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Kraemer, Michael A., Ph.D., May 2001 Mathematics

Analysis o f  a Class o f  Integro-differential Equations 
Describing Age Dynamics o f  a Natural Forest

Director: Leonid V. Kalachev

In this thesis the age dynamics o f  a natural forest is modeled 
by the von-Foerster partial differential equation for the age density, 
while the seedlings density is obtained as a solution o f an integro- 
differential equation. This seedlings density equation contains a 
small parameter, the ratio o f  seedlings re-establishment time and 
the life span o f  an average tree in the forest.

Several models are introduced that take into account various 
mortality curves and growth functions o f  trees, the dependence o f  
seedlings carrying capacity on forest volume, and different types o f  
seedlings re-establishment. Asymptotic, analytic and numerical 
methods are used to solve example problems. Existence and 
uniqueness o f  solutions and the convergence o f  numerical and 
asymptotic methods is proven for a class o f  models.

For a particular model the stability is examined, and a 
bifurcation point for the occurrence o f  oscillations is determined.

ii
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Part I

D escr ip tio n  o f  c lasses o f  m od els

1 Introduction

In the literature many descriptive models related to forest growth are now avail­

able. Usually, they establish static relationships between ’’macroscopic” vari­

ables, e.g., the number of trees per unit area, the age of the trees, the mean 

tree volume and other parameters. Although these types of models are very im­

portant in practical calculations of harvesting yields, they are not designed to 

describe any dynamics associated with forest regeneration and evolution, they 

cannot predict (even qualitatively) the consequences of disturbances. Other 

models take a "microscopic" approach in the sense that simulate forest evo­

lution based on given initial conditions and characteristic parameters for each 

individual tree. These models allow in many cases useful predictions of forest 

growth including the effects of regeneration, but lack the simplicity of capturing 

forest dynamics with a small number of variables and parameters.

In this thesis a  class of simple models is introduced, with only a few easily 

identifiable parameters, that allow us to qualitatively and quantitatively de­

scribe the long-term consequences of disturbances in a natural forest.

Perhaps the most common way to describe the structure of a forest is to 

tabulate the number of trees in different age classes on a unit area basis. Age

1
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structure models are useful in a variety of capacities. They can provide insight 

into tree growth responses from minor disturbance (e.g., low intensity fire, root 

rot pockets) or major disturbance (e.g., catastrophic fire, disease and/or insect 

epidemics). They can describe how seedlings and small trees become established 

on a site after catastrophic disturbance or within canopy gaps of established old- 

growth forests. They can also be linked to biomass/volume models to estimate 

the amount of fiber available for timber harvest. They also provide information 

about habitat quality for forest wildlife.

In the absence of catastrophic disturbance, age structure models can describe 

an ’’ideal” condition not usually found in natural forests where disturbance 

is the norm. This ideal condition can be thought of as a potential or stable 

condition. Even though no ideal state usually exists, these models can be used 

to examine how the structure of natural forests affects the response of the forest 

to disturbance events.

In this study, simple population growth models are developed that describe 

the age structure in a forest under conditions that the forest contains a single 

tree species, tree density is uniform across the landscape, no catastrophic dis­

turbances (i.e., fire, disease, insects, logging, etc., that wiped out the majority 

of the trees) occurred in the forest for a long time (this condition must not 

necessarily be satisfied for a particular forest under consideration, it is assumed 

that such an ideal forest consisting of trees of the same type and on a land plot 

of comparable quality exists somewhere; this might be needed for obtaining the 

numerical values of some parameters in the models). Some other conditions will

2
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be formulated below.

Although no major disturbances are assumed to happen in the near past, the 

initial instant of time in the model below will correspond to occurrence of some 

(non-catastrophic) disturbance in the age structure of the forest (due to a small 

fire, disease that affected only a portion of trees, etc.). Our main goal will be 

to describe the response of the forest age structure to such (non-catastrophic) 

disturbance.

In this thesis a forest is called a natural forest if it regenerates itself after 

(catastrophic or non-catastrophic) disturbances and contains trees of different 

age groups. Unlike a natural forest, the artificial forest is planted, it usually 

contains trees of only one age, and the seedlings that might become trees are 

removed during a, so-called, thinning process.

2 Age structure model formulation

Stand density and forest growth

Initially, tree seedlings become established on a site following a non-catastrophic 

disturbance that eliminates the tree canopy. They will grow freely until the on­

set of competition for growing space with neighboring trees. Growing space can 

be thought of as the intangible measure of a plant’s capacity to grow until one 

of the factors necessary for growth (i.e., a site resource) becomes limiting ([7]). 

Growing space can be defined in an abstract context when a particular factor 

is limiting to a tree (e.g., water, light), or in a dimensional context when the

3
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physical space for growth is limiting to a tree (e.g., hardpans). At this point, 

the growing space is fully occupied, and the trees begin to die as they compete 

for more growing space. Eventually, gaps form in the overstory canopy and 

growing space becomes available to newly established seedlings that begin to 

grow in these openings. Their survival, however, depends on the amount of 

larger overstory trees, where more overstory biomass results in higher seedling 

mortality. Larger, established trees are better able to capture the water, light, 

and nutrient resources on the site than smaller trees in the understory. Rarely, 

if ever, do seedlings detrimentally affect overstory trees.

An important factor in any population growth model is the reproductive 

rate of the organism. But, what is the reproductive rate of trees? Sexually 

mature trees can produce thousands of viable seeds, but only a fraction of these 

seeds will grow into seedlings. Surviving seedlings, rather than viable seeds, are 

used as the starting point o f the analysis. We will assume that enough seedlings 

are always available. The question then becomes: how many will grow to adult 

trees?

Unlike seedlings which are generally abundant and easily killed by compe­

tition, mature trees that are established on the site are less likely to die from 

competition on such a large scale. Yet, many other factors cam still cause a tree 

to die. The number of trees in a forest where competition between trees actively 

occurs is usually modeled as a decreasing exponential function (also known as 

monotonically decreasing function, negative exponential curve, reverse J-shaped 

curve) of age. This decline in the number of trees with age is a well recognized

4
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characteristic in forests ([5]).

M odel assum ptions

Let me list the assumptions underlying the model (some of the assumptions 

are related to empirical observations and others are used to simplify model 

formulation; note that some of the assumptions were already mentioned earlier). 

Assume:

(1) that the forest contains only a single tree species with tree density uni­

form across the landscape.

(2) abundance of seeds and seedlings in a natural forest (that is, in the self 

regenerating forest where no catastrophic disturbances occurred for some time).

(3) exponential decline in the number of trees with age (due to competition, 

weather, various other causes).

(4) that the number of seedlings that survive to become trees is defined by 

available resources (that is, by the biomass/volume/basal area of mature trees).

(5) that competition ’works’ only in one direction: mature trees determine 

the survivorship of seedlings, but seedlings cannot influence the growth of ma­

ture trees (which is usually the case in a natural forest).

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



3 Model with logistic seedling re-establishment

M ath em atica l form ulation

The age distribution of a tree population in a certain region is represented 

in this mathematical model as a differentiable function N  (t , a) of time t  and 

chronological age a. If these are measured in years, the unit of N  is trees per 

year, which means that at a fixed time t  the number of trees between ages r and 

s is given by / *  N  (f, a) da. Since the age a  is also measured chronologically, the 

increase of age in a time period A t  is given by A a =  A t. Hence,

i - 1 «

for each tree at each instant of time. The total derivative of the age density

with respect to time is therefore

d . 8iV d N  da d N  d N
dt ~  d t +  da d t ~  d t +  da. ( *

Assuming a constant and age-independent death rate fx of the tree population

in this model, we obtain that the satisfies the differential equation:

(t, a) =  —fxN (t, a ) . (3)

From (2) and (3) follows the von-Foerster partial differential equation

d N  d N
ai" +  (4)

Consider the initial value problem in the rectangle 0 < f < T ,  0 < a <  amax. 

The initial age distribution,

lV(0,a) =  * ( a ) ,  (5)
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is given for 0 <  a <  amax as a  continous function o f age a. Assume that the 

unknown seedling function ,

Here @ is a positive constant (re-establishment rate), K  (V) is a nonnegative 

continous function (seedling carrying capacity) of the forest size

and B  (a) is a monotone increasing, positive, continuous function representing 

the average tree size  of a tree of age a, e.g. its height, or its basal area, or its 

volume.

The initial condition (8) follows from continuity of the age density N  (f, a) 

at the comer point t  =  0, a =  0 of the domain of interest.

Equation (7) is a logistic type equation with growth rate /? and carrying 

capacity K . However this carrying capacity is not a  constant as in classical 

logistic growth, but is a decreasing function of tree volume in a forest: as the 

forest grows, the resources available for seedlings decrease. The variable carrying 

capacity K  (V ) depends on the species of trees under consideration. Various 

functional representations can be used to model it. For example, one of the

N  (t, 0) =  5 ( f ) (6)

satisfies a seedling equation of the logistic form

(7)

with initial condition

5 (0 )  = iV (0 ,0 )  =  $ ( 0 ) . (8)

(9)

7
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following functions can be used:

linear: K  ( V) =  Smax ~  AV' for 0 <  V <  Smax/ A,

K { V ) = 0  for V  >  Smax/ A,
( 10)

exponential: K  (V) =  5 maxe-A l,

treshold: K  (V') =  Smax ( l  -  -

where A and S max axe positive constants. F ig .l illustrates qualitative shapes of 

these functions.

8
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 linear type
 exponential type
—  threshold type

O)

forest volume

Fig.l: Qualitative dependence of seedling carrying capacity on forest volume: 

linear, exponential and threshold type.

9
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In each case the number of seedlings is bounded from above by

Smaz =  K < y  =  0), ( 11)

the seedling carrying capacity of the empty forest.

In the linear case a forest that surpasses a critical size

I ' c r i t  —
'm a x ( 12)

can no longer support any seedlings, whereas in the exponential and the thresh­

old case the carrying capacity remains positive at all times as it asymptotically 

approaches zero with increasing forest size.

In the threshold case the seedling density remains near its maximum value 

while the tree volume is small, but quickly drops to small values beyond a certain 

critical threshold volume of trees.

In this thesis only models with linear seedling carrying capacity K  (V') =  

Smax — AV. are investigated. Studies of models with other possible types of 

K  (V) will be published elsewhere.

Note that the model (4) - (9) is a particular case of a more general model 

formulation:

with V  and additional conditions (specified at t  =  0 and a =  0) given by (9),

(5), (6) and (8). Here h describes the mortality rate of mature trees (that, 

in general, might be a function of time and age), and /  describes the effect 

produced by the presence of mature trees on seedling dynamics.

(13)

10
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R eduction  to  one integro-d ifferential equation

The solution, of partial differential equation (1-4) can be expressed explicitly 

in terms of the initial age distribution $  (a) and the seedling function 5  (£) :

N  (£, a) =  e~fia S  {t — a) for 0 <  a <  t <  T,
(14)

A' (t , a) =  e~tlt 4> (a — t) for 0 <  t  <  a <  amax.

Therefore function N  (£, a) can be eliminated from the equation for forest size 

(9):

V (t) =  J r‘ e~^aS (t — a) B  (a) da +  e""4 $  { a - t ) B  (a) da. (15)

So, the seedling equation becomes an integro-differential equation for the seedling 

function S  (£) :

^  =  PS (t) f  1 --------------------------^ --------------------- A ,  (16)
dt \  K  ( f 0 e~ftaS (t — a) B  (a) da +  L (£)J J

S {  0) =  $ ( 0 ) ,

where

L {t) =  e - ^  J  $  (a -  t) B  (a) da (17)

is the contribution of the old trees (already alive at the initial ins taint of time 

t =  0) to the forest size at time t. The convolution expression

e~tiaS i t - a ) B i a ) d a  (18)
J o

describes contribution of the new trees (that came into being after the initial 

instant of time) to the forest size.

Similar reduction to dimensionless variables can, in principle, be applied to 

the general model formulation (13). However, it will not always lead to explicit

11
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expressions of type (14) for iV(t,a). Thus, not every choice of g  in (13) will 

produce an explicit integro-differential equation of type (16) for S{t).

(21)

R escaling

Define

S m a x  =  maX' S( t ) ,  (19)

B m a x  =  „  max B  ( a ) . (20)

The model with linear carrying capacity

K { V )  = s m a x -  XV, for 0 <  V  <  Smax/X,

K  ('V ) = 0  for V  >  S m a x / A,

can be re-formulated in terms of the following dimensionless quantities: 

a  =  fia (tree age),

ctmax =  fiamax (maximum tree age),

9 =  fit (time),

n (9, a) /Smax (age density),

s (9) =  S  ( £ )  /S max (seedling count),

6 (a) =  B /Bmax (average tree size),

(22)

12
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p (a) =  $  ( 2 )  / 5 mttI (initial age density),

v(8) =  (forest volume),
• J m a x  O f n t t J t

k (u) =  K  ( v  /Smax =  1 -  XB£ at v  (seedling carrying capacity),

vcrit =  ^ (critical forest volume).

Substituting equation (9) into the definition for the rescaled forest volume 

yields
/•**»n n i

v =  I n (^>a )  ̂(t*) ^Q- (2^)Jo

The rescaled seedling carrying capacity of an empty forest (volume zero) is 

k° =  k (0) =  K  ( =  J — K  (0) =  ^ — Smax =  1. (25)
O m a i  \  M /  w m a z  ^ m a i

After rescaling, equation (4) and corresponding additional conditions (5) and

(6) will have the form

dffi QtI
m  + s e  =  - n ^ ’ (26>

n (0, a) =  ip ( a ) , (27)

n(0,O) =  s ( 8 ) .  (28)

Representations (14) become

n (8, a)  =  e~a s(8 — a)  for 0 <  a  <  8 <  fiT,
(29)

n ( 8 , a ) = e ~ 6 <p(a — 8) for 0 <  8 <  a  <

Substituting (29) into (24) we obtain the non-dimensionalized forest volume in

13
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terms of dimensioniess seedling count:

/ • I ?

v(0) =  I s  (0 — a)  e~a b(a)  da  -I- e~9 ip (a — 0) b (a) da.  (30)
Jo Je

This is a rescaled version of formula (15). Hence the integro-differential equation

(16) for seedlings will now have the form

f §  = 5 K 1 <*>

-  . O T U -
k s (8  — a) e~ab (a) da -h  I (0)) J  

s (  0) =  p (0 )= < p ° ,

where
fMa max

l ( 0 ) = e ~ 9 ip (a -  8) b (a) da.  (32)
Je

Note that by the substitution a  —► 0 — a  the integral in (31) can be written as

re 

i o
[  s (0  — a ) e  a b { a ) d a  =  — f  s ( a ) e  ^ <x'lb(0  — a ) d a  (33)

Jo Je
r 6

=  / s (a) e~<‘9~a b̂ (0 — a) da.
Jo

Setting b (a) =  1 in (30) we obtain the total number of trees in the forest as a 

function of dimensioniess time 0 :

p (0) =  f  n (0 , a) da  (34)
Jo

[•e rpa.tn+x
=  I s (0 — a) e ~ ada 4- e~e I tp(a — 0) da.

J o  Je

Similarly, the rescaling can be performed in the general case (13).

14
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Zero order asym p totic  solution

The seedling equation (31) is of the form

(35)

5 ( 0 )  =  9 ° .

where the small parameter

£  =  —|  (0 < £ £ < ! ) (36)

is the ratio of the per capita tree death rate and the seedling re-establishment 

rate. This ratio is small, because the seedling re-establishment time (typically 

1-5 years) is much smaller than the average life span of a tree (100 years or 

more). Let us perform perturbation analysis for the more general statement 

(35), and then apply the results to (31). Using the boundary function method 

(see [9], [10]) for singularly perturbed problems, represent the uniform asymp­

totic approximation of the solution of (35) in the form

where s(9)  is the regular part, and ILs (d/s)  is the boundary layer part of the 

approximation. The boundary layer part is necessary to correctly describe the 

pulse of seedlings in the first few years of forest growth; it decays exponentially 

to zero as time increases. In what follows, the rescaled time variable of the 

boundary layer part is

(37)

T =  9/s . (38)

15
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Substitution of representation (37), with (38), into problem (35) yields

+  ^  =  /  ^ ( 5 )  + E * (r )  (? (u ) + n S ( J ) )  S (5 -  a) da .flj (39)

=  /  ^s  [9) , J  s (a) g {9 -  a) da, 0 ^ -f-

/  (er) -h Us ( r ) , J  ( s  (a) +  Els )  9 — <*) da, er^ —

f  ^s  ( e r ) , J  s (or) g (er -  a) da,  er  j  ,

? (0 ) + H s ( 0 ) =  <p°-

Equation (39), can be split into two equations in variables 6 and r, respectively:

E%  = * 'fo  “ a ) rfQ:>^  > (4°)

=  f  ( s  (er) +  ris ( r ) , J  ( s  (a) +  Us g (er  -  a) da, e r j  -  

/  ( j  (?T) > f  s (a) g (er — a) da, er^j

=  f  (er) -f- IIs (r) ,e  J  (s (ea) 4- IIs (a)) g (er — ea) da, e r j  —

j f  s (ea) g (er — ea) da, er'j ,

IIs(O) =  v » ° - « ( 0 ) .

To obtain the zero order approximation of the solution, set

s(0)  =  5 o ( « ) + 0 ( e ) ,  (41)

IIs (r) = H0s (r) -+- O ( e ) .

Here and below the notation /? (e) =  O (e7) means that for some constants

C > 0 , 7  >  0 , e0 >  0 ,

!£ (e)| <  C e 1 for 0 <  e <  eo- (42)

16
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Substitution of (41) into (40), with omission of terms of order £ and higher, 

yields:

0 =  f ^ s o ( 9 ) , J  so (a) g(9  — a) da, 0^ (43)

for the regular part, and

- 1  =  / ( S d ( 0 ) + l l o s ( r ) , 0 , 0 ) - / ( 5 o ( 0 ) , 0 t0) (44)dr

=  /  ( s j  (0) 4- fl0s (r) , 0 ,0 ) ,

nos(0) = v»°-5o(0)

for the boundary layer part of the leading order asymptotic solution.

Taking into account the explicit form of function /  for logistic seedling re­

establishment (compare equations (31) and (35)), we obtain the nonlinear inte­

gral equation

So (0) =  k ^ J °  sa(fl -  a) e~ab (a) da  + 1 (0) j  (45)

for the regular part so (0)- From (45) the initial value is calculated to be

5o(0) =  fc° =  fc( / (0)) ,  (46)

which is the initial seedling carrying capacity. Equation (45) can be solved

numerically or by the method of successive approximations.

The leading order approximation n 0s of the boundary layer part is found as 

the solution of the initial value problem

dllos =  ( f + n (4T)
dr

n os(0) =  - 5 o ( 0 )  =<f° - k ° .

17
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Using the transformation

u (r) =  k° +  n 0s ( r ) ,

we obtain the problem with logistic differential equation

du . (  u (r) \

u(0) =  9°,

with explicit solution

“ M  =  T  N-

Therefore,

n 0s (r) =  u (r) -  k°

_  ^ ______

*0 (ft - o
«r + f t - l '

The leading order approximation of the solution of (31) is given by

s (9) =  so (9) +  n 0s ^  '
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Exam ple 1: L ogistic m odel w ith  linear seed lin g  carrying  

capacity fu n ction  and linear tree size grow th  fu n ction

Consider a forest with logistic seedling re-establishment and

k(v) =  1 — Xv for 0 <  v <  1/A, (linear seedling carrying capacity),

k(v)  = 0  for v >  1/A, (seedlings vanish, if volume >  1/A),

b(a) =  a  (linear tree growth),

<p(a) =ip°e~a (exponential initial age distribution).
(53)

Assume here that a max =  oo, A =  2 and tp° =  0.1. Then

v (0) =  v° =  / 0°° (a) b (a) da =0 .1  (initial volume),

k (v (0)) =  k° =  1 — Xv (0) = 0.8 (initial carrying capacity),

<f (0) =  v>° =  0.1 (initial seedling density).
(54)

By virtue of (31), (32) and (36), the seedling density s (0)  satisfies the 

integro-differential equation

•S -  (55)
K{V{6)) = l - x ( j  s ( e - a ) e - “ada +  e~‘ ^ e - ^ - ^ a d a j

rS
=  1 —A /  s {9 — a) e~aada — \<p° (1 +  6) e~9,

Jo
s(0) =V5°-

19
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To obtain the leading order approximation of the solution using the boundary 

function method, combine equations (37) and (41) and write

s (8 ) — so (8 ) -F IIos (8 / s) 4- O (e) (56)

By (45) and (51) the regular part So (8 ) and the boundary layer part IIo-s (8 / s )  

are given by

so (8 ) — 1 —A f  So ( 8  — a) e~aad a  (57)
J o

fOQ
—Xe~ 9  /  <p°e~(a~e^ada

J e
rQ

=  1 — 2  I  so ( 8  — a) e~Qa d a  — 0 .2  (1  +  8 )e~9,
J o

k ° ( £ - l )  5 6

By Theorem 18 in the Appendix, the explicit solution of Volterra integral 

equation (57) is

So (8) =  |  +  e~ e ( j z  cos V28 +  ^  sin y / u j  . (59)

Instead of using an asymptotic method, the seedling equation (55) can be 

solved numerically with a difference scheme (e.g. forward Euler method). Fig. 

