            | 26                   |         |
| ML13-9           | 2    | 0.02,00 | ML13-15            | 14       |         | ML14-12            | 32                   |         |
| ML13-9           | 4    |         | ML13-15            | 16       |         | ML14-12            | 36                   |         |
| ML13-9           | 6    |         | ML13-15            | 18       |         | ML14-12            | 40                   |         |
| ML13-9           | 8    | 1.1E-01 | ML13-15            | 20       | 0.0E+00 | ML14-12            | 44                   |         |
| ML13-9           | 10   | 1.12-01 | ML13-15            | 24       | 0.02100 | ML14-12            | 48                   |         |
| ML13-9           | 12   |         | ML13-15<br>ML13-15 | 24       |         | ML14-12<br>ML14-12 | <del>4</del> 0<br>52 |         |
| ML13-9<br>ML13-9 | 14   | 0.0E+00 | ML13-15<br>ML13-15 | 32       |         | ML14-12<br>ML14-12 | 52                   |         |
| ML13-9<br>ML13-9 | 16   | 0.02+00 | ML13-15<br>ML13-15 | 32<br>36 |         | ML14-12<br>ML14-12 | 60                   |         |
|                  | 18   |         |                    | 40       |         |                    |                      | 1.05.03 |
| ML13-9           |      | 4.4E-01 | ML13-15            | 40<br>44 |         | ML14-12            | 72                   | 1.9E+03 |
| ML13-9           | 20   | 4.40-01 | ML13-15            |          |         | ML14-15            | 0                    | 0.0E+00 |
| ML13-9           | 24   | 0.05.04 | ML13-15            | 48       |         | ML14-15            | 2                    |         |
| ML13-9           | 28   | 2.9E+01 | ML13-15            | 52       |         | ML14-15            | 4                    |         |
| ML13-9           | 32   | 0.0E+00 | ML13-15            | 56       |         | ML14-15            | 6                    |         |
| ML13-9           | 36   | 3.1E+01 | ML13-15            | 60       |         | ML14-15            | 8                    | 0.0E+00 |
| ML13-9           | 40   | 4.8E+01 | ML13-15            | 72       | 9.9E+02 | ML14-15            | 10                   |         |
| ML13-9           | 44   | 1.8E+01 | ML14-9             | 0        | 0.0E+00 | ML14-15            | 12                   |         |
| ML13-9           | 48   | 1.3E+01 | ML14-9             | 2        |         | ML14-15            | 14                   |         |
| ML13-9           | 52   | 1.1E+01 | ML14-9             | 4        |         | ML14-15            | 16                   |         |
| ML13-9           | 56   | 1.6E+01 | ML14-9             | 6        |         | ML14-15            | 18                   |         |
| ML13-9           | 60   | 2.3E+01 | ML14-9             | 8        | 0.0E+00 | ML14-15            | 20                   | 0.0E+00 |
| ML13-9           | 72   | 3.4E+00 | ML14-9             | 10       |         | ML14-15            | 24                   |         |
| ML13-12          | 0    | 0.0E+00 | ML14-9             | 12       |         | ML14-15            | 26                   |         |
| ML13-12          | 2    |         | ML14-9             | 14       | 1.2E+03 | ML14-15            | 32                   |         |
| ML13-12          | 4    |         | ML14-9             | 16       |         | ML14-15            | 36                   |         |
| ML13-12          | 6    |         | ML14-9             | 18       |         | ML14-15            | 40                   |         |
| ML13-12          | 8    | 0.0E+00 | ML14-9             | 20       | 5.5E+04 | ML14-15            | 44                   |         |
| ML13-12          | 10   |         | ML14-9             | 24       |         | ML14-15            | 48                   |         |
| ML13-12          | 12   |         | ML14-9             | 28       | 3.2E+04 | ML14-15            | 52                   |         |
| ML13-12          | 14   |         | ML14-9             | 32       | 2.9E+04 | ML14-15            | 56                   |         |
| ML13-12          | 16   |         | ML14-9             | 36       | 2.8E+04 | ML14-15            | 60                   |         |
|                  |      |         |                    |          | 2.02.04 |                    | 00                   |         |

### Table D4. Tracer test data from PRD1 injected into well I4,October 2, 1996.

| 2, 1330.         |          |         |            |                |         |            |      |         |
|------------------|----------|---------|------------|----------------|---------|------------|------|---------|
| Well             | Hour     | PFU/ml  | Well       | Hour           | PFU/ml  | Well       | Hour | PFU/mi  |
| ML14-15          | 72       | 3.1E+02 | ML18-9     | 10             |         | W1         | 24   |         |
| ML17-9           | 0        | 0.0E+00 | ML18-9     | 12             |         | W1         | 28   |         |
| ML17-9           | 2        |         | ML18-9     | 14             |         | <b>W</b> 1 | 32   |         |
| ML17-9           | 4        |         | ML18-9     | 16             |         | W1         | 36   |         |
| ML17-9           | 6        |         | ML18-9     | 18             |         | W1         | 40   | 1.4E+05 |
| ML17-9           | 8        | 0.0E+00 | ML18-9     | 20             | 6.4E+01 | W1         | 44   |         |
| ML17-9           | 10       |         | ML18-9     | 24             |         | W1         | 48   |         |
| ML17-9           | 12       |         | ML18-9     | 26             |         | W1         | 52   |         |
| ML17-9           | 14       |         | ML18-9     | 32             |         | W1         | 56   |         |
| ML17-9           | 16       |         | ML18-9     | 36             |         | W1         | 60   |         |
| ML17-9           | 18       |         | ML18-9     | 40             | 3.9E+03 | W1         | 72   | 4.5E+04 |
| ML17-9           | 20       | 5.3E+03 | ML18-9     | 44             | 0.02.00 | W2         | 0    | 1.02.01 |
| ML17-9           | 24       | 0.02.00 | ML18-9     | 48             |         | W2         | 2    |         |
| ML17-9           | 26       |         | ML18-9     | <del>5</del> 2 |         | W2         | 4    | 0.0E+00 |
| ML17-9           | 32       |         | ML18-9     | 56             |         | W2         | 6    |         |
| ML17-9<br>ML17-9 | 36       |         | ML18-9     | 60             |         | W2         | 8    | 0.0E+00 |
| ML17-9<br>ML17-9 | 40       | 8.0E+03 | ML18-9     | 72             | 1.1E+03 | W2         | 10   | 0.02100 |
| ML17-9<br>ML17-9 | 40<br>44 | 0.0E+03 | ML18-12    | 0              | 0.0E+00 | W2         | 12   |         |
| ML17-9<br>ML17-9 | 48       |         | ML18-12    |                | 0.02+00 | W2<br>W2   | 14   | 0.0E+00 |
|                  |          |         |            | 2              |         | W2         | 16   | 0.02+00 |
| ML17-9           | 52<br>50 |         | ML18-12    | 4              |         |            |      |         |
| ML17-9           | 56       |         | ML18-12    | 6              | 0.05.00 | W2         | 18   | 0.05.00 |
| ML17-9           | 60       | 0.55.00 | ML18-12    | 8              | 0.0E+00 | W2         | 20   | 2.2E+03 |
| ML17-9           | 72       | 2.5E+03 | ML18-12    | 10             |         | W2         | 24   |         |
| ML17-12          | 0        | 0.0E+00 | ML18-12    | 12             |         | W2         | 28   |         |
| ML17-12          | 2        |         | ML18-12    | 14             |         | W2         | 32   |         |
| ML17-12          | 4        |         | ML18-12    | 16             |         | W2         | 36   |         |
| ML17-12          | 6        |         | ML18-12    | 18             |         | W2         | 40   | 2.0E+04 |
| ML17-12          | 8        | 0.0E+00 | ML18-12    | 20             | 0.0E+00 | W2         | 44   | 1.7E+04 |
| ML17-12          | 10       |         | ML18-12    | 24             |         | W2         | 48   |         |
| ML17-12          | 12       |         | ML18-12    | 26             |         | W2         | 52   | 7.3E+03 |
| ML17-12          | 14       |         | ML18-12    | 32             |         | W2         | 56   | 5.1E+03 |
| ML17-12          | 16       |         | ML18-12    | 36             |         | W2         | 60   | 6.7E+03 |
| ML17-12          | 18       |         | ML18-12    | 40             |         | W2         | 72   | 7.0Ë+03 |
| ML17-12          | 20       | 0.0E+00 | ML18-12    | 44             |         |            |      |         |
| ML17-12          | 24       |         | ML18-12    | 48             |         |            |      |         |
| ML17-12          | 26       |         | ML18-12    | 52             |         |            |      |         |
| ML17-12          | 32       |         | ML18-12    | 56             |         |            |      |         |
| ML17-12          | 36       |         | ML18-12    | 60             |         |            |      |         |
| ML17-12          | 40       |         | ML18-12    | 72             | 1.3E+03 |            |      |         |
| ML17-12          | 44       |         | <b>W</b> 1 | 0              |         |            |      |         |
| ML17-12          | 48       |         | W1         | 2              |         |            |      |         |
| ML17-12          | 52       |         | W1         | 4              | 0.0E+00 |            |      |         |
| ML17-12          | 56       |         | W1         | 6              |         |            |      |         |
| ML17-12          | 60       |         | W1         | 8              | 4.4E+04 |            |      |         |
| ML17-12          | 72       | 7.5E+01 | W1         | 10             |         |            |      |         |
| ML18-9           | 0        | 0.0E+00 | W1         | 12             | 1.5E+06 |            |      |         |
| ML18-9           | 2        |         | W1         | 14             | 1.2E+06 |            |      |         |
| ML18-9           | 4        |         | W1         | 16             |         |            |      |         |
| ML18-9           | 6        |         | W1         | 18             |         |            |      |         |
| ML18-9           | 8        | 0.0E+00 | W1         | 20             | 7.2E+05 |            |      |         |
|                  |          |         | **1        | 20             | 1.22100 |            |      |         |





Figure D12. 72hr Phi X174 plume at 12ft depth from 10/2/96 seeding experiment. Concentration in PFU/ml, flow direction to the west.

