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Many subsurface environments across the United States are contaminated from past 
xenobiotic discharges, much of it too deep and extensive for conventional methods of 
remediation. Bacteria might be the best option available for the bioremediation of deep 
subsurface contamination because of their potential to travel to distant contaminated locations, 
and their ability through metabolic activities to potentially detoxify or lim it the further 
migration of contaminants. However, relatively little is known about the transport capabilities 
o f injected microorganisms into the subsurface, nor their ability to colonize, survive and grow 
once they reach locations of distant contamination. A basic understanding of both processes is 
therefore necessary to design strategies for the use of bacteria in remediation of subsurface 
environments.

My dissertation research project consisted of two studies related to the ecology of bacteria in 
subsurface environments. The first study involved analysis of the microbial community 
diversity of shale and sandstone rocks located 200 meters below Cerro Negro, New Mexico. 
The objective was to increase our understanding of the microbial ecology of deep subsurface 
environments typical of many contaminated sites. The second involved studies of short-term 
temporal transport of bacteria, in laboratory column experiments and in situ injection 
experiments at a field site in Oyster, Virginia. The objectives were to develop methods of 
accurately monitoring bacterial transport and to determine the factors that control transport of 
bacteria in subsurface environments.

In the study of the ecology of the deep subsurface shale/sandstone interface at Cerro Negro, 
we found that the geochemistry of a site alone is not adequate to predict the types o f organisms 
present. We found a predominance of organisms capable of Fe(III) reduction in an 
environment where sulfate reducing microbes were expected to dominate based on the 
geochemistry of the site. Therefore the design of remediation strategies must account for the 
Fe(III) reducing bacteria. In the Oyster transport study, we were able to  demonstrate the in situ 
transport of adherence-deficient microbes, and their subsequent attachment and growth in 
aquifer sediments, demonstrating that bioremediation using injected microorganisms was 
feasible for subsurface contamination.

ii
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Introduction

My dissertation research was funded by the Natural and Accelerated Bioremediation 

Research (NABIR) Program of the United States Department of Energy (DOE). The NABIR 

program is a ten-year study initiated in 1996 to determine the feasibility of using 

microorganisms for in situ bioremediation of contaminated soils, sediments and groundwater at 

DOE facilities (reference: http://www.lbl.gov/NABIR/info.html). The DOE manages over 100 

sites across the U.S. that have contamination problems from past subsurface discharges. 

Hanford, Washington and Oak Ridge, Tennessee, are examples of especially problematic sites 

for the DOE. Both were created during World War II and used for development of 

components used in the first atomic bombs. The sites have subsurface contamination plumes 

that are mixtures of toxic and radioactive xenobiotics that have migrated deep into the 

subsurface (30). In such environments classical methods of remediation (for example, pump 

and treat technologies) will likely not be effective. The sites are also often located atop 

consolidated rock formations where preferential fracture-flow tends to complicate the transport 

of contaminants. The impending threats to nearby groundwater aquifers and surface waters 

(e.g. the Columbia River and the Tennessee River) serve to underscore the need for prompt and 

effective cleanup of the sites.

The DOE's interest in bacteria and bacterial transport is based on the potential of using 

bacteria for in situ bioremediation of contaminated subsurface sites. Bacteria have the ability 

to directly influence the transport of contaminants in the environment, either positively or 

negatively (9, 10, 24). Using metals as electron acceptors, microbes can change the redox 

potential of a contaminant, either accelerating or retarding transport (5, 26,31). Microbes can 

also degrade or transform many organic compounds, either increasing or decreasing their

I
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toxicity (1, 11, 12). Additionally, microbes can sorb contaminants to extracellular biofilms, 

thereby immobilizing them (4, 14, 21), or can chelate limiting nutrients, organics and metals 

making them more mobile (3, 18, 19). Studies describing the microbial reduction of uranium 

(25), and solubilization of plutonium hydrous oxide(32), both by iron/sulfur-reducing bacteria, 

demonstrate that radioactive compounds can be affected as well. Thus microbial transport and 

activities in the subsurface environment have important implications for DOE-managed 

contaminated sites.

In order to effectively use bacteria for in situ remediation of subsurface environments, 

fundamental questions regarding bacterial transport and survival need to be addressed. One 

question is whether injected bacteria can establish viable long-term communities in the 

environment. It would be problematic if xenobiotic-degrading bacteria with good transport 

characteristics were injected into the subsurface, but were not able to establish long-standing 

communities at the site of contamination. Thus, an understanding of the ecology of bacterial 

communities in the deep subsurface is an important consideration in remediation plans.

Research funded by the DOE's Office of Health and Environmental Research (OHER) 

Deep Microbiology Subsurface Science Program has addressed the questions of the origin and 

survival of bacteria in the deep subsurface. Two main alternate hypotheses were proposed to 

explain the origins of deep subsurface bacteria; 1) in environments of sedimentary origin, the 

bacteria present at depth arrived with the original deposition of the formations; 2 ) the microbes 

at depth were transported to the current formations from elsewhere at a later geological time. 

The Cerro Negro site in northwestern New Mexico was chosen by the DOE to address these 

hypotheses.
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The lithology below Cerro Negro consists o f alternating sandstone and shale 

sedimentary formations that were deposited during the Late Cretaceous Period nearly 100 

million years ago when a shallow sea covered much of New Mexico. The shale layers consist 

of ocean floor sediment that was compressed and diagenized over time, forming layers with 

restrictive porosity that are high in organic carbon content. The sandstone layers were formed 

from compressed sand and have a less-restrictive porosity, providing a path for water flow and. 

potentially, bacterial transport. The pore throat diameter of the Clay Mesa Shale averages 

between 0.01 and 0.20  pm diameter (15), smaller than most known bacteria under starvation 

conditions which average 0.5-1.0 pm (23). It is thought that the interfaces between the shale 

and sandstone formations might provide a suitable environment for the long-term survival of 

microbes in the subsurface (9, 27, 31). One interesting hypothesis is that at least some of the 

bacteria present in the consolidated rock formations at depth below Cerro Negro are direct 

descendents of original colonizers dating to the Cretaceous Period.

Another fundamental question regarding the use of bacteria for remediation of 

subsurface contamination is whether bacteria injected into the subsurface can migrate to 

contaminated areas in sufficient numbers to be effective. Studies in laboratory columns with 

subsurface sediments have shown that numerous factors potentially influence the transport of 

bacteria. Included are the pH and ionic strength of groundwater (10, 27, 33), the presence of 

organics or aluminum/iron hydroxide coatings on minerals which may increase bacterial 

retention (13. 15, 27, 29) . The size and nutritional status of the bacteria (16), the surface 

charge and hydrophobicity of the bacteria (7), the grain size and distribution of the subsurface 

media (size/filtration theory) (10, 15, 33), and bacterial motility (6 , 10, 15, 19, 22, 23, 33). 

Studies have also demonstrated both non-reversible and reversible types of bacterial adsorption

3
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to solid substrates related to water flow velocity (23, 33), the abundance of bacteria (3), and as 

a function of the residence time of bacteria in the system (17,20).

Even less is known about the in situ transport behavior of bacteria in the subsurface, 

where many of the above factors likely come into play simultaneously. An injection of a 

stained, indigenous mixed collection of bacterial cells into a shallow, sandy, freshwater aquifer 

in Cape Cod, Massachusetts showed that DAPI-stained bacteria had similar breakthrough

patterns to conservative Br‘ tracers (bacterial C/Co~0.l), but, in general, had longer "tails" of 

breakthrough persisting tens of meters down-gradient (2). Although the bacteria traveled in a 

fairly narrow plume within the aquifer, the exact mechanisms affecting transport, and a 

determination of the specific types of bacteria which transported well, were not determined. 

There was also concern that the use of the DNA-binding dye DAPI to facilitate tracking had 

altered the viability and behavior of the bacteria that were being monitored. A preliminary 

subsurface injection into a shallow sandy aquifer at Oyster, Virginia with PL2W31 bacteria, an 

apparently low-adhesion bacteria indigenous to the site, showed that most (>99 %) bacteria 

were retained in the aquifer sediments within 0.5 meters of the injection point (8 ). Clearly, our 

ability to predict and model bacterial transport behavior based on the current state of 

knowledge is limited. Additional in situ bacterial transport experiments are necessary to help 

elucidate this complex and interesting phenomenon.

The Oyster, Virginia research site offers the opportunity to test specific factors which 

influence bacterial transport in the subsurface. The site is located on the southern tip of the 

DelMarVa (Delaware/Maryland/Virginia) peninsula and is owned by the Nature Conservatory 

of Virginia, ft was chosen for a series of in situ injection experiments because of its 

physicochemical features comprised of a relatively homogeneous subsurface sandy aquifer,

4
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consisting of unconsolidated to weakly-cemented, well-sorted, medium-to-Fme-grained Late 

Pleistocene sands (reference: http://www.lbl.gov/NABIR/info.html). The site contains both 

aerobic and anaerobic flow fields for analysis of bacterial transport under conditions of altered 

iron chemistry. The physicochemical characteristics of the site have been extensively 

characterized by various investigators. Geochemical techniques were used to analyze 

groundwater and sediment core chemistry, and geophysical techniques like Ground Penetrating 

Radar (GPR) and Cross-Borehole Tomography (CBT) were used to derive a 3-dimensional 

image of the physicochemical parameters of the flow Fields and to predict high and low 

permeability zones.

The aerobic flow Field (designated NC for Narrow Channel Focus Area) is in a 

saturated subsurface zone with a consistent water table located between 3-6 meters below the 

surface, and has dissolved oxygen concentrations between 6and 8 mg/L (28). The flow cell is 

comprised of relatively homogeneous and well-sorted sand with medium-sized grains 

composed mainly of quartz minerals (8 ). Clay minerals were not abundant at the site and 

organic carbon content was generally less than 0.5% by weight (8 ). Geophysical analyses of 

the flowfield have identified a potential zone of high conductivity based on larger pebble-sized 

grains. Veins of iron oxyhydroxides, which have been proposed to bind microbes and inhibit 

transport (24, 27) are the only potentially complicating factor identified in an otherwise 

homogeneous environment. The anaerobic lower flowfield (designated SOFA for South 

Oyster Focus Area) is more complex than the aerobic flowfield. The SOFA flow field is 

comprised of peat and clayey-silt organic layers in the upper regions of the aquifer, and sandy 

layers below, which are similar in lithology to the NC Field, but with lower oxygen tensions 

(anoxic), presumably due to heterotrophic microbial activity in the organic layers.

5
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Specific requirements were established by the Virginia Nature Conservatory to govern 

a bacterial injection at the Oyster site. The microbes used must be indigenous to the site, could 

not be radio-labeled, could not be genetically engineered, and could not have resistance to 

common clinical antibiotics (e.g. penicillin and tetracycline). Quantitative Polymerase Chain 

Reaction (qPCR) of genomic 16S ribosomal DNA (rDNA) was chosen as a method for 

bacterial enumeration because it is specific, quick and relatively inexpensive. The qPCR 

approach developed here was used to analyze the transport potentials of two "non-sticky" or 

adhesion-deficient bacterial (strains OY107 and DA001) isolated from the Oyster site.

Specific R esearch Goals

The specific goals of my dissertation research, as presented in my thesis dissertation proposal 

submitted to the Committee on December 4, 2000, were as follows:

I. Analysis of the subsurface bacterial community of Cerro Negro, New Mexico 

Goal I: Analysis of bacterial community structure and diversity of a sandstone/shale interface 

approximately 200 m below Cerro Negro, New Mexico, using molecular biological techniques. 

Goal 2: Comparison of microbial diversity to physical, chemical, geologic and hydrological 

characterization of the site, to enhance our understanding of the ecology of deep subsurface 

microbial environments.

Goal 3: Phylogenetic analysis of DNA sequence data to assess whether the current bacterial 

community represents survival of the ancient marine sediment community since the time of 

deposition millions of years ago.
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II. Bacterial transport in shallow subsurface aquifers

Goal 1: Develop gel-based and real-time fluorogenic qPCR approaches for accurately and 

specifically quantifying the transport of bacteria in subsurface environments.

Goal 2: Validation of qPCR versus other methods of quantification and detection in laboratory 

column experiments, including radioactive labeling, direct microscopic enumeration and 

culturable plate counts.

Goal 3: Use qPCR to monitor the transport of injected bacteria in in situ subsurface injection 

experiments into an aquifer at the field site in Oyster, Virginia.

Goal 4: Integration of microbiological results to the physical, chemical, geological and 

hydrological characterization data of the Oyster site to determine factors which influence the 

transport of bacteria.
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Preface to Research Chapters, Research Contribution:

Chapter 2 represents the results of our study of the deep subsurface 

shale/sandstone interface located 200 m below ground near Cerro Negro, New Mexico. 

The results represent a research collaboration o f our laboratory (Dr. Holben) and that of 

Dr. James Fredrickson at Pacific Northwest National Laboratory (PNNL) in Richland, 

Washington. These were results were submitted to the peer-reviewed journal Applied 

and Environmental Microbiology on (May 5, 2002). My contributions to that manuscript 

included: total community DNA isolation, PCR amplification using universal and 

iron/sulfur reducer-specific primers, DGGE analysis, cloning of DNA from DGGE bands 

for identification, generating approximately 10% of the total clones from the shotgun 

clone analysis and primary responsibility for writing of the manuscript on which I am 

lead author. Ken Takai and Melanie Mormile o f PNNL performed the remainder o f the 

shotgun cloning, the enrichment culture experiment and the RNA hybridization analysis. 

The chapter herein is formatted as submitted for publication.

Chapter 3 describes the development of the quantitative PCR procedures 

necessary for the monitoring of bacterial transport in support of column experiments and 

in situ injection experiments at the Oyster Virginia research site. This aspect of the 

research was performed primarily by me and represented a large portion of my total effort 

at the University of Montana. Similar to Chapter 2, Chapter 3 is presented as a 

manuscript submitted for publication with me as first author. This paper is now in the 

final stages of revision with Dr. Holben and will be submitted for publication to Applied 

and Environmental Microbiology.

10

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



Chapter 4 represents the culmination of four years of research involvement with 

the U.S. Department of Energy NABIR transport study at Oyster, Virginia. This was a 

large, multi-million dollar project involving many diverse research groups from around 

the country. At a DOE subsurface meeting in April 2002 in Virginia, it was decided that 

the Holben lab will take the lead role on a major publication resulting from that work 

based on our ability to use qPCR to relate aqueous bacterial numbers to post-injection 

sediment attachment rates. The paper integrates bacterial transport data from both the 

aqueous and solid phase (based on qPCR) with the physical and chemical 

characterization data from the site to determine controlling factors on bacterial transport.

I will have the lead effort in writing this manuscript and will thus be lead author on this 

paper.

Much of the data from these experiments has only very recently become available 

and there major chemical and organic analysis of sediments yet to be done in other 

laboratories. An extensive multivariate statistical analysis is also planned at PNNL (after 

all data is available) to add significance to our results. Because of this, Chapter 4 of this 

thesis describes only my contributions to this multidisciplinary study, most notably qPCR 

analysis of water and sediment samples from the Oyster 2000 injection experiments. 

Ultimately this chapter will be expanded to become the complete manuscript described 

above and submitted for publication to a major journal, possibly to Science, Groundwater 

Research or Environmental Science and Technology.
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Chapter 2: Analysis of the Microbial Community of a Shale/Sandstone 

Interface 200 m below Cerro Negro, New Mexico
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ABSTRACT

To analyze this subsurface microbial community, a multi-level sampler was emplaced 

in a borehole straddling Cretaceous-era shale and sandstone rock formations -200 m below 

ground surface at Cerro Negro, New Mexico. Sterile quartzite sand in the MLS allowed in situ 

colonization in this anaerobic, sulfate-rich environment. Microbial community nucleic acids 

were subsequently recovered and analyzed by a suite of molecular methods and enrichment 

cultures for select physiotypes were established. DGGE fingerprinting was used to assess 

diversity and compare community structure between samples. Partial 16S rDNA gene cloning 

and sequence analysis was performed to survey the bacterial species present. Quantitative 

RNA hybridization and culture-based enrichments were used to probe community metabolic 

function. DGGE and rDNA gene cloning results indicated a relatively homogeneous bacterial 

community across the shale/sandstone interface. Based on closest-match analysis, d- 

Proteobacteria sequences were common at all depths, and were dominated by members of the

Geobacteraceae family (Pelobacter, Desulfuromonas. and Geobacter). Other members of this

0
group are capable of dissimilatory Fe(III) and/or S reduction, but not sulfate reduction. RNA

0
hybridization data also suggested that Fe(III)/S reducing bacteria were predominant. Lack of 

significant concentrations of these electron acceptors suggests that these organisms may be 

growing via non-respiratory metabolism, possibly in syntrophic association with SRB or 

methanogens. The next most abundant bacterial group was the sulfate reducers, including 

Desulfobacterium, Desulfocapsa and Desulfobulbus. The presence of a phylogenetically and 

functionally diverse microbial community likely reflects the primary energy and carbon source 

for microbial metabolism in this subsurface environment, complex kerogen associated with the 

shale.
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INTRODUCTION

Numerous reports within the last decade have demonstrated the presence of a diverse 

array of active microbial populations and communities in a variety of deep subsurface 

environments and suggested their importance in biogeochemical cycling and other activities 

(11. 15. 23, 26, 27, 31, 35, 36,49, 52, 58, 9 1). These subsurface environments and their 

resident communities are of interest not only because of their unique nature, their lack of direct 

reliance on solar radiation, and the fact that they represent a large portion of the total 

environment available on earth, but also because subsurface environments represent perhaps 

the most likely location for the origin or persistence of life on other planets (12, 26). Among 

the many deep subsurface environments harboring microorganisms on earth, highly 

consolidated sediments (i.e. sedimentary rocks), some o f which are comprised of highly 

restrictive pore spaces, are particularly intriguing because the microbes present potentially 

represent remnants of ancient microbial communities laid down with the original deposits ( 10, 

16, 17, 23, 24).