2 a shows numerical approximations of seedling density and forest volume ob­

tained with both methods. The steady states for seedling density and forest 

volume can be calculated from the seedling equation (55) by taking the limit 

8  -> oc, so that s (8 ) —» s '  and ds/dd  -+ 0 :

p O O

* =  1 — A /  s ’ e~aada  =  1 — As*, (60)
Jo

20
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that is

1 1 (61)
S 1 4- A 3

The steady state forest volume is given by

/*CO

= L (62)
J o

Fig. 2b shows the characteristic S shape of the logistic growth of the seedling 

density graph in the phase where it increases from its initial to its maximum 

value. The influence of parameter e  on the solution is demonstrated in Fig.2c: 

for larger re-establishment time e  the maximum of the seedling density is smaller 

and it is reached at a later time.

A larger value of the parameter A, on the other hand, leads to a smaller equi­

librium value 1 / (1 -f- A) for both seedling density and forest volume expressed 

by (61) and (62) (see Fig. 2d).

The influence of initial forest size on the behavior of seedling count s (6 ) is 

shown in Fig. 2e.

Finally, to derive the equilibrium age distribution of the forest, set

in the von-Foerster equation (26), thereby obtaining the ordinary differential 

equation

(64)

for the equilibrium age distribution

n ’ (a ) =  lim n (8 , a ) . (65)

21

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



Differential equation (64) with the additional condition

n m (0 ) =  Iim n (8 , 0 ) =  Iim s (8 ) =  s'
8 -*  oo 9 —* 0 0

has the solution

n" (a) =  n (0 ) e~a =  s*e"Q. (6 6 )

This solution is shown in Fig. 2f for different ■values of parameter A. The three- 

dimensional graph in Fig. 2g illustrates the convergence of tree age distribution 

to an equilibrium distribution.

22
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 seedlings count, numerical
 seedlings count asymptotic
—  forest volume, numerical
—  forest volume, asymptotic

0.8

0.7

0.6

« 0.5

= 0.4

0.3

0.2

O.t

time

Fig.2a: Example 1 . seedling count s and forest volume v  as functions of 

time 9 are shown. They are obtained by solving tree age density equation 

dn/dO -t- d n / d a  =  — n with n ( 9 , 0) =  s (9) and initial age distribution 

n (0,o:) =  0.1e~a , and seedling density equation =  s  {9) ^1 — LJxv'(fl]) with 

parameters e =  .05, A =  2. Forest volume is v {9) =  n  (9 , a ) b (a) da, and

tree size growth function is b (a ) =  a.  All quantities are rescaled as explained 

in the text, seedling count and forest volume approach their respective steady 

states, 1/(1 +  A) =  1 /3 , in an oscillatory fashion. Results obtained via 

numerical integration of the original statement of the problem using Euler 

difference scheme with time stepsize 0 .0 1  and results obtained from the zero 

order approximation show good agreement.

23
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 seedlings count, numerical
 seedlings count, asymptotic0.8

0.7

0.6

c  0.5

=  0.4

0.3

0.2

0.1

0.25 0.30.15
time

0.20.05 0.1

Fig. 2b: Example 1. Initial phase of the seedling count dynamics shown in Fig. 

2 a, during which s (0 ) increases from its initial value to its maximum value.
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H 0.5

=  0.4;

0.3

0.2

0.1

lime

Fig.2c: Example 1. Influence of the magnitude of small parameter e on the 

behavior of seed l in g  count s (0). All other parameters are the same as in Fig.2a.
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Fig.2d: Example 1 . Same parameter values as in Fig. 2a, but different values 

of A (which measures the inhibition of seedling count by forest volume).
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0.7

0.6

H 0.5

o>
=  0.4

0.3
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0.1

2.5 3.50.5
time

Fig. 2e: Example 1 . Same parameter values as in Fig. 2a, but different initial 

forest sizes.
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3  0.4 c <s 13

o 0.3

0.2

0.1

age

Fig. 2f: Example 1. Graphs of equilibrium tree age distributions obtained as 

time 9 —t  oo for different values of A. All other parameter values are the same 

as in Fig. 2a.
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"5 0.4

0.2

0.1
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time

Fig. 2g: Example 1 . Three-dimensional graph o f tree age density as a  function 

of time and age. Same parameter values as in Fig. 2 a.
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4 Linear model with exponential seedling re­

establishment

Here is another particular statement of the general problem (13) (that can be 

reduced to (35)) for which all results can be obtained explicitly:

M odel descrip tion  and leading order approxim ation

In some models for particular tree species instead of the logistic-type equa­

tion for seedling growth we can use a linear equation describing exponential 

re-establishment of seedlings to the level defined by available resources. In this 

class of models the rate of seedling increase at any time 8  is proportional to the 

difference of seedling carrying capacity k(v) ,  which depends on forest volume 

v  (0 ), and the seedling count s (8 ) ,  leading to the seedling differential equation

£%  ~  k ~  s ’ (67)

s (0 ) =  4 >°. (6 8 )

Note that when the seedling caxrying capacity k (v) is zero, this equation 

simplifies to

« f  -  - s (69>
with the explicit solution

s (8 ) =  <poe~0/£. (70)

Equation (67) describing exponential seedling re-establishment is a special

case of the general form of a singularly perturbed integro-differential equation

30
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given in (35). In the leading order approximation, the regular part is identical to 

that in the logistic model case. The boundary layer part, however, is different.

It satisfies the problem

dllos _  
dr

n 0s (0) =

with the explicit solution

Ilos(r) =  - ( k °  - s 0 ) e ~ r . (72)

Exam ple 2 : E xponential tree  grow th

As an example, let us consider a particular model where the individual tree 

size changes exponentially with age, and the seedling carrying capacity is a 

linear function of forest volume

b (a) =  eKia for a  >  0 , size of tree of age a , where 0  <  Ki <  1 ,

k (u) =  1 — Xv for 0 <  u < 1/A, seedling carrying capacity for forest volume

k(v)  =  0 for v >  1/A, seedlings vanish for v >  1/A.
(73)

Same as in Example 1 , take initial age distribution

t p ( a )  =

31

-I lo s (r ) , (71)

- ( f c ° - s ° ) ,
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From (24) and (30), the forest volume is given* by

/*CO

v ( 8 ) =  /  n (8 , a)  b (a) d a  (74)
Jo

Jrff roo

' s ( 8  — q) e~aeKl° d a  +  e ~ 9  /  <p(a — 9) eKiada 
o J e

=  f S s ( a ) e - ^ - KlK6- a)da +  - ^ —  (75)J o  1 — /Cj.

Taking the derivative and using integration by parts yields the differential

equation for the forest volume

rO

v'( 8 ) =  s ( 0 ) - ( l - « ! )  /  s ( a ) e - (1- Kl)(* - a)d o : - ¥;0e - ( 1- K̂  (76)
Jo

=  s ( 0 ) -  (1  -  /Cl) v ( 0 ) .

The same differential equation (76) is obtained for arbitrary initial age density 

<p (a ) . Setting k =  1 — /ci, we obtain the autonomous system

ss'  =  1 — Av — s  for 0 < v <  1/A,

S S  =  —5

V ' =  S  — KV,

with initial conditions

for v >  1 /A, (77)

K7/(0) =  t/° =  ^ 7  

This system has exactly one steady state

5(0) =  S ° = < p (  0),  (78)

(o

K
S  = K +  A ’ 

1

32

(79)

(80)
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Note that the steady state satisfies 0 <  v m <  1/A. Thus in the vicinity of the

steady state, autonomous system (77) can be written in matrix form:

\ V )

/

V

- 1  [ s  -A /e  

1 —K

\ f

\
+

f  \  
l / e

\ 0
(81)

.4 =

V

Since the coefficient matrix

—1/e  —A/e 

1 —k

has negative trace tr  A  =  (—1 /e  — k) and positive determinant det A =  (k +  A) /e , 

both eigenvalues <xL and cro have negative real parts. So, the steady state is sta­

ble. The solutions satisfying 0 <  v  <  1/A are of the form

a(B)  =  + cze*29 +

v  (9) =  dLeff 1 0  +  doe” * 1 +,cr2B

A +  k ’ 
1

(82)

A 4 - k ’

where the const ants c i, 0 3 , d lt do are determined by initial conditions (78) and 

by the eigenvectors of matrix A.

In general, the eigenvalues are complex numbers with negative real part, so 

that the seedling density approaches the steady state by damped oscillations. 

In the following, we will explore the age dynamics of the forest for the case that 

the eigenvalues axe real:

erL =  2̂ 1 — £ K  ~  \ / ( l  -  £«02 — 4cA  ̂ < 0 ,

Oo =  ^  1 — s k  -h y j (1  — £ k )2 — 4cA ^  <  0 .

A sufficient condition for the eigenvalues to be real is

(83)

(1 — c/c)“ — 4eA > 0, (84)

33
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which is equivalent to

Let us classify possible initial conditions into five cases:

C a s e  (A): F o r e s t  w i t h o u t  s e e d l i n g s  ( s ° =  0) a n d  w i t h  i n i t i a l  v o l ­

u m e  v° >  1/A. According to (77) the forest volume decreases exponentially 

as

v  {9) =  v 0 e - * 9  (86)

until v{9i)  =  1/A with 9i =  In (An0) / k . Since v' (91) =  —k/X  for 6  >  9it 

the solution v (9) will enter the interval 0 <  v <  1/A, and converge to the 

steady state v m either decreasing monotonically or, after passing through a local 

minimum of volume, increasing monotonically. The seedling count s (9) stays 

zero for 0 <  6  <  9 i since s =  0 is a steady state of the seedling equation for 

v >  1/A. For 9 >  0i, function s (9) will increase monotonically and will reach 

eventually the steady state s ’ (see Fig. 3a).

C a s e  (B): F o r e s t  w i t h  s e e d l i n g s  (s° >  0) a n d  w i t h  i n i t i a l  v o l u m e  

v° >  1/A.

The seedlings decrease as

s (9) =  s°e~e^  (87)

in the time interval 0  <  9 <  9?, where So is specified below. Thence, the volume

34
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in this time interval satisfies

v — k v  4- s ° e  e ! s (88)

v ( 0 )

with the explicit solution

„ w  =  („o +  T£ _ ) e-. (89)

This solution decreases monotonically and reaches at 6  =  0 2  the value 1/A 

(possibly after passing through a local maximum value). Since v  (do) =  1/A and 

v' (<9o) < 0 ,  we have 0 <  v <  1/A for 9 >  As in case (A), the volume then 

converges to a steady state v ' ,  possibly after going through a local minimum 

first (see Fig. 3b).

C a s e  ( C ) :  F o r e s t  w i t h o u t  s e e d l i n g s  (s °  = 0 )  a n d  w i t h  i n i t i a l  v o l ­

u m e  0 < v° <  1 /A .

so seedling count and forest volume converge to their respective steady state 

values s* and v ' ,  as shown in Fig. 3c.

C a s e  ( D ) :  F o r e s t  w i t h o u t  s e e d l in g s  ( s °  =  0 ) a n d  w i t h o u t  t r e e s

Now

s' (0) =  i ( l  —Au°)>0,

u '  ( 0 )  =  — k v °  <  0 ,

(90 )

(u° = 0 ) .
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Then

s' (0) =  i > 0 ,  (91)

v'(0) =  0,

v "  (0) =  s' (0) -  k v '  (0) =  ^ >  0,

so the forest volume converges, monotonically increasing, to its steady state 

value, while the seedling count reaches the steady state value possibly after 

going through a local maximum (see Fig. 3d).

C a s e  (E): F o r e s t  w i t h  s e e d l i n g s  ( s °  >  0 ) a n d  w i t h  i n i t i a l  v o l u m e  

0 <  v °  <  1/A.

If the solution for the forest volume remains in the region 0 <  u° <  1/A 

for all times, then seedling count and forest volume converge to their respective 

steady state values. If at some instant of time #3, we have v  (8 3 ) =  1/A, and 

v '  (8 3 ) >  0, then for 8  >  8 3 , immediately following 8 , the function v  (8 ) >  1/A, 

and we arrive at case (B); see Fig. 3e.

A forest with seedlings (s° > 0) and zero volume (u° =  0) is impossible, 

because in the model under consideration, the seedlings have a nonzero volume. 

Therefore these five cases exhaust all possible initial conditions. The conclusions 

are:

1. The steady state is globally stable (the forest converges to it for every 

possible initial state).

2. If the seedling count is initially positive, it remains positive for all times;
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so the seedlings cannot vanish in a natural forest that is described by this model, 

and neither can the forest volume vanish.

3. seedling count and forest volume are completely determined by the initial 

values of these two quantities, and do not depend on the initial age distribution 

of the forest.
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critical volume: 1/3.
0.5

0.4
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0.3
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0.1

2.50.5
time

Fig.3a: Example 2, Case (A), seedling count s and forest volume v  are 

shown as function of time 8 . The exact solution is obtained by solving system 

es' =  max (1 — Xv, 0) — s, v' =  s — k v  with parameters e  =  0.1, A =  2, k  =  0.5 

and initial conditions s° =  0, v° =  0.7 >  1/A. seedling count and forest 

volume converge to their respective equilibrium values kj(k. +  A) =  0.2 and 

1/ (re +  A) =  0.4.
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0.6

critical volume: 1AS 0.5 -

0.4
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time

Fig.3b: Example 2, Case (B). seedling count s  and forest volume v  as functions 

of time 9 obtained as the solution of the system  es' — max (1 — Xv, 0) — s, 

v' — s — k v  with parameters s  =  0.1, A =  2, re =  0.5 and initial conditions 

s° =  0.5, v° =  0.7 >  1/A.
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0.6
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 forest volume

0.5
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2.51.5
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Fig.3c: Example 2, Case (C). seedling count s and forest volume v  as functions 

of time 9 obtained as solutions of the system es' =  m ax(l —Au,0) — s, 

v '  — s  — k v  with parameters s  =  0.1, A =  2, k  =  0.5 and initial conditions 

s° =  0, o° =  0.2 <  1/A.
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Fig.3d: Example 2, Case (D). seedling count s and forest volume v as functions 

of time 9 obtained by solving the system es' =  m ax(l — Xv, 0) — s, v' =  s — k v  

with parameters s  =  0.1, A =  2, k =  0.5 and initial conditions s° =  0, v° =  0, 

that is an empty forest.
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Fig.3e: Example 2, Case (E). seedling count s and forest volume v  as functions 

of time 8  obtained by solving the system es' =  max (1 — Xv, 0) — s, v' =  s — k v  

with parameters e  =  0.1, A =  2, k =  0.5 and initial conditions s° =  0.5, 

v° =  0.3 <  1/A.
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Exam ple 3: E xponentia l tree grow th  com pensating  for 

forest decay

If the exponential growth rate of an individual tree is the same as the decay 

rate of the forest, set ki  =  I (that is, k =  0) in Example 2. Then we obtain 

from (77) and (78) the autonomous system :

ss'  =  1 — Av — s  for 0 <  v <  1/A,

ss  — —s

v' =  s,

with initial conditions

for v >  1/A, (92)

5 (0) =  5°,  (93)

u(0) =  v°.

The steadv state is

5* =  0, (94)

(95)
V '  =  T

The solutions in the region 0 <  v <  1/A are of the form

s { 6 ) =  c ^ e + c 2 e‘r2*, 

v  (8 ) =  d ^ 8  +  dze * * 0  +  y>

with suitable constants c i ,  Co, di , dz, which are determined by initial conditions 

(93), and by the eigenvectors of system (92).
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The corresponding eigenvalues of the system  are

o~i =  (96)

(jo — —— ^—1 -b \ / l  — .

Since both eigenvalues have negative real part, the equilibrium is stable. Note 

that for

* < s  (97>
both eigenvalues ai  and crn are real and negative.

As in Example 2, we classify possible initial conditions into five cases.

C a s e  (A): F o r e s t  w i t h o u t  s e e d l i n g s  ( s °  =  0) a n d  i n i t i a l  v o l u m e  

v °  >  1/A.

The forest volume remains constant, while the seedling count remains zero 

for all times.

C a s e  (B): F o r e s t  w i t h  s e e d l i n g s  ( s °  >  0) a n d  i n i t i a l  v o l u m e  v °  >  

1/A.

The seedling function is

s(9)  = s 0 e~B/£. (98)

Evidently, s (9) —> 0 as 9 -*■ oo. Thus the volume satisfies the problem

v '  =  s ° e - ® / £ , (99)

v  (0) =  v ° ,
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with explicit solution (see Fig. 4a):

v  (8 ) =  v° -+- ss 0  — e~<  ̂ —► u ° 4- es° > v° >  ^  as 9 —*■ oo. (100)

C a s e  ( C ) :  F o r e s t  w i t h o u t  s e e d l i n g s  ( s °  =  0) a n d  i n i t i a l  v o l u m e  

0 < v° <  1/A.

Then.

5' (0) =  ~ (1 -  Au°) > 0, (101)

u'(0) =  0,

v" (0) =  s'(0) =  i ( l - A w ° )  > 0.

While the seedling count increases to a local maximum and then converges,

monotonously decreasing, to zero, the forest volume converges, monotonically

increasing, to its steady state 1/A (see Fig. 4b).

C a s e  (D): F o r e s t  w i t h o u t  s e e d l i n g s  ( s °  =  0) a n d  w i t h o u t  t r e e s  

(u° =  0).

Now

s' (0) =  -  >  0, (102)
s

v ' ( 0 ) =  0,

v" (0) =  s' (0) =  i  >  0,
c

so the forest volume converges, monotonically increasing, to its steady state 1/A, 

while the seedling count approaches zero after going through a local maximum, 

(see Fig. 4c).
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C a s e  (E): F o r e s t  w i t h  s e e d l i n g s  ( s °  >  0) a n d  i n i t i a l  v o l u m e  0 <  

v° <  l /A.

If the solution for the forest volume remains in the region 0 <  v° <  I/A  

for all times, then seedling count and forest volume converge to their respective 

steady state s (9) -*■ 0, v (9) -J- 1/A (see Fig. 4d). If the forest volume increases 

beyond 1/A, we arrive at case (B) (see Fig. 4e).

Thus, the following conclusions are valid for all five cases:

1. The seedling count converges to zero for every possible initial state of the 

forest.

2. The forest volume converges to I/A in some cases and to a value greater 

than 1/A in others.

3. As in Example 2, seedling count and forest volume axe completely deter­

mined by the initial values of these two quantities, and do not depend on the 

initial age distribution of the forest.
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 seedlings count
 forest volume

0.9

0.8

0.71

- 0.6

S  0.5

S’ 0.4

0.3

0.2

0.1

0.7 0.80.4 0.5
time

0.6 0.90.2 0.30.1

Fig.4a: Example 3, Case (B). seedling count s and forest volume v axe shown 

as functions of time 9. These functions are obtained by solving the system  

es' — max (1 — Au,0) — s, v' — s with parameters e  =  0.1, A =  2, and initiad 

conditions s° =  0.5, u° =  0.7 >  1/A. seedling count converges to zero, while the 

forest volume converges to v° +  ss0 =  0.75.
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 seedlings count
 forest volume

0.9

0.8

0.7

t x O.6

H 0-5

0.3

0.2

0.1

2.50.5
time

Fig.4b: Example 3, Case (C). seedling count s and forest volume v  as functions 

of time 6, obtained by solving the system as' =  max (1 — Xv, 0) — s, v' =  s 

with parameters e  =  0.1, A =  2, and initial conditions s° =  0, v° =  0.3 < 1/A. 

seedling count converges to zero, while the forest volume converges to 1/A =  0.5.
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 seedlings count
 forest volume

0.9

0.8

0.7

H 0.5

0.3

0.2

1.5
time

0.5 2.5

Fig.4c: Example 3, Case (D). seedling count s and forest volume v as functions 

of time 9, obtained by solving the system ss'  =  max (1 — At;, 0) — s, v' =  s  — k v  

with parameters s  =  0.1, A =  2, k =  0.5, and initial conditions s° =  0, v° — 0, 

that is an initially empty forest. The seedling count converges to zero, while 

the forest volume converges to 1/A =  0.5.
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 seedlings count
 forest volume

0.9

0.8

0.7

5 0.6

s  0.5

S’ 0.4

0.3

0.2

0.1

1.5
time

2.50.5

Fig.4d: Example 3, Case (E). seedling count s  and forest volume v  as functions 

of time 0, solving the system es' =  max (1 — Xv, 0) — s, v' =  s —  kv  with param­

eters c =  0.1, A =  2, and initial conditions s° =  0.5, v° =  0.3 <  1/A. seedling 

count converges to zero, while forest volume converges to its equilibrium value 

1/A from below-.
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 seedlings count
 forest volume

0.9

0.8

0.7

-- 0-6

S  0.5

0.3

0.2

0.1

2.50.5
time

Fig.4e: Example 3, Case (E). seedling count s and forest volume v  as functions 

of time. 9, solving the system ss' — max (1 — Au, 0) — s, v' =  s — kv  with 

parameters e =  0.1, A =  2, k  =  0.5, and initial conditions s° =  1.0, v° =  0.45. 

