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Keller, Kathryn A. M.S., December 2005 Forestry

Applying the Prediction of Four-Year Height Growth of Douglas-fir and Ponderosa pine 
Saplings to an Existing Growth Simulator

Chairperson: Kelsey Stephen Milner, Ph.D.

Seedling and sapling development is a critical descriptor of future stand structure and 
growth. Very little information currently exists about small tree growth and its 
interaction with site and competing vegetation in the inland northwest.
Using a database constructed from a study by the Inland Northwest Growth and Yield 

(INGY) cooperative, the effects of site and competition on small tree height growth in the 
inland northwest are investigated. First by utilizing a log-linear approach to investigate 
the relationships between site and competition and then a non-linear approach to estimate 
four year height growth of two species, Douglas-fir (pseudotsuga menziesii) and 
ponderosa pine (pinusponderosa). Finally, the selected prediction equations are 
incorporated into an existing growth simulator, Forest Projection and Planning Systems 
(FPS), as an illustration of calibration.

The log-linear approach is somewhat successful in showing the simple linear 
relationships between height growth and competition. The non-linear model describes 
the existing data well and shows promise in estimating future height growth.
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INTRODUCTION:

Predicting or estimating the growth dynamics of a forest or stand of trees over 

time has long been a challenge for foresters. With the advent of the personal computer, 

computer software and technology, forest growth models have been expanding in both 

power and application over the past few decades. There is not, however, a good model 

for small tree growth that takes into account the effects of non-tree vegetation.

Traditionally, most models were deterministic, empirical, and distance 

independent like FVS (Stage 1973), CACTOS (Wensel and Biging 1988), CRYPTOS 

(Wensel et al.1987), and ORGANON (Hester et al. 1989). Recently, much research has 

been done with stochastic models such as SIMPLE (Chew 1995) and mechanistically 

based programs such as the Forest BGC (Running and Coughlan 1988), Biome BGC 

(Running and Hunt 1993) or Stand BGC (Milner and Coble 2003) models. Most of these 

distant independent models indirectly incorporate spatial and structural data through 

stand level variables applied equally to trees throughout the stand. This approach does 

not realistically represent the clumpy, patchy structure of mixed-species multi-aged 

forests. One model that does address the spatial attributes of a stand is Forest Projection 

and Planning Systems (FPS) (Amey 1995), which is one of the first truly distant 

dependent forest growth modeling system to be operationally useful.

Almost all of these models have focused on large tree growth and most of the data 

collected has been about large trees (greater than twenty feet in height) (Powers et al 

1989; Loveall 2000).

A critical time in stand development is in the seedling survival and small tree 

establishment period (Smith 1986; Stewart 1987). Until recently very little research has
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been conducted in this area (Wang et al. 1995; Milner and Coble 1995b). One crucial 

area of study is the effect of competing herbaceous vegetation and grasses on the growth 

of small trees. In western Montana this competition affects small tree growth (Milner 

1997; Carter et al 1984). Keyser and Milner (1998) found that reducing competing 

vegetation through chemical and mechanical procedures increased the survival and 

growth of ponderosa and lodgepole pine (Keyser and Milner 1998).

Forest growth models for small trees, which analyze and incorporate the 

interactions of site, understory non-tree vegetation, and overstory competition are lacking 

especially in the Inland Northwest. In the mid 1990s the Inland Northwest Growth and 

Yield Cooperative (INGY) began a comprehensive study named the Small Tree 

Competing Vegetation (STCV) study. This INGY study formulated a sampling design of 

permanent plots in 1997 for the purposes of 1) generating data to model small tree growth 

in the presence of competing vegetation and overstory trees and 2) to model competing 

vegetation growth in the presence of both small and overstory trees. One of the problems 

the INGY study addressed is that in many data sets, growth increases with increasing 

competition from shrubs, forbs, and grasses (Walstad and Kuch 1987) (Figure 1).
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Figure 1. Actual and Assumed Trends in Small tree Growth in the Presence of 
_________________________Competing Vegetation_________________________
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This led to much discussion of the multicollinearity of site quality and competing 

vegetation affecting small tree growth. Perhaps on the high quality sites both vegetation 

and trees were not limited and not actually competing due to the abundance of water, 

nutrients, etc., and that on the lower quality sites there was so much competition due to 

the lack o f these nutrients, that neither trees nor competing vegetation grew well (Loveall 

2000). With this idea in mind, the sampling design of the STCV study attempts to 

decouple the effects of competing vegetation and site quality through various levels of 

vegetation control on each site.

Preliminary studies have shown that trees are essentially unaffected by 

competition from non-tree vegetation after reaching 20 feet in height, depending on 

species (Keyser 1998; Arney 1996). It was also found that small tree growth does 

increase early on in its life, and reaches its maximum growth rate earlier due to
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vegetation control (Keyser 1998). The study therefore focuses on trees that at the time of 

installation of the permanent plots were less than 20 feet tall. Loveall’s (2000) thesis 

found that utilizing competing vegetation as an independent variable after decoupling its 

effects from site quality is promising in modeling small lodgepole pine height growth.

Early studies of the STCV data have shown several interesting results. Krebs 

(2003) measured the amount of photosynthesis occurring in trees on both low and high 

competing vegetation on two different sites, one dry and the other wet. Using percent 

cover as the measure of competition on tree centered plots, he found a very significant 

increase in photosynthesis, longer growing season, and decreased water stress between 

the levels of vegetation, with the more significant results on the dry site, which seems 

logical (Figure 2 and Figure 3)

Figure 2. Summer Net Photosynthesis for Wet Site (Krebs 2003)
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Figure 3. Summer Net Photosynthesis for Dry Site (Krebs 2003)
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Farris (2003) presented some preliminary graphs of tree height growth in response 

to levels of competing vegetation, which was calculated with a distance independent 

approach, applying one half acre plot levels of vegetation volume estimates to the 

individual trees. After one year of height growth response data there was very little to no 

significance in the data. Figure 4 shows a typical graph of one year height growth as 

stratified by plot level estimates of vegetation competition.
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Figure 4. Lodgepole Pine One Year Height Growth (Farris 2003)
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After observing an increase in photosynthesis due to treatment, and not observing 

a response in one-year distance independent height growth due to treatment, a stem 

analysis study was implemented in 2003 to see if there was some response in diameter 

growth. Basal diameter measurements taken from cookies cut from the stems and height 

growth measurements taken at the growth nodes along the stem of ponderosa pine and 

Douglas-fir trees were obtained across a range of heights from both control and treatment 

plots. Due to the limitations of time and lack of sites with multiple years o f response to 

treatment, only four sites were studied, three of which had two years of response data and 

one site (Cemetery Road) had three years of response. There was no significant response 

due to treatment after two years but the three years response did show a significant 

increase in diameter due to treatment (Goodburn 2003). Figure 5 a scatter diagram of 

cross sectional data of diameter in inches vs. the height in feet of individual trees at
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Cemetery Road. This graphical representation shows a significant increase in basal 

diameter due to treatment (i.e. at a height of 12 -  14 feet, there is almost a full inch 

increase in basal diameter).

