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Lloyd, John D. Ph.D. May 2003 Wildlife Biology

Avian Life History Evolution: Explaining Variation Among Species, Populations, and 
Individuals.

Directors: I. J. Thomas. E. Martin

Explaining the diversity of life history strategies adopted by organisms is a central goal 
in evolutionary ecology. However, the goal of understanding life history evolution is 
complicated by the fact that variation exists at many different levels of organization, and 
the sources of variation at one level often fail to explain variation at another. I explored 
this problem by examining the causes of life history variation at three levels: among 
species, populations, and individuals.

First, I used a comparative analysis of 70 bird species to test the hypothesis that sibling 
competition favors the evolution of rapid development. All three measures of sibling 
competition (extra-pair paternity, brood parasitism, and hatching asynchrony) covaried 
with incubation period in the direction expected under the sibling competition hypothesis, 
but only extra-pair paternity explained significant variation in incubation period after 
controlling for phylogeny. This suggests that interspecific variation in development may 
be an adaptive response to the evolutionary pressure of sibling competition.

Life history variation also can arise as a consequence of environmental constraints and 
hence need not be adaptive. To explore these potential roles of constraint and adaptation, 
I collected data on life history traits of Chestnut-collared Longspurs (Calcarius ornatus) 
breeding in habitats that differed in nest predation risk. Contrary to the expectations of 
life history theory, nestlings in the high-risk habitat, which consisted of monocultures of 
an introduced grass, grew more slowly and had longer post-natal developmental periods 
than did nestlings in the low-risk, native habitat. In this case, life history variation is not 
adaptive but instead reflects constraints imposed by the environment, most likely reduced 
food availability in the exotic habitat.
Averaging life history traits across habitats may mask smaller-scale variation. In 

particular, variation in nest site choice within a habitat maybe an important source of life 
history variation among individuals. Indeed, I found that Longspurs choose nest sites 
that created an amenable radiative environment for offspring, and by experimentally 
manipulating nest orientation I found that the direction a nest faces, by modulating 
insolation, has a significant effect on growth and development of nestlings.
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PREFACE

On first glance, the chapters presented here appear to focus on somewhat 

disparate topics. However, they all reflect my attempt to understand the causes of life 

history variation, albeit at a several different levels of explanation. Chapter I examines 

the evolution of developmental rates, in particular the role of sibling competition as an 

agent of selection on avian incubation periods. Chapter II addresses the problem of 

separating adaptive life history variation from variation induced by proximate constraints 

by comparing life history traits of populations of Chestnut-collared Longspurs breeding 

in habitats that differ in predation risk. Chapter III focuses on how individual decisions 

by female Longspurs about nest placement can produce variation in nestling growth. 

Together, these chapters address variation in growth and development at three scales of 

observation; however, each chapter has been written as a separate publication and thus 

they do not always follow the conceptual framework I have laid out above. The format 

of each chapter is somewhat different and in some cases information is repeated, 

especially when discussing methods and study site.
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CHAPTER 1

SIBLING COMPETITION AND THE EVOLUTION OF PRE-NATAL 

DEVELOPMENT RATES
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INTRODUCTION

Developmental rates are an integral component of life history strategies and vary 

tremendously among species. For example, incubation period can vary more than three­

fold among birds with similarly sized eggs (Rahn and Ar 1974). Such extensive variation 

in the time required to complete development is somewhat of a paradox, because most 

selection pressures are presumed to favor rapid development (Ricklefs 1993). Williams 

(1966) suggested that the length of development might vary because of variation in age- 

specific mortality, and a number of studies have found that species with high juvenile 

predation rates have more rapid development (Lack 1968; Case 1978; Crowl and Covich 

1990, Promislow and Harvey 1990; Bosque and Bosque 1995; Martin 1995, 2002; Remes 

and Martin, in press). In contrast, Ricklefs (1968, 1982, 1983, 1993; Ricklefs et al. 1998; 

see also Werschkul and Jackson 1979) argued that nest predation is not related to 

developmental rate among birds and that competition among siblings instead is the 

primary agent of selection on development rate; greater sibling competition favors faster 

pre-natal development because earlier hatching can provide a competitive advantage over 

siblings.

Although many studies in a variety of taxa support a role for mortality in the 

evolution of developmental rate (see above), an influence of mortality does not 

necessarily negate a potential role of other factors, such as sibling competition. Indeed, 

Royle et al. (1999) showed that post-natal growth rates of birds were positively related to 

rates of extra-pair paternity, which should influence sibling competition. Yet, pre- and 

post-natal developmental rates are genetically independent of one another (Siegel et al. 

1968; Ricklefs 1984, 1987; contra Lack 1968) and therefore the potential influence of
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sibling competition on pre-natal development remains unclear. Avian pre-natal 

development (incubation) should be an ideal period to look for a role of sibling 

competition because nestling survival hinges upon position in the hatching order in many 

species; when brood reduction occurs, the last hatched nestling is almost invariably the 

victim (Mock et al. 1990, Stoleson and Beissinger 1995). Thus, sibling competition 

should strongly favor shorter incubation periods (Ricklefs 1993).

Here, we use comparative analyses of 70 species of birds to test the potential role 

of sibling competition on pre-natal developmental period. First, we use a kin-selection 

approach and compare the length of incubation among species in which siblings are 

expected to differ in their average genetic relatedness. Theory predicts that the cost of 

competition to inclusive fitness decreases as the average relatedness of the interacting 

individuals decreases, and therefore competition among siblings is expected to be more 

intense when relatedness is low (Hamilton 1964). Briskie et al. (1994) provide empirical 

support for the connection between competition and relatedness, showing that begging 

intensity of nestling birds, a measure of sibling competition, increases as the average 

genetic relatedness among nest-mates declines. Thus, we predict that the length of 

incubation will be negatively correlated with relatedness if sibling competition is 

important. We use two indices of average relatedness: the proportion of broods sired by 

multiple males (extra-pair paternity) and the proportion of broods containing parasitic 

young (e.g., the result of con- or inter-specific females laying eggs in nests of other 

females).

We also examine the importance of sibling competition by testing for a 

relationship between the length of incubation and the degree to which offspring hatch
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asynchronously. Ricklefs (1993) suggested that parents create asynchronous hatching 

patterns to minimize sibling competition and thereby allow longer incubation periods that 

presumably enhance fitness. According to this hypothesis, sibling competition is 

determined by parental control of offspring hierarchies based on hatching order. Thus, 

we also test Ricklefs’ (1993) hypothesis that the length of incubation increases with 

increasing hatching asynchrony.

METHODS

We gathered published data on length of incubation, extra-pair paternity, brood 

parasitism, and hatching asynchrony for as many bird species as we could find in the 

literature, resulting in a total of 70 species (Appendix A). We also collected data on two 

potentially confounding variables: egg size and egg predation. We considered only 

species with a modal clutch size greater than one, as individuals in species laying a single 

egg per clutch will not experience intrabrood sibling competition. In no case were 

estimates for all variables available from the same population. When estimates of a 

variable were available from multiple populations we used the unweighted mean in 

analyses.

Most studies of avian parentage report the percentage of nestlings in a population 

that are the product of extra-pair fertilizations, but for this analysis the relevant variable is 

the likelihood that an individual will be raised among nestmates that are less than full 

siblings. Thus, using the extensive summaries of avian paternity rates in Schwagmeyer et 

al. (1999) and Moller and Cuervo (2000) as a starting point, we gathered published data 

on the percentage of broods containing extra-pair young (e.g., young in a brood sired by a

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



male other than the social mate of the female). Three of the species included in this 

analysis have social systems in which multiple males and females form stable breeding 

groups, and for these species estimates of extra-pair paternity will overestimate the 

average relatedness among siblings within a nest. Thus, for polygynandrous species 

('Calcarius pictus, Prunella spp.), we considered the percentage of multiply sired broods 

rather than the percentage of extra-pair broods. However, for the sake of brevity we refer 

to this variable as “extra-pair paternity” throughout the text. We excluded estimates of 

parentage that came from electrophoretic analyses unless the authors corrected estimates 

as in Westneat et al. (1987), and thus most of the paternity data reported here come from 

DNA fingerprinting studies.

Brood parasitism, in which con- or co-specific females lay their eggs in nests of 

other females, may also favor rapid pre-natal development. In fact, because in most cases 

parasitic eggs are completely unrelated to their nestmates, brood parasitism should exert 

even stronger selection on incubation periods. To test the possible importance of 

variation in parasitism rates among species, we included inter- and intraspecific 

parasitism rates as a single variable in all analyses. We did not separate the two rates 

because, for the species included in this analysis, species that had significant intraspecific 

parasitism were not reported to be susceptible to interspecific parasitism (e.g., Progne 

subis). Significant and systematic intraspecific brood parasitism was also relatively rare 

across the species included in this analysis, and thus most estimates of brood parasitism 

reflect interspecific parasitism by Brown-headed Cowbirds (Molothrus ater) and 

Common Cuckoos (Cuculus canorus). None of the species in this analysis from the 

orders Galliformes, Anseriformes, Strigiformes, and Ciconiiformes are known to be hosts
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for obligate interspecific brood parasites (although some are subject to intraspecific 

parasitism), and thus when no mention could be found of brood parasitism for these 

species (either in general species accounts or in the parasitism reviews of Friedmann et 

al. (1977) and Davies (2000)), we assumed that parasitism is infrequent and assigned a 

zero value for those species. Species known to be susceptible to parasitism (e.g., from 

general species accounts; most Passeriformes), but for which no estimate was available, 

were excluded from analysis.

Hatching asynchrony, if it results in dominance hierarchies that cannot be 

overcome by individual selection for more rapid development, may eliminate sibling 

competition. We considered three levels of asynchrony: synchronous (all young hatch 

within 24 hours of one another), partially asynchronous (hatching interval between first 

and last young is greater than 24 hours, but not completely asynchronous), and 

asynchronous (one young hatches per day). We chose to use three categories rather than 

a synchronous/asynchronous dichotomy because many species in our sample were neither 

completely synchronous nor asynchronous (see also Clark and Wilson 1981). Even a 

three-tier categorical approach may obscure some meaningful variation, but insufficient 

data are available to consider asynchrony as a continuous variable.

Incubation period has a strong positive relationship with egg size (e.g., Worth 

1940, Rahn and Ar 1974). Thus, to control for this allometric effect, we included egg 

volume (calculated as in Ricklefs 1993) as an independent variable in all analyses.

For most bird species, nest predation is the primary source of mortality for eggs 

(Ricklefs 1969, Martin 1992) and may favor shorter incubation periods (Lack 1968; 

Bosque and Bosque 1995; Martin 1995, 2002). Thus, we included the percentage of
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nests lost to predators as an independent variable in our analyses. We assume that 

interspecific differences in the total number of nests lost to predation reflect similar 

differences in egg mortality (e.g., Ricklefs 1969). Predation typically results in the loss 

of all eggs in a nest, so for most species the percentage of nests lost to predators should 

provide a reasonable index of time-dependent mortality. However, for some of the larger 

precocial species (e.g., Chen spp.), predation apparently rarely results in the loss of the 

entire nest and for these species rates of nest predation will underestimate mortality of 

individual eggs. Thus, when partial predation of nests was reported to be frequent, we 

used the percentage of eggs lost to predators as an estimate of time-dependent mortality.

Although a correlation exists between the developmental stage of the neonate and 

the length of incubation (e.g., Boersma 1982, Ricklefs 1984), we did not include 

developmental mode as a predictor because this correlation is due to allometric effects of 

egg size rather than a difference between altricial and precocial young in developmental 

rate (Ricklefs and Starck 1998). Nonetheless, to be certain, we tested and confirmed the 

lack of relationship between the precocity of the neonate and the length of incubation in 

our sample (P -  0.62) and thus we do not consider developmental mode further.

To control for possible phylogenetic effects, we analyzed independent contrasts 

(Felsenstein 1985) generated by the CRUNCH option of program CAIC (Purvis and 

Rambaut 1995). We also present results of analyses on uncorrected species means. We 

generally followed the phylogeny of Sibley and Ahlquist (1990) to infer evolutionary 

relationships among the species in this analysis, but included more recent information 

from Sheldon et al. (1992; for the genera Parus and Poecile), Sheldon and Winkler 

(1993; for the subfamily Hirundidae), Patten and Fugate (1998; for the New World
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sparrows and buntings in Emberizidae), and Ohta et al. (2000; for the placement of 

Panurus biarmicus) to increase the resolution of the phylogeny. The phylogeny used in 

this analysis is available from the authors upon request.

We evaluated two models for determining the length of branches in the 

phylogeny, which are used to standardize the independent contrasts: a punctuational 

model of evolution in which all branches are of equal length, and the method suggested 

by Grafen (1989) in which the length of a branch is proportional to the number of taxa it 

supports. The punctuational model produced contrasts that met the assumptions of the 

statistical model (Purvis and Rambaut 1995), whereas Grafen’s approach did not, and 

therefore we present only the results obtained from contrasts generated assuming equal 

branch lengths.

