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A classification of strategies employed by high school students in
isomorphic combinatorial problems

Martina Janáčková1  
Jaroslav Janáček2

Abstract: The aim of the paper is to discuss some aspects of the combinatorial thinking of high
school students. We took one student - Jane and gave her 4 isomorphic testing problems. Then we
tried to classify the different strategies the students took in their solutions.

Keywords: combinatorics, high school students, strategies

1. Introduction

Combinatorics plays an important role in school mathematics. This theme has been recurrent in the
mathematics education literature (Fischbein & Gazit, 1988; English, 2005; Lesh & Heger, 2001;
Muter 1999; Sriraman & English, 2004), as well as numerous curricular documents worldwide
(NCTM, 1991,  2000). Among  the  most  influential  is  work  of  Kapur  (1970) who called  for
incorporating  enumerative  combinatorics  in  the  school  curriculum.  He  elicited  the  following
reasons to justify the teaching of elementary combinatorics in schools:

(1) The  independence  of  combinatorics  from Calculus  facilitates  the  tailoring  of  suitable
problems for different grades and usually very challenging problems can be discussed with
pupils so that they discover the need for more “sophisticated” mathematics to be created.

(2) Combinatorics  can  be  used  to  train  pupils  in  enumeration,  making  conjectures,
generalization and systematic thinking; it can help the development of many concepts, such
as equivalence and order relations, function, sample, etc. 

(3) Many applications in different fields can be presented.

All these reasons justify the interest in improving the teaching of the topic. Nevertheless, students’
approaches to combinatorial problems are known  for a high occurrence of mistakes (Batanero,
Navarro-Pelayo & Godino, 1997; English, 1993, 1998, 1999). These studies suggest that teachers
pay attention to the nature of mistakes made by students in combinatorial problems and facilitate
students’ overcoming these mistakes by providing alternative isomorphic problems. They therefore
argue  that the teachers’  goal should include not only attending to students’  mistakes but also
helping students to arrive at  correct solution.  It has been argued that discerning the origin of
mistakes  can  help  the  teacher  to  understand  how  to  support  students’  further  learning.  To
understand the thinking of students, it is important to answer following two questions: 

(1) Which strategies3 are chosen by the student? 
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3 “Strategies are goal-directed operations employed to facilitate task performance.” (Bjorklund, 1990) 
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(2) Why did the student chose a particular strategy?

The second question is deep and beyond the scope of this paper. However our intention here is to
deal with the first question  and create research-based implications for future research, which will
enable us to answer the second question. 

2. Theoretical Background  

The research reported in this paper is grounded within the extant literature on this topic. In the
massive literature review conducted by Sriraman & English (2004) on the state of research in the
domain of combinatorial reasoning , they noted the following:

Piaget and Inhelder (1951) viewed combinatorial thinking as an aspect of the stage of formal
operations. They  characterized  combinatorial  reasoning as the capacity  to  determine  all  the
possible ways in which one could link a given set of base associations with each other. Batanero,
Navarro-Pelayo, and Godino (1997) provided a simple and highly illustrative account of Piaget
and Inhelder's  thesis on combinatorial reasoning:  Given a problem where a set of objects are
required to be arranged in all possible ways, children at the pre-operational stage use random
listing procedures, without  having an explicit  systematic  strategy. At  the concrete operational
level, children use trial and error strategies and are capable of devising "empirical procedures
with a few elements" Finally at the stage of formal operations "adolescents discover systematic
procedures of combinatorial construction, although for permutations, it is necessary to wait until
children are 15 years old" (Batanero et. al, 1997 ). (Sriraman, B & English, L., 2004, p. 183)

Although  Piaget’s  studies  provided  powerful  insights  into  the  development  of  combinatorial
understanding, the materials that were used and the accompanying instructions were too scientific
and abstract (Carey, 1985) for children. This would likely have masked the participating children’s
abilities in the combinatorial domain.  Later research, which employed child-appropriate materials
and meaningful task contexts, indicated that young children are able to link items from discrete sets
in a systematic manner to form all possible combinations of items (e.g., English, 1991; 1992).