Figure 5. Height/Basal Diameter Pairs of Ponderosa Pine at Cemetery Road (Goodburn
2003)
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Prior work suggests that growth responses to vegetation control of small trees are 

best analyzed using a distance dependent measurement of competition and that diameter 

or volume growth should be used as the response variable. At this time, however, the 

data set being utilized does not have enough detailed basal diameter measurements 

available for study, but soon will in a few years time. Therefore, modeling height growth 

using distance dependent variables with four years of response data is a logical direction 

to follow.

OBJECTIVES:
The first objective is predicting four-year height growth of ponderosa pine and 

Douglas-fir as a function of non-tree competing vegetation variables based on a distance 

dependent approach.
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A second objective is to analyze the data in terms of years needed to reach 20 feet 

in height (at which trees appear to grow out of the zone of competition from understory 

plants) and use these results to calibrate the small tree model in FPS.

METHODS:

INGY data collection

The INGY STCV sampling procedures require that a stand of relatively 

homogeneous overstory density and site quality be selected in one of two general forest 

types (PPmix or DFmix) that is at least five acres in size. Cooperators must also be 

willing to leave the site idle from harvest for at least ten years. A sampling matrix of a 

range of site qualities and overstory density combinations predetermined by the 

cooperative insures a wide degree of variation between installations.

Figure 6 . INGY Small Tree Competing Vegetation Site
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Seven plot centers are subjectively installed to insure similar conditions of 

overstory density and understory vegetation (Figure 6). Each plot has several plots 

nested within it. The large tree plot is 80 feet in radius from plot center (0.46-acre). 

Similarly the medium tree plot is 60 feet in radius (0.26-acre). Six 33 foot long transect 

lines radiate from plot center at 60 degree intervals, each with 15 sampling points, two 

feet apart, starting after the first two feet. One foot after the last stop on each transect a 

pipe marks the center of the small tree plot (STP), which is a ten-foot radius plot (0.007- 

acre). A one-meter square quadrat is also established at this pipe (Figure 7). The first 

transect and STP are always installed directly upslope, randomly defining the placement 

of the other transects.

Figure 7. INGY Small Tree Competing Vegetation Plot

INGY Small Tree Competing Vegetation Plot
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At an installation, the overstory trees (trees larger than 3.5 inches in DBH) are

tagged, stem mapped, and measured. All trees from 3.6 inches to 10.5 inches in DBH are
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measured on the 60-foot radius plot, while trees larger than 10.5 inches in DBH are 

measured on the 80-foot radius plot. Species, tree number, DBH (± one-tenth inch), 

height (± one half-foot), height to base-of-crown, height to lowest contiguous living 

whorl, sapwood thickness, bark thickness, crown width, and any damages are recorded on 

these trees.

Figure 8. INGY Small Tree Plot
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Small tree plots (six per study plot) are centered 33 feet from plot center (Figure 

8). Tolerant species greater than or equal to 0.5 foot in height and intolerant species 

greater than or equal to one foot in height and all trees up to a DBH o f less than 3.5 

inches are tallied by species in two-foot height classes on these plots. These tallied trees 

are then sub-sampled across the range of size and species to achieve a number of tagged 

trees of at least 200 trees per acre. These sub-sampled trees are assigned a tree number, 

measured for species, basal diameter DBH, total height, 3 years o f previous height
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growth, height to base-of-crown, height to lowest contiguous living whorl, crown width, 

damages, and stem mapped.

Along the 33-foot transect lines lie 15 sampling points. At each point the upper 

and lower extent of height of the canopy of individual shrubs and forbs are measured 

vertically by species and by individual plant (Figure 9). At each of these points a six- 

inch by six-inch square is affixed at the sample point in the bottom left corner. In this 

manner ocular estimates of projected leaf area of grasses, average blade height, and 

species are recorded, along with ocular estimates of percentage of ground cover (i.e. soil, 

rock, duff, coarse woody debris and moss/lichen). With the six transect lines per plot and 

15 points per line; there are 90 of these sampling points per plot.

The meter square plots located at the terminal end of each transect line are used to 

measure both vegetation and tree regeneration. Ocular estimates of percent cover, 

dominant species, and average height to top and base are recorded for high shrubs (those 

greater than a meter in height), low shrubs (those less than a meter in height), forbs and 

grasses. The number and species of tolerant tree species less than half a foot in height

Figure 9. Vegetation Canopy Measurements
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and that of intolerant species less than one foot in height are also recorded. There are six- 

meter square plots per main study plot.

At the time of installation, date, field crew, slope, aspect, elevation, habitat type, 

site index, and GPS coordinates are taken for each plot. The distance and azimuth from 

plot to plot and fairly detailed directions to the site are recorded and mapped.

Immediately following installation, five of the seven plots are randomly assigned 

to a herbicide treatment. Treatment types have varied across the sites due to high water 

tables, sensitive overstory species (Western Larch), physical variations in terrain, etc. 

These variations consist of the application of the herbicides Pronone (a granular), Oust (a 

liquid), with, at times, the addition of hand lopping and grubbing.

Remeasurements take place the first, second, and fifth years following initial 

treatment.

At the time o f remeasurement there are only two deviations from the installation 

measurement procedures. Firstly, the overstory trees are not remeasured. Secondly, the 

past three years growth of small trees becomes irrelevant due to redundancy and is 

therefore omitted from the measurement procedures.

After the first remeasurement, three of the initial five treated plots are randomly 

selected to become “Garden of Eden plots”. These three plots are retreated at every time 

the site is revisited as needed to achieve maximum reduction in understory vegetation.