For all analyses, we used a regression approach to examine the relationship 

between extra-pair paternity and incubation length. We forced all independent variables 

into the model to analyze the effect of sibling competition on the length of incubation 

independent of any effect of egg size or nest predation. Following Harvey and Pagel 

(1991), the regression on independent contrasts was forced through the origin. All 

variables were transformed prior to analysis to achieve normality: egg size and incubation 

period were log-transformed, and extra-pair paternity, predation rate, and brood 

parasitism were arcsin-transformed. The residuals from all regressions were normally 

distributed.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



9

RESULTS

Analysis of species means showed that length of incubation increased strongly 

with egg size (b -  0.763, P < 0.001), but was not related to nest predation {b =-0.015, P = 

0.786). Length of incubation was negatively related to extra-pair paternity after 

controlling for the effect of the other independent variables (Fig. la; n = 70, b = -0.178, P 

= 0.007). Brood parasitism also was negatively related to length of incubation (Fig. lb, b 

= -0.119, P = 0.04), whereas hatching asynchrony was positively related to the length of 

incubation (Fig. lc; b -  0.095, P = 0.021).

The pattern that emerged from the analysis on independent contrasts was 

somewhat different. The length of incubation was still negatively related to extra-pair 

paternity (Fig. 2a; n = 67, b = -0.239, P = 0.029) and positively related to egg volume (b 

= 0.474, P < 0.001). However, after controlling for phylogeny, neither brood parasitism 

(Fig. 2b; b = -0.051, P = 0.643) nor hatching asynchrony (Fig. 2c; b -  0.125, P = 0.248) 

was significantly associated with length of incubation. Nest predation (b = 0.155, P = 

0.156) remained insignificant in explaining variation in the length of incubation.

The results of comparative analyses can be influenced by the taxonomic scale of 

the study, even if phylogeny is controlled with independent contrasts. To test the 

consistency of our results, we repeated our analysis on the raw data for species in the 

order Passeriformes, the most well-represented group in our data set. Within this subset 

of data, only extra-pair paternity was significantly related to length of incubation (n = 46, 

b = -0.386, P = 0.007). Egg volume, which explains significant variation in the length of 

incubation across orders, was only marginally related to variation among passerines (b = 

0.248, P = 0.077). Brood parasitism (b = -0.103, P = 0.461), hatching asynchrony (b =
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0.162, P = 0.243), and predation (b -  -0.192, P = 0.164) did not explain variation in 

incubation period.

DISCUSSION

Based largely on theoretical considerations, sibling competition has been 

proposed as a key evolutionary pressure driving interspecific variation in developmental 

rates (Ricklefs 1982, 1993; Ricklefs and Starck 1998). Testing this hypothesis depends 

on quantifying variation in sibling competition. Variation in the genetic relatedness of 

siblings seems one reasonable way to estimate sibling competition; as the average 

relatedness among nest-mates decreases, siblings can afford to compete more fiercely 

because the cost to inclusive fitness decreases, and the benefits of developing faster can 

be large when it yields a position atop the dominance hierarchy. We used two measures 

that should reflect broad differences among species in the average relatedness of nest- 

mates: extra-pair paternity and brood parasitism. Royle et al. (1999) showed that post­

natal growth rates of birds were correlated with rates of extra-pair paternity. We show 

here for the first time that extra-pair paternity, as a proxy for sibling competition, is also 

related to more rapid pre-natal development.

The effect of brood parasitism was mixed. Based on the analysis of the raw data, 

our results suggested that brood parasitism may exert some influence on the length of 

incubation, but the effect was not significant after controlling for phylogeny nor was it 

significant when considering only Passeriformes. The lack of relationship within 

Passeriformes also suggests caution is needed in interpreting the significant relationship 

in the complete set of raw data; this relationship must depend in part upon differences
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among higher-level taxa that may not reflect sibling competition. Nonetheless, given the 

consistently strong relationship between extra-pair paternity and incubation, it is 

somewhat surprising that no effect of brood parasitism was evident, especially when 

analysis was restricted to passerines. Based on our kin-selection approach, the effect of 

brood parasitism on developmental rate should be stronger than that of extra-pair 

paternity because, in general, brood parasitism results in the introduction of genetically 

unrelated individuals into a nest. Thus, the inclusive fitness costs that are presumed to 

restrain competition among siblings are absent. On the other hand, estimates of brood 

parasitism vary extensively among populations of a single species, such that 

determination of the level of selection on a species over its range and over evolutionary 

time may be difficult. This problem is compounded by the fact that much variation in 

parasitism may arise from recent changes in habitat that have either allowed brood 

parasites to expand their range to exploit new hosts or that have made old hosts more 

susceptible.

Our third approach to quantifying sibling competition followed Ricklefs (1993), 

who proposed that parents create asynchronous hatching patterns in their offspring to 

blunt the selective force of sibling competition and allow longer incubation periods. 

Hatching asynchrony was indeed positively related to incubation period in the raw data, 

but not among the independent contrasts. Moreover, hatching asynchrony was not 

significant in the analysis restricted to Passeriformes. This suggests that the significant 

relationship seen in the complete set of raw data is a result of differences among higher- 

level taxa. Thus, within our sample, hatching synchrony seems relatively unimportant in 

explaining variation in incubation period.
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Nest predation is expected to favor more rapid embryonic development (Lack 

1968, Ricklefs 1993, Bosque and Bosque 1995). We found that nest predation did not 

explain variation in incubation period in our sample. Several factors may have 

confounded our analyses, however. First, some of the estimates of nest predation are 

based on small samples gathered over a short period of time. Second, the estimates of 

nest predation used in this study may reflect current ecological conditions that differ from 

those present over evolutionary time because of changes in habitat quality or abundance 

and composition of the predator community. Finally, when comparisons are made 

across geographic regions, or among distantly related species, the relationship between 

predation and incubation becomes more difficult to isolate (Ricklefs 1993, Martin et al. 

2000, Martin 2002). Nonetheless, we find no evidence for a role of nest predation in 

lengths of the incubation periods for species examined here.

Ultimately, all three of our measures of sibling competition were related to length 

of the incubation period in the predicted directions, although two of the measures (brood 

parasitism and hatching asynchrony) showed no relationship once phylogenetic effects 

were removed. On the one hand, that all three tests vary in the directions predicted by 

sibling competition provides some support for this hypothesis. On the other hand, the 

weak and mixed nature of the results for two of the measures raises questions. The 

relationship between incubation period and extra-pair paternity was strongest and 

clearest, and may reflect effects of sibling competition. However, rather than being a 

cause-and-effect relationship, the relationship between extra-pair paternity and the length 

of incubation may arise indirectly from correlated selection on both traits.
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Variation in extrinsic mortality can drive the evolution of life history strategies 

(e.g., Gadgil and Bossert 1970, Michod 1979, Reznick 1982, Reznick et al. 1990), and 

longer incubation periods are associated with low adult mortality (Ricklefs 1993, Martin 

2002). Extra-pair mating activity is a form of investment in current reproduction and 

may thus also be influenced by adult mortality, especially if garnering extra-pair 

copulations incurs a cost to future survival or reproduction (e.g., Westneat and Rambo 

2000; see also Wink and Dyrcz 1999). Consequently, incubation period and extra-pair 

paternity may be correlated with each other as an indirect consequence of adult mortality 

acting on both traits, rather than representing the effect of sibling competition. Thus, the 

importance of sibling competition on incubation period remains unclear, although our 

results suggest that it may play a role. At the same time, the strength of correlations 

observed here between extra-pair paternity and incubation suggest at the very least that 

life history strategies represent linkages among a larger suite of traits than previously 

recognized and argue for a broad approach to considerations of the evolution of life 

histories.

ACKNOWLEDGMENTS 

We thank 3 anonymous referees for helpful comments on the manuscript. Thanks also to 

V. Adamski for help during the preparation of the manuscript. This work was supported 

by grants from the National Science Foundation (DEB-9707598, DEB-9981527). The 

Wildlife Biology Program at the University of Montana and the United States Fish and 

Wildlife Service provided additional support.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



APPENDIX A. Raw data used in the analysis, ordered following Monroe and Sibley 

(1993; this taxonomy departs from our phylogeny because we incorporated additional 

sources to create the phylogeny used in this study). Values are: length of incubation 

(days) and degree of synchrony (S = synchronous, PA = partially asynchronous, A = 

completely asynchronous; see text for details), percent of multiply-sired broods, percent

nest predation, percent brood parasitism (inter- or intraspecific), and egg volume

■>

(calculated from linear dimensions; mm ). References follow each value in parentheses. 

For some species, when no mention of brood parasitism was found in any reference, we 

assumed the value was zero and entered a question mark in lieu of a reference (see 

Methods in text for details).

Galliformes

Phasianidae. Lagopus lagopus: 22.1, S (Cramp and Simmons 1980), 7.4 (Freeland et al. 

1995), 24 (Cramp and Simmons 1980), 0 (?), 226 (Cramp and Simmons 1980). Lagopus 

leucurus: 24.9, S (Braun et al. 1993), 17 (Benson 2002), 54 (Braun et al. 1993), 0 (Braun 

et al. 1993), 201 (Braun et al. 1993).

Anseriformes

Anatidae. Chen caerulescens: 23.6, S (Mowbray et al. 2000), 13 (Dunn et al. 1999), 8 

(Cooke et al. 1995), 5.5 (Mowbray et al. 2000), 1116 (Mowbray et al. 2000). Chen rossi: 

21.9, S (Ryder and Alisauskas 1995), 8.3 (Dunn et al. 1999), 2.4 (Ryder and Alisauskas 

1995), 2.7 (Ryder and Alisauskas 1995), 873 (Ryder and Alisauskas 1995). Branta 

leucopsis: 24.5, S (Cramp and Simmons 1977), 0 (Larsson et al. 1995), 19 (Tombre and 

Erikstad 1996), 0 (?), 1007 (Cramp and Simmons 1977).
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Piciformes

Picidae. Picoides borealis: 10.5, S (Jackson 1994), 2.2 (Haig et al. 1994), 22 (LaBranche 

and Walters 1994; this estimate includes predation as well as mortality caused by 

competitors for nest cavities), 0 (Jackson 1994), 38 (Jackson 1994).

Apodiformes

Apodidae. Apus apus: 19.6, A (Cramp 1985), 9.5 (Owens and Hartley 1998), 9.1 

(Cramp 1985), 0 (?), 33.5 (Cramp 1985).

Strigiformes

Strigidae. Otus asio: 30, PA (Gehlbach 1995), 0 (Lawless et al. 1997), 50 (Gehlbach

1995), 0 (Gehlbach 1995), 167 (Gehlbach 1995). Otus flammeolus: 22.7, PA (McCallum 

1994), 0 (Arsenault et al. 2002), 0 (?), 12 (McCallum 1994), 102 (McCallum 1994).

Ciconiiformes

Scolopacidae. Calidris mauri: 21, S (Wilson 1994), 8 (Blomqvist et al. 2002), 31 

(Wilson 1994), 0 (Wilson 1994), 80 (Wilson 1994). Phalaropus fulicarius: 19, S (Cramp 

and Simmons 1983), 25.4 (Dale et al. 1999), 46 (Mayfield 1978), 0 (Cramp and Simmons 

1983), 76 (Cramp and Simmons 1983).

Charadriidae. Haemotopus ostralegus: 25.5, S (Cramp and Simmons 1983), 3.8 

(Heg et al. 1993), 30 (Harris 1967), 0 (?), 180 (Cramp and Simmons 1993). Charadrius 

morinellus: 26.1, S (Owens et al. 1994), 9.1 (Owens et al. 1995), 47 (Byrkjedal 1987), 0 

(?), 180 (Cramp and Simmons 1983).

Laridae. Catharacta maccormicki: 29.7, A (Higgins and Davies 1996), 7.7 

(Millar et al. 1997), 2 (Young 1963), 0 (?), 925 (Higgins and Davies 1996). Larus canus:
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25.25, PA (Cramp and Simmons 1983), 8.3 (Bukacinska et al. 1998), 58 (Cramp and 

Simmons 1983), 0 (?), 510 (Cramp and Simmons 1983). Larus occidentalis: 30, PA 

(Pierotti and Annett 1995), 0 (Gilbert et al. 1998), 55 (Pierotti and Annett 1995), 0(?),

880 (Pierotti and Annett 1995).

Falconidae. Falco naumanni: 28.5, S (Cramp and Simmons 1980), 3.8 (Negro et 

al. 1996), 11 (Telia et al. 1996), 0 (?), 154 (Cramp and Simmons 1980). Falco 

tinnunculus: 28, A (Cramp and Simmons 1980), 2.6 (Korpimaki et al. 1996), 18 (Cramp 

and Simmons 1980), 0 (?), 196 (Cramp and Simmons 1980). Falco eleonorae: 28, S 

(Cramp and Simmons 1980), 0 (Swatschek et al. 1993), 6 (Walter 1979), 0 (Cramp and 

Simmons 1980), 239 (Cramp and Simmons 1980).

Phalacrocoracidae. Phalacrocorax aristotelis: 30.5, PA (Cramp and Simmons 

1983), 20 (Graves et al. 1992), 38 (Cramp and Simmons 1983), 0 (?), 501 (Cramp and 

Simmons 1983).

Ciconiidae. Coragyps at rat us: 38.5, S (Buckley 1999), 0 (Decker et al. 1993), 17 

(Buckley 1999), 0 (?), 1005 (Buckley 1999).

Spheniscidae. Pygoscelis adeliae: 35.4, A (Lishman 1985), 11.1 (Pilastro et al. 