In this study, the microbial community present in >90 million year old 

sedimentary rocks located -200 meters below Cerro Negro. New Mexico was 

investigated using DNA- and RNA-based molecular analyses. The lithology at depth 

consists of well-defined alternating sandstone and shale sedimentary formations 

deposited during the late Cretaceous period when a shallow inland sea advanced and 

receded several times across the area (48) (Fig. 1). The shale intervals were once near­

shore ocean sediment environments where anaerobic decomposition of organic material 

from ocean detritus occurred. The sediments were subsequently buried and diagenized 

over geologic time into highly consolidated rock material with low porosity (average pore
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size < 0.1 pm), which severely limits water movement and microbial access within the 

interval (24, 93). The sandstone layers which alternate with the shale layers were formed 

from compressed sand and have a less-restrictive porosity (average pore size = 1 - 6  pm), 

providing a potential path for water and nutrient flow (24).

It has been proposed that the interfaces between shale and sandstone formations 

provide a suitable environment for long-term survival of microbes in such subsurface 

environments (16, 17, 24, 33, 35, 47). The rationale at Cerro Negro is that complex 

organic matter dating to the Cretaceous period is slowly being leached from the 

diagenized Clay Mesa Shale formation into the adjacent Cubero Sandstone formation 

where increased porosity and water movement provide nutrients and electron acceptors 

needed for microbial growth (24, 33, 35). This organic material could then be broken 

down by the successive action of various types of fermentative bacteria into organic 

acids, alcohols, H2 and C02. Based on the abundance of dissolved sulfate in the 

groundwater (80 - 370 mg/1), it was hypothesized that sulfate reducing bacteria (SRB) 

were the likely terminal degraders in the system, oxidizing the organic acids, alcohols

and H2 while reducing sulfate to H2S or HS".

Prior research on intact rock cores taken from the site revealed an anaerobic 

environment with dissolved oxygen levels below detection and high levels of dissolved 

sulfate (24). Using a silver foil assay for ,5S-sulfate reduction on freshly fractured rock 

cores, discrete metabolically-active SRB communities were found in situ in the rock 

material of both the Cubero Sandstone and Clay Mesa Shale formations, although the 

majority of sulfate reducing activity was seen in sandstone formations located adjacent to 

the shales (35). Estimates of viable microbial biomass based on total phospholipid fatty
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acids (PLFA) were consistent with those from other deep subsurface fluvial sand 

environments, with calculated bacterial densities ranging from 3.5 x 10^ to 2.5 x 10^ 

cells/g in the Cubero Sandstone and Clay Mesa Shale formations (35).

The purpose of the current study was to employ direct DNA- and RNA-based 

approaches to investigate the microbial community present at the shale/sandstone 

interface below Cerro Negro, and to determine whether SRB indeed represent the 

predominant terminal degraders. Although other investigators have applied activity- and 

culture-based approaches to study subsurface microbial communities at this site and 

elsewhere, it was expected that molecular approaches might provide additional insights 

regarding the ecology of this system based on direct analysis of community structure, 

diversity, and phytogeny.

Due to the relatively low biomass of bacteria in the Cerro Negro rock formations, 

a multilevel sampler (MLS) was placed into a vertical borehole straddling the interface 

between the Clay Mesa Shale and Cubero Sandstone formations 182 - 192 m below 

ground surface (bgs). The MLS included discrete chambers containing sterile quartzite 

sand to provide substantial surface area to be colonized by the microbes at depth. Total 

bacterial DNA and RNA were subsequently extracted from the colonized sand for 

molecular analysis by denaturing gradient gel electrophoresis (DGGE), cloning and 

sequencing of partial 16S rDNA genes, and quantitative RNA hybridization with 

oligonucleotide probes. Additionally, enrichment cultures were established for 

fermentative bacteria. SRB. and denitrifying bacteria to determine the relative abundance 

of the culturable component of these major functional groups.
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The phylogenetic data obtained were interpreted in the framework of the existing 

physical and chemical data from the Cerro Negro site. There were clear examples where 

geochemical parameters matched the phylogenetic and functional capabilities of bacteria 

identified by our analyses. For example, the distribution of SRB organisms and activity 

correlated with sulfate and sulfide levels in the pore water. An unanticipated result of the 

molecular analyses was the predominance of organisms potentially capable of

dissimilatory Fe(III)/S° reduction in this sulfate-rich environment lacking apparent S°or 

ferric iron. Possible explanations for this apparent paradox are considered and discussed.

MATERIALS AND METHODS 

Sampling site and procedures. Groundwater samples and microbial community 

samples were obtained using a passive multi-level sampler (MLS) as previously 

described (94). The MLS was placed across the interface between the Clay Mesa Shale 

and Cubero Sandstone intervals (182 m - 192 m bgs) in a borehole designated as CNV-R, 

drilled through the Cretaceous Mancos Shale and Dakota Sandstone Formations at Cerro 

Negro in the southern San Juan Basin of New Mexico (24, 35). The MLS was comprised 

of discrete dialysis membrane-enclosed cells containing either deionized water for 

geochemistry samples, or a mixture of deionized water and sterile 1 mm quartzite sand 

(Accusand, Unimin Corp. New Canaan, CT) for microbiology samples. The sand was 

washed twice with I N HC1. rinsed extensively with deionized water, and then autoclaved 

twice prior to packing in the MLS cells. The MLS was emplaced and equilibrated in situ 

for 6 months prior to sampling to allow for equilibration with formation water and to 

provide sufficient time for microbial colonization of the sand matrix. After removal of
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the MLS from the borehole, sand samples were recovered and immediately frozen on dry 

ice in the field, then maintained at -80°C prior to analysis. Subsamples for enrichments 

were collected and placed on ice prior to freezing the bulk sample.

Extraction and purification of nucleic acids. DNA was extracted from 10 g of 

each sand sample using the Soil DNA Kit Mega Prep (MO BIO Laboratories, Inc., 

Solana Beach. CA) using the manufacturer’s suggested protocol. Ribonuclease A 

(Sigma. St. Louis, MO) was added to the preparations (0.02% w/v), which were then 

incubated at 37°C for 3 hours to destroy any contaminating RNA. These mixtures were 

subsequently extracted with an equal volume of phenol saturated with 100 mM Tris-HCl 

(pH 8.0), followed by sequential extraction with equal volumes of 

phenol/chloroform/isoamyl alcohol (24:24:1, v/v/v), and chloroform/isoamyl alcohol 

(24:1, v/v). DNA was precipitated from the resulting solutions using a 3X volume of 

ethanol in the presence of 0.3 M ammonium acetate and recovered by centrifugation 

using established techniques (65). To provide a negative control for potential 

contaminants in subsequent molecular analyses, a blank (no sand) sample was also 

extracted in the same manner.

Total RNA was recovered from replicate aliquots of the same samples used for 

DNA extraction. All plasticware, glassware and solutions used for RNA extraction and 

purification were treated with 0.1% DEPC to inactivate nucleases. Ten g of each sample 

was suspended in 7.0 ml of extraction buffer containing: 25 mM sodium acetate (pH 5.0): 

5 mM EDTA; and 5% (w/v) SDS to which 5 g of sterile glass beads (0.1 mm diameter. 

Sigma) and 7.0 ml of phenol/chloroform/isoamyl alcohol (24:24:1) equilibrated with 

extraction buffer was added. The mixture was shaken on a bead-beater (BioSpec
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Products, Inc., Bartlesville, OK) for 2 min, then incubated at 60 °C for 1 h, after which 

the bead-beating treatment was repeated. The resulting lysate was cleared by 

centrifugation at room temperature, then extracted with an equal volume of 

chloroform/isoamyl alcohol. RNA was precipitated by adding 10 M ammonium acetate, 

isopropyl alcohol, then incubating at -20°C, and recovered by centrifugation as 

previously (85). The resulting pellet was washed with 70% (v/v) ethanol, dried, and then 

dissolved in dH ,0. RNA was further purified using the RNeasy Midi Kit (Qiagen. 

Valencia, CA) according to the manufacturer’s directions. Concentrations of purified 

RNA and DNA solutions were determined using a spectrophotometer.

Microscopic enumeration of bacteria. Microbiological samples were fixed for 

12 h in 3.7% formaldehyde, then filtered through sterile 0.22 pm, irgalan-stained, 13 

mm-diameter polycarbonate filters (Millipore, Bedford, MA). The filter towers and 

filters were rinsed twice with dH,0, and the cells stained by treatment with dH20  

containing acridine orange (10 pg/ml) at 4 °C for 20 min. The filters were briefly rinsed 

with dHX) then examined by epifluorescence microscopy to enumerate bacterial cells.

Enrichment cultures. Anaerobic enrichment cultures for organisms capable of 

sulfate reduction, denitrification and fermentation were set up and incubated in an 

anaerobic glove-bag containing a 85:20:5 mixture of N2 , CCb, and H2 , with 0 2  removed 

by palladium catalysts. One gram samples of MLS sand were inoculated into 15 ml of 

enrichment media, and four, ten-fold serial dilutions performed in the same media to 

estimate cell numbers. The enrichment medium contained (per I): KH2 PO4 , 54 mg; 

K2 HPO4 , 70 mg; CaCh-2H 20, 15 mg; MgCl2 -6 H2 0 , 20 mg; FeS0 4 -7 H 2 0 , 5 mg; 

Na2S0 4 , 5 mg; MnCl2 -4 H2 0 , I mg; H3BO3 , 0.1 mg; ZnCh, 0.1 mg; C0CI2 -2 H2 0 , 0.1
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mg; NiCl2 -6 H2 0 , 0.1 mg; CuCl2,0.06 mg; Na2Mo0 4 -2 H 2 0 , 0.02 mg; NH4 CI, 1000 

mg; glucose. 500 mg; casamino acids, 500 mg; sodium lactate, 1700 mg; sodium 

pyruvate, 500 mg; sodium acetate, 500 mg; sodium formate, 500 mg; Na2 S-7 H2 0 , 100 

mg; Na2HCC>3 , 240 mg. The medium was then adjusted to pH 7.5 with NaOH. For 

sulfate-reducers. the media was amended with 2.0 g/1 Na2 SC>4 . Enrichment media were 

prepared under strictly anaerobic conditions as described previously (80), and dispensed 

into 25 ml anaerobic culture tubes (Bellco Glass, Vineland, NJ). Inoculated tubes were 

incubated in the dark at 20 -  24°C for up to 6 months. Turbidity in a specific tube was 

considered as a presumptive indicator for that type of bacterial activity.

The confirmatory test for SRB was conducted by extracting and measuring acid- 

volatile sulfide (AVS) from subsamples of the enrichment media as described previously 

(46). Formation of sulfide in excess of uninoculated controls was considered 

presumptive evidence of the presence of SRB. The presumptive test for denitritiers 

employed the diphenylamine assay (89). If turbidity was observed in an enrichment tube, 

but confirmatory tests for SRB or nitrifiers were negative, the tube was assumed to be 

positive for fermentative organisms.

Denaturing gradient gel electrophoresis (DGGE). Total DNA samples were 

PCR-amplified using a touchdown PCR protocol (49) employing universal primers 536fc 

and 907r (37, 78 and Table 1). PCR reaction conditions were as follows: initial 

denaturation at 95°C for 5 min; followed by twenty cycles of 95°C for 45 sec. 65°C for 

45 sec (decreasing 0.5°C/cycle) and 72°C for 1.5 min; followed by 10 cycles of 95°C for 

45 sec. 55°C for 1.5 min and 72°C for 1.5 min. DGGE analysis v/as performed using a 

D-GENE System (Bio-Rad Laboratories, Hercules, CA) in a 14 x 14 cm format. For
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these analyses, 12% acrylamide gels with a 45 - 60% gradient of urea/formamide as 

denaturant (100% = 42 g urea + 40 ml formamide/100 ml solution) were cast using a 

Hoefer SG series gradient former (Hoefer Scientific, San Francisco, CA). DGGE gels 

were run for 1600 Volt-hours at 70 - 100V at 60°C. Following electrophoresis, gels 

were stained with 5X Sybergreen I (FMC BioProducts, Rockland, ME) for 1 h at 37°C. 

then visualized and digitized under UV illumination using a Gel-Doc 1000 image capture 

system (Bio-Rad Laboratories).

Cloning and phylogenetic analysis of DGGE bands. Individual DGGE bands 

were recovered and analyzed using modifications of the protocol described by 

Sanguinetti (6 6 ). Briefly, the gel was placed on an Ultra-Lum UV transilluminator 

(Ultra-Lum Corp., Carson, CA) to visualize the DNA bands which were excised with a 

flame-sterilized razor blade and transferred to sterile 1.5 ml microcentrifuge tubes. The 

excised gel was thoroughly macerated with a flame-sterilized spatula, then 100 pi of gel 

elution buffer (50 mM KC1; 10 mM Tris, pH 9.0; 0.1% Triton X-100) was added and the 

gel macerated for an additional 15 seconds. The resulting mixture was incubated 

overnight at 37°C, after which residual acrylamide was pelleted by centrifugation at 

16,000 x g for 30 seconds. The supernatant was transferred to a sterile 1.5 ml 

microcentrifuge tube, purified by phenol extraction and subjected to ethanol precipitation 

using established protocols (65). The resulting DNA was resuspended in 20 pi of sterile 

dH,0 and stored at -20  °C prior to use.

For cloning. 15 ng of DNA was ligated into the pT7Blue-3 vector and 

transformed into Novablue cells using the Perfectly Blunt Cloning Kit (Novagen Corp. 

Madison, WI) according to the manufacturer’s recommendations. Plasmid DNA from
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putative clones (identified by blue-white selection of colonies) was purified using 

QIAprep spin columns (QiaGen Corp., Valencia, CA) and screened to confirm the 

presence of correctly sized inserts by restriction digest analysis (65). DNA from each 

clone was reamplified and analyzed by DGGE to confirm clone correctness and position. 

Confirmed clones were then subjected to bi-directional DNA sequence analysis (MWG 

Biotech, High Point, NC). Potential chimeras were identified using the Chimera check 

function of the Ribosomal Database Project II website (RDP-II;

http://www.cme.msu.edu/RDP/) (45) and were not considered further. Identification of 

the nearest known bacterial relative was performed using the Sequence Match function of 

the RDP II website.

Phylogenetic trees of fully aligned sequences were generated using BioNumerics 

ver. 2.0 software (Applied Maths, Kortrijk, Belgium). The sequences were clustered 

using the Neighbor Joining, Maximum Parsimony and Maximum Likelihood algorithms 

and Jukes and Cantor correction. The consensus tree from each algorithm was 

subsequently bootstrapped 1000 times.

DNA sequence analysis from MLS sand. Eubacterial rDNA was amplified by 

PCR using LA Taq polymerase (TaKaRa, Kyoto, Japan) and the primers Bac27f and 

Bacl392 (Table 1). Except for the primers, PCR reaction mixtures were essentially as 

described previously (8 6 ), and PCR reaction conditions were 35 cycles of: denaturation at 

96°C for 25 sec, annealing at 50°C for 45 sec, and extension at 72°C for 120 sec. The 

resulting rDNA amplicons were cloned into vector pCR2.1 using the Original TA cloning 

kit (Invitrogen, Carlsbad, CA). Clones of appropriate size were identified by direct PCR 

analysis from picked colonies using M 13 primers as described (8 6 ). The amplified
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inserts were subsequently treated with exonuclease I and shrimp alkaline phosphatase 

(Amersham Pharmacia Biotech, Buckinghamshire, UK), then directly sequenced by the 

dideoxynucleotide chain-termination method using a Big Dye sequencing kit (ABI,

Foster City, CA). The 907r primer (Table 1) was used to obtain single-stranded 

sequences for this broad phylogenetic survey. The resulting sequences were compared to 

other known rDNA sequences by BLAST analysis of the prokaryotic SSU rRNA 

database and the non-redundant nucleotide sequence database from GenBank, EMBL and 

DDBJ (www.ncbi.nlm.nih.gov: www.embl-heidelberg.de/: and www.ddbi.nig.ac.jp. 

respectively).

The affiliation o f individual rDNA sequences to known phylogenetic groups was 

obtained using the gapped-BLAST and the SUGGEST_TREE program of the RDPII 

website. Individual sequences that had >99% similarity by gapped-BLAST to a database 

sequence were assigned to the phylogenetic group of that sequence, while rDNA 

sequences having <99% similarity to sequences in the RDP II database were assigned to 

related groups using the SUGGEST_TREE program of the RDP II website. Where 

rDNA sequences were included within a monophyletic cluster of database sequences by 

SUGGEST_TREE, the obtained rDNA clone was classified as a member of that cluster.

Northern hybridization analysis. A dilution series of RNA samples (1. 0.5 and

0.1 ng/pl) was denatured at 100°C for 10 min. then quickly cooled on ice. Denatured 

RNA samples were spotted onto Hybond-N+ nylon membranes (Amersham Pharmacia 

Biotech Inc., Piscataway, NJ) and UV cross-linked by exposure to 120 mJ of UV light 

energy with a Stratalinker 1800 (Strategene, Torrey Pines. CA). All oligonucleotide 

probes (2, 4 and Table 1) were 5’-labeled with digoxigenin by the supplier (Midland
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Certified Reagent Company, Midland, TX). The specificity of the probes was checked 

using the Probe Match function of the RDPII and the gapped-BLAST search algorithm 

(3, 7) to examine whether non-targeted rDNA sequences were similar to the probe 

sequences. Hybridization and wash conditions were empirically optimized for each 

probe and defined as those giving the highest signal to the intended targets while 

minimizing cross-reactivity to sequences from other functional or phylogenetic groups 

using corresponding rDNA from known reference organisms prepared by PCR.