Therefore of the seven plots per site, two are control and have no treatment (initial 

levels of competing vegetation), two receive a one-time treatment (dramatically reducing 

vegetation early in the study), and three plots are continuously treated (meaning that they 

contain little to no competing vegetation). It is with this continuous variability in
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competing vegetation across one site, repeated across many sites, that the effects of site 

quality can be decoupled from competing vegetation on small tree height growth.

Twenty-four sites over the seven-year period of 1998 through to 2004 provide the 

data for this study. Eight of these sites yield four years worth of response data in height 

growth.

Database construction (i.e. methods used to create spatial data. etc.)

The INGY STCV sampling design was created to capture distance independent 

one half-acre plot level estimates of vegetative competition. This means that every 

subject tree on a given plot at a given site would receive the same one half acre plot 

average estimates of competition, from overstory density to competition from shrubs, 

forbs, and grasses.

The desired goal of a distance dependent database is to assign each subject tree 

unique vegetative estimates o f competition in the immediate proximity of that subject 

tree. This approach hopefully will reduce the noise in the data examined in Farris’ (2003) 

distance independent analysis. Altering the existing database created a unique challenge.

In the distance independent analysis the transect based estimates of shrubs and 

forbs competition were calculated by measuring the percent cover from the ninety points 

on the six transect lines. The percent cover by life form was then multiplied by the 

average canopy depth to create an average cubic volume of canopy for that half acre.

The grass canopy volume was calculated by taking the average percent cover in the six 

inch by six inch squares of all ninety points and multiplying by the average blade height 

for those points yielding a one half acre average cubic foot grass volume.
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The other method of estimating canopy volume for non-tree vegetation involved 

using is the ocular estimates from a square meter. In previous analyses these data were 

utilized by calculating the percent cover of shrubs, forbs, and grasses and multiplying 

them by the average canopy depth on each STP; the average of these six-meter squares 

per plot is then assigned as that plot’s one half-acre estimate of cubic foot per acre 

canopy volume. In both the transect based and meter square estimates, the totals of the 

different life forms are composed of the non-weighted sum of these components.

The distance dependent database employs these measurements in much the same 

way except that the data are summarized at the STP level ( 0.007 acre) rather than of the 

main one half acre plot level. This is accomplished rather simply with the meter square 

estimates by not averaging all six per main plot and just using the individual meter square 

estimates for each STP. Altering the transect based estimates to more spatially explicit 

variables was more complicated. The last five transect points on each line fall within the 

ten-foot radius STP. These points are then used in the same fashion as in the distance 

independent database except that the averages are by STP, using five points, not ninety. 

While this methodology does not create truly distance dependent vegetation variables, it 

does improve the description of the competition in the immediate proximity of the each 

sample tree.

The variables describing tree-to-tree competition are more complex. Since all 

tagged study and overstory trees were stem mapped using polar coordinates at the time of 

installation, a simple procedure to convert to rectangular coordinates was performed. The 

primary tree competition variable created is a distance dependent measure of competition 

called Competitive Stress Index (CSI) (Arney 1973). CSI is an individual tree centered
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measure of tree-to-tree competition. It is based on the idea that a tree’s open grown 

crown width is a good indicator of potential growing space. Many studies have been 

done to relate a tree’s diameter at breast height (DBH) to what its crown width would be 

if it were under no competition (open grown). The equations used here are those of 

Arney (1995).

Crown_Width = 4.02 + (2.12* D B H )-(0.02* D B H 2) [1]

Using Equation 1, open grown crown width is estimated for all stem mapped trees.

The estimated rown width is then converted into an area. Using the rectangular 

coordinates, all overstory trees’ potential crown areas that overlap the study tree’s crown 

area are calculated, summed, added to the study tree’s own crown area, and then divided 

by the study tree’s crown area and reported as a percentage. As a result the lowest CSI a 

tree can have is then 100%. To represent each subject tree’s overstory competition a 

variable was calculated minus the subject trees crown area, named CSI overstory. The 

same process was followed to quantify the competition of the other tagged study trees on 

that particular subject tree, named CSI understory.

The remaining tree competition (trees tallied at the STPs that were not stem 

mapped) is described by a variable called Crown Competition Factor (CCF) understory. 

CCF is a distant independent measure of stand density that is based on open grown crown 

areas. These crown areas are summed over the acre and divided by the square feet in an 

acre (43,560). This ratio is then reported as a percentage. Since all tagged trees are 

included in the tally, an effort was made to remove all tagged trees whose influence has 

already been accounted for in CSI understory. To get the DBH for tallied trees on the 

STPs, a regression equation, by species and by site, of the relationship between the mean
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height of the two-foot height classes and a DBH was then created. These mean DBHs 

were then used to create the open grown crown areas for each two-foot size class, 

summed, and divided by the square footage of the STP.

It should be noted that with respect to these tree-to-tree competition variables, no 

tree’s influence is recorded twice and the variables are all in the same units and therefore 

additive, permitting the creation of a fourth variable called total tree competition. For a 

complete list and definitions of these variables please see Appendix A.

Modeling Methods

• Log-Linear Models

For the initial analysis, the author attempts a linear regression approach by each 

species (ponderosa pine and Douglas-fir), to identify possible predictors of height growth 

and the simple linear relationships between these variables. Preliminary analysis shows a 

lack of homogeneous variance across the data for both species. With this violation of the 

assumption of homoscedastisity, the response variable (four-year height growth) requires 

a natural log transformation. Following a natural log transformation of the dependent 

variable, the distribution of residuals as a function of the fitted values appears 

homogeneous. After detecting the appropriate vegetative competition variables to 

include, a model assessing the significance of the possible interaction variables was 

produced.

• Non-Linear Models

After the appropriate predictor variables are identified, non-linear regression was 

used to model the relationship between height growth and competition variables. In
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considering a model form for this data, to estimate height growth, one might consider the 

shape of a tree’s height growth curve. The Height/Age curve usually follows a sigmoid 

shape. Height growth, the first derivative, starts off slowly, increases to a maximum rate, 

and at some point in the tree’s life (at the point of inflection of the Height/Age curve), 

flattens out asymptotically and then declines.

With the INGY STCV data set, initial height is never greater than 15 feet tall, 

which leads one to assume that throughout the course of a four-year growth period, these 

trees will not have reached the inflection point of the Height/Age curve.