2001), 18 (Marchant and Higgins 1990), 0 (?), 1066 (Lishman 1985).

Gaviidae. Gavia immer: 28, S (McIntyre and Barr 1997), 0 (Piper et al. 1997), 16 

(Belant and Anderson 1991), 0 (?), 1393 (McIntyre and Barr 1997).

Passeriformes

Tyrannidae. Sayornisphoebe: 16, S (Weeks 1994), 20 (Conrad et al. 1998), 37 

(Weeks 1994), 11 (Weeks 1994), 21.6 (Weeks 1994).
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Corvidae. Corvus monedula: 17.6, PA (Cramp and Perrins 1994), 0 (Henderson 

et al. 2000), 25 (Johnsson 1994, Soler and Soler 1996), 2 (Davies 2000), 114.5 (Cramp 

and Perrins 1994). Aphelocoma coerulescens: 17.8, S (Woolfenden and Fitzpatrick

1996), 0 (Quinn et al. 1999), 51 (Woolfenden and Fitzpatrick 1996), 0 (Woolfenden and 

Fitzpatrick 1996), 57.7 (Woolfenden and Fitzpatrick 1996).

Stumidae. Sturnus vulgaris: 12.1, S (Cabe 1993), 28.6 (Pinxten et al. 1993), 35 

(Cabe 1993), 28 (Evans 1988, Power et al. 1989), 69.5 (Cabe 1993).

Muscicapidae. Sialia sialis: 15.7, S (Gowaty and Plissner 1998), 24 (Meek et al.

1994), 23 (Radunzel et al. 1997), 0.5 (Gowaty and Plissner 1998), 29.8 (Gowaty and 

Plissner 1998). Turdus grayi: 12.3, PA (Dyrcz 1983), 53 (Stutchbury et al. 1998), 47 

(Dyrcz 1983), 0 (Friedmann et al. 1977), 61.6 (Wetmore et al. 1984). Oenanthe oenanthe:

13.26, PA (Kren and Zoerb 1997), 29 (Currie et al. 1998), 26 (Kren and Zoerb 1997), 0 

(Kren and Zoerb 1997), 27.4 (Kren and Zoerb 1997). Ficedula hypoleuca: 14.1, S 

(Cramp and Perrins 1993), 15 (Lifjeld et al. 1991), 11 (Huhta et al. 1998), 0 (Soler et al. 

1999), 16.4 (Cramp and Perrins 1993). Ficedula albicollis: 12.8, S (Cramp and Perrins 

1993), 32.9 (Sheldon and Ellegren 1999), 56 (Walankiewicz 1991), 0 (Davies 2000), 15.7 

(Cramp and Perrins 1993).

Certhiidae. Troglodytes aedon: 12.5, PA (Johnson and Kermott 1993), 26.7 

(Soukup and Thompson 1997), 31 (Johnson 1998), 0 (Johnson 1998), 13.9 (Johnson

1998).

Paridae. Remizpendulinus: 14, PA (Schleicher et al. 1997), 17.3 (Schleicher et al.

1997), 4 (Cramp and Perrins 1993), 0 (Cramp and Perrins 1993), 9.7 (Cramp and Perrins 

1993). Parus montanus: 14.1, PA (Orell and Ojanen 1983), 4 (Orell et al. 1997), 21
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(Orell and Ojanen 1983), 0 (Soler et al. 1999), 13.0 (Cramp and Perrins 1993). Poecile 

atricapillus: 12.5, S (Smith 1993), 37.5 (Otter et al. 1994), 40 (Christman and Dhondt 

1997), 0 (Smith 1993), 11.8 (Smith 1993). Parus major. 14, PA (Cramp and Perrins 

1993), 25.1 (Gullberg et al. 1992, Blakey 1994, Verboven and Mateman 1997), 17.7 

(Cramp and Perrins 1993), 0 (Soler et al. 1999), 17.4 (Cramp and Perrins 1993). Parus 

caeruleus: 14.2, PA (Cramp and Perrins 1993), 30 (Gullberg et al. 1992, Kempenaers et 

al. 1992), 19.9 (Dunn 1977, Nilsson 1984), 0 (Soler et al. 1999), 11.5 (Cramp and Perrins

1993).

Aegithelidae. Psaltiparus minimus'. 12.5, S (Sloane 2001), 0 (Bruce et al. 1996), 

47 (Sloane 2001), 0 (Sloane 2001), 7.1 (Sloane 2001).

Hirundidae. Tachycineta bicolor. 14.5, PA (Robertson et al. 1992), 71 (Lifjeld et 

al. 1993, Dunn et al. 1994), 22 (Robertson et al. 1992), 0 (Robertson et al. 1992), 17.1 

(Robertson et al. 1992). Tachycineta albilinea: 17, PA (Dyrcz 1984), 26 (Moore et al.

1999), 37 (Dyrcz 1984), 0 (Moore et al. 1999), 14.8 (Dyrcz 1984). Progne subis: 16.5, 

PA (Brown 1997), 50 (Morton et al. 1990), 22 (Morton and Derrickson 1990), 36 (Brown

1997), 38.2 (Brown 1997). Riparia riparia: 14.25, PA (Garrison 1999), 36 (Alves and 

Bryant 1998), 45 (Hjertass et al. 1988), 0 (Garrison 1999), 14.4 (Garrison 1999).

Hirundo rustica: 14.2, S (Brown and Brown 1999), 33 (Moller and Tegelstrom 1997), 1 

(Shields and Crook 1987), 16.5 (Moller 1987), 19.1 (Brown and Brown 1999). Delichon 

urbica: 14.9, S (Cramp 1988), 46 (Whittingham and Lifjeld 1995, Riley et al. 1995), 13 

(Cramp 1988), 0 (Soler et al. 1999), 16.7 (Cramp 1988).

Sylviidae. Acrocephalus arundinaceus: 14, S (Cramp 1992), 8.3 (Hasselquist et 

al. 1995, Leisler et al. 2000), 45 (Hansson et al. 2000), 29 (Mosknes et al. 1993, Moskat
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andHonza 1999), 32.2 (Cramp 1992). Phylloscopus sibilatrix: 13, S (Cramp 1992), 0 

(Gyllensten et al. 1990), 38 (Cramp 1992), 0.09 (Soler et al. 1999), 13.5 (Cramp 1992). 

Phylloscopus trochilus: 13.2, PA (Cramp 1992), 0 (Gyllensten et al. 1990), 49 (Tiainen 

1983, Bjomstad and Lifjeld 1996), 0.06 (Soler et al. 1999), 12.1 (Cramp 1992). Panurus 

biarmicus: 11.5, S (Hoi and Hoi-Leitner 1997), 29.5 (Hoi and Hoi-Leitner 1997), 47 

(Stepniewski 1995), 0 (Soler et al. 1999), 18.0 (Cramp and Perrins 1993).

Passeridae. Passer domesticus: 11, S (Lowther and Cink 1992), 26.1 (Wetton and 

Parkin 1991), 20 (Anderson 1978, Moller 1991), 0 (Lowther and Cink 1992), 27.4 

(Lowther and Cink 1992). Prunella collaris: 11.35, S (Davies et al. 1995), 50 (Hartley et 

al. 1995), 18 (Davies et al. 1995), 0 (Davies et al. 1995), 34.0 (Cramp 1988). Prunella 

modularis: 12.5, S (Cramp 1988), 40 (Burke et al. 1989), 34 (Tuomenpuro 1991), 1.94 

(Davies 1992), 21.7 (Cramp 1988). Taeniopygia guttata: 14.5, PA (El-Wailly 1966), 8 

(Birkhead et al. 1990), 66 (Zann 1994), 0 (Zann 1996), 9.4 (Zann 1996).

Fringillidae. Fringilla coelebs: 12.6, S (Cramp and Perrins 1994), 23 (Sheldon and 

Burke 1994), 48 (Hanski and Laurila 1993, Moller 1991), 0.01 (Soler et al. 1999), 22.5 

(Cramp and Perrins 1994). Serinus serinus: 12.8, S (Cramp and Perrins 1994), 14.9 (Hoi- 

Leitner et al. 1999), 37 (Cramp and Perrins 1994), 0 (Mosknes and Roskraft 1995), 12.1 

(Cramp and Perrins 1994). Carduelis tristis: 13 (Middleton 1993), 26.7 (Gissing et al.

1998), 22 (Middleton 1993), 4.9 (Middleton 1993), 13.2 (Middleton 1993). Carpodacus 

mexicanus: 13.5, PA (Hill 1993), 14.3 (Hill et al. 1994), 45.8 (Martin and Badyaev 1996), 

0 (Hill 1993), 20.0 (Hill 1993). Emberiza citrinella: 13, S (Sundberg and Larsson 1994), 

69 (Sundberg and Dixon 1996), 28.9 (Moller 1991), 0.01 (Soler et al. 1999), 30.6 (Cramp 

and Perrins 1994). Emberiza schoeniclus: 13, S (Cramp and Perrins 1994), 86 (Dixon et
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al. 1994), 58 (Cramp and Perrins 1994), 0.15 (Soler et al. 1999), 21.8 (Cramp and Perrins

1994). Calcarius pictus\ 11.6, S (Briskie 1993), 77 (Briskie et al. 1998), 33 (Briskie 

1993), 0 (Briskie 1993), 25.1 (Briskie 1993). Passercuius sandwichensis: 12.2, PA 

(Wheelwright and Rising 1993), 43 (Freeman-Gallant 1996), 25 (Wheelwright and Rising 

1993), 1 (Wheelwright and Rising 1993), 23.8 (Wheelwright and Rising 1993).

Dendroicapetechia: 11.5, PA (Lowther et al. 1999), 53.8 (Yezerinac et al. 1996), 34 

(Martin 1992), 36 (Lowther et al. 1999), 14.0 (Lowther et al. 1999). Dendroica 

caerulescens: 12, S (Holmes 1994), 43.6 (Chuang et al. 1999), 42.8 (Martin 1992), 0.3 

(Holmes 1994), 14.6 (Holmes 1994). Setophaga ruticilla: 11, S (Sherry and Holmes 

1997), 60 (Perreault et al. 1997), 48 (Sherry and Holmes 1997), 23 (Sherry and Holmes

1997), 13.3 (Sherry and Holmes 1997). Wilsonia citrina: 12, PA (Evans-Ogden and 

Stutchbury 1994), 35.3 (Stutchbury et al. 1997), 38 (Evans-Ogden and Stutchbury 1994), 

41 (Evans-Ogden and Stutchbury 1994), 17.8 (Evans-Ogden and Stutchbury 1994). 

Geothlypis trichas: 12, S (Guzy and Ritchison 1999), 49 (Thusius et al. 2001), 37.5 

(Spautz 1999), 27 (Guzy and Ritchison 1999), 16.2 (Guzy and Ritchison 1999). 

Cardinalis cardinalis: 12.6, S (Halkin and Linville 1999), 16 (Ritchison et al. 1994), 54 

(Martin 1992), 82 (Halkin and Linville 1999), 44.8 (Halkin and Linville 1999).

Passerina cyanea: 12.5, S (Payne 1992), 48 (Westneat 1990), 53 (Martin 1992), 19.0 

(Payne 1992), 19.7 (Payne 1992). Agelaiusphoeniceus: 12, PA (Yasukawa and Searcy

1995), 47.7 (Gibbs et al. 1990, Westneat 1993, Gray 1997), 41 (Yasukawa and Searcy

1995), 4.3 (Friedmann et al. 1977), 39.9 (Yasukawa and Searcy 1995). Dolichonyx 

oryzivorous: 12.4, PA (Martin and Gavin 1995), 38 (Bollinger and Gavin 1991), 29.8 

(Martin 1995), 4 (Martin and Gavin 1995), 29.8 (Martin and Gavin 1995).
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FIGURE LEGENDS

Figure 1. Partial regression plots of residual values showing interspecific variation (n =

70 species) in incubation period relative to extra-pair paternity, brood parasitism, and 

degree of hatching asynchrony after controlling for effect of other independent variables 

in a multiple regression, (a) Incubation period is shorter in species with high rates of 

extra-pair paternity (b = -0.178, P = 0.007). (b) Incubation period is shorter in species 

with high rates of brood parasitism (b = -0.119, P = 0.04). (c) Incubation period is 

positively associated with degree of hatching asynchrony (b = 0.095, P = 0.021).