When the forest volume increases beyond 1/A =  0.5, the seedling count is 

positive. So, we arrive at Case (B) (compare with Fig. 4b). The forest volume 

approaches a limit value greater than 1 /A.
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- Exam ple 4: Linear tree  growth

If Individual trees grow linearly with age, and the seedling carrying capacity 

varies linearly with forest volume, we have

b (a) =  a  -f- c for a  >  0 (size of tree o f age a ,

where c is a positive constant),

(103)
k(v)  = 1  —Av for 0 < v  <  1/A (seedling carrying capacity),

k(u) = 0  for v  > 1/A (seedlings vanish for v  > 1 /A).

Note that k =  0 means that the carrying capacity for seedlings is zero if the 

forest volume surpasses the critical value 1/A. However, because of the non-zero 

re-establishment time, seedlings can still exist even when k =  0.

From (30) and (34) it follows that v (&) and the total number of trees p  (6) 

are given by

v (&) = f  s (a ) e 9̂ q) (̂  — a  + c) daJo rOO
+ e ~ e f  tp (a — 9) (a  +  c) da,  (104)

J e

p(9)  =  f  s (a) e~(9~a^da +  e~9 f  v7 (a  —9) da
J o  J e

r-6 ro o
=  I s (a) e~^3~a^da +  e~9 /  tp (a )da .  (105)

J o  Jo

Taking the derivative and using integration by parts, we obtain the differ-

52

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



ential equations

r e
v' (9) =  s ( 9 ) c  — /  s (a )  e (0 — a -h e )  da

Jo
r6

-f- /  s ( a ) e  *9 a^da 
J o

—e~6 ( /  (a  — 0) (a -r c) da 4- p  (0) (9 -f- c)^
pOO

—e~6 I p'  (a — 9) (a 4- c) da  
J e

pQ pQ
=  s ( 9 ) c — I s  (a) e-t9_a) (0 — a  4 -c) d a +- /  s (a ) e ~ ^ _a)da 

Vo Vo

4-e-9  J  <p ( a  -  6) (a-h c) d a -h  J  p  (a) dc^j

=  c s ( 0 ) - v ( 0 ) - h p ( 9 ) ,  (106)

p' (9) =  s (9 )  — f  s (a) e-(9_0:)da — e~8 f  p ( a ) d a
Jo  Jo

=  s(9)  —p (0) .  (107)

In the integration by parts for (106) we used

lim (a +  c) p  (a  — 0) =  0, (108)Ct—►OC

which requires the additional assumption that p  (a)  satisfies an exponential 

estimate of the form

p  (a) <  ce~Ka

for some positive constants c, k >  0, or - alternatively - that p  (a) is eventually

decreasing, that is decreasing for a  > ao for a suitable ao >  0.
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We obtain the autonomous system of first order differential equations 

e s ' =  1 — Av  — s  for 0 <  v <  1/A,

for v  > 1/A,

v ' =  c s  — v 4- p,

(109)

P = s - p ,

with initial conditions

s(0) =  s° =  p  (0), (110)

t-(0)
/•oo

=  v ° =  p  (a) (a  +  c) da,
Jo

P (0) =  P° =  f  p  (a) da.
Jo

The initial conditions for v  and p  are obtained by setting 0 =  0 in (104). 

System (109) has exactly one steady state

1

v  =

P =

1 4- A (c +  1)

c + 1 1
1 + A ( c + 1 )  A 4-jA  

1
c+ l

( 111)

( 112)

(113)
1 +  A (c +  1)

The steady state is located in the interior of the region 0 <  v  <  1/A. Using 

matrix notation, system (109) can be written in this region as follows:

\ (  , ^ /  N f  )
s' —1 / e —A/c 0 S 1 /e

v' = c - 1  1 V + 0 (114)

n ,  1 °  - 1 J [ p J 0 J
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The eigenvalues of the matrix in (114) are solutions of the characteristic equation 

X 3 +  ^2  +  i )  X 2 +  ( l  +  X  +  --t A +  cA =  0. (115)

The Routh-Hursvitz conditions for all roots of any cubic polynomial

p (X) = X3 4- CliX2 + a3X +  03 (116)

to have negative read part are the following:

ai > 0, (117)

a3 >  0, 

a i<Z2 — 03 >  0.

In our case, since

f l !  =  2 +  - ,  (118)

O o — 1 4"

£

2 +  cA

a3 =

£

1 +  A (c +  1)
£

the real parts of all eigenvalues are negative if and only if

^2 +  ( l  +  "  - +  A^ -—  ̂ >  0, (119)

or, equivalently,

A ( c (£ +  1 ) - £ )  >  - 2 ( £  +  l ) 2 . (120)

For c >  e /  (1 +  e) the real parts of the eigenvalues are negative for all values of

the positive parameter A. For c <  e /  (1 +  £ ) , the read parts of the eigenvalues

aire negative for

A <  (121)
T+7 — c

55

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



To find asymptotic approximations of the eigenvalues as e  —► 0, insert the 

representation

X. =  1 +  .4.0 +  .4i= 4- A.2£~ 4- --- (122)

into the characteristic equation (115). This method results in the approxima­

tions

X i  =  - 1 / e +  0 ( 1 ) ,  (123)

X 2 =  - 1  -  (cA +  \Jc2\ 2 -  4A) /2  +  O ( e ) ,

X2 =  - 1  -  (cA -  y/c2 A2 -  4A) /2  +  O ( e ) .

In the region v >  1/A (where the seedling carrying capacity is zero), solve 

the system

ss'  =  — s,

v' =  —u +  p, (124)

P' =  s - p ,

with initial conditions (110). The explicit solution for s° >  0 is

s[9)  =  sQe~9!~. (125)

v(0 )  =  ctie~9 +  a 2e ~ * ,

p(9)  =  0ie~9 -h 02S~7 ,
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with constants

Ql =  u0 +  ^ _ p0j (126) 
1 — e

OLO =  P°,-I — C

01 = 1 -- c.

01 =

For s° =  0, however, the solution of (124) is given by

v(9) =  (9p° +  v°) e , (127)

p(9) =  p°e~8.

Fig. 5a - 5f show how the model behaves for some particular choices of 

parameter values and initial conditions.
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  seedlings count
 forest volume
—  number of trees0.6

0.5

~  0.4

0.3

0.2

0.1

time

Fig.5a: Example 4. seedling count s, forest volume v and number of trees p  as 

functions of time 6, obtained by solving the system es' — m a x (l — Xv, 0) — s, 

v' =  —v  +  p, p' =  s — p  with parameters e =  0.05, A =  2, and initial conditions 

s° = v °  = p °  =  0.2.
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 exact
 asymptotic (leading order)0.6

0.5

0.4

1 0 .3

0.2

0.1

time

Fig. 5b: Example 4. seedling count as a function of time obtained for the 

same parameters as in Fig. 5a. One graph, corresponds to exact solution, the 

other graph is obtained by leading order approximation of the eigenvalues of 

the system.
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 exact
 asymptotic (leading order)0.6

0.5

0.4

a  0.3

0.2

0.1

time

Fig. 5c: Example 4. Forest volume as a function of time, obtained by using 

the same parameters as in Fig. oa. One graph represents exact solution, the 

other graph is obtained by leading order approximation of the eigenvalues of 

the system.
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 exact
 asymptotic (leading order)0.6

0.5

0.4

-§ 0.3

0.2

0.1

time

Fig. 5d: Example 4. Number of trees as a function of time, obtained using 

the same parameters as in Fig. 5a. One graph is exact solution, the other 

represents solution obtained by leading order approximation of the eigenvalues 

of the system.
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 seedlings count
 forest volume
—  number of trees

0.8

0.7

0.6

£ 0.5

to 0.3

0.2

0.1

tim e

Fig.5e: Example 4. seedling count s, forest volume v and number of trees p 

as functions of time 8 are shown. These functions are obtained by solving the 

system es' =  max (1 — Xv, 0) -  s, v' =  —tM- p, p' =  s — p  with parameters 

£ =  0.05, A =  2 and initial conditions s° =  v° =  p° =  0.7.
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0.45
 seedlings count
 forest volume
—  number of trees0.4

0.35

•2 0.25

S 0.15

0.1

0.05

time

Fig.5f: Example 4. seedling count s, forest volume v and number of trees p  

as functions of time 9 are shown. They are obtained by solving the system 

ss'  =  m ax(l — Xv, 0) — s, v' =  —v +  p, p' =  s — p  with parameters £ =  0.05, 

A =  100, and initial conditions s° = v °  — p° =  0.4.
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5 Models with decreasing mortality rate of trees

For many tree species observations have shown that oider trees in a forest of 

low density are less vulnerable to competition for resources and to diseases than 

younger trees in a high-density forest. This phenomenon can be modeled by a 

tree density equation which in rescaled form can be written as

I? + £  = - " P <128>

with a constant p >  1. The initial and boundary conditions are of the form:

n (0 ,a )  =  <p{a), (129)

n(0,O) =  s ( d ) .

As in the case of the tree density equation with constant death rate, the

method of characteristics can be used to represent the solution in terms of the

initial age distribution and seedling function:

n ( 0 ,a )  =  ^  } for 0 <  8 <  a,
(130)

"(* .«>  =  ( i+a(SpP- 7 / ^ - ^ ) ) 1/(P~ l) for 0 <  a  <  0.

Let us assume that the seedling function fulfills an initial value problem of 

type (67):

ds
e dB =  * ( « ( * ) ) - « ( * ) ,  (131)

s (0) =  s°.

It can be easily seen that the problem (128), (129), (131) is also a particular

case of the general statement (13). By substitution of (130) into (131), we
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obtain am integro-difFerential equation for the seedling function- This equation 

can be solved by the boundary function method or numerically. The procedure 

is similar to that performed for the case of constant mortality rate of trees. For 

linear seedling carrying capacity

k(v)  =  1 — Xv =  1 — A / Q°° n (9, a ) b (a) da for 0 <  v <  1/A,

(132)
k (v) = 0  for v  >  1/A,

we obtain the seedling problem

£%  =  l _ s W  (133)

for 0 <  v <  1/A, and

= - . ( » ) ,  (134)

for v  >  1/A,with initial condition

s(0 ) =  s°. (135)

E xam ple 5:

For linear tree growth b (a)  =  a , linear seedling carrying capacity and pa­

rameter p  — 1.5, (133) becomes

=  1 ~ X f e - ------a S ( 9 ~ a) ^ d a - X v old( 8 ) - s ( d ) ,  (136)
dd J° ( i + f

s(0)  =  s°. (137)
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The volume of the old forest is

Void (8) =  p  n (B, a) b {a) da. (138)

= r
J° ( l  +  f ^ C a - S ) )

Jo ( l  +  |  \ / jp  (u)) 

aad the number of trees in the old forest is

rOO
Poid (&) =  /  n ( 9 , a ) d a  (139)

=  r _____
•'» ( l + I ^ C a - e j )

= r  *<■>
0 ( i  +  f v V f u ) )

In Theorem 14 of the Appendix it is shown that both volume and number of 

trees of the old forest converge to zero as 9 —► oo if the initial age distribution 

has an exponential estimate of the form

<p (a) < ce~Ka for 0 <  a  <  oo, (140)

with some positive constants c and k. In this case we can show by an indirect 

proof that there is no steady state s '  of (136):

0 =  1 — A f  ------ — Tda  — A lim v 0id  (0) -  s '  (141)
Jo  f i u . s . v ' P V'0 ( l  -f- %-y/s )̂

■ fJO
=  1 — A /  —------ Tyda — s ' .

/o ( l  +  f V F ) -

Indeed, for s'  — 0 the integrand in this equation is zero, which yields the 

contradiction 0 =  1. For s'  >  0 calculate the integral by substitution

u =  l + ^ y / F  (142)
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and obtain a contradiction:

0 =  l - A  / -----------5--------  _
J1 u2 Vs*

-  1 _ 4 A ( /  1 T + I ) '

=  —oo,

since the last integral diverges. Fig. 6a and 6b show the disappearance of 

seedlings after a finite time period for the initial age distribution

p (a ) =  i e - ° .  (144)

In this example the old forest volume for 9 >  0 is given by

roo a i  e - ( « - * )

4 J Q

u0/d (5) =  /  - — ----------- - j da. (145)

(1 +  f e - f ) 4
1 f 00 ue~u , l a e - “ ,
* 1  ( l  +  i e - i f  * Jo (1 +  | e - ^)2 

« [ ' — y _

Jo (! + {#)• 2-'» (1 + W
/ ■  ,

•'o (1 +  f  y)

and

Jo

Here we used substitutions

(0) =  y —̂ 3— da =  - .  (146)

u =  a  — 9, (147)

y  =  e u/2
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in order to obtain a proper integral that can be approximated numerically, e.g. 

with Simpson’s method. Note that the integrand is bounded on the interval 

[0,1] with limit 0 as y —y 0 from the right.

With the same substitutions, the number of trees in old forest is given by

/•oo Le-(a—0)
PoldW) =  /  — 4----------- — da  (14S)

Je ( 1 .

rdu=  I f
4 Jo (1 +  f e - * )  

-

a n d

(149)
f  oo 1 1

Poid ( 0 ) = J Q - e ~ ada =  —.

With L’Hopital’s rule it can be shown that the functions v0id (9) and Poid (9) 

are continuous at 9 =  0.

To solve (136), using the boundary function method, insert the representa­

tion

s{Q)  = s Z ( 9 ) + U 0s ( 9 / e) +  O { e )  (150)

into (136), and obtain the system

r$
0 =  l - A  I ----------------------  ~da  — \ v old (9) —sq (9),  (151)=  ! — A [   QSo(g~ Q)

J °  ( l  +  f  y / m O - a ) )
cffloS

dr
= - n 0s ( r ) , (152)
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with conditions

s5 -(0 )+ n os(0) =  5 ° , (153)

lim n 0s (r) =  0.
r —► oc

Integral equation (151) can be solved numerically, discretizing the integral 

by means of the trapezoid method. The solution of (152) is explicitly given as

n 0s (r )  =  (s° -s5 -(0 ))e ~ r .

Fig. 6a - 6d show graphs for seedling count, forest volume, and number of 

trees.
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—  seedlings count 
 forest volume
—  number of trees0.9

0.8

0.7

£ 0-6

0.5

<31
=§ 0.4

0.3

0.2

0.1

time

Fig. 6a: Example 5. seedling count, forest volume and number of trees 

as functions of time are shown. These functions are obtained by solv­

ing age density equation dn/dO +  d n / d a  =  np and seedling equation 

=  max ( l  — A /0°° n (9, a) b (a) da,0) — s with parameters p — 1.5, 

e  =  .05, A =  2, tree growth function b ( a ) =  a , and initial age distribution 

n (0, a) =  0.25e~“ .
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0.5
  numerical (Euler method)
 asymptotic (boundary function method)

0.45

0.4

0.35

-  0.3

0.2

0.15

0.1

0.05

0.6 0.8 1.2 1.4 1.60.2 1.80.4
time

Fig. 6b: Example 5. seedling count as a function of time obtained for the 

same parameter values as in Fig. 6a. One graph is obtained by numerical 

approximation with Euler difference method (time stepsize 0.01), while the 

other graph represents the leading order boundary function approximation 

calculated numerically using the 0.01-stepsize trapezoid method.
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 numerical (Euler method)
 asymptotic (boundary function method)

0.9

0.8

0.7

0.6

> 0.5
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0.3

0.2

0.1

time

Fig. 6c: Example 5. Forest volume as a function of time obtained for the same 

parameter values as in Fig. 6a. The graphs represent a solution computed by- 

Euler difference method and an approximation of the solution constructed by 

the boundary function method, respectively.
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0.5
 numerical (Euler method)
 asymptotic (boundary function method)

0.45

0.4
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Fig. 6d: Example 5. Number of trees as a function of time obtained for the 

same parameter values as in Fig. 6a. One graph is obtained by numerical in­

tegration using Euler difference scheme, the other represents an approximation 

constructed using the boundary function method.
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Part II

E x isten ce , u n iq ueness, a n d  error  

analysis o f  a particu lar m o d e l

In this part we use a unifying approach, Banach’s fixed point theorem, to es­

tablish existence and uniqueness of the solution of the problem, convergence of 

a numerical scheme for solving the problem, and for proving the theorem on 

estimation of the remainder term for asymptotic approximation of the solution 

of the problem. These results provide the mathematical basis for the next steps 

of the analysis of age structure models related to explicit determination of func­

tions and parameters entering the models by fitting the solutions to data from 

real field measurements using nonlinear least squares methods. Results of such 

nonlinear least squares fitting procedures applied to particular age structure 

models will be published elsewhere.

This part is organized as follows: Section 6 formulates the initial value prob­

lem for the seedling density, and presents the integral equation for the quasi- 

equilibrium solution. Section 7 proves existence and uniqueness of the solution 

of both above mentioned problems and derive some of their properties. Linear 

convergence of the numerical solution is shown in section 8. Section 9 contains 

the description of the algorithm for construction of tux asymptotic solution us­

ing the boundary function method and the estimation of the remainder, which
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is the proof that the norm of the difference of asymptotic solution and exact 

solution is of order O (e). Some auxiliary results can be found in the Appendix.

6 M athem atical model

For a particular class o f models introduced in [4], the integro-differential equa­

tion for seedling density s (f) as a function of time, has the (rescaled) form

In (154), 0 <  e  4C 1 is a  small parameter, which represents the ratio of seedling 

re-establishment time and the average life span of a tree. The competition fac­

tor A measures how competition from other seedlings and older trees inhibits 

the number of seedlings. Function v  (t) represents the total volume of the for­

est as a function of time. The old forest volume v0id (t) describes the total 

volume of the trees already existing at the initial time, whereas the integral 

fg b (a) e~as (t — a) da is the total volume of the trees that grew from seedlings 

after initial time. The size function b (a) describes the average size of individual 

trees of age a. Depending on the particular model used, the size function repre­

sents either height, basal area, stem volume or crown area. The model assumes 

a constant relative death rate of trees, which has been rescaled to 1 and is re­

flected in the factor e~a in the integral in (155). The term m ax (0 ,1 — Xv (t)) 

corresponds to the seedling quasi-equilibrium at time t , which is approached

es'(t ) =  — s ( t )  4- max (0,1 — Xv (t) ) , (154)

(155)

« ( 0) (156)
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exponentially as expressed in equation (154). When the forest volume v ( t )  

increases above the critical volume

the seedling quasi-equilibrium becomes zero, and seedling density s (t) decreases 

exponentially at per-capita rate 1/e. At the transition point where v =  Vcrit a 

discontinuity of the second derivative of the seedling density occurs.

Let us consider problem (154) - (156) in a finite time interval 0 < t  <  T.  

With notations

We also analyse the quasi-equilibrium problem associated with (162), (163) 

which is obtained by replacing the derivative in (162) by zero and omitting 

condition (163):

Assuming that the old forest volume function v  (f) and the size function b (t) 

are continuously differentiable, the functions /  (t) and g  (f) defined in (158) and

V c r i t  — 1/X, (157)

/ ( a )  =  b (a) e a, (158)

g (t) =  1 -  Xv0id (t) , (159)

(160)

K + s ( t )  =  max (0, K s  ( t ) ) , (161)

the initial value problem can be written as

es' (£) =  —s (t ) -+- K +s (£) for 0 < t < T , (162)

s (0 ) (163)

0 =  - s  (£) +  K +s (£) for 0 <  t  <  T. (164)
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(159) sure also continuously differentiable, and the operators K  and K + map 

the space of continuous functions on the interval [0, T] into itself. This space, 

which we denoted by C  ([0,T]), is a Banach space with the maximum norm

M l (01- (165)

Note that the solutions of the quasi-equilibrium problem (164) are the fixed 

points of the operator K + in the Banach space C  ([0, T]). In what follows we 

often utilize the identity

f  (t — a) s  (a) da =  f  f  (a) s (t — a) da , (166)
Jo

which results from the substitution a —f t — a in the integral.

7 Existence, uniqueness, and properties of solu­

tions

T heorem  1 The quasi-equilibrium problem (164) has exactly one solution s*e (t) 

in C  ([0,T]). This solution is non-negative, bounded from above by 1, and sat­

isfies a Lipschitz condition of order 1 with Lipschitz constant

Cqe =  [b'll + A ||*|| (T ll/'U + ll/H). (167)

Proof: To show that operator K + : C  ([0,T]) —► C  ([0, Tj) has a unique 

fixed point, consider any two functions s i ,S 2  6 C ([0, T}) and any t 6  [0,TJ. By
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virtue of (160), (161), and Corollary 1 (see Appendix), we have the estimate

(t) — AT^so (t)| =  |max(0,iiL'si (f)) — m ax(0 ,K s2 (t))[ (168)

<  \K s i ( t )  - I C s z W I

< A /  f { t  — a) |5i (a) — 52 (a)| da
Jo

< Iki -  soil A ll/ll t.