The Chapman-Richards function can be used to represent the sigmoid shaped 

biological growth curve namely:

Where E(y) is the dependent variable, in this case, four-year height growth. The 

maximum (asymptote) four-year height growth (which is determined by site quality) is 

represented by Bi while the rest of the equation represents the proportion of that 

maximum. Initial height represents the scale of the shape of growth and therefore is the 

independent variable next to the B2 parameter and the competitive effects of tree and 

vegetation competition variables should somehow be represented next to the B3 

parameter, which is the parameter that effects shape. This leads to a model formation of:

[2]
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E (y)  = (/?,* X, )* (l - [3]

Where:
E(y)  = Expected four year height growth

P  = Site parameter

A  = Initial tree height parameter

A  = Total tree competition parameter

A  = Vegetation competition parameter

A  = Site Index

A  = Initial tree height

A  = Total tree competition

A  = Vegetation competition

After this analysis an investigation of other possible models was performed. Most 

significantly if adding an y-intercept will improve the model, resulting in the equation:

E(y)=Po + (A * v ) * ( i - e (̂ * A'2,)<(/',' ’f’WA+"'l)) [4]

Where:
E(y)  = Expected four year height growth

A  = Y-Intercept

A = Site parameter

A  - Initial tree height parameter

A  = Total tree competition parameter

A  = Vegetation competition parameter

A  = Site Index

A  = Initial tree height

A  = Total tree competition

A  = Vegetation competition

Another attempt to explain more of the variation will be to assess the significance of 

interaction terms were added to the equation.
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Methods o f  creating years to 20 feet in height database

Manipulation of the INGY data set is required to compare these data to the FPS 

Species Library. An FPS Species Library is an external text file of necessary coefficients 

for the growth model. Modification to this file yields changes in growth increment, 

mortality, etc. o f the FPS outputs. With all critically damaged trees removed, there are 

not enough trees left to explore the treatment plots. Also, since little to no quantifiable 

site preparation or animal control was performed on these sites, I chose to compare FPS’s 

predictions with no animal control, brush control, or site preparation against the INGY 

STCV control plots results only.

This data set is then manipulated so that each record contains the initial and 

ending heights, species, site index, and the difference in years from the first to the last 

measurement. Any tree whose initial height was greater than twenty feet was outside the 

range of the FPS small tree growth model and therefore removed from the dataset.

Estimating the years to twenty feet is necessary because no ages were recorded in 

the INGY dataset. Using two points in time of a tree’s height growth and knowing the 

time between this growth, places this tree on a predefined curve whose trajectory 

estimates the years to twenty feet. This predefined curve used in FPS is a power function 

with an exponent of 1.6 on relative age, that Arney (2005) describes as the set of 

anamorphic curves of growth trajectories for those trees under twenty feet in height after 

which the trees follow the actual site curves. Relative age is the estimated age of the tree 

at the initial height when the tree’s growth trajectory falls on the predefined site curve. 

Once calculated the means of years to twenty feet by species, region, and site class are 

grouped and averaged.
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These years to twenty feet are then compared to the Species Library in FPS. 

Arney’s estimates of animal control, brush control, and site preparation are then 

subtracted from these years to twenty feet. Only site qualities o f 15 and 20 meters (49 

and 66 feet) could be matched to the range of the INGY STCV data for the species 

Douglas-fir and ponderosa pine. The data was collected in two different regions of the 

FPS Library, Western Montana/Northern Idaho (Region 14) and Eastern Washington 

(Region 13). The steps to calibrate FPS are in Appendix C.

RESULTS AND DISCUSSION:

Log-Linear Regressions:

• Ponderosa Pine

Using the natural log of height growth as the dependent variable results in a model with 

an arithmetic R-square of 0.513 and a standard error of the estimate of 1.225. Table 1 

and Table 2 show the results:

Table 1. ANOVA Table for Ponderosa Pine
Model Sum of Squares df Mean Square F Sig.

1 Regression
Residual

87.813
69.025

5 17.563 123.148 
484 .143

.000

Total 156.837 489

T able 2. Coefficients of Linear Regression for Ponderosa Pine

Model

Unstandardized Standardized 
Coefficients Coefficients 

B Std. Error Beta

Sig.

(Constant) .459 .185 2.478 .014
Site Index 1.084E-02 .003 .140 4.058 .000
CSIunderstory -1.781E-03 .000 -.236 -7.416 .000
CSIoverstory -2.717E-03 .001 -.168 -5.278 .000
CCFunderstory -3.412E-04 .000 -.422 -13.294 .000
Initial Height 9.592E-02 .007 .422 13.943 .000

a Dependent Variable: LNHTGR
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Notice that none of the non-tree vegetation variables have been added. Each variable 

available for analysis added singularly results in the following p-values:

Table 3. Vegetation Variable P-Values for Ponderosa Pine

Vegetation Variable P-value
First Total Transect based Vegetation 0.926
First Transect based Shrub 0.826
First Transect based Forb 0.517
First Transect based Grasses 0.875
First Meter Square based Total Vegetation 0.005
First Meter Square based Grasses 0.033
First Meter Square based Forb 0.110
First Meter Square based Shrubs 0.021
Ending Total Transect based Vegetation 0.375
Ending Transect based Shrub 0.150
Ending Transect based Forb 0.050
Ending Transect based Grasses 0.890
Ending Meter Square based Total Vegetation 0.946
Ending Meter Square based Grasses 0.008
Ending Meter Square based Forb 0.008
Ending Meter Square based Shrubs 0.971

Those variables showing a significance of less than 0.05 were then added in a 

stepwise regression yielding a model with an arithmetic R-square of 0.533 and a standard 

error of the estimate of 1.203. Table 4 and Table 5 show the results:

Table 4. ANOVA Table for Ponderosa Pine 2nd Run
Model Sum of Squares df Mean Square F Sig.

1 Regression 90.599 8 11.325 82.238 .000
Residual 66.238 481 .138
Total 156.837 489
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Table 5. Coefficients of Linear Regression for Ponderosa Pine 2nd Run
Unstandardized

Coefficients
B Std. Error

Standardized
Coefficients

Beta

t Sig.