Figure 2. Partial regression plots of residuals of phylogenetically independent contrasts 

(n = 67 contrasts) in incubation period relative to residuals of contrasts in extra-pair 

paternity, brood parasitism, and degree of hatching asynchrony. Residuals produced by 

multiple regression including all independent variables, (a) Incubation period decreases 

with increasing extra-pair paternity (b = -0.239, P = 0.029). There is no relationship 

between incubation contrasts and (b) brood parasitism contrasts (b = -0.051, P = 0.643) or 

(c) hatching asynchrony contrasts (b = 0.155, P = 0.156).
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CHAPTER II

ADAPTIVE HABITAT SELECTION IN CHESTNUT-COLLARED LONGSPURS 

EXOTIC VERSUS NATIVE HABITAT
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INTRODUCTION

Most organisms occur in a variety of distinct habitats that are often of varying 

quality (May & Southwood 1990). As a consequence, understanding the distribution of 

individuals among habitat patches, and the fitness consequences of these distributions, is 

necessary for understanding population dynamics and regulation (Brown 1969; Pulliam 

1988) and for assessing the conservation value of different habitats and the ramifications 

of habitat loss (Bernstein, Krebs & Kacelnik 1991). The most prominent model for 

explaining the distribution of individuals among habitats is the ideal-free distribution 

(Fretwell & Lucas 1970; Fretwell 1972; Petit & Petit 1996), in which individuals are 

unconstrained by competitors and settle in the habitat that maximizes their fitness. Thus, 

in an ideal-free distribution, fitness is equivalent in all habitats. In nature, however, vital 

rates often are habitat specific (Lundberg et al. 1981; Holmes, Marra & Sherry 1996; 

Murphy 2001; Remes in press). Therefore, an important alternative to the ideal-free 

model is the ideal-despotic distribution model (Fretwell & Lucas 1970; Fretwell 1972) in 

which dominant or early arriving individuals occupy the best habitat and relegate other 

individuals to habitats of lower quality. In contrast to the ideal-free distribution, ideal- 

despotic distributions result in higher fitness for individuals that settle in habitats with a 

higher inherent suitability.

A critical assumption of both models is that individuals have complete 

information about the suitability of all patches of habitat and make decisions accordingly 

(e.g., individuals behave ideally). Settling individuals often must rely on indirect cues to 

assess the expected quality of a habitat patch (Hilden 1965; Chew 1980; Knopf & 

Sedgwick 1992), and presumably over evolutionary time such cues have been reliable
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predictors of survival or reproductive success. However, the proximate factors that 

promote settling do not always reflect habitat quality; in particular, anthropogenic 

changes to the environment may confound the cues used in habitat selection and can 

result in individuals settling preferentially in low-quality habitats in which survival or 

reproduction is low. The creation of attractive habitats that function as ecological traps 

has been associated with a variety of human activities, including changes in vegetation 

structure that increase predation risk (Gates & Gysel 1978; Purcell & Vemer 1998) and 

changes in disturbance regime that increase mortality (Best 1986; Bollinger & Gavin 

1992).

Testing competing models of habitat selection is increasingly important as 

human-modified habitat patches come to dominate most landscapes. For example, if 

habitat selection patterns commonly follow an ideal free distribution, we can expect that 

populations will persist despite the creation of patches of poor-quality habitat. In 

contrast, under the ecological trap scenario, even landscapes with abundant, high-quality 

habitat may not support viable populations (Donovan & Thompson 2001). Clearly, 

understanding the relationship between habitat selection and fitness is essential in 

conserving populations of native plants and animals.

Here, we examine patterns of habitat selection in Chestnut-collared Longspurs 

(Calcarius ornatus Townsend; hereafter, Longspurs), a grassland songbird endemic to the 

northern Great Plains of North America. Across much of this region, native mixed-grass 

prairie has been replaced by monocultures of the introduced grass Agropyron cristatum. 

Agropyron cristatum excludes native plants and thus has significant effects on 

community structure and composition, and also changes ecosystem functioning in areas
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that it dominates (Christian & Wilson 1999). Fields of A. cristatum differ from native 

prairie both phenologically, beginning growth much earlier in the spring, and 

physiognomically, producing significantly more aboveground biomass than native prairie 

(Christian & Wilson 1999). The replacement of native prairie by A. cristatum can also 

have cascading effects on insect populations (Lattin et al. 1994). However, Longspurs, 

like species in many other systems (Chew 1980; Wilson & Belcher 1989; Schmidt & 

Whelan 1999; Remes in press), readily use patches of exotic habitat in addition to native 

habitat, making this a useful system for testing models of habitat selection in perturbed 

landscapes. Although the consequences of settling in exotic habitats for native animals 

are largely unknown, determining the suitability of A. cristatum as habitat for native birds 

is critical, for it is one of the most widespread exotic species in western North America 

and covers at least 6-10 million hectares (Lesica & DeLuca 1996).

Using information on settlement patterns, nesting density, and seasonal fecundity, the 

predictions generated by the three models of habitat selection are tested. Predictions of 

the ideal-free distribution model are similar settlement times in both habitats, higher 

density of nesting birds in the native habitat, and no difference in reproductive success. 

Under the ideal-despotic distribution model, habitat-specific variation in reproductive 

success is expected and Longspurs should settle first, and at higher density, in the high- 

quality habitat. Finally, the ecological trap hypothesis also predicts differences in 

reproductive success between habitats. However, unlike the ideal-despotic distribution, 

under the ecological trap hypothesis individuals are not relegated to low-quality habitat 

through competitive interactions but instead choose to settle in habitats with low fitness
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payoffs. Thus, the ecological trap hypothesis predicts no relationship between habitat 

preference, as measured by settlement time and nesting density, and reproductive success.

METHODS

Work was conducted at Medicine Lake National Wildlife Refuge, located on the 

glaciated plains north of the Missouri River in eastern Montana. The 8100 ha refuge 

consists of native mixed-grass prairie (dominant species include Stipa spp., Agropyron 

smithii, Koeleria cristata, and Bouteloua gracilis), monocultures of Agropyron 

cristatum, hayfields, small agricultural fields, and a variety of seasonal and permanent 

wetlands surrounding a large (c.a. 3200 ha) freshwater lake.

In 2000, study plots were established in 3 monocultures of A. cristatum and 3 

patches of native prairie. Individual study plots ranged in size from 12-25 ha, but the 

total area of the 3 plots in each habitat was the same. In 2001, 2 plots in each habitat on 

which few Longspur nests were found were replaced with new plots of equal size. Thus, 

over the course of the study 4 plots in each habitat were sampled, but only 3 plots in each 

habitat were sampled for more than one year. All of the A. cristatum fields that contained 

study plots were planted in the 1940’s and 1950’s to revegetate abandoned agricultural 

fields, and have been stable monocultures since then. All of the plots, both native and 

exotic, had been grazed or burned in the 10 years prior to this study, but to minimize the 

confounding effects of these disturbances plots were chosen that had not been disturbed 

for at least 2 years. Each plot was overlain with a 50m x 50m grid of flags to facilitate 

territory mapping and nest relocation.
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In 2002, settlement patterns were examined by systematically surveying each plot 

for territorial Longspur males. Male Longspurs began arriving at the study site on 9 

April, but remained in migratory flocks for several weeks as females arrived (see also 

Hill & Gould 1993). Beginning on 24 April, when migratory flocks began to break up, a 

single observer walked slowly along the flagged grid lines covering each plot and 

counted the number of singing males. Males that were fighting but not singing were also 

assumed to be defending territories. Each plot was surveyed every 3 days until 9 May, at 

which point most birds appeared to have settled on a territory and were beginning to nest. 

Because Longspurs sing during conspicuous flight displays, and because of the flat and 

open nature of the terrain, counting the same individual multiple times was not a concern.

Nests were located and monitored throughout the 2000-2002 breeding seasons to 

examine patterns of reproductive success. Nests were located using both systematic 

searches and behavioral observations of adult Longspurs. During systematic searches, 

adults were flushed off of the nest by dragging a weighted rope across the plot. Each plot 

was searched systematically 3 times between early May and late June of each year, but 

nests continued to be found until late July using behavioral observations. The total 

search effort was similar in both habitats. By combining behavioral observations, which 

allowed us to locate nests early in the nesting cycle (e.g., during building) and follow 

pairs throughout the season, and systematic searches, which allowed us to search large 

areas in a short amount of time, we are confident that we located nearly all of the nests on 

each study plot. Behavioral observations suggest that very few territorial males remained 

unpaired, and thus the density of nests (excluding re-nests) was used to reflect overall 

density in each habitat.
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The location of each nest was marked with 1 or 2 small pieces of flagging placed 

1-2 m from the nest cup. Flagging does not appear to increase the risk of nest predation 

(Hein & Hein 1996) and was necessary to allow relocation of nests. The fate of nests was 

determined by visits every 2-3 days, except when hatching or fledging was expected, at 

which point nests were visited daily. Nests were considered successful if at least 1 young 

fledged. If the nest was empty prior to the expected fledging date, the territory was 

searched for adults to determine if they were feeding fledglings. Parents continue to feed 

and defend fledglings on the territory for several weeks after the young leave the nest, 

and thus predation was assumed to have occurred if no adults could be found feeding 

fledglings. In 2001 and 2002 nestling growth rate was measured (see below), which 

provided a third way to assess the fate of nests. Among nestlings of known fate, in no 

case did individuals with a body mass of less than 10 g on or after day 7 of the nestling 

period fledge, and thus mass of nestlings at the last nest check was used to test the 

determination of nest fate. Rates of nest success and daily mortality were calculated 

using the Mayfield method (Mayfield 1961; Hensler & Nichols 1981), and the chi-square 

approach of Sauer and Williams (1989), as implemented by Program CONTRAST (Hines 

& Sauer 1989), was used to compare rates of nest predation.

Adults were monitored after the completion of a nesting attempt in order to locate 

re-nests and estimate seasonal fecundity. Although most birds were not banded, many of 

the males in the study area were individually identifiable based on variation in the extent, 

shape, and color of the plumage forming the ventral bib, and some of the females were 

identifiable by their aberrant plumage (intermediate between male and typical female 

plumage). All of the identifiable birds remained on the same territory throughout the
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breeding season, as has been reported elsewhere for this species (Hill & Gould 1993). 

Furthermore, within-season divorce is exceedingly rare in Chestnut-collared Longspurs; 

in a study of a large, banded population, only 1 possible case of pair-bond dissolution 

was noted (Hill & Gould 1993). Thus, although birds were not individually marked, we 

feel that our estimate of seasonal fecundity is accurate. Estimates of fecundity were used 

in a single-sex, two-stage population model to examine what levels of adult and juvenile 

survival are necessary to achieve a stable population (lambda = 1) in each habitat. For 

the purposes of calculating the mean number of female offspring/female/year, an equal 

sex ratio among offspring was assumed.

Nestling growth rate was measured during 2001-2002 as an additional component 

of reproductive success. Growth rate is an important component of fitness in altricial 

birds because it affects the duration of the nestling period, and thus the probability that 

young survive to fledge, as well as future prospects for survival and reproduction 

(reviewed in Gebhardt-Henrich & Richner 1998). In 2001, nestlings were individually 

marked with a felt-tipped pen as they hatched, and mass was estimated every 2 days 

using a portable electronic balance. A similar procedure was used in 2002 except that in 

addition to body mass the length of both tarsi was measured as well. Mass was estimated 

to the nearest 0.1 g and tarsus length to the nearest 0.1 mm. Nestling growth rates for 

each trait were analyzed by using non-linear regression to fit a logistic growth curve to 

the entire data set. For both mass and tarsus growth, the logistic curve provided an 

excellent fit (mass r2 = 0.85, tarsus r2 = 0.81; both P’s < 0.001). Differences in growth 

between habitats were examined by comparing residuals from the non-linear regression 

using ANOVA (Ricklefs 1983). To avoid artificially inflating error degrees of freedom,
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residuals from the growth curve were first pooled among nestlings within a nest, then 

among nests within a plot, and finally among plots within a habitat. Basing the analysis 

on residuals allowed us to include all measured individuals in the analysis; had we 

attempted to estimate growth parameters separately for each individual or each nest we 

would have been forced to exclude samples with fewer than three measurements.

Nest microhabitat can be an important determinant of predation risk (Martin 

1993; 1998), so data on nest-site selection was collected to examine the potential causes 

of any between-habitat differences in reproductive success. All vegetation sampling was 

conducted within 2 weeks of the day that the nesting attempt terminated, using the 

standardized BBIRD methodology (Martin et al. 1997). At 4 points, 1 cm from the edge 

of the nest in each cardinal direction, the volume of vegetation was estimated by 

measuring the visual obstruction of vegetation (Robel et al. 1970). Overhead 

concealment of the nest was also measured (percentage of a 5 cm radius cardboard disc 

that was occluded when viewed from directly above). To examine which features of the 

environment Longspurs select when choosing a nest site, the same vegetation variables 

(excepting nest concealment) were measured at a randomly located point within the same 

territory but at least 10 m from the nest. The same protocol was used at 10 random points 

within each plot to quantify vegetation differences between habitats. Finally, to examine 

the classification of plots as either exotic or native, the percent cover of different plant 

species was estimated within the 5 m radius sampling plot surrounding each nest and 

each random point.
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RESULTS

As expected, A. cristatum dominated plots in the exotic habitat with a mean cover of 

98.9%. Artmesia frigida was the only other species recorded at more than one point, and 

accounted for 1.1% cover in the exotic habitat. In contrast, plots in the native habitat 

were dominated by a mix of species including: Stipa spp. (38.3%), Koeleria cristata 

(19.6%), Selaginella sp. (9.9%), Agropyron smithii (9.6%), Bouteloua gracilis (6.2%), A. 

frigida (5.0%), and Carex spp. (4.4%). Along with greatly reduced plant species 

diversity, MANOVA indicated that plots in the exotic habitat also differed structurally 

(F3; 6 = 13.753, P = 0.004). This difference was due to significantly greater vegetation 

volume in the exotic habitat (one-way ANOVA; Fi^ = 22.474, P = 0.001).

In 2002, the number of territorial male Longspurs recorded increased between 24 

April and 9 May (repeated-measures ANOVA; F4) i6 = 59.35, P <0.001), but settlement 

patterns did not differ between habitats (habitat X time: Fi>4 = 0.229, P = 0.657). 