Using the same estimate (168) for K^s-i and K^so  in the place of s i and s2, 

respectively, yields

\ K +8i it) -  K + s2 (01 <  X f i t -  a) \ K + Sl (a) -  K +s2 (a) | da (169)
Jo

<  A f  f i t - a )  ||si - s 2|| A ll/H a da
Jo

.  „ „ (A ll/ll)2 t2
<  ||*i “  *2 ||------ 2------- ’

and similarly, by induction over n,

- | ( ^ " * 1 ( 0 - ( ^ " * 2 ( 0 1 <  I l* t - * 2[ | « ^  (170)

for n =  0 ,1 ,2 ,.... Since the infinite series

f ;  (A|lf f - —  =  exp (A ll/H T) (171)
„ n!n = 0

converges, we conclude that

lim
n—►oo

Therefore there exists N  such that

ll/ ll)" T *  <  i .  (173)
N\ 2 K J
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From (170) it follows that

( K + ) *  Sl -  ( K + r  s2 | <  J ik r  -  soli- (174)

Hence K  (+ )iV : C  ([0, T}) -* C  ([0, T]) is a contraction mapping. By a corol­

lary to Banach’s fixed point theorem, the mapping K + has exactly one fixed 

point s ‘e (t) in C  ([0,T]). This fixed point is the unique solution of the quasi- 

equilibrium problem (164).

The function s ‘e (t ) is non-negative, since

s ’e (t) =  max (0, K  (s*e (t))) >  0. (175)

It is bounded from above by 1, since by virtue of (159) and (160),

s'qe(t) =  m ax(0 , K ( s q e (t)))  (176)

<  K ( s;e (t))

=  l - A  ( v 0id (t) +  J  f  (a) s  (f -  a) daj

<  1.

The fact that sqe (t) satisfies a Lipschitz condition of order 1, follows from (164)
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and Corollary 1 (see Appendix). Indeed, for any t i , t 2 6  [0, T], we have

K e (ti) ~ s qe (^ ) | =  |max (0, Ks'qe (t{)) -  max (0, Ks'qe (t2)) | (177)

<  |A-5;e ( t l ) - ^ e ( « 2 ) |

<  I t fC M -s te ) !

I r ti r tz
+A /  /  (ti — a) s  (a) da — / /  {t2  — a) s  (a) da

\J o Jo

<  -  ini

Irt2  rt2

I ( /  (fi — a) — f  (t 2  — a)) s (a) da — /  /  ( tL — a) s  (a) da
Jo Jti

< llff'll |«i -  t2|

+XT\\f'\\ \ \s\\ \ t 1 - t 2\ +  x\ \ f \ \ \\s \\ \ t l - t 2\

=  (Ill'll +  a ||s|| (T H/'H +  ll/H)) \tx - t 2\. m

T heorem  2 The initial-value problem (162), (163) has exactly one solution 

s' (t ) in C l ([0, T ]) . This solution is non-negative and bounded from above by 

1. Its derivative is bounded in absolute value by 1/e , and it satisfies a Lipschitz 

condition of order 1 with Lipschitz constant

c  =  H ( s ‘ ) ' [ l  +  llg'll +  A1N1 ( r u m +  H/II) (178)

This means that

|( s* ) '( i1) - ( 5 ’ ), (t2 )| < c \ h - t 2\ for  t i , t 2  6  [0,T]. (179)

Proof: Integrating both sides of (162) from 0 to t, we obtain:

e (s (t ) -  s°) =  C  (-- s  (u) +  K + s  (u)) du, (180)
Jo
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or equivalently,

s ( t ) = s °  +  -  ( - s  (u) +  K +s («)) du = : L+ s (t) - (181)
z  J o

If a function s E C  ([0, T]) solves equation (181), then it is differentiable, 

it solves the integro-differential equation (162), and s (0) =  s°. Therefore it is 

sufficient to show that operator defined in (181) has a unique fixed point. 

By virtue of estimate (168), it follows from (181) that for any two functions

for 0 <  t  <  T. Using the same technique as in the proof of Theorem 1 it can be 

shown that, for a certain N,  operator L N is a contraction in the Banach space 

C  ([0,T]). Therefore operator L + has exactly one fixed point s ’ (t), the unique 

solution of (162), (163) in C 1 ([0,T]).

Since K + s m (t ) >  0, this solution s ’ (t) is greater than or equal to the solution 

of initial value problem

si ,  so € C  ([0 ,T ]),

(182)

£ s c o m p  W — s c o m p  ( t )  > (183)

S c o m p  (0) — S  ,
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for which we evidently have

Scomp (£) =  s ° e ~ i t >  0. (184)

Hence, s* (t ) is also non-negative in [0, T\.

The fact that the solution s ’ (£) is bounded from above by 1 can be verified 

by indirect proof. If there is any U £  (0, T] for which

5* (t2) >  1, (185)

then due to continuity of the function s ’ (£) there exists a tL £ (0 , to) such that

s ' ( t  i) =  1 , (186)

s' (t) >  1 for all t i  <  t <  to. (187)

By the mean value theorem, there exists some intermediate point £3 £  (£l, £2 ), 

where

(s’)' (£3 ) >  0 - (188)

By virtue o f (162) and (159),

e (s*)' (£3 ) =  - s *  (£3 ) +  1 -  \ v old (£3 ) <  - s *  (£3 ) +  1 <  - 1  +  1 =  0, (189)

which contradicts (188).

The bound 1 / e  for the derivative is easily obtained from integro-differential 

equation (162), using (159), (160) and the upper bound for s(t):

e s '  (£ )  =  - s  (£ ) +  max(0, K s  (£ ) )  <  — s (£ )  +  1 <  1, (190)

es' (£) > - s  (£) > - 1 .  (191)
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To show that solution s ’ (f) satisfies Lipschitz condition of order 1. we pro­

ceed as follows. Let t i , t 2  €  [0, T\. Then by virtue o f (162) and Corollary 1,

\s’' (h)  -  s ’' ( t 2)\ <  — |—s* (ti.) -Fs* (̂ 2 )I +  — { K ^ s ’ (tL) — K ^ s ’ (to) [ (192)
c  S

<  -  \8 m ( t o  -  s ’ (t2)I -f- -  \ K s ’ ( t o  -  K s ’ (t2)|
c £

<  7 i a ' ( t i ) - s - ( t 2 ) H - - | f l ( « i ) - f f ( « 2 ) |C C
A I f tl f tz

-i—  / /  (a) s (ti — a) da — /  /  (a) s  (t2  — a) da
£ I Jo Jo

<  J  (1 1 (0 1  +  lb'll) | t i - t 2|

+ — I f  ( f  (ti — g) — f  [t2  — a)) s (a) da -  f  f  (t t — a) s (a) da 
e  \J0 Jti

<  ^ ( | | ( 0 / || +  llf f 'll) |t i- i2 |

+ j r | j / ' j |  ||*|| |«i - t 2| +  j  ll/ll N I K i - f e l  

IKg-rii +  iijqi +  A iH K r m i +  11/ 11) t m

8 Numerical approximation

Difference m eth od  for th e  in itial value problem

To discretize the problem

cs'(t) =  —s ( t ) + m a x ( 0 ,f f s ( t ) ) ,  0 < t <  T, (193)

K s ( t )  =  g( t)  — \  f  f  (a) s (t — a) da, 
J o

(194)

s (0) =  s°. (195)

using N  equal time steps, we set

T
tn =  n — =  nh  for n =  0 , 1 , 2 , N.  (196)
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Let us replace the derivative by a forward difference quotient, and approximate 

the integral in (194) by the trapezoid rule. Then for n =  0 , 1 , 2 , N  — 1,

=  (1 9 7 )
tl

r‘n * _
/  f  (a) s  (tn — a) da =  h ^ a , s ( t , )  /  (tn-y) +  A„, (198)

“'° j=0

where ao =  an =  1/2 and aL =  ao =  — =  an_i =  1.

By Theorem 16 in the Appendix, the error terms A n and A n have the

estimates

|A„| <  Ch,  (199)

| A n | <  |  CTh2, (200)

where C  is the Lipschitz constant given in (178). Substituting (197) and (198) 

into integro-differential equation (193), we obtain

(201)

— s (tn) 4* max ^ ^ n  ̂ ^ f  (fn—j ) ® (tj) 4“ A n

s (0) =  s°. (202)

The corresponding difference scheme is

=  - s „  4- max j 0, g (tn) -  Ah ^  a y / (t„_y) sy J , (203)
i=o

s0 = s .0 (204)

T heorem  3 The error of difference method (203), (204) for  solving initial value 

problem (193)-(195) is of the order O (h) .
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Proof: A linear system for the error sequence

B n  =  S  ( t n )  &n

is obtained by subtracting (203) from (201), and (204) from (202):

( £n-f-l
")

(205)

(206)

— — Bn 4- max j 0, g (tn) — A I h ^  ' a j f  (tn— y) s ( t j ) -f- A n
i=o

-  max ^0, g (t„) -  Ah ^  a j f  (f„_y) sy j ,

e0 =  0.

Solving (206) for en+i, we get

e„+1 =  —hAn +  ( l  -  en

-)—  max j 0,g (tn) — A | h ^   ̂a j f  (fn—y) s (ty) 4- Ar

(207)

(208)

y=o

 max I 0 ,g  (t„) -  Ah ^  a j f  (tn-y) «y I •
J = 0

From (208), the triangle inequality, and Corollary 1 from the Appendix it 

follows that

|en+i| < , h , , Xk2< 1 — \en\ 4-------
£ £ ^  '  a j f  ( t n —j )  e J

y=o

A h —
— hAn H An

£

R— I

(209)

If we make h small enough, that is if

h <  2s for /  (0) =  0,

h <  min ^ A/^(0) ’ 2S)  f° r ^ ^  >

(210)
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then (209) implies that

en+il  <  \en \ +  —  | [ / I i x i l ci l + A A « +  ^ A » (211)
£ t =o

<  |en| +  ^  ll/ll £ | e y |  +  Ch2 +  ^ C h 3
i=o

<  |e„ l +  y i / n ^ \ . , . r ,  . « r \

By virtue of Lemma 7 from the Appendix and (196) it follows from (211) that

|e„[ <  n ( 1 +  Chr  ^1 +  (212)

< aAZ^  f x U \ \C T  h exp \ j~~

=  (II (*‘ ) 1  +  llff'll +  A ||s|| (T \ \ f \ \  +  ll/H)) T-£ exp y j ^

=  0 (h).

Thus, the difference method for the initial value problem converges linearly in 

stepsize h. ■

Difference m eth od  for th e  quasi-equilibrium  prob lem

Discretization of the quasi-equilibrium problem,

0 =  — s (t) +  max(0, .ft's (£)), (213)

K s  (t) =  g ( t )  -  A f  f  (a) s ( t - a )  da,
Jo

with N  equal time steps

(214)

t n = n ^ = n h  for n =  0 ,1 ,2 ,..., N,  (215)

yields (here we approximate the integral with the trapezoid rule):

s (tn) =  max ^0, g (£„) -  A ^/i a j f  (tn- j )  s (tj) +  A nj  ^  , (216)
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where a0 =  an =  1/2 and ai =  a2 =  — =  an- i  =  1 . In (216), An i 

term, for which Theorem 15 in the Appendix provides the estimate:

S 'TjpqeTh,A

with constant Cqe explicitly given in (167).

T h eorem  4 The error of difference method

s 0  =  max (0 , 5  (0 )) — s (0 ) ,

Sn-f-i =  max ^0, <7 (£,14-1) A/i a,j f  (tn—j)  sj  

for n =  0 ,1 ,2 ,

for solving quasi-equilibrium problem (213) is of the order O (h).

Proof: A system for the error sequence

e~i —  S  (tn) $ n

is obtained by subtracting (219) from (216): 

eo =  0,

fin-f-i =  max ^ ( 1̂1) A Qj f  (tn—y) S  ( t j ) -f" An

-  max ^ 0 , g ( tn) -  \ h  ^  a j f  (tn- j )  .

From the triangle inequality and Corollary 1 it follows that

n
^  Ah ^  ' 1/ (tq— y)| \ej\ 4- AAn 

j=o

<  \h \ \ f \ \ ' j r \ e j \ +  ± \ C eqTh.
i=o
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By Lemma 8 from the Appendix, we obtain the estimate

leal <  | a CeqTh (1 +  Ah | | / | | ) a - (225)

The sequence (1 4- Ah [ |/ | |)n' is bounded uniformly in h since

1 +  M Z ! i i y TeW lir  a s n t o o . (226)

It follows from (225), (226) that

|en| <  \ \ C T e x m T h =  O ( h ) . ■  (227)

Fig. 7 shows graphs o f numerical solutions for a typical initial-value problem 

and the associated quasi-equilibrium problem. In Fig. 8 the solutions of the 

initial value problem are compared for different values of the time step h. It is

not recommended to choose the h > e, because then instabilities occur.

(I -f Ah [[/ID” =  f
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  quasi—equilibrium
  c -  .02
 E -  .050.5

0.4

J  0.3
’t/i

1  0.2

0.1

2.51.50.5
time (rescaled)

Fig. 7: Numerical solution (stepsize h =  0.005) of initial value problem

es/  (t) =  —s (t) +  max(0,1 — \ v old (t ) — A f*  s (t — a) ae~ada),

s (0 ) =  0.05, for A =  10, v0id (t) =  0.05fe- t , and three different values of e. The

quasi-equilibrium solution is shown as thick line.
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0.S

0.4

o
0.3

'mc■s
s
I 0.2C/I

0.1

2.51.50.5
time (rescaled)

Fig. 8: Numerical solution, with different stepsizes for initial value problem 

es/  (t) =  — s (t) +  max(0 ,1  — Av0id (i) — A s ( t  — a) ae~ada), 

s (0) =  0.05, for A =  10, vaid (t ) =  0.05fe- t , and e  =  .05.
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9 Asymptotic approximation

Leading order approxim ation: construction  using th e  bound­

ary function  m eth o d

Using the boundary function method (see [2], [9], [10]) for singularly per­

turbed problems, represent the uniform asymptotic approximation of the solu­

tion of the singularly perturbed initial value problem

cs'(f) =  —s (t) -f- max (0, ICs (£)), 0 < t < T ,  (228)

K s  (t) =  g( t)  — A f  f  (a) s ( t  — a) da, (229)
Jo

s (0) =  s° (230)

in the form

s ( t ) = s ( t ) + U s ( ^ j  , (231)

where s (f) is the regular part, and IIs (t/e) is the boundary layer part of the 

approximation. The boundary layer part is necessary to correctly describe the 

pulse of seedlings in the first few years of forest growth; it decays exponentially 

to zero as time increases. In what follows, the rescaled time variable of the 

boundary layer part is denoted by

r  =  t/e.  (232)
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Substitution of representation (231), with (232), into problem (228)-(230) yields

+  =  (233)

4-max ^0,g(t)  — A J  f  (t — a) (s  (a ) 4- IIs da^j ,

=  — s  (t) 4- max ^0, g(t)  — A j  f  (t  — a) s  (a) da j

- I I s  (r)

4- max ^0, g (sr) -  A J  f  (e r  — a) ^s (a) 4- IIs )  daj

— max ^0, g (er) — A J  f  (er  — a) s (a) da^ ,

5(0)4-115(0) =  5°. (234)

Equation (233) can be split into two equations in variables t  and r, respectively:

ds 
£ —  

dt
dlls
dr

=  — s (£) 4- max ^0, g{t)  — Aj  f  (t — a ) s  (a) da j  , (235)

=  - I I s  (r) (236)

4-max ^0,<7(er) — A J  f  (er — a) (s  (a) 4- IIs da^

(o , g (er) -  A J  f { s T - a ) s  (a) d a j  .— max

To obtain the leading order approximation, substitute

s(t)  =  < *(£ )+ O (e ) , (237)

I ls(r ) =  H0s (r) 4 -O ( e ) , (238)

into equations (235), (236) and into initial condition (234), and omit terms of 

order e and higher, we obtain the integral equation

0 =  —so (£) 4- max ^0, g(t) — A J  f  (£ — a) so (a) da j  (239)
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for the regular part, and the initial value problem

t̂ ° -S =  — n 0s(r) 4-m ax(0,g(0)) — max (0 ,5(0)) (240)
CLT

=  - n 0s (r ) ,

n O5(0) =  s° — so (o) (241)

for the boundary layer part of the leading order asymptotic solution. Integral 

equation (239) for the regular part is exactly the quasi-equilibrium problem 

(164). An approximate solution of (239) can be found numerically with differ­

ence method (218), (219).

The problem (240), (241) for the boundary layer part has solution

Fig. 9 illustrates how the asymptotic solution is obtained as a sum of regular 

and boundary layer parts. Fig. 10 displays asymptotic solution and numerical 

solution for the same initial value problem (e =  .05, A =  .005).

ET0s (r) =  (s° -  s0 (0)) e r . (242)
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  leading order asymptotic solution
 regular part

boundary layer part_____________
0.5

0.3

0 .2

0.1

- 0.5
2.50.5 1.5

tim e (rescaled)

Fig. 9: Leading order asymptotic solution of initial value problem 

cs/ (t ) =  —s (t) 4- max(0,1 -  Av0id (t ) — A f ^ s ( t  — a) ae~ada),

5(0) =  0.05, for A =  10,i;o/d(t) =  .Qote~t , and e =  .05. The asymptotic 

solution (solid line) is the sum of regular part (quasi-equilibrium solution) and 

boundary layer part (exponentially decaying to zero).
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  leading order asym ptotic solution
• num erical solution______________O.S

0.4

0.2

0.1

2.51.50.5
time (rescaled)

Fig. 10: Comparison of leading order asymptotic solution from Fig. 9 with 

numerical solution from Fig. 7 (c =  .02, h =  .005).
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textbfEstimation of the remainder

Let us represent the exact solution s (£) of (228)-(230) in the form

s (f) =  sir (£) +  n 0s (r) ■+• u (t) ,  (243)

where So (£) and IIqs (r) are the regular and boundary layer parts, respectively,

of the leading order approximation constructed in previous section, and u (£) is

the error or, so-called, remainder  term. Substituting (243) into the initial value 

problem (228), (230) we obtainan integro-differential equation for the remainder 

u(t):

(£)_ I I o s ( r ) _ u ( t ) +  (244)
at a r  at

max (o ,9  (t) -  A J  f ( t - a ) ( s 0  (a) 4- n0s ( ^ j  -b u (a)) d a j  ,

with initial condition

so(0) + n os (0 ) + u ( 0 )  = 0 . (245)

By virtue of (239), (240) and (241), the initial value problem (244), (245) sim­

plifies to

=  - u  ( t ) + R ( u ; t ) ,  (246)at

R(u; t)  =  - e - 5  (247)
at

4- max ^0, g( t )  — X j  f  (t — a) (lo (a) +  IIos +  u (a)) daj

— max (£) — A J  f  (t — a) sq (a) d a j  , 

u (0) =  0. (248)

T h eorem  5 The solution of initial value problem (2^6)-(248) is of order O (c).

96

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



=  max

max

P roof: Instead of (246), (247) let us consider an equivalent integral equation

1
u{ t )  =  - j  e ~ ^ R { u ; a ) d a ,  (249)

-  Jo

and let us define the operator J  : C  ([0,T]) —>■ C  ([0, T]) by

J v ( t )  =  -  /  e~L?LR(v:a )  da. (250)
£  Jo

Using Corollary 1 in the Appendix , we get that for all v i , v 2  €  C  ([0, TJ) and 

all t  €  [0, T],

\R(v i ; t ) - R ( v 2 ; t ) \  (251)

(o ,g ( t )  -  \  J  f ( t -  a) ^so(a) +  n 0s +  v l (a )) d a j  -  

^0, g( t)  - A j  f ( t - a ) ( s £ (a) +  n 0s 4- v 2  (a)) d a j  |

<  —A / f  (t — a) Vi (a) da +  X f  (f — a) v2  (a) da\
I Jo Jo  I

=  A I I  f  {t — a) (vi  ( a )  — v2  (a ) )  dal 
U o  I

<  A ll/d t [(t/i — v2\\.