(Constant) .412 .190 2.170 .031
Site Index 1.66E-02 .003 .150 4.039 .000
CSIunderstory -1.728E-03 .000 -.229 -7.252 .000
CSIoverstory -2.747E-03 .001 -.170 -5.327 .000
CCFunderstory -3.507E-04 .000 -.434 -13.656 .000
Initial Height 9.828E-02 .007 .432 14.483 .000
First Meter Square based 
Total Vegetation

-3.144E-06 .000 -.084 -2.450 .015

Ending Meter Square 
based Grasses

-2.656E-06 .000 -.064 -2.080 .038

Ending Meter Square 
based Forbs

9.745E-06 .000 .085 2.739 .006

a Dependent Variable: LNHTGR

One can see that the R-square for the first model is 0.513, as opposed to the R- 

square of the second model of 0.533. In adding these variables to the equation in the 

second model only 2 percent more of the variation in the natural log of height growth is 

explained and the mean square error is barely reduced. In Table 5 one can see that the 

coefficients behave as one would expect with the competition variables, both tree-to-tree 

and non-tree vegetation, are negative, except for the ending meter square based forb 

variable, which is positive.

The model generated to determine the usefulness o f interaction terms was created 

in a stepwise regression, after the variables of Initial Height, Site Index, CSI understory, 

CSI overstory, CCF understory, and for parsimonious reasons just First Meter Square 

based Total Vegetation are fixed. The Interaction variables created for this analysis are 

in Table 6.
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Table 6. Interaction Variables

Variable Name Variables interacting
SI x Veg Site Index and First Meter Square based Total Vegetation

CSI Over x Veg CSI overstory and First Meter Square based Total Vegetation

Veg x Total Tree First Meter Square based Total Vegetation and Total Tree

Competition

CSI Under x CSI Over CSI overstory and CSI understory

SI x CSI Over Site Index and CSI overstory

SI x Total Tree Site Index and Total Tree Competition

SI x Total Tree x Veg Site Index and Total Tree Competition and First Meter Square

based Total Vegetation

The results of this yield a model with an arithmetic R-square of 0.539 and a 

standard error o f the estimate of 1.198. Table 7 and Table 8 show the results:

Table 7. ANOVA Table for Ponderosa Pine 3rd Run
Model Sum of Squares df Mean Square F Sig.

1 Regression 95.017 10 9.502 73.622 .000
Residual 61.820 479 .129
Total 156.837 489

T able 8. Coefficients of Linear Regression for Ponderosa Pine 3rd Run
Unstandardized Standardized

Coefficients Coefficients I

B Std. Error Beta
(Constant) -.517 .226 -2.287 .023
Site Index 2.678E-02 .003 .345 7.918 .000
CSIunderstory -1.791E-03 .000 -.237 -7.573 .000
CSIoverstory -9.212E-03 .002 -.569 -5.072 .000
CCFunderstory -2.634E-04 .000 -.326 -8.141 .000
Initial Height .101 .007 .444 15.111 .000
First Meter Square based 7.068E-05 .000 1.897 5.102 .000
Total Vegetation
SI x Veg -1.090E-06 .000 -1.991 -5.177 .000
CSI Over x Veg 1.902E-07 .000 .182 4.295 .000
Veg x Total Tree -1.020E-08 .000 -.160 -3.283 .001
CSI Under x CSI Over 2.801E-05 .000 .287 2.815 .005

a Dependent Variable: LNHTGR
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While four on these interaction variables did come in significant, their interpretation is 

unclear due to the sample size of just 491 and not knowing at this time if these 

interactions are artifacts of the distribution of the data.

• Douglas-fir

Following the same procedure as with ponderosa pine, the non-tree vegetation 

variables excluded, results in a model with an arithmetic R-square of 0.625 and a 

standard error of the estimate of 1.503. Table 9 and Table 10 show the results:

Table 9. ANOVA Table for Douglas-fir
Model Sum of Squares df Mean Square F Sig.

1 Regression 
Residual

201.724
68.135

5
177

40.345
.385

104.807 .000

Total 269.859 182

Table 10. Coefficients of Linear Regression for Douglas-fir
Unstandardized

Coefficients
Standardized
Coefficients

t Sig.

B Std. Error Beta
(Constant) -4.827 .606 -7.967 .000
Site Index 6.883E-02 .010 .368 6.986 .000
CSIunderstory 8.348E-04 .001 .047 1.174 .242
CSIoverstory -3.156E-03 .001 -.157 -3.683 .000
CCFunderstory 3.395E-04 .000 .132 3.117 .002
Initial Height .128 .012 .511 10.349 .000

a Dependent Variable: LNHTGR

Adding each non-tree vegetation variable singularly to this equation gives the 

following p-values.
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Table 11. Vegetation Variable P-Values for Douglas-fir
Vegetation Variable P-value
First Total Transect based Vegetation 0.269
First Transect based Shrub 0.349
First Transect based Forb 0.561
First Transect based Grasses 0.180
First Meter Square based Total Vegetation 0.097
First Meter Square based Grasses 0.860
First Meter Square based Forb 0.071
First Meter Square based Shrubs 0.089
Ending Total Transect based Vegetation 0.216
Ending Transect based Shrub 0.210
Ending Transect based Forb 0.481
Ending Transect based Grasses 0.266
Ending Meter Square based Total Vegetation 0.897
Ending Meter Square based Grasses 0.133
Ending Meter Square based Forb 0.193
Ending Meter Square based Shrubs 0.749

Unlike the ponderosa pine values, none of these variables show any significant 

effect upon Douglas-fir height growth (Table 11).

The same process o f adding interaction terms was performed on the Douglas-fir 

database resulting in no significant interaction terms indentified.

Non-Linear Analysis:

Using first meter square based total vegetation as the vegetation variable is 

justifiable as it was the most significant in the exploratory analysis of the log linear 

regression and it incorporates the sum of the grasses, forbs and shrubs.
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Equation 5 shown below is the model used in this analysis.

E (y)= {f) t * X , ) * ( l - e (“A*'Vj))((ft' ' ' ’WA+'V4)) [5]

Where:
E(y) = Expected four year height growth

Px = Site parameter

A  = Initial tree height parameter

A  = Total tree competition parameter

A  = Vegetation competition parameter

V  = Site Index

= Initial tree height

-A = Total tree competition

^4  = Vegetation competition

• Ponderosa Pine

The results of this analysis for ponderosa pine are in Table 12 and Table 13.