Northern hybridization was conducted overnight in hybridization buffer (750 mM 

NaCl; 75 mM sodium citrate, pH 7.0: 0.02% (w/v) SDS; 0.1% (w/v) sodium- 

lauroylsarcosine; and 2% (w/v) blocking reagent (Boehringer Mannheim. Indianapolis. 

ID)) at empirically-derived optimal hybridization temperatures (Table 1). Following 

hybridization, filters were washed twice for 5 min at room temperature with wash buffer I 

(300 mM NaCI: 30 mM sodium citrate, pH 7.0: 0.1 % SDS). and then washed twice at 

the optimized wash temperature (Table 1) for 30 min with wash buffer II (15 mM NaCl;

1.5 mM sodium citrate, pH 7.0; 0.1 % SDS). Hybridization signals were quantified using 

the DIG luminescent detection kit and a Lumi-imager FI detection system (Boehringer 

Mannheim, Indianapolis, ID).

Genbank accession numbers. The twelve sequences obtained in this study that 

were used in the phylogenetic analysis (Fig. 4) have been deposited in GenBank under 

accession numbers xxxxx to xxxxx (submission in process at time of submission).
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RESULTS

Geochemical characterization. MLS samples were obtained from the interface 

between the Clay Mesa Shale and Cubero Sandstone formations in borehole CNV-R (24, 

35) following 6 months of in situ incubation. Prior geochemical characterization of 

original core samples collected during the drilling of CNV-R indicated that the fine­

grained shale intervals contained higher amounts of organic carbon and sulfur (pyritic S), 

while the sandstone intervals were relatively coarse-grained and contained lower amounts 

of organic carbon and total sulfur (Fig. 1 and (24). The average pore size in the Clay 

Mesa Shale interval ranged from 0.1 to 0.01 pm, while that in the Cubero Sandstone was 

generally >1 pm. The transition zone between the shale and sandstone was at 185 to 186 

m bgs. Sulfate concentrations in MLS pore water ranged from 10 - 20 mg/1 in the Clay 

Mesa Shale to 20 - 70 mg/1 in the Cubero Sandstone (Fig. 2). The highest levels of 

sulfate were observed in the sandstone interval adjacent to the shale/sandstone interface. 

Sulfide levels were highest between 187 and 190 meters bgs, a region of the Cubero 

Sandstone also depleted in sulfate (Fig. 2). Soluble nitrate levels were generally near the 

limit of detection (0.01 - 0.05 mg/1), although two localized peaks (-0.4 mg/1) were 

detected at 184.9 m bgs (at the shale/sandstone interface) and 187.6 m bgs. Soluble iron 

and manganese species were below detection (data not shown).

Microbial population densities and nucleic acid extraction. Microbial 

population densities, determined by AODC. were relatively constant throughout the 

profile, at approximately 2 x 10° cells/g wet weight (Table 2). Total DNA and RNA 

yields ranged from 1 - 3 ng/g wet weight. Based on DNA yields from each sample, and 

assuming an average cellular DNA content of 2 fg (6 ), the estimated microbial population
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densities of the MLS samples ranged from 0.8 - 1.2 x 106 cells/g wet weight, and thus 

were in good agreement with population densities determined by AODC.

Enrichment cultures. Based on geochemical characterization of the Cerro 

Negro formations, bacterial enrichment cultures for physiotypes expected to inhabit the 

formations were established. Enrichments for fermentative, sulfate-reducing, and 

denitrifying bacteria were performed to estimate the relative abundance of culturable 

organisms with these physiotypes colonizing the MLS samples. Organisms capable of 

fermentation, sulfate reduction and denitrification were found at all intervals tested 

(Table 3). Denitrifier and SRB populations were generally higher throughout the profile 

than were fermentors. Denitrifier activity was detected to the I O'4 dilution for all sample 

depths, while SRB were detected to the 10‘3 dilution for all but the 187.24 m interval, 

indicating relatively high viable populations for both groups. Fermentor populations 

were generally lower throughout the profile, with activity detectable only to the 10'2 

dilution in shale samples, and only to 10 '1 in sandstone samples.

DGGE and phylogenetic analysis of cloned bands. DGGE analysis of partial 

16S rDNA genes was used to determine and compare species richness across the profile. 

The results indicated relative homogeneity in the microbial community throughout the 

profile with essentially identical patterns of fourteen major bands visualized in each 

sample (Fig. 3).

DNA from individual DGGE bands was subjected to DNA sequence analysis and 

compared to known organisms in the RDPII and BLAST databases (Table 4). The results 

indicated phylogenetic affiliations to a suite of anaerobic bacteria, mainly within the d 

subdivision of Proteobacteria. These included the sulfate reducers Desulfobacterium
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phenolicum, Desulfocapsa thiozymogenes and Desulfobulbus rhabdoformis; the 

Fe(in)/S° reducers Desulforomonas acetexigens, Pelobacter acetylenicus, P. propionicus, 

and Geobacter arcultts; the syntrophic fermenter Smithella proprionica, and the acetogen 

Holophaga foetida. The g and b subdivisions of Proteobacteria were represented by the 

denitrifiers Pseudomonas stutzeri and Acidovorax sp., respectively. Clostridium 

perfringens. a fermentor in the Gram positive, low G+C Division of Bacteria was the sole 

non-Proteobacteria representative detected. Although no sequence was 100% identical to 

any aligned representative on the RDPII or BLAST databases, all but two clones (bands 5 

and 6 ) had >96% sequence similarity to some known organism and were identified as the 

same or synonymous species by both the BLAST and RDP programs (Table 4). The 

clone from band 9 was identified as Azoarcus str. BH72 by the RDP program and as 

Acidovorax sp. BSB421 in the BLAST analysis. However, both indicated species are 

members of the b subdivision of Proteobacteria and are involved in nitrogen metabolism. 

Bands 1 and 10 each produced two different sequences, indicated as different genera, 

which had co-migrated on the DGGE gel (Table 4). Despite multiple attempts, the 

unnumbered bands in Figure 3 were either heteroduplex molecules, produced no clones, 

or resulted in non-rDNA sequences, indicating that these were PCR artifacts.

The rDNA sequences recovered from the DGGE gel were placed into 

phylogenetic trees with representatives of known, related organisms and Escherichia coli 

as an outgroup to provide phylogenetic context for these deep subsurface Bacteria. 

Neighbor Joining, Maximum Parsimony and Maximum Likelihood phylograms were 

generated, bootstrapped 1000 times, and compared. All three algorithms produced very 

similar dendrograms with identical branching points, and, in every case, the sequences
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from the isolated DGGE bands were affiliated closely with the same cohort of known 

sequences. The Maximum Parsimony tree is presented with bootstrap values (Fig. 4).

Phylogeny of rDNA clones from MLS samples. Because DGGE analysis 

provides a measure of species richness but does not reliably indicate relative abundance 

of individual populations, shotgun cloning of partial I6 S sequences from total community 

rDNA was also performed. Based on the DGGE analysis, which indicated that the 

predominant community members were from the domain Bacteria, PCR primers targeting 

eubacteria were employed to produce partial rDNA clones (ca. 550 - 600 nucleotides), 

which were then subjected to unidirectional DNA sequence analysis. The number of 

clones analyzed for each MLS sample ranged between 73 and 128 (Table 5).

The rDNA phylotypes detected were relatively invariant throughout the MLS 

depth profile (Table 5). As with the sequences obtained from the DGGE gels, the most 

common rDNA clones were closely related to the d subdivision of Proteobacteria and to 

the low G+C, Gram-positive group. Collectively, these two groups accounted for more 

than one-half of the clones obtained from each sample (Table 5). Other major phylotypes 

included members of Flexibacter-Cytophaga-Bacteroides group (FCB group) and the g 

subdivision of Proteobacteria. represented mainly by clones related to Syntrophus sp.

LYP (>97% similarity) and Pseudomonas stutzeri (>99% similarity). Several apparently 

novel clones were also obtained that had little apparent sequence similarity to other 

known rDNA sequences and no apparent phylogenetic association to any other bacterial 

divisions, but these were not considered further in the context of this study.

Analysis of the distribution of rDNA clones related to organisms within the d- 

Proteobacteria revealed certain trends corresponding to the depth of the samples. The
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frequency of occurrence of the Pelobacter-Desulfuromonas group was higher in two of 

the three shale interval samples than in the transition or sandstone interval samples (Table 

5). By contrast, the frequency of Geobacter group clones was highest in the two deepest 

sandstone-associated samples. The frequency of clones closely related to sulfate- 

respiring d-Proteobacteria was highest in the transition sample and in 3 of 4 sandstone 

interval samples. Within the low G+C Gram-positive group, the dominant rDNA clones 

were most closely related to the sulfate reducing Desulfotomaculum (79), the thiosulfate- 

reducing fermentor Fusibacter (63), and the fermentor Clostridium aldrichii (61).

RNA hybridization analysis. In another analysis to determine whether the 

predominant bacterial populations detected by cloning and DGGE analysis were among 

the most abundant and active community members, northern hybridization analysis was 

performed using existing domain-specific oligonucleotide probes and other probes based 

on the rDNA clones detected (Table 1). With this approach, the abundance of directly- 

detected rRNA is presumed to be proportional to the general metabolic activity and 

abundance of the corresponding organisms, whereas rDNA quantification reflects only 

the population size.

The hybridization signal detected by the total eubacterial probe Bac338 was 

relatively constant throughout the profile, corresponding to a 16S rRNA signal o f - 6  x 

105. (Fig. 5, panel A). The rRNA signal corresponding to Fe(III)/S° reducers (based on 

the sum of the Geo989 and Pelo989 probe signals) was also relatively constant 

throughout the profile, comprising nearly 50% of the total Eubacterial signal. The 

estimated fermentor signal (based on the Fusi 198 probe) ranged from 2 - 4 x 10J, with the 

highest values seen in the Cubero Sandstone interval. The activity of the sulfate-reducing
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organisms (estimated by subtracting the Geo989, Pelo989, Dstma220 and Fusi 198 

hybridization signals from the D+SRB385 signal) generally increased with depth, from 3 

x 104 to I x 105 with the highest levels observed in the transition zone and sandstone 

intervals rather than in the shale intervals (Fig. 5, panel A). The estimated SRB and 

fermentative activities represented approximately 8.5 % and 5.0 % of the total 

community activity, respectively, as indicated by relative strength of the hybridization 

signals. Based on these data, the sum of the apparent activities of these three major 

physiological types (Fe(III)/S° reducers, SRB, and fermentors) accounted for 65-78% of 

the overall metabolic activity of the community.

We also compiled the rDNA clone data, arranged by metabolic group, to 

determine whether community function could be inferred from the population densities of 

the corresponding groups, including denitrifers which were not targeted in the rRNA 

hybridization analysis (Fig. 5, panel B). In this analysis, organisms related to those

capable of Fe(lII)/S’ respiration predominated across the entire profile. On a percentage

basis, Fe(III)/S1’ respirers were more numerous than any other group in the Clay Mesa 

Shale intervals. In the Cubero Sandstone intervals, sulfate reducers and Fe(IH)/S" 

reducers were present in approximately equal numbers. At the interface between the 

shale and sandstone formations (185.11 m bgs), SRB represented the majority of rDNA 

clones obtained, contrasting with the rRNA hybridization results which indicated that 

Fe(III)/S" reducers were the most metabolically active group. Fermentative and 

denitrifying organisms were generally low in abundance throughout the profile, with 

fermentative organisms more numerous in the Clay Mesa Shale intervals. Thus, with one
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exception, the distribution of metabolic types indicated in this analysis is consistent with 

the patterns indicated by the rRNA hybridization results shown in Figure 5, panel A.

DISCUSSION

The purpose of this study was to examine the phylogenetic and functional 

diversity of the bacterial community across an interface of consolidated shale and 

sandstone Cretaceous rock formations 200 m below Cerro Negro, New Mexico in 

relation to the geochemical properties of the groundwater and rock. It was hypothesized 

that the interfaces between organic-rich shale intervals and more permeable sandstone 

intervals offered the highest potential for sustained life over geologic time periods (17. 

24, 33, 35, 47. 90). Based on prior chemical, physical and microbial analyses of rock 

cores from the site (24, 34, 35), an assemblage of sulfate reducing, fermentative, 

denitrifying, secondary syntrophic, and acetogenic organisms were expected to be 

present. Due to high sulfate concentrations in the rock pore water, sulfate reducing 

bacteria were expected to be the most abundant and active terminal degraders in this 

anaerobic ecosystem.

Geochemical analyses. Chemical analysis of the equilibrated pore water in the 

MLS samples indicated levels of soluble sulfate and sulfide indicative of SRB activity 

(Fig. 2). Sulfate levels were highest in the Cubero Sandstone interval adjacent to the 

boundary with the Clay Mesa Shale interval. These values decreased between 187 and 

190 m in depth, corresponding to a region with elevated levels of sulfide in the pore 

water. Elevated SRB populations in the same region, indicated by dilution series 

enrichments (Table 3). and relatively higher SRB rRNA signals (Fig. 5, panel A), are also
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consistent with a biogenic origin of sulfide. Nitrate levels were low but detectable in 

MLS pore water (0.05 to 0.40 mg/1), and enrichments for denitrifiers were positive for all 

depths tested (Table 3). The presence of active fermentative organisms was also 

supported by both the dilution series enrichment and rRNA hybridization results (Table 3 

and Fig. 5, panel A), but was expected to be lower in general than the other groups tested 

based on lower energy yields. All of the above represent examples where the microbial 

abundances and activities were generally consistent with the groundwater and rock 

geochemical properties.

Microbial community structure. One unexpected result was the relatively 

homogeneous nature of the microbial community across the entire shale/sandstone 

interface that was indicated by our analyses. It was hypothesized that fewer and different 

populations of bacteria might reside in the Clay Mesa Shale interval compared to the 

Cubero Sandstone interval due to the restrictive porosity. It was also anticipated that a 

distribution of different bacterial types might exist across the shale/sandstone interface, 

from fermentative organisms breaking down the complex organic compounds leaching 

from the shale, to secondary fermentative syntrophs. acetogens and SRB utilizing the by­

products of fermentation within the sandstone interval (33, 35). However, our data 

indicated that total bacterial numbers and the concentrations of total DNA and RNA 

isolated from the MLS samples were relatively constant across the shale-sandstone 

interface (Table 2). Further, DGGE banding patterns, which provide characteristic 

fingerprints representing the populations present, were also essentially identical 

throughout the profile (Fig. 3). The RNA hybridization results indicating the most 

numerous and metabolically active populations were also relatively uniform, except for
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the higher SRB signals detected in the Cubero sandstone interval (Fig. 5). Even the 

random rDNA cloning results, indicative of the number of individuals of a given species, 

were similar for most samples, with the proportions of different functional and 

phylogenetic types being relatively constant throughout the profile (Table 5).

One possible explanation for these findings is that deep-subsurface rock environments, 

where in situ production rates are among the lowest known (17). select for a more uniform 

microbial community. Recent research on deep subsurface sediments in Washington State 

indicated a relationship between microbial diversity and sediment permeability where 

relatively impermeable muds and paleosols had low diversity, while more permeable sands and 

gravels were inhabited by a more diverse array of organisms (91). Presumably, physical and 

chemical isolation in the impermeable sediments limits the diversity present. Similarly, the 

limited porosity of the consolidated rock formations below Cerro Negro could have contributed 

to the homogeneity observed, resulting in a more-uniform distribution of community members 

and a limited number of species.

Another possible explanation is that drilling the borehole or even the multi-level 

sampler (MLS) itself may have contributed to the observed microbial community homogeneity. 

The MLS, whose use for analysis of microorganisms in low-biomass environments is first 

described in this study, contained sterilized quartzite sand offering a clean, extensive new 

surface for microbial colonization at depth. It is unlikely that there was significant vertical 

movement of microbes within the MLS itself since the colonization matrix was sealed into 

discrete compartments vertically. However, even though the MLS was designed to sample 

distinct zones in the vertical axis based on discrete sample chambers and inflatable sidewall 

baffles, the borehole walls themselves may have been uniformly colonized by the community
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at depth prior to placement of the MLS. Since the borehole was capped prior to installation of 

the MLS, groundwater within the borehole would have been relatively stagnant prior to 

placement of the MLS and could have allowed movement of organisms and diffusion of 

solutes, including nutrients, throughout the borehole.

There might also have been a scale effect related to the MLS. The discrete cells of the 

MLS are positioned every 5 cm vertically, with alternating cells for chemical and microbial 

analysis. Thus, the microbial community was sampled every 10 cm. a fairly precise increment 

for biogeochemical analyses, but perhaps too large to resolve microbial community 

architecture and distribution, if present. Further, samples within individual MLS cells were 

homogenized prior to distribution, disrupting any small-scale (<5 cm) spatial heterogeneity that 

may have existed. Finally, recent hydrogeological data from the site indicates a possible 

upward flow of water in the formations, and low but measurable vertical hydraulic 

conductivities in the shale (93). This could also result in a "conduit" effect for water flow, and 

a more even distribution of organisms in the MLS, and perhaps even in the parent rock 

material. Any or all of these factors may have contributed to the relative homogeneity of the 

bacterial community over the MLS interval.