Using this estimate we conclude from (249) that

1 *\Jvi { t )  — Jv 2 {t)\ <  — I  e~~z~ \R{vi',a) — R { v 2 ;a) \da
£  Jo

<  [[ur -« a ||  J  e~ L̂ 2’ada

=  - 1/2 II ( e t - s 2  ( l - e - * ) )

<  AMR n ^ -

Using the same technique as in the proof of Theorem 1, it can be shown that

operator J N for a certain positive integer N  is a contraction with a Lipschitz
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constant 0 < q <  1. It, therefore, has a unique fixed point u, which satisfies the 

estimate

lull <
u ° l !  ’

(252)

where vo 6 C  ([0, T]) is some starting function for the sequence of successive 

approximations v0, JvQ, J 2 v0, ... To show that [[J’'vu0|[ is of order O (s), we use 

an upper estimate for R (v; t ) , where v 6 C ([0, T]). From the definition of R  in 

(247) it follows (by virtue of Corollary 1 and the triangle inequality) that

cLsq
|fi (u; f)| < £

dt
+ A IJ  f ( t  — a ) (ilo s  4- v (a)j da

<  O (s) +  n 0s da +  A ll/l! H I  t

(253)

(254)

In this estimate we utilized the fact that the derivative of so is piecewise con­

tinuous and therefore bounded. The integral of the boundary layer part n0s is 

of order O (e) because by virtue of (242),

J  IIos da =. ( s ° —so(0)) J  e~*da  

-  (s° -sf i (O)) e ( l  - e - ' )

<  (s° — S o ( 0 ) ) £ .

From (250) and (252) it follows that

1 t — a.
|-fu(f)[ <  -  sup |/?(u;a)| I e~!~^'da

e 0<a<t JO

=  sup |i? (o;a)| (1 — e ~ i  )
0<a<£ ^ J

<  0 ( c )  + A ||/|| [ '  \u(a)\da.
J o
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Now consider the successive approximations

u0 =  0, (256)

un+i =  J v n for n =  0 ,1 ,2 ,3 ,... (257)

Using (255), we obtain the recursion

N ( t ) |  =  0, (258)

K + i( 0 l  < C s  +  \ \ \ f \ \  [ ' \vn (a)\da  for n =  0 ,1 ,2 ,3 ,.. . ,  (259)
Jo

where C  is a suitable positive constant independent of e. By induction we can 

prove the inequality

\vn\ <  Ce  — 1 for n =  1 ,2 ,3 ,... (260)
i=o J'

Indeed, (260) is true for n =  1 since from (258), we have

|ui (t)| <  Ce.  (261)

Assume that (260) is satisfied for j  =  1,2, ...,n . Then, by recursion (259),

r t  n - L

k + t ( f ) I  <  Ce +  X\\f\\ f  C e Y l  -■A |l/,l|a)J^  (262)
Jo i=o

=  C£ +  CsA ! | / | | g M ® i / ‘ ^
,-^ n  J' Jo1=0 
n —L

l=o

C c j 2 { x m t ) i .
1=0  J '

Thus, (260) is true for n +  1, and the induction over n is completed. A conse-
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quence of (260) is that

i * .  <01 <
i=0

=  C e e ^

<  Ceex"™T .

Thence,

||w„|| < C s e A|l/1|r =  0 ( £ ) .

so, in particular,

| | . / iV^-o|l = I M I  =0( e) .

From (252) it then follows that

I N I  =  o ( e ) . ■
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Part III

A sy m p to tic  so lu tio n  o f  the  

prob lem  w ith  a  nonlinear  

seed lin g  eq u a tio n

10 Statement of the problem

G overning equations Let iV(t, a) be the age density of a tree population, 

d e p e n d i n g  on time t and chronological age a. This means that the number of 

individuals in an age interval [r, s] at any time t  >  0 is given as f *  N  (t, a) da. 

Since

f  = ^
the rate of change of the age density N (t ,  a) is

d s d N  d N  da d N  , dN  fnao.
dt ~  d t  +  da  dt dt  d a '  ( ^

If the death rate constant fi of the population is constant over time and is age-

independent, then the number of deaths in a given age interval and a given

infinitesimal time period is proportional to the number of individuals in this 

class, so that

f  +  f r  =  (269)
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In the experimental study of tree populations often a nonlinear dependence of 

the death rate in an age interval on the number of individuals in this age interval 

is observed, so that in generalization of (269) we assume the population follows 

the partial differential equation

'270>

where the function /(iV) : [0,oo) —► [0,oo) is zero at N  =  0, positive for N  >  0 

and continously differentiable.

We consider the boundary value problem on the rectangle 0 <  t <  T  and 

0 <  a <  T i, where T  and I \  me positive time constants. Boundary conditions 

are the initial age distribution

N  (0, a) =  $  (a) for 0 <  a <  Ti,  (271)

and the seedling function

N  (f, 0) =  5  (t) for 0 <  t  <  T. (272)

The initial age distribution $  (a) is explicitly given as a differentiable function, 

whereas the seedling function S (t) satisfies an ordinary' differential equation of 

the form

z %  =  F ^ S ( t ) , £ l N(t ,a)B(a)da^J  , i f 5 ( t ) >  0 (273)

0, if S  (0  =  0, (274)

Conditions on the function F  will be imposed later in this paper to ensure 

existence, stability and uniqueness of the solution.
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The initial value for the seedling function 5  (t) is given by the compatibility 

condition

5 ( 0 ) = * ( 0 ) > 0 ,  (275)

which ensures that the age density function N  (t , a) is continuous in the rectangle

(t,a)€[0, r ]x [ 0, r 1].

R edu ction  to  one integro-differential equation

By using the method of characteristics, the solution N (£, a) of the partial 

differential equation cam be expressed in terms of the nonlinear term / ( Ar) and 

the boundary value functions $  (a) and S  (t ) as follows:

da dt d N
1 1 f ( N ) ’

and thence by integrating N  along the characteristics a — t  =constant,

(276)

* =  f o r O < t < a ,  (277)

a =  /s(l-a)7&7 for 0 <  a < f. (278)/S(4-o) /(n)

By the assumptions made in the previous section, the function

riV
G

is a strictly increasing differentiable function for N  >  0, therefore its inverse 

G ~ 1 exists, and we have for 0  <  t < a :

t =  G ( N ( t , a ) )  - G ( $ ( a - t ) ) ,  (280)
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and solving for N(t ,  a) yields:

N - ( t , a )  = G ~ l (t +  G ( $ ( a - t ) ) ) .  (281)

Similarly for 0 <  a <  t,

a =  G ( N  (t, a ) ) - G  (5(o -  t ) ) , (282)

and thence

N + (t,a) =  G ~ l (a +  G (S(t -  a ) ) ) . (283)

Note that because of the compatibility condition (275). the representations (281) 

and (283) yield the same solution for a =  t :

N~( t ,  t) =  G " l (i +  G($(0))) (284)

=  G ~ l (t +  G (5(0)))

=  1V+ (M ).

Using (281) and (283) to eliminate N ( t ,  a) in (273) we obtain a nonlinear integro- 

differential equation for the seedling function 5  (f) :

£^ t = F  K  S{'t ~  da +  L  f° r 0 ~  * -  T ' (285)

where

K { a , s )  =  G ~ l (a +  G (s)) B  (a) (286)

L(t)  =  G ~ l {t +  G { $ { a - t ) ) ) B { a ) d a  (287)

Since $  and G  are differentiable, so is L ( t ) , and substituting

L (t ) =  L (0) +  I* L ' (a) da (288)
Jo
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in (285), we obtain

£ 1F =  F ( f W ’L (°) +  f \ F ( a , S ( t - a ) ) + L ' ( a ) ) d a j  (289)

=  F ^ S ( t ) , J  K  (a, S  (t — a)) da j  ,

where

F { x , y )  =  F  {x ,L  (0) +- y) (290)

K  (a, s) =  K ( a , s ) + L ' ( a )  (291)

Writing F  instead of F  and K  instead of K ,  we obtain the integro-differential 

initial value problem for the seedling function 5  (t) in the form

= F ( S ( t ) , t i K ( a , S ( t - a ) ) d a ) ,  (292)

5 (0 )  = $ ( 0 ) .  (293)

When 5(f) is found, the solution for N(t ,  a) is given by (281) and (283) as

N ( t , a )  =  G ~ l {t +  G {${a -  t))) for 0 <  t <  a, (294)

N ( t , a )  =  G ~ l (a +  G ( S ( t - a ) ) )  for 0 <  a <  t. (295)

11 Asymptotic approximation of the solution

In order to find the leading order approximation using, e.g., the boundary func­

tion method, we assume that F  € C~ ([0, oo) x [0, oo)) and that there is a func­

tion 5* : [0, T] —¥ [0, oo) which satisfies the following three conditions:

(SI) S ’ (t) is a continuous solution of the auxiliary problem
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F(s( t ) ,  r  K  (a, S ( t -  a)) da)  =  0. (296)
Jo

(S2)

(297)
\  Jo /

in the interval 0 <  t <  T. Since this interval is closed and the functions Fx, S ' ,

and K  are continuous, this implies the existence of a constant m  <  0 such that

for all 0 < t <  T.

(S3) If $  (0) >  S'  (0) , then F  (S ,0) <  0 for all S'  (0) <  S  <  $  (0): and if 

$  (0) < S'  (0 ) , then F  (5 ,0) > 0 for till $  (0) <  S <  S '  (0 ) . We do not consider 

the case $  (0) =  S'  (0) here, because then S'  (t ) solves the initial value problem 

(1.21), and there is no need for an approximation.

Note that conditions (S i ) ,  (S 2 ) and (S3) imply that S ' (0) is a stable 

equilibrium of the autonomous differential equation

such that the initial value <£° is in the domain of attraction of S '  (0).  To solve the 

initial value problem (293) using the boundary function method for singularly 

perturbed problems, the solution S  (t) is presented as a sum of the regular part 

S  (£) and the boundary layer part IIS ( t /e)  :

(298)

(299)

S(t)  =  S  (£) +  n S  ( r ) , (300)
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where r  =  t / e  is a stretched time variable. In addition, we require that the 

boundary function decays to zero as r  —► oo.

Substituting (300) into equation (293) and representing its right-hand side 

in a form similar to (3-27), yields:

+  = F ( S ( t ) J ^ K ( a , S ( t - a ) ) d a ) - h U F ( r ) ,  (301)

where

ILF(r) =  f ( s ( £ t ) + 1 1 S ( t ) , e  £  K  (e ( t  -  a) TS(ea) + IIS (a)) daj

—F  ^S (er) ,e J  K  (e (r — a) , S  (ea)) d a j  (302)

The initial condition becomes

5(0)  +  115(0) =  $ ° . (303)

In this equation and for the remainder of this paper, the notation of a function

with upper index 0 denotes the value of the function at 0, e.g. $° means $  (0) , 

5q° means S '0  (0) etc. Substituting asymptotic expansions

S ( t )  = S 0 ( t ) - h s S l ( r ) + . . . 1 (304)

for the regular part and

IIS(t) = n 05(f) + e n L5(r) +  ... (305)
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for the boundary layer part into integro-differential equation (301) we obtain:

dSo dHoS d lli S  
£~ dr  +  ~ d T ^ £ ~ d T + -

= F  ( s 0 (t) 4- eS i  (t ) + ~ , f  K  [t -  a, S 0 (a) 4- eSt  (a) 4- -.) daj

+ F  ( s °  4- =5T'° 4- e rS Z  ° +  H05  (r) 4- ..., e  £  K  (o, S ?  +  H0S  (a)j da  H

—F  ^5o° 4- e5T° +  e rS f  4- e j f  K ( o , S ? ) d a  +  ... j  

= F 4- eSi  (t) Fj; -f- £ f  Si (a) ivy (t — a, So (a)) daFy 4- ...
Jo

+F (5o° 4- n05 ( r ) , 0) 4- £ (Si0 4- r S f  4- Hx5 (r)) F* (So° + n0S (r) f o) 

4-5 Q T  K  (0,5b° 4- n05 (a)) daj Fy (So° 4- n 05 ( r ) , o) 

- f (S o ° ,o )  - e ( s : 0 + r S i ° ) F x (Sb°,o) 

-5  Q f  K  (0,5o°) daj Fy (So°,0) + ...

where we used the notation

F  = F ( 3 6 ( t ) , f 0t K ( t - a , 3 6 ( a ) ) d a )  (307)

F* = F x ( s ^ ( t ) , f 0t K ( t - a , S o ( a ) ) d a )  (308)

Fy =  Fy (jSo ( i ) , Jo K ( t  — a,So (a)) daj (309)

By equating terms of the zeroth order in e depending on t, we obtain from (306) 

a nonlinear integral equation for Sq (f) :

0 =  F  ^So(t), J  K  (a, SQ (t — a)) d a j  . (310)

Assume that F  and K  axe such that (310) has a unique solution So[t) for t  >  0, 

with

So° =  S* . (311)
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By-equating terms of the zeroth order in e  depending on r, we obtain from (306) 

a nonlinear differential equation for IIoS (r) :

= F (5 * + n o5(r),0) -F (S * ,0 )  
aT

=  F  (S'  -F n 05  ( r ) , 0 ). (312)

Here we used the fact that F  (So (0) >0) =  0 when t  =  0 in (310). Taking into 

account (303). we get that EToS (r) must satisfy the initial condition

n0S (0) =  $° -  S* . (313)

Theorem 17 in the appendix deduces from the stability conditions (SI), (S2) 

and (S3) above that (312) has a unique solution for all r  >  0 which satisfies an 

exponential estimate of the form

|n 0S (r ) | < c e ~ KT (314)

where c and k tire positive constants that do not depend on r.

Equating terms of the order £ depending on t in (306), we arrive at the 

Volterra integral equation of the second kind for Si (t) :

^  = s l ( t ) X  + f s l ( a )  K y (t -  a, So (a)) da¥y , (315)
at J o

which can be written as:

r t   __ p  Mo.
Si (t) =  -  /  S L (a) K y (t -  a, S0 (a)) da-J-  +  - S -  (316)

Jo  F x F x

Finally, by comparing the terms of order e depending on r  in (306) we obtain 

the linear ordinary differential equation for IIiS  (t ) :

=  Fx (S ' +  n 0S  ( r ) , 0) r^S  (r) +  G  ( r ) , (317)dr
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with the inhomogeneity

G  (r) =  ( 5 ^ + r 5 f ) ( F x ( 5 * + n o5 ( r ) , 0 ) - F x (S*,O))

+  ( f  K  (0, S '  +  n 05  (a)) d a )  Fy (S'  +  U0S  ( r ) , 0) 

K ( 0 , S ' )  d a )  Fy (S ' ,  0)

=  (ST° +  r S f )  (Fx (5* +  H 0 5  ( r ) , 0) -  Fx (5*, 0))

+  ( K ( 0 , S '  -hU0S  (a)) - K ( 0 , S ' ) ) d a )  Fy (S'  +  n 05  ( r ) , 0)

+  ( £  K ( 0 ,  S ' )  d a )  (Fy ( S ' + n QS ( T ) , 0 ) - F y (S ' ,0 ) )  (318)

and the initial condition

n LS (0 ) =  -5 1 ° . (319)

The solution of this problem can be easily written out:

n t5 (r ) =  - s f e - f o W * *  +  f  e- K bMdtrG ( a ) d a  (320)
Jo

where for all cr >  0,

6 (cr) =  —Fx (S'  4- IIo5 (a) , 0 ) . (321)

Since Fx is continuous, there is a 5 >  0 such that

Fx (S '  +  x, 0) <  0 (322)

for all —5 < x < 5 .  Moreover since |IIo5 (r)| —> 0 exponentially as r  —> oo there

is t 0  > 0 such that

|IIoS (t) | < 5  for t  > r0  (323)

and thence

6inf =  inf b (cr) =  — sup Fx (S' +  n 0S  (cr) ,0) >  0. (324)
r > T o  r > T 0
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Taking ro as initial point of time, the solution of (317) can also be presented in 

the form

, rT0'̂ 'p .
nrS  (r0 +  p) =  - n tS  (r0) e~ ' b{(r)d<T +  j  e~ 0  (q) da  (325)

J  T Q

From (318) we obtain an exponential estimate for the inhomogeneity G (r) :

\G (r)| <  f l s T 0 4 r  S o '° |)m a x iF xx(5* +  a :,0 )||n o 5 (r )|
'-I •' M<s

4- ( /  IIoS (a) dotj m ax \ K (0, S '  4- x)| max \Fy (S'  4  r, 0)| 

+ t K  (0, S')  max \Fxy (S'  +  r , 0)| |n 05  (r)|
|x|<iS

<  (c i  4- cor) e ~ K r

<  c3 e~KT (326)

for all r  >  0, where ci,co and c3  are some positive constants. In the last 

inequality we used the estimate

=  (re ^r) e <  fm ax (re - r) )  e - r =  — e v ’ ~  \ r >0  v ' J e/c
(327)

for r >  0. The exponential estimate for IIiS  (r) where r  >  tq now follows from 

(325) and (326):

|n x5 (r ) | =  I I^ S fo  +  tr-T b ))!
rro+p

< [n l 5 (r 0) | e - 6i"f(r- ro) 4  /  ^ e - ' 40) d a e -6i"f(r- ro)
J  T Q

=  j^IIiS(ro)| 4  (~ e~Kr°') e _6'mfr°j e -6 ‘nfT (328)

Higher order terms in the asymptotic expansion of the solution can be ob­

tained in a similar way, and all terms of the boundary layer part can be shown 

to have exponential estimates.
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12 Estimation of the remainder for leading or­

der approximation

The exact solution of differential equation (293) can be represented as

where So (t) and IIoS (r) denote the regular and boundary' layer part of the 

zero order approximation respectively, and u (t ) is the error for the zero order 

approximation (or, so-called, remainder term).

Substituting (329) into equation (293) yields a nonlinear ordinary differential 

equation for the error function u (t) :

S  (t) =  S 0  (t ) -F n05 (r) -I- u (t) , (329)

So(0)-f-noS(0)+u(0) = $(0). (331)

Because of (303), the initial condition for u(t) simplifies to

u (0) =  0. (332)

For the purpose of error analysis, equation (331) can be written as

c —  =  -A(t)u{ t)

+ B { t )  f  [K  (t — a,Xo(a)-hu(a))  — K  (t — a,Xo(a))]da
Jo

+g(u,  t) (333)
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where

Xo (t) =  So it) +  n05  Q )  , (334)

is the zero order approximation, and A(f), B(t)  and g (u , t ) are given by

A ( t )  =  - F x ( x 0 {t), £  K { t - a , X o { a ) ) d a j  (335)

B { t )  =  Fy ( x o i t )  £  K i t - a , X o i a ) ) d a ^  (336)

9{u , t )  =  F  ^ X o i t ) + u i t ) ,  J  K  i t -  a, Xoia)  +  u ia)) daj

+A(£)u(f)
f t

—B (t ) f  [A" (t -  a, X Q (a) -h u (a)) - K ( t - a ,  X 0 (a))] da 
Jo  

d X o
- e ~ * r  (33,)

The corresponding homogeneous equation

dU =  _ M f iu  (338)
dt e

has the explicit solution

U{t) =  cexp jT  Ai*)do -j (339)

with constant of integration c.

Using variation of constants, the nonlinear differential equation (333) for 

u(£) can be rewritten as a nonlinear integral equation:

U^  =  So 6XP ( _ e i :  Aia)da^j
r b (s ) r  j .K ^ Xo(a)  +  u ( a ) )  _ K ( t _ ajXo(a))]da _
L £  JO £

=: $  [«(£)]. (340)
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L e m m a  1

g ( 0 , t ) = O ( e )  (341)

uniformly in t.