In  one  such  study  (English,  1991), 50 children  aged between  4.5 years  and  9.8 years  were
individually administered a series of 7 novel tasks that involved the dressing of cardboard toy
bears (placed on stands) in all possible different outfits, with an outfit comprising a colored top
and a colored pair of pants (or same-colored tops and skirts with different numbers of buttons, for
two of the tasks). The findings indicate that, given an appropriate context, children are able to
produce independently a systematic procedure for forming m x n combinations prior to the stage
of formal operations postulated by Piaget and Inhelder.  (Sriraman, B & English, L., 2004, p. 185-
186)

Maher and her colleagues (Maher & Martino, 1996a, 1996b, 1997; Maher & Speiser,  1997;
Martino & Maher, 1999; Muter & Maher, 1998; Muter, 1999; Speiser, 1997) conducted a series
of longitudinal  studies lasting up to ten years in  which teaching experiments were set  up to
investigate the growth of mathematical knowledge via the use of combinatorial problems.  The
fascinating aspect about these studies was that the researchers focused on a group of students and
studied  the  evolution  of  their  mathematical  representations,  reasoning,  argumentation  and
methods of proof, starting from grade five through grade twelve. The researchers in these studies
typically used two or more related problems that were conducive to the formation of isomorphic
mathematical structures. It was found that the problem solving strategies of the group of students
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who worked on these problems evolved as they worked through these problems, on and off from
1993 to 2000.  The representations used by these students became more and more abstract. As
fourth-graders, these students discovered properties of combinations with reference to the given
problems. The properties of combinations, for these students, grew from very concrete images,
such as towers and pizzas (Maher, 1993; Maher & Speiser, 1997; Maher & Martino, 1996a & b;
Maher & Kiczek, 2000). However, as tenth-graders, they were able to link these concrete notions
to abstract notions of combinations and binomial coefficients found in Pascal’s triangle. These
findings do not simply confirm the findings of Piaget but also reveal how the development of
combinatorial reasoning can “accelerate” from grades four to ten. The Piagetian model spans an
eleven-year time period, whereas the findings of the longitudinal studies conducted by Maher and
her colleagues indicate that with appropriate instructional scaffolding, students’ combinatorial
thinking can evolve into sophisticated structures in only seven to eight years! It should be noted
that this rapid development is dependent on the use of appropriate tasks in order to facilitate this
development in a much shorter time span. (Sriraman, B & English, L., 2004, p. 184)

Another important finding of these studies was that there was a relationship between “carefully
monitoring  students’  constructions  leading  to  a  problem solution”  and  teacher  questioning  at
appropriate stages of problem solving, which challenged the students to pursue general solutions
(Martino & Maher, 1999, p.53). The findings reported by Maher and her colleagues validate the
Piagetian notion of how  combinatorial reasoning evolves in problems requiring a set of objects to
be arranged in all possible ways. These studies revealed that students’ strategies evolved from
random listing strategies and other trial and error or “empirical procedures” (Davydov, 1996) as
fourth-graders, to systematic counting strategies as tenth-graders. This compares with the findings
of English (1991, 1992), except in her studies, cited earlier, the children developed sophisticated
strategies  across  a  set  of tasks  within  the period of  task administration.  Increasing notational
sophistication,  a  disposition  to  think  abstractly,  the  ability  to  generalize  and  an  affinity  for
constructing proofs characterized the evolving strategies of the students (Maher, 1993; Maher &
Martino, 1996a, 1996b, 1997; Maher & Speiser, 1997; Martino & Maher, 1999; Muter & Maher,
1998; Maher & Kiczek, 2000; Speiser, 1997). 