| Well      | Hour     | PFU/ml             | Well           | Hour   | PFU/ml  | Well             | Hour     | PFU/ml  |
|-----------|----------|--------------------|----------------|--------|---------|------------------|----------|---------|
| l4-Old    | 0        |                    | ML0-12         | 6      |         | ML1-9            | 18       |         |
| I4-New    | 0        |                    | ML0-12         | 8      | 0.0E+00 | ML1-9            | 20       | 0.0E+00 |
| Slug      | 0        | 4.1E+07            | ML0-12         | 10     |         | ML1-9            | 24       |         |
| Injection | 0        | 2.9E+07            | ML0-12         | 12     |         | ML1-9            | 26       |         |
| 14        | 0        | 0.0E+00            | ML0-12         | 14     |         | ML1-9            | 32       |         |
| 14        | 2        | 2.1E+07            | ML0-12         | 16     |         | ML1-9            | 36       |         |
| 14        | 4        | 1.5E+07            | ML0-12         | 18     |         | ML1-9            | 40       |         |
| 14        | 6        |                    | ML0-12         | 20     | 0.0E+00 | ML1-9            | 44       |         |
| 14        | 8        | 6.4E+06            | ML0-12         | 24     |         | ML1-9            | 48       |         |
| 14        | 10       |                    | ML0-12         | 26     |         | ML1-9            | 52       |         |
| 14        | 12       |                    | ML0-12         | 32     |         | ML1-9            | 56       |         |
| 14        | 14       | 3.6E+06            | ML0-12         | 36     |         | ML1-9            | 60       |         |
| 14        | 16       |                    | ML0-12         | 40     |         | ML1-9            | 72       | 0.0E+00 |
| 14        | 18       |                    | ML0-12         | 44     |         | ML2-9            | 0        | 0.0E+00 |
| 14        | 20       | 1.7E+06            | ML0-12         | 48     |         | ML2-9            | 2        | 1.1E+01 |
| 14        | 28       | 1.1 <b>E+</b> 06   | ML0-12         | 52     |         | ML2-9            | 4        | 3.7E+04 |
| 14        | 32       |                    | ML0-12         | 56     |         | ML2-9            | 6        | 5.6E+04 |
| 14        | 36       |                    | ML0-12         | 60     |         | ML2-9            | 8        | 2.9E+04 |
| 14        | 40       | 1.4E+06            | ML0-12         | 72     | 0.0E+00 | ML2-9            | 10       | 2.0E+04 |
| 14        | 44       |                    | ML0-15         | 0      |         | ML2-9            | 12       |         |
| 14        | 48       | 1.1E+06            | ML0-15         | 2      |         | ML2-9            | 14       | 1.1E+04 |
| 14        | 52       |                    | ML0-15         | 4      |         | ML2-9            | 16       |         |
| 14        | 56       |                    | ML0-15         | 6      |         | ML2-9            | 18       |         |
| 14        | 60       | 8.8E+05            | ML0-15         | 8      | 0.0E+00 | ML2-9            | 20       | 8.0E+03 |
| 14        | 72       | 5.6E+05            | ML0-15         | 10     |         | ML2-9            | 24       |         |
| ML0-9     | 0        | 3.3E-01            | ML0-15         | 12     |         | ML2-9            | 28       | 4.5E+03 |
| ML0-9     | 2        | 3.3E+01            | ML0-15         | 14     |         | ML2-9            | 32       |         |
| ML0-9     | 4        | 3.9E+01            | ML0-15         | 16     |         | ML2-9            | 36       |         |
| ML0-9     | 6        | 1.1E+01            | ML0-15         | 18     |         | ML2-9            | 40       | 5.6E+03 |
| ML0-9     | 8        |                    | ML0-15         | 20     | 0.0E+00 | ML2-9            | 44       |         |
| ML0-9     | 10       | 3.1E+00            | ML0-15         | 24     |         | ML2-9            | 48       | 7.6E+03 |
| ML0-9     | 12       |                    | ML0-15         | 26     |         | ML2-9            | 52       | 1.02.00 |
| ML0-9     | 14       |                    | ML0-15         | 32     |         | ML2-9            | 56       |         |
| ML0-9     | 16       |                    | ML0-15         | 36     |         | ML2-9            | 60       | 6.8E+03 |
| ML0-9     | 18       |                    | ML0-15         | 40     |         | ML2-9            | 72       | 7.0E+03 |
| ML0-9     | 20       | 1.3E+00            | ML0-15         | 44     |         | ML2-12           | 0        | 0.0E+00 |
| ML0-9     | 24       | 1.02.00            | ML0-15         | 48     |         | ML2-12           | 2        | 0.02.00 |
| ML0-9     | 26       |                    | ML0-15         | 52     |         | ML2-12           | 4        |         |
| ML0-9     | 32       |                    | ML0-15         | 56     |         | ML2-12           | 6        |         |
| ML0-9     | 36       |                    | ML0-15         | 60     |         | ML2-12           | 8        | 0.0E+00 |
| ML0-9     | 40       | 8.8E-01            | ML0-15         | 72     |         | ML2-12           | 10       |         |
| ML0-9     | 44       | 0.02-01            | ML1-9          | 0      | 0.0E+00 | ML2-12<br>ML2-12 | 12       |         |
| ML0-9     | 48       |                    | ML1-9          | 2      | 0.02+00 | ML2-12<br>ML2-12 | 14       |         |
| ML0-9     | 40<br>52 |                    | ML1-9          | 2<br>4 |         | ML2-12<br>ML2-12 | 14       |         |
| ML0-9     | 56       |                    | ML1-9<br>ML1-9 | 4<br>6 |         | ML2-12<br>ML2-12 | 18       |         |
| ML0-9     | 60       |                    |                |        | 0.05+00 |                  |          |         |
| ML0-9     | 72       | 9.9E-01            | ML1-9          | 8      | 0.0E+00 | ML2-12           | 20<br>24 | 0.0E+00 |
| ML0-12    | 0        | 9.9E-01<br>0.0E+00 | ML1-9          | 10     |         | ML2-12           | 24       |         |
| ML0-12    | 2        | U.UL700            | ML1-9          | 12     |         | ML2-12           | 26       |         |
| ML0-12    | 4        |                    | ML1-9          | 14     |         | ML2-12           | 32       |         |
|           | т        |                    | ML1-9          | 16     |         | ML2-12           | 36       |         |
|           |          |                    |                |        |         |                  |          |         |

| ,              |          |         |                  |          |           |                |                      |         |
|----------------|----------|---------|------------------|----------|-----------|----------------|----------------------|---------|
| Well           | Hour     | PFU/ml  | Well             | Hour     | PFU/ml    | Well           | Hour                 | PFU/ml  |
| ML2-12         | 40       |         | ML3-9            | 72       | 0.0E+00   | ML7-12         | 10                   |         |
| ML2-12         | 44       |         | ML6-9            | 0        | 0.0E+00   | ML7-12         | 12                   |         |
| ML2-12         | 48       |         | ML6-9            | 2        |           | ML7-12         | 14                   |         |
| ML2-12         | 52       |         | ML6-9            | 4        |           | ML7-12         | 16                   |         |
| ML2-12         | 56       |         | ML6-9            | 6        |           | ML7-12         | 18                   |         |
| ML2-12         | 60       |         | ML6-9            | 8        | 0.0E+00   | ML7-12         | 20                   | 0.0E+00 |
| ML2-12         | 72       | 0.0E+00 | ML6-9            | 10       |           | ML7-12         | 24                   |         |
| ML2-15         | 0        | 0.0E+00 | ML6-9            | 12       |           | ML7-12         | 26                   |         |
| ML2-15         | 2        |         | ML6-9            | 14       |           | ML7-12         | 32                   |         |
| ML2-15         | 4        |         | ML6-9            | 16       |           | ML7-12         | 36                   |         |
| ML2-15         | 6        |         | ML6-9            | 18       |           | ML7-12         | 40                   |         |
| ML2-15         | 8        | 0.0E+00 | ML6-9            | 20       | 0.0E+00   | ML7-12         | 44                   |         |
| ML2-15         | 10       |         | ML6-9            | 24       |           | ML7-12         | 48                   |         |
| ML2-15         | 12       |         | ML6-9            | 26       |           | ML7-12         | 52                   |         |
| ML2-15         | 14       |         | ML6-9            | 32       |           | ML7-12         | 56                   |         |
| ML2-15         | 16       |         | ML6-9            | 36       |           | ML7-12         | 60                   |         |
| ML2-15         | 18       |         | ML6-9            | 40       |           | ML7-12         | 72                   | 0.0E+00 |
| ML2-15         | 20       | 0.0E+00 | ML6-9            | 44       |           | ML7-15         | 0                    | 0.0E+00 |
| ML2-15         | 24       |         | ML6-9            | 48       |           | ML7-15         | 2                    |         |
| ML2-15         | 26       |         | ML6-9            | 52       |           | ML7-15         | 4                    |         |
| ML2-15         | 32       |         | ML6-9            | 56       |           | ML7-15         | 6                    |         |
| ML2-15         | 36       |         | ML6-9            | 60       |           | ML7-15         | 8                    | 0.0E+00 |
| ML2-15         | 40       |         | ML6-9            | 72       | 0.0E+00   | ML7-15         | 10                   |         |
| ML2-15         | 44       |         | ML7-9            | 0        | 0.0E+00   | ML7-15         | 12                   |         |
| ML2-15         | 48       |         | ML7-9            | 2        |           | ML7-15         | 14                   |         |
| ML2-15         | 52       |         | ML7-9            | 4        | 0.0E+00   | ML7-15         | 16                   |         |
| ML2-15         | 56       |         | ML7-9            | 6        |           | ML7-15         | 18                   |         |
| ML2-15         | 60       |         | ML7-9            | 8        | 5.9E+02   | ML7-15         | 20                   | 0.0E+00 |
| ML2-15         | 72       | 0.0E+00 | ML7-9            | 10       | 2.3E+03   | ML7-15         | 24                   |         |
| ML3-9          | 0        |         | ML7-9            | 12       | 3.6E+03   | ML7-15         | 26                   |         |
| ML3-9          | 2        |         | ML7-9            | 14       | 3.6E+03   | ML7-15         | 32                   |         |
| ML3-9          | 4        |         | ML7-9            | 16       | 2.5E+03   | ML7-15         | 36                   |         |
| ML3-9          | 6        |         | ML7-9            | 18       | 2.3E+03   | ML7-15         | 40                   |         |
| ML3-9          | 8        | 0.0E+00 | ML7-9            | 20       | 1.9E+03   | ML7-15         | 44                   |         |
| ML3-9          | 10       |         | ML7-9            | 24       | 7 05 . 00 | ML7-15         | 48                   |         |
| ML3-9          | 12       |         | ML7-9            | 28       | 7.2E+02   | ML7-15         | 52                   |         |
| ML3-9          | 14       |         | ML7-9            | 32       |           | ML7-15         | 56                   |         |
| ML3-9          | 16       |         | ML7-9            | 36       | 0.05.00   | ML7-15         | 60<br>70             | 0.05.00 |
| ML3-9          | 18       | 0.05.00 | ML7-9            | 40       | 6.8E+02   | ML7-15         | 72                   | 0.0E+00 |
| ML3-9          | 20       | 0.0E+00 | ML7-9            | 44       | 7 25 102  | ML8-9          | 0                    | 0.0E+00 |
| ML3-9<br>ML3-9 | 24<br>26 |         | ML7-9            | 48       | 7.3E+02   | ML8-9          | 2<br>4               |         |
| ML3-9<br>ML3-9 | 20<br>32 |         | ML7-9            | 52       |           | ML8-9          |                      |         |
| ML3-9<br>ML3-9 | 32<br>36 |         | ML7-9            | 56<br>60 | 6 95+00   | ML8-9          | 6<br>8               |         |
| ML3-9          | 30<br>40 |         | ML7-9<br>ML7-9   | 60<br>72 | 6.8E+02   | ML8-9<br>ML8-9 | о<br>10              | 0.0E+00 |
| ML3-9          | 40<br>44 |         | ML7-9<br>ML7-12  | 0        | 1.0E+03   | ML8-9<br>ML8-9 | 10                   |         |
| ML3-9          | 48       |         | ML7-12<br>ML7-12 | 0<br>2   | 0.0E+00   | ML8-9          | 12                   |         |
| ML3-9          | 52       |         | ML7-12<br>ML7-12 | 2<br>4   |           |                | 1 <del>4</del><br>16 |         |
| ML3-9          | 56       |         | ML7-12<br>ML7-12 | 4<br>6   |           | ML8-9<br>ML8-9 | 18                   |         |
| ML3-9          | 60       |         | ML7-12<br>ML7-12 | 8        |           |                | 20                   |         |
|                |          |         | 10167-12         | o        | 0.0E+00   | ML8-9          | 20                   | 0.0E+00 |