Proof: By setting u =  0 in (337), we obtain

g(0,  t) =  F  ( x 0 ( t) , £  K  (t -  a, X Q(a)) d a j -  e ^

=  F  ( x o ( t ) , f ‘ K ( t - a ,  X 0 (a)) d a j -  -  F  (sb (0 ) +■ n 0S(^ ), o )  -

=  F  ( x 0(t), £  K ( t  — a, X 0 (a)) d a j -  F  £  K  (t  -  a, 5o(a)) d a j

-  F ^ 5 o ( 0 ) + n o5(^ ),0^  + F (5 o (0 ) ,0 )

-  (342) 
at

It follows that

g ( 0 , t ) + e ^  (343)

0)=  £  - £  F  ^S0 +  aU 0 S, £ K  (t -  a, S0  +  <rIIoS) d a j  -  F  (5* +  <xn0S, 

Carrying out the differentiation in the integrand, we obtain:

9{G't ) + £ l t

=  J  n 0 S F x ^5o +  (jEIoS, J  K  (t —a, S o  +  <rIIo5) d a j  da

+  f  f  K y ( t  — a, S o  +  o T T o S ) noSdaFj, (7<r, 5a ) da 
J  o Jo

— f  UoSFx (5* -h alloS, 0) da  
Jo

J  n 0S  ( S o  -  S ' )  Fxx (7 l , di) +  J  K  (t -  a, 5o +  <rn05) daFxy ( 7 , f )  da  

+  £  Ky  -  a, 5o(a) +  crn05 ( | ) ^  £  n 0SdaFj, (7(r, Sv ) da,  (344)

da
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where

in<T,5a) =  ^So 4- erIIo5, J  K  (t — a, So +  crlloS) da)  (345)

and 7̂ , is a suitable convex combinaton of the two points

(So(f) + a U 0 S ^ ) , f o K  ( t - a M a )  +  aU 0 S ( f ) )  da)  and (So(0) +  a n 05 ( f ) ,0 ) , 

and where a is some  point in the interval (0, t ) . Now an upper bound can be 

established for g(0, t) uniformly in t G [0, T ] , using the exponential estimate 

(314) for n 05  (r) :

\g(0, 01 <  ce-*« ( |5 o W -5 o (0 ) || |F IX|| +  t ||A ’|| | |J ’xJ )

+ 5 0■\\K„\\ f  ce~KUa\\Fy\\-re  
Jo

< ce~K* (i I ll'll i|Fr i ||+ t||iC |||!Fiy||)

+ \\Ky\ \ { e ^  ( i - e- ^ ) ) | |F y|H -e|5o

< ec (e-** ( l ^ l  IIFxxll + \\K\\ HFxy||) 

+ e ^ ||i ify|[||Fy|| ( l - e - ^ )  +  e\\s<

<  e -K
\  (||So'|| IIFcxll +  \\K\\ ||Fxy||) +  \\KV\\ ||Fy

=  O ( e ) ,

So

(346)

(347)

and hence (341).
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The norms used in this estimate are the following:

11*11 

II*,II

\\Fy\\

I I S x I l

=  max

=  max

: 0 <  t  < T  , 0 :

IIS

max ( |  K  ( t  -  a, S0 (a) 4- <rIIoS(f)) | : 0 < t < r , 0 < a < t , 0 < a <  

max (f  - a , S 0 (a) 4-crlloS(^)) | :0  < t  < T  , 0 < a  < t  ,0  < a  <

|  JFy ^5o 4- crlloS, J  K  (t — a, So +  crU0 S) d a j

r

|QFXX ( s 0  4- crlloS, f ‘ K ( t -  a, S 0  4- oTloS) daj  

+  { l ~ 8 ) Fxx (S '  0 4- o-n05 ,0) | : 

0 < K T , 0 < ( r < l , 0 < f l < l

\BF„ (Sq 4- o-IIoS, /g K  (t -  a, S 0  +  crlloS) daj  

4- (1  -  9) Fxx (S '  0 4- crn0S, 0) [ : 

0 < t < r , 0 < £ r < l , 0 < 5 < l  

max | | s j ,  (t) : 0 <  t  <  t |  j

In deriving (347) we used the following:

/ e~K* -  | 0 <  t <  T  and e > o l  =  max {e~KXx  | x >  0} =  — . (349)
( £ J Ke

=  max

Sn =

max

This immediately follows from the fact that ^  (e~KXx) =  (1 — k x )  e~KX has the 

root x =  1/k,  and changes sign from positive to negative at this root. Hence 

the function e~KXx  has a local maximum at x  =  1/k.  Since the function e~KXx 

vanishes at zero as w-ell as for x —► oo, this maximum is the global maximum in 

the interval 0 <  x <  oc., and its value is e ~ Ki  ( 1 / k ) =  1 / (« e ) . ■

Lem m a 2

l l * [ 0 ] | |  =  O ( e ) . (350)
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Proof: By Lemma 1, there is a positive constant c such that

1^(0, i)[ <  cer (351)

for all 0 < t < T. By (298),

Fx K ( t -  a ,5 0(a)) da ĵ < m  <  0 (352)

for 0 <  t  <  T  and some constant m.  Because of the exponential estimate for 

the boundary function term IToS (r) there is a r0 > 0 such that for 0 <  t  <  T,

.4(t) =  Fx ^So(f) + H 05 (r) , jT H r ( t - a I5 o ( e ) + n 05 ( | ) ) d d ^  <  ™ <  0.

(353)

It follows that

l* [°]M I =  exp A(a-)derj ds

£ / exp (■;?<'
=  c —  ( l - e - ^ £) 

m

< — e  (354)
m

(350) has been shown. ■

L em m a 3 Given positive constants c\ and co, there is a positive constant c2 

such that for all 0 <  e <  £o and all u i, uj €  C 1  ([0,T]) with ||u i|| <  ci£ and 

||u2[| <  Cic, it follows that

max |5 (u !,t) — g(u 2 ,t)\ <  c2e  max |i*i.(t) - u 2(f) |. (355)
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Proof: For all 0 <  t <  T,

g(u i , t )  — g (u 2 , t )  (356)

=  F ^XQ(t)+Ui,( t ) ,  J  K ( t  — a , X Q( a ) + u i { a ) d a Sj  

—F ^Xo(t) +  u 2 (t), I  K ( t  — a,Xo(a ) +  u2 (a)daj  

- F x ( x 0 ( t ) , f * K ( a , X o ( t - a f )  U l(t)

+Fx ( x 0( t ) , £  K ( a , X Q(i-a)^J  u2 (t)

- F y ^X 0 (t), J  K (a ,  A'0(t -  a) j  K { t -  a, X Q(a) -(- u i(a)) da 

+Fy ( x 0(t), jT* K (a ,  Xo(t -  a ))  j f  K { t -  a, X 0 {a) -F u2 (a)) da 

- u 2 (t))

x-Fx ( x 0 {t) + 6 iui( t )  +  6 [u 2 (t), J  K ( t - a , X 0 {a) -|-0 2 Ui(a) +  8 ' 2u2 (a)) da'j 

+  [  [ K { t  -  a ,X 0(a) +  ui(a)) -  K  (t -  a, X 0 (a) + u 2 (a))]da
Jo

xFy ^X 0 (t) + 9 i u i ( t )  +  d[u2 ( t ) ,J  K  (t -  a, X 0 {a) +  0 2 ui(a)  +  8 ' 2u2 (a))da

- (u i ( t )  - u 2 (t))

xFx ( x 0 (t), K ( t - a ,  X 0 (a)) da'j

-  [  [K  (t -  a , X 0 ( a ) + u i ( a ) )  -  K  (t -  a ,X 0 ( a ) + u 2 (a))]da  
Jo

x F y ^ X 0{ t ) , J  K ( a , X 0(t -  ai'j
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=  (ui(t) - U 2(0 ) (&LUl(t) -h 0[u2(t)) Fxx (7l(t),1?L(t))

+  (ui(t) — U2 (t)) f  [K  (t — a, X o (a ) - t  92 ui(a) +  d'2 U2 (a)) — K  (t — a, Xo(a))]
Jo

* F x y  ( T l W r t f l W )

4- f  [ K { t - a , X 0 { a ) ^ u l { a ) ) - K { t - a , X Q{,a)+U 2 {a))\da
Jo

x  ( f l i u ^ t )  +  8 [ u 2 ( t ) )  F y X ( j 2( t ) , d 2( t ) )

4- f  [ K ( t  — a, Xo(a) 4- ui(a)) — K  (t — a, X q{cl) 4- u2(a))] da
Jo

x  f  [K  (t  — a, X 0 (a) 4- 02ui(a) 4- 9 ' 2u.2 (a)) — K  (t — a, Xo(a))] da 
Jo

x F y y  (72(£),tf2(*))

for some 8 i e  (0 ,1 ) , 9[ := 1 -  9 i , 8 2  6 (0 ,1 ), 92  :=  1 -  d2, and suitable 

intermediate points 7i(t) , i?i(£), 72(f), 9 2 {t). Now using the estimates

i#i'Ui(£) 4- d'l u2 (t)\ <  8 1  |ui(t)[ 4- 9[ |u2(£)|

<  d i C i e  4- 8 [ c i £

=  C iS ,  (357)

we obtain:

| Jq [K  (t — a, X q (a) 4- 0 2 'Ui{o.) 4- 8 2 U2 (a)) — K  (t — a, .Xo(fl))]

< fg \ K  (t  — a, X q  (a) 4- 92 Ui(a) 4- 9 ' 2U2 {a)) — K  (f — a, X 0(a))| da

=  t \ K { t  — a, Xo(a) 4- 02tii(a) 4- 8 '2U2{ a ) )  — K  (t — a, Xo(a))[

=  t |(02ui(a) 4- 8 ' 2U2 (a)) K y (t — a, £3)!

< r c l £ ||/Cy||,  (358)
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|/o [K  (t ~  a, X 0 {a) 4- uL(a)) -  K ( t - a , X 0 (a) -t- u2(a))] da\

=  t \ K  (t —a,Xo(a) +  u i(a )) — K  (t — a,Xo(a)  4- u2(a))|

=  t  |(uL(a) — u2 (a)) K y (t — a,J4)|

<  T ||ir y||! |U l- u 2|| (359)

with suitable intermediate points a ,  a ,  S3,  £4 . Finally, we have:

I^C ui.O -5(u2,t)| <  [|U l - n 2| |c l £ | |F« |i

+  ||U l - n 2 | | r c l £ ||A'9|| Hf^H 

+ T \ \ K y\ \ \ \ u ^ - u 2 \\cl e\\Fyx\\

+  (T \\Ky\\ Km -  «2|| Cle liFyxlj) (TCle  ||.Ky||) ||FW| | ,

<  c2e ||uj — u2|| (360)

where all norms are maximum norms as in the proof of Lemma 2, and

c2 := 4ci max (||F IS| | , T  H^H \\Fxy\\ , T 2  \\Ky \ \ 2  \\Fxy\\ |[F „ ||)  , (361)

The correctness of statement (355) follows by taking the maximum over 0 <  t  <  

T  on the left-hand side of (360). ■

Lem m a 4 Given positive constants c\ and £o: there exists a positive constant 

C3 such that for all 0 <  e  <  £ 0  arid all ui ,  u 2  G C l ([0,T]) with |[ui|| <  ci£ and 

||u2|| <  ci£, the following inequality holds:

0<t<r I$  M  W ~  ^ [“ 2] i t )| <  c3e max, |«!(t) -  u2 ( t ) | . (362)
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P roof: By Lemma 3, there is a positive constant C2 such that for every 

0 <  £ <  So and every u2 €  C l ([O.T]) with ||ui|| <  ciS and ||-U2 || <  Cie, we

have

sup \g{ui,t) — g(uo,t)\ <  CiE sup |ui(£) — U2 ( f ) | . (363)
0 < t < T  0 < £ < r

Then for all t € [0, T ] . we have the estimates

M  W!

x ~ ~  J  \ K  (t *  a, X 0 (a) + u i  (a)) — K  ( t  — a , X 0 (a )  + 112(0 ))! dads 

+  exp ( - ±  j f V ) « * r )  ig(Ul’5 ) : g(U2-3)lds 

<  J  exp

f  \K  (t — a,Xo(a)  + u i(a ) )  — K  (t — a .X 0 (a) -h 1 1 2 (a))! dads
e  Jo

4- J  exp i  (t — s) m ^  ci ||ui — U2 II ds (364)
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Since

Changing the order o f integration, we obtain:

|<fui(f) -  $ u 2(f)| < J  J  exp ( t - s ) m A^

1K ( t - a ,  Xo(a) +  ut (a)) -  K ( t  -  a, X Q(a) 4- u 2 (a))\dsda 

+  J  exp (* — s) c2 ll^i — u2|| ds

=  [  |.fir(f— s ,X 0( s ) + u l ( s ) ) —-&■(£- s , X 0( s ) + u 2(s))|
J  s - 0

(  f £_s f  1 , x A B(a)  J \  .I J  exp (£ — a)m.4y —- —d aj  ds

+c2 \\ui — u2\\ j  exp -̂ “(f ~  ds

=  J  \ K { t - s , X 0 {s) -hu^s)) - K ( t - s , X 0(s) + tt2(s))|

( L exp(~*imA) S ^ di ) ds

+ c l N - < « l l ; ^ ( l - « P

<  p r „ | | | t t i ( * ) - « 2(*)[

H  [exp ( - 2 1 * , )  _  exp ( - 2 ± t ) ]  *

+C2 l K - « e l l ^ - ( l - » p ( - ^ t ) )
P^yll 1I-5H f  |U i ŝ j _  U2(s)| rexp _  e x p  J ds

.̂4 J  3 = 0  L \  e  /  \ £ / J
<

T O ;

H— —£ ||ui — u2| 
m A

ll^ ,lll |5 ||
I N  -  wll I  [exP -  « p  ( - T 1 ' ) ] 4 3

+ — e l K  - u 2|| (365)
771̂

I (exp( ~ IT ' s) - exp( - T i l ) ) ‘ls =  ( ‘ - e
m A A

e ~ ‘ H

<  — , (366)m A
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it follows that

f | * M - * M | |  <  +  - S J ) g ||Ul - u,|| (367)
V m A m A j

So the inequality (362) is satisfied with

t ,  =  ! S P ^ .  ■  (368)
777̂  m ,4

T heorem  6 Initial value problem (331), (332) for  the remainder term u (t ) has 

a solution that is unique and fulfills the estimate

u(t)  = 0  (c ) . (369)

P roof: By virtue of Lemma 4, there are positive constants ci and cz 

such that for all e with 0 <  e <  e i , we have a)

ll« [0 ]||< 5 C te , (370)

b)

| |*  M  - * [ u 2]|| <  c3er JJztx - u 2|| .  (371)

for all ui, uz £  C l ([0,T]) with ||ui|| <  Cic and ||u2|| <  ci£. Then for all e €

(o,min , and all ui, u 2  €  C 1 ([0,T]) with ||u i|| <  ci£ and ||u2|| <  ci£ ,

we have

Furthermore, by the triangle equality it follows that

I I * M i l  <  l l * M - * [ o ] | |  +  l l * [ o ] | |  

<  9 llu ~  0|| +  2 ° l£

< cie (373)
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for all v  6  C l ([0, T]) with ||u[! <  Ci£.

This means that $  is a contraction operator and maps the set of all v 6  

C l ([0, T]) with ||u|[ <  a s  into itself. Therefore by Banach’s fixed point theorem, 

there is a unique fixed point u 6  C 1 ([0,T]) with ||u|| <  c ie  such that [u] =  u. 

This fixed point is the unique solution of the nonlinear integral equation (340). 

Thus we have shown that u =  O ( s ) . ■
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Part IV

P eriod ic  so lu tions

13 Seedling equation in the infinite time domain

Let us consider a particular seedling equation, not as an initial value problem 

as in parts I and II of the thesis, but in the infinite time domain:

The goal in this part of the thesis is to find periodic solutions of (374) and 

of the quasi-equilibrium problem associated with it:

s (t ) =  max ^0,1 — A J  (t — a) e ^ a ŝ (a) d a j  for — oo <  t <  oc. (375)

Existence and stability of such periodic solutions will be shown to depend on 

the parameter A. First let us see if there are any constant solutions (steady 

states) and examine their stability.

14 Quasi-equilibrium problem: stability analy­

sis of the steady state

T heorem  7  Integral equation (375) has exactly one steady state, given by

J  —OO

for — oo <  t <  oo.

(374)

1 (376)
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The steady state is stable for all X >  0.

Proof: If 5 * >  0 is a steady state of (375), its satisfies

=  1 - a / * £ ( t - a ) e - (-t~a)s~da (377)
J — OO

=  I — A s'  f  (t — a) e~(t~a)da
J  —OO

=  1 -  A s'  f
Jo

-OO
roo

ue~udu

=  1 —As",

that is

(378)
I +  A

Stability analysis of the steady state is performed by substituting a periodic 

perturbation

s (t) =  s'  +  Zeut , (379)

into (375) and solving the resulting equation for the complex frequency u.  The 

steady state is stable if and only if the real part of u  turns out to be negative. 

The amplitude \Z\ of the perturbation may be chosen smaller than a suitable 

upper bound:

0 <  \Z\ <  Z0. (380)

In our case, let us choose

0 <  Z0 < s* (381)

to ensure that the perturbed solution (379) is positive for t =  0. Substitution
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of (379) into (375) yields:

s ’ +  Ze " 1 =  1 - A  f  (s'  -hZe“a) ( t - a ) e ~ (t- a)da
J —OO

=  1 - A  /"* s ’ ( t - a )  e~(t~a)da -  A f  Ze“a (t  -  a) e~
J —oo J —OO

=  s ' - x f  Zeu a ( t - a ) e - ^ - a)da.
J  —oo

Subtract s ’ and divide by Z  on both sides to get

e^4 =  -A  f  e“a (t -  a) e ~ ^ - a)da.
J  —  OO

Let us differentiate (382) with respect to time:

cue"4 =  -A  f  e“a (1 — t -f- a) e- t̂-a )da
J  — OO

=  —A f  e!-jae~(t~a^da +  A f  e“a (t  — a) e- 4̂_a)da
J — OO J — OO

=  -A  r  e‘jae~(-t~a^da — e? 1

J — OO

Differentiating again yields:

u 2 e"t _  _ Aewt +  A f  e“ae - (4- o)da -  we“4
J — OO

=  —Xeut +  (-w e w4 -  e“4) -  u e ut 

=  (—A — 2w — 1) e"4.

We thus obtain a quadratic equation for ui :

(cj +  l ) 2 =  -A .

The solutions axe

u) =  —1 ±  i y / X .  
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The real part of u  is —1, therefore the steady state s ’ =  1 / (A +  1) is stable for 

all A > 0. ■

Note that the complex frequency (384) does not correspond to a meaningful 

solution of (375) in the infinite time domain, because the integral on the right 

side diverges. Theorem 18 in the Appendix contains a proof of asymptotic 

stability for the quasi-equilibrium problem in the positive time domain,

r°°
s( t )  — 1 — A J  s(a)  (t — a) e~^~a^da — Xe~t J  ip(a — t) da (385)

rt fOO
=  1 —A /  s (a) (t -  a) e~(t~a)da -  Ae- i  /  9? (u) (t +  u) du,

Jo  Jo

when the initial age density function (a) is in a suitable neighborhood of the

steady state age density s ’ e~a.

15 Nonexistence of positive periodic solutions 

besides the constant solution

For positive solutions s (t ) , (375) simplifies to

s (t) =  1 — A f  (t — a) e~^~a ŝ (a) da for — 00  < t <  0 0 . (386)
J —OO
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Let us assume the existence of a positive periodic solution s (t) with a certain 

period T  >  0. Then we have

0 co
j  ( t - a )  e ~ < ^ S (a) da =  ^  J  (t — a) s  (a) da (387)

-o o  k = l  - k T
T°° r

=  ^  {t -  u 4- kT) s ( u -  kT) du
k = i {

T
r °°

=  /  s (u) Y i  (t -  u +  kT)  e - (£- “+fcr)du
o fc=l

= f  s(u)  e_(£~u) f ( t  — u) ^  e~kT -F T  ^  ke~kT\  du
o V fc=i fc=i /

0 ' '
- T  T

=  ̂6 -̂_r  J  s (u) e~(t~u) (t — u) du
o

- T  T
+ —— -----^ f  s ( u ) e - ^ - u)du

(1 — e~T)~ J
T

te 1 H------ — ——~e 1 I I s(u)  eudu
l - e - T ~  ' a - e - r r

T

;- t  J s (u) ueudu

Substitution into (386) yields:

o
T

e~T 
1 — e- r *

o

T

s i t )  =  1 -  A + - - T e: L  e - A  j s (U) e*du (388)

- T  T  t
+A-— —r r e_t J  s (u )u e udu — A J  (t — a) e~^~a  ̂s (a) da 

o 0
=  1 -  A (At  +  B) e~l Ii (T) 4- A.4e-‘/2 (T) -  At e ^ h  (t ) +  Ae_t J2 ( t ) ,
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where we used the notations

-4 =  * - T

B  =

1 — e~T ' 
T e~T

(1 - e - * y
t

A (t) =  J  s fa) e udu,
o

t

A (t) =  J  s fa) ueudu. 
o

By differentiating (388) twice with respect to t, we get

s'(t) =  -A  ( - A t  +  A - B )  e - t A (T)  -  A A e-‘/ 2 (T)

—A (1 — t) e - t A (t) — Ae-£/ 2 (t ) , 

s" (t ) =  -A  (At -  2A -I- B)  e_t A (T) 4- AAe_t A  (A)

-A s  (£) -  A (£ -  2) e_tA (t) 4- Ae“ */2 ( t ) .

Adding (393), (394) yields

s'(t) 4- s" (t) =  AAe_tA (T) -  As (t) 4- Ae“ * A ( t ) ,

which can be solved for A (£) :

A (0  =  e£ (s (t) +  _  .4 /: (T ) .

Substitution of (391) into (396) yields

J s fa) eudu =  e£ ( s  (t) 4- -  AA ( T ) .
o

By taking the derivative with respect to t, we get

e£s (t) =  e£ ( s  (t) 4- ( l  4- £ )  s '(t) 4- f  s "  (t) 4- i s ' "  ( t) )  ,
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or, equivalently,

s'" +  2s" +  (A +  1) s' =  0. (399)

Integrating once in t , we get

s" -F 2s' +  (A +• 1) s  — c (400)

for some constant of integration c. (400) is the differential equation of a damped 

harmonic oscillator, and has no periodic solutions except constant ones.

This result can be stated as

T heorem  8 The only positive periodic solution of (375) is the constant solution

16 Non-existence of periodic solutions for the 

quasi-equilibrium problem

Let us find a solution s (t ) of (375) with period T  >  0 that satisfies the conditions

5(0) =  0, (401)

s (t) > 0  for 0 <  t  <  T i , (402)

s (t) =  0 for Ti  <  t  <  T, (403)
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for certain 0 <  T\ <  T.  Then, similar to (387), but employing the fact that s (£) 

vanishes on the intervals {—kT, —kT  -t- T{\ for k =  1 ,2 ,3 ,..., we have

f  (t — a) e (4 a)s (a) da =  ^  f  (t — a )e  ^ a)s (a) da (404)
L  k='- - I t

oo - k T + T v

=  j  (t — a) e~^~a ŝ (a) da
k=i _{T

oo *
=  ] T  /  (£ -  u 4- fcT) e - ^ - u+kT)s { u -  kT) du — ...