3. The Present Study

Given the precedence of types of problems effective for research on combinatorial thinking, we
used isomorphic testing problems in this research. However our attempt was not a mere replication
of previous research. The research reported in this paper systematizes and synthesizes perspectives
on combinatorial thinking to create an effective instrument for the comprehensive classification of
combinatorial strategies employed by high school students in a new geographic location (namely
the Slovak Republic). This furthers the aim of the mathematics education community to create
research-based knowledge generalizable to age groups across geographic locations.   

4. Method

4.1. The Problems of the Study

Siegler (1977) defined the concept isomorphic problem (or isomorphs) as follows: “Isomorphs are
problems that are formally identical but differ in their surface structure”.  If we expect that the
solution of a problem is influenced by numerous parameters, it is necessary to keep all but one of
the parameters invariant to establish the influence of the chosen parameter on the solution. In the
Slovak Republic, high school students meet the phenomenon of isomorphism during the traditional
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teaching of combinatorics. They are often required to solve problems that are similar to standard
“ground” types of the combinatorial problems. 

As a starting point we used 4 isomorphic combinatorial problems: 

The Town Problem 

There are houses marked as rectangles on the figure. There are streets between them. By how
many different ways can we get from the place A to the place C, if we move through the streets of
the town only in the directions upwards and to the right?

 

The Ice Hockey Problem 

An ice hockey match finished 2:3. What are the possible partial scores that could have led to the
final score of this match? Find all different possibilities.

The Pigeonhole Problem 

Write all possibilities in which 5 balls A, B, C, D, E can be placed into 2 pigeonholes u and v such
that 2 balls are in the pigeonhole u and 3 balls are in the pigeonhole v.

The Line Problem

In how many ways is it possible to line up 3 ○ and 2 □?

Note that the problems in the instrument are robust because they yield the following isomorphic
solutions. Each possibility which is a part of the solution of the preceding problems can be coded
by the sequence of 0s (three symbols) and 1s (two symbols), where the symbol 0 means:

1. in the Town problem the move “to the right” (see forthcoming extract of the protocol)

2. in the Ice Hockey problem the goal scored by the opposing team

3. in the Pigeonhole problem the selection of the ball into the pigeonhole v

4. in the Line problem the symbol: ○

and the symbol 1 signifies:

1. in the Town problem the move “upwards” (see forthcoming extract of the protocol)

2. in the Ice Hockey problem the goal scored the “home” team

A   B

  CD
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3. in the Pigeonhole problem  the selection of the ball into the pigeonhole u

4. in the Line problem the symbol: □

Another important concept that emerged as will be revealed in the subsequent sections was that of
“position”. By “position” we understand:

1. in the Town problem the serial number (or running count) of the move on the path from A to C

2. in the Ice Hockey problem the serial number  of the goal

3. in the Pigeonhole problem the balls A, B, C, D, E (the ball A = 1st position, …)

4. in the Line problem the place in the line

The following example will help illustrate these nuances: 

4.2. Data Collection

These problems were assigned to 16-year-old Jane, a student in the 2nd year of high school. The
student’s  solution process  was  video recorded  and later  transcribed to  create  a  time-stamped
protocol. This protocol served as a basis for the detailed analysis that I will explain in the next
section. As an illustration, I present a part of the solution protocol of the Town problem and Jane‘s
solutions of the remaining problems. 

Extract of the protocol

0.00   J. takes the red crayon and looks at the figure.

0.02   J. marks the path 00011 (a).

0.04   J. looks at the figure.

0.06   J. marks quickly in succession the paths 00110 (b), 00101 (c), 01010 (d).

0.12 J. looks at the figure.

0.14   J. marks quickly in succession the paths 01100 (e), 11000 (f), 10100 (g).

0.20 J. scratches her head and looks at the figure.

0.30 J. raises the crayon into the air and looks at the figure.

A   B

  CD

position 1.p. 2.p. 3.p. 4.p. 5.p.

path 0 1 0 0 1
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0.46   J. indicates by the crayon the paths 10001 (h), 10010 (i) in the air closely above the figure.