Nonlinear Regression Summary Statistics Dependent Variable Four Year Height Growth

Table 12. Summary Statistics for Ponderosa Pine
Source DF Sum of Squares Mean Square
Regression 4 6048.50224 1512.12556
Residual 486 737.26776 1.51701
Uncorrected Total 490 6785.77000
(Corrected Total) 489 1493.79839

R squared = 1 - Residual SS / Corrected SS = .50645

Asymptotic 95 % 
Asymptotic Confidence Interval

Table 13. Coefficients of Non-Linear Regression for Ponderosa Pine
Parameter Estimate Std. Error Lower Upper

B1 .088404417 .002570950 .083352869 .093455966
B2 .177471981 .024742281 .128856933 .226087028
B3 .001048590 .000150692 .000752501 .001344679
B4 .000010167 2.23517E-06 5.77500E-06 .000014559
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A graph showing the maximum and minimum height growth that this model can 

predict within the constraints of the collected data, along with the actual observed data by 

site is in Figure 10.

Figure 10. Maximum and Minimum Range of Non-Linear Model for Ponderosa Pine 
12

10------------------------

— MIN COMP,MAX SI 
—> MAX COM, MIN SI 
A CR ACTUAL Sl=73 
X GC ACTUAL Sl=62 
X  HR ACTUAL Sl=56 
O LL ACTUAL Sl=54 
+ PC ACTUAL Sl=63
-  RM ACTUAL Sl=69

-  TJ ACTUAL Sl=67

In itial Height (FT)

The adjusted R square o f this model is 0.506, with the coefficients behaving properly 

(Table 12 and Table 13). Two Sites, however, stand out as not being well described by 

the model, Grouse Creek (GC) and Pine Creek (PC). Figure 11 shows the graph 

displaying the effect o f tree competition on height growth, with the site index set at the 

data sets mean of 64 feet and the vegetative competition set at the mean of 10,000 cubic 

feet per acre. Figure 12 is a graph displaying the effects of vegetative competition on 

height growth, with the same mean site index of 64 feet and the tree competition set at the 

mean of 900%.
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Figure 11. Ponderosa Pine Non-Linear Model Surface 
(showing effects of tree to tree competition)

Mean Site Index= 64 and Mean Vegetation Competition = 10,000 cubic feet per acre
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Figure 12. Ponderosa Pine Non-Linear Model Surface 
(showing effects of vegetation competition)

Mean Site Index= 64 and Mean Total Tree to Tree Competition = 900%
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As one can see, tree competition has a greater effect on height growth of small ponderosa 

pine than that of competition due to vegetation, although both are statistically significant.

F igure 13. Plot of Residuals versus Figure 14. Normal Quartile Plot for Non- 
Predicted Values for Non-linear Ponderosa linear Ponderosa Pine Model
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• Douglas-fir

Following the same procedure for Douglas-fir results in the following model as 

seen in Table 14 and Table 15.

Nonlinear Regression Summary Statistics Dependent Variable Four Year Height Growth

T able 14. Summary Statistics for Douglas-fir
Source DF Sum of Squares Mean Square

Regression 4 1596.30577 399.07644
Residual 180 315.91423 1.75508
Uncorrected Total 184 1912.22000
(Corrected Total) 183 1073.67739

R squared = 1 - Residual SS / Corrected SS =

Asymptotic 95 % 
Asymptotic Confidence Interval

.70576

T able 15. Coefficients of Non-Linear Regression for Douglas-fir
Parameter Estimate Std. Error Lower Upper

B1 .087118562 .003681965 .079853194 .094383930
B2 .340702379 .043631911 .254606548 .426798210
B3 .006198871 .001258343 .003715869 .008681873
B4 .000029294 .000019857 -9.88872E-06 .000068477

A graph showing the maximum and minimum height growth that this model can predict

within the constraints of the collected data, along with the actual observed data by site is 

in Figure 15.
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Figure 15. Maximum and Minimum Range of Non-Linear Model for Douglas-fir
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The adjusted R square o f this model is 0.706, with the coefficients behaving properly 

(Table 14 and Table 15). One Site, however, stands out as not being well described by 

the model, Big Bear (BB) (Figure 15). Figure 16 shows the graph displaying the effect of 

tree competition on height growth, with the site index set at the data sets mean of 60 feet 

and the vegetative competition set at the mean of 12,000 cubic feet per acre. Figure 17 is 

a graph displaying the effects of vegetative competition on height growth, with the same 

mean site index of 60 feet and the tree competition set at the mean of 650%.
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Figure 16. Douglas-fir Non-Linear Model Surface 

(showing effects of tree to tree competition)

Mean Site Index= 60 and Mean Vegetation Competition = 12,000 cubic feet per acre
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Figure 17. Douglas-fir Non-Linear Model Surface 
(showing effects of vegetation competition)

Mean Site Index= 60 and Mean Tree to Tree Competition = 650%
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As one can see, tree competition has a much greater effect on height growth of small 

Douglas-fir than that o f competition due to vegetation and is statistically significant, 

while there is no evidence that vegetative competition is at all significant (Table 15).
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Figure 18. Plot o f Residuals versus Figure 19. Normal Quartile Plot for Non- 
Predicted Values for Non-linear Douglas-fir linear Douglas-fir Model
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An attempt was made to explain more of the variation in height growth by adding 

a y-intercept to the equation. This analysis yielded a higher adjusted R square but the 

model then failed to adequately describe the data for either species for initial height of 

less then 5 feet tall. Another variation of the model attempted was to add one or all three 

of the interaction variables o f site and competition to the exponent. None of these were 

statistically significant.

The two different approaches of analyzing these data yielded varying results. The 

log-linear regression approach and the attempt to address the question o f the effects of 

competing vegetation on height growth were disappointing. For ponderosa pine, a few 

vegetation variables were significant but answered little to none of the variation in the 

model, with the best R-square of .539. The Douglas-fir model has an R-square of .625 

yet no vegetation variables are significant. The R-squares for the non-linear regression 

models were similar, 0.506 for ponderosa pine and 0.706 for Douglas-fir.
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The assumptions o f homoscedasticity and that o f normalcy seem to hold for both 

approaches with ponderosa pine, and there is no evidence to suggest otherwise with the 

Douglas-fir log-linear model, but obviously do not hold true for the Douglas-fir non­

linear function (Figure 18 and Figure 19).