| -, 1000.       |      |         |        |      |         |         |      |         |
|----------------|------|---------|--------|------|---------|---------|------|---------|
| Well           | Hour | PFU/ml  | Well   | Hour | PFU/ml  | Well    | Hour | PFU/ml  |
| ML8-9          | 24   |         | ML8-15 | 48   |         | ML9-15  | 2    |         |
| ML8-9          | 26   |         | ML8-15 | 52   |         | ML9-15  | 4    |         |
| ML8-9          | 32   |         | ML8-15 | 56   |         | ML9-15  | 6    |         |
| ML8-9          | 36   |         | ML8-15 | 60   |         | ML9-15  | 8    | 0.0E+00 |
| ML8-9          | 40   |         | ML8-15 | 72   | 0.0E+00 | ML9-15  | 10   |         |
| ML8-9          | 44   |         | ML9-9  | 0    | 0.0E+00 | ML9-15  | 12   |         |
| ML8-9          | 48   |         | ML9-9  | 2    |         | ML9-15  | 14   |         |
| ML8-9          | 52   |         | ML9-9  | 4    |         | ML9-15  | 16   |         |
| ML8-9          | 56   |         | ML9-9  | 6    |         | ML9-15  | 18   |         |
| ML8-9          | 60   |         | ML9-9  | 8    | 0.0E+00 | ML9-15  | 20   | 0.0E+00 |
| ML8-9          | 72   | 2.1E+01 | ML9-9  | 10   |         | ML9-15  | 24   |         |
| ML8-12         | 2 0  | 0.0E+00 | ML9-9  | 12   |         | ML9-15  | 26   |         |
| ML8-12         | 2 2  |         | ML9-9  | 14   |         | ML9-15  | 32   |         |
| ML8-12         | 2 4  |         | ML9-9  | 16   |         | ML9-15  | 36   |         |
| ML8-12         | 26   |         | ML9-9  | 18   |         | ML9-15  | 40   |         |
| ML8-12         | 28   | 0.0E+00 | ML9-9  | 20   | 0.0E+00 | ML9-15  | 44   |         |
| ML8-12         | 2 10 |         | ML9-9  | 24   |         | ML9-15  | 48   |         |
| ML8-12         | 2 12 |         | ML9-9  | 26   |         | ML9-15  | 52   |         |
| ML8-12         | 2 14 |         | ML9-9  | 32   |         | ML9-15  | 56   |         |
| ML8-12         | 2 16 |         | ML9-9  | 36   |         | ML9-15  | 60   |         |
| ML8-12         | 2 18 |         | ML9-9  | 40   |         | ML9-15  | 72   | 0.0E+00 |
| ML8-12         | 2 20 | 0.0E+00 | ML9-9  | 44   |         | ML19-9  | 0    | 0.0E+00 |
| ML8-12         | 2 24 |         | ML9-9  | 48   |         | ML19-9  | 2    |         |
| ML8-12         | 2 26 |         | ML9-9  | 52   |         | ML19-9  | 4    |         |
| ML8-12         | 2 32 |         | ML9-9  | 56   |         | ML19-9  | 6    |         |
| ML8-12         | 2 36 | ,       | ML9-9  | 60   |         | ML19-9  | 8    | 0.0E+00 |
| ML8-12         | 2 40 |         | ML9-9  | 72   | 5.5E+00 | ML19-9  | 10   |         |
| ML8-12         | 2 44 |         | ML9-12 | 0    | 0.0E+00 | ML19-9  | 12   |         |
| ML8-12         | 2 48 |         | ML9-12 | 2    |         | ML19-9  | 14   |         |
| ML8-12         | 2 52 |         | ML9-12 | 4    |         | ML19-9  | 16   |         |
| ML8-12         | 2 56 |         | ML9-12 | 6    |         | ML19-9  | 18   |         |
| ML8-12         | 2 60 |         | ML9-12 | 8    | 0.0E+00 | ML19-9  | 20   | 0.0E+00 |
| ML8-12         | 2 72 | 1.7E+02 | ML9-12 | 10   |         | ML19-9  | 24   |         |
| ML8-15         | 50   | 0.0E+00 | ML9-12 | 12   |         | ML19-9  | 26   |         |
| ML8-15         | 52   |         | ML9-12 | 14   |         | ML19-9  | 32   |         |
| ML8-15         | 54   |         | ML9-12 | 16   |         | ML19-9  | 36   |         |
| ML8-15         | 56   |         | ML9-12 | 18   |         | ML19-9  | 40   |         |
| ML8-15         | 58   | 0.0E+00 | ML9-12 | 20   | 0.0E+00 | ML19-9  | 44   |         |
| ML8-15         | 5 10 |         | ML9-12 | 24   |         | ML19-9  | 48   |         |
| ML8-15         | 5 12 |         | ML9-12 | 26   |         | ML19-9  | 52   |         |
| ML8-15         | 5 14 |         | ML9-12 | 32   |         | ML19-9  | 56   |         |
| ML8-15         | 5 16 |         | ML9-12 | 36   |         | ML19-9  | 60   |         |
| ML8-1          | 5 18 |         | ML9-12 | 40   |         | ML19-9  | 72   | 0.0E+00 |
| ML8-1          | 5 20 | 0.0E+00 | ML9-12 | 44   |         | ML19-12 | 0    | 0.0E+00 |
| ML8-1          | 5 24 |         | ML9-12 | 48   |         | ML19-12 | 2    |         |
| _ <b>ML8-1</b> | 5 26 |         | ML9-12 | 52   |         | ML19-12 | 4    |         |
| ML8-1          | 5 32 |         | ML9-12 | 56   |         | ML19-12 | 6    |         |
| ML8-1          | 5 36 |         | ML9-12 | 60   |         | ML19-12 | 8    | 0.0E+00 |
| ML8-1          |      |         | ML9-12 | 72   | 7.5E+01 | ML19-12 | 10   |         |
| ML8-1          | 5 44 |         | ML9-15 | 0    | 0.0E+00 | ML19-12 | 12   |         |
|                |      |         |        |      |         |         | _    |         |