0.50   J. raises the crayon into the air, juggles with her hair and looks at the figure.

0.76   J.: “There are nine possibilities.”

The solutions of the remaining problems

(a) (b) (c) (d) (e) (f) (g) (h)

10100 10010 10001 01010 01100 01 00011 11000

Figure 1. The Ice Hockey Problem. Each column depicts one of Jane’s solutions for how the ice
hockey match could have  progressed. The  chart  beneath Jane’s  solution depicts  each match's
progress as a sequence of zeros and ones, using the coding explained previously

Figure 2. The Pigeonhole Problem

(a) 11000

(b) 11

(c) 01100

(d) 10100

(e) 00110

(f) 00101

(g) 10010

(h) 10001

(i) 01010

(j) 01001

(k) 00011
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4.3. Data Analysis

In order to compare the solutions of isomorphic problems presented in varying contexts with the
goal of classifying strategies as well  as understanding the influence of context on a particular
strategy it was first necessary to identify and describe the strategies which the Jane used during the
solution of a particular type of problem. To identify the strategies, we used the method of atomic
analysis, introduced in work of Hejný (1992). This method consists of a thorough investigation of
every detail – every “graphical atom” of the written work of a student. We examined nuanced
details of Jane’s solutions and characterized particular strategies that she followed when solving
the problems.  We then identified each strategy on the basis of the changes (i.e. permutations)
occurring in the use of symbols within a solution. The next step consisted of describing these
strategies. To make the description valid for each solution of the four problems, each permutation
was converted to a sequence of zeros 0 and ones 1. Each of the identified strategies was explained
on the example of two associated succeeding permutations of three zeros and two ones.  Then the
strategy was generalized for any initial permutation. 

We will explain a derivation of strategies on Jane’s solutions of the Ice Hockey and Line problems.

 Our basic assumption when analyzing students’ solutions was that high school students create lists
of possibilities in accordance to some guiding principle (i.e., not randomly). We also conjectured
that the students would use the principle until they exhausted all the possibilities that it allowed
them to identify.

When I compared associated running scores of matches (a) and (b) in the Ice Hockey problem, I
found the only difference - in the third step: (a) 2:1 (b) 1:2. If the team, that scored the third goal in
(b), were identical to the team, that scored the third goal in (a), the two solutions for the scores
would be identical. It looks like that Jane takes over the running scores from the last generated
solution up to the point when the next step in the new solution must necessarily differ if the two
solutions are not to be identical. If Jane used this principle systematically to guide her generation of
different solutions, we should be able to identify it again in Jane’s transition from the solution (b)
to (c). Matches (b) and (c) differ in the fourth running score for the first time. It supports our

Figure 3. The Line Problem

(a) 00011

(b) 00110

(c) 00101

(d) 01100

(e) 01010

(f) 11000

(g) 01001

(h) 10001

(i) 10100

(j) 10010
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hypothesis,  because taking  over the score  2:2 from (b) would result  in generating a  solution
identical to (b). 

Jane used this guiding principle in generating solutions of other problems as well. As an example,
the ordering (c) in the problem “Line”  generated in accordance to the same principle. Jane takes
over the sequence of ○ and □ from the solution (b) up to the symbol in which the two sequences
must differ in order to be different.

The following figure depicts  the running scores of ice hockey matches (a), (b), (c)  coded into the
sequence of zeros and ones. 

1.p. 2.p. 3.p. 4.p. 5.p.
(a) 1 0 1 0 0

↓ ↓
(b) 1 0 0 1 0

↓ ↓ ↓
(c) 1 0 0 0 1

This coding transcends the context of the original ice hockey problem and can be interpreted in the
context of any of the isomorphic problems used with Jane. For example, in the Line problem the
previous coded sequences would represent following solutions:

 □ ○ □ ○ ○

 □ ○ ○ □ ○

 □ ○ ○ ○ □

The above-mentioned guiding solution principle that Jane used in generating solution (b) in the ice
hockey problem can then be described as follows: If the change from 1 to 0 doesn‘t occur at the
position 3, we would not arrive at the solution different from the preceding solution (a). 