Phylogeny of the microbial community. Phylogenetic analysis indicated a 

community comprised of various physiological groups of anaerobic microorganisms, 

primarily from the d subdivision of Proteobacteria, in this Cretaceous rock environment.

This included Fe(III)- and/or S°-respiring chemoorganotrophs, various dissimilatory 

sulfate reducing bacteria, acetogens. and syntrophic fermenters. The apparent 

predominance of d Proteobacteria in subsurface Cretaceous rock is first described in this 

study, although rDNA clones related to members of the d Proteobacteria have been
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recovered in other subsurface studies (15, 21, 55-57, 59). Denitrifying 

chemoorganotrophs of the b and g subdivisions of Proteobacteria were also indicated in 

our study, as were representatives of the low G+C Gram positive division of Bacteria. 

Three different algorithms were used to generate phylogenetic trees comparing the 

sequences obtained in these analyses to other known representatives of these groups of 

bacteria, and each produced comparable results. In general, the sequences obtained were 

closely related to other known genera and species of bacteria.

Our phylogenetic results were generally consistent with the types of organisms 

expected to be able to utilize the complex resources available at a shale/sandstone 

interface. It is possible that this community is surviving over geological time by utilizing 

the limited available substrates in a coordinated, syntrophic manner. Previous laboratory 

studies have demonstrated that shale-derived organic matter can drive sulfate reduction 

and acetogenesis in sandstone samples from this site (24), and bacteria displaying these 

physiological processes have been isolated in enrichment cultures from core samples 

from the site (34. 35).

Differences in the distribution of microbial types, such as the increased proportion 

of Pelubacter-like members adjacent to the Clay Mesa shale interval, may reflect the 

distribution of specific classes of organic compounds available for growth and energy. 

Pelubacter can grow by fermentation in the absence of either Fe(III) or S° as electron 

acceptors, but can only ferment a limited range of specific substrates including 2,3- 

butanediol. acetoin, ethylene glycol and acetylene (68-70, 72-74,77). Although 

concentrations of the aforementioned organic compounds were not measured in this
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study, it is possible that certain classes of organic compounds provided by the carbon-rich 

shale favored the growth and activity of Pelobacter-like organisms.

It has been also demonstrated in vitro that certain Pelobacter and Syntrophus 

species can grow in syntrophic association with hydrogenotrophs under some conditions 

(6 8 . 69, 7 i, 73, 77, 92). The hydrogenotrophs, usually SRB. acetogens, or methanogens, 

utilize the H2 produced so that growth of the syntrophs via fermentation is energetically 

favorable. A number of bacterial species previously assumed to be non-syntrophic can 

shift their metabolism to grow syntrophically in the absence of external terminal electron 

acceptors, including various SRB within the d Proteobacteria, some Clostridium species 

and some Geobacter species (18. 60, 67, 70. 75 ).

Based on these and previous results, the microbial communities at this site are 

complex, interdependent, and metabolically diverse. This reflects their dependency upon 

the complex detrital organic matter deposited with the sediments during the Cretaceous 

period. We speculate that the detrital organic matter may be effectively utilized in part 

by syntrophic cooperation among the members of the microbial community. Although 

the physiology of individual members of this subsurface community was not extensively 

analyzed, the close phylogenetic affiliation of the rDNA clones obtained to groups of 

well-characterized anaerobic microorganisms indicates that the community at depth is 

primarily an assemblage of anaerobic microorganisms. This bacterial community 

contains members having a variety of metabolic strategies including primary and 

syntrophic fermentation, sulfate- and sulfur-respiration. acetogenesis and denitrification.

Predominance of Fe(III)/Su reducing bacteria. One unanticipated finding of 

this study was the predominance of Pelobacter-. Desufuromonas-, and Geobacter-teldied
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bacteria in our DNA and RNA based analyses. These genera are phylogenetically related 

and are generally grouped as members of the Geobacteracea family which can couple the 

oxidation of organic matter to the reduction of Fe(III) and Mn(IV) (39-42, 44). Members 

of these same genera are also capable of utilizing elemental sulfur, but not sulfate, as an 

electron acceptor (39,44).

Due to the abundance of sulfate in the pore water, and the limited availability of 

alternative electron acceptors, it was anticipated that SRB would represent, both 

numerically and in terms of activity, the predominant terminal degraders in the 

ecosystem. The dilution series enrichment analyses were consistent with this expectation 

in that viable SRB were relatively abundant. Yet, four of twelve DGGE band rDNA 

clones (Fig. 3), and over 41% of Eubacterial rDNA clones aligned with organisms 

capable of Fe(III)/S° respiration, compared to three SRB DGGE band clones and 35% 

SRB Eubacterial clones (Fig. 5, panel B). Numerically, Fe(III)/S° reducers were equal to 

the SRB in the Cubero Sandstone interval, and were in greater abundance than SRB in 

the Clav Mesa Shale (Fig. 5, panel B). The Fe(III)/S° reducers group also accounted for 

nearly 50% of the total community abundance/activity based on RNA hybridization 

results (Fig. 5, panel A).

The predominance of organisms related to Fe(III)/S° reducers is intriguing and not 

readily explained by the measured geochemical properties of the site. In other studies of 

subsurface environments, community structure usually reflected the geochemistry of the 

site and availability of suitable electron acceptors utilized in order of reduction potential: 

0 2  > Mn(IV) > nitrate > Fe(III) > sulfate > CO2  (16, 17, 19, 53, 54, 60, 8 8 , 90).

Although iron is a common component of the Clay Mesa Shale formation, it is present
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predominantly as the secondary mineral pyrite (Fig. 1). Pyrite dissolution is generally 

only possible under highly acidic, oxic conditions and is thought to not be possible under 

strictly anoxic conditions (5, 9, 29, 51, 76, 84. 90). Even if dissolution were possible, the 

iron would be in the *2 oxidation state and not available as an electron acceptor for 

microbial respiration unless iron oxidizing bacteria were present (90) and these were not 

indicated in our results.

Nitrate was present in limited amounts in this system, but only a few FedlD/S11 

reducers have been shown to utilize nitrate as an electron acceptor (41). Concentrations 

of Mn(IV) were not determined in our study but would be less likely to be present than 

Fe(III) because the presence of Mn(IV) would be even less thermodynamically favorable 

than Fe(III). The relative insolubility of S°. and the fact that it is generated mainly from 

biotic and abiotic oxidation of reduced S species, suggests that that S° was probably not a 

major electron acceptor for microbial metabolism in the reducing environment of the 

shale/sandstone interface either. The lack of soluble Fe(III). Mn(IV) or elemental S() 

essentially eliminates them as significant electron acceptors supporting the growth and 

metabolism of Pelobacter, Desufiiromonas and Geobacter in this environment.

It is possible, however, that FedlD/S" reducers are proliferating at the 

shale/sandstone formation through some novel and as yet undescribed type of 

metabolism. Recently, it has been demonstrated in vitro that certain denitrifiers isolated 

from sediments can couple nitrate reduction with the oxidation of ferrous iron (8 . 81, 82). 

although the identities of the organisms involved were not determined. A similar type of 

metabolism might function at Cerro Negro to utilize by-products of pyrite dissolution 

(sulfate and ferrous iron) if it were occurring in micro-aerobic environments at depth.
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However, energetically, it seems unlikely that this metabolic strategy could support the 

relatively large population of Fe(III)/S° reducers detected.

Alternatively, the specific d Proteobacteria in this deep subsurface environment 

may have additional metabolic capabilities beyond Fe(III)/Sw reduction that are not 

represented by other known members of this group, potentially being capable of reducing 

sulfate or other electron acceptors. Recently an organism was isolated from a 3000 m 

deep gold mine in Africa that was able to utilize Cb, nitrate, Fe(III), Mn(IV), Co(III)- 

EDTA, Cr(VI), U(VI) and S° as electron acceptors (32), demonstrating the wide range of 

potential metabolic capabilities inherent in microorganisms from subsurface 

environments. Another possibility is that the rDNA sequences recovered, although most 

closely affiliated with known Fe(III)/S° reducers, may instead represent a novel group of 

SRB that are related phylogenetically. but not functionally, to known Fe(III)/S° reducers.

We believe, however, that the most likely explanation for these results is that the 

organisms related to Fe(III)/Su reducers are growing via a fermentative metabolism in 

syntrophic association with respiratory organisms, utilizing the complex organic material 

available and secreting H ,or simple organic acids which are then utilized by SRB and/or 

methanogenic bacteria (68-70, 72-74. 77. 92). Viable sulfate-reducing bacteria were 

present in relatively high numbers throughout the MLS interval and, although not 

included as part of this study, organisms closely related to archaeal methanogens were 

also present throughout the MLS interval (Takai et al. submitted for publication). Some 

were phylogenetically related to Methanoscircinaceae members that are capable of 

autotrophic growth with H:. The presence of active methanogens also suggests that the 

community members related to Fe(III)/S° were not growing with Fe, Mn or S as electron
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acceptors because they would have likely outcompeted the methanogens in this 

environment if these electron acceptors were non-limiting. Our results indicate that 

microbial metabolism in the deep-subsurface environment at Cerro Negro is likely 

limited by the availability of readily usable electron donors, relying on the interactions of 

many types of organisms to utilize the complex organic material dating to the Cretaceous 

Period.

Origins and survival of indigenous bacteria. An original objective of the 

research at Cerro Negro was to determine the origin and potential time of arrival of the 

bacteria at depth. One intriguing scenario to explain the abundance of Fe(III)/S° reducers 

at Cerro Negro is that these organisms could be remnants of original community 

inhabiting the near-shore ocean sediments during the Cretaceous Period. During that 

time, a large ocean covered much of the southwestern United States, and the sediments 

derived from this near-shore ocean sediment environment would eventually become the 

Clay Mesa Shale rock formation that was examined in this study (48). Based on the 

restrictive porosity of the formations, especially the Clay Mesa Shale, it was postulated 

that at least some of these microbes might represent or be descended from the original 

microbes associated with the sediments at the time of deposition. It was hypothesized 

that some of those bacteria could have subsequently become entrapped during sediment 

deposition and diagenesis (24).

Consistent with that hypothesis, it has previously been shown that Fe(III) and 

sometimes Mn([V) reduction are important for organic matter oxidation in near-shore 

ocean sediments. These processes account for 30-90% of organic carbon oxidation under 

conditions where the sediment is physically mixed, such that any reduced Fe or Mn
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species would be re-oxidized (1, 14, 28,43, 50, 8 8 ). Indeed, prior research from modem 

marine sediment environments indicates an abundance of d Proteobacteria (20), 

Cytophaga-Flavobacterium-Bacteroides (CFB)-related organisms (38, 62, 87), as well as 

organisms capable of denitrification (13. 25) and fermentation (22, 30, 83). Thus, the 

metabolic profile of the Cerro Negro microbial community at depth indicated by our 

analyses is consistent with an origin based on near-shore ocean sediments. This is 

particularly striking considering that the surface landscape is currently an arid terrestrial 

environment.

Although our results are consistent with microbial phylotypes and metabolic 

activities found in near-shore ocean sediment environments, no firm conclusions 

concerning the origin and arrival times of the current microbial community can be made 

based solely on these analyses. Many of the nearest relatives to our 16S rDNA clones 

were isolated from a variety of anaerobic sediment environments including marine, 

estuarine, and freshwater sediments, as well as contaminated subsurface environments 

and digestor sludge. Identification and alignment of the sequences obtained in this study 

with other known organisms revealed no obvious correlation or bias toward marine 

sediment organisms. This is perhaps not surprising since a survey of the literature related 

to the phylogeny of Fe(III)/S° reducers, SRB. and other organisms reveals no compelling 

evidence of discrete phylogenetic groupings for organisms of marine versus 

terrestrial/freshwater origin. Often the only detectable difference between marine and 

terrestrial/freshwater bacterial populations for a variety of bacterial groups is the 

requirement for NaCl and facultatively psychrophilic growth observed in marine 

organisms (64). It is possible, maybe even likely, that the current microbial community
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residing at the shale/sandstone interface below Cerro Negro is a mixture of surviving 

bacterial populations that colonized the sediments at the time of deposition, and others 

that arrived via migration at some later geological time.

Summary. Collectively, our results and those of prior studies at this site (24, 35) 

indicate the presence o f an active, phylogeneticaliy and physiologically diverse microbial 

community in the deep subsurface Cretaceous rock environment at this site. This 

diversity probably reflects the complex nature of the kerogen associated with the shale. 

The geochemical parameters measured were generally consistent with the phylogenetic 

and functional capabilities of bacteria identified by our analyses. For example, the 

relationship between sulfate and sulfide levels in pore water and the presence of SRB 

organisms and activity. Two unanticipated findings were the homogenous nature of the 

microbial community traversing the shale sandstone interface, and the apparent 

predominance of Fe(lII)/S() reducers in an environment expected to be dominated by 

SRB. Further analyses are required to provide additional insights into the 

biogeochemical processes occurring in this Cretaceous rock environment and the factors 

responsible for the apparent predominance of Pelobacter-Desulfuronioncis-Geobacter- 

type organisms. Applying methods for the cultivation and study of syntrophs to samples 

from this site might also provide additional insights into the in situ microbial processes 

and interactions, and may represent a strategy for culturing previously uncultivated and 

unidentified microorganisms from this and other subsurface sites.
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Fig. 1. Study site characteristics. A MLS was placed across the interface between Clay 
Mesa Shale and Cubero Sandstone formations at the depth range of 182 to 190 m. The 
transition zone between the shale and sandstone is indicated by dashed line. (A) 
Interpreted lithology and stratigraphy of the CNV-R borehole. (B) Pore throat diameter 
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below ground surface. The transition zone between the shale and sandstone is indicated 
by shaded rectangle.
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Fig. 3. DGGE profile of PCR-amplified 16S rDNA from MLS samples across the 
shale/sandstone interface using universal primers. Numbered bands correspond to those 
bands yielding valid 16S rDNA sequence information; bands l and 10 each produced two 
valid sequences. Unnumbered bands were either heteroduplex rDNA molecules or did 
not produce valid 16S rDNA sequences. PCR amplified rDNA from ATCC strains 
Clostridium perfringens (Clost +) and Micrococcus lysodeikticus (Micro +) were used as 
markers for low (2S%) and high (72%) G+C content DNA, respectively.
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55

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



1.E+06

(0c
O)
'55

Clay Mesa Shale
transition

zone Cubero Sandstone

wl.E+05
(/)
to

0>
s(0
0
C 1.E+04

■ Total Eubacterial
■ Fe(lll)/S reduction 
a Sulfate reduction 
a Fermentation

B

V)
0c o
o
<

0
o

■ Fe(lll)/S reducers
□ Sulfate reducers
□ Fermentors 
a Denitrifiers

182.60 183.27 184.48 185.11 186.66 187.28 187.91 191.34

Depth (m)
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inferred from Northern rRNA hybridization with a set of relevant probes identified from 
partial sequencing of library clones, and from the literature (see Table 1). (B) 
Distribution of rDNA clones by functional group; function inferred by rDNA clones to 
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Table 2. Sample intervals, bacterial numbers, and nudeic add yields from MLS samples

Depth (m)1 Total counts DNA(ntfg}2 RNA (ntfg)2 (x 106/g)2
18027 1.70 1.80 2.50
183.85 2.00 1.80 2.30
184.48 1.50 1.50 280
185.11 1.80 1.90 220
185.74 1.90 220 240
186.66 2.00 2.10 220
18728 1.80 1.40 200
187.91 2.10 2.10 250
18824 2.20 1.90 230
189.17 1.60 2.30 240
189.80 2.50 2.00 210
190.71 2.20 1.90 250
191.34 1.90 220 240

1 Depths are in meters below ground surface 
2AJI yields are per gram wet weight
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Table 3. Bactariai anrichments from MLS samples. 1

183.27 m, Clay Mesa Shale 1.E+00 1.E-04

DenRrfflars 
Denlt rifiers 
DenRrfflars 
S04 reducers

184.48 m, Clay Mesa Shale 
Fermentors

Danitrifiars 
Danitrifiars 
Danitrifiars 
S04 reducers

185.11 m, Transition zone 
Farmentors

Danitrifiars 
Danitrifiars 
Danitrifiars 
S04 reducers

186.66, m Cubero Sandstone
Fermentors
rermantocs
Danitrifiars
Danitrifiars
Danitrifiars
S04 reducers

187128, m Cubero Sandstone
Fermentors
Fermentors
Danitrifiars
Danitrifiars
Danitrifiars
S04 reducers

187.91 m, Cubero Sandstone
Fermentors
Fermentors
Danitrifiars
Danitrifiars
Denlt rfflers
S04 reducers

191.34 m, Cubero Sandstone
Fermentors
Tormentors
Danitrifiars
Danitrifiars
Danitrifiars
S04 reducers

lUrbkfity
Qas production
lUrbkfity
N02
N03
bikppt

lUrbkfity
Qas production
TUrbktty
N02
N03
Black precipilats

lUrbkfity
Gas production
lUrbkfity
N02
N03
Blade precipitate

lUrbidlty
Gas production
lUrbidlty
N02
N03
Black precipitate

lUrbkfity
Gas production
lUrbidlty
N02
N03
Black precipitate

lUrbkfity
Gas production
lUrbkfity
N02
N03
Black precipitate

lUrbidlty
Gas production
lUrbkfity
N02
N03
Black precipitate

1.E+00

1.E+00

1.E+00

1.E-04

1.E+00 1.E-04

1.E-04

1.E-04

1.E+00 1.E-04

1.E+00 1.E-04

ND2
NO

1Each sample was serially dRuted in terfokl Increments out to 1 .E-04 
2ND ■ not done

1.E-02 1.E-03 1.E-01
+/- - ++

.E-02 1.E-03 1.E-01
W * - +

E-02

E-02

E-02

E-02

+/*

E-03

E-02 1.E-03 1.E-01

1.E-03 1.E-01
♦

+ /•

1.E-03 1.E-01
+

♦ /-

1.E-01
+

E-03 1.E-01

ND
ND
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Chapter 3: Development and Application of qPCR Approaches for 

Monitoring Bacterial Transport in the Subsurface
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ABSTRACT

To facilitate monitoring of bacterial transport during in situ subsurface bacterial 

injection experiments, two quantitative PCR (qPCR) methods for enumerating specific 

bacteria in aqueous environmental samples were developed and compared, a gel-based 

competitive qPCR method, and a fluorogenic, real-time qPCR method. These protocols 

allow direct determination o f bacterial numbers in aqueous samples without requiring any 

prior sample processing or DNA purification. The competitive qPCR approach is based 

on PCR amplification using primer sets specific for a unique region of the 16S rDNA 

gene of the organism of interest. Target bacterial DNA and a constant amount of 

competitor DNA are simultaneously amplified in a single PCR reaction mixture , 

permitting quantification of bacterial numbers based on ratios of target and competitor 

products. The fluorogenic method employs primers and fluorogenic probes targeting 

unique 16S rDNA sequences, thereby increasing the specificity and range of detection. 