| Hour | PFU/ml                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | Well                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | Hour                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | PFU/ml                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | Well                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | Hour                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | PFU/ml                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
|------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 14   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | ML10-9                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | ML11-12                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
| 16   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | ML10-9                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 36                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | ML11-12                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 60                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
| 18   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | ML10-9                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 40                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | ML11-12                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 72                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 0.0E+00                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
| 20   | 0.0E+00                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | ML10-9                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 44                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | ML12-9                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 0.0E+00                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
| 24   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | ML10-9                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 48                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | ML12-9                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
| 26   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | ML10-9                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 52                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | ML12-9                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 4                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
| 32   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | ML10-9                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 56                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | ML12-9                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 6                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
| 36   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | ML10-9                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 60                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | ML12-9                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 8                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 0.0E+00                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
| 40   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | ML10-9                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 72                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 0.0E+00                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | ML12-9                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 10                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
| 44   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | ML11-9                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 0.0E+00                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | ML12-9                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 12                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
| 48   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | ML11-9                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | ML12-9                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 14                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 0.0E+00                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
| 52   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | ML11-9                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 4                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | ML12-9                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 16                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
| 56   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | ML11-9                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 6                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | ML12-9                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 18                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
| 60   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | ML11-9                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 8                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 0.0E+00                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | ML12-9                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 20                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 3.1E+00                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
| 72   | 0.0E+00                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | ML11-9                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 10                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | ML12-9                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 24                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
| 0    | 0.0E+00                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | ML11-9                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 12                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | ML12-9                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 28                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 3.0E+00                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
| 2    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | ML11-9                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 14                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 32                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 5.0E+00                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
| 4    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | ML11-9                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 16                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 36                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 2.4E+00                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
| 6    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | ML11-9                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 18                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | ML12-9                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 2.2E+00                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
| 8    | 0.0E+00                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | ML11-9                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 20                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 0.0E+00                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | ML12-9                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 1.4E+00                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
| 10   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | ML11-9                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 24                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | ML12-9                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 48                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 1.1E+00                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
| 12   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | ML11-9                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 1.8E+00                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
| 14   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 1.9E+00                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
|      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 4.0E+00                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
|      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 9.9E-01                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
|      | 0.0E+00                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 0.0E+00                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
|      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
|      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
|      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
|      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 0.0E+00                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
|      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 5.3E+00                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
|      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
|      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
|      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
|      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
|      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 0.0E+00                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 0.0E+00                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
|      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
|      | 0.0E+00                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
|      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
|      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
|      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
|      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 0.0E+00                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
|      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 0.02.00                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
|      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
|      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
|      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
| 18   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 2.2E+00                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
| 20   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 2.2E+00<br>0.0E+00                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
|      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
|      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
|      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | ···· · · · · · · · · · · · · · · · · ·                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 52                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | IVIL 12-13                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 4                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
|      | 14<br>16<br>18<br>24<br>26<br>33<br>40<br>44<br>85<br>56<br>07<br>02<br>4<br>6<br>8<br>10<br>11<br>14<br>16<br>80<br>46<br>23<br>60<br>44<br>85<br>56<br>07<br>02<br>4<br>6<br>810<br>12<br>14<br>6<br>80<br>44<br>85<br>56<br>07<br>02<br>4<br>6<br>810<br>12<br>46<br>80<br>44<br>85<br>56<br>07<br>02<br>4<br>6<br>810<br>12<br>46<br>80<br>44<br>85<br>56<br>07<br>02<br>4<br>6<br>810<br>12<br>46<br>80<br>44<br>85<br>56<br>07<br>02<br>4<br>6<br>810<br>12<br>46<br>80<br>44<br>85<br>56<br>07<br>02<br>4<br>6<br>810<br>12<br>46<br>80<br>44<br>85<br>56<br>07<br>02<br>4<br>6<br>810<br>12<br>46<br>80<br>44<br>85<br>56<br>07<br>02<br>4<br>6<br>810<br>12<br>46<br>80<br>44<br>85<br>56<br>07<br>02<br>4<br>6<br>810<br>12<br>46<br>80<br>44<br>85<br>56<br>07<br>02<br>4<br>6<br>810<br>12<br>46<br>80<br>44<br>85<br>56<br>07<br>02<br>4<br>6<br>810<br>12<br>46<br>80<br>44<br>85<br>56<br>07<br>02<br>4<br>6<br>810<br>12<br>46<br>80<br>44<br>85<br>56<br>07<br>02<br>4<br>6<br>810<br>12<br>46<br>80<br>44<br>85<br>56<br>07<br>02<br>4<br>6<br>810<br>12<br>46<br>80<br>44<br>85<br>56<br>07<br>02<br>4<br>6<br>810<br>12<br>46<br>80<br>44<br>85<br>56<br>07<br>02<br>4<br>6<br>80<br>12<br>46<br>80<br>12<br>46<br>80<br>12<br>46<br>80<br>12<br>46<br>80<br>12<br>46<br>80<br>12<br>14<br>16<br>80<br>24<br>60<br>26<br>60<br>70<br>2<br>4<br>6<br>80<br>24<br>60<br>70<br>2<br>4<br>60<br>70<br>2<br>4<br>60<br>70<br>2<br>4<br>6<br>80<br>70<br>2<br>4<br>6<br>80<br>70<br>2<br>4<br>6<br>80<br>70<br>2<br>4<br>6<br>80<br>70<br>2<br>4<br>6<br>80<br>70<br>2<br>4<br>6<br>80<br>70<br>2<br>4<br>6<br>80<br>70<br>2<br>4<br>6<br>80<br>70<br>2<br>4<br>6<br>80<br>70<br>2<br>4<br>6<br>80<br>70<br>2<br>4<br>6<br>80<br>70<br>2<br>4<br>6<br>80<br>70<br>2<br>4<br>6<br>80<br>70<br>2<br>4<br>6<br>80<br>70<br>2<br>4<br>6<br>80<br>70<br>2<br>4<br>6<br>80<br>70<br>2<br>4<br>6<br>80<br>70<br>2<br>4<br>6<br>8<br>80<br>70<br>2<br>9<br>8<br>80<br>70<br>2<br>9<br>80<br>70<br>2<br>9<br>8<br>80<br>70<br>2<br>9<br>80<br>70<br>2<br>9<br>80<br>80<br>70<br>2<br>9<br>80<br>70<br>2<br>9<br>80<br>80<br>70<br>2<br>9<br>80<br>70<br>2<br>9<br>80<br>10<br>10<br>10<br>10<br>10<br>10<br>10<br>10<br>10<br>10<br>10<br>10<br>10 | 14         16         18         20       0.0E+00         24         26         32         36         40         44         48         52         56         60         72       0.0E+00         2         4         6         8       0.0E+00         10         12         14         16         18         20       0.0E+00         24         6         8       0.0E+00         24         26         322         36         40         44         48         52         56         60         72         0       0.0E+00         2         4         6         8         10         12         14         16         18         20         24 | 14       ML10-9         16       ML10-9         18       ML10-9         20       0.0E+00       ML10-9         24       ML10-9         26       ML10-9         32       ML10-9         36       ML10-9         40       ML10-9         44       ML11-9         52       ML11-9         56       ML11-9         60       ML11-9         72       0.0E+00       ML11-9         6       ML11-9         72       0.0E+00       ML11-9         72       0.0E+00       ML11-9         6       ML11-9       ML11-9         72       0.0E+00       ML11-9         8       0.0E+00       ML11-9         10       ML11-9       ML11-9         16       ML11-9       ML11-9         16       ML11-9       ML11-9         16       ML11-9       ML11-9         16       ML11-9       ML11-9         26       ML11-9       ML11-9         36       ML11-12       ML11-12         44       ML11-12       ML11-12         60       ML11-12< | 14       ML10-9       32         16       ML10-9       36         18       ML10-9       40         20       0.0E+00       ML10-9       44         24       ML10-9       48         26       ML10-9       56         36       ML10-9       60         40       ML10-9       72         44       ML11-9       0         48       ML11-9       6         60       ML11-9       4         52       ML11-9       4         56       ML11-9       10         0       0.0E+00       ML11-9       10         0       0.0E+00       ML11-9       12         2       ML11-9       14       ML11-9       16         6       ML11-9       18       0.0E+00       ML11-9       14         4       ML11-9       20       10       ML11-9       24         12       ML11-9       36       14       ML11-9       36         14       ML11-9       32       16       ML11-9       32         16       ML11-9       32       32       ML11-9       36         18< | 14       ML10-9       32         16       ML10-9       36         18       ML10-9       40         20       0.0E+00       ML10-9       44         24       ML10-9       48         26       ML10-9       52         32       ML10-9       56         36       ML10-9       72       0.0E+00         40       ML11-9       0       0.0E+00         44       ML11-9       6       0.0E+00         44       ML11-9       10       0.0E+00         48       ML11-9       10       0.0E+00         72       0.0E+00       ML11-9       10         0       0.0E+00       ML11-9       16         6       ML11-9       18       0.0E+00         10       ML11-9       18       0.0E+00         11-9       14       ML11-9       32         16       ML11-9       36       14         12       ML11-9       36       14         24       ML11-9       36       14         25       ML11-9       36       14         44       ML11-9       36       14 | 14       ML10-9       32       ML11-12         16       ML10-9       36       ML11-12         18       ML10-9       40       ML11-12         20       0.0E+00       ML10-9       44       ML12-9         24       ML10-9       52       ML12-9         32       ML10-9       56       ML12-9         36       ML10-9       72       0.0E+00       ML12-9         40       ML11-9       2       0.0E+00       ML12-9         44       ML11-9       0       0.0E+00       ML12-9         56       ML11-9       4       ML12-9         56       ML11-9       6       ML12-9         60       ML11-9       8       0.0E+00       ML12-9         72       0.0E+00       ML11-9       10       ML12-9         72       0.0E+00       ML11-9       12       ML12-9         72       0.0E+00       ML11-9       10       ML12-9         72       0.0E+00       ML11-9       10       ML12-9         74       ML11-9       12       ML12-9         75       ML11-9       18       ML12-9         76       ML11-9 <td>14       ML10-9       32       ML11-12       56         16       ML10-9       36       ML11-12       60         18       ML10-9       40       ML11-12       72         20       0.0E+00       ML10-9       44       ML12-9       2         26       ML10-9       52       ML12-9       4         32       ML10-9       56       ML12-9       8         40       ML10-9       72       0.0E+00       ML12-9       10         44       ML10-9       72       0.0E+00       ML12-9       10         44       ML11-9       0       0.0E+00       ML12-9       12         48       ML11-9       2       ML12-9       18         56       ML11-9       8       0.0E+00       ML12-9       28         2       ML11-9       12       ML12-9       28         2       ML11-9       14       ML12-9       36         6       ML11-9       12       ML12-9       36         6       ML11-9       14       ML12-9       44         10       ML11-9       20       0.0E+00       ML12-9       72         14</td> | 14       ML10-9       32       ML11-12       56         16       ML10-9       36       ML11-12       60         18       ML10-9       40       ML11-12       72         20       0.0E+00       ML10-9       44       ML12-9       2         26       ML10-9       52       ML12-9       4         32       ML10-9       56       ML12-9       8         40       ML10-9       72       0.0E+00       ML12-9       10         44       ML10-9       72       0.0E+00       ML12-9       10         44       ML11-9       0       0.0E+00       ML12-9       12         48       ML11-9       2       ML12-9       18         56       ML11-9       8       0.0E+00       ML12-9       28         2       ML11-9       12       ML12-9       28         2       ML11-9       14       ML12-9       36         6       ML11-9       12       ML12-9       36         6       ML11-9       14       ML12-9       44         10       ML11-9       20       0.0E+00       ML12-9       72         14 |