This guiding principle can be applied to any initial sequence to generate a new solution. We will
call this generalized principle a Strategy of a constant beginning. This strategy can be executed in
the following way

(1) Start copying the initial sequence from the left

(2)  Identify  the  “critical”  position,  that  is,  the  right-most  position  on  which  the  new
sequence can no longer be identical to the initial sequence if the two sequences are not to be
identical.

(3) Change the symbol on the “critical” position and finish the new sequence accordingly

5. Results

In Jane‘s solutions we discovered 11 strategies. By (x)/(y) we mean that the model for creation of
the permutation (y) was the permutation (x). By (x-y) we will denote all the permutations (x),
(x+1), ..., (y). 
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1. Strategy of exhausted subset

We look for a new strategy because we have exhausted the subset of permutations with a
common feature that we could have enumerated using the preceding strategies. We present several
such examples:

I. All the permutations with a common prefix of a certain length have been found (i.e. all the
permutations  that  are  identical  up  to  a  certain  position).  For  example: In case  of  the
permutations (a), (b), (c) in the figure 1. it is about all the permutations, that begin with the
symbols 10.

II. All the permutations  whose progress up to a certain position is  based on the regular
alternation of 1s and 0s have been found. For example: In case of the permutations (a)-(e)
in the figure 1. it is about all the permutations, where 1s and 0s alternate in the first two
positions in any order (i.e.  01 or  10).  Although one of  such permutations is  missing
(01001), the set is considered to be exhausted, since it  is not possible to obtain the missing
permutation using the strategies 3[(a)/(b)] 3[(b)/(c)] 1[(a-c)/(…)] 2[(a-c)/(d-f)] 5[(a)/(d)] 5
[(b)/(e)] 5[(c)/(f)].

III. All the permutations whose progress begins with a sequence of one of the symbols (either 1
or 0) and continues with a sequence of the other symbol have been found. For example:
figure 1. – the permutations (g), (h).

IV. All the permutations having the symbol  1 in a certain position have been found (see the
strategy of a constant element). For example: In case of the permutations (c)-(f) in the
figure 2. it is about all the permutations that have the symbol 1 it the 3rd position. 

V. All the permutations that contain all possible arrangements of two symbols  1 in given
positions have been found. For example: In case of the permutations (a), (c), (d) in the
figure 2. it is about all the permutations that have symbols 1 located in any two of three
positions (1, 2 and 3).

This strategy is present in the solutions of all problems.

2. Group strategy

A preceding subset of permutations (with two elements at least) is used as a model for creating
new permutations using some of the presented strategies. We will refer to this subset as to a model
group. 

For example:
1.p. 2.p. 3.p. 4.p. 5.p. 1.p. 2.p. 3.p. 4.p. 5.p. 1.p. 2.p. 3.p. 4.p. 5.p.

(a) 1 0 1 0 0 (b) 1 0 0 1 0 (c) 1 0 0 0 1
∇ ∇ ∇ ∇ ∇ ∇ ∇ ∇

(d) 0 1 0 1 0 (e) 0 1 1 0 0

∇ - the change to the other symbol
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The permutations (d) and (e) have been created from the permutations (a) and (b) in mentioned
order by the symmetry strategy. The permutation (c) has not been used as a model for creation of
an additional permutation because it  would be identical to (e).

This strategy has been used in co-operation with other strategies in the solutions  of the problems
„Town“ (figure 4.; (d-e)/(f-g), see extract of the protocol), „Ice Hockey“ (figure 1.; (a-c)/(d-f), see
the symmetry strategy ) and „Line“ (figure 3.; (b-c)/(d-e), see the parallelism strategy).  

Figure 4. The Town Problem

3. Strategy of a constant beginning

The progress remains identical up to „the highest possible“ position (it is such a position that if the
symbol in it is not changed, the entire permutation will have to be identical to the model).