Signal detection is accomplished in real-time, permitting a wider dynamic range of 

detection and more precise quantification without sample dilution or concentration. 

Validation of these methods was accomplished in comparison to other established 

methods in pre-packed columns and intact sediment cores using Comamonas sp. DAOOI 

and Acidovorax sp. OY107. Iow-adhesion bacterial strains indigenous to the test aquifer. 

Preliminary results of in situ bacterial injection experiments into the aquifer are also 

presented. Our results indicate that the qPCR strategies described herein allow rapid, 

specific and accurate quantification of transported bacteria, and represent useful tools for 

rapid, long-term and far-field analysis of bacterial movement and survival in the 

environment.
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INTRODUCTION

Knowledge regarding the transport behavior of bacteria in saturated and 

unsaturated porous media has broad implications in diverse areas ranging from 

agriculture to groundwater quality, risk assessment and bioremediation (14). For 

example, bioremediation using introduced bacteria represents a potential method for 

dealing with deep subsurface contamination since injected bacteria can potentially travel 

by water flow to distant contaminated sites. However, relatively little is known about the 

transport capabilities of bacteria injected into the subsurface. Much of our knowledge 

base comes from laboratory studies using intact cores or repacked columns of subsurface 

material (10, 11, 20, 32, 33). Fewer studies address the in situ transport properties of 

bacteria (1, 13),

Important to any bacterial transport study is the availability of accurate and 

specific methods of bacterial enumeration in environmental samples. Bacterial transport 

experiments performed to date have, for the most part, employed selective plating 

approaches based on natural or modified bacterial traits (32), nucleic acid-stained 

bacterial cells (1,2, 13), DNA-based detection of engineered DNA sequences specific to 

the organism of interest (34) or radiolabeling of cells (12). These approaches have 

proved invaluable for monitoring bacterial transport, but may not be applicable in all 

experimental situations. For example, it is generally not feasible to employ radioactively- 

labeled or genetically-modified organisms for in situ studies, and other methods of 

“tagging” organisms may alter the physiological or transport properties of the bacteria 

(13,28).

To overcome these limitations, a new suite o f bacterial tracking tools that are 

more suitable for in situ experiments is required. Vital dyes that appear not to affect 

bacterial viability or transport have recently been successfully used for laboratory (9) and 

field (8) transport experiments. Ferrographic tracking of organisms in the subsurface,
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based on magnetic recovery of ferric iron-linked antibodies, has been developed and
13deployed (17). Detection of C-enriched bacterial cells by isotope ratio mass 

spectrometry has also recently been successfully employed to monitor bacterial transport 

in an East Coast aquifer (14).

Here, we describe the development of direct qPCR techniques to monitor in situ 

bacterial transport in subsurface aquifers. This approach was developed in support of 

studies where indigenous organisms were injected into a shallow aquifer at the DOE 

bacterial transport study site on the Eastern Shore of Virginia, and transport behavior 

subsequently monitored. Requirements for these injection experiments were the use of 

non-engineered, indigenous bacterial strains not having resistance to clinically important 

antibiotics. The use o f  radioactive or other potentially harmful chemical tags was also 

not allowed. The qPCR approaches described herein satisfy thoserequirements because 

detection is based on PCR amplification of a naturally-occurring sequence in the genomic 

DNA of the test organism. The specificity of detection is based on the binding of PCR 

primers and in some cases fluorogenic probes to unique regions of the 16S rDNA gene in 

the target organism. These approaches provide for rapid, sensitive and specific detection 

of bacteria of interest in groundwater samples.

The gel-based competitive qPCR (hereafter competitive qPCR) method relies on 

simultaneous amplification of target DNA with a known amount of internal competitor 

template in the reaction mixture, allowing precise quantification of cell numbers through 

determination of the ratio of target (unknown) to competitor (known) PCR product. .

The added competitor DNA has identical primer-binding regions as the target sequence 

of the organism of interest, but has a 100 base pair insert in the middle of the target 

sequence, resulting in the production of two PCR products of different size in a single 

reaction. This allows simultaneous separation and quantification of competitor and target 

PCR products in an agarose gel. The competitive qPCR concept was first developed to 

monitor HIV long-terminal repeats (35) and has been previously used in past microbial
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ecology research for the quantification of 16S rDNA genes (16, 21-24), 16S rRNA copy 

numbers (6, 7, 29), and for the detection of specific functional markers (18, 24, 25).

The fluorogenic real-time qPCR (hereafter fluorogenic qPCR) method is based on 

the real-time detection of fluoresence increase from an oligonucleotide probe molecule 

when degraded by the 5' exonuclease activity of the polymerase enzyme used in PCR (15, 

21). The oligonucleotide probe molecule contains a fluorochrome moiety covalently 

attached to one end of the molecule (5’ or 3' end), and a quencher moiety attached to the 

other end. The quencher prevents emission of light by the fluorochrome when the probe 

is intact (e.g. bound to sample DNA or free in solution). During each cycle of PCR, 

double-stranded DNA is denatured at 95°C. followed by specific binding of the PCR 

primers and oligonucleotide probe to complementary regions of the denatured DNA 

strands. The polymerase enzyme then traverses the template from the 3' end of each 

primer, degrading bound probe with its 5' exonuclease activity producing a light emission 

increase in proportion to the exponential increase in DNA copies during PCR 

amplification. A threshold cycle (Tc ) is then determined corresponding to the point at

which fluorescence begins to increase in a linear fashion. Samples with higher target cell 

numbers will have a lower Tc, while those with lower target cell numbers will have a 

higher Tc. By inclusion of a dilution series of known target cell numbers, a regression 

formula is generated to enumerate the number of target cells in each sample. The 

fluorogenic qPCR concept has been previously used in past microbial ecology research 

for the quantification of 16S rDNA and rRNA (3,4, 31). We report an approach for 

direct qPCR that eliminates sample processing and DNA purification. This direct 

approach was validated by comparison to data obtained from direct microscopic 

enumeration, plate count enumeration, and radioactively labeled bacteria in experiments 

with repacked columns and intact cores of sediment from the DOE Oyster bacterial 

transport site. Representative data from in situ injection experiments at the site are also 

presented in comparison to other detection methods used in the field. To our knowledge,
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this work represents the first direct application of competitive and fluorogenic qPCR 

methods to unpurified environmental samples, and the first use of qPCR to study 

subsurface bacterial transport.

MATERIALS AND METHODS

Bacterial culture conditions. The bacterial strains Comamonas sp. DA001 and 

Acidovorax sp. OY107, were isolated from groundwater as indigenous members of the 

microbial community at the DOE bacterial transport site as previously described (5). The 

identification of these aerobic heterotrophic strains was based on partial 16S rDNA 

sequence information. To initiate each experiment, the cells were streaked from a 

permanent glycerol stock culture (15% glycerol, -70°C) onto R2A agar (Difco, Detroit, 

MI) and incubated at 25°C for 48 h. For radioactive labeling, colonies growing on R2A 

agar were scraped off with a sterile loop and thoroughly resuspended to an OD550  of 5.0

in M9 medium (26). This cell suspension was diluted 1:100 in 250 ml of M9
14supplemented with 250 pi ot C-acetate (1.0 mCi/ml, 2.0 mCi/mmol, New England 

Nuclear, Boston, MA) and incubated overnight at 25°C on a rotary shaking platform at 

250 rpm. Unlabeled acetate was then added to a final concentration of 0.1% (w/v) 

followed by an additional 48 h incubation with shaking at 25°C. Following incubation, 

the cells were harvested by centrifugation at 16,000 x g at I0°C for 10 min. then 

resuspended in the same volume of unsupplemented M9 to remove unincorporated 

glucose. This wash step was repeated and the cells resuspended in one-fourth volume of 

un-supplemented M9, then starved at room temperature in the dark for 48-72 h prior to 

use in experiments. Following starvation, the cells were once again washed as described 

above. The degree of l4C enrichment in the cultures was determined by analysis of an 

aliquot of the starved bacterial suspension as described below.
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Study site description. The DOE bacterial transport site is located at the tip of 

the Delmarva Peninsula on the southern end of the Eastern Shore of Virginia. The site 

has been fully characterized and is described in detail elsewhere (5). The sediments in the 

aquifer are comprised of unconsolidated to weakly cemented sand that is well-sorted and 

ranges from fine- to medium-grained and pebbly sand. The sediments were deposited by 

wind-, wave-, and tidally-driven currents (5).

Intact and repacked cores. Native-matrix intact and repacked core experiments 

were performed to validate the qPCR approaches for specific detection of bacteria in 

aquifer samples. Sediment material, intact cores and groundwater used in these 

experiments were taken from the DOE bacterial transport site. Intact cores (7.5 x 70 cm) 

were recovered from an exposed outcrop (the “borrow pit”) and represent lithologies 

similar to those in the flow field used for the in situ experiment (27). As described 

previously (14), each exposed end of the cores was trimmed to provide a final length of 

50 cm and sealed with a ported PVC end cap milled and screened to provide uniform 

access to the entire core diameter for influent and effluent water. Prior to initiating 

experiments, cores were perfused extensively with 5-10 pore volumes of site groundwater 

(SGW) in an up-flow configuration.

Repacked cores were constructed of polycarbonate cylinders (3.5 x 45 cm) which 

were packed to uniform density with bulk sediment (thoroughly homogenized) from the 

borrow pit. The repacked cores were capped with rubber stoppers containing inlet and 

outlet ports and sealed with silicon caulking. Repacked cores were sterilized by 

autoclaving three times for 1 h with 24 h intervals between each round of autoclaving. 

Prior to initiating experiments, the repacked cores were perfused in an up-flow 

configuration with 5-10 pore volumes of Oyster artificial groundwater (OAGW), the 

composition o f which is based on the groundwater chemistry of the site and has been 

described previously (14).
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For all core experiments, radioactively labeled cells were introduced at a density 
g

of approximately 10 cells/ml (exact concentrations were precisely determined for each 

experiment) in 0.5 PV of SGW or OAGW at a flow rate of 5.0 ml/min in the up-flow 

configuration. Samples (0 .1 pore volumes each) were collected from the core outlet 

during this process using a Bio-Rad Model 2128 fraction collector (Bio-Rad 

Laboratories, Hercules, CA). Individual samples were processed for enumeration o f 

bacterial cells by direct microscopic enumeration, plate count enumeration, radioactive 

isotopic analysis, or qPCR as indicated.

Direct microscopic enumeration. Direct microscopic enumeration of cells in 

the cultures and core eluent samples was based on fluorescence microscopy of DAPI 

stained cells, essentially as described by Schallenberg et al., (30).

Plate count enumeration. Enumeration of strains DA001 and OYI07 based on 

colony forming units (CFU) was accomplished by spread plating appropriate dilutions of 

samples onto R2A agar plates followed by incubation at 25°C for 48 h.

Quantification of cell numbers based on l4C label. Radioactively labeled cells 

in OAGW or SGW were enumerated by filtering 5 ml of water sample (unknown or 

regression samples) onto a 0.2pm Poretics filter (Osmonics, Livermore. CA). The filter 

was subsequently added to 10 ml of EcoLite scintillation fluid (ICN Biomedicals, Inc.. 

Costa Mesa, CA), mixed vigorously, and then counted in a Beckman LS 6500 

scintillation counter (Beckman Instruments, Fullerton. CA) for 10 min. To determine the 

numbers of radioactively labeled cells in unknown samples, the relationship between 14C 

cpm (counts per minute) values and cell numbers was established as described previously 

(14). Briefly, a subsample of the starved cells for injection was analyzed by direct 

microscopic enumeration to determine the true number of cells, and then subjected to 

serial dilution in triplicate to provide a series of samples containing 10^. 10^, 10^, 10^, 

105, 104. 10^, 10". 10* and 0 cells/ml. These dilutions were then analyzed by liquid 

scintillation counting and the data used to generate a regression plot of log cell numbers
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vs. log 14C CPM. The regression formula from this plot was subsequently used to 

determine the number of cells/ml in unknown samples based on measured l4C cpm.

Development of the competitive qPCR system. Strains DA001 and OY107 

were streaked for single colony isolation onto R2A agar and incubated at 25°C for 48 h. 

A small, sterile inoculating loop was touched to a single colony and the intact cells 

transferred to a 600 pi microfuge tube containing PCR reaction mix. The primers in this 

reaction were 16S rDNA "universal" primers 536f (5-

CAGC(CA)GCCGCGGTAAT(AT)C-3', E. coli positions 519-536) and 1392r (5’ 

ACGGGCGGTGTGT(AG)C-3', E. coli positions 1406-1392). The PCR reaction mix 

contained: 20pM of each primer. 200pM dNTPs: lx PCR buffer containing 1.5mM 

MgCl2 (Boehringer-Mannheim, Manheim, Germany); and 5 units of Taq polymerase

(Boehringer-Mannheim) in a total reaction volume of 50 pi. A "touchdown" PCR 

protocol was used to increase specificity of amplification (5), with an initial denaturation 

at 95°C for 15 minutes, followed by 20 cycles of: 1 min denaturation at 95°C; 1 min 

annealing at 68°-58°C (starting at 68°C and decreasing by 0.5°C/ cycle); 3 min extension 

at 72°C; and then 10 additional cycles of 1 min denaturation at 95°C; I min annealing at 

58°C; 3 min extension at 72°C; and a final extension for 10 min at 72°C.

The PCR products were purified using the QiaQuick PCR purification kit 

(Qiagen, Valencia, CA), ligated into the pT7Blue-3 plasmid vector and transformed into 

NovaBlue competent cells (Perfectly Blunt Cloning Kit, Novagen, Madison, WI) using 

the manufacturer’s specifications. Blue/white screening was used to identify potential 

clones. Plasmid mini-preps of putative clones were performed using the QiaPrep Spin 

Mini-prep kit (Qiagen) and proper-sized inserts confirmed by EcoRI (Gibco Life Science 

Products, Grand Island, NY) restriction digestion resolved on 1.5% agarose gels 

(SeaKem GTG agarose, FMC Bioproducts, Rockland, ME).

DNA inserts were sequenced from both directions and a consensus sequence 

generated using the AssemblyLign program (Eastman Kodak, New Haven, CT).
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Potential primer pairs for specific detection of strains DAOOl and OY107 were generated 

using the Mac Vector program (Eastman Kodak), which selects primer pairs based on GC 

content, compatible melting temperatures, and secondary structure considerations. The 

candidate qPCR target sequence was then submitted to the RDPII database (Ribosomal 

Database Project II, Center for Microbial Ecology, Michigan State University 

(www.msu.edu/RDP/html), checked for potential chimeras using the "Chimera Check" 

program, and aligned to the nearest relatives in the RDPII database using the "Sequence 

Match" program. The sequences of the five most closely related organisms represented 

in the database were downloaded from the RDP site and manually aligned with the 

corresponding DAOOl sequence using AssemblyLign. Based on this approach, primer 

sets specific for strains DAOOl and O Y 107 were obtained comprised of the specific 

primers DAOOlf and OY107f (positions 471-494 based on E. coli positions) and the 

universally-conserved reverse primer 1392r (19). As a final confirmation of primer 

specificity, the primer sequences were analyzed by the "Probe Match" analysis of RDPII, 

which compares potential primer sequences to all known 16S sequences in its database. 

Each primer was determined to be unique to strains DA00I and OY107, respectively.

For development of the competitor sequence for the qPCR procedure, the DNA 

Strider 1.0 (internet shareware) program was used to determine potential restriction 

enzyme sites in the target sequence. A 100 bp segment of DNA was subsequently 

inserted into the qPCR target sequence using the restriction enzyme Aat II. For this 

purpose, the 100 bp fragment of the Gibco Low Mass Ladder (Gibco Life Science 

Products, Grand Island, NY) was excised from a low-melt 1.5% NuSieve GTG agarose 

gel (FMC Bioproducts, Rockland, ME), purified by phenol/chloroform extraction and 

ethanol precipitation using standard protocols, and ligated into the target DNA at the Aat 

II restriction site. The correctness of this construct was subsequently confirmed by DNA 

sequence analysis.
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Competitive qPCR analysis. A standard curve of known numbers of DAOOI 

ceils was generated for regression analysis based on a serial dilution of target cells with a 

fixed amount o f competitor DNA. A dilution series of known amounts of competitor 

DNA in either SGW or OAGW (as appropriate) was first amplified alone to determine 

the linear concentration range of amplification based on subsequent detection of product 

on 1.5% SeaKem GTG agarose gels (FMC Bioproducts, Rockland, ME) with EtBr 

staining (125 pg/ml). The amount of competitor DNA template corresponding to the 

midpoint of the linear range (0.6 ng of competitor plasmid DNA or approximately 1x10^ 

copies per PCR reaction) was then chosen as the fixed amount of competitor for future 

regression sample and unknown sample analyses.