| ,       |      |         |                  |          |          |                    |          |         |
|---------|------|---------|------------------|----------|----------|--------------------|----------|---------|
| Well    | Hour | PFU/ml  | Well             | Hour     | PFU/ml   | Well               | Hour     | PFU/ml  |
| ML12-15 | 6    |         | ML13-12          | 18       |          | ML14-9             | 40       | 3.0E+01 |
| ML12-15 | 8    | 0.0E+00 | ML13-12          | 20       | 0.0E+00  | ML14-9             | 44       | 1.7E+01 |
| ML12-15 | 10   |         | ML13-12          | 24       |          | ML14-9             | 48       | 1.2E+01 |
| ML12-15 | 12   |         | ML13-12          | 26       |          | ML14-9             | 52       | 9.7E+00 |
| ML12-15 | 14   |         | ML13-12          | 32       |          | ML14-9             | 56       | 1.2E+01 |
| ML12-15 | 16   |         | ML13-12          | 36       |          | ML14-9             | 60       | 9.5E+00 |
| ML12-15 | 18   |         | ML13-12          | 40       |          | ML14-9             | 72       | 1.1E+01 |
| ML12-15 | 20   | 0.0E+00 | ML13-12          | 44       |          | ML14-12            | 0        | 0.0E+00 |
| ML12-15 | 24   |         | ML13-12          | 48       |          | ML14-12            | 2        |         |
| ML12-15 | 26   |         | ML13-12          | 52       |          | ML14-12            | 4        |         |
| ML12-15 | 32   |         | ML13-12          | 56       |          | ML14-12            | 6        |         |
| ML12-15 | 36   |         | ML13-12          | 60       |          | ML14-12            | 8        | 0.0E+00 |
| ML12-15 | 40   |         | ML13-12          | 72       | 4.0E+00  | ML14-12            | 10       |         |
| ML12-15 | 44   |         | ML13-15          | 0        | 0.0E+00  | ML14-12            | 12       |         |
| ML12-15 | 48   |         | ML13-15          | 2        |          | ML14-12            | 14       | 0.0E+00 |
| ML12-15 | 52   |         | ML13-15          | 4        |          | ML14-12            | 16       |         |
| ML12-15 | 56   |         | ML13-15          | 6        |          | ML14-12            | 18       |         |
| ML12-15 | 60   |         | ML13-15          | 8        | 0.0E+00  | ML14-12            | 20       | 0.0E+00 |
| ML12-15 | 72   | 0.0E+00 | ML13-15          | 10       |          | ML14-12            | 24       |         |
| ML13-9  | 0    | 0.0E+00 | ML13-15          | 12       |          | ML14-12            | 26       |         |
| ML13-9  | 2    |         | ML13-15          | 14       |          | ML14-12            | 32       |         |
| ML13-9  | 4    |         | ML13-15          | 16       |          | ML14-12            | 36       |         |
| ML13-9  | 6    |         | ML13-15          | 18       |          | ML14-12            | 40       |         |
| ML13-9  | 8    | 0.0E+00 | ML13-15          | 20       | 0.0E+00  | ML14-12            | 44       |         |
| ML13-9  | 10   |         | ML13-15          | 24       |          | ML14-12            | 48       |         |
| ML13-9  | 12   |         | ML13-15          | 26       |          | ML14-12            | 52       |         |
| ML13-9  | 14   | 0.0E+00 | ML13-15          | 32       |          | ML14-12            | 56       |         |
| ML13-9  | 16   |         | ML13-15          | 36       |          | ML14-12            | 60       |         |
| ML13-9  | 18   |         | ML13-15          | 40       |          | ML14-12            | 72       | 2.0E+00 |
| ML13-9  | 20   | 0.0E+00 | ML13-15          | 44       |          | ML14-15            | 0        | 0.0E+00 |
| ML13-9  | 24   |         | ML13-15          | 48       |          | ML14-15            | 2        |         |
| ML13-9  | 28   | 0.0E+00 | ML13-15          | 52       |          | ML14-15            | 4        |         |
| ML13-9  | 32   |         | ML13-15          | 56       |          | ML14-15            | 6        |         |
| ML13-9  | 36   | 0.0E+00 | ML13-15          | 60       |          | ML14-15            | 8        | 0.0E+00 |
| ML13-9  | 40   | 1.1E-01 | ML13-15          | 72       | 2.1E+00  | ML14-15            | 10       |         |
| ML13-9  | 44   | 0.0E+00 | ML14-9           | 0        | 0.0E+00  | ML14-15            | 12       |         |
| ML13-9  | 48   | 0.0E+00 | ML14-9           | 2        |          | ML14-15            | 14       |         |
| ML13-9  | 52   | 0.0E+00 | ML14-9           | 4        |          | ML14-15            | 16       |         |
| ML13-9  | 56   | 0.0E+00 | ML14-9           | 6        |          | ML14-15            | 18       |         |
| ML13-9  | 60   | 0.0E+00 | ML14-9           | 8        | 0.0E+00  | ML14-15            | 20       | 0.0E+00 |
| ML13-9  | 72   | 0.0E+00 | ML14-9           | 10       | 0.02.00  | ML14-15            | 24       | 0.02.00 |
| ML13-12 | 0    | 0.0E+00 | ML14-9           | 12       |          | ML14-15            | 26       |         |
| ML13-12 | 2    | 0.02.00 | ML14-9           | 14       | 4.6E+00  | ML14-15            | 32       |         |
| ML13-12 | 4    |         | ML14-9           | 16       | 4.0L+00  | ML14-15            | 36       |         |
| ML13-12 | 6    |         | ML14-9<br>ML14-9 | 18       |          | ML14-15<br>ML14-15 | 40       |         |
| ML13-12 | 8    | 0.0E+00 | ML14-9<br>ML14-9 | 20       | 3.8E+01  | ML14-15<br>ML14-15 | 40<br>44 |         |
| ML13-12 | 10   | 5.0L+00 | ML14-9<br>ML14-9 | 20<br>24 | J.0ETU I | ML14-15<br>ML14-15 | 44<br>48 |         |
| ML13-12 | 12   |         | ML14-9<br>ML14-9 | 24<br>28 | 2 15+01  |                    |          |         |
| ML13-12 | 14   |         | ML14-9<br>ML14-9 |          | 2.1E+01  | ML14-15            | 52<br>56 |         |
| ML13-12 | 16   |         | ML14-9<br>ML14-9 | 32       | 1.9E+01  | ML14-15            | 56<br>60 |         |
|         | • 🗸  |         | IVIL (4-9        | 36       | 1.4E+01  | ML14-15            | 60       |         |

| 1330.   |      |         |         |      |           |            |      |         |
|---------|------|---------|---------|------|-----------|------------|------|---------|
| Well    | Hour | PFU/ml  | Well    | Hour | PFU/ml    | Well       | Hour | PFU/ml  |
| ML14-15 | 72   | 1.1E-01 | ML18-9  | 10   |           | W1         | 24   |         |
| ML17-9  | 0    | 0.0E+00 | ML18-9  | 12   |           | W1         | 28   |         |
| ML17-9  | 2    |         | ML18-9  | 14   |           | <b>W</b> 1 | 32   |         |
| ML17-9  | 4    |         | ML18-9  | 16   |           | <b>W</b> 1 | 36   |         |
| ML17-9  | 6    |         | ML18-9  | 18   |           | W1         | 40   | 9.0E+02 |
| ML17-9  | 8    | 0.0E+00 | ML18-9  | 20   | 0.0E+00   | W1         | 44   |         |
| ML17-9  | 10   |         | ML18-9  | 24   |           | W1         | 48   |         |
| ML17-9  | 12   |         | ML18-9  | 26   |           | W1         | 52   |         |
| ML17-9  | 14   |         | ML18-9  | 32   |           | W1         | 56   |         |
| ML17-9  | 16   |         | ML18-9  | 36   |           | W1         | 60   |         |
| ML17-9  | 18   |         | ML18-9  | 40   | 8.8E-01   | W1         | 72   | 1.3E+03 |
| ML17-9  | 20   | 7.9E+00 | ML18-9  | 44   |           | W2         | 0    | 0.0E+00 |
| ML17-9  | 24   |         | ML18-9  | 48   |           | W2         | 2    |         |
| ML17-9  | 26   |         | ML18-9  | 52   |           | W2         | 4    | 0.0E+00 |
| ML17-9  | 32   |         | ML18-9  | 56   |           | W2         | 6    |         |
| ML17-9  | 36   |         | ML18-9  | 60   |           | W2         | 8    | 0.0E+00 |
| ML17-9  | 40   | 9.5E+00 | ML18-9  | 72   | 1.3E+00   | W2         | 10   |         |
| ML17-9  | 44   |         | ML18-12 | 0    | 0.0E+00   | W2         | 12   |         |
| ML17-9  | 48   |         | ML18-12 | 2    |           | W2         | 14   | 0.0E+00 |
| ML17-9  | 52   |         | ML18-12 | 4    |           | W2         | 16   |         |
| ML17-9  | 56   |         | ML18-12 | 6    |           | W2         | 18   |         |
| ML17-9  | 60   |         | ML18-12 | 8    | 0.0E+00   | W2         | 20   | 1.5E+01 |
| ML17-9  | 72   | 1.0E+01 | ML18-12 | 10   |           | W2         | 24   |         |
| ML17-12 | 0    | 0.0E+00 | ML18-12 | 12   |           | W2         | 26   |         |
| ML17-12 | 2    |         | ML18-12 | 14   |           | W2         | 32   |         |
| ML17-12 | 4    | ,       | ML18-12 | 16   |           | W2         | 36   |         |
| ML17-12 | 6    |         | ML18-12 | 18   |           | W2         | 40   | 1.4E+01 |
| ML17-12 | 8    | 0.0E+00 | ML18-12 | 20   | 0.0E+00   | W2         | 44   | 1.2E+01 |
| ML17-12 | 10   |         | ML18-12 | 24   |           | W2         | 48   | 8.8E+00 |
| ML17-12 | 12   |         | ML18-12 | 26   |           | W2         | 52   | 7.5E+00 |
| ML17-12 | 14   |         | ML18-12 | 32   |           | W2         | 56   | 8.1E+00 |
| ML17-12 | 16   |         | ML18-12 | 36   |           | W2         | 60   | 8.0E+00 |
| ML17-12 | 18   |         | ML18-12 | 40   |           | W2         | 72   | 8.0E+00 |
| ML17-12 | 20   | 0.0E+00 | ML18-12 | 44   |           |            |      |         |
| ML17-12 | 24   |         | ML18-12 | 48   |           |            |      |         |
| ML17-12 | 26   |         | ML18-12 | 52   |           |            |      |         |
| ML17-12 | 32   |         | ML18-12 | 56   |           |            |      |         |
| ML17-12 | 36   |         | ML18-12 | 60   |           |            |      |         |
| ML17-12 | 40   |         | ML18-12 | 72   | 9.9E-01   |            |      |         |
| ML17-12 | 44   |         | W1      | 0    |           |            |      |         |
| ML17-12 | 48   |         | W1      | 2    |           |            |      |         |
| ML17-12 | 52   |         | W1      | 4    | 0.0E+00   |            |      |         |
| ML17-12 | 56   |         | W1      | 6    | 0.02.00   |            |      |         |
| ML17-12 | 60   |         | W1      | 8    | 3.9E+02   |            |      |         |
| ML17-12 | 72   | 0.0E+00 | W1      | 10   |           |            |      |         |
| ML18-9  | 0    | 0.0E+00 | W1      | 12   | 5.2E+03   |            |      |         |
| ML18-9  | 2    |         | W1      | 14   | 4.5E+03   |            |      |         |
| ML18-9  | 4    |         | W1      | 16   | 7.VL ' UJ |            |      |         |
| ML18-9  | 6    |         | W1      | 18   |           |            |      |         |
| ML18-9  | 8    | 0.0E+00 | W1      | 20   | 2.4E+03   |            |      |         |
|         |      |         | **1     | 20   | 2.72703   |            |      |         |



Figure D13. 72hr Poliovirus Plume at 9ft depth from 10/2/96 seeding experiment. Concentrations in PFU/ml, flow direction to the west.