“T r e ~ r  \  /
£ +  ~  ^o-e 4 1 I s (u)  eudu

* n\  1 ~  e_T (1 — e-T )
Tt

e - T  _  r
----------- —e 4 I s (u) ueudu for — oo <  t <  oo.

1 —e- i  J

In complete analogy to (388), and using the same notations (389) - (392), we 

obtain the equation

Ti

si t )  =  1 -  A f  j ^ p r t e - *  +  T̂ TY e~t ) j s («)&Udu (405)

— T  f t
4-A /  s ( u ) u e udu — X /  (£ — a) e- 4̂-a ŝ (a) da

1 -  e~T J Jo
o

=  1 -  A (At 4- B) e - lh  (Tt) 4- AAe"4 h  (Tx) -  X t e ^ h  (t ) 4- X e ^ h  it)

in the interval 0 < t  <  T i , which leads to the differential equation

s'" 4- 2s" 4- (A +  1) s' =  0. (406)

(406) is identical to equation (399). The difference is that instead of looking 

for a periodic positive solution in the infinite domain —oc <  t  <  oo, we are 

now considering a solution in the bounded interval 0 < t <  Ti,  with boundary
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conditions

s (0) =  0, (407)

s ( 2 i )  =  0. (408)

T heorem  9 Problem (406) - (408) has infinitely many solutions.

a) I f

sin V\T\  =  0, (409)

the solutions are

s a (t ) =  a e - t  sin Vxt  for 0 < t  <  T, (410)

where —oo <  a  <  oo can be arbitrarily chosen.

b) I f

sin y/XTi /  0, (411)

the solutions are

sQ (t) =  a  ^1 — e- t  cos y/Xt -F fie~l sin VAt j  , (412)

where —oo <  a  <  oo can be arbitrarily chosen, and

p  =  eT' - ^ Ty .  (413)
— sin y/XTi

Proof: Integrating (406) leads to the second order differential equation

s" +  2s' +  (X +  1) s  =  ci, (414)

with constant of integration —oo <  Ci <  oo. Its general solution is found to be

s (t ) =   e_£ ( c~ cos v/̂  +  c3 s n̂  )  (415)A *f-1 V *
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with arbitrary constants — oo <  C2 , cz <  oo. The claims of the theorem are easily 

verified by inserting boundary conditions (407), (408) into (415). ■

In the following we derive a periodic solution of (375) with conditions (401) 

- (403). This solution is of the form given in Theorem 9, and the period T  as 

well as the parameter A will be expressed in terms of 7 \ . Let us first show the 

nonexistence of solutions for 

C ase 1:

sin %/ATi =  0. (416)

By Theorem 9, part (a), the solution is of the form

s (t ) =  a e - t  sin v /\t  for 0 <  t  <  T, (417)

with some constant a.  Then
t

I i (t) = J  s (u) eudu (418)
o

t
: J  sin ' f \u d u=  a
o

~ =  cos \/Xt, 
%/A

I , ( t )  =

C
J  s (u) ueudu (419)
o

t
=  a  J  u sin \ f \udu  

o
sin %/At — %/At  cos s / \ t

A

in the interval 0 <  t <  Ti.  Thus, the only constant term in t  on the right side 

of equation (405) is the term 1. Since there is no constant term in t  on the left
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side of this equation, we have a contradiction. Therefore there are no solutions 

in Case 1.

Case 2:

sin n/ATi r1  0. (420)

By Theorem 9, part (b), the solution is of the form

s (t) =  a  ( l  — e~‘ cos y/Xt 4- 0 e ~ l sin y/xt j  , (421)

for a certain a, and /? being given in (413). Then

t
h  W  =  J  s  (u) eudu (422)

o
t

=  a  J  (e u — cos y/Xu 4- /? sin y/Xuj du 
o

=  a  — 1 — -^= sin y/Xt 4- -^= 1̂ — cos y/Xtj  ̂  ,

t
I 2  (t) =  f s  (u) ueudu (423)

o
t

=  a  J  u ^e“ — cos y/Xu 4- /3 sin y / x d u  
o

=  a  ((t — 1) el 4- l)

+ q  -^=t  sin y/Xt 4- ^  ( l  — cos

+Q. cos y/Xt +  J  sin y/Xt j  ,

in the interval 0 <  t <  Z\. Comparing the constant terms on both sides of 

equation (405) yields

Q =  1 4 - A ( - a ) , (424)
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From the infinite set of solutions (421), only one remained: 

s (t) =  — e~‘ cos +  ^e_t  sin

T h eorem  10 For any solution of (375) with conditions (401) - (403), we have

7 t  < T i < %  (427)
j3 > eT i — 1. (428)

Proof: Using elementary calculus it is easily seen that the function

f i t )  -  **_-<**'£; (429)
sin v  At

is strictly increasing in the interval 0 <  t <  By L’Hopital’s rule, we find the 

limit for t —>■ 0 to be

,• r/M, e‘ -  cos y/Xt e4 4- -v/Xsin y/Xt 1 ,hm /  (f) =  h m ----------7=---- =  h m  7=-------- ;=----- =  —7=. (430)
t-*o t -+0 sin y / \ t  y /Xcos y/Xt y/X

Since on account of (413) we have

P — —f  (Ti) , (431)

it follows that

f < - 7 S

for 0 < Ti < But by virtue of (426), this implies

s' (0) =  ( l  +  .dx/X) <  (1 +  ( - 1 ) )  =  0, (433)
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in contradiction to conditions (401), (402). Above, nonexistence of solutions 

was shown for sin ^x/ATi^ =  0, that is in particular for Ti =  Therefore, 

the first zero Ti  o f  the damped oscillation (426) must ocur in the second half-

period, which implies (427). As a consequence, by equation (413) we obtain a

lower bound for 0  :

e ^ c o s v ^ i  >  e * - l  =  e A  _  L m
— sin x/A2\ - ( - 1 )

Still T  and TL are undetermined. Comparing terms in te~l on both sides of 

(405) yields

! £ * ( - ! - £ ) .  (435)

or, solved for .4,

*4 =  (1 +  A ) ? ( T 0  (436)

_ _____________ 1 ~ 7 x  __________
eT' — 1 — sin VXTi 4- 7x ( i  ~  cos ^ Ti)

y / X -  gTl - caŝ ^________________________ -sin vXTi__________________y/X (eT> -  1) -  sin y/XTx +  ( l  -  cos x/ATi)

x/Asin y/XTi 4- eTl — cos x/A7\ 

y/X (eri -  1) sin x/XTx -  sin2 y/XTi -  (e r‘ -  cos y/X3 \)  ( l  -  cos x/ATi) 

x/Asin y/XTi +  eTl — cos y/XTi 
y/X (er* -  1) sin a/ATl -  (1 +  eT0  ( l  -  cos y/XTt)  ’
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On account of (389), this implies that

T  =  I n ( l - F ^ )  (437)

V \  (eTl — l )  sin \/ATi — ( l  4- eTl) ( 1 — cos \Z\t A
=  in I H ------------------7=------ 7=--------   7̂=--------------- '

\/A sin \ f \ T i  +  eTl — cos \/A l\

eTl (^/Xsiny/XTi  4- cos y/XT^j — l \  

eTl +  \/A sin \/XTi — cos x/ATl J
Finally, comparing terms in e -£ on both sides in (405), we obtain

0 =  -  A 5 / i  (Ti) +  XAIn (Ti) 4-1, (438)

that is

j  =  B h  (TO -  A h  ( h ) . (439)

Since .4 and B  are functions of T,  which is expressed in terms of A and Ti in 

equation (437), equation (439) is a nonlinear relationship between the parameter 

A and the time span 7 \. It can be solved numerically. After some computer 

calculations, I suggest

C onjecture 1 System (437), (439) for  T  and 7\ has no solution for any A > 

0. That means the quasi-equilibrium problem has no periodic solutions besides 

constant ones.

Analytically a lower bound on A can be given below which there cannot 

occur periodic solutions:

T heorem  11 For the existence of  an intermittent periodic solution of (375) it 

is necessary that

A > Ai, (440)

138

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



where Ai is the unique solution of the nonlinear equation

A* 1 =  exp • (441)

(A numerical approximation is Ai % 3.6442 J

Proof: The requirement T) < T  is, on account of (437), equivalent to

( eTl f\/A sin  ■v/AT'i -I-cos n/ATi ) — l \
Ti <  In ---- -?------ 7=------ 7=------- tI   . (442)

I eTl +  \/Asin VXTi — cos n/ATl J
Exponentiation of both sides of this inequality yields

eTl f\/A sin  y/XTi +  cos \/Xt A  — 1
eTl <  ----- - 7 ------- 7 =--------7=--------------- 7 =--------, (443)

eTl 4- \/Asin %/ATi — cos %/ATi

If the denominator on the right side is positive, (443) is equivalent to

(eTi — l ) 2 +  2 ( l  — cos %/ATi) <  0, (444)

which is impossible. By contraposition, the denominator must be negative, that 

is

eTl 4- '/A sin %/ATi — cos %/ATi <  0. (445)

Clearly, the left side of (445) is positive for A =  0 and, since it depends contin­

uously on A, is also positive in a certain neighborhood of A =  0. Let us find the

smallest positive A that allows the function

/  (A, t) =  el -h A sin At — cos At (446)

to be zero for a certain t  €  ( f , =£■) ■ To this end, we solve the nonlinear system

/ ( A i . i t )  =  0, (447)

| f ( A i , t i )  =  0. (448)
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for Ai and fi :

e£l +  A! sin — cos Aiti =  0, (449)

e£t -t- X\ cos Xj_t 4- Ai sin A liti =  0. (450)

Subtracting (450) from (449) yields

(Â  4- 1) cosAiti =  0, (451)

therefore

t , =  (452)

Substitution into (449) results in equation (441). ■

17 Re-establishment problem: stability analysis 

of the steady state

Theorem  12 The re-establishment problem in the infinite tim e domain,

es'{t) =  — s(t) -F 1 — A f  (t — u) (u) du, — oo <  t  <  oo, (453)
J  —  OO

has exactly one steady state:

s = T T a ' <454)

The steady state is stable if  and only if

A <  2(g +  A): , (455)
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Proof: It is easily verified that (454) constitutes the only constant solution 

of (453). Substituting the perturbed steady state

s (i) =  - J _ + ae"'* (456)

with complex frequency w into (453) yields:

eaue?1 = — 1 — ae^  +  l —A f  {t — u) e-(*-u) f  * + a e u,lt'j du, (457)
1 4-A J —cc \ 1 4 - A  J

that is

ewe"'* =  - e -  A f  {t -  u) e - (£- u)ewudu (458)
J — OC

Let us differentiate (458) twice with respect to t : 

ew^e"* = — -  A f  e~^t - “ ê“ udu 4- A f  (t — u) e~^~u êuudu(459)
J  — OO J — CO

=  -we"'* - X  f  e - (t~u)euudu -  (1 4- ew) ew*,
J  — OO

cu 3e“‘ =  - w 2ewt -  Ae"'4 4- A [*  e ^ - ^ e ^ d u  -  (1 4- a » ) we"'* (460)
y —oo

=  —w2e"'* — Ae“‘ — cw2e"'* — we“* — (1 4- sw) e"* — (1 4- ew) we"*

Division by the quantity e"'* yields a cubic equation for w :

ew3 4- (1 4- 2s) w2 4- (2 4- s) w 4- A 4-1 =  0, (461)

or equivalently,

w (462)
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The Routh-Hurwitz conditions, necessary and sufficient for all roots of this 

equation to have negative real part, are

(463)

(464)

- 4 - 2 > 0,£
A 4-1

> 0,£
A 4- 1

> 0.( l + 2 ) ( |  +  1) - i ± i  >  o. (465)

(463) and (464) are fulfilled, because A >  0 and e > 0. The third condition (465)

is equivalent to

A < 2 ( --~l~g)-- (466)
s

Hence the stability of the steady state is equivalent to (455). ■

11 shows the stable and unstable parameter regions in the e — A plane.
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Fig. 11: Stability and instability regions of steady state 1 / (1 +  A) in the e — A 

plane. The boundary is given by the bifurcation curve A =  2 (1 +  s) /s .
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18 Positive periodic solutions of re-establishment 

problem

T heorem  13 The re-establishment problem in the infinite time domain,

ss'(t) =  — s(f) +  1 — A f  (t — u) s (u) du, —o o < t < o o .  (467)
J  — OO

has a positive periodic solution if  and only if

X  =  (468)
C

Proof: Let me differentiate (467) twice with respect to time:

es" =  - s ' -  X f  ( 1 - t  +  n ) e - (t- u)s(u )d u  (469)
J  —  OO

=  —s' — (s — l + e s ' ) —\ f  e~(t~ ^ s{u )d u
J  — OO

=  — ( l - F c ) s '  — s 4-1 — \ f  e~^t-u)s (u) du,
J  — OO

es'" =  — (1 +  e) s" -  s' -  As +  A f  e"{£- u) s (u) du (470)
J  — OO

=  -  (1 +  e) s" - s '  -  As -  es" -  (1 +  e) s' -  s +  1

=  — (1 -h 2e ) s" — ( 2 + s ) s ' - ( A  +  l ) s  +  l

This is an ordinary differential equation of third degree with constant coeffi­

cients. Its eigenvalues are the complex solutions of the cubic equation

z 3  4- 4- 2^ z~ 4- 4- 1  ̂ 2 4- —J — =  0. (471)

Inserting the ansatz

s =  iy  (472)
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into (471) yields the condition

A-f-t n

p 2  =  ?  +  I ' (“73)

which is equivalent to (468).

If this relationship between A and a is given, then the periodic solutions are 

harmonic oscillations with period

y  =  \ -  +  1 (474)
£

and constant amplitude

A ,
1 +  A

They can be written in the form

A < -   ̂ - ■. (475)

s (t) =  — +  A  cos (y t  +  <p) , (476)
1 T  A

where 0 <  ip <  2" is an arbitrary phase shift. ■

19 Pulsating periodic solutions of the re-establishment 

problem

If the competition parameter A is increased beyond the critical value A£ =

2 (1 +  s)2 /e , then oscillations are observed in which the function s (f) appears 

in pulses, and is zero between the pulses, (see Fig. 12 and Fig. 13).
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Fig.12: Periodic pulsating solution of £s'(t) =  —s(t)  +  1

(t -  u) e - V ' ^ s  (u) du, -o o  < t <  oo, where £ =  -02 and A =  100.
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Fig.13: Dependence of period of pulsating oscillation on the competition param­

eter A for fixed e  =  .05 . The integro-differential equation is of the same type 

as in Fig. 12: es'(t) =  — s(t) +  1 — A (t — u) e - £̂_u ŝ (u) du, —oo <  t  <  oc.
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Part V

A  tw o sp ecies m od el

20 Mathematical formulation

Consider two tree populations with age densities N i (t ,a ) and iV2 ( f ,a), which 

satisfy the partial differential equation

3 r  + 3 r (477)

with initial age distribution

N i  (0, a )  =  $  (a) for 0 < a <  2 \, (478)

and the "seedling function”

Ni (t, 0) =  Si (t ) for 0 < t <  T, (479)

for i =  1 and 2, respectively. The seedling functions S \ (f) and Sn (t) obey

ordinary differential equations of the form

=  7 iF  (S i(f) +  5 2 ( f ) , / 0Tl {Ni (f, a) +  AT, (t, a)) B  (a) da) , for 0 <  t < T,

= l2F (5l{t) + 52 W (iYl {t'a) + N2 S  (Q) d“) ’ f°r ° ~ ~ T'dt

with initial values

(480)

S i (0) = S (0) > 0 (481)
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for i  — 1,2. The assumptions made for the functions / ,  F, B  and are the 

same as those in chapter 1. a , /?, 7 1 ,7 2  are positive constants of order O (e°) . 

Using the notation G  (iV) — ■f'J1 as in chapter 1, the solution of the partial

differential equation (477) can be represented asiand solving for N (t,a )  yields:

Ni (£, a ) =  G ~L (t +  G ($ (a  -  £))) for 0 <  £ <  a,
(482)

Ni (£, a) =  G ~l (a +  G (Si(t — a))) for 0 <  a <  £, i =  1, 2. 

where i =  1, 2. Using (482) to eliminate N (t, a) in (480) we obtain a system of 

two nonlinear integro-differential equations for the seedling function Si (£) and

S 2 (£) -

ei t = liF (5l (t)+52 w ’ Jo K (a’5l (t ~a) ’52 (£ -  “))da+1 w) (483)
for 0 < T ,  I  =  1 ,2 , where

K  (a, s i , so) =  (G~l (a 4- G (s 1)) 4- /3G 1 (a 4- G  ($2))) S  (a)
(484)

L  (£) =  / 4Tl (1 4- S) G - 1 (£ 4- G (*  (a -  £))) B  (a) da

Since $  and G  are differentiable, so is L (£), and substituting

L { t ) = L  (0) 4- f  L' (a) da (485)
Jo

in (483), we obtain

£l d  =  7 ,F  ( S l(t)  +  52 W L (0) +  £  ( F  (° ’5 l  ”  a) ’52 (* _  a)) +  L' (a)) da) 

=  7iF  (S i  (£) 4- So (£), /o £  (a, Si (£ -  a ) , S2 (£ -  a)) da) , i =  1,2,
(486)

where
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F (*, y) =  F (X, L (0) -+- y)
(487)

K { a , s i , s i )  =  K ( a , s t , s 2) +  L' (a)

Writing F  instead of F  and K  instead of K,  we obtain the integro-differential 

initial value problem for the seedling function S  (t) in the form

=  ~«F  f a  (*) + ( t ) , fo K  (a, St (t - a ) ,  S 2  (t  -  a)) da) ,
dt V J (488)

Si (0) = * ( 0 ) , z  =  l , 2 .

When 5i(t) and S 2 (t) axe found, the solutions for N i( t , a) and No (t, a) are given 

as

Ni (t , a) =  G ~l ( t +  G  ($ (a  — t ))) for 0 <  t  <  a,
(489)

Ni (t , a) =  G ~L (a +  G (5,-(t — a))) for 0 <  a <  t, i  =  1,2.

21 Asymptotic approximation

To solve the initial value problem (488) using the boundary function method 

for singularly perturbed problems, the solution S  (£) is presented as a sum of 

the regular part 5  (£) and the boundary layer part 115 ( t /e)  :

S i ( t ) = S i ( t )  +  U S i ( T ) ,  (490)

where r =  t / e  is a stretched time variable. In addition, we require that the 

boundary function decays to zero as t  —> oo. In the following we use the notation
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R ( t )  = S l (t) +  S 2 (t)
(491)

U R  (r) =  USl (r) +  IISo (r)

Substituting (491) into equation (488) and representing its right-hand side in a 

form similar to (490), yields:

£ ^ r  + = T£ [F  { R  {i) ’ Jo S i (a)) da) +  U F  (r)] , (492)

where

H F (r) =  F (R  (s t ) +  ILR ( - ) ,  c / 0r K  [s (t  -  a ) , S i (sa) +  IIS; (a)) da) 

-  F ( R  (s t ) , e  f 0r K  (e { t - a ) ,  Si {ea)) da)

(493)

The initial condition becomes

Si (0) +  nS i (0) =  $  (0). (494)

In this equation and for the remainder of this paper, the notation of a function 

with upper index 0 denotes the value of the function at 0, e.g. 4>° means <£ (0), 

5^ ° means S q (0) etc. Substituting asymptotic expansions

Si it) =  S°i (£) 4-cS* (r) -f- ..., (495)

for the regular part and
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n sf (f) =  IloSi (t ) +- e l^ S f (r) + . . .  (496)

for the boundary layer part into integro-differential equation (492) we obtain:

I  +  +  ) (497)
71 \  a t dr dr

rt
F  ^Ro 4- eR i 4- — J" K  (t — a, S qi 4- sS n  4- ...) da^

4- F{Rq (0) 4" sR i (0) 4- erR 0  (0) 4" Ilo-fil ( t ) 4- £ l l i i ?  ( t ) 4-

£ [  K ( 0, Soi (0) 4- n0Si (a)) da  +  ...)
Jo

-  F ( r q  (0) 4- eS i (0) 4- £ tR '0  (0) 4-..., e £  K  (0, S0i (0)) da +  ...)