For the regression analysis, a subsample of the starved cells for injection was 

analyzed by direct microscopic enumeration to determine the true number of cells and 

then subjected to serial dilution in triplicate to produce a series of samples containing 

10^, 10^, 107, 10^, 10^, 104 10^, 10“ , 10* andOcells/ml. These dilutions were then 

used in qPCR reactions and the data used to generate a linear regression plot of cell 

numbers vs. targetrcompetitor ratio as described below. For all qPCR reactions 12.5 pi of 

water sample was added to 12.5 pi of PCR reaction buffer containing 20 pM each of 

primer sets DAOOl f and 1392r or OY107f and I392r; 200pM dNTPs; lx PCR buffer 

containing I.5mM M gCh (Boehringer-Mannheim. Manheim, Germany) and 5.0 units of

Taq polymerase (Boehringer-Mannheim) in a total reaction volume of 50 pi. Touchdown 

PCR was then performed as described above. Following PCR, 8 pi of PCR product and 2 

pi of sample loading buffer were mixed and loaded on a 1.5% TAE agarose gel and 

subjected to electrophoresis. A digital image of the resulting ethidium bromide-stained 

DNA bands was captured using a Gel Doc 1000 digital system and Molecular Analyst 

software (Bio-Rad Laboratories, Hercules, CA) and then exported as a TIFF file into 

RFLP Scan Plus 3.0 software (Scanalytics Inc., Billerica, MA) for quantification by 

densitometry. A plot was made of the log of known cell numbers in the dilution series to
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the log of targetrcompetitor product ratio. The regression formula from that plot was 

subsequently used to determine the numbers of cells in unknown samples based on their 

targetrcompetitor ratio. New dilutions and regression analyses were performed for each 

different experiment.

Fluorogenic probe qPCR. For this approach, the consensus sequence of DAOOl 

and OY107 was used for developing the probe sequences for fluorogenic qPCR. For 

analysis of samples, a subsample of the starved cells for injection was analyzed by direct 

microscopic enumeration to determine the true number of cells and then subjected to 

serial dilution in triplicate to produce a series of samples containing 10^, 10^, 10^, 10^. 

10'*, !04, 10^, 10", 10* and 0 cells/ml. These dilutions were then used in qPCR 

reactions and the data used to generate a linear regression plot of cell numbers vs. Tc ( 

threshold cycle), and the regression formula used for determination of cell numbers. For 

all qPCR reactions, 5.0 pi of water sample was added to 12.5 pi of Platinum Quantitative 

PCR SuperMix-UDP (2X solution containing 60 U/ul Platinum Taq DNA polymerase, 

40mM Tris-HCL (pH 8.4), lOOmM KC1. 6 mM MgC12,400uM dGTP. dATP and dCTP, 

and 800 uiVf dUTP. 40 U/ul UDG and stabilizers), with 0.2uM forward and reverse 

primers, and 0.2uM 5' FAM-labeled fluorogenic probe with 3' QSY7 quencher (MWG 

Biotech, High Point, NC), in a total volume of 25 ul. The real-time detection of PCR 

product accumulation was accomplished using an iCycler PCR thermocycler / 

fluorometer (Bio-Rad Labs, Hurcules. CA). A two-step PCR protocol was utilized, 45 

cycles of (950 for 45 sec.. 720 for lmin. 30 sec.),.with FAM-specific fluorescent 

detection during the annealing cycles.
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RESULTS AND DISCUSSION

Long-term monitoring of injected bacteria into the deep subsurface is possible with qPCR 

because of specific detection of genomic 16S rDNA of the target organism. The gel- 

based competitive and fluorogenic probe qPCR methods are both accurate and specific 

PCR-based methods for the enumeration of bacteria in environmental samples. Although 

both methods rely on PCR amplification of 16S rDNA genes, the gel-based method 

requires many more steps and man-hours, both in the development of the procedure, as 

well as in sample analysis (Fig.l).

Sample analysis using the gel-based qPCR method requires PCR amplification of 

sample DNA, followed by separation of PCR products on a TAE agarose gel containing 

EtBr, scanning of the gel image into a densitometry program, determination of 

absorbance of genomic and competitor band intensities, and manual entry of absorbance 

data into a spreadsheet program for determination of cell numbers. Although labor- and 

time-intensive, gel-based competitive qPCR is a cost-effective and accurate method for 

bacterial enumeration by PCR, and can be accomplished using equipment found 

commonly in any molecular biology laboratory.

The main advantage of the fluorogenic probe approach is the ability to process 

many samples simultaneously and very quickly. Samples are loaded into the wells of a 

96 well microtiter plate containing PCR master mix (all PCR components except primers, 

probe, and sample template) and PCR is performed with a combination PCR thermocyler 

/ fluorometer. Results are obtained under real-time conditions, with calculated cell 

numbers directly downloaded to a spreadsheet program. Sample analysis which took 

days to complete using the gel-based method requires only a few hours for 96 samples 

using the fluorogenic probe method. This approach also has the advantage of a much 

broader linear range of detection, virtually eliminating the need for sample dilution (see 

Standardization and Controls).
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Development o f Methods

Development of both the gel-based and fluorogenic qPCR methods begins with 

insertion of the gene of interest into a plasmid vector for ease of manipulation and 

sequence analysis. In the 16S rDNA genome, there are a number of potential regions to 

choose from, and it is best to consider as many regions as possible for potential primers 

and probe locations. For this reason, it is advantageous to initially clone as big of 

fragment of the 16S genome into the vector system as possible. We used the universal 

primers 536f and 1392r to clone approximately 60% of the 16S genome into our working 

vector.

Development of the gel-based qPCR involves construction of a plasmid 

competitor that competes with sample template DNA in a PCR reaction tube. The 

construction of the competitor sequence requires either an internal insertion or deletion in 

the target sequence to facilitate discrimination of the two fragments (target and 

competitor) by agarose gel electrophoresis. Upon examination of the DNA sequence of 

DAOOl, no single restriction enzyme or pair of enzymes could be identified to remove the 

desired 50-100 bp of DNA by deletion, an artificial 100 bp DNA fragment (gel-purified 

from the Gibco Low Mass DNA Ladder) was cloned into the single Aat II site of the 

target sequence. The resulting construct sequence was not similar to any organism found 

in the RDP database when analyzed by the Sequence Match or Sequence Align programs. 

Thus, the inserted piece of DNA was not expected to significantly affect its PCR 

amplification qualities since the primers employed do not bind in that region, and no 

secondary structures were predicted that might inhibit or otherwise affect the polymerase 

chain reaction. The success of PCR amplification in yielding the proper-sized product in 

predicted amounts was further confirmation that the insertion caused no functional 

problem for the qPCR procedure. The construction of the competitor sequence and an
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example agarose gel showing the separation o f target and competitor fragments are 

depicted in Fig. 2.

Unlike the gel-based method, the majority of developmental time for the 

fluorogenic probe method involves sequence analysis for determination of suitable primer 

and probe locations. For use of the fluorogenic probe method on 16S rDNA genes, this 

can be problematic for a number of reasons. First, the PCR amplicon must be relatively 

small in size (<= 150 bp) for real-time detection of fluorogenic probes (PE Applied 

Biosystems bulletin # 777904). This limits the choice of suitable primer and probe 

locations because variable regions of the rDNA genome (specific to a given organism) 

are often hundreds of base pairs apart. Because of potential secondary formation in the 

sequence of bases in the I6S rDNA (which might cause the oligonucleotide probe to fold 

onto itself) there is a need to run the PCR analysis at relatively high annealing 

temperatures as well. For our analysis, we used a 2-step PCR protocol of 45 cycles of 30 

sec. at 95° C for denaturation and annealing/extension for 1 min. at 72°C. And because 

of the high temperature conditions needed for annealing, the sequence chosen for primers 

and probe had to have a relatively high Tm as well, which in turn requires fairly long

oligonucleotides to be designed (personal communication, Research and Development, 

Bio-Rad Laboratories, Hercules, CA). For the fluorogenic method, the resultant primer 

and probe sequences were approximately 40 bp long with an average G-C content near 

60%. One advantage of the relatively high Tm's required is being able to am the 

annealing/extension step at the Tm maximum for Taq polymerase.

PCR primers and probe selection

The specificity of detection for both the gel-based and fluorogenic qPCR methods is 

based upon the regions of DNA selected for primer and probe location. In general, 

selection of suitable primers and probes for qPCR involves the following steps:

1. Choosing potential PCR primer and probe location
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2. Adjustment of the length and position of primers/probe so that T m matches within 2° 

C.

3. Analysis of sequences for potential secondary structure and self-complimentary 

regions

4. Check of specificity by comparison of primer and probe sequence to known organisms

The approximate location on the 16S genome sequence where the primers /  probe 

are to be located was first chosen: more variable regions for specific detection of an 

organism, or more-conserved regions for group-specific detection. A computer program 

was then used (MacVector, Kodak, Rochester, N.Y.) to identify potential primer pairs 

based on desired amplicon and primer length, %G-C content, ionic content of PCR 

buffers, as well as compatibility as primers. Both the size and base composition of the 

DNA chosen (G-C content) determine the Tm; increasing the size and/or the G-C content 

of the primer/probe increases its Tm as well.

Gel-based competitive qPCR. For our experiments, the goal was to develop a 

specific detection system for the quantification of the transport of bacteria injected into 

subsurface aquifers at a research site located in Oyster, Virginia. The gel-based 

competitive method was developed for an injection of the bacterial strain DAOOl into an 

aerobic subsurface aquifer (Narrow Channel or NC) in Nov. 1999. For strain DAOOl, 

only one highly specific region was identified by MacVector that was both specific for 

the organism and usable as a functional primer. We therefore decided to pair this specific 

primer (designated DAOOl-F) with a universally-conserved reverse primer, 1392r. 

Compatibility of the specific forward primer and universal reverse primer for PCR 

reactions was determined by Tm analysis (MacVector), and searching for regions of self- 

complimentarity by analysis of folding (Zuker RNAfold). The primers should have Tm’s 

within 2°C of one another, and the 3 G of folding should be positive. Based on analysis 

of the DAOOlf primer sequence using the Sequence Match and Probe Match components
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of the RDPH website, and functional specificity tests in column studies in the presence of 

the indigenous community described below, one specific primer was sufficient to allow 

sensitive and quantitative detection of strain DAOOl.

For the injection of DAOOl into the NC flowfield, it was important to distinguish 

DAOOl from other background organisms in the NC flowfield. The specificity of the gel- 

based qPCR approach for detecting the target organism was first assessed by comparison 

of the DNA target sequence of the DAOOl cells to other known sequences in the RDP 

database. Using the "Sequence Match" analysis tool of the RDP, the DAOOl sequence of 

interest was aligned to its nearest relatives on the database. The nearest known relative 

was Comamonas testosteroni with an Sab score of 0.897. The true basis for specificity 

in these qPCR reactions stems from differences between the sequence of the selected 

forward PCR primer and the corresponding regions of the related organisms, where there 

are three or more base differences between the DAOOl forward primer and all other 

organisms (Table I ).

The validity and utility of the gel-based qPCR approach was tested in replicate 

columns of re-packed, sterilized sediment obtained from the Oyster site using artificial 

groundwater for the water phase (Fig. 3). Bacterial breakthrough (elution profile) results 

for DAOOl were very similar forqPCR, direct microscopic enumaeration, culturable 

counts (except at very low cell densities) and liquid scintillation counting. Thus, the 

comparitively rapid and inexpensive gel-based qPCR approach reliably and reproducibly 

detected bacterial breakthrough producing results that compared very favorably to three 

other mechanistically independent bacterial tracking approaches. These results 

demonstrate that this approach can be employed to accurately, reliably and accurately 

monitor bacterial transport in the subsurface.

Fluorogenic probe qPCR. Because of the large number of samples generated 

during a typical subsurface injection, fluorogenic qPCR was developed to replace the gel- 

based competitive qPCR in support of a bacterial injection into the anaerobic flowfield
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(designated SOFA) at the Oyster site in the summer of 2000. The goal for this injection 

was to distinguish and quantify two bacterial types co-injected into the flowfield for a 

comparative analysis of transport behavior. Therefore, the most important factor in 

choosing of primers and probes for each strain was to identify primer and probe 

sequences that were different between the test organisms. The choice of primer and probe 

sequences was complicated by the need to keep the PCR product size < 150 bp to reduce 

PCR errors (PE Applied Biosystems bulletin# 777904). Fig. 4 compares the partial 16S 

and DNA sequences of DAOOl and OY107, showing the location of forward and reverse 

primers, and the regions chosen for the fluorogenic qPCR probes. As can be seen, there 

are many potential areas for primer and probe location to distinguish DAOOl and OYI07 

(DNA degeneracies are indicated by black boxes in Fig. 4) As with development of the 

gel-based qPCR, potential primer pairs were determined using MacVector software, but 

adjustments to the sequences had to be made to account for relatively high Tm needed for

the fluorogenic qPCR method (personal communication. Research and Development, 

Bio-Rad Laboratories, Hercules, CA). Through a combination of shifting the 

probe/primer sequence toward the 5' or 3' direction (changing the G-C content), and 

changing the the sequence length (usually lengthening), a combination of primers and 

probe regions were chosen that have similar high Tm's. Compatibility of the specific 

forward primer and universal reverse primer for PCR reactions was determined by Tm 

analysis (MacVector), and searching for regions o f self-complimentaryness by analysis of 

folding (Zukar RNAfold). Similar to development of the gel-based qPCR (based on the 

DNA sequence, size constraints, and other factors) it was decided to pair specific forward 

primers with a reverse primer that was identical for both organisms. The internal 

flurogenic probe binding region has four base differences between the two strains, which, 

coupled with the specificity of the forward primer region (three base differences), confers 

specificity to the fluorogenic qPCR method allowing specific detection and ennumeration 

of both strains, when both are present in the same sample.
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As a test for specificity, an experiment was conducted in which the concentration 

of either DAOOl or OY107 was kept constant in a PCR reaction, while increasing the 

amount of the other organism in the reaction was varied over orders of magnitude. If the 

primers and probes chosen are totally specific, no non-specific increase in the apparent 

number of non-target cells should be seen when the target strain is present in excess. The 

OY107 detection system was specific to a ratio of one OY107 cell to 10,000 DAOOl cells 

while the DAOOl selection system was specific up to a ratio of one DAOOl cell to 1,000 

OYI07 cells (Fig. 5). Both systems were considered acceptable since cell ratios in this 

range are unlikely in our injection experiments.

Controls and standardization

Our qPCR study of the subsurface transport bacteria at the Oyster research site 

was benefited by the conditions of the site aquifer. In all of the studies to date involving 

qPCR detection of bacteria from environmental samples, a separate DNA purification 

step was utilized prior to PCR amplification to remove contaminants such as humic acids 

and organic compounds that could inhibit DNA polymerase. The use of a separate DNA 

purification step requires calculation of "cell lysis efficiency" and "DNA recovery 

efficiencies" in order to estimate true rDNA copy numbers in environmental samples. 

Most studies to date have not directly addressed this concern, and report copy numbers 

normalized to the amount of DNA recovered, or per weight or volume of sample.

Since the groundwater of the Oyster aquifer is relatively free of organic 

compounds and contaminants (< 0.5% DOC (5)) extensive processing of samples and 

purification of DNA was not required. In fact, we were able to reliably perform qPCR 

directly on water samples from the aquifer without any type of DNA purification. Serial 

dilutions of known numbers of cells in Oyster aquifer site water and in distilled water 

gave essentially identical results (data not shown), indicating that no inhibition of the 

PCR reaction was occurring due to organics or other contaminants in the aquifer water.
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Interestingly, inhibition of PCR reactions was observed only in a few samples where 

concentration of cells from water samples via centrifugation was attempted in an effort to 

increase PCR detection levels.

To quantify the number of bacteria in a sample by gel-based competitve qPCR, a

regression analysis of data from a serial dilution series of known numbers of target cells

amplified with a standardized amount of competitor DNA was performed. Consistently,

through a number of such regression analyses, there was approximately three orders of

magnitude of linear range of detection (Fig. 6A). This linear response typically ranged
? 5from approximately 5 x 10“ to 5 x 10 cells per PCR reaction. This corresponds to a 

lower limit of detection of approximately 2 x 10^ cells/ml, with a linear response to 2 x
7

10 cells/ml for unconcentrated water samples. Typical linear regressions for DAOOl 

and OY-107 (a second bacterial strain used in the SOFA 2000 injection) by the 

fluorogenic probe method are shown in Fig. 6B. Noticeable immediately is the much 

broader linear range of detection with the fluorogenic qPCR for both cell types, typically 

10^ to 10  ̂cells/ml. Unlike gel-based end-point analysis, where one has to predict a 

range of proper dilution to be in the linear range of detection, the fluorogenic method 

usually requires no sample dilution or other processing.