### Table D6. Tracer test data from poliovirus type-1 injected into well I4,130October 2, 1996.

| Well      | Hour | PFU/ml  | Well   | Hour | PFU/ml   | Well   | Hour | PFU/ml  |
|-----------|------|---------|--------|------|----------|--------|------|---------|
| l4-Old    | 0    |         | ML0-12 | 6    | r i Onin | ML1-9  | 18   |         |
| l4-New    | 0    |         | ML0-12 | 8    |          | ML1-9  | 20   |         |
| Slug      | Ō    | 5.9E+01 | ML0-12 | 10   |          | ML1-9  | 24   |         |
| Injection | Ō    | 4.9E+01 | ML0-12 | 12   |          | ML1-9  | 26   |         |
| 14        | ō    | 3.4E+06 | ML0-12 | 14   |          | ML1-9  | 32   |         |
| 14        | 2    | 1.3E+06 | ML0-12 | 16   |          | ML1-9  | 36   |         |
| 14        | 4    |         | ML0-12 | 18   |          | ML1-9  | 40   |         |
| 14        | 6    |         | ML0-12 | 20   |          | ML1-9  | 44   |         |
| 14        | 8    | 8.0E+04 | ML0-12 | 24   |          | ML1-9  | 48   |         |
| 14        | 10   |         | ML0-12 | 26   |          | ML1-9  | 52   |         |
| 14        | 12   |         | ML0-12 | 32   |          | ML1-9  | 56   |         |
| 14        | 14   |         | ML0-12 | 36   |          | ML1-9  | 60   |         |
| 14        | 16   |         | ML0-12 | 40   |          | ML1-9  | 72   |         |
| 14        | 18   |         | ML0-12 | 44   |          | ML2-9  | 0    |         |
| 14        | 20   | 4.0E+04 | ML0-12 | 48   |          | ML2-9  | 2    | 4.0E+00 |
| 14        | 28   | _       | ML0-12 | 52   |          | ML2-9  | 4    | 3.8E+02 |
| 14        | 32   |         | ML0-12 | 56   |          | ML2-9  | 6    | 1.6E+02 |
| 14        | 36   |         | ML0-12 | 60   |          | ML2-9  | 8    | 2.1E+01 |
| 14        | 40   | 2.0E+03 | ML0-12 | 72   |          | ML2-9  | 10   | 1.2E+01 |
| 14        | 44   |         | ML0-15 | 0    |          | ML2-9  | 12   |         |
| 14        | 48   |         | ML0-15 | 2    |          | ML2-9  | 14   | 1.0E+00 |
| 14        | 52   |         | ML0-15 | 4    |          | ML2-9  | 16   |         |
| 14        | 56   |         | ML0-15 | 6    |          | ML2-9  | 18   |         |
| 14        | 60   |         | ML0-15 | 8    |          | ML2-9  | 20   | 2.0E+00 |
| 14        | 72   | 1.5E+03 | ML0-15 | 10   |          | ML2-9  | 24   |         |
| ML0-9     | 0    | ,       | ML0-15 | 12   |          | ML2-9  | 28   |         |
| ML0-9     | 2    | 0.0E+00 | ML0-15 | 14   |          | ML2-9  | 32   |         |
| ML0-9     | 4    | 1.0E+00 | ML0-15 | 16   |          | ML2-9  | 36   |         |
| ML0-9     | 6    | 0.0E+00 | ML0-15 | 18   |          | ML2-9  | 40   | 0.0E+00 |
| ML0-9     | 8    | 0.0E+00 | ML0-15 | 20   |          | ML2-9  | 44   |         |
| ML0-9     | 10   | 0.0E+00 | ML0-15 | 24   |          | ML2-9  | 48   |         |
| ML0-9     | 12   |         | ML0-15 | 26   |          | ML2-9  | 52   |         |
| ML0-9     | 14   |         | ML0-15 | 32   |          | ML2-9  | 56   |         |
| ML0-9     | 16   |         | ML0-15 | 36   |          | ML2-9  | 60   |         |
| ML0-9     | 18   |         | ML0-15 | 40   |          | ML2-9  | 72   | 4.0E+00 |
| ML0-9     | 20   | 0.0E+00 | ML0-15 | 44   |          | ML2-12 | 0    |         |
| ML0-9     | 24   |         | ML0-15 | 48   |          | ML2-12 | 2    |         |
| ML0-9     | 26   |         | ML0-15 | 52   |          | ML2-12 | 4    |         |
| ML0-9     | 32   |         | ML0-15 | 56   |          | ML2-12 | 6    |         |
| ML0-9     | 36   |         | ML0-15 | 60   |          | ML2-12 | 8    |         |
| ML0-9     | 40   | 0.0E+00 | ML0-15 | 72   |          | ML2-12 | 10   |         |
| ML0-9     | 44   |         | ML1-9  | 0    |          | ML2-12 | 12   |         |
| ML0-9     | 48   |         | ML1-9  | 2    |          | ML2-12 | 14   |         |
| ML0-9     | 52   |         | ML1-9  | 4    |          | ML2-12 | 16   |         |
| ML0-9     | 56   |         | ML1-9  | 6    |          | ML2-12 | 18   |         |
| ML0-9     | 60   | 0.0E+00 | ML1-9  | 8    |          | ML2-12 | 20   |         |
| ML0-9     | 72   | 0.0E+00 | ML1-9  | 10   |          | ML2-12 | 24   |         |
| ML0-12    | 0    |         | ML1-9  | 12   |          | ML2-12 | 26   |         |
| ML0-12    | 2    |         | ML1-9  | 14   |          | ML2-12 | 32   |         |
| ML0-12    | 4    |         | ML1-9  | 16   |          | ML2-12 | 36   |         |
|           |      |         |        |      |          |        | 50   |         |

# Table D6. Tracer test data from poliovirus type-1 injected into well I4,131October 2, 1996.

| Well             | Hour   | PFU/ml | Well           | Hour | PFU/ml             | Well             | Hour     | PFU/ml |
|------------------|--------|--------|----------------|------|--------------------|------------------|----------|--------|
| ML2-12           | 40     |        | ML3-9          | 72   |                    | ML7-12           | 10       |        |
| ML2-12           | 44     |        | ML6-9          | 0    |                    | ML7-12           | 12       |        |
| ML2-12           | 48     |        | ML6-9          | 2    |                    | ML7-12           | 14       |        |
| ML2-12           | 52     |        | ML6-9          | 4    |                    | ML7-12           | 16       |        |
| ML2-12           | 56     |        | ML6-9          | 6    |                    | ML7-12           | 18       |        |
| ML2-12           | 60     |        | ML6-9          | 8    |                    | ML7-12           | 20       |        |
| ML2-12           | 72     |        | ML6-9          | 10   |                    | ML7-12           | 24       |        |
| ML2-15           | 0      |        | ML6-9          | 12   |                    | ML7-12           | 26       |        |
| ML2-15           | 2      |        | ML6-9          | 14   |                    | ML7-12           | 32       |        |
| ML2-15           | 4      |        | ML6-9          | 16   |                    | ML7-12           | 36       |        |
| ML2-15           | 6      |        | ML6-9          | 18   |                    | ML7-12           | 40       |        |
| ML2-15           | 8      |        | ML6-9          | 20   |                    | ML7-12           | 44       |        |
| ML2-15           | 10     |        | ML6-9          | 24   |                    | ML7-12           | 48       |        |
| ML2-15           | 12     |        | ML6-9          | 26   |                    | ML7-12           | 52       |        |
| ML2-15           | 14     |        | ML6-9          | 32   |                    | ML7-12           | 56       |        |
| ML2-15           | 16     |        | ML6-9          | 36   |                    | ML7-12           | 60       |        |
| ML2-15           | 18     |        | ML6-9          | 40   |                    | ML7-12           | 72       |        |
| ML2-15           | 20     |        | ML6-9          | 44   |                    | ML7-15           | 0        |        |
| ML2-15           | 24     |        | ML6-9          | 48   |                    | ML7-15           | 2        |        |
| ML2-15           | 26     |        | ML6-9          | 52   |                    | ML7-15           | 4        |        |
| ML2-15           | 32     |        | ML6-9          | 56   |                    | ML7-15           | 6        |        |
| ML2-15           | 36     |        | ML6-9          | 60   |                    | ML7-15           | 8        |        |
| ML2-15           | 40     |        | ML6-9          | 72   |                    | ML7-15           | 10       |        |
| ML2-15           | 44     |        | ML7-9          | 0    |                    | ML7-15           | 12       |        |
| ML2-15           | 48     |        | ML7-9          | 2    |                    | ML7-15           | 14       |        |
| ML2-15           | 52     | ·      | ML7-9          | 4    | 0.0E+00            | ML7-15           | 16       |        |
| ML2-15           | 56     |        | ML7-9<br>ML7-9 | 6    |                    | ML7-15           | 18       |        |
| ML2-15           | 60     |        | ML7-9          | 8    | 1.5E+01            | ML7-15           | 20       |        |
| ML2-15<br>ML2-15 | 72     |        | ML7-9          | 10   | 2.5E+01            | ML7-15           | 20<br>24 |        |
| ML3-9            | 0      |        | ML7-9          | 12   | 2.5E+01<br>2.6E+01 | ML7-15<br>ML7-15 | 24<br>26 |        |
| ML3-9            | 2      |        | ML7-9          | 14   | 1.0E+01            | ML7-15           | 20<br>32 |        |
| ML3-9            | 4      |        |                | 16   | 1.0E+01<br>1.0E+00 |                  |          |        |
| ML3-9<br>ML3-9   | 4<br>6 |        | ML7-9<br>ML7-9 | 18   | 1.02+00            | ML7-15<br>ML7-15 | 36<br>40 |        |
|                  |        |        |                |      |                    |                  |          |        |
| ML3-9            | 8      |        | ML7-9          | 20   | 0.0E+00            | ML7-15           | 44       |        |
| ML3-9            | 10     |        | ML7-9          | 24   |                    | ML7-15           | 48       |        |
| ML3-9            | 12     |        | ML7-9          | 28   |                    | ML7-15           | 52       |        |
| ML3-9            | 14     |        | ML7-9          | 32   |                    | ML7-15           | 56       |        |
| ML3-9            | 16     |        | ML7-9          | 36   |                    | ML7-15           | 60       |        |
| ML3-9            | 18     |        | ML7-9          | 40   | 0.0E+00            | ML7-15           | 72       |        |
| ML3-9            | 20     |        | ML7-9          | 44   |                    | ML8-9            | 0        |        |
| ML3-9            | 24     |        | ML7-9          | 48   |                    | ML8-9            | 2        |        |
| ML3-9            | 26     |        | ML7-9          | 52   |                    | ML8-9            | 4        |        |
| ML3-9            | 32     |        | ML7-9          | 56   |                    | ML8-9            | 6        |        |
| ML3-9            | 36     |        | ML7-9          | 60   |                    | ML8-9            | 8        |        |
| ML3-9            | 40     |        | ML7-9          | 72   | 0.0E+00            | ML8-9            | 10       |        |
| ML3-9            | 44     |        | ML7-12         | 0    |                    | ML8-9            | 12       |        |
| ML3-9            | 48     |        | ML7-12         | 2    |                    | ML8-9            | 14       |        |
| ML3-9            | 52     |        | ML7-12         | 4    |                    | ML8-9            | 16       |        |
| ML3-9            | 56     |        | ML7-12         | 6    |                    | ML8-9            | 18       |        |
| ML3-9            | 60     |        | ML7-12         | 8    |                    | ML8-9            | 20       |        |
|                  |        |        |                |      |                    |                  |          |        |