For example: 
1.p. 2.p. 3.p. 4.p. 5.p.

(a) 1 0 1 0 0
↓ ↓

(b) 1 0 0 1 0
↓ ↓ ↓

(c) 1 0 0 0 1

If the symbol in the position 3 (b) or in the position 4 (c) is not changed from 1 to 0 , the symbols
in the higher positions will also have to remain unchanged, leading to the same permutation. 

This strategy is present in the solutions of the problems „Town“ (figure 5.; for example (a)/(b), (b)/
(c)), „Ice Hockey“ (figure 1.; (a)/(b), (b)/(c)) and „Line“(figure 3.; for example (a)/(b), (b)/(c)). 

Figure 5. The Town Problem

4. Strategy of the same number of the permutations in groups

If a subset of permutations derived from a model group using the group strategy has less elements
than the model group, other permutations are added to it to make the number of elements equal to

A   B

  CD

path (d)    (01010)
path (e)    (01100)
path (f)    (11000)

path (g)    (10100)

path  (a)    (00011)
path  (b)    (00110)
path  (c)    (00101)

  C

  A   B

  D
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the number of elements of the model group. These additional permutations are chosen so that all
permutations in the resulting subset share a common feature that distinguishes them from the
permutations of the model group.

For example:
1.p. 2.p. 3.p. 4.p. 5.p.

(a) 1 0 1 0 0

(b) 1 0 0 1 0

(c) 1 0 0 0 1

(d) 0 1 0 1 0

(e) 0 1 1 0 0

(f) 0 1

(g) 0 0 0 1 1

Because (c) cannot be used as a model for creation of (f) (see the group strategy example), the
group of the permutations beginning with the sequence 01 is exhausted, but it has less elements (by
one) than its model group (a-c). A random permutation beginning with the symbol 0(just like (d)
and (e)) is added to the group. The feature that distinguishes the new group from the model group
is the symbol in the first position in this case.

This strategy is present in the solution of the problem „Ice Hockey“(figure 1.; (a-f)/(g)). 

5. Strategy of symmetry

The symbols 1 are replaced with 0s and the symbols 0 are replaced with 1s in all positions up to
the position where this kind of change is no longer possible because the exact number of 0s and 1s
in the permutation is given. The remaining positions are filled with 0s.

For example: 
1.p. 2.p. 3.p. 4.p. 5.p.

(a) 1 0 1 0 0
∇ ∇ ∇ ∇

(b) 0 1 0 1 0

The symbol 0 in the 5th position cannot be replaced with the symbol 1, because the two symbols 1
have already been used.

This strategy is present in the solution of the problem „Ice Hockey“ in co-operation with the group
strategy (figure 1.; (a)/(d), (b)/(e), (c)/(f)).

6. Strategy of parallelism

All symbols  0 move by one position to the right (we will denote this strategy as the strategy of
parallelism 0R), or to the left (strategy of parallelism 0L), and the unoccupied positions are filled
up with symbols 1. If a symbol cannot be moved in the first step (because it is in the first or the last
position respectively),  it  remains  in  its  current  position and only the  other  symbols  move as
described. We define the strategies of parallelism 1R and 1L for the movement of symbols 1 by
analogy.
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For example:
1.p. 2.p. 3.p. 4.p. 5.p.

(a) 0 1 0 1 0

(b) 1 0 1 0 0

↓
(c) 1 1 0 0 0

The symbols  1 move from the 2nd and the 4th position (a) to the 1st and the 3rd position (b). The
remaining positions (2nd, 4th and 5th) are filled with with 0s. Because the further movement of the
symbol 1 in the first position to the left is not possible, it remains in its current position and the
other symbol 1 moves from the 3rd position to the 2nd position.

This strategy is present in the solutions of the problems „Town“ (figure 4.; (d)/(g), (e)/(f))) and
„Line“ (figure 3.; (b-c)/(d-e)) in co-operation with the group strategy.