Also important to our injection experiments are the concentrations of indigenous 

DA00I and OY107 in the Oyster flowfields. Since qPCR is based on detection of 16S 

rDNA genes, the method detects both injected bacteria and indigenous cells in the 

flowfield. Concentration of indigenous DAOOl in the NC flowfield immediately prior to 

the November 1999 injection averaged log 4 .18.cells/ml (Table 2). Prior to the co­

injection of DAOOl and O Y 107 into the anaerobic SOFA flowfield in July 2000, DAOOl 

cells averaged log 3.30 cells/ml and OY107 cells (isolated from the SOFA flowfield) 

averaged log 4.19 cells/ml in the SOFA field (Table 2). The concentration of bacteria 

employed for in situ injection experiments is typically 10^ to 10^ cells/ml. Thus, for a 

typical in situ injection experiment, this approach should reliably allow for a linear range
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of detection of bacterial breakthrough in unconcentrated samples that spans four orders of 
4 8magnitude from 10 -10 cells/ml.

Finally, the ability to store and later retrieve samples for analysis is of great 

importance in microbial ecology for studies such as in situ injection experiments where 

the use of several multi-level samplers that can generate thousands of individual samples 

for analysis. To assess the ability to archive groundwater samples for later analysis by 

qPCR, two experiments were performed. In the First experiment, column fractions from a 

laboratory column injection experiment were analyzed at times t = 0, 2, 3 and 4 weeks 

after storage at 4 °C. Sample numbers were consistent through 3 weeks of storage at 4°C 

and only after 4 weeks were sample numbers significantly different from original 

detected values. In the second experiment, DA001 cells used for the NC '99 injection 

were diluted in site ground water to known cellular concentrations (by microscopic 

count), and stored at 4°C and -20°C for up to one year, and then analyzed by qPCR 

(Table 3). Cell numbers from archived samples stored at 4°C were stable for 

approximately 1 month, while those stored at -20° were nearly identical in magnitude to 

input cell numbers, indicating that long-term storage at -20°C was possible with archived 

samples from the Oyster site.

Field validation o f  qPCR methods :

The truest test of the qPCR approach is bacterial enumeration in in situ field 

injections at the Oyster site. The gel-based competitive qPCR technology was used to 

monitor the transport of DAOOl bacteria in an in situ injection into the Narrow Channel 

aerobic flowfield at the Oyster field site, in November of 1999. DAOOl cells were 

injected at a concentration of 10^/ml concurrently with a bromide tracer (100 ppm) 

during a 12 hour injection pulse. Results of DAOOl breakthrough at MLS located 1.5 

meters, 3.5 meters and 5.5 meters from the injection port are shown in Fig. 8A. Due to 

the lengthy amount of time needed for sample processing and analysis by the gel-based
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competitive qPCR method, only samples from a single port located 6.5 meters below 

ground were processed from the injection. The fluorogenic probe PCR method was field- 

tested during a co-injection of DAOOl and OY107 cells into the Oyster anaerobic SOFA 

flowfield in July/August of 2000. The shorter processing times afforded by this approach 

allowed rapid analysis o f hundreds of samples in just a few weeks compared to the gel- 

based competitive qPCR method. Fig. 8B shows the breakthrough results for DAOOl and . 

OY107 cells at all twelve sampling ports (4-6 meter depth) from a single MLS located

1.5 meters from the injection port, with other qPCR data from in-line MLS at 3.5 and 5.5 

meters excluded for figure clarity. The fluorogenic probe qPCR method thus allowed for 

complete analysis of in-line MLS water samples from the SOFA injection of 2000. An 

interesting and important extension of this technology comes from its application to solid 

phase (sediment) samples obtained by coring the flowfield following the injection 

experiment. Multivariate analysis of sediment and water qPCR results is being used to 

determine the factors which influence the transport and attachment of injected bacteria 

into shallow subsurface aquifers (publication in preparation).

The gel-based competitive and fluorogenic probe qPCR methods are both able to 

accurately and specifically detect bacteria that are transported in shallow subsurface 

aquifers. The gel-based method is more laborious, time consuming and has a more 

limited detection range than the fluorogenic method, but has the advantage of being a low 

cost qPCR alternative. Both methods offer an accurate portrayal of bacterial 

breakthrough in comparison to established and novel methods of bacterial enumeration. 

The methods were used directly on site water samples containing transported bacteria, 

without the need for DNA purification prior to PCR amplification. The methods reported 

should benefit other environmental studies with the goal of enumerating bacteria.
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Fig. 1. Flowchart for development of gel-based competitive and fluorogenic probe qPCR 
methods.
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Figure 4. Comparison of DAOOl and OY107 16S rDNA sequences showing locations of 
forward and reverse primers and flourogenic probe.
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Fig. 8. Field validation of qPCR methods. (A) gel-based, competitive qPCR results of in 
situ injection of DA001 into the Oyster aerobic flow Field, October/November 1999. 
comparing DA00I breakthrough at multi-level samplers located 1.5 meters (+), 3.5 
meters ( ) and 5.5 meters (A) from the injection port (at 6.5 meters below ground 
surface). (B) fluorogenic probe qPCR results of in situ injection of DA001 and OY107 
into the Oyster anaerobic flow field (designated SOFA) in July/August of 2000, showing 
bacterial breakthrough at a single MLS located 1.5 meters from the injection port (all 
sample depths from 4 to 8 meters below ground surface).
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Table 1: Comparison of DA001 16S sequence to nearest relatives, gel-based qPCR

organism sequence (DA001 specific primer region*)

DA001
C. testosteroni 
B. denitrificans 
Leptothrix 
V. paradoxus 
l.dechtoritans 
L. discophora

G A G A T A G A G G A G T G  C T  C G A A A G A G  
G A G A T G G T T T G G T G C T C G A A A G A G  
G A G  A T T G G G A A T G  C T  C G T A A G A G  
G A G A T G T G G G A G T G C T C G A A A G A G  
G A G  A T G G C T T A G T G C T C G  A A A G A G  
G A G  A T T T G  G G A G T G C T C G A A A G A G  
G A G A T T T G G G A G T G C T C G A A A G A G

* underlined letters indicate region of specificity
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Table2 :Pre-Injectionbackgroundnumbers,DA001 andCY107

Wall* Port# bgave. DA001/ml SD logave.OY107/ml SO

pre-Narrow Channal 1969 Injection

2 10 4.22 0.03
6 10 4.10 0.04 (not determined for NC99)
9 6 4.07 0.09
9 10 4.60 020
10 12 425 0.04
11 10 422 0.04
16 7 326 0.00
18 10 4.63 006
19 12 3.89 0.18
21 12 424 0.07
21 7 327 0.10
23 7 4.06 024

Averages 4.18 0.07
pra-SOFA 2000 Injection

10 1 1.68 0.81 3.59 024
10 2 2.18 0.41 379 027
10 3 2.41 0.00 335 0.13
10 4 2.34 024 349 0.35
10 S 2.42 001 3.87 024
10 6 2.46 028 4.29 023
10 7 2.60 028 4.05 0.18
10 8 223 0.17 394 024
10 9 125 0.40 368 0.09
10 10 129 021 341 0.46
10 11 2.02 0.70 4.42 0.11
10 12 323 0.11 340 0.54

14 1 327 027 4.26 023
14 2 2.41 021 4.12 0.08
14 3 2.43 0.02 3.96 0.05
14 4 2.49 0.11 4.43 0.15
14 5 2.41 0.73 356 0.12
14 6 2.78 026 4.03 023
14 7 2.45 0.05 4.09 0.03
14 8 3.02 0.38 4.04 0.07
14 9 1.82 025 3.88 0.30
14 10 2.62 024 4.27 020
14 11 226 0.04 4.50 0.08
14 12 3.63 0.73 3.42 020

T2 1 328 020 3.97 0.44
T2 2 2.71 0.40 4.23 0.14
T2 3 325 0.06 4.21 0.30
T2 4 2.65 0.48 3.74 0.33
T2 S 325 0.40 4.45 0.43
T2 6 226 0.19 4.29 0.10
T2 7 3.34 024 4.28 0.08
T2 8 3.02 024 3.95 0.57
T2 9 2.93 029 4.18 0.33
T2 10 3.65 0.18 4.16 0.03
T2 11 3.41 0.68 4.41 023
T2 12 5.00 028 4.38 0.31

Average* 3.30 0.35 4.19 028
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Table 3: Long-term storage of archived samples

Time point input (ceiM )
-20*C

qPCRealVM* C.I. (p=aos)
4*C

qPCRcedrtnr C.I. (p=0.05)

t = 1 week 1.00E+09 
1.006+07 
1.006+05

1.176+09
1.196+07
9.436+04

2.81 E+06 
2.25E+06 
4.02E+O4

1.14E+09
1.32E+07
4.68E+04

1.41 E+08 
2.706+06 
2.97E+04

t =8 weeks 1.006+09 
1.006+07 
1.00E+05

9.806408
1.07E+07
7.496+04

1.64E+00
2.276+08
4.27E+04

1.386+00
3.336+08
8.30E+O4

4.336+08
1.10E+08
5.686+04

t = l year 1.006+09
1.00E+07
1.006+05

1.046+09 
1.046+07 
9.54 E+04

1.S9E+08 
1.45E+08 
8.31 E+03

3.01 E+08 
2.91 E+05 
1.036+04

5.146+07
1.22E+05
8.766+03

*Mean and confidence interval based on trlplcato 10ml samples, analyzed with triplicate PCR reactions each
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Chapter 4: Monitoring of a co-injection of adherent-deficient bacteria into a 
shallow subsurface aquifer at Oyster Virginia by quantitative PCR (qPCR).
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Introduction

Many subsurface aquifers across the United States are contaminated from past 

xenobiotic discharges, much of it too deep and extensive for conventional methods of 

remediation. Bacteria might be the best option available for bioremediation of deep subsurface 

contamination because their potential through metabolic activity to directly influence the 

transport of contaminants, and their potential to travel by groundwater flow to distant 

contaminated locations.

Most of our knowledge to date regarding the transport behavior of bacteria comes from 

laboratory column experiments under controlled conditions (see Chapter 1 Introduction). Little 

is known about the in situ transport behavior of bacteria in the subsurface, where many 

environmental variables such as water chemistry, sedimentology, and hydrology likely come 

into play simultaneously to determine the final fate of injected bacteria. An injection of a 

stained, indigenous collection of bacterial cells into a shallow, sandy, freshwater aquifer in 

Cape Cod, Massachusetts showed that DAPI-stained bacteria had similar breakthrough patterns

to conservative B r' tracers (bacterial C/Co-0.1), but, in general, had longer "tails" of 

breakthrough persisting tens of meters down-gradient (1). Although the bacteria traveled in a 

fairly narrow plume within the aquifer, the exact mechanisms affecting transport, and a 

determination of the specific types of bacteria which transported well, were not determined. 

There was also concern that the use of the DNA-binding dye DAPI to facilitate tracking had 

altered the viability and behavior of the bacteria that were being monitored. A preliminary 

subsurface injection into an aerobic shallow sandy aquifer at Oyster, Virginia with PL2W31 

bacteria, a candidate low-adhesion bacteria indigenous to the site, showed that most (>99 %) 

bacteria were retained in the aquifer sediments within 0.5 meters of the injection point (4).
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Clearly, our ability to predict and model bacterial transport behavior based on the current state 

of knowledge is limited. Additional in situ bacterial transport experiments are necessary to 

shed additional light on this complex interesting phenomenon.

The Oyster, Virginia research site offered the opportunity to test specific factors which 

influence bacterial transport in the subsurface. The site is located on the southern tip of the 

DelMarVa (Delaware/Maryland/Virginia) peninsula and is owned by the Nature Conservatory 

of Virginia. It was chosen for a series of in situ injection experiments because of its 

physicochemical features comprised of a relatively homogeneous subsurface sandy aquifer, 

consisting of unconsolidated to weakly-cemented, well-sorted, medium-to-fine-grained Late 

Pleistocene sands (reference: http://www.lbl.gov/NAJBIR/info.html). The site contains both 

aerobic and anaerobic flow fields for analysis of bacterial transport under conditions of altered 

iron and metal chemistry. The anaerobic lower flowfield (designated SOFA for South Oyster 

Focus Area) was the focus of our current study. The SOFA flow field is comprised of peat and 

clayey-silt organic layers in the upper regions of the aquifer, with sandy layers below 

comprised of relatively homogeneous and well-sorted sand with medium-sized grains 

composed mainly of quartz minerals (4). Veins of iron and Mn oxyhydroxides and organics, 

which have been proposed to bind microbes and inhibit transport (10, II )  are also interspersed 

throughout the field.

Three research hypotheses were proposed by the Natural and Accelerated 

Bioremediation (NABIR) Bacterial Transport Research Group of the U. S. Department of 

Energy to examine bacterial transport behavior in the subsurface:
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1) Physical heterogeneity in the porous medium controls bacterial transport. Bacterial 

transport is controlled primarily by physical heterogeneity within in the aquifer, with grain size 

and pore throat diameters being the most important factors.

2) Chemical heterogeneity in the porous medium controls bacterial transport. Surface charges 

of the aquifer matrix, and overall charge on the bacteria, are the primary factors which control 

transport, with negatively charged bacteria traveling faster through negatively charged quartz 

material and adhering preferentially to positively charged Fe, A1 and Mn oxyhydroxides.

3) Microbial iron (Fe(III)) reduction will indirectly enhance iron-reducing bacteria (IRB) 

transport. It was proposed (2) that iron-reducing bacteria are hydrophobic and reversibly 

adhere to hydrophobic Fe, Mn and A1 oxyhydroxide minerals. Enhancing of Fe(III) reduction 

rates may increase the desorption rate (and thus increase transport) by reducing the 

bioaccessible mineral surface area, encouraging IRB, and presumably other bacteria to desorb. 

Also, it was postulated that IRB activity could lead to localized increases in pH, promoting 

desorption of metals, radionuclides and other charged elemental compounds by reducing the 

positive surface charge on the mineral surfaces of the sediments.

Specific requirements were established by the Virginia Nature Conservatory to govern 

a bacterial injection at the Oyster site. The microbes used had to be indigenous to the site, 

could not be radio-labeled, could not be genetically engineered and could not have resistance to 

common clinical antibiotics (e.g. penicillin and tetracycline). In this study, quantitative PCR 

(qPCR) of genomic 16S ribosomal DNA (rDNA) was used to monitor the co-injection of 

adhesion-deficient bacterial strains OY107 and DA001. indigenous to the Oyster site, into the 

SOFA flowfield. Aqueous phase breakthrough data was analyzed from in-line Multi-level- 

samplers (MLS) implanted between 4-8 m below mean sea level in the flowfield. Post-
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injection cores were extracted, and the levels of bacteria in the sediment determined by qPCR. 

Geochemical techniques were used to analyze groundwater and sediment core chemistry, and 

the geophysical techniques Ground Penetrating Radar (GPR) and Cross-Borehole Tomography 

(CBT) were used to derive a 3-dimensional image of the physicochemical parameters of the 

flow fields, and to predict high and low permeability zones (3, 6-9, 14). Statistical multivariate 

analysis by Partial Least Square (PLS) Regression and other modeling techniques were used to 

correlate the chemicophysical conditions of the Oyster SOFA flowfield to bacterial numbers 

detected in sediment samples (5, 12, 13).

Materials and Methods 

Fluorogenic probe qPCR. Similar to the gel-based qPCR approach, the first step 

was to PCR amplify genomic DNA using universal primers 536f and I392r. The 

amplicon was ligated into the pT7Blue-3 plasmid vector, and transformed into NovaBlue 

competent cells. As before, plasmid preparations were made of potential clones using 

QIAprep columns, and the DNA sequenced from both directions. The consensus 

sequence obtained was submitted to the RDP database and aligned to the nearest 

organism on the database for OY107, Acidovorax temperans (Sab = 0.943) was the 

closest known relative. The consensus sequence of DA001 determined for the gel-based 

qPCR approach was used for developing the primers and probe sequence for fluorogenic 

qPCR.