Furthermore, a two-way ANOVA indicated that the date that egg laying began in first 

nests did not differ between habitats (Fi, u = 0.034, P = 0.857) although there was 

significant yearly variation in the onset of egg laying (year: F2 , 2 = 266.611, P = 0.004; 

year * habitat: F2 , 10 -  0.027, P = 0.973). The density of Longspurs was similar in both 

habitats (native: 1.4/ha, 95% Cl = 0.93 - 1.87; exotic: 1.1/ha, 95% Cl = 0.75 - 1.45; Fi)4 = 

0.853, P = 0.401).

During the three years of this study, 352 Longspur nests were located and 

monitored (54% on native habitat plots, 46% on exotic habitat plots). Predation was the 

main source of mortality, causing 86% (n = 163) of all nest failures. Parasitism by 

Brown-headed Cowbirds (.Molothrus ater) was relatively infrequent (14.2% (n = 50) of
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nests were parasitized) and of little consequence: only five nests fledged cowbirds, and 

cowbird parasitism accounted for only 3.1% (n = 6 ) of nest failures. Inclement weather 

was also a negligible source of mortality, accounting for 2.6% (n -  5) of nest failures. 

Total daily survival rates were significantly lower for nests in the exotic habitat (native: 

0.9548; exotic: 0.9315; x2 = 3.1947, df = 1, P = 0.07; Fig. 1). Over the 24-day nesting 

cycle typical of Chestnut-collared Longspurs, these daily survival rates amount to an 

average nest success of 32.9% in the native habitat and only 18.2% in the exotic habitat. 

Survival during the nestling stage was lower than during incubation, and although daily 

survival rates did not differ statistically between habitats in either the incubation (x2 = 

1.85, df=  1, P = 0.174) or nestling (x2 = 0.8019, d f -  1, P = 0.371) stage, nestling 

survival was very low in the exotic habitat (Fig. 1).

There was no evidence that maladaptive nest-site selection within a habitat 

contributed to differences in predation rates. Vegetation was sampled at 71 nests in 

native habitat and 75 nests in exotic habitat, and nest sites in exotic habitat were 

marginally different in structure from those in native habitat (MANOVA; F3 , 4 = 4.468, P 

= 0.091). One-way ANOVAs indicated that this difference was a result primarily of 

denser vegetation surrounding nests in the exotic habitat (Fi, 6 = 15.268, P = 0.008) and 

greater overhead concealment of nests in the exotic habitat (Fi, 6 = 13.35, P = 0.011). 

However, within a habitat nest sites did not differ significantly from random points 

within the territory (MANOVA; exotic: F2 , 5 = 0.785, P = 0.505; native: F2 , 5 = 2.070, P= 

0.221) nor were there differences between successful and depredated nests (MANOVA; 

exotic: F3; 4 = 2.22, P = 0.228; native: F2 , 3 = 1.875, P = 0.296). Thus, between-habitat 

differences in nest sites appear to arise as a consequence of large-scale settling decisions
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(e.g., native or exotic habitat) rather than differences in nest-site selection within each 

habitat.

Neither clutch size nor average number of young fledged from successful nests 

varied among years (all P’s > 0.20) and thus data were pooled across years for use in one­

way ANOVA. Clutch size was similar in both habitats (Fi, 6 = 0.090, P = 0.775; Fig. 2). 

The number of young fledged from successful nests was also equivalent (Fi, 5 = 0.530, P 

= 0.499; Fig. 2), although attrition was common and in both habitats the number fledged 

was smaller than the clutch size. Hatching success was high in both habitats (exotic: 

94.2%; native: 93.7%), and much of the difference between clutch size and the number of 

young fledged reflects unknown losses that are assumed to be due to partial predation. 

Starvation of nestlings was rare, and in only 17 nests did we document the death of a 

nestling due to starvation (none of which contained nestling Brown-headed Cowbirds). 

Nestling starvation was more common in the exotic habitat although the difference was 

only marginally significant (exotic: 1 2  nests with at least one nestling dead from 

starvation; native: 5 nests; % -  2.428, df = 1, P = 0.118).

Seasonal fecundity did not differ significantly between habitats (native: 1. 8  

offspring/year; exotic: 1.1 offspring/year; t3 = 1.089, P = 0.337). Females in the exotic 

habitat took nearly 3 days longer to re-nest following failure (mean time between failure 

and egg laying; native: 7.2 days; exotic: 9.8 days), but this difference is only marginally 

significant (t3 = -2.316, P = 0.103). Females re-nested at similar rates in both habitats; 

most pairs that we followed made at least 2  nesting attempts and several pairs attempted 

3 nests (exotic: 1.5 broods/year; native: 1.7 broods/year).
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Given the above estimates of seasonal fecundity, population models indicated that 

very high adult and juvenile survival rates are necessary to maintain a stable population 

in the exotic habitat (Fig. 3). In general, absent immigration, both adult and juvenile 

survival would have to exceed 70% in the exotic habitat for lambda > 1. The situation is 

only slightly better in the native habitat; here, adult survival rates as low as 60% could 

produce a stable population, but only with high (70%) juvenile survival rates. The only 

published estimate of annual adult survival for Chestnut-collared Longspurs, based on 

return rates of banded birds, is 66.7% (Hill & Gould 1993). Adult survival for a 

congener, Lapland Longspur (Calcarius lapponicus), has been estimated at 67.7%

(Custer & Pitelka 1977). Although estimates of survival based on return rates are biased 

unless re-sighting probabilities are high (Lebreton et al. 1982); (Martin, Clobert & 

Anderson 1995), they can at least provide guidance for heuristic analyses such as ours 

(e.g., Martin 1993). Juvenile survival estimates are lacking for Longspurs; however, 

Ricklefs (2000) has shown that juvenile survival tends to be a relatively invariant 

function of adult survival. Using the function presented in Ricklefs (2000), we can 

estimate that juvenile survival of Longspurs is unlikely to be greater than 40-50%. Thus, 

barring adult survival greater than 70%, our estimates of fecundity suggest that lambda < 

1 is likely, and that populations in both habitats are sustained by immigration.

Nestling Longspurs grew at a similar rate in 2001 and 2002 (all P ’s > 0.28 for 

year effect on growth), and therefore data were pooled among years for subsequent 

ANOVAs. Nestlings in the exotic habitat gained mass at a slower rate (Fi, 5 = 12.726, P 

= 0.016; Fig. 4) and fledged at a smaller mass (native: 14.15 g; exotic: 12.87 g; Fi, 5 = 

9.062, P -  0.03). In addition, nestlings in the exotic habitat took significantly longer to
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fledge (native: 8.7 days; exotic: 9.8 days; Fi, 9 = 5.952, P = 0.032). Growth rates of tarsi 

(Fi, 5 = 0.344, P = 0.583) and the outermost primary feather (Fi, 5 = 1.072, P = 0.348) 

were similar in both habitats.

DISCUSSION

For mobile organisms that occupy heterogeneous landscapes, the choice of where 

to settle among the mosaic of different habitats available generally will have strong 

fitness consequences (Krebs 1971; Grant 1975; Lundberg et al. 1981; Blondel et al.

1993; Petit & Petit 1996; Blondel et al. 1999; Remes in press). Models that seek to 

explain the distribution of individuals among habitat patches therefore are useful not only 

in understanding population dynamics, but also are essential in determining the value of 

different habitats for a species. Assessing the quality of different habitats is important 

when choices must be made about which patches to protect and when considering 

whether restoration of human-modified habitats is necessary. In this study, predictions 

from three models of habitat selection were tested using data on the distribution of 

Chestnut-collared Longspurs in a mosaic of native and exotic habitat patches.

Little evidence was found that Longspurs were distributed in an ideal-free 

fashion. In contrast to the predictions of the ideal-free distribution, evidence of habitat- 

specific variation was found in several components of fitness. Nest success was higher in 

the native habitat as a consequence of lower predation rates. Furthermore, nestlings in 

the exotic habitat grew more slowly and took longer to fledge, which may have increased 

their susceptibility to predators. Starvation, although rare, was more common among 

nestlings in the exotic habitat. Nestlings in the exotic habitat also had lower body mass at
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fledging, which can reduce post-fledging survival (Krebs 1971; Magrath 1991). Finally, 

the population model suggests that productivity in the exotic habitat is too low to support 

stable populations; only with unrealistically high juvenile and adult survival rates did 

lambda approach 1.

Habitat-specific variation in fitness is predicted by the ideal-despotic distribution; 

however, this model also predicts that density should co-vary with habitat quality and that 

the higher quality habitat will be settled first. In 2002, settlement patterns were examined 

and no difference was found between habitats in the temporal progress of territory 

establishment. In support of the settlement data, no difference was found between 

habitats in the date that egg laying began. Nesting density tended to be slightly higher in 

the native habitat, but the difference was small and not statistically significant. Thus, the 

ideal-despotic model does not adequately explain the habitat distribution of Longspurs in 

this system.

The ecological-trap hypothesis offers an alternative explanation for habitat- 

specific variation in fitness. In environments that have been modified by humans, the 

indirect cues used by animals to assess the expected quality of a habitat may become 

decoupled from the actual quality of the habitat. The introduction of exotic plants into 

native communities may frequently generate the conditions necessary for ecological 

traps; for example, both Schmidt & Whelan (1999) and Remes (in press) have shown that 

breeding birds are attracted by the earlier leafing phenology of exotic plants but that nest 

predation rates are higher in exotic habitats. Similarly, the habitat created by the 

introduction of A. cristatum was of lower quality yet settling Longspurs did not avoid the
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exotic habitat. In fact, based on settlement times and nest densities, Longspurs exhibited 

no preference for the higher quality native habitat.

Thus, the exotic habitat appears to act as an ecological trap because upon arrival 

in the spring Longspurs do not perceive that the exotic habitat is of lower quality. Birds 

can use a variety of cues when selecting breeding habitat (Hilden 1965; Boulinier et al. 

1996; Forsman et al. 1998), but may often rely on vegetation conditions at the time of 

settling to predict habitat quality (e.g., Badyaev 1995). Although fields of ̂ 4. cristatum 

differ from patches of native prairie in a number of ways, the two habitats are broadly 

similar in structure and appearance and thus differentiating exotic from native habitat 

may be difficult for settling individuals. Furthermore, A. cristatum begins growing 

earlier in the year than most of the native grasses, and may be attractive to Longspurs 

prospecting for a nesting site (e.g., Schmidt and Whelan 1998; Remes in press).

Individuals may also be hindered by a lack of direct cues that would allow them 

to assess their breeding prospects in both habitats. For example, prey species appear to 

be able to assess predation risk in an area by recognizing the presence of predators, and 

can modify their habitat use accordingly (Werner et al. 1983; Turner & Mittlebach 1990; 

Nordahl & Korpimaki 1998). In this system, the causes of high nest predation in the 

exotic habitat are unknown but are unlikely to be driven by differences in predator 

abundance that could be assessed by settling Longspurs. Our study plots are in close 

proximity to one another and thus larger predators (e.g., Northern Harriers, Circus 

cyaneus) will have ranges that encompass multiple patches of habitat. At a smaller scale, 

a predator trapping study conducted near our study plots showed no significant 

differences between native and exotic habitats in the composition of the predator
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community (Elizabeth Madden, unpublished data). Poor choice of nest sites within the 

exotic habitat may play a role, as historically appropriate patterns of nest site selection do 

not always confer safety in a changed environment (e.g., Misenhelter & Rotenberry 

2000). However, statistically non-random nest placement within a habitat could not be 

detected and thus the contribution of maladaptive nest site selection to the pattern of high 

nest predation in the exotic habitat remains unclear.

Trade-offs between food availability and predation risk are often important in 

shaping habitat selection (Grubb & Greenwald 1982; Werner et al. 1983; Lima & Dill 

1990); however, in this case, Longspurs apparently did not choose to breed in the high- 

predation exotic habitat because of increased food availability. Nestling starvation was 

more common in the exotic habitat, females had longer intervals between nesting 

attempts, and nestlings grew more slowly, took longer to fledge, and left the nest at a 

smaller size, all of which are expected if food is limiting (reviewed in Martin 1987).

Slow growth and long nestling periods caused by food limitation should increase 

predation mortality in the exotic habitat independent of any differences in the predator 

community, although the observed one day difference in the length of the nestling period 

cannot explain the entire difference in nest predation rate. However, food and predation 

may interact in a number of other ways to influence reproductive success. Limited food 

may force adults to increase their foraging effort and decrease the time they spend 

guarding the nest, which can increase the risk of predation (Martin 1992; Komdeur & 

Kats 1999). For example, Lynn et al. (2002) found that predation rates increased when 

male Chestnut-collared Longspurs reduced the amount of time they spent perched near 

the nest.
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In conclusion, Chestnut-collared Longspurs were distributed evenly among 

patches of native and exotic habitat but reproductive success was lower in monocultures 

of A. cristatum due to elevated rates of nest predation. The exotic habitat appears to be 

an ecological trap and our population model suggests that it is likely a sink. Although 

Longspurs performed better in their native habitat, our estimates of seasonal fecundity 

suggest that patches of native habitat may also be incapable of supporting stable 

populations at present. This suggests that larger-scale processes, affecting individuals in 

all habitats within a landscape, may be more important in determining population 

stability than habitat-based differences in reproductive success. Thus, although restoring 

native prairie will likely benefit Longspurs, the importance of habitat-specific 

demographics may be limited in highly fragmented and modified landscapes such as 

those of the North American Great Plains.
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Figure 1. Daily nest survival rates (± s.e.) for Chestnut-collared Longspurs, calculated 

using the Mayfield method, in plots in exotic habitat (n = 4) and plots in native habitat (n 

= 4). *P = 0.07.