# Table D6. Tracer test data from poliovirus type-1 injected into well I4,132October 2, 1996.

| Well   | Hour | PFU/ml   | Well   | Hour | PFU/ml   | Well               | Hour | PFU/ml |
|--------|------|----------|--------|------|----------|--------------------|------|--------|
| ML8-9  | 24   | r i Onni | ML8-15 | 48   | PT O/III | ML9-15             | 2    |        |
| ML8-9  | 26   |          | ML8-15 | 52   |          | ML9-15             | 4    |        |
| ML8-9  | 32   |          | ML8-15 | 56   |          | ML9-15             | 6    |        |
| ML8-9  | 36   |          | ML8-15 | 60   |          | ML9-15             | 8    |        |
| ML8-9  | 40   |          | ML8-15 | 72   |          | ML9-15             | 10   |        |
| ML8-9  | 44   |          | ML9-9  | 0    |          | ML9-15             | 12   |        |
| ML8-9  | 48   |          | ML9-9  | 2    |          | ML9-15             | 14   |        |
| ML8-9  | 52   |          | ML9-9  | 4    |          | ML9-15             | 16   |        |
| ML8-9  | 56   |          | ML9-9  | 6    |          | ML9-15             | 18   |        |
| ML8-9  | 60   |          | ML9-9  | 8    |          | ML9-15             | 20   |        |
| ML8-9  | 72   |          | ML9-9  | 10   |          | ML9-15             | 24   |        |
| ML8-12 | 0    |          | ML9-9  | 12   |          | ML9-15             | 26   |        |
| ML8-12 | 2    |          | ML9-9  | 14   |          | ML9-15             | 32   |        |
| ML8-12 | 4    |          | ML9-9  | 16   |          | ML9-15             | 36   |        |
| ML8-12 | 6    |          | ML9-9  | 18   |          | ML9-15             | 40   |        |
| ML8-12 | 8    |          | ML9-9  | 20   |          | ML9-15             | 44   |        |
| ML8-12 | 10   |          | ML9-9  | 24   |          | ML9-15             | 48   |        |
| ML8-12 | 12   |          | ML9-9  | 26   |          | ML9-15             | 52   |        |
| ML8-12 | 14   |          | ML9-9  | 32   |          | ML9-15             | 56   |        |
| ML8-12 | 16   |          | ML9-9  | 36   |          | ML9-15             | 60   |        |
| ML8-12 | 18   |          | ML9-9  | 40   |          | ML9-15             | 72   |        |
| ML8-12 | 20   |          | ML9-9  | 44   |          | ML19-9             | 0    |        |
| ML8-12 | 24   |          | ML9-9  | 48   |          | ML19-9             | 2    |        |
| ML8-12 | 26   |          | ML9-9  | 52   |          | ML19-9             | 4    |        |
| ML8-12 | 32   |          | ML9-9  | 56   |          | ML19-9             | 6    |        |
| ML8-12 | 36   |          | ML9-9  | 60   |          | ML19-9             | 8    |        |
| ML8-12 | 40   |          | ML9-9  | 72   |          | ML19-9             | 10   |        |
| ML8-12 | 44   |          | ML9-12 | 0    |          | ML19-9             | 12   |        |
| ML8-12 | 48   |          | ML9-12 | 2    |          | ML19-9             | 14   |        |
| ML8-12 | 52   |          | ML9-12 | 4    |          | ML19-9             | 16   |        |
| ML8-12 | 56   |          | ML9-12 | 6    |          | ML19-9             | 18   |        |
| ML8-12 | 60   |          | ML9-12 | 8    |          | ML19-9             | 20   |        |
| ML8-12 | 72   |          | ML9-12 | 10   |          | ML19-9             | 24   |        |
| ML8-15 | 0    |          | ML9-12 | 12   |          | ML19-9             | 26   |        |
| ML8-15 | 2    |          | ML9-12 | 14   |          | ML19-9             | 32   |        |
| ML8-15 | 4    |          | ML9-12 | 16   |          | ML19-9             | 36   |        |
| ML8-15 | 6    |          | ML9-12 | 18   |          | ML19-9             | 40   |        |
| ML8-15 | 8    |          | ML9-12 | 20   |          | ML19-9             | 44   |        |
| ML8-15 | 10   |          | ML9-12 | 24   |          | ML19-9             | 48   |        |
| ML8-15 | 12   |          | ML9-12 | 26   |          | ML19-9             | 52   |        |
| ML8-15 | 14   |          | ML9-12 | 32   |          | ML19-9             | 56   |        |
| ML8-15 | 16   |          | ML9-12 | 36   |          | ML19-9             | 60   |        |
| ML8-15 | 18   |          | ML9-12 | 40   |          | ML19-9             | 72   |        |
| ML8-15 | 20   |          | ML9-12 | 44   |          | ML19-12            | 0    |        |
| ML8-15 | 24   |          | ML9-12 | 48   |          | ML19-12            | 2    |        |
| ML8-15 | 26   |          | ML9-12 | 52   |          | ML19-12            | 4    |        |
| ML8-15 | 32   |          | ML9-12 | 56   |          | ML19-12            | 6    |        |
| ML8-15 | 36   |          | ML9-12 | 60   |          | ML19-12            | 8    |        |
| ML8-15 | 40   |          | ML9-12 | 72   |          | ML19-12<br>ML19-12 | 10   |        |
| ML8-15 | 44   |          | ML9-15 | 0    |          | ML19-12<br>ML19-12 | 12   |        |
|        |      |          |        | J.   |          | WIL   3*   Z       | 14   |        |

# Table D6. Tracer test data from poliovirus type-1 injected into well I4,133October 2, 1996.

| -       |      |        |         |      |        |         |      |         |
|---------|------|--------|---------|------|--------|---------|------|---------|
| Well    | Hour | PFU/mI | Well    | Hour | PFU/ml | Well    | Hour | PFU/ml  |
| ML19-12 | 14   |        | ML10-9  | 32   |        | ML11-12 | 56   |         |
| ML19-12 | 16   |        | ML10-9  | 36   |        | ML11-12 | 60   |         |
| ML19-12 | 18   |        | ML10-9  | 40   |        | ML11-12 | 72   |         |
| ML19-12 | 20   |        | ML10-9  | 44   |        | ML12-9  | 0    |         |
| ML19-12 | 24   |        | ML10-9  | 48   |        | ML12-9  | 2    |         |
| ML19-12 | 26   |        | ML10-9  | 52   |        | ML12-9  | 4    |         |
| ML19-12 | 32   |        | ML10-9  | 56   |        | ML12-9  | 6    |         |
| ML19-12 | 36   |        | ML10-9  | 60   |        | ML12-9  | 8    | 0.0E+00 |
| ML19-12 | 40   |        | ML10-9  | 72   |        | ML12-9  | 10   |         |
| ML19-12 | 44   |        | ML11-9  | 0    |        | ML12-9  | 12   |         |
| ML19-12 | 48   |        | ML11-9  | 2    |        | ML12-9  | 14   | 0.0E+00 |
| ML19-12 | 52   |        | ML11-9  | 4    |        | ML12-9  | 16   |         |
| ML19-12 | 56   |        | ML11-9  | 6    |        | ML12-9  | 18   |         |
| ML19-12 | 60   |        | ML11-9  | 8    |        | ML12-9  | 20   | 0.0E+00 |
| ML19-12 | 72   |        | ML11-9  | 10   |        | ML12-9  | 24   |         |
| ML19-15 | 0    |        | ML11-9  | 12   |        | ML12-9  | 28   | 0.0E+00 |
| ML19-15 | 2    |        | ML11-9  | 14   |        | ML12-9  | 32   | 0.0E+00 |
| ML19-15 | 4    |        | ML11-9  | 16   |        | ML12-9  | 36   | 0.0E+00 |
| ML19-15 | 6    |        | ML11-9  | 18   |        | ML12-9  | 40   | 0.0E+00 |
| ML19-15 | 8    |        | ML11-9  | 20   |        | ML12-9  | 44   |         |
| ML19-15 | 10   |        | ML11-9  | .24  |        | ML12-9  | 48   |         |
| ML19-15 | 12   |        | ML11-9  | 26   |        | ML12-9  | 52   |         |
| ML19-15 | 14   |        | ML11-9  | 32   |        | ML12-9  | 56   | 0.0E+00 |
| ML19-15 | 16   |        | ML11-9  | 36   |        | ML12-9  | 60   | 0.0E+00 |
| ML19-15 | 18   |        | ML11-9  | 40   |        | ML12-9  | 72   | 0.0E+00 |
| ML19-15 | 20   |        | ML11-9  | 44   |        | ML12-12 | 0    |         |
| ML19-15 | 24   |        | ML11-9  | 48   |        | ML12-12 | 2    |         |
| ML19-15 | 26   |        | ML11-9  | 52   |        | ML12-12 | 4    |         |
| ML19-15 | 32   |        | ML11-9  | 56   |        | ML12-12 | 6    |         |
| ML19-15 | 36   |        | ML11-9  | 60   |        | ML12-12 | 8    |         |
| ML19-15 | 40   |        | ML11-9  | 72   |        | ML12-12 | 10   |         |
| ML19-15 | 44   |        | ML11-12 | 0    |        | ML12-12 | 12   |         |
| ML19-15 | 48   |        | ML11-12 | 2    |        | ML12-12 | 14   |         |
| ML19-15 | 52   |        | ML11-12 | 4    |        | ML12-12 | 16   |         |
| ML19-15 | 56   |        | ML11-12 | 6    |        | ML12-12 | 18   |         |
| ML19-15 | 60   |        | ML11-12 | 8    |        | ML12-12 | 20   |         |
| ML19-15 | 72   |        | ML11-12 | 10   |        | ML12-12 | 24   |         |
| ML10-9  | 0    |        | ML11-12 | 12   |        | ML12-12 | 26   |         |
| ML10-9  | 2    |        | ML11-12 | 14   |        | ML12-12 | 32   |         |
| ML10-9  | 4    |        | ML11-12 | 16   |        | ML12-12 | 36   |         |
| ML10-9  | 6    |        | ML11-12 | 18   |        | ML12-12 | 40   |         |
| ML10-9  | 8    |        | ML11-12 | 20   |        | ML12-12 | 44   |         |
| ML10-9  | 10   |        | ML11-12 | 24   |        | ML12-12 | 48   |         |
| ML10-9  | 12   |        | ML11-12 | 26   |        | ML12-12 | 52   |         |
| ML10-9  | 14   |        | ML11-12 | 32   |        | ML12-12 | 56   |         |
| ML10-9  | 16   |        | ML11-12 | 36   |        | ML12-12 | 60   |         |
| ML10-9  | 18   |        | ML11-12 | 40   |        | ML12-12 | 72   |         |
| ML10-9  | 20   |        | ML11-12 | 44   |        | ML12-15 | 0    |         |
| ML10-9  | 24   |        | ML11-12 | 48   |        | ML12-15 | 2    |         |
| ML10-9  | 26   |        | ML11-12 | 52   |        | ML12-15 | 4    |         |
|         |      |        |         |      |        |         | т    |         |