For analysis of samples, a subsample of the starved cells for injection was 

analyzed by direct microscopic enumeration to determine the true number of cells and 

then subjected to serial dilution in triplicate to produce a series of samples containing
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10^, 10^, I07, IO6, I05, 104, 10^, 102, 10* and 0 cells/ml. These dilutions were then 

used in qPCR reactions and the data used to generate a linear regression plot o f cell 

numbers vs. Tc ( threshold cycle), and the regression formula used for determination of 

cell numbers. For all qPCR reactions, 5.0 pi of water sample was added to 12.5 pi of 

Platinum Quantitative PCR SuperMix-UDP (2X solution containing 60 U/ul Platinum 

Taq DNA polymerase, 40mM Tris-HCL (pH 8.4), lOOmM KC1, 6 mM MgC12, 400uM 

dGTP, dATP and dCTP, and 800 uM dUTP, 40 U/ul UDG and stabilizers), with 0.2uM 

forward and reverse primers, and 0.2uM 5' FAM-labeled fluorogenic probe with 3’ QSY7 

quencher (MWG Biotech, High Point, NC), in a total volume of 25 ul. The real-time 

detection of PCR product accumulation was accomplished using an iCycler PCR 

thermocycler / fluorometer (Bio-Rad Labs, Hercules, CA). A two-step PCR protocol was 

utilized, 45 cycles of (95° for 45 sec., 72° for Imin. 30 sec.), with FAM-specific 

fluorescent detection during the annealing cycles. Total genomic DNA was isolated from 

I gram sediment samples using the Soil DNA Purification Kit (MoBio Inc.), according to 

manufactures’ instructions, except final dilution volume was 50 pi of dH,0.
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Results and Discussion

Validation experiment: DNA extraction from sediment

The fluorogenic qPCR method used in these analyses was validated for use with 

aqueous water samples from the Oyster site as described in a separate publication 

(Kovacik and Holben 2002, Chapter 3). Controls for linear range of detection (approx. 

seven orders of magnitude for both OY and DA001 detection systems), water chemical 

interference of PCR (none detected), storage conditions (>1 year at -20° C) and 

specificity of detection (specific to I in 100-1000 cells), demonstrated that the qPCR 

method could accurately and specifically quantify DA001 and OY107 cells in aqueous 

samples from the Oyster site. To further validate the qPCR method for use with sediment 

samples, a separate control experiment was conducted in which three different sediment 

samples (organic, sandy, and Fe-rich) from a pre-injection coring of MLS 14 in May 

1999, were spiked with known concentrations of DA001 and OY107 cells (based on 

microscopic cell counts) (Fig. 1). The samples were frozen for 1 week, thawed, the total 

DNA isolated from the sediments using a commercially available kit (MoBio Soil DNA 

Kit), and then subjected to fluorogenic qPCR analysis for cell quantification. For all 

sediment types, the detected cell concentrations by qPCR decreased with decreasing 

number of input cells, positive indication of specific detection of DA001 and OY107 

cells in the sediment samples (Fig.I). The DNA recovery efficiencies (based on qPCR 

ennumeration) were nearly 100% from the organic rich and sandy sediment types, while 

the Fe-rich sediment was only approximately 10% of input concentrations. Regression 

analysis was then used to relate detected qPCR values to actual cell numbers, and a
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correction factor determined to normalize detected qPCR concentrations detected from 

sediments.

Background bacterial levels: water and sediment

The background levels of indigenous DA001 and OY107 cells in the water 

column and sediment were also important considerations for this experiment because 

qPCR detects both indigenous and injected bacteria. Table 1 shows the background 

levels of indigenous DA001 and OY107 detected by qPCR prior to the SOFA 2000 

injection. In general, the levels of OY107 detected in both water and sediment samples 

were higher than detected for strain DA001, with aqueous bacterial levels (per ml) larger 

by an order of magnitude than sediment levels (per gram). Sediment levels for DA001 

were near or below detection in most pre-injection sediments.

Aqueous qPCR results

To analyze the transport behavior of the adhesion deficient strains OY107 and 

DA001 in the Oyster sofa flowfield. breakthrough patterns for the bacteria were 

compared to the breakthrough of the conservative tracer, bromide, injected concurrent 

with the bacteria during a pulse injection in the first 12 hours of the experiment. First, a 

series of “snapshots” of bromide and bacterial breakthroughs at 25, 50. 100 and 150 

hours post-injection were plotted to visualize the general distribution and extent of 

breakthrough by depth over time (Fig. 2). At 25 hours post injection, the bromide arrived 

in a concise and focused plume with center of mass at MLS 10 (1.5 m from injection), 

with highest concentrations observed between ports 4 and 7. the approximate screened 

interval of the B2 injection port. The breakthrough patterns for strains DA001 and
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OYI07, on the other hand, were spread more uniformly throughout the depth profile, 

with detectable bacterial concentrations reaching nearly to MLS T2 (4.5 m from 

injection). At 50 hours post injection, the bromide plume is centered at MLS 14 (2.5 m 

from injection), with a preferred flow path indicated toward lower portions of the 

flowfield. The concentration of bromide detected has also decreased to approximately 

1/3 of the injected levels of 100 ppm. Breakthrough patterns for strains DA001 and 

OY107 are similarly centered near MLS 14, but are present in greater numbers, and are 

more uniformly distributed throughout all sample depths than bromide. At 100 hours 

post-injection, the bromide plume is nearly non-detectable in the flowfield, while the 

center of the bacterial plumes appears to be just reaching MLS T2 located 4.5 m from 

injection. Again, higher than background levels of bacteria were detected throughout all 

sample depths tested. At 150 hours post-injection, the bromide plume has re-appeared in 

barely detectable levels near MLS T2, while both bacterial strains persist in greater than 

background levels throughout the flowfield.

For a more precise indicator of bacterial transport behavior within the SOFA 

flowfield. average bacterial and bromide breakthroughs were plotted on a C/Co basis 

verses time, as detected at MLS 10, 14, T2 and S24 (1.5. 2.5. 4.5 and 7.0 m from 

injection). Differences in transport behavior of bacteria verses bromide were detected 

related to the distance from the injection port, as well as to the depth interval in the 

flowfield. When breakthrough was averaged over all 12 port depths, the centers of mass 

of the plumes can be seen moving through the flowfield in almost linear fashion (Fig. 3). 

In general, peak breakthroughs for the bacteria and bromide occurred at the same time, at 

approximately 25 hours post injection at SOS 10 located 1.5 m from injection, at
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approximately 45 hours at 2.5 m, and approximately 225 hours at 4.5 m from injection. It 

was difficult to determine the approximate peak breakthrough at SOS 24 located 7.0 m 

from injection, as the peak likely occurred sometime after 300 hours post injection. The 

bacterial profiles were almost entirely bracketed by the bromide peak indicating similar 

transport characteristics for both, although the bacterial peaks had many more peaks and 

troughs than the smoother bromide profile. The patterns of breakthrough for the two 

strains OYI07 and DA001 were more similar to each other than to the bromide, but in 

general the DA001 acted more conservatively (less up and down) than the OY107 strain.

Because of differences noted in the lithology and geology of the Oyster SOFA 

flowfield by depth, with upper regions dominated by an organic rich peat layer, and lower 

regions by a mixed assemblage of sand and gravel sized particles, with interspersed 

organic, and Fe and A1 oxyhydroxide coatings, we decided to analyze average bacterial 

breakthrough verses bromide in four quadrants by depth (ports 1-3, 4-6, 7-9 and 10-12, 

corresponding to depths of 2.81-3.41. 3.71-4.31, 4.61-5.21 and5.51-6.11 m below sea 

level). The results indicated different transport behavior at different depths within the 

flowfield. At SOS 10 (1.5 m), the profiles for both bacteria in Quads 2 and 3 more 

resembled the bromide, indicating nearly-conservative breakthrough behavior through the 

middle regions of the flowfield (Fig. 4). In contrast, bacterial breakthrough patterns in 

the uppermost and lowermost quadrants at SOS 10 were very different than bromide, 

with large regions of deviation especially in “tail" regions of the breakthroughs, 

indicating possible bacterial attachment or differential flow paths. At SOS 14 (2.5 m 

from injection) the pattern had changed somewhat (Fig.5 ). The bacterial breakthrough 

patterns in the lower two quadrants now resembled the bromide profile more closely,
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while in the upper two quadrants there were more indicators of binding and differential 

flow of the bacteria. The preferential flow toward the bottom of the flowfield was 

reflected in peak C/Co levels as well, with significantly higher levels detected in the 

lower two quadrants. At SOS T2 (4.5 m from injection) again the pattern changed (Fig. 

6). Bacterial breakthrough patterns at all three lower quadrants were more conservative 

in profile and in peak C/Co, than the uppermost quadrant. The breakthrough pattern for 

the OYI07 strain had more peaks and troughs than the DA001 strain, indicating greater 

levels of interactions with the environment, and more conservative transport behavior by 

the DA001 strain. At SOS 24 (7.0 m from injection) discernable bacterial breakthrough 

verses bromide was only possible in Quad 3. where the bacterial and bromide profiles 

were very similar (Fig. 7). At the other three quadrants, the levels of bromide have 

reached undetectable levels (<0.5 ppm) so that comparisons of bacterial breakthrough to 

bromide were not possible. Due to the wider and lower linear range of detection with the 

qPCR procedure, it is likely that the patterns observed reflect actual bacterial 

breakthrough.

To quantify the extent of bacterial transport as it relates to distance from injection 

and depth in the field, the Relative Breakthrough (RB) levels of bacteria were calculated 

for each MLS and the four quadrants (Table 2). The RB results supported and quantified 

trends observed in the breakthrough plots, such as less transport, and by inference, greater 

levels of attachment for both organisms in the upper quadrant I of the flowfield. Also 

noticeable at many locations was the greater breakthrough of DA001 in comparison to 

OY107, especially at SOS 10 nearest the injection port, indicating more conservative 

transport by DA001 and greater attachment levels of OY107 in that region of the
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flowfield. At the three MLS further from injection (except for Quad II at SOS T2), 

transport behavior in terms of RB was very similar between the two organisms.

Sediment qPCR Results

In addition to estimating attached bacterial levels remaining in the flowfield by 

inference from aqueous breakthrough data, we also wanted to determine the actual 

bacterial numbers remaining in the sediments two weeks after the start of the injection 

(when the cores were extracted). In theory, these values would represent a more 

accurate indicator of final attachment levels, with less contribution from transient 

attachment/detachment events during the peak breakthrough hours. The bacterial 

concentrations were then directly compared to chemical and sedimentology data derived 

for each sediment sample, including measures of hydraulic conductivity, grain size 

and surface chemistry.

As a first analysis, scatter plots were generated comparing bacterial 

concentrations and certain sediment characteristics or analyses as a function of depth and 

location in the flowfield. In the SOS2 core located 0.5 m from injection, based on 

polynomial trendline patterns (Fig. 8), there appears to be a relationship between OY107 

and DA001 and measures of conductivity and permeability (+). as well as for total 

organic carbon in the sediments (+). This would be consistent with seeing less bacterial 

breakthrough at MLS 10. and more attachment in those regions. OY107 has greater 

levels of attachment than DA001 in general, especially nearer upper levels of the 

sediments. In SOS 17 core samples, the patterns had changed (Fig. 9). OY107 and 

DA001 patterns were nearly identical 3.5 m from injection, and resembled patterns forFe
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and Mn, and possibly % silt (an indicator of organics). (Total organic carbon on SOS 17 

sediments and SOS 21 sediments has not been done yet). In SOS 21 cores (5.5m from 

injection), the OY107 and DA001 patterns are still similar, but possible relationships to 

variable factors were not readily apparent (Fig. 10). It is possible, and likely, that many 

factors are involved simultaneously in determining which sediments the bacteria 

ultimately bind to when being transported through the flowfield. A complete multivariate 

statistical analysis is planned at PNNL to determine the complex interactions involved in 

transport and bacterial attachment. In a very preliminary analysis of SOS 2 sediments 

only using Partial Least Squares (PLS) analysis (Fig.11), a very strong correlation existed 

between measured chemical variables (organics, metals, streaming potential).
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Figure 1. qPCR validation for sediments. Three sediments types (Organic rich, Sandy 
loam, Fe-rich) spiked with varying input levels of bacteria and analyzed by qPCR.
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Figure 3. Average bacterial breakthrough vs Bromide (all ports) at 1.5, 2.5, 4.5, and 7 m 
from injection.
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Figure 4. Average bacterial breakthrough by quandrants 1.5m from 
injection.
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Figure 5. Average bacterial breakthrough by quandrants 2.5m from 
injection.
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Figure 6. Average bacterial breakthrough by quandrants 4.5m from 
injection.
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200 250 3 0150100

m
i 1.E-04

1.E-05

1.E-06
Time after injection (hours)

-awe OY C/Co 
-ave 0A C/Co 
-ave  Br C/Co

SOS 24 (7.0 m), p o r ts  4-6

1 6-00

1 E-01

• 1.E-02
u
0 t.E-03
•
i 1 .E-04

1 E-05

I.E-06

100 ISO 200 250 3i 0

-A — A -ave OY C/Col 
-ave OA C/Co j 
-ave Br C/Co !

Tim e a f te r  in jec tio n  (hou rs)

SO S  24  (7.0 m). p o r ts  7-9

250 300200150100

l.E-01

e
1 E-02 'J

g  1 E-03

- ♦ —ave OY C/Co 
-•■■-ave OA C/Co 
-A— ave Br C/Co

1 E-04

1 E-05
Time after injection (hours)

SOS 24 (7.0 m), p o r ts  10-12

UU
i

200100

1 E-01

1.6-02
1.E-03

1 E-04

I E-05
Time after injection (hours)

I ♦  ave OY CCoi 
j —• —ave DA C/Co | 
j A ■ ave Br C/Co ;

Fisure 7. Average bacterial breakthrough by quandrants 7m from injection.
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Chapter 5: Summary and Implications for Bioremediation:
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The goals of my thesis research were focused toward an understanding of what 

factors control the fate and transport of bacteria in the subsurface. A major portion of my 

research effort was focused toward development of the new techniques necessary for the 

analysis and quantification of bacteria in environmental samples. In the past, culture- 

based analyses or specific labeling of the cells were used to monitor the transport and fate 

of injected microbes, but in general these methods were inadequate to specifically 

identify and quantify injected bacteria. In addition, one of the requirements for the in situ 

injection into the Oyster Virginia subsurface aquifer was the use of non-engineered, 

indigenous organisms from the site, precluding specific labeling of cells. The 

quantitative PCR methods developed here, specific to the 16S rDNA genes of bacteria, 

proved of great benefit for effectively and efficiently monitoring levels of added bacteria. 

This rapid and inexpensive approach facilitated transport experiments involving 

thousands of samples per experiment in support of modeling efforts and afforded fine- 

point resolution of bacterial transport behavior. We were also able to utilize the qPCR 

technology to monitor levels of bacteria on solid phase sediments, representing the first 

time this has been accomplished during an in situ bacterial injection. This represents a 

substantial increase in bacterial monitoring capabilities over what was considered state- 

of-the-art just a few years ago.

The long-term goals of my research related to the effective utilization of bacteria 

for the bioremediation of deep subsurface contamination. In order for microbes to be 

effective for remediation, four processes must occur: 1) The injected bacteria must travel 

to the distant contaminated site, 2) The bacteria must then attach to substrates at the site 

of contamination to remain resident in the plume or source of the contaminant, 3) The
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bacteria must compete and survive with indigenous organisms at the site of 

contamination and 4) The bacteria must actively remediate the contaminated 

environment. The results of my thesis research suggest that at least three of the 

requirements for subsurface remediation by bacteria have been demonstrated 

(requirement #4 was not addressed by my studies).

An original goal of our study of a sandstone/shale interface 200 m below Cerro 

Negro, New Mexico (Chapter 2) was to potentially determine the arrival time of the 

bacteria present. Due to a very restrictive porosity in the rocks, with pores smaller than 

any characterized bacteria, it is possible that some of the bacteria existing at depth might 

be descendants of the original colonizers laid down in sediments during the Cretaceous 

Period nearly 100 million years ago. Although the use of an MLS with a “bacterial 

colonizing substrate” may have eliminated fine-point resolution of the distribution of 

individual types of microbes at the shale-sandstone interface, the bacterial phylotypes 

detected were phenotypically consistent with those found in near-shore ocean 

environments. This suggests that at least some of the bacteria present have been 

surviving over geological time periods, potentially allowing for the long-term 

remediation of deep subsurface environments with only a finite number of injections 

necessary.

The results of our Oyster Virginia bacterial injection experiments (Chapters 3 and 

4) demonstrated that injected adhesion-deficient bacteria can migrate in the environment 

(satisfying requirement #1), although the scale of our study was only approximately 10 

meters before the injected bacterial strains DA001 and OYI07 reached indigenous 

background levels of approximately log 3-5 cells per ml. ft is likely that injected bacteria
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travel much greater distances in the subsurface in the long term, although such questions 

were beyond the scope of these studies.

Our newly-developed ability to quantify bacteria on sediments (i.e. the solid 

phase) allowed demonstration of requirement #2 for the injected bacteria- that they need 

to attach to sediments at the site of contamination, in order to be effective. Our results 

were potentially very exciting because relationships seemed to exist between bacterial 

numbers and concentrations of organics and metals on sediments. This would likely be 

the scenario encountered at contaminated sites, especially DOE managed ones with 

mixed organic and radioactive metal plumes of contamination. Complete multivariate 

analysis is necessary however before this conclusion can be substantiated, due to the 

many variables involved. This major advance in bacterial tracking technology is also 

exciting in the context o f basic research on bacterial transport because, for the first time, 

it should be possible to perform true mass balance experiments in the field where all 

bacteria in the aqueous and solid phases are accounted for through direct measurement 

rather than through mathematical subtraction of the numbers detected from the total 

added.

Requirement #3— that the injected bacteria survive and grow, could not be 

addressed directly because the injection period and coring of sediments occurred only 

over a three-week period. Elevated bacterial numbers on sediments with higher organic 

and metal concentrations (potential electron donors and acceptors) suggests that 

preferential adhesion and possibly growth of injected bacteria is occurring in the field. 

Further, our spiked sediment experiment, in which the sediments were incubated at 15° C 

rather than frozen, showed that increasing numbers of bacteria were detected above input
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levels on most sediments after only one week. The most likely explanation for this 

observation is that growth of organisms on the sediments had occurred during the course 

of the experiment. Thus, it seems likely that, at least in this case, the injected bacteria 

are surviving and growing in the environment. This has important implications for 

bioremediation applications through bioaugmentation, especially where long-term 

residence and activity of the added organisms is a factor.

The results o f my thesis research therefore demonstrated that remediation of deep 

subsurface contamination is possible utilizing microorganisms. Utilizing novel DNA 

molecular methods based on the I6S rDNA genome, we were able to specifically 

monitor injected bacteria in water phase samples, as well as demonstrate the attachment, 

and potential growth, of bacteria on solid phase aquifer sediments. These results 

significantly increase our understanding of subsurface microbiology, as well as 

demonstrate the potential of using microorganisms for the remediation of deep subsurface 

contamination.
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