7. Strategy of a constant element 

One of  the symbols  1 remains  in  its  position,  the  other  one  takes  a  random position of  the
remaining ones. We shall think about this strategy only in the case when the subset of permutations
having the symbol 1 in a certain position is exhausted in a continuous sequence of steps (see the
strategy of exhausted subset, example IV). If we considered only two successive permutations
regardless of the context, we would identify other strategies as well. For this reason we consider it
necessary to introduce a requirement that, if a subset is exhausted (in the sense of the strategy of
the exhausted subset, case IV), we will consider it to be exclusively according to the strategy of a
constant element. As an exception, if there is a strategy leading to exhaustion of the same subset of
permutations as the strategy of a constant element, we shall consider them both (or all of them if
there are more such strategies). 

For example:
1.p. 2.p. 3.p. 4.p. 5.p.

(a) 0 1 1 0 0

↓
(b) 1 0 1 0 0

↓
(c) 0 0 1 1 0

↓
(d) 0 0 1 0 1

One of the symbols 1 remains in the 3rd position, while the other one progressively occupies all
remaining positions. It is evident from the sequence of the individual permutations that the strategy
of a constant element is used exclusively, although  we could identify also the strategy of constant
beginning between permutations (c) and (d).

This strategy is present in the solutions of the problems „Town“ (figure 6.; (e)-(h)), „Pigeonholes“
(figure 2.; (d)/(e), (e)/(f)) and „Line“ (figure 3.; (f)/(h), (h)/(i), (i)/(j)).
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Figure 6. The Town Problem

8. Strategy of complement of all arrangements

A subset of permutations containing all except one possible arrangements of the two symbols 1 in
given positions is completed with the missing permutation to form an exhausted subset in the sense
of the strategy of exhausted subset, case V.

For example:
1.p. 2.p. 3.p. 4.p. 5.p.

(a) 1 1 0 0 0

(b) 0 1 1 0 0

(c) 1 0 1 0 0

The  permutations  (a)  and  (b)  represent  two  elements from the  three  element  subset  of  the
permutations that include all arrangements of two symbols 1 in the 1st, 2nd and the 3rd position. The
missing permutation is added.

This strategy is present in the solutions of the problems „Town“ (figure 5.; (a-b)/(c)) „Pigeonholes“
(figure 2.; (a-c)/(d)) and „Line“ (figure 3.; (a-b)/(c)).

9. Strategy of the odometer4

The principle of the odometer is already mentioned in the papers by L. D. English (1993): „This
pattern is so named because of its similarity to the odometer in a vehicle.“ We have modified the
description of this principle to correspond to the definitions of our problems because our problems
and those in the cited papers differ. One of the symbols 1 remains  in the position x (called constant
element) while the other one progressively occupies all remaining positions from the lowest one to
the  highest  one,  without  repeating  previously  discovered  permutations.  After  exhausting  all
possibilities, next position (x+1) is chosen for the constant element and the process repeats. The
strategy ends when all possibilities for the choice of the constant element position are exhausted. If
we considered only two successive permutations regardless of the context, we would identify other
strategies as well. For this reason we consider it necessary to introduce a requirement that, if a
subset is exhausted according to this strategy, we will consider it to be exclusively according to
this strategy, and we will not take the other possible strategies into account.

4 We mean the distance counter in a vehicle.

A   B

  CD

way (e)     (11000)
way (f)     (10100)
way (g)     (10001)

way (h)    (10010)
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For example:
1.p. 2.p. 3.p. 4.p. 5.p.