# Table D6. Tracer test data from poliovirus type-1 injected into well I4,134October 2, 1996.

| Well               | Hour     | PFU/ml  | Well               | Hour   | PFU/ml  | Well               | Hour | PFU/ml  |
|--------------------|----------|---------|--------------------|--------|---------|--------------------|------|---------|
| ML12-15            | 6        |         | ML13-12            | 18     |         | ML14-9             | 40   | 0.0E+00 |
| ML12-15            | 8        |         | ML13-12            | 20     |         | ML14-9             | 44   |         |
| ML12-15            | 10       |         | ML13-12            | 24     |         | ML14-9             | 48   |         |
| ML12-15            | 12       |         | ML13-12            | 26     |         | ML14-9             | 52   | 0.0E+00 |
| ML12-15            | 14       |         | ML13-12            | 32     |         | ML14-9             | 56   |         |
| ML12-15            | 16       |         | ML13-12            | 36     |         | ML14-9             | 60   | 0.0E+00 |
| ML12-15            | 18       |         | ML13-12            | 40     |         | ML14-9             | 72   | 0.0E+00 |
| ML12-15            | 20       |         | ML13-12            | 44     |         | ML14-12            | 0    |         |
| ML12-15            | 24       |         | ML13-12            | 48     |         | ML14-12            | 2    |         |
| ML12-15            | 26       |         | ML13-12            | 52     |         | ML14-12            | 4    |         |
| ML12-15            | 32       |         | ML13-12            | 56     |         | ML14-12            | 6    |         |
| ML12-15            | 36       |         | ML13-12            | 60     |         | ML14-12            | 8    |         |
| ML12-15            | 40       |         | ML13-12            | 72     |         | ML14-12            | 10   |         |
| ML12-15            | 44       |         | ML13-15            | 0      |         | ML14-12            | 12   |         |
| ML12-15            | 48       |         | ML13-15            | 2      |         | ML14-12<br>ML14-12 | 14   |         |
| ML12-15            | 52       |         | ML13-15            | 4      |         |                    | 16   |         |
| ML12-15<br>ML12-15 | 56       |         | ML13-15<br>ML13-15 | 4<br>6 |         | ML14-12            |      |         |
|                    | 60       |         |                    | 8      |         | ML14-12            | 18   |         |
| ML12-15            |          |         | ML13-15            |        |         | ML14-12            | 20   |         |
| ML12-15            | 72       |         | ML13-15            | 10     |         | ML14-12            | 24   |         |
| ML13-9             | 0        |         | ML13-15            | 12     |         | ML14-12            | 26   |         |
| ML13-9             | 2        |         | ML13-15            | 14     |         | ML14-12            | 32   |         |
| ML13-9             | 4        |         | ML13-15            | 16     |         | ML14-12            | 36   |         |
| ML13-9             | 6        |         | ML13-15            | 18     |         | ML14-12            | 40   |         |
| ML13-9             | 8        | 0.0E+00 | ML13-15            | 20     |         | ML14-12            | 44   |         |
| ML13-9             | 10       |         | ML13-15            | 24     |         | ML14-12            | 48   |         |
| ML13-9             | 12       | •       | ML13-15            | 26     |         | ML14-12            | 52   |         |
| ML13-9             | 14       |         | ML13-15            | 32     |         | ML14-12            | 56   |         |
| ML13-9             | 16       |         | ML13-15            | 36     |         | ML14-12            | 60   |         |
| ML13-9             | 18       |         | ML13-15            | 40     |         | ML14-12            | 72   |         |
| ML13-9             | 20       | 0.0E+00 | ML13-15            | 44     |         | ML14-15            | 0    |         |
| ML13-9             | 24       |         | ML13-15            | 48     |         | ML14-15            | 2    |         |
| ML13-9             | 28       |         | ML13-15            | 52     |         | ML14-15            | 4    |         |
| ML13-9             | 32       | 0.0E+00 | ML13-15            | 56     |         | ML14-15            | 6    |         |
| ML13-9             | 36       |         | ML13-15            | 60     |         | ML14-15            | 8    |         |
| ML13-9             | 40       | 0.0E+00 | ML13-15            | 72     |         | ML14-15            | 10   |         |
| ML13-9             | 44       | 0.02.00 | ML14-9             | 0      |         | ML14-15            | 12   |         |
| ML13-9             | 48       |         | ML14-9             | 2      |         | ML14-15            | 14   |         |
| ML13-9             | 52       | 0.0E+00 | ML14-9             | 4      |         | ML14-15            | 16   |         |
| ML13-9             | 52<br>56 | 0.02+00 | ML14-9             | 6      |         | ML14-15<br>ML14-15 |      |         |
|                    |          |         |                    |        | 0.05.00 |                    | 18   |         |
| ML13-9             | 60<br>70 | 0.05.00 | ML14-9             | 8      | 0.0E+00 | ML14-15            | 20   |         |
| ML13-9             | 72       | 0.0E+00 | ML14-9             | 10     |         | ML14-15            | 24   |         |
| ML13-12            | 0        |         | ML14-9             | 12     |         | ML14-15            | 26   |         |
| ML13-12            | 2        |         | ML14-9             | 14     | 1.0E+00 | ML14-15            | 32   |         |
| ML13-12            | 4        |         | ML14-9             | 16     |         | ML14-15            | 36   |         |
| ML13-12            | 6        |         | ML14-9             | 18     |         | ML14-15            | 40   |         |
| ML13-12            | 8        |         | ML14-9             | 20     | 1.0E+00 | ML14-15            | 44   |         |
| ML13-12            | 10       |         | ML14-9             | 24     |         | ML14-15            | 48   |         |
| ML13-12            | 12       |         | ML14-9             | 28     | 0.0E+00 | ML14-15            | 52   |         |
| ML13-12            | 14       |         | ML14-9             | 32     | 0.0E+00 | ML14-15            | 56   |         |
| ML13-12            | 16       |         | ML14-9             | 36     |         | ML14-15            | 60   |         |
|                    |          |         |                    |        |         | -                  | -    |         |

# Table D6. Tracer test data from poliovirus type-1 injected into well I4,135October 2, 1996.

| ,                |      |         |         |      |         |      |      |         |
|------------------|------|---------|---------|------|---------|------|------|---------|
| Well             | Hour | PFU/ml  | Well    | Hour | PFU/ml  | Well | Hour | PFU/ml  |
| ML1 <b>4</b> -15 | 72   |         | ML18-9  | 10   |         | W1   | 24   |         |
| ML17-9           | 0    | 0.0E+00 | ML18-9  | 12   |         | W1   | 28   |         |
| ML17-9           | 2    |         | ML18-9  | 14   |         | W1   | 32   |         |
| ML17-9           | 4    |         | ML18-9  | 16   |         | W1   | 36   |         |
| ML17-9           | 6    |         | ML18-9  | 18   |         | W1   | 40   | 3.0E+00 |
| ML17-9           | 8    | 0.0E+00 | ML18-9  | 20   | 1.0E+00 | W1   | 44   |         |
| ML17-9           | 10   |         | ML18-9  | 24   |         | W1   | 48   |         |
| ML17-9           | 12   |         | ML18-9  | 26   |         | W1   | 52   |         |
| ML17-9           | 14   |         | ML18-9  | 32   |         | W1   | 56   |         |
| ML17-9           | 16   |         | ML18-9  | 36   |         | W1   | 60   |         |
| ML17-9           | 18   |         | ML18-9  | 40   | 0.0E+00 | W1   | 72   | 0.0E+00 |
| ML17-9           | 20   | 1.0E+00 | ML18-9  | 44   |         | W2   | 0    |         |
| ML17-9           | 24   |         | ML18-9  | 48   |         | W2   | 2    |         |
| ML17-9           | 26   |         | ML18-9  | 52   |         | W2   | 4    |         |
| ML17-9           | 32   |         | ML18-9  | 56   |         | W2   | 6    |         |
| ML17-9           | 36   |         | ML18-9  | 60   |         | W2   | 8    | 0.0E+00 |
| ML17-9           | 40   | 1.0E+00 | ML18-9  | 72   | 0.0E+00 | W2   | 10   |         |
| ML17-9           | 44   |         | ML18-12 | 0    |         | W2   | 12   |         |
| ML17-9           | 48   |         | ML18-12 | 2    |         | W2   | 14   | 0.0E+00 |
| ML17-9           | 52   |         | ML18-12 | 4    |         | W2   | 16   |         |
| ML17-9           | 56   |         | ML18-12 | 6    |         | W2   | 18   |         |
| ML17-9           | 60   |         | ML18-12 | 8    |         | W2   | 20   | 0.0E+00 |
| ML17-9           | 72   | 0.0E+00 | ML18-12 | 10   |         | W2   | 24   |         |
| ML17-12          | 0    |         | ML18-12 | 12   |         | W2   | 26   |         |
| ML17-12          | 2    |         | ML18-12 | 14   |         | W2   | 32   |         |
| ML17-12          | 4    |         | ML18-12 | 16   |         | W2   | 36   |         |
| ML17-12          | 6    |         | ML18-12 | 18   |         | W2   | 40   |         |
| ML17-12          | 8    |         | ML18-12 | 20   |         | W2   | 44   |         |
| ML17-12          | 10   |         | ML18-12 | 24   |         | W2   | 48   |         |
| ML17-12          | 12   |         | ML18-12 | 26   |         | W2   | 52   |         |
| ML17-12          | 14   |         | ML18-12 | 32   |         | W2   | 56   |         |
| ML17-12          | 16   |         | ML18-12 | 36   |         | W2   | 60   |         |
| ML17-12          | 18   |         | ML18-12 | 40   |         | W2   | 72   |         |
| ML17-12          | 20   |         | ML18-12 | 44   |         |      |      |         |
| ML17-12          | 24   |         | ML18-12 | 48   |         |      |      |         |
| ML17-12          | 26   |         | ML18-12 | 52   |         |      |      |         |
| ML17-12          | 32   |         | ML18-12 | 56   |         |      |      |         |
| ML17-12          | 36   |         | ML18-12 | 60   |         |      |      |         |
| ML17-12          | 40   |         | ML18-12 | 72   |         |      |      |         |
| ML17-12          | 44   |         | W1      | 0    |         |      |      |         |
| ML17-12          | 48   |         | W1      | 2    |         |      |      |         |
| ML17-12          | 52   |         | W1      | 4    | 0.0E+00 |      |      |         |
| ML17-12          | 56   |         | W1      | 6    | 0.02    |      |      |         |
| ML17-12          | 60   |         | W1      | 8    | 1.3E+01 |      |      |         |
| ML17-12          | 72   |         | W1      | 10   |         |      |      |         |
| ML18-9           | 0    |         | W1      | 12   | 3.1E+01 |      |      |         |
| ML18-9           | 2    |         | W1      | 14   | 1.0E+01 |      |      |         |
| ML18-9           | 4    |         | W1      | 16   |         |      |      |         |
| ML18-9           | 6    |         | W1      | 18   |         |      |      |         |
| ML18-9           | 8    | 0.0E+00 | W1      | 20   | 0.0E+00 |      |      |         |
|                  |      |         |         | 20   |         |      |      |         |



Figure D14. 72hr Cross-section of MS2 plume from 10/2/96 seeding experiment. Concentrations in PFU/ml, flow direction to the west.



Distance from Injection Well 14 (m)

Figure D15. 72hr Cross-section of PRD1 from 10/2/96 seeding experiment. Concentrations in PFU/ml, flow direction to the west.



Figure D16. 72hr Cross-section of PRD1 from 10/02/96 seeding experiment. Concentration in PFU/mi, flow direction to the west.

138