In analyzing the non-linear model behavior, two sites for ponderosa pine and one 

for Douglas-fir are not well described by the model. Investigation of these sites led to 

some troubling realizations. All three of these sites are centered in the middle of large 

clear cuts. On sites GC and PC site tree data was collected from the nearest fringe trees 

on the neighboring stands. At the BB site, site index was estimated from habitat type. 

Neither of these methods seems to have captured an accurate site index. Foresters 

familiar with these sites thought that PC has a site index of about 75 feet (it was 

calculated for this study to be 63 feet) and that of BB should be closer to 80-85 feet 

(estimated at 71 feet) (Patterson 2005). No educated guess o f site index was available for 

GC. PC and BB were also planted with improved stock and sprayed for insects and 

disease early in the stand growth.

The tree-to-tree distance dependent variables are consistently significant. 

Competition from the overstory, as described in a spatial arena, obviously effects the 

height growth of the small trees, and the tree-to- tree competition is also important in 

explaining the variation in height growth, as are site index and initial height.

None of the transect based vegetation variables were significant and the significance of 

the meter square estimates is questionable in terms of height growth.
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APPLICATIONS TO FOREST PROJECTION AND PLANNING SYSTEM

In order to proceed in the calibration/validation of FPS, one must gain an 

understanding of the simulator’s small tree growth sub-routine.

Arney’s model estimates, by region and species, the years it takes for an open 

grown, free-from-competition tree to reach twenty feet in height for each defined site 

class. He then adds estimated years onto this in proportion to the amounts of animal 

control, brush control, and site preparation that these trees will receive. This information 

is contained in FPS’s Species Library.

Table 16 shows the original FPS Species Library and the library recalibrated to 

the INGY STCV data.

T able 16. FPS Species Library and INGY Re-Calibrated Library

Idaho / 
Montana

FPS
INGY

Site Index (m)

PP
15

DF PP
20

DF

18
32.2

18
33.8

13
19.3

13
15.8

Inland
Washington

FPS 18 18 13 13
INGY 25.4 No Data 18.8 18.1

While the average deviation from FPS’s library is about 5 years, it is far more 

pronounced in the lower site class, probably due to a lack o f available INGY STCV data.

When graphed, the recalibrated data appears to trend similarly to the FPS data, as 

seen in Figure 20-Figure 23.
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Figure 20. Years to Twenty Feet for Ponderosa Pine in Eastern Washington
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Figure 21. Years to Twenty Feet for Douglas-fir in Eastern Washington
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Figure 22. Years to Twenty Feet for Ponderosa Pine in Idaho/Montana
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Figure 23. Years to Twenty Feet for Douglas-fir in Idaho/Montana
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It would seem that the process of calibration was successful, and provided limited 

evidence of validation of the FPS parameters. There is not, however, enough INGY 

STCV data to have significant evidence to alter the FPS Species Library. Using this data
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in an attempt to validate and calibrate an existing simulator was quite successful. The 

results in this study parallel those contained in the FPS Library. Analysis o f other larger 

data sets is required to positively calibrate such a complex model, with so many varying 

regions. Perhaps merging the INGY STCV data set with others already collected would 

create a large enough sample size to justify the calibration.

C O N C L U SIO N S A N D  R E C O M M E N D A T IO N S:

From this study it appears that a reduction in non-tree competing 

vegetation results in an increase in photosynthesis immediately, leading to an increase in 

diameter growth after two or three years and finally starting to show an increase in height 

growth after four years.

More analysis is needed to define “truth” as far as the vegetation variables are 

concerned. As for the objective of the INGY STCV study which was to model non-tree 

vegetation growth, this analysis is a necessary preliminary step. Another aspect not 

addressed in this study is the seasonality of vegetation measurements. Measurement 

timing of either post or pre- full expression of vegetation growth has an extremely large 

effect upon the modeling process and is probably the cause o f a great deal of the noise in 

this analysis.

These analyses suggest that for the prediction of any growth, height, diameter or 

volume, in small trees, the tree centered measurements of vegetation are most influential 

in accounting for the variation in four-year height growth. The current measurements are 

also necessary to aid in the STCV objective modeling vegetation growth.
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Four years may also not be enough of a response time to see significant results in 

height growth. Obviously, more time is needed before any changes in sampling design 

should even be considered, other than adding the tree-centered measurements of 

vegetation.

Another area to investigate is the accuracy of the site index measurements in these 

recently harvested units, perhaps by using pre-harvest estimates from the land owners 

would be helpful.

The INGY STCV data set is quite extensive. Only a small portion of the INGY 

STCV dataset was analyzed and the opportunities for further analyses and application 

would seem almost limitless.
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APPENDIX A:

Initial Height: The height of the growth node corresponding to time of initial treatment.

Ending Height: The height of the growth mode at the latest measurement available.

Initial Total T ransect based Vegetation: Initial measurements are taken immediately 
pre-treatment and are the non-weighted sum of all initial transect based estimates.

Initial Transect based Shrub: Initial measurements are taken immediately pre­
treatment. Calculations of these estimates are based on percent cover estimates 
that are derived from whether there is a hit or not on the five transect points 
falling within the STP. Percent cover of shrubs is then multiplied the average 
canopy depth at each point and expanded, resulting in cubic feet per acre 
estimates for each STP.

Initial Transect based Forb: Initial measurements are taken immediately pre-treatment. 
Calculations of these estimates are based on percent cover estimates that are 
derived from whether there is a hit or not on the five transect points falling within 
the STP. Percent cover of forbs is then multiplied the average canopy depth at 
each point and expanded, resulting in cubic feet per acre estimates for each STP.

Initial Transect based Grasses: Initial measurements are taken immediately pre­
treatment. Average percent covers are calculated for each 36 square inches on the 
five points that fall within the STP. Average blade height is then multiplied by the 
percent cover and expanded, resulting in cubic feet per acre estimates.

Initial Meter Square based Total Vegetation: Initial measurements are taken
immediately pre-treatment and are the non-weighted sum of all initial meter 
square based estimates.

Initial Meter Square based Grasses: Initial measurements are taken immediately pre­
treatment. Percent cover o f a square meter is ocularly estimated and then 
multiplied by canopy depth of grasses, and expanded. This results in cubic feet 
per acre estimates.

Initial Meter Square based Forb: Initial measurements are taken immediately pre­
treatment. Percent cover o f a square meter is ocularly estimated and then 
multiplied by canopy depth of forbs, and expanded. This results in cubic feet per 
acre estimates.