F  4- £R i (t ) Fx +  £ [  (F u  (a) Ky (t  — a, 5 0t- (a)) 4- (a) K y (t -  a , 5 0l- (a))) da
Jo

Fy 4- —

+  F (R o  (0) 4- n 0/? ( r ) , 0) +  £ (R i  (0) 4- r %  (0) 4- Ih R  (r)) Fx (R 0  (0) 4- II0R M  , 0)

4- £ Q T  K  (0, S i  (0) 4- n 05i (a)) da  j  Fy (Ro (0) 4- n 0i? ( r ) , 0)

-  F ( R o  (0), 0) -  £  ( R i  (0) 4- r %  (0)) Fx ( R o  (0 ) , 0)

-  £ Q T  K  (0, S Qi (0)) d a )  Fy (R o  (0), 0) +  ...

where we used the notations

F = F ( R o ( t ) j ‘ K ( t - a , S i ( a ) ) d a )

Fx =  Fx (Ro ( t ) , f 0t K ( t - a , S i (a)) da)  (498)

Fy =  Fy (Ro ( t ) , K  (t — a, Si  (a)) da)
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By equating terms of the zeroth order in s  depending on £, we obtain from (497) 

a nonlinear integral equation relating Soi (£) and S 0 2  (t) '■

0  =  F ( 5 o i ( t ) + 5 o 2 ( t ) . / o - K ' ( t - a » 5 o . - ( a ) ) d a ) .  (4 " )

Setting t  =  0, we obtain an equation for the initial values Soi(O) and So2(0) :

0 =  F  (5o(0) 4- 5 i(0 ),0 ) - (500)

By equating terms of the zeroth order in z  depending on r, we obtain from (497) 

a system of two nonlinear differential equations for flo Si  (r) and EI0S2 (r) :

^ > 1  =  7 i F  (S01(0) +  s02(0) +  n0Si (t ) +  n 0S2 ( r ) , 0) -  7 i F  (Soi(0) -h Soa(0), 0) 
a r

=  j i F  (Soi (0) +  So2(0) 4- II0S1 (r) -I- IIoS2 ( r ) , 0) fori = 1 ,2 .
(501)

liTT cZIT jS**?
Dividing — —- by — we obtain a differential equation for EI0S 1 as a 

c l t  d r

function of IIoS2 :

d(IIoSi) 71 (502)
d (IIoS2) 72

The solution of this differential equation provides a relation between ETo Si  and

n0s2:

n 0S1 (r) =  —n 0S2 (r) +  c. (503)
72

The constant of integration c is zero, because both ETo Si and IIoS2 approach 0 

as r  —>• 0 0 . Then for r  =  0,
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n0Si (0) = ^IIoSo (0) - (504)
72

Taking into account (494), we get that Hq.?; (r) must satisfy the initial condition

n 0Si (0) =  $  (0) -  Soi (0) for i =  1,2. (505)

Equating terms of the order £ depending on t  in (497), we arrive at a system of 

Volterra integral equations of the second kind:

= (5 u  ( t )+5i2 (t)) F r + £  (a) +5i2 (a)) K» - a'Soi (a)) daF»
(506)

for i  =  1,2, which can be written as:

S u  it) +  S 1 2  (t) =  — I (5 n  (a) +- 5io (a)) K y (t — a, So* (a)) da-=r- -i—
Jo  F x  7 i F x

(507)

Subtracting the equations for i  =  1,2 yields a solvability condition:

dSm dSo?
dt _  dt

7 iFx 72 Fx
(508)

which implies:

dSpi __ 7i 
dSp2 72 ’

(509)

with the solution

Soi (t) =  — S 0 2  it) +  c. (510)
72

154

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



The constant of integration c is determined by the initial values of Soi (t) and 

S02 (£):

c =  Soi (0) -  — S02 (0) - (o il)
72

Thus the system consisting of the linear equation

Soi (f) -  Soi (0) =  ^  (S02 (*) -  S02 (0)) (512)
72

and the nonlinear integral equation (499) allows to solve for the zero order 

approximations Soi (f) and S02 (t) of the regular part.
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22 Conclusions

In this thesis simple models have been introduced that allow us to predict dy­

namic changes in the age structure of the forest after disturbances (fire, dis­

ease/insect epidemics, harvesting, etc.)- The analysis of age structure dynamics 

can be used when making environmental policy decisions, harvesting/planting 

policy decisions, and for better understanding of overall process of forest regen­

eration. Let it be emphasized that this is only one of many possible approaches 

to formulation of age structure models. More comparison with real data is 

needed to decide which characteristic, the basal area or the tree volume, can 

be used to better define the carrying capacity of a  site. The applications of the 

above models are limited to the cases when the characteristic parameters for an 

undisturbed forest of a given site index (where all the age groups are somehow 

presented) are known. However, most of the infomation available has been col­

lected for even aged stand forests (i.e., forests with trees of the same age) since 

such forests are of most interest for the forest industry, and since they are more 

common.

Other possible model formulations and related problems are going to be ad­

dressed in the nearest future and asymptotics will be one of important methods 

of analysis. Note that the boundary function method approach was used in this 

thesis. More details on this asymptotic algorithm can be found in [10] and in

[2]. Other asymptotic methods can also be used for analyzing this and related 

problems (see [6], [3], [8], and references therein).
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23 A p p en d ix

Lem m a 5 For any positive constant k ,

x e~ KX <  —e~%x for all x >  0. (513)
K

Proof: The graph of the natural logarithm y =  Inx is located strictly below 

the graph of the linear function y  =  x  for all positive x. Therefore

In for all x  >  0. (514)

By exponentiating both sides of (514) we get

§ *  < e i x, (515)

which is equivalent to (513). ■

T heorem  14 If the initial age distribution <p (a) has an exponential estimate 

of the form

0 <  ip (a) < ce~Ka, (516)

then the volume of the old forest

Void (0) =  [   ------9 ^ a  ̂  —r -̂dar, (517)
J * ( l  +  |  v M a - 0 ) )

and the number of trees in the old forest

Paid (0) =  r  -  Lp{a ~ d) f d a  (518)
J* ( l  +  |  V<P (<*-&))

both converge to zero as 0  —¥ oo.
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Proof: For any fixed a  >  0, the integrands in (517) and (518) are mono- 

tonically increasing functions of u =  y /p  (a — B) since

d  I  #  \  d  (  u  V  (519)
d u  V (i-f- |u )'y  rfu \ î +  |u /

=  2 (  V  )    —  ̂ >  0Vl + § V  (2 4- 8 u ) ~  

for all u >  0. Therefore we obtain an upper estimate for v 0id  if we insert for the 

initial age distribution tp (a) its exponential estimate, and make a substitution 

u  =  a  — 8  in the integral:

a e - K(a - g )

I e (1 +  % e - ^ - e ) n y

=  fJo

Void. (8 ) <  [     oda  (520)
J e  (

{u +  B)e~KU ,
ra U

10 (14-1e ~ KU/ 2Y
u e ~ KU , r 00 B e - "u e ~ KU r=  /     T̂ du 4-

Jo  (l 4- %e~KU/ - Y  Jo
rdu

( l  4- f  e -'c“/ 2) ' Jo (1 4 - f  e -* u/ 2) ‘

Now, using Lemma 5 and another substitution w  =  e~KÛ 2, we obtain the 

following estimate for the first integral:

/•oo u.f> ~KU r ° °
/  ------ — ----------^du <  /   «-------------odu  (521)

Jo ( 1 4- i e - KU/ 2Y  Jo ( 1 4 - l e - ' c“/ 2) “to (14-| e - KU/ 2 ) '  Jo (14- fe-^ /a)
1

( 1 + H
=  (~)  [ l    2 dwW  J o (14- It '

2 \ ‘  2-  - — -  -»• 0 as B —¥ oo.
k J 2 - h d -

With the same substitution, we have for the second integral in (520) and for
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Poi di f i )  that

9e~KU . 2 9w
I --------------------=  ~   :----?dw

Jo ( n - | e - W 2 ) -  k J 0  ( l  +  fu ,)2

k ^ 9 2 + 9 )

—*■ 0 as 9 —► oo.

Therefore v0id (#) -► 0 and p0id {0) —► 0 as 9 -*■ oo. ■

Lem m a 6 For all real numbers x, y , the following inequality holds: 

max (0, x) — max (0, y) <  max (0, x — y)

Proof:

If x >  0 and y  >  0, then

max (0, x) — max (0, y) =  x — y <  max (0, x  — y ) .

If x <  0 and y <  0, then

max (0, x) — max (0, y) =  0 — 0 =  0 <  max (0, x  — y ) .

If x >  0 and y <  0, then

max (0, x) — max (0,?/) =  x — 0 =  x < x  — y <  max (0, x — y ) .

If x <  0 and y >  0, then

max (0, x) — max (0, y) =  —y  <  0 < max (0, x — y ) .

In all four cases, the claim (523) was verified. ■
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C o ro lla ry  1 For all real numbers x, y, the following inequality holds:

|m ax(0,r) -  m ax(0,y)| <  \x — y \ . (528)

P roof: By Lemma 6,

max (0, x) — max (0, y) <  max (0, x  — y) <  \x — y| (529)

and hence - by interchanging x  and y  -

max (0, y) — max (0, x) < \ y  — x\ =  \x — y \ . (530)

From (529) and (530) the claim in (528) follows. ■

Lem m a 7  I f  a sequence of real numbers (yo, 2/i, 2/2 , 2/3 , —) satisfies

Vo =  0, (531)

|yil <  C, (532)

\yz\ <  2 C, (533)
n—1

lyn+il <  |ya| +  C  for n =  2 ,3 ,... (534)
k = l

with positive constants B  and C, then the following estim ate holds:

|yn| <  nC ( l  +  y/B ) . for n =  0 ,1 ,2 ,. . .  (535)

P r o o f b y  in d u ction : From the assumptions it is evident that the inequality 

in (535) holds for n  =  0 ,1 ,2 . Suppose that (535) holds for n =  0 ,1 ,2 ,..., JV, 

where N  is greater than or equal to 2. By substitution of these inequalities into
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recursion (534),-we obtain an estimate for yw+i'-

Ar —1

|yiv+i| < |yw| 4-B 53  |yjt| 4-C (536)
t= i

W iV-1 \ *
<  iVC ( l  4- / b )  +  B  5 3  A:C ( l  -i- n /b ) +  c .+  B

fc=L

To complete the induction step it is sufficient to show that

\yN+i\ < N C  ( l  4- v 'b) 1 4-B 53 kC  ( l  4- V b ) 4-C  < (N  4- 1) C ( l 4- v'b)
fc=i

(537)

Let us divide this inequality by C, and use the notation

x =  1 4- VB >  1 (538)

to obtain an equivalent inequality.

A T-1

rVx" 4- (x -  l ) 2 5 3  Arxfc 4- 1 <  (iV 4- 1) x ‘v + l . (539)
*=i

To prove (539), we start with the true inequality

A T-1

0 <  2 x n  4- 2 53 xfc> (54°)
k= 0

which is equivalent to

w - i  at—l

(n  - 1) xjv -  53 * k < ov + ! ) x N  + 53 x k - (541̂
k=l k= 0

On account of the identities

J V - l  AT— 1

( x - l ) 5 3 f c r fc =  ( N - 1 ) x n -  5 3 lfc, (542)
fc=l fc=l

( N  +  l ) x » + \ - N x » - l  =  ( i V + 1 ) l yv +  ^ ^ i (543)
fc=0
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(541) can be written as

, k  ̂ ( N +  l ) x N + l - N x ^ - 1  , _ ) f ,(x -  1) > kxk <  ---- ----- --------- ----------------- (o44)
' x  — 1fc=i

By multiplication with x  — 1 and rearrangement o f terms, (539) follows, and the 

induction proof is completed. ■

Lem m a 8 If a sequence of real numbers (yo,yi ,  y 2 ,V3 , —) satisfies

fo o l <  C ,  ( 5 4 5 )

ri

ton+i| <  B ^ 2 \ y k\ +  C  for n =  1 ,2 ,... (546)
k~0

with positive constants B , C , then the following estimate holds:

tonl < < ? (£  + 1 )"  for n =  0 ,1 ,2 ,.. .  (547)

P roo f b y  induction:

For n =  0 the claim (547) is true because of assumption (545). Assume now

that it is also true for every j  =  0 ,1 ,2 , ...,n. Then, by recursion (546), it follows

for n -f-1 that

n

ton+il <  B j2 \ y * \  +  c  (548)
k=0

71

<  B ^ C ( B  +  l ) k + C
k=0

=  C7(B +  l ) n + l . ■
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T heorem  15 Let p  (x) be a real-valued Junction, satisfying a Lipschitz condi­

tion of order 1 with Lipschitz constant C  >  0 on the interval [a, 6], that is

|p(y) -  p W I <  C \ y - x \  for a l l x , y  €  [a ,6]. (549)

Then

(a)

(b)

Sa P (t) dt — (p  (a) +  />(&))[

fa Pi t )  d t - b- ^  (^ 1 ^ 1  +  g p (a +

for n =  2 ,3 ,4 ,...

P ro o f o f  (a):

b — a

<  T  (b ~  a ) 2

C  ( b - a ) 2

\ f  p (f) d t —
\Ja

(p ( a ) + p ( b )) (551)

=  \  J  ( p ( t ) - P ( a ) ) d t  +  ^ J  ( p ( t ) - p ( b ) ) d t

< \ J  \ p { t ) - p { a ) \ d t  +  i y  | p ( f ) - p { b ) \ d t

<  i  J  C  (t — a) dt  +  ^ j  C{b — t )d t  

=

P r o o f o f  (b): Apply (a) to the integrals on the subintervals (a +  k^=ff, a -F (k -f- 1) ^ £ )  

for fc =  0 ,1,2,..., IV — 1. Then sum over k. ■

T heorem  16 Let p (x) 6e a real-valued function, continuously differentiable on 

the interval [a, 6], and let the derivative p' (x) satisfy Lipschitz condition of order 

1 with Lipschitz constant C  >  0, that is

IP' iv) ~  p ' 0*01 <  C  \y -  x\ for all x, y  6  [a, 6]. (552)

163

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



Then

( a )  |  p{-vl - x ~ - —p'i.x ) <  c  (y — x ) for a < x  < y  < b ,

(b) | / 06p ( t ) d f - ^ ( p ( a ) - F p ( 6 ) ) |  < f ( b - a ) 3 ,

(c) | / a6p ( t ) d t - ^ ^ H ^ H ^ >  + g p ( o  +  f c ^ ) )

(553)

^  SC (b-a)3
<  ~ 6  z r ~

for n =  2 ,3 ,4 ,

P ro o f o f  (a ): For any 0 <  x  <  y  <  T, we know by the mean value theorem 

that there exists some f  €  {x, y) such that

p(y)  ~ P  (x )
y - x =  p' (0

By (552), we have the estimate

\ p ' ( 0 - p ' ( x )\ < C ( $ - x ) .

Substitution of (554) into (555) yields the result: 

p(y) ~ P  ix )

(554)

(555)

y -  x ~  P' (x ) =  Ip ' ( 0  -  p ' (z)l < c  (^ -  x) < C ( y  - x ) .  (556)

P ro o f o f  (b): Let t  6  (a, 6]. Application of part (a) with x  =  a and y  =  t 

yields:

p ( t ) - p  (a)
t — a

- p ' { a ) < C ( t  — a ) .

Multiply (557) by t  — a and use the triangle inequality to get that

p  (t) =  p (a) +  {t — a) p' (a) +  8 tC  (t  — a)2 .

for some 9t G [—1,1], which depends on t. In particular, for t  =  b,

p(b)  =  p  (a) +  (b — a) p' (a) +  0&C7 (b — a)~ .

(557)

(558)

(559)
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Solving (559) for p ‘ (a) and substituting into (558), we obtain:

p (f) =  ^1 -  p (a) 4- W +  C (ot (t -  a )2 - 9 b ( b -  a ) (t -  a)) .

(560)

Integrating with respect to t  from a to 6, we get

J  p ( t ) d t  =  (p(a) +p( b) )  + c  J  (ot (t -  a ) 2  -  9b (6 -  a) (t -  a)) dt.

(561)

Thus

J  p { t ) d u - ^ - ^ { p { a ) + p ( b ) )

=  C  f  — a)2 —db (b — a) (t  — a) j
IJ a

<  C  ( /  {t — a)~ d t +  {b — a) j  (t  — a) d t j

(562)

=  §C  (6 — a)3 .

P ro o f o f  (c ) : Apply (b) to the integrals on the subintervals (a +  k ^y2-, a +  ( i  f  1) 

for k =  0 , 1 , 2 , N  — 1. Then sum over A:. ■

T heorem  17 Let f  £  C 2  ([a, 6]) with f  (x) <  0 in [a, b], and f  (xm) =  0 for a 

certain x “ £ [a, 6]. Then the solution of the ordinary differential equation

^  =  / ( * ) , « >  0, (563)

x(0) =  x0 £ [a, 6],

exists for all t >  0, is unique, and satisfies an exponential estimate

\x (t ) — r ' |  <  |xo — x '\e ~ Kt for t >  0 (564)
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for some positive constant k that is independent of t.

Proof:

Let us assume without loss o f generality that

a <  x ' <  xq <  b. (565)

Then the solution x  (£) of initial value problem (563) exists for all t >  0, is 

unique and is decreasing with

x ’ <  x (t ) <  xo (566)

for all t >  0. Since /  (x) is continuously differentiable on the closed interval 

[a, 6], / '  (x) assumes its maximum value —k <  0 in this interval.

By Taylor expansion of /  (x) about x — x m, (563) implies that

fjrr*
^  =  /  (*•) +  (x (t ) -  X') f  (6 )  =  (x (t) -  x*) / '  ( 6 )  <  (ar (t) -  x*) ( - « ) ,

(567)

where € (x*,x°) is a suitable intermediate point. Dividing inequality (567) 

by x (£) — x* > 0 ,  we get
d x
d t < - k . (568)

x  (£) — x*

Taking the definite integral from 0 to £ on both sides of (568) yields

In z  (t) ~  x ' <  e~Kt, (569)
Xo — X*

that is

x  (£) -  x* <  (x0 -  x*) e~Kt. (570)

Because of (566), this is equivalent to the claim (564). ■
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T h eorem  18 The solution of quasi-equilibrium problem

s ( t ) =  l - X  s ( a ) ( t - a ) e - {t- a)d a - X e ~ t < p ( a - t ) a d a  (571)

=  1 —A f  s  (a) (t -  a) e~(t~a)da — Ae_t f  <p(u)(t +  u)du  
Jo Jo

converges to the steady state

-  r h  <572>
with exponential estimate

|s  (t ) — s ’ [ <  ce-t  for t >  0 (573)

for some constant c >  0, if  the initial age density functions ip (a) are non­

negative, continuous on the interval [0, oo), and satisfy the exponential estimate

\tp (a) — s 'e ~ aj <  5e~a for a >  0, (574)

where

5 = ----- — j  - (575)
(3 + A)2

Proof:

With the transformation

xp(a) =  ip (a) — s ‘e~a (576)

(571) becomes

f t  f O O

s (t) =  1—A /  s  (a) (t — a) e~(t~â da—Xe~t /  ip (u ) (t  -I- u ) du—Xsm (1 +  t) e - t . 
Jo Jo

(577)
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Differentiating (577) twice with respect to t  yields

s ' ( t )  =  -A  [ ' s ( a ) ( l - t  +  a ) e - {t~a)da
Jo

rO O

—\e ~ t /  if] (u) (1 — t  — u) du 4- As'fe~£ 
Jo

=  -A  [  s ( a ) e - ^ ~ a)d a - { - l - s { t )
Jo

rO O

—Xe~l I xb (u) du — As*e~l ,
Jo

s" (t) =  — X s ( t ) + X  f  s (a)  e - V - a) da -  s ’ (i)
Jo

rO O

+Ae_t / xb (u ) du -t- As’e - t
Jo

=  -A s (f) -  s ' (t) +  1 - 8  (t) -  s' (t ) - 

We obtained the ordinary differential equation

s" +  2s' +  (1 +  A) s =  1

with initial conditions

rO O

s (0) =  s ’ — X I xb (u) udu ,
Jo

s' (0) =  s ’ -  s (0) +  A f  xb (u) (u -  1) du.
Jo

The solution is

.  (t) = . - + « -  (C» (0) -  . - )  cos (,/A t) +  s ' (0 )+ ^ 0 ) ~ ? - s in
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(581)

(^)) •

(582)
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Since

rO O  rOO

| s ( 0 ) — s ’ | <  A / x p ( u ) u d u <  A I 6 e ~ u u d u  <  XS, (583)
Jo Jo

\s' (0)| <  |s (0) -  s* | +  A f  x p  (u ) (u -  1) d u  (584)
J o

<  |s(0) -  s*[ +  XS e- u (l  —  u ) d u  +  j^ e ~ u  ( u  —  I) d u ' j

=  l. ( 0 ) - , - | + w ( i  +  i )

< +

we have the estimate

(s (0) -  s ' ) 2  +  (j ' i0 1 - ^ 0) ~~ )  2 <  A25®+  ^ ( 1  +  1  +  1 ) (585)

<  (A 4- 3)2 6 2

1 1 , ..2  
< ; —2 =  0 0 -(A +  3)" (A +  1)

(585) implies that (573) is fulfilled for the choice

1
c =

(A +  3)2 ’
(586)

and guarantees that the solution (582) is positive.
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