Figure 2. Clutch size and the number of young fledged from successful nests for 

Chestnut-collared Longspurs breeding in plots of native (n = 4) and exotic (n = 4) habitat.

Figure 3. Model estimates of annual adult and juvenile survival rates necessary to 

maintain stable populations based on field estimates of seasonal fecundity for Chestnut- 

collared Longspurs. (a) model estimates for populations in native habitat and (b) model 

estimates for populations in exotic habitat.

Figure 4. Logistic mass growth curve for Chestnut-collared Longspur nestlings in plots 

of native habitat (n = 3) and plots of exotic habitat (n = 3).
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CHAPTER III

NEST SITE SELECTION AND MATERNAL EFFECTS ON OFFSPRING GROWTH
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INTRODUCTION

Non-genetic maternal effects on offspring phenotype appear to be widespread and 

often of profound importance (Kirkpatrick and Lande 1989, Etges 1998, Agrawal 2001). 

For example, many studies have shown that females can adjust the size or composition of 

propagules in order to produce adaptive shifts in offspring phenotype (Fox et al. 1997, 

Agrawal 2002, Gasparini et al. 2002). Far less is known about how maternal behavior, 

rather than maternal allocation decisions, influences offspring phenotype and fitness 

(Bernardo 1996). The choice of an oviposition site may be a particularly important 

source of maternal effects because it will in part determine the early environment that 

offspring experience, which can have profound and long-lasting effects on phenotype 

(e.g., Boag 1987, Bernardo 1993, Fox et al. 1994, Sinervo and Doughty 1996, Roitberg 

1998, Mousseau and Fox 1998). Maternal oviposition decisions may commonly 

influence offspring fitness and phenotype and therefore may be important both for 

understanding population dynamics and predicting evolutionary change (Kirkpatrick and 

Lande 1989, Roitberg 1998).

Among insects and reptiles, choice of an oviposition site can influence offspring 

traits such as sex, size, growth and development rates, and locomotor performance (Fox 

et al. 1994, Shine and Harlow 1996, Qualls and Shine 1998, Kolbe and Janzen 2002). 

Nest-site selection has also been widely studied in birds, but almost exclusively in the 

context of understanding how predator avoidance has shaped the evolution of nest 

microhabitat preferences (Martin 1998, Clark and Shutler 1999). As a consequence, most 

studies of avian nest-site selection consider only the immediate survival consequences of 

variation in nest placement. However, maternal nest-site preference may have a variety
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of non-lethal effects on offspring phenotype as well. Most importantly, as with reptiles, 

nest-site preference may influence offspring phenotype through the effect of 

microclimate on developing embryos and nestlings (Webb and King 1983, Haftom 1988, 

With and Webb 1993, Conway and Martin 2000).

A number of studies have shown correlations between nest-site choice and aspects 

of microclimate (Ricklefs and Hainsworth 1969, Walsberg 1981, Korol and Hutto 1984, 

With and Webb 1993, Gloutney and Clark 1997, Martin 2001) and several studies have 

shown correlations between some measure of fitness and nest-site features presumed to 

influence microclimate (Austin 1974, Yanes et al. 1996). However, clear demonstrations 

of fitness consequences arising from microclimate differences associated with nest-site 

choice are lacking. Although most studies of nest-site selection consider only the role of 

predation, habitat preferences ultimately reflect trade-offs between a variety of 

conflicting selection pressures (Werner et al. 1983, Lima and Dill 1990) and thus 

examining alternative selection pressures, such as nest microclimate, may provide a 

better understanding of the evolution of nest-site preferences. Integrating nest 

microclimate into our understanding of nest-site selection may also be important from a 

conservation standpoint. For example, if offspring are adapted to particular conditions at 

the nest site (Davis et al. 1984), then environmental changes that decouple nest-site 

preferences from microclimatic conditions, such as the spread of exotic plants or global 

climate change, may have detrimental effects on individual fitness and subsequent 

population growth.

Nestling growth rate is an important component of fitness (Gebhardt-Henrich and 

Richner 1998) that is likely to be sensitive to variation in nest microclimate (Bryant 1975,
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Ernst et al. 1984, Petersen et al. 1986, Konarzewski and Taylor 1989, McCarty and 

Winkler 1999). Temperature in particular can have a major influence on growth through 

its effect on energy and water budgets (Ernst et al. 1984, Sullivan and Weathers 1992, 

Wolf and Walsberg 1996). Temperatures at the nest-site are largely a consequence of the 

orientation of the nest opening because the directionality of the nest determines when, 

and for how long, the nest is exposed to direct insolation (Walsberg and King 1978, 

Walsberg 1981). Nest orientation can also influence the convective environment by 

changing wind velocity around the nest site, but solar radiation generally has a much 

greater effect on heat balance than does wind (Wolf and Walsberg 2000, Wolf et al.

2000). Although effects of nest orientation on microclimate have been shown in many 

species, the fitness consequences have not been measured.

Here, we examine how nest orientation influences nestling growth rate in 

Chestnut-collared Longspurs (Calcarius ornatus\ hereafter, longspurs), a songbird of the 

northern Great Plains of North America. An important difficulty in assessing the 

relationship between nest orientation and offspring phenotype is that microclimate effects 

may be confounded with individual quality if low quality individuals tend to choose non­

preferred orientations. To counter this problem, we experimentally shifted the orientation 

of nests and examined the effect on nestling growth. By randomly re-assigning a new 

orientation to a nest, we equalized sample sizes among orientations and experimentally 

separated the effects of individual quality and nest-site microclimate.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



83

METHODS

Study site

Work was conducted at Medicine Lake National Wildlife Refuge, which is 

located on the glaciated plains north of the Missouri River in eastern Montana. The 8100 

ha refuge consists of native mixed-grass prairie (dominant species include Stipa spp., 

Agropyron smithii, Koeleria cristata, and Bouteloua gracilis), monocultures of the 

introduced grass Agropyron cristatum, hayfields, small agricultural fields, and a variety 

of seasonal and permanent wetlands surrounding a large (c.a. 3200 ha) freshwater lake. 

Data for the descriptive portion of this study were gathered between 2000-2002 and our 

experiment was conducted in 2 0 0 2 .

Study organism and nesting biology 

Chestnut-collared Longspurs build open-cup nests on the ground. The female 

appears to choose the site and performs nearly all of the construction. Construction 

begins with the female digging a 4-5 cm deep hole in the ground, which is subsequently 

lined with grasses such that the rim of the nest is approximately level with the surface of 

the ground. Nests are usually placed next to a clump of grass but have little overhead 

cover; in 4 years of study at this site the percent of the nest obscured from overhead by 

vegetation averaged only 27% (n = 161).

Nest-site selection and nest temperature 

We located nests from April-July of each year using both systematic searches and 

behavioral observations of adult longspurs. During systematic searches, we flushed adults
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from nests by dragging a weighted rope across the plot. After a nest was located, we 

marked its position with 1 or 2  small pieces of flagging placed 1 - 2  m from the nest cup. 

Flagging does not appear to increase the risk of nest predation (Hein and Hein 1996) and 

was necessary to allow us to relocate nests.

To examine patterns of nest-site selection, we measured the following variables 

immediately following the termination of a nesting attempt: orientation, side cover, and 

the volume of vegetation immediately surrounding the nest. We measured nest 

orientation by first locating the opening in the vegetation used by adults to access the 

nest. Nest orientation was then recorded, relative to magnetic north, as the azimuth 

bisecting the nest opening. We assessed side cover by placing a 5 cm radius cardboard 

disc in the nest and then estimating the percentage of the disc that was occluded when 

viewed from 1 m away in each of the cardinal directions. At 4 points, 1 cm outside the 

edge of the nest in each cardinal direction, we estimated the volume of vegetation by 

measuring the visual obstruction of vegetation against a wooden pole marked in 25 cm 

increments (Robel et al. 1970). We measured vegetation volume in the same fashion at a 

random point within the same territory, allowing us to determine the importance of this 

feature in nest-site selection. Directional patterns in side cover and the height and density 

of vegetation surrounding the nest determine the orientation of the nest, and thus we 

included these measures to shed light on how females shape the exposure of their nest to 

the sun.

We quantified nest microclimate at each nest by measuring temperature within the 

nest cup for 24 continuous hours as soon as the nesting attempt ended. We 

simultaneously measured ambient air temperature at a point 5 m from the nest. For both
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temperature measures we used Stow-A way data loggers (Onset Computer Corporation, 

Bourne, MA) equipped with external, black-bulb thermistor sensors that were sensitive 

between -39°C and 122°C. For nest temperature measurements, we used a piece of wire 

to position the sensor approximately 1 cm above the center of the base of the nest, such 

that the sensor was suspended horizontally above and parallel to the base of the nest.

Nest temperatures obtained from our sensors are not the same as the operative 

environmental temperature experienced by birds at the nest (Walsberg and Weathers 

1986), but they do provide an unbiased way of characterizing thermal conditions at the 

nest (Stoutjesdijk 2002). To measure ambient air temperature we positioned the sensor 

approximately 5 cm above the ground and shielded the thermistor from direct sunlight 

with a plastic shade.

We determined if longspurs preferred to orient their nests in particular directions 

lusing a one-sample Kolmogorov-Smimov test, in which the observed distribution of 

directions was compared against the null hypothesis that the distribution of nest 

orientations was uniform (Bergin 1991). MANOVA was used to compare vegetation 

volume (square-root transformed for normality) at nest sites and random, non-nest sites. 

Because side cover is a unique characteristic of nest-sites, it can not be meaningfully 

measured at random points and therefore we were unable to determine whether longspurs 

select nest sites with more or less cover than is generally available in the environment. 

Thus, we only present descriptive statistics for side cover. We used repeated-measures 

ANCOVA to analyze the relationship between nest orientation and nest temperature. 

Because we measured nest temperatures over the length of the breeding season, ambient 

air temperature varied greatly and was thus included as a covariate. Orientation has little
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effect on temperature during the evening, early morning, and late afternoon, so to achieve 

reasonable power in our repeated-measures test we limited our comparison of nest 

temperatures to the hours of 1000-1600. For comparisons among unmanipulated nests, 

we treated orientation as a categorical variable with four levels: northeast (0-90°), 

southeast (91-180°), southwest (181-270°), and northwest (271-360°).

Nestling growth and survival 

To determine the fate of nestlings we returned every 2 days to inspect the contents 

except when fledging was expected, at which point we visited daily. If the nest was 

empty prior to the expected fledging date, we searched the territory for adults to 

determine if they were feeding fledglings. Adult longspurs continue to feed and defend 

fledglings on the territory for several weeks after the young leave the nest, and thus we 

assumed that predation had occurred if we were unable to locate adults feeding 

fledglings. To estimate nestling growth rate, we individually marked nestlings as they 

hatched using a felt-tipped pen, and returned every 2  days to measure body mass, total 

length of the outermost primary on each wing (shaft, and feather when applicable), and 

length of both tarsi. For analysis, we used the mean of the right and left measurements 

for tarsus and primary length. Mass was estimated to the nearest 0.1 g using a portable 

electronic balance, and primary and tarsus length were both measured to the nearest 

0 .1mm using calipers.

We estimated growth rates of all nestling traits by using non-linear regression to

fit a logistic growth curve to the entire data set for each trait. The logistic curve provided

2 2 2 an excellent fit for all measured traits (mass r -  0.85, tarsus r = 0.81, primary feather r
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= 0.86; all P ’s < 0.001). To compare growth among orientations, we analyzed residuals 

from the non-linear regression using ANCOVA with brood size and hatching date as 

covariates (Ricklefs 1983). To avoid artificially inflating error degrees of freedom, 

residuals from the growth curve were pooled among nestlings within a nest before 

analysis. This approach allowed us to include all measured individuals in the analysis; 

had we attempted to estimate growth parameters separately for each individual or each 

nest we would have been forced to exclude samples with fewer than three measurements. 

For successful nests, we compared the final mass of nestlings using ANCOVA using the 

same covariates. We also used ANOVA to compare treatment effects on survival, 

expressed as the percentage of eggs that fledged young (arcsin transformed); the number 

of young fledged; and the length of the nestling period.

Because microclimate effects on nestling growth may be mediated through 

indirect effects on parental behavior we used video cameras to examine how two 

elements of parental behavior, feeding rate and time spent brooding young, varied in 

response to microclimate. On day three of the nestling period (day of hatching = 0) we 

placed a Hi- 8  video camera at each nest and recorded activity from 0700-1400 hours. By 

taping all nests at the same developmental stage, we were able to control for natural 

variation in feeding and brooding rates that occur as nestlings age. To control for 

differences among nests in weather conditions at the time of taping, we also recorded 

ambient air temperature during videotaping. Ambient air temperature was recorded with 

a shaded temperature probe attached to a data logger and placed 5 m from the nest. To 

examine how parents respond to changes in microclimate, we compared percent of time 

spent brooding (arcsin transformed) and the number of feeds per hour (natural log
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transformed) among treatments using ANCOVA, with ambient temperature and brood 

size as covariates. In all cases, post-hoc comparisons among treatments were adjusted for 

multiple comparisons using the Bonferroni method. Unless otherwise noted, variables 

were normally distributed and thus not transformed for analysis.

Experimental manipulation o f microclimate 

We experimentally manipulated nest orientation to examine the causative 

relationship between maternal choices about nest-site placement and offspring phenotype 

and fitness. By removing vegetation and adding artificial shade, we experimentally 

altered nest orientations to manipulate the radiative environment experienced by nestling 

and adult longspurs. We manipulated nests to create three experimental orientations: 

northeast (40-50°), southeast (130-140°), and southwest (220-230°). We chose these 

orientations to represent the three general radiative conditions a nest might experience: no 

direct sun, morning sun, and afternoon sun. We applied the treatment with the constraint 

that the experimental orientation must be in a different quadrant than the natural 

orientation; for example, nests that faced between 0-90° were assigned to either a 

southeast or southwest orientation but never a northeast orientation. Otherwise, 

treatments were assigned randomly and nests not selected were left unmanipulated for 

comparison. All treatments were applied on the day of hatching. We created artificial 

orientations by clipping vegetation to expose the nest in the desired direction while 

simultaneously using an artificial shade to eliminate the natural nest opening. We 

standardized the size of the artificial nest openings by clipping vegetation until the disc
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used to measure concealment was completely unobscured by vegetation when viewed 

from 1 m away at the desired orientation. Artificial shade was created by placing a 15 x 

15 cm square piece of fine-mesh ( 1  mm) metal window screen, stretched between two 

metal pins, in front of the nest opening. We placed the screens immediately adjacent to 

the nest and at a slight angle such that the top of the screen was in the same plane as the 

edge of the nest cup. Thus, by shading the natural opening and clipping vegetation to 

create a new opening, we were able to artificially manipulate realized nest orientation.

After clipping and shading a nest, an observer hid 150 m from the nest and 

recorded the time that elapsed until parents returned either to feed the nestlings or to 

brood them. Using ANOVA, time to return at experimental nests was compared with 

data gathered in a similar fashion at unmanipulated nests of the same age that were 

visited for routine nest checks (e.g., parents flushed off of the nest and contents 

recorded). Comparing return times allowed us to assess the extent to which the 

application of our treatments disrupted normal behavioral patterns.

Predictions

A southeast nest orientation should help minimize morning cold stress while 

avoiding the potential for heat stress caused by direct exposure to the sun during the 

afternoon, the period of highest ambient air temperatures. Thus, we expect that growth 

and survival should be highest in southeast-facing nests (morning sun) and lowest in 

southwest-facing nests (afternoon sun), and intermediate in northeast-facing nests (no 

direct sun). Predation has been shown to influence many features of avian nest sites, and 

thus is an important alternative to consider. We do so in two ways. First, we compare
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the distribution of nest orientations at successful and depredated nests. Second, we 

compare predation rates among our experimental treatments. If orientation is related to 

the risk of predation, we expect differences in the distribution of nest orientations 

between successful and depredated nests, and differences in predation rates among our 

treatments.

RESULTS 

Climate at the study site 

Average maximum air temperatures during the course of our study were similar to 

the long-term average (Fig. la). During 2002, when we conducted our experiment, 

temperatures in May, June, and August were slightly cooler than the long-term average 

and nearly identical to the long-term average during July.

Weather station data from out site, average across the breeding season, show that 

minimum temperatures occur just prior to and just following sunrise, and that maximum 

daily temperatures are generally achieved between 1400-1700 hours (Fig. lb). During 

the coldest daylight hours (0500-0800), the solar azimuth ranges between 55-90°; during 

the time of maximum daily temperatures (1300-1700) the solar azimuth is between 185- 

265°. Prevailing winds come from the east-northeast and the west-southwest (Fig. 2).

Nest-site selection and nest temperature 

Longspurs preferred to orient their nests towards the southeast (n = 313, 

Kolmogorov-Smimov Z = 4.417, P < 0.001; Fig. 3). Preference for southeast-facing 

nests did not change seasonally. The distribution of nest orientation was similar when
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comparing early (initiated before 1 June, n -  155, median =141°) and late (initiated after 

1 June, n = 121, median = 145°) breeding attempts (Kolmogorov-Smimov Z = 0.880, P = 

0.480). The distribution of vegetation around nest sites differed from random points (F4, 

204 ^ 2.280, P = 0.05); in particular, nest sites had significantly lower volume of 

vegetation on the south (Fi, 207 = 4.957, P = 0.027) and east (Fi, 207 = 4.912, P = 0.028) 

sides. Similarly, the percent of the nest obscured by vegetation was lower on the south 

(mean = 40.9%) and east (mean = 39.2%) sides than on the north (mean = 64.5%) or west 

(mean = 64.0) sides. Thus, as predicted, female longspurs appear to position nests so as 

to create a favorable radiative environment for themselves and their young. Given the 

pattern of prevailing winds (Fig. 2), a southeast orientation may also help reduce wind 

velocity at the nest. Nest orientation was not related to the risk of predation; the 

distribution of nest orientations was similar in successful (n = 116) and depredated nests 

(n = 130; Kolmogorov-Smimov Z = 0.931, P = 0.351).

Orientation has a strong effect on nest temperature, especially during midday 

(Fig. 4a). A repeated-measures ANCOVA on nest temperatures between 1000-1600 

hours indicates a significant difference among orientations after controlling for the effect 

of ambient air temperature at the time when nest temperature was measured (ambient 

temperature: Fi,4 9 = 116.02, P < 0.001; nest orientation: F3,49 = 5.887, P = 0.002). Nests 

facing southeast are significantly hotter during this period than nests oriented towards 

either the northeast (mean difference = 8.7°C, P = 0.04) or the northwest (mean 

difference = 10.3°C, P = 0.007). Temperatures at nests facing southeast were not 

significantly different than nests facing southwest (mean difference = 3.6° C, P = 0.644). 

Nests oriented to the southwest were marginally warmer than northeast-facing nests
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(mean difference = 7.2°C, P = 0.101). Thus, contrary to expectations, a southeast 

orientation does not appear to provide a consistent buffer against afternoon heat stress.

Operative temperatures at nests with experimentally altered orientations 

were similar to unmanipulated nests with the same orientation, and more importantly 

strong differences emerged among treatments during midday (Fig. 4b). After controlling 

for ambient temperature, nest temperatures between 1000-1600 differed significantly 

among treatments (ambient temperature: Fi, 22 = 16.337, P = 0.001; treatment: F2> 2 2 = 

20.334, P < 0.001). As at unmanipulated nests, experimental nests with a southeast 

orientation (n = 17) experienced significantly greater temperatures between 1000-1600 

than did experimental nests with a northeast orientation (n = 22; mean difference = 

10.2°C, P < 0.001). Nests facing southwest (n = 22) had higher temperatures than did 

nests facing northeast (mean difference = 9.5°C, P < 0.001) but were not significantly 

different than nests facing southeast (mean difference = 2.2°C, P = 0.701). Thus, our 

experimental nests were largely successful in recreating the radiative environment 

experienced at natural nests.

Despite the effect of treatment on nest temperature, the disturbance associated 

with applying treatments did not have an immediate effect on adult behavior. Adults 

took an average of 15.1 minutes to begin feeding nestlings after application of the 

treatment; adults took an average of 12.3 minutes to return to unmanipulated nests 

following routine nest checks, a non-significant difference (Fi, 23 = 0.932, P = 0.408). 

None of the nests in the experiment were abandoned following treatment.
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Nestling growth and survival

The rate of mass gain varied significantly among orientations (orientation: F3] n 6 = 

3.083, P = 0.03; hatching date: Fi, u6 -  1.102, P = 0.296; brood size: Fi, H6 = 16.94, P < 

0 .0 0 1 ), but paradoxically growth was slowest among nests facing the preferred direction 

(Fig. 5a). Rate of mass gain was significantly greater for nestlings in northeast-facing 

nests than in nests with a southeast orientation (P = 0.023), but none of the other means 

differed significantly. Tarsus growth, feather growth, length of the nestling period, 

survival, and number of nestlings fledged were similar among orientations (all P’s > 

0 .20).

Similar results were obtained by experimentally changing nest orientation; in no 

case did nestlings perform better in nests that had been shifted to face the preferred 

direction. First, experimentally changing the orientation of a nest had a significant effect 

on the rate of mass gain among nestlings after controlling for hatching date and brood 

size (orientation: F2 )54 = 2.773, P = 0.012; hatching date: Fi)54 = 12.52, P = 0.001; brood 

size: Fi, 54 = 0.055, P = 0.816; Fig. 5b). As in natural nests, nestlings in nests shifted to 

face southeast grew significantly slower than nestlings in northeast-facing nests (P = 

0.01). Growth in southwest-facing nests was similar to growth in nests shifted to face 

southeast (P = 0.901) and northeast (P = 0.201). The length of the nestling period was 

similar among treatments (northeast: 8.4 days; southeast: 8.9 days; southwest: 8.2 days; 

F2, 23 = 0.886, P = 0.426) and similar to that of unmanipulated nests (over the course of 4 

years at this site, mean length of nestling period = 9.1 days; n = 112).
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Mass at fledging varied among treatments (orientation: F2 , 26 = 3.864, P = 0.034; 

hatching date: Fij 2 6 = 2.770, P = 0.108; brood size: Fij 2 6 = 2.888, P = 0.101; Fig. 5c) and 

was also lowest in nests with the preferred orientation. Mass at fledging in southeast- 

facing nests was significantly lower than in nests with a northeast orientation (P = 0.034). 

As with growth rate, fledging mass was intermediate in nests shifted to face southwest 

(both P’s > 0.30).

Tarsus growth also varied by treatment (orientation: F2> 5 4  = 4.881, P = 0.01; 

hatching date: Fi,54 = 8.3 95, P = 0.001; brood size: Fi, 54 = 0.771, P = 0.273; Fig. 6 ). 

Nestlings in nests with the preferred orientation did not have more rapid tarsus growth; 

instead tarsus growth in southeast-facing nests was significantly slower than in northeast- 

facing nests (P = 0.013). Once again, tarsus growth in southwest-facing nests was 

intermediate to growth at southeast (P -  1.0) and northeast (P = 0.12) orientations.

Length of the tarsus at fledging did not vary among treatments (orientation: F2] 29 = 0.051, 

P = 0.951; hatching date: Fi,29 = 11.98 8 , P = 0.055; brood size: Fi, 29 = 0.772, P = 0.387), 

nor did feather growth (orientation: F2,54 = 1.5 83, P = 0.215; hatching date: Fi_ 54 =

12.312, P = 0.001; brood size: F2,54 = 0.231, P = 0.633). However, the trend was the 

same as for mass and tarsus growth; rate of feather growth was greatest in northeast- 

facing nests, intermediate in southwest-facing nests, and lowest in nests oriented to the 

southeast.

The percent of young that survived to fledge did not vary among treatments 

(orientation: F2, 58 -  0.215, P = 0.807; hatching date: Fi, 28 = 0.644, P = 0.015) and mean 

percent survival at experimental nests (25.3%) was similar to that at unmanipulated nests 

(24.9%). As is typical of passerine birds, nearly all nestling mortality was the result of
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predation. Predation caused the complete loss of all nestlings at 44% of northeast-facing 

nests, 53.8% of southeast-facing nests, and 50% of southwest-facing nests. Partial 

predation of broods likely accounted for most of the other nestlings that disappeared 

during the course of the study. Starvation was rare, and accounted for the loss of 6 

nestlings (in 3 nests) in northeast-facing nests, 8 nestlings (in 7 nests) in southeast-facing 

nests, and 7 nestlings (in 4 nests) in southwest-facing nests. Partial brood losses, whether 

by predation or starvation, were distributed equally among treatments: the number of 

young fledged from successful nests (e.g., at least one young fledged) did not vary among 

treatments (orientation: ¥2,12 = 0.817, P = 0.451; hatching date: F ] ^  = 0.009, P = 0.926).

The percentage of time adults spent brooding varied significantly among 

treatments (orientation: F2 , 10 = 10.38, P = 0.004; ambient air temperature: Fi, 10 = 0.821,

P = 0.386; brood size: Fi, 10 = 0.624, P = 0.448; Fig. 7a). At the cooler, northeast-facing 

nests adults spent significantly less time brooding than at southeast-facing nests (P = 

0.003); percent of time brooding was intermediate at southwest-facing nests and did not 

differ significantly from other orientations (northeast, P = 0.176; southwest, P = 0.356). 

Time spent brooding may have constrained the amount of time adults spent foraging for 

young, and the rate at which adults fed young varied among orientations (orientation: F2, 

22 = 4.191, P = 0.029; ambient air temperature: Fi,22 = 0.808, P = 0.378; brood size: Fi ,22 

= 0.348, P = 0.561; Fig. 7b). Adults at southeast-facing nests fed young significantly less 

often than adults at northeast-facing nests (P = 0.026); all other comparisons were not 

significantly different (all P’s > 0.45).
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DISCUSSION

The environmental conditions to which organisms are exposed early in life can 

have long-lasting effects on phenotype and fitness (Boag 1987, Metcalfe and Monaghan 

2001). The early environment for many organisms is determined by maternal decisions 

about where to deposit propagules, and as a consequence oviposition behavior can be an 

important source of maternal effects (Fox et al. 1994, Shine and Harlow 1996, Roitberg 

1998). Incorporating information on how maternal oviposition preferences generate 

maternal effects is necessary in understanding the evolution of oviposition behavior.

Many studies show that nest-site choices are adaptive in reducing the risk of predation on 

offspring (Martin 1993, 1998; Clark and Shutler 1999; Madsen and Shine 1999), but 

nest-site selection may also mediate more subtle maternal effects. For example, growth, 

development, and other life history traits of pre- and post-natal birds are known to be 

affected by abiotic conditions such as temperature and humidity (Davis et al. 1984, Ernst 

et al. 1984, Lyon and Montgomerie 1987, Haftom 1988), and nest sites often appear to be 

chosen so as to minimize adverse environmental conditions (Ricklefs and Hainsworth 

1969, Walsberg 1981). However, little direct evidence has been gathered to show that 

nest placement, through its effect on microclimate, can influence offspring phenotype.

In our system, longspurs exhibited a strong preference for nest sites with a 

southeast orientation. A similar pattern has been described for other birds, and this 

preference has been interpreted as an adaptation to minimize cold stress during the 

morning and heat stress during the afternoon (Walsberg and King 1978). However, data 

from unmanipulated nests suggest that heat stress is most likely in nests with a southeast 

orientation, as they are significantly hotter than other orientations during midday (Fig. 4).
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Nests facing southwest tend to be warmest during the afternoon, but operative 

temperature differences among orientations diminish rapidly after 1400 hours. 

Paradoxically, nestling mass gain was lowest in nests with the preferred orientation, and 

was highest in northeast-facing nests (Fig. 5). Sample size was small for southwest and 

northwest orientations, and growth rates for these orientations could not be distinguished 

statistically from other orientations.

The experimental data provide better evidence that nest-site selection, by 

influencing nest microclimate, can affect nestling growth. The experimental data also 

suggest that nest-site orientation preferences are not adaptive. Rate of mass growth and, 

ultimately, fledging mass were lowest among nests with the preferred southeast 

orientation. Nestlings from northeast-facing nests were more than 2 g heavier at the time 

of fledging than nestlings from southeast-facing nests, and more than 1 g heavier than 

nestlings from southwest-facing nests. These differences equate to approximately 9% 

and 18% reductions in body mass, respectively, which likely has a strong negative effect 

on future survival prospects (Martin 1987, Magrath 1991). Tarsus growth showed the 

same pattern.

Altricial nestlings such as longspurs generally do not achieve homeothermy until 

just prior to fledging and can only deal with relatively short periods of heat stress without 

becoming dehydrated (Visser 1998). Despite the extreme temperatures to which 

nestlings in the southeast and southwest orientations were exposed, survival did not vary 

significantly among treatments. We attribute this to the behavioral response of adults; 

adults at nests with a southeast orientation spent more than 70% of the time they were 

under observation brooding, which is 3 times greater than the percent of time adults at
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northeast-facing nests spent brooding. Adults shaded their young from direct solar 

radiation, an important source of heat gain (Webb and King 1983, Wolf and Walsberg 

1996), by sitting on, or immediately above, the nestlings. Although adults at southeast- 

facing nests spent more time brooding, feeding rates did not vary among treatments.

Thus, growth differences among treatments likely reflected the direct physiological costs 

of elevated temperature rather than an indirect effect of microclimate on parental 

behavior.

Maternal decisions about the orientation of the nest can have strong effects on 

offspring phenotype. We suggest that this is a result of the effect of orientation on the 

radiative environment experienced by nestlings, although we cannot rule out a role of 

convective heat transfer. However, wind generally has much less of an effect on heat 

balance than solar radiation (Wolf et al. 2000, Wolf and Walsberg 2000). Furthermore, 

for ground nesters such as longspurs most wind reduction is accomplished by virtue of 

being within the boundary layer of the ground (With and Webb 1993), and thus nest 

orientation may have a minimal effect on the convective environment at the nest. 

Nonetheless, the cooling effect of prevailing west-southwest winds may help explain the 

similar growth rate of nestlings in northeast- and southwest-facing nests.

Predation is an important selective pressure shaping preferences for microhabitat 

features at the nest site (Martin 1988, 1993; Clark and Shutler 1999). We found no 

difference in the distribution of orientations for successful and depredated nests, nor did 

we find any difference in predation rates among our experimental treatments. Thus, 

although predation may shape many of the preferences for microhabitat features at the
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nest site, preference for nest orientation more likely relates to the need to ameliorate 

environmental conditions.

A surprising result of this study was that the preferred orientation produced the 

harshest microclimatic conditions. Contrary to the expectation that a southeast 

orientation maximizes thermal benefits, we found that the most extreme nest 

temperatures occurred at southeast-facing nests and that nestling growth was slowest in 

both natural and experimental nests oriented towards the southeast. Given that predation 

does not appear to constrain nest orientation preferences, why do longspurs in this system 

prefer to orient nests towards the southeast when doing so exposes offspring and 

attending adults to a harsh radiative environment? Other species breeding in similar 

habitat prefer to orient nests towards the north (With and Webb 1993), and in other areas 

of their range Chestnut-collared Longspurs prefer northwest orientations (Hill and Gould 

1993). One possibility is that we somehow underestimated the benefit of a southeast 

orientation, perhaps because benefits only accrue when ambient temperatures are low. 

However, temperatures during our study were slightly cooler than the long-term average 

and thus our results are not an artifact of conducting the study during an abnormally 

warm year. Another possibility is that individuals are physically or mechanically 

constrained in their ability to construct a nest with the preferred orientation. None of the 

study plots had been disturbed since prior to 1998, and hence large amounts of standing 

dead vegetation had accumulated. Dead vegetation from growth in previous years tends 

to fall to the south, presumably as a consequence of the winter storms that tend to move 

south through the region. Longspurs often build nests among mats of dead vegetation, 

and thus nest orientation may be constrained the direction in which standing dead
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vegetation becomes matted. Although speculative, this scenario could explain why 

patterns of nest-site preference appear to be maladaptive. In addition, it would provide an 

interesting example of how anthropogenic effects on the environment can have untoward 

and unpredicted effects on species; the accumulation of dead vegetation on the study area 

is a result of human-caused changes in disturbance regimes, particularly the reduction or 

elimination of native herbivores (grasshoppers and bison, Bison bison) and fire. Similar 

reductions in the frequency of disturbance have occurred throughout what remains of the 

North American prairie.

Although we do not have an explanation for the apparently maladaptive nest-site 

preferences exhibited by longspurs at our site, our results demonstrate that nest-site 

selection can have strong effects on offspring phenotype and can be an important source 

of maternal effects. In particular, nest-site selection appears to mediate maternal effects 

through the influence of nest orientation on the radiative environment. The importance of 

nest microclimate for offspring development is well known among reptiles (Shine and 

Harlow 1996, Qualls and Shine 1998, Madsen and Shine 1999, Kolbe and Janzen 2002), 

but far is less known for other vertebrates. Here we show that growth and development 

of nestling birds, like reptiles, are strongly influenced by abiotic conditions at the nest 

site, which in turn are determined by the nest orientation chosen by the female. Our 

results are significant not only because they expand our concept of the role of maternal 

behavior as a source of maternal effects, but also because they clearly demonstrate that 

the process of choosing a nest site involves more than just avoiding predators. Most 

theories of habitat selection recognize the importance of trade-offs among conflicting 

selection pressures, but among the many studies of avian nest-site selection, few have
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considered agents of selection other than predation. Hopefully, our results will encourage

the recognition of nest-site selection for the multifarious process that it is.
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Fig. 1. (a) Average maximum air temperature at Medicine Lake, Montana by month 

during the years included in this study in relation to long-term (1911-2002) averages, (b) 

Hourly average air temperature and hourly absolute extreme air temperature between 

May-July 2002 at Medicine Lake National Wildlife Refuge.

Fig. 2. Histogram of prevailing wind directions recorded hourly between May-July 2002 

at Medicine Lake National Wildlife Refuge.

Fig. 3. Nest orientations of Chestnut-collared Longspur nests monitored during 2000- 

2002 .

Fig. 4. (a) Operative environmental temperature at Chestnut-collared Longspur nests as a 

function of nest orientation, (b) Hourly marginal means (controlling for ambient air 

temperature at nest temperature recorded) of operative environmental temperature 

recorded at experimentally re-oriented Chestnut-collared Longspur nests.

Fig. 5. (a) Growth rate of nestling Chestnut-collared Longspurs as a function of nest 

orientation. Each point represents the marginal mean (± 1 s.e.) of residuals from a 

logistic curve fit to the entire data set, averaged among nestlings within a nest and among 

nests within each directional quadrant. Means with different letters are significantly 

different (see text for P-values). Data were collected from 2000-2002. (b) Growth rate 

and (c) mass at fledging of nestling Chestnut-collared Longspurs as a function of 

experimental shift in nest orientation. For growth, each point represents the marginal
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mean (± 1 s.e.) of residuals from a logistic curve fit to the entire data set, averaged among 

nestlings within a nest and among nests within each treatment. Mass at fledging is the 

average mass of all nestlings in a nest on the last day before fledging. Means with 

different letters are significantly different (see text for P-values).

Fig. 6. Tarsus growth rate of nestling Chestnut-collared Longspurs as a function of 

experimental shift in nest orientation. Each point represents the marginal mean (± 1 s.e.) 

of residuals from a logistic curve fit to the entire data set, averaged among nestlings 

within a nest and among nests within each directional quadrant. Means with different 

letters are significantly different (see text for P-values).

Fig. 7. Percent of time adult Chestnut-collared Longspurs spent brooding nestlings (a) 

and hourly rate at which adults fed nestlings (b) as a function of experimental shift in nest 

orientation. Each point represents the marginal mean (± 1 s.e.) as estimated from 6-7 

hours of video observation conducted on day 3 of the nestling period. Means with 

different letters are significantly different (see text for P-values).

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



Ai
r 

te
m

pe
ra

tu
re

 
(°C

) 
Av

er
ag

e 
m

ax
. 

air
 t

em
pe

ra
tu

re
 

(°
C

)

111

35 

30 H 

25 

20  ■ 

15 

10 ■ 

5 -

■ H  Average, 1911-2002 
[Z 2 ] 2000
E 3  2001 

2002

7 <
/ <
/ <
/ <
/ <
/ ><
/ ><
/ ><
/ ><
/ <
/ ><
/ <
/

M ay June July

/
/
/
/
/
/
/
/
/
/
/
/
/
/
/
/
/

X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X

A ugust

Month

•  mean temperature 

 extreme temperature
30 ■

I l l l l !
20  ■

10 ■

-10  ■

12am 2am 4am 6am 8am 10am 12pm 2pm 4pm 6pm 8pm 10pm

Time

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



Fr
eq

ue
nc

y

112

60 

50 

40 

30 

20 

10 

0
0 40 80 120 160 200 240 280 320 360

Prevailing wind direction

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



Fr
eq

ue
nc

y

113

30 

25 

20 

15 

10 

5 

0
0 40 80 120 160 200 240 280 320 360

Direction of nest opening

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



N
es

t 
te

m
pe

ra
tu

re
 

(°
C
) 

N
es

t 
te

m
pe

ra
tu

re
 

(°
C

)

114

Northeast (n = 6) 
Southeast (n = 30) 
Southwest (n = 7) 
Northwest (n = 8)

40 -

35 -

30 -

25 -

20  ■

10 ■

6am 8am 10am 12pm 2pm 4pm 6pm 8pm 10pm 12am 2am 4am

Northeast (n = 9) 
Southeast (n = 8) 
Southwest (n = 9)

45

40

6am 8am  10am 12pm 2pm 4pm 6pm 8pm 10pm 12am 2am 4am

Time of day

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



115

jo
CD

■g
CO
CDi—
g
GO
CD 0.4 -
o
c
COO)
if)
CO
03
E

- 0.2  -

-0.4 -

northeast southeast southwest northwest

Nest orientation

0.6jo
COD

TD
CO
CDi—
O

+= 0 2 - 
C O  u - *
CD
O
^  0.0 ■
CO
CD
co -0 2 -  co u
CO
E

-0.4 -

a,b

■ 14

■ 13
<4—o
CD

-1-4

CO
tz - 0.6

northeast southeast southwest northeast southeast southwest

Experimental orientation

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

M
ass 

at fledging 
(g)



Ta
rs

us
 

gr
ow

th
 

(lo
gi

st
ic 

re
si

du
al

s)

116

0.8

0.4 -

a,b

- 0.2 -

-0.4 -

- 0.6
southwestsoutheastnortheast

Experimental orientation

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



Pe
rc

en
t 

of 
tim

e 
sp

en
t 

br
oo

di
ng

117

a,b70 ■

a,b

30 -

northeast southeast southwest northeast southeast southwest

Experimental orientation

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Feeding 
rate 

(feeds/hr)


	Avian life-history evolution: Explaining variation among species populations and individuals
	Let us know how access to this document benefits you.
	Recommended Citation

	tmp.1461732696.pdf.OWDZ_

