9-1996

Global net carbon exchange and intra-annual atmospheric CO2 concentrations predicted by an Ecosystem Process Model and Three-Dimensional Atmospheric Transport Model

E. Raymond Hunt Jr.
Steve C. Piper
Ramakrishna R. Nemani
Charles D. Keeling
Ralf D. Otto

See next page for additional authors

Follow this and additional works at: http://scholarworks.umt.edu/ntsg_pubs

Recommended Citation

This Article is brought to you for free and open access by the Numerical Terradynamic Simulation Group at ScholarWorks at University of Montana. It has been accepted for inclusion in Numerical Terradynamic Simulation Group Publications by an authorized administrator of ScholarWorks at University of Montana. For more information, please contact scholarworks@mail.lib.umt.edu.
Global net carbon exchange and intra-annual atmospheric CO₂ concentrations predicted by an ecosystem process model and three-dimensional atmospheric transport model

E. Raymond Hunt Jr., 1,2 Stephen C. Piper, 3 Ramakrishna Nemani, 1 Charles D. Keeling, 3 Ralf D. Otto, 3,4 and Steven W. Running 1

Abstract. A generalized terrestrial ecosystem process model, BIOMÉ-BGC (for BIOMÉ BioGeoChemical Cycles), was used to simulate the global fluxes of CO₂ resulting from photosynthesis, autotrophic respiration, and heterotrophic respiration. Daily meteorological data for the year 1987, gridded to 1° by 1°, were used to drive the model simulations. From the maximum value of the normalized difference vegetation index (NDVI) for 1987, the leaf area index for each grid cell was computed. Global NPP was estimated to be 52 Pg C, and global Rs was estimated to be 66 Pg C. Model predictions of the stable carbon isotopic ratio ₁³C/₁₂C for C₃ and C₄ vegetation were in accord with values published in the literature, suggesting that our computations of total net photosynthesis, and thus NPP, are more reliable than Rs. For each grid cell, daily Rs was adjusted so that the annual total was equal to annual NPP, and the resulting net carbon fluxes were used as inputs to a three-dimensional atmospheric transport model (TM2) using wind data from 1987. We compared the spatial and seasonal patterns of NPP with a diagnostic NDVI model, where NPP was derived from biweekly NDVI data and Rs was tuned to fit atmospheric CO₂ observations from three northern stations. To an encouraging degree, predictions from the BIOMÉ-BGC model agreed in phase and amplitude with observed atmospheric CO₂ concentrations for 20° to 55°N, the zone in which the most complete data on ecosystem processes and meteorological input data are available. However, in the tropics and high northern latitudes, disagreements between simulated and measured CO₂ concentrations indicated areas where the model could be improved. We present here a methodology by which terrestrial ecosystem models can be tested globally, not by comparisons to homogeneous-plot data, but by seasonal and spatial consistency with a diagnostic NDVI model and atmospheric CO₂ observations.

Introduction

In order to better understand the role of terrestrial ecosystems in the global carbon cycle as affected by the interannual variability in global temperatures and precipitation, we are comparing anomalies of the atmospheric CO₂ record, hypothesized to be due to the interaction of ecosystem processes and climate [Keeling et al., 1995], with global predictions incorporating net primary production (NPP) and heterotrophic respiration (Rs), both of which are strongly controlled by climate. We are aided in characterizing these anomalies by having data on the ¹³C/¹²C isotopic ratio of atmospheric CO₂ in addition to concentration measurements. The concentration and isotopic data together permit a distinction to be made between oceanic and terrestrial contributions to these anomalies on shorter interannual time scales [Keeling et al., 1989b, 1995; Conway et al., 1994; Ciais et al., 1995; Francey et al., 1995], but do not explain the cause of the anomalies. Gaining this understanding requires an integrated modeling effort focusing on the seasonal cycle of atmospheric CO₂ concentrations and the interannual variability of the carbon cycle. Input data for prediction of the ecosystem processes must be from as close to the actual data as possible, not based on potential vegetation or long-term climatic averages, for understanding of the atmospheric CO₂ anomalies.

There are many ecosystem process models which help to explain terrestrial net primary production and heterotrophic respiration: the Terrestrial Ecosystem Model (TEM) by Melillo et al. [1993], the Carnegie Ames Stanford Approach (CASA) by Potter et al. [1993], the Frankfurt Biosphere Model (FBM) by Lüdeke et al. [1994], the Carbon Assimilation in the Biosphere model (CARAIB) by Warnant et al. [1994], the Century model by Parton et al. [1987, 1993], and the Land Surface Model (LSM) by Bonan [1995] to name just a few. Each model, however, has been designed for a specific purpose and makes assumptions to simplify ecosystem processes which do not compromise that particular purpose. Some of these models thus do not simulate a complete hydrologic budget and hence can neither predict short-term decreases in NPP due to drought nor the effects of moisture storage in the soil. Others use mean monthly climatological data and potential vegetation, so the
effects on vegetation of interannual variability in precipitation and temperature cannot be realistically simulated. Thus most of the existing ecosystem models are not optimal for direct comparisons with atmospheric CO₂ anomalies because of the interannual variability of climate.

Patterns of vegetation activity are described globally by the normalized difference vegetation index (NDVI) from the Advanced Very High Resolution Radiometer, AVHRR [Goward et al., 1985; Fung et al., 1987]. There are several models which estimate NPP from NDVI, which are based on the premise that NDVI can be used to estimate the fraction of photosynthetically active radiation (PAR) absorbed by vegetation [Kumar and Monteith, 1981]. The primary advantage of diagnostic NDVI models is their simplicity based on remotely sensed data, with a trade-off that these models are not usually mechanistic. Sellers et al. [1992] combined leaf level photosynthesis and radiative transport models to demonstrate that vegetation indices measure the fraction of absorbed PAR by vegetation, showing simple NDVI models are useful in estimating NPP. The estimated CO₂ exchanges from a refined diagnostic NDVI model were then also used as inputs to an atmospheric CO₂ tracer model [Heimann and Keeling, 1989; Heimann, 1995], to predict the atmospheric CO₂ concentrations at various locations throughout the world.

We report here on progress in characterizing net carbon exchange globally by an ecosystem process model, BIOME-BGC (for BIOME-BioGeoChemical cycles), designed to simulate interannual variability in net primary production and heterotrophic respiration on a global scale using daily weather data and portraying, as close as possible, the actual conditions of vegetation and soils [Hunt and Running, 1992a; Running and Hunt, 1993]. BIOME-BGC is sensitive to leaf area index (LAI), which we estimate using the maximum value of NDVI for a specific year. The model uses a daily time step to predict the hydrologic and carbon fluxes by means of basic physiological principles, and it calculates the uptake of the stable carbon isotope 13C as a means to relate observations of 13C in atmospheric CO₂. The objectives of this paper are: (1) to present our logic and preliminary computations of the global carbon fluxes for a single year, 1987, and (2) to compare seasonal predictions of atmospheric CO₂ concentrations from both the BIOME-BGC model and a diagnostic NDVI model with direct observations from monitoring stations. These comparisons provide a methodology for testing terrestrial ecosystem process models at global scales rather than testing at local scales with homogeneous plot data.

Implementation of BIOME-BGC for Global Simulations

BIOME-BGC simulates the carbon, hydrologic, and nitrogen cycles for a generalized ecosystem [Hunt and Running, 1992a; Running and Hunt, 1993]. This model was developed from a coniferous forest ecosystem model, FOREST-BGC [Running and Coughlan, 1988; Running and Gower, 1991], and has undergone extensive validation of the simulated water and carbon budgets in different North American ecosystems [Nemani and Running, 1989a; Korol et al., 1991; Hunt et al., 1991b; Running, 1994; Rollins, 1995].

The model has two time steps (Figure 1): a daily time step in which all-sided leaf area index (LAI) is used for the simulation of photosynthesis, autotrophic and heterotrophic respiration, and the hydrologic budget (Figure 1), and an annual time step for allocation of carbon and nitrogen, litterfall and turnover, and net nitrogen mineralization. The inputs and outputs of this model are presented in Table 1. The symbols and units are presented in the notation list. The daily timestep of BIOME-BGC is very important and will be described in detail in Appendix A. In this preliminary study, the annual time step is not important for the purposes of

Figure 1. BIOME-BGC flow chart. Leaf area index (LAI) directly affects canopy processes (shown by solid arrows) and indirectly affects soil processes by affecting soil temperature for the daily time step. The yearly time step is for the allocation of carbon and nitrogen among leaves, stems, coarse and fine roots, litter, and soil. As we are simulating net primary production and heterotrophic respiration for 1987 only, the yearly time step has no effect on the predictions. This ecosystem model is based on leaf area index data derived from remote sensing.
HUNT ET AL.: BIOSPHERIC CARBON EXCHANGE AND ATMOSPHERIC CO₂

Table 1. Data Inputs and Outputs to BIOME-BGC

<table>
<thead>
<tr>
<th>Required inputs for each grid cell</th>
<th>Unit of Measure</th>
</tr>
</thead>
<tbody>
<tr>
<td>Latitude</td>
<td>degrees</td>
</tr>
<tr>
<td>Elevation</td>
<td>m</td>
</tr>
<tr>
<td>Vegetation cover type</td>
<td>m² m⁻²</td>
</tr>
<tr>
<td>Leaf area index (LAI)</td>
<td></td>
</tr>
<tr>
<td>Soil texture class</td>
<td></td>
</tr>
<tr>
<td>Soil depth (corrected for coarse fragments)</td>
<td>m</td>
</tr>
<tr>
<td>Soil carbon content</td>
<td>kg C ha⁻¹</td>
</tr>
<tr>
<td>Initial soil water content</td>
<td>m² ha⁻¹</td>
</tr>
<tr>
<td>Initial snowpack</td>
<td>°C</td>
</tr>
<tr>
<td>Initial soil temperature at 10 cm depth</td>
<td></td>
</tr>
<tr>
<td>Required daily inputs</td>
<td></td>
</tr>
<tr>
<td>Air temperature, maximum</td>
<td>°C</td>
</tr>
<tr>
<td>Air temperature, minimum</td>
<td>°C</td>
</tr>
<tr>
<td>Precipitation (water equivalent)</td>
<td>mm d⁻¹</td>
</tr>
<tr>
<td>Calculated or optional inputs</td>
<td></td>
</tr>
<tr>
<td>Daylength</td>
<td>s</td>
</tr>
<tr>
<td>Daily solar radiation</td>
<td>kW m⁻² d⁻¹</td>
</tr>
<tr>
<td>Photosynthetically active radiation (noon)</td>
<td>µmol m⁻² s⁻¹</td>
</tr>
<tr>
<td>Average daytime relative humidity</td>
<td>dimensionless</td>
</tr>
<tr>
<td>Soil temperature at 10 cm depth</td>
<td>°C</td>
</tr>
<tr>
<td>Atmospheric CO₂</td>
<td>ppm</td>
</tr>
<tr>
<td>Daily outputs</td>
<td></td>
</tr>
<tr>
<td>Water fluxes; transpiration, evaporation, outflow</td>
<td>m³ ha⁻¹ d⁻¹</td>
</tr>
<tr>
<td>Soil water content</td>
<td>m³ ha⁻¹</td>
</tr>
<tr>
<td>Predawn leaf/soil water potential</td>
<td></td>
</tr>
<tr>
<td>Gross photosynthesis</td>
<td>kg C ha⁻¹ d⁻¹</td>
</tr>
<tr>
<td>Autotrophic respiration</td>
<td>kg C ha⁻¹ d⁻¹</td>
</tr>
<tr>
<td>Heterotrophic respiration</td>
<td>kg C ha⁻¹ d⁻¹</td>
</tr>
<tr>
<td>Net ecosystem exchange</td>
<td>kg C ha⁻¹ d⁻¹</td>
</tr>
<tr>
<td>Net ecosystem °C flux</td>
<td>MJ m⁻² d⁻¹</td>
</tr>
<tr>
<td>Absorbed PAR</td>
<td></td>
</tr>
<tr>
<td>Annual outputs</td>
<td></td>
</tr>
<tr>
<td>Net primary production</td>
<td>kg C ha⁻¹ year⁻¹</td>
</tr>
<tr>
<td>Heterotrophic respiration</td>
<td>kg C ha⁻¹ year⁻¹</td>
</tr>
<tr>
<td>Net ecosystem exchange</td>
<td>g dry weight MJ⁻¹</td>
</tr>
<tr>
<td>PAR conversion efficiency</td>
<td></td>
</tr>
<tr>
<td>Vegetation δ¹³C</td>
<td>dimensionless</td>
</tr>
</tbody>
</table>

simulating the global carbon fluxes for 1987 and will be described only briefly in Appendix A. However, as Rₙ is extremely dependent on litter from the previous year's NPP, the annual time step is essential for understanding the role of terrestrial ecosystems in causing the year-to-year differences in atmospheric CO₂ anomalies.

Definition of Land Cover Type

To define land cover types, we used four key features of vegetation that strongly control ecosystem fluxes of carbon, water and nitrogen [Running and Hunt, 1993; Running et al., 1995]. The first is photosynthetic pathway, either C₃ photosynthesis or C₄ photosynthesis. The second is the presence of permanent biomass aboveground (wood) affecting autotrophic respiration and aerodynamic conductances. The third is leaf longevity (evergreen or deciduous) affecting photosynthetic rate, autotrophic respiration, and heterotrophic respiration via the nitrogen and lignin concentrations of the foliage. The fourth feature is leaf morphology (grass, needleleaf or broadleaf) which affects radiation absorption and remotely sensed vegetation indices. Not all combinations of these four features occur as a land cover type; thus we defined the following six of seven classes: (1) C₃ grasslands (including C₃ agricultural areas and tundra), (2) C₄ grasslands (including C₄ agricultural areas and savannas), (3) evergreen broadleaf forests (mostly tropical evergreen rainforests), (4) deciduous broadleaf forests (most potential regions are now mostly agriculture), (5) evergreen needleleaf forests (coniferous forests), and (6) deciduous needleleaf forests (Larix forests). A seventh category, shrub lands, is also defined for areas which could be classified either as evergreen or deciduous "broadleaf forests," except that the physiological differences between shrub lands and other broadleaf forests are so large that a separate category is required.

The global potential vegetation map of Matthews [1983] was the starting point for generation of the land cover types for these

Table 2. BIOME-BGC Biological Parameters for Different Land Cover Types

<table>
<thead>
<tr>
<th>Parameter</th>
<th>C₃ G</th>
<th>C₄ G</th>
<th>EN</th>
<th>DN</th>
<th>EB</th>
<th>DB</th>
<th>Sh</th>
</tr>
</thead>
<tbody>
<tr>
<td>Ratio of total LAI to one-sided LAI</td>
<td>2.0</td>
<td>2.0</td>
<td>2.4</td>
<td>2.4</td>
<td>2.0</td>
<td>2.0</td>
<td>2.0</td>
</tr>
<tr>
<td>Specific leaf area (m² kg⁻¹ C⁻¹)</td>
<td>40.</td>
<td>40.</td>
<td>20.</td>
<td>50.</td>
<td>35.</td>
<td>65.</td>
<td>25.</td>
</tr>
<tr>
<td>Aerodynamic conductance (mm s⁻¹)</td>
<td>0.01</td>
<td>0.01</td>
<td>1.0</td>
<td>1.0</td>
<td>1.0</td>
<td>1.0</td>
<td>0.1</td>
</tr>
<tr>
<td>Maximum stomatal conductance (mm s⁻¹)</td>
<td>5.0</td>
<td>2.0</td>
<td>2.2</td>
<td>4.5</td>
<td>4.0</td>
<td>4.5</td>
<td>3.5</td>
</tr>
<tr>
<td>Water potential at stomatal closure (MPa)</td>
<td>-2.5</td>
<td>-4.0</td>
<td>-1.6</td>
<td>-1.6</td>
<td>-1.6</td>
<td>-1.6</td>
<td>-5.5</td>
</tr>
<tr>
<td>Vapor pressure difference at stomatal closure (kPa)</td>
<td>3.5</td>
<td>4.5</td>
<td>2.5</td>
<td>2.5</td>
<td>2.5</td>
<td>2.5</td>
<td>3.5</td>
</tr>
<tr>
<td>Maximum photosynthetic rate (µmol m⁻² s⁻¹)</td>
<td>6.0</td>
<td>7.5</td>
<td>3.5</td>
<td>5.0</td>
<td>4.0</td>
<td>5.0</td>
<td>3.5</td>
</tr>
<tr>
<td>Optimum temperature (°C)</td>
<td>20.</td>
<td>30.</td>
<td>20.</td>
<td>20.</td>
<td>20.</td>
<td>20.</td>
<td>20.</td>
</tr>
<tr>
<td>Leaf maintenance respiration (g kg⁻¹ d⁻¹)</td>
<td>3.0</td>
<td>5.0</td>
<td>1.2</td>
<td>3.0</td>
<td>1.5</td>
<td>4.0</td>
<td>1.2</td>
</tr>
<tr>
<td>Leaf lignin concentration (%)</td>
<td>17.</td>
<td>17.</td>
<td>27.</td>
<td>17.</td>
<td>17.</td>
<td>17.</td>
<td>27.</td>
</tr>
<tr>
<td>Leaf turnover (%)</td>
<td>100</td>
<td>100</td>
<td>33.</td>
<td>100</td>
<td>33.</td>
<td>33.</td>
<td>100</td>
</tr>
<tr>
<td>Maximum height (m)</td>
<td>0.5</td>
<td>0.5</td>
<td>30.</td>
<td>30.</td>
<td>30.</td>
<td>30.</td>
<td>5.0</td>
</tr>
</tbody>
</table>

C₃ G, C₃ grassland; C₄ G, C₄ grassland; EN, evergreen needleleaf; DN, deciduous needleleaf; EB, evergreen broadleaf; DB, deciduous broadleaf; Sh, shrubland. Annual crops are assumed to have the same biological parameters as C₃ grasses or C₄ grasses.

* Parameters are based on total (all-sided) LAI.
Table 3. Classification of Matthews Vegetation Classes in Land Cover Types

<table>
<thead>
<tr>
<th>Vegetation Class and Description</th>
<th>Typea</th>
<th>Longevityb</th>
</tr>
</thead>
<tbody>
<tr>
<td>1 Tropical evergreen, mangrove forest</td>
<td>B</td>
<td>E</td>
</tr>
<tr>
<td>2 Tropical/subtropical evergreen seasonal forest</td>
<td>B</td>
<td>E</td>
</tr>
<tr>
<td>3 Subtropical evergreen rainforest</td>
<td>B</td>
<td>E</td>
</tr>
<tr>
<td>4 Temperate/subpolar evergreen rainforest</td>
<td>B</td>
<td>E</td>
</tr>
<tr>
<td>5 Temperate evergreen seasonal broadleaf forest, summer rain</td>
<td>B</td>
<td>E</td>
</tr>
<tr>
<td>6 Evergreen broadleafed sclerophyllous forest, winter rain</td>
<td>S</td>
<td>E</td>
</tr>
<tr>
<td>7 Tropical/subtropical evergreen needleleaf forest</td>
<td>N</td>
<td>E</td>
</tr>
<tr>
<td>8 Temperate/subpolar evergreen needleleaf forest</td>
<td>N</td>
<td>E</td>
</tr>
<tr>
<td>9 Tropical/subtropical drought-deciduous forest</td>
<td>B</td>
<td>D</td>
</tr>
<tr>
<td>10 Cold-deciduous forest with evergreens</td>
<td>B</td>
<td>D</td>
</tr>
<tr>
<td>11 Cold-deciduous forest without evergreens</td>
<td>B</td>
<td>D</td>
</tr>
<tr>
<td>12 Xeromorphic forest/woodland</td>
<td>S</td>
<td>D</td>
</tr>
<tr>
<td>13 Evergreen broadleafed sclerophyllous woodland</td>
<td>S</td>
<td>E</td>
</tr>
<tr>
<td>14 Evergreen needleleafed woodland</td>
<td>N</td>
<td>E</td>
</tr>
<tr>
<td>15 Tropical/subtropical drought-deciduous woodland</td>
<td>B</td>
<td>D</td>
</tr>
<tr>
<td>16 Cold-deciduous woodland</td>
<td>N</td>
<td>D</td>
</tr>
<tr>
<td>17 Evergreen broadleafed shrubland/thicket, evergreen dwarf-shrubland</td>
<td>S</td>
<td>E</td>
</tr>
<tr>
<td>18 Evergreen needleleafed/microphyllous shrubland/thicket</td>
<td>S</td>
<td>E</td>
</tr>
<tr>
<td>19 Drought-deciduous shrubland/thicket</td>
<td>S</td>
<td>D</td>
</tr>
<tr>
<td>20 Cold-deciduous supalpine/subpolar shrubland, dwarf shrubland</td>
<td>S</td>
<td>D</td>
</tr>
<tr>
<td>21 Xeromorphic shrubland/dwarf shrubland</td>
<td>S</td>
<td>D</td>
</tr>
<tr>
<td>22 Arctic/alpine tundra, mossy bog</td>
<td>G</td>
<td>D</td>
</tr>
<tr>
<td>23 Tall/medium/short grassland with 10-40% woody cover</td>
<td>G</td>
<td>D</td>
</tr>
<tr>
<td>24 Tall/medium/short grassland with <10% woody cover</td>
<td>G</td>
<td>D</td>
</tr>
<tr>
<td>25 Tall/medium/short grassland with shrub cover</td>
<td>G</td>
<td>D</td>
</tr>
<tr>
<td>26 Tall grassland, no woody cover</td>
<td>G</td>
<td>D</td>
</tr>
<tr>
<td>27 Medium grassland, no woody cover</td>
<td>G</td>
<td>D</td>
</tr>
<tr>
<td>28 Meadow, short grassland, no woody cover</td>
<td>G</td>
<td>D</td>
</tr>
<tr>
<td>29 Desert</td>
<td>na</td>
<td>na</td>
</tr>
<tr>
<td>30 Ice</td>
<td>na</td>
<td>na</td>
</tr>
<tr>
<td>31 Cultivation</td>
<td>G</td>
<td>D</td>
</tr>
</tbody>
</table>

Abbreviation na indicates not applicable.
a Types: N, needleleaf; B, broadleaved; S, shrubland, G, grass.
b Longevities: D, deciduous; E, evergreen.

Simulations at a resolution of 1° latitude by 1° longitude. This data set was obtained from the Global Ecosystems Database (Version 1.0 on CD-ROM) from Kineman and Ohrenschall [1992]. We reclassified the 31 vegetation classes of the Matthews' data set into four leaf morphology types and two leaf longevity classes (Tables 2 and 3). All grid cells with at least 50% cultivation intensity in the Matthews' [1983] data set were assigned to grasslands in order to approximate current actual vegetation. The separation of grasslands into C3 and C4 was estimated from the distributions of the minimum and maximum values of mean monthly temperature obtained from the International Institute of Applied Systems Analysis Mean Monthly Temperature data set [Leemans and Cramer, 1991; Kineman and Ohrenschall, 1992]. We assumed C4 grasslands occupy areas where both the minimum value was over a threshold of -1°C and the maximum value was over a threshold of 22°C [Teeiri, 1977]. Finally, using the classification of Loveland et al. [1991], we changed the C3 grasslands for longitudes from 83°W to 97°W and latitudes from 40°N to 44°N to C4 grasslands to account for the large C "cornbelt" in the United States of America. Our preliminary map of actual land cover is shown in Plate 1. Ongoing studies using AVHRR data will improve the classification of land cover types [DeFries and Townsend, 1994; Nemani and Running, 1995, 1996] for our continuing work.

Almost half of the land area of the globe was either C3 or C4 grasslands (Table 4), consistent with Houghton [1994], because of our assignment of agricultural areas as grasses. Deciduous needleleaf forests were the least abundant, principally occurring in Russia (Plate 1). The other four land cover types occurred over approximately equal areas globally (Plate 1 and Table 4).

Leaf Area Index (LAI) and State Variable Initializations

We examined the monthly experimental global normalized difference vegetation index (NDVI) data [Gallo, 1992], to obtain the maximum NDVI for each 1° latitude by 1° longitude terrestrial grid cell for 1987. To minimize the impact of cloud contamination and atmospheric influences, we then compared this 1987 maximum value of NDVI with the mean of the maximum values for years from 1985 to 1990; whenever the 1987 maximum was 0.10 less than the mean maximum NDVI for the 6 years of record, we substituted the mean NDVI for the 1987 value. This occurred for only 76 grid cells scattered worldwide, primarily in coastal areas.

To account for the differences in structural and optical properties of canopies among different vegetation types, we used separate NDVI-one-sided LAI relations for grasslands, needleleaf forests, and broadleaf forests. The equation for grasslands and shrub lands is

\[\text{LAI} = 1.71 \times \text{NDVI} + 0.48 \] \hspace{1cm} (1)

[Nemani and Running, 1995], for needleleaf forests is

\[\text{LAI} = (3.23 \times \text{NDVI})^{2/6} \] \hspace{1cm} (2)

[Spanner et al., 1990; Nemani and Running, 1989a], and for broadleaf forests is

\[\text{LAI} = (3.85 \times \text{NDVI})^2 \] \hspace{1cm} (3)

[Pierce et al., 1993]. These empirical relations based on field studies were found to agree with theoretically derived forms of NDVI-LAI relations [Asrar et al., 1992; Sellers et al., 1994]. We acknowledge that these simple empirical relations do not account for problems such as variations in background, atmospheric influences, and viewing geometry; however, using only the annual maximum NDVI value for each grid cell reduces the impacts of these problems [Nemani and Running, 1996]. All-sided LAI is
Plate 1. Land cover types (1° latitude by 1° longitude) modified from Matthews [1983] potential vegetation and percent agriculture. White areas on land in this and following map figures represent regions of desert or ice, which were not considered further.

Plate 2. Leaf area index for 1987 (1° latitude by 1° longitude) determined using annual maximum values of normalized difference vegetation index from Gallo [1992].
Plate 3. Annual mean of daily precipitation for 1987 (1° latitude by 1° longitude) using data from Piper [1995]. Total annual precipitation for each grid cell is determined by multiplying the mean by 365.

Plate 4. Simulated annual net primary production for 1987 (1° latitude by 1° longitude). The global total of net primary production is 52.0 Pg C.
Plate 5. Simulated annual heterotrophic respiration for 1987 (1° latitude by 1° longitude). The global total of heterotrophic respiration is 65.6 Pg C, before adjustment.

Plate 6. Simulated annual net ecosystem exchange (NEE) for 1987 (1° latitude by 1° longitude), which is the difference between annual NPP and R_h. The global total of NEE was -13.6 Pg C.
Table 4. Biome Totals of Area and Carbon, and Mean Leaf Area Indices

<table>
<thead>
<tr>
<th>Land cover type</th>
<th>Area(^{a}) km(^2)</th>
<th>Leaf C, Mean</th>
<th>Stem C, Soil C,</th>
<th>(10^6) Pg LAI Pg</th>
<th>Pg</th>
</tr>
</thead>
<tbody>
<tr>
<td>C3 grassland</td>
<td>34</td>
<td>2.5</td>
<td>2.9</td>
<td>0.0</td>
<td>351</td>
</tr>
<tr>
<td>C4 grassland</td>
<td>20</td>
<td>1.3</td>
<td>2.6</td>
<td>0.0</td>
<td>159</td>
</tr>
<tr>
<td>Evergreen needleleaf</td>
<td>12</td>
<td>4.3</td>
<td>7.2</td>
<td>102</td>
<td>190</td>
</tr>
<tr>
<td>Deciduous needleleaf</td>
<td>2.5</td>
<td>0.25</td>
<td>5.0</td>
<td>10.1</td>
<td>32</td>
</tr>
<tr>
<td>Evergreen broadleaf</td>
<td>17</td>
<td>4.3</td>
<td>8.9</td>
<td>224</td>
<td>169</td>
</tr>
<tr>
<td>Deciduous broadleaf</td>
<td>14</td>
<td>1.5</td>
<td>7.0</td>
<td>11.1</td>
<td>167</td>
</tr>
<tr>
<td>Shrub land</td>
<td>18</td>
<td>1.7</td>
<td>2.4</td>
<td>10.9</td>
<td>130</td>
</tr>
<tr>
<td>Totals</td>
<td>117</td>
<td>15.9</td>
<td>458</td>
<td>1198</td>
<td></td>
</tr>
</tbody>
</table>

\(^{a}\) Not including areas classified initially as barren desert or ice.

calculated from a ratio specified for each land cover type (Table 2). Our map of all-sided maximum LAI is shown in Plate 2. Table 4 shows the global averages of all-sided LAI for each land cover type.

Soil Carbon and Water Holding Capacity

Following Post et al. [1982] and Potter et al. [1993], we assumed that soil carbon is related to potential land cover type. We obtained the Leemans [1990] Holdridge Life Zone classification from Kineman and Ohrenschall [1992] and generated a map of soil carbon mass \(M_{soil}\). We then assumed a soil carbon to nitrogen ratio of 12 [Parton et al., 1987] to estimate the amount of soil nitrogen.

We used the Zobler soil texture database [Zobler, 1986] from Kineman and Ohrenschall [1992] to estimate the soil water content at field capacity \(\Psi_{field}\). We assigned textures (percents of sand, silt, and clay) to each Zobler class. Then, \(\Psi_{field}\) was calculated for each grid cell by inverting the equations of Saxton et al. [1986], assuming that \(\Psi_{field}\) at field capacity equals -0.025 MPa.

Soil depth was set at 1 m for all grid cells, not including coarse fragments, which add to depth but not to the storage of soil moisture. Whereas coarse roots of most vegetation can easily go to depths of 2 m or more [Webb et al., 1993, Table 4], most of the fine roots which absorb mineralized nutrients and water occur at much shallower depths. Deep coarse roots have significantly smaller conductances to lateral and axial water flow and require a large water potential gradient between leaf and soil to move significant amounts of water [Hunt et al., 1991a]. Thus we assume deep roots are probably required to survive drought but should not be expected to transport water from deep in the soil to sustain maximum rates of transpiration. However, recent work by Nepstad et al. [1994] casts doubt on this assumption for some tropical forest ecosystems.

Climatic Inputs

We used the global gridded temperature and precipitation data set for 1987 from Piper [1995] and Piper and Stewart [1996]. These data were daily maximum air temperature, daily minimum air temperature, and water-equivalent precipitation gridded to 1° latitude by 1° longitude for the land surface. Station summary-of-the-day records produced by the U.S. Climate Prediction Center (CPC) were used as the basis for gridding the data. These daily station records were summarized from the archive of synoptic reports received over the Global Telecommunications System at the U.S. National Centers for Environmental Prediction primarily from the World Meteorological Organization global synoptic surface network of stations.

The station data, which had undergone quality tests at CPC to correct for transmission and observational errors, were subjected to an additional series of quality checks in which errors and omissions in station locations, duplicate records and redundant stations, and extreme outliers were identified and either deleted or corrected [Piper, 1995]. No attempt was made to correct for the systematic underestimation of precipitation by rain gauges [e.g., Legates, 1987] nor for station relocations, heat island effects, or instrument changes. The final corrected data set contains temperature data for 6610 stations and precipitation data for 6172 stations.

The daily station data were then interpolated to a 1° by 1° degree grid by using the nearest-neighbor weighting scheme of Shepard [1968], as modified for spherical coordinates by Willmott et al. [1985]. The mean elevation of the grid cells was calculated as the area-weighted average of the 5 arc min elevations provided in the global topography data set ETOP05 [National Geophysical Data Center, 1988]. To reduce problems associated with...
Southeastern Europe experienced abnormally warm and dry conditions that prevailed in Australia during 1987. Precipitation was abnormally low. Eastern central Africa received less than half of the expected rainfall for the usual monsoon period. In the western African Sahel region, topographic variations, temperatures were adjusted to sea level, assuming a uniform environmental lapse rate of -6.5°C per 1000 m altitude. Using the same lapse rate, temperatures were then re-adjusted to the mean elevation of each grid cell after interpolation. Precipitation data were interpolated without adjustment for elevation.

The year, 1987, was part of an El Niño episode that extended from 1986 into 1988; such episodes are associated with climate anomalies worldwide [Ropelewski and Halpert, 1987]. Accordingly, much of North America exhibited warmer than normal temperatures in winter and spring; the extreme was 6°C above normal for December 1986 through April 1987 in central Canada [World Climate Data Programme, 1987]. The western United States, southwestern Canada and the Great Lakes region were abnormally dry through spring. East central Brazil was unusually dry during January and February, and northern Argentina and southern Brazil were dry in September and October. Southeastern Europe experienced abnormally warm and dry conditions in June, July, and September.

The monsoon in India was weak; parts of India and Pakistan had less than half of the expected rainfall for the usual monsoon period. Unusually heavy rains flooded parts of China, Taiwan and Korea in late July and August. In the western African Sahel region, precipitation was abnormally low. Eastern central Africa received less than half of the normal precipitation from October through December. Each of these anomalies was identified, quantitatively, in the data set of Piper [1995] by comparisons with the Leemans and Cramer [1991] climatology at a 1° by 1° grid resolution. The abnormally dry conditions that prevailed in Australia during 1987 [World Climate Data Programme, 1988] are not well represented in the data set of Piper [1995] because of sparse station data. The mean daily precipitation for each grid cell (Plate 3) shows a similar pattern to LAI, where the mean daily amount was the annual total of precipitation divided by 365 days. The intra-annual patterns described above are not captured in the annual totals.

Table 5. Locations of Atmospheric CO₂ Sampling Stations

<table>
<thead>
<tr>
<th>Station</th>
<th>Latitude</th>
<th>Longitude</th>
</tr>
</thead>
<tbody>
<tr>
<td>Point Barrow, Alaska (PTB)</td>
<td>71°N</td>
<td>157°W</td>
</tr>
<tr>
<td>Cold Bay, Alaska (CBA)</td>
<td>55°N</td>
<td>163°W</td>
</tr>
<tr>
<td>La Jolla, California (LJO)</td>
<td>33°N</td>
<td>117°W</td>
</tr>
<tr>
<td>Mauna Loa, Hawaii (MLO)</td>
<td>20°N</td>
<td>156°W</td>
</tr>
<tr>
<td>Cape Kumukahi, Hawaii (KUM)</td>
<td>20°N</td>
<td>155°W</td>
</tr>
<tr>
<td>Christmas Island (CHR)</td>
<td>2°N</td>
<td>159°W</td>
</tr>
<tr>
<td>Baring Head, New Zealand (NZD)</td>
<td>41°S</td>
<td>175°E</td>
</tr>
<tr>
<td>South pole (SPO)</td>
<td>90°S</td>
<td>0°W</td>
</tr>
</tbody>
</table>

The Global Ecosystem Simulation System, GESSys, was used to handle the inputs and outputs of BIOME-BGC (Figure 2). For each grid cell, 2 years were simulated using the 1987 climatic data, the first year with initial soil water content set to full capacity, snowpack set to zero, and initial soil temperature set by latitude. The year-end values were used to start the second year. All carbon pools, including the \(M_{f1} \) and \(M_{s1} \), were restored to their initial values. The daily outputs of NPP and \(R_e \) for the second year were saved for input to the atmospheric transport model.

Diagnostic NDVI Model

To provide an assessment of the seasonal and spatial patterns of the BIOME-BGC simulations, we calculated NPP and \(R_e \) using the diagnostic NDVI model presented in Heimann and Keeling [1989]. This model relies on the simplifying assumptions that the NPP flux is strictly proportional to PAR intercepted by the plant canopy and that \(R_e \) is a function only of air temperature. It does not explicitly account for water stress in plants or soil organisms. The diagnostic NDVI model provides a basis for comparison with the results of the process-based BIOME-BGC model both seasonally and spatially.

As we are trying to simulate the conditions for 1987 only, we regridded the 1987 biweekly NDVI data of Gallo [1992] to 1° by 1° cells. For PAR, we used the global data set for 1987 of Pinker et al. [1995], produced by inference from International Satellite Cloud Climatology Project C1 satellite data with a spectrally resolved radiative transfer model [Pinker and Laszlo, 1992]. These data were provided as monthly averages on a 2.5° by 2.5° grid and contained a small number of missing monthly values in winter at high latitudes in both hemispheres. We estimated missing values by linear interpolation, for 1 or 2 consecutive months, or by an annual harmonic fit, for 3 to 6 consecutive missing months. We regridded the data to 1° by 1° cells, conserving the areal monthly integral of PAR. Finally, \(R_e \) was calculated using the 1987 temperature data set of Piper [1995].

This model was tuned as in the work of Heimann and Keeling [1989] to give good correspondence to observations of atmospheric CO₂ for three stations (Point Barrow, Alaska; La Jolla, California; and Cape Kumukahi, Hawaii). Tuning produced an efficiency factor of 1.1 g C per MJ of intercepted PAR and an effective \(Q_0 \) of 1.3.

Atmospheric Transport Model

Transport Model Description

The three-dimensional atmospheric Transport Model version 2 (TM2), used in the present study, is described by Heimann [1995]. It has a horizontal grid of 7.83° latitude by 10° longitude, 9 layers...
in the vertical dimension, and a numerical time step of 4 hours. There is no explicit planetary boundary layer (PBL) in the model. TM2 predictions of the seasonal CO$_2$ concentrations were well within the range of predictions from 10 other atmospheric transport models in the tracer transport model intercomparison project, TRANSCOM (R. W. Law et al., Variations in modelled atmospheric transport of carbon dioxide and consequences for CO$_2$ inversions, submitted to Global Biogeochemical Cycles, 1996). TM2 predicted a mean annual CO$_2$ north-south gradient similar to other models without an explicit PBL, the mean annual gradient was much smaller than models with an explicit PBL. Denning et al. [1995] shows that one explanation for the larger gradient is a correlation of the seasonal PBL depth with seasonal biospheric sources.

For this study, we have used wind fields for the year, 1987, which are based on meteorological observations processed by the four-dimensional assimilation system of the European Center for Medium-Range Weather Forecasts (ECMWF). For simulations of the atmospheric CO$_2$ concentration, TM2 was run by cycling over the model year, with the atmospheric motion repeated, for 4 years. The daily time series produced by the model for the fourth year were subsequently linearly detrended and Fourier transformed in order to obtain the coefficients of the first four harmonics constituting the seasonal variation at each station location.

Processing of NPP and R_e From BIOME-BGC

Daily predictions of NPP and R_e from the BIOME-BGC model were regridded from the 1° by 1° grid cells to 7.83° by 10° grid cells for input to TM2. Because (1) the annual totals of NPP and R_e in nature are approximately equal over the year, (2) we are focusing on the seasonal cycle of atmospheric CO$_2$, and (3) we have more confidence in the NPP than in the R_e predictions, we have chosen to adjust the annual soil respiration for each grid cell to equal the annual NPP, by using a simple multiplier to adjust the daily R_e. For the 1° by 1° cells in which the annual NPP is negative, we set daily fluxes for both NPP and R_e to zero.

Atmospheric Model Sources

Observations of atmospheric CO$_2$ were obtained from an array of land-based stations which lie approximately on a north-south line within the Pacific Ocean basin from the Arctic Ocean to the south pole (Table 5). All station data have been decomposed into a seasonal cycle, consisting of four harmonics, as described by Keeling et al. [1989a], and a linear trend.

In the northern middle to high latitudes, the terrestrial biosphere accounts for nearly the entire atmospheric CO$_2$ seasonal signal [Fung et al., 1987; Heimann et al., 1989]. However, farther south, as the fraction of land surface decreases, CO$_2$ fluxes associated with the oceans and with fossil fuel emissions become proportionally more important to the full seasonal signal. Therefore we have performed transport model simulations for five additional sources and sinks previously described by Heimann and Keeling [1989], Heimann et al. [1989], and Keeling et al. [1989b]. One of these, the seasonal air-sea CO$_2$ exchange flux, is a natural flux that is variable over the annual cycle. Three others are assumed constant over the annual cycle and contribute to the seasonal cycle only because of seasonally varying atmospheric transport. These are equatorial outgassing balanced by poleward oceanic uptake, North Atlantic Ocean uptake balanced by outgassing in the southern oceans, and industrial CO$_2$ emissions from fossil fuel combustion and cement manufacture. We have increased the industrial CO$_2$ emissions to the 1987 value of 5.7 Pg C per year [Andres et al., 1995] and have increased the corresponding ocean perturbation flux proportionally to 2.4 Pg C per year, from the 5.3 and 2.2 Pg C per year, respectively, given by Heimann and Keeling [1989]. The fifth source of CO$_2$ is a new
Figure 4a. Averages of the input parameters and output NPP and R_h for the BIOME-BGC and NDVI models for latitudinal zones in the northern hemisphere for 1987, for 0° to 16° N. For each latitudinal zone, area-weighted means have been calculated for daily precipitation and air temperature from Piper [1995], monthly photosynthetically active radiation from Pinker et al. [1995], biweekly normalized difference vegetative index (NDVI) from Gallo [1992], daily net primary production (NPP), and daily heterotrophic respiration (R_h). Only values pertaining to the $1^\circ \times 1^\circ$ boxes employed in the BIOME-BGC model have been included. All quantities have been converted to monthly totals, except for temperature and NDVI, for which averages are shown. For PAR, NPP and R_h, the solid circles are for the BIOME-BGC; the open circles are for the diagnostic NDVI model. The first 6 months of the year 1987 are displayed twice to reveal the seasonal cycle more clearly.
formulation for biomass burning (appendix B), which significantly influences the seasonality of atmospheric CO$_2$ in the tropics and the southern hemisphere.

Results

Global Carbon Fluxes

The global annual total of NPP for 1987 was simulated to be 52.0 Pg C y$^{-1}$, whereas the global R_g was simulated to be 65.6 Pg C y$^{-1}$ (Table 6). Evergreen broadleaf forests, shrub lands and C_4 grasslands in tropical regions were net sources of carbon to the atmosphere, whereas needleleaf forests in the middle to high northern latitudes were net sinks of carbon. Not surprisingly, the areas with the highest LAI from the NDVI data (Plate 2 and Table 4) had the highest calculated annual totals of NPP (Plate 4 and Table 6). These areas are generally classified as evergreen needleleaf, evergreen broadleaf or deciduous broadleaf forests (Plate 2).

Annual NPP (Plate 4) was related to both annual precipitation
and LAI, with precipitation being the dominant factor in the tropical and subtropical latitudes (Plate 4) and LAI being dominant in the boreal latitudes (Plate 2). In error, some grid cells exhibited negative annual NPP, occurring mainly in the Indian subcontinent, southern Mexico, and the arctic tundra. We do not have a complete explanation for the negative NPP (Plate 4), although we suspect errors in model logic as the negative NPP occurs in ecosystems where the BIOME-BGC model was not tested. We also note that in two areas exhibiting negative NPP, the western United States of America and India, both experienced abnormally low precipitation in spring and summer in 1987. Negative NPP values in these areas may reflect an oversensitivity of NPP to water stress in the BIOME-BGC model.

The estimate of global NPP is consistent with other estimates [Potter et al., 1993; Melillo et al., 1993], as each of these models was calibrated to give answers within an acceptable range. Melillo et al.'s model is based on the hypothesis that nitrogen uptake controls NPP, whereas Potter et al.'s model assumes that absorbed radiation controls NPP. BIOME-BGC assumes that the primary control on NPP is the hydrologic budget. The fact that all models
estimate similar values of global NPP, within a range of 10 Pg C, suggests that NPP is colimited by precipitation, nitrogen mineralization, and radiation. Indeed, BIOME-BGC simulates all three limitations during the annual time step [Running and Gower, 1991]; we find that precipitation, nitrogen mineralization and radiation equally influence LAI and hence NPP at equilibrium (E. R. Hunt, Jr. and S. W. Running, unpublished results, 1995). Thus any of these controls will suffice for estimation of NPP, assuming ecosystems are at steady state with respect to vegetation, climate and soils. However, many ecosystems may be in transient successional stages after some sort of disturbance, for example, land use changes, fires, and extreme weather episodes, so the steady state assumption is probably not valid.

Similar to NPP, R_a in our simulation is correlated with LAI (Plate 5) because we initialized the litter carbon content (M_{lut}) from LAI. Clearly, because the interaction between temperature and moisture affects soil carbon (M_{soil}) and M_{lut} [Parton et al., 1987], each region of the earth should have different initial values of M_{soil}.
and M_{ai} and hence different R_h. In our simulations, the direct effect of precipitation on R_h is ambiguous, because areas with high annual precipitation (Plate 3) also have high LAI (Plate 2) and therefore have high initial M_{ai}.

The large simulated global imbalance between NPP and R_h (13.6 Pg, Table 6) can not be correct, because globally, NPP and R_h must balance within 2 Pg C on average over several years, given the current understanding of the global carbon cycle [Sundquist, 1993; Schimel, 1995]. There are no global data to suggest which of these two numbers is more nearly correct, as it is the net difference between NPP and R_h which affects atmospheric CO$_2$ concentrations. Raich and Schlesinger [1993] and Raich and Potter [1995] suggest that soil respiration (consisting of root growth and maintenance respiration, litter decomposition and soil carbon turnover) ranges from 66 to 76.5 Pg C. Whereas their numbers agree approximately with our simulated estimates of global R_h, they are not comparable to ours because root growth and maintenance respiration are included in their values and not in ours.

Regional disparities in net ecosystem exchange (NEE) (NEE = NPP - R_h) are very apparent (Plate 6). Some areas in tropical latitudes have a negative net carbon exchange (R_h greater than NPP), whereas middle to high northern latitudes have positive exchange. M_{sat} in our model is based on potential vegetation from Holdridge Life Zones, not on our estimate of actual land cover type from the Matthews' [1983] data set. Thus our estimates of R_h in agricultural areas from high M_{sat} are probably too high, because most agricultural soils have about 25% less soil carbon because of cultivation [Houghton, 1994; Schimel et al., 1994]. For our continuing work, we will use a multiyear simulation, with better land cover type classifications, which will insure equilibrium values of NPP and R_h.

We have greater confidence in our estimates of NPP compared to R_h, because the predicted $\delta^{13}C$ values of the vegetation (Figure 3) for both C$_3$ and C$_4$ vegetation are similar to measurements reviewed recently by Vogel [1993]. The $\delta^{13}C$ of vegetation depends strongly on the water use efficiency (PSN per H$_2$O transpired) of photosynthesis [Farquhar et al., 1989], so the ratio of daily photosynthesis (i.e., gross primary production) to transpiration in the model is close to being correct. At steady state, there cannot be more transpiration than precipitation for a grid cell. Therefore precipitation establishes the upper limit of transpiration, and with reasonable simulated values of $\delta^{13}C$, also establishes the upper limit of photosynthesis.

Analysis of Outputs

Preparatory to comparing the simulations of the seasonal cycle of atmospheric CO$_2$ in the BIOME-BGC model with atmospheric observations, we present time plots of the critical model input parameters of NDVI, temperature, precipitation, and PAR and the simulated NPP and R_h from both models (Figures 4a - 4d). Plots of the zonal averages distinguish the boreal-arctic region (north of 55°N) from the midlatitudes (north of 31°N) and from low latitudes. The latter region is split at 16°N into two zones to aid in comparing these plots with atmospheric CO$_2$ data in which the seasonality is quite different at Christmas Island, near the equator, than farther north near Hawaii. We have not shown plots for the southern hemisphere because no unique features appear there to distinguish the NDVI predictions from the BIOME-BGC predictions.

Since the global annual totals for NPP are larger for the diagnostic NDVI model (69 Pg C compared to 52 Pg C from the BIOME-BGC), some care is needed to discern the differences between the seasonal simulations by the two models. At high latitudes, according to the BIOME-BGC model, NPP has a considerably greater seasonal amplitude than the NDVI model (Figure 4d). At low latitudes, BIOME-BGC predicts considerably lower NPP during the dry season, which is not seen in the NDVI model simulations (Figure 4a). Because R_h does not decrease as much as NPP during the dry seasons, the seasonal cycle of atmospheric CO$_2$ is the result of large seasonal changes in simulated NPP.

The zonal plots show good agreement between PAR derived from satellite data and as computed from surface temperature and precipitation data in midlatitudes (Figure 4c). This is understandable because the algorithm for estimating PAR from daily T_{max}, T_{min}, and precipitation was first developed for this region. We compared predicted NPP for each 7.83° by 10° grid cell which had at least 25% land; where the difference in NPP was 50% or greater, we examined the input data for clues as to the cause of the difference (Table 7). There was a clear reduction in PAR (and solar radiation) estimated by the Climate Simulator model for grid cells with 25% to 50% land cover probably because of a strong maritime influence. However, as PAR is near saturation for photosynthesis at the estimated LAI's, only 13 of 256 grid cells had significantly reduced NPP compared to the diagnostic NDVI model because of reduced PAR (Table 7).

The phenology algorithm in BIOME-BGC allowed 21 grid cells to start before and finish after the growing season as indicated by the diagnostic NDVI model (Table 7). These grid cells were generally assigned to C$_3$ grasslands in the northern hemisphere. Possibly, these grid cells are dominated by agriculture, in which the planting and harvesting dates are chosen to avoid frost damage. There were also 18 grid cells for which we could not assign possible causes for differences between the BIOME-BGC simulations and the diagnostic NDVI model simulations (Table 7). If these 18 grid cells were included with the grid cells that had errors attributed to both PAR from CLIMSIM and phenology from BIOME-BGC, then 80% of the 7.83° by 10° grid cells were reasonably well simulated by BIOME-BGC compared to the diagnostic NDVI model.

There were 27 grid cells in which the diagnostic NDVI model simulated high NPP when the monthly precipitation was very low, and presumably, photosynthetic rates were inhibited by drought stress (Table 7). This is not surprising as we have recognized that simple NDVI models require a term for drought stress [Running and Nemani, 1988; Nemani and Running, 1989b; Hunt and

<table>
<thead>
<tr>
<th>Table 7. Preliminary Assignment of Model Errors</th>
</tr>
</thead>
<tbody>
<tr>
<td>Number of Grid Cells</td>
</tr>
<tr>
<td>BIOME-BGC limiting PAR</td>
</tr>
<tr>
<td>BIOME-BGC long-growing season</td>
</tr>
<tr>
<td>Unknown errors</td>
</tr>
<tr>
<td>Total</td>
</tr>
<tr>
<td>Diagnostic NDVI model and precipitation</td>
</tr>
<tr>
<td>Total land grid cells</td>
</tr>
<tr>
<td>Total globe grid cells</td>
</tr>
</tbody>
</table>

a Size is 7.83° latitude by 10° longitude.

b Grid cells with 25% or more land surface area.
Figure 5. Seasonal variation of atmospheric CO$_2$, in ppm, for 1987 simulated by the BIOME-BGC model and compared to the observed variation at Point Barrow, Alaska (PTB); Cold Bay, Alaska (CBA); La Jolla, California (LJO); Cape Kumukahi, Hawaii (KUM); Mauna Loa, Hawaii (MLO); Christmas Island (CHR); Baring Head, New Zealand (NZD); and the south pole (SPO). Model and observational concentrations are represented by a sum of four harmonics fitted to the daily model predictions and to the individual observations. The model simulations are depicted by solid lines, the observations are depicted by dashed lines. The model simulations include variations resulting from the NPP and R_o, produced by the BIOME-BGC model, from industrial CO$_2$ emissions, ocean sources and sinks, and from tropical biomass burning.

Running, 1992b]. Also, for high northern latitudes, low solar angles and partial snow cover may reduce NDVI of evergreen conifers during the early part of the growing season [Running and Nemani, 1988], so here NPP may be underestimated by the diagnostic NDVI model.

Comparison With Atmospheric CO$_2$ Observations

Comparisons of the BIOME-BGC model output with atmospheric CO$_2$ observations for 1987 are shown in Figure 5, and comparisons of the diagnostic NDVI model with atmospheric CO$_2$ observations are shown in Figure 6. Because the NDVI model is tuned to give optimal agreement at three stations (Point Barrow, Alaska; La Jolla, California; and Cape Kumukahi, Hawaii), only relative discrepancies between model simulations and observations at different latitudes are significant.

Two stations in Alaska, Point Barrow at 71°N and Cold Bay at 55°N, depict the seasonal cycle of CO$_2$ at high latitudes. The seasonal cycle composited from the BIOME-BGC shows a larger peak-to-peak amplitude than the observations for both stations while the NDVI model shows near agreement (Figures 5 and 6). Thus, the BIOME-BGC model shows a stronger seasonal cycle in the far north compared to the expectations from NDVI data. From the panels in Figure 4d for NPP and R_o for 55° to 79°N, it is apparent that this stronger cycle is a result of a stronger seasonality in NPP rather than a smaller seasonality in R_o. The phasing of
both model simulations is in good agreement with the observations.

At La Jolla, California, both models show similar seasonal amplitudes, but both amplitudes are somewhat smaller than seen in the observations, in spite of the NDVI model having included this station in its tuning to the atmospheric CO$_2$ data (Figures 5 and 6). Air samples were taken only during periods with westerly winds off the Pacific Ocean to avoid contamination from nearby sources on land, whereas TM2 predicts CO$_2$ concentrations for all times. This sampling bias at least partially explains the phase differences between the predicted and observed CO$_2$ concentrations.

For two stations in Hawaii, Mauna Loa at an elevation of 3400 m above sea level and Cape Kumukahi, a coastal station, the agreement of both model composites with the data is close (Figures 5 and 6). Detailed examination for Cape Kumukahi indicates that the BIOME-BGC model predictions for the end of the season are advanced by about 10 days relative to the NDVI model. The phase advance for the end of the summer predicted by the BIOME-BGC model, consistent with the observations but not predicted by the diagnostic NDVI model, may be attributed to late season water stress when photosynthetic activity is restricted and the vegetation is still green [Running and Nemani, 1988].

For the station at Christmas Island, near the Equator but still within the northern hemisphere, the NDVI model simulation shows good agreement with the data, taking note of the much smaller seasonal cycle than farther north (Figure 6). This agreement is in spite of a relatively much larger contribution to the seasonal cycle from fossil fuel combustion and oceanic CO$_2$ exchange, as shown by earlier simulations at nearby Fanning Island [Heimann et al., 1989], and without this station being included in the tuning of the NDVI model. The BIOME-BGC simulation is unsatisfactory because of having a second seasonal component with a peak in October, which reflects seasonality of the tropics in the southern hemisphere (Figure 5).

Comparison of NPP simulations for the zones from the equator to 31°N indicate that the BIOME-BGC model shows strong seasonality in net ecosystem exchange, because of changes in NPP not reflected by NDVI (Figures 4a and 4b). Some tropical ecosystems continue to assimilate CO$_2$ during the dry season.
sufficient to balance total respiration, drawing up water from 8 m or more [Nepstad et al. 1994].

At Baring Head, New Zealand at 41°S, both BIOME-BGC and the diagnostic NDVI models predict nearly the same seasonality, but neither prediction is close to agreement with the observations. Here the oceanic contributions to the seasonal cycle are as large as the terrestrial ecosystem fluxes and the atmospheric transport from the tropics and northern hemisphere. Biomass burning contributions are a smaller but significant component of the seasonal cycle. Hence more work is required in understanding the seasonality of the atmospheric CO₂ observations.

Latitudinal Profiles of Mean Annual CO₂ Concentrations

Although seasonal NPP and ṭₐ are balanced for each grid cell to give a zero net annual flux, they covary with the seasonal atmospheric transport to produce nonzero annual mean concentrations [Fung et al., 1987; Keeling et al., 1989b; Denning et al., 1995]. In Figure 7, we show a comparison of the mean annual CO₂ concentrations for different latitudinal zones using the net carbon fluxes from Fung et al. [1987], BIOME-BGC, and the diagnostic NDVI model. The Fung et al. [1987] and the NDVI model inputs to the TM2 simulations agree reasonably well; the differences north of 10° latitude are attributable to the lower NPP of Fung et al. [1987] (47 Pg C compared to 61 Pg C global annual totals, respectively). All three models predict a local maximum in CO₂ concentrations in the tropics (Figure 7); however, net fluxes from BIOME-BGC cause the annual mean to be 0.7 ppm higher than the other two models. This difference is from the differences in NPP compared to ṭₐ, because of greater seasonality (Figures 4a and 4b).

Discussion

This paper describes a comprehensive, global-scale, ecosystem process model driven by external forces which control the assimilation, respiration, and storage of carbon on timescales from a few days to several decades. Atmospheric CO₂ measurements provide evidence of how these processes vary over this entire range of timescales. With the necessary input data: NDVI, temperature, precipitation, solar radiation, and initial soil and land cover conditions, this model should therefore simulate the variations in atmospheric CO₂ that have been observed since precise measurements began in 1958. At present, suitable global climatic data are only available from 1977 to the present, but even this shorter time span allows a wide range of events in the carbon cycle to be examined, including the El Niño event of 1982-1983 and a recent slow down in the rate of rise of atmospheric CO₂ from 1989 to 1993 [Keeling et al., 1995].

The challenge of scaling up elements of our model to produce global scale predictions has been formidable. Also, much of the input information we desire, such as gridded daily climatic data, had to be assembled from databases inadequate for the task, even though these databases were the best available when we started this study. Remote sensing data from satellites have supplemented our information from ground-based studies, especially in providing indices of terrestrial vegetation worldwide, but remotely sensed data also have shortcomings, such as inadequate long-term calibrations. We note that considerable effort is being made by the scientific community to update and improve these required databases [Sellers et al., 1996].

BIOME-BGC and other terrestrial ecosystem process models are first tested with site-specific data on homogeneous plots of representative ecosystems. At these small scales, numerous data exist to both parameterize and test model outputs. Often,
unmeasurable parameters are adjusted to match the results of a specific study on a single site, and the reasonableness of these parameters is then tested with other site-specific data. There are simply too few sites with sufficient data of the necessary kind to test ecosystem models at global scales. Similar processes, such as NPP, from different ecosystems are measured by different methods, each of which introduces errors. Further experimental investigations at different homogeneous sites, worldwide, would improve understanding of ecosystem processes encapsulated by simulation models, but they would not be necessarily applicable to these same processes at the global scale because these homogeneous sites may not be truly representative.

With both satellite and ground-based information, we have constructed a global scale biospheric model which predicts plant activity on a daily basis, using as much as possible, the actual conditions during 1987. Thus the outputs of these simulations allow activity on a daily basis, using as much as possible, the actual conditions during 1987. Thus the outputs of these simulations allow activity on a daily basis, using as much as possible, the actual simulation models, but they would not be necessarily applicable to these same processes at the global scale because these homogeneous sites may not be truly representative.

The simulation of atmospheric CO₂ based on satellite-derived NDVI