Initial Meter Square based Shrubs: Initial measurements are taken immediately pre­
treatment. Percent cover of a square meter is ocularly estimated and then 
multiplied by canopy depth of shrubs, and expanded. This results in cubic feet 
per acre estimates.
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First T otal T ransect based V egetation: First measurements are the earliest recorded 
post-treatment measurement and are the non-weighted sum of all first transect 
based estimates.

First T ransect based Shrub: First measurements are the earliest recorded post-treatment 
measurements. Calculations of these estimates are based on percent cover 
estimates that are derived from whether there is a hit or not on the five transect 
points falling within the STP. Percent covers of shrubs are then multiplied the 
average canopy depth at each point and expanded, resulting in cubic feet per acre 
estimates for each STP.

First T ransect based Forb: First measurements are the earliest recorded post-treatment 
measurements. Calculations of these estimates are based on percent cover 
estimates that are derived from whether there is a hit or not on the five transect 
points falling within the STP. Percent covers of forbs are then multiplied the 
average canopy depth at each point and expanded, resulting in cubic feet per acre 
estimates for each STP.

First T ransect based G rasses: First measurements are the earliest recorded post­
treatment measurements. Average percent covers are calculated for each 36 
square inches on the five points that fall within the STP. Average blade height is 
then multiplied by the percent cover and expanded, resulting in cubic feet per acre 
estimates.

First M eter Square based T otal V egetation: First measurements are the earliest
recorded post-treatment measurements, and these are the non-weighted sum of all 
first meter square based estimates.

First M eter Square based G rasses: First measurements are the earliest recorded post­
treatment measurements. Percent cover of a square meter is ocularly estimated 
and then multiplied by canopy depth of grasses, and expanded. This results in 
cubic feet per acre estimates.

First M eter Square based  Forb: First measurements are the earliest recorded post­
treatment measurements. Percent cover of a square meter is ocularly estimated 
and then multiplied by canopy depth of forbs, and expanded. This results in cubic 
feet per acre estimates.

First M eter Square based Shrubs: First measurements are the earliest recorded post­
treatment measurements. Percent cover of a square meter is ocularly estimated 
and then multiplied by canopy depth of shrubs, and expanded. This results in 
cubic feet per acre estimates.

E nding T otal T ransect based V egetation: Ending measurements are taken at the end of 
the four-year height growth period, and they are the non-weighted sum of all 
ending transect based estimates.
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E nding T ransect based Shrub: Ending measurements are taken at the end of the four- 
year height growth period. Calculations of these estimates are based on percent 
cover estimates that are derived from whether there is a hit or not on the five 
transect points falling within the STP. Percent covers o f shrubs are then 
multiplied the average canopy depth at each point and expanded, resulting in 
cubic feet per acre estimates for each STP.

E nding T ransect based Forb: Ending measurements are taken at the end of the four- 
year height growth period. Calculations of these estimates are based on percent 
cover estimates that are derived from whether there is a hit or not on the five 
transect points falling within the STP. Percent covers of forbs are then multiplied 
the average canopy depth at each point and expanded, resulting in cubic feet per 
acre estimates for each STP.

E nding T ransect based G rasses: Ending measurements are taken at the end of the four- 
year height growth period. Average percent covers are calculated for each 36 
square inches on the five points that fall within the STP. Average blade height is 
then multiplied by the percent cover and expanded, resulting in cubic feet per acre 
estimates.

E nding M eter Square based T otal V egetation: Ending measurements are taken at the 
end of the four-year height growth period, and these are the non-weighted sum of 
all ending meter square estimates.

E nding M eter Square based G rasses: Ending measurements are taken at the end of the 
four-year height growth period. Percent cover of a square meter is ocularly 
estimated and then multiplied by canopy depth o f grasses, and expanded. This 
results in cubic feet per acre estimates.

E nding M eter Square based Forb; Ending measurements are taken at the end of the 
four-year height growth period. Percent cover of a square meter is ocularly 
estimated and then multiplied by canopy depth o f forbs, and expanded. This 
results in cubic feet per acre estimates.

E nding M eter Square based Shrubs: Ending measurements are taken at the end of the 
four-year height growth period. Percent cover of a square meter is ocularly 
estimated and then multiplied by canopy depth of shrubs, and expanded. This 
results in cubic feet per acre estimates.

CSI understory: All tagged subject trees are stemmed mapped and the distances
between them calculated. Using Arney’s (1995) equation of open grown crown 
widths, (CRWID  = 4.02 + (1 .\2(D BH ))-  (o.02(d B H 2))), the overlap areas are 
then calculated, summed, and divided by the subject trees open grown crown area. 
This results in a variable that compares all tagged tree to tagged tree competition 
in the understory and is no less than 100.
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CSI overstory: The same process is followed in the creation of this variable as in CSI
understory except that each subject tree is compared only to the overstory trees in 
the vicinity, and never to itself. This results in a variable with a minimum of 0.

CCF understory: Implementation of the tallied trees is necessary in this variable’s
calculation. Since all tagged trees are included in the tally, and effort has been 
made to remove all tagged trees whose influence has already been accounted for 
in CSI understory. A regression, by species and by site, of the relationship 
between the mean height o f the two foot height classes and a DBH was then 
calculated. These mean DBHs were then used to create the open grown crown 
areas for each size class, summed, and divided by the square footage of the STP.

Total Tree Competition: The addition of the three previous defined tree competition 
variables, CSI understory, CSI overstory, and CCF understory.

Site Index: The height in feet of an open grown, free from competition tree at a 
particular index age (age 50 in the INGY study).
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APPENDIX B:

Steps to calibrate the FPS small tree growth model:

1. Manipulate current data set so that each record contains:
a. Initial Height
b. Ending Height
c. Species
d. Site Index
e. Difference in years from initial to ending height
f. Remove all trees with severe damage
g. Remove all trees with an initial height greater than twenty feet

2. Begin an iterative process with a step of 0.1 of the following
a. Age_20 = 0
b. Age_20 = Age_20 + . 1
c. Age = Age_20 * (Initial Height/ 20)A.625
d. Age = Age + years between measurements
e. Calculated Height = 20 * (Age/Age_20)A1.6
f. If the calculated height is greater than the ending height then recalculate 

from step 2 until they are equal.

3. Calculate means by species, region, and site class.
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