(a) 1 1 0 0 0
(b) 1 0 1 0 0
(c) 1 0 0 1 0
(d) 1 0 0 0 1
(e) 0 1 1 0 0
(f) 0 1 0 1 0
(g) 0 1 0 0 1
(h) 0 0 1 1 0
(i) 0 0 1 0 1
(j) 0 0 0 1 1

The constant element remains in the 1st position, the second one of the symbols  1 progressively
occupies the 2nd to 5th position. The constant element remains in the 2nd position, the second one of
the symbols  1 progressively occupies the 3rd to 5th position. It cannot occupy the 1st position,
because this permutation would be identical to (a). The strategy finishes by the occupation of the
4th position by the constant element, because there are no possible positions for the second symbol
1, when the constant element occupies the 5th position, that would yield a new permutation.

This strategy is present in the solution of the problem „Pigeonholes“ (figure 2.; (f)/(g), (g)/(h),(h)/
(i), (i)/(j), (j)/(k)). 

10. Strategy of rotation

The new permutation is created by rotating the preceding one by 180°. 

For example:
1.p. 2.p. 3.p. 4.p. 5.p.

(a) 1 1 0 0 0

(b) 0 0 0 1 1

A statement of the type:

Jane: „Here, when one (team) scored in a row.“ (The common description of both permutations (a)
and (b) in the „Ice Hockey“ problem) plays an important role in the identification of this strategy in
a special case because if the order of the permutations was 00011, 11000, we could identify the
used strategy as the strategy of symmetry.  However, the statement indicates that it  is not the
progress of the model that is important for the respondent, but rather the fact that the result is to be
a permutation rotated by 180°. 

This strategy is present in the solution of the problem “Ice Hockey” (figure 1.; (g)/(h)).

11. Strategy of complement of the exhausted subset

While  in  the  preceding  steps the  exhaustion  of  certain   subset  (the  minimal  number  of  the
components is  5)  of  permutations with  some common symbol  occurred,  the permutations are
looked for with such common character which for it is valid: 
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Having exhausted a subset of permutations with a common feature (containing at least 5 elements)
we look for a subset of permutations with another common feature such that:

1.   the exhausted subset and the looked for subset of permutations are disjunct;
2.   the exhausted subset and the looked for subset form a set of all permutations.

For example:
1.p. 2.p. 3.p. 4.p. 5.p.

(a) 0 0 0 1 1
(b) 0 0 1 1 0
(c) 0 0 1 0 1
(d) 0 1 0 1 0
(e) 0 1 1 0 0
(f) 1 1 0 0 0
(g) 1 0 1 0 0
(h) 1 0 0 0 1
(i) 1 0 0 1 0

The permutations (a)- (g) form the exhausted subset of permutations with the difference of the
positions occupied by the symbols 1 equal to 1 or 2. The permutations are looked for that have the
difference of the positions occupied by the symbols 1 equal to 3 or 4.

This strategy is present in the solutions of the problems “Town” (see the extract of protocol (a-g)/
(h-i)) and “Line” (figure 3.; (a-e)/(f, h-j)).

Overview of strategies used in particular problems
permutation (b) (c) (d) (e) (f) (g) (h) (i) (j) (k)
“Ice Hockey” 3. 3., 1.I 2., 5. 5. 5., 1 I 4. 1.II, 10., 1.III
“Pigeonholes
”

8., 1.V 7. 7., 1.IV 9. 9. 9. 9. 9.

“Line” 3., 1.III 3., 1.I or
8.

3. or
2., 6.

6,1.I
or
3.

2., 6. or
11. or 
3.

3., 1.I 3. or
7. or 
11.

7. or 11. 3., 1.I or
7., 1.IV
or  
11.

“Town” 3., 1.III 3. or 
8.

1. I 2., 6. 2., 6. 6. 3. or 7. or 11 3. or
 7. or
11.

6. Conclusions

Event though the presented problems are isomorphic, students have used different strategies to
solve  them.  This  observation  correlates  to  the  observations  of  other  authors  (Tőrner,  1987;
Bauersfeld, 1985; English, 1999; Hefendehl-Hebeker&Törner, 1984; Hesse, 1985; …). It would be
interesting in a future research to find which aspects in the problem context influence the strategy
selection and the completion of the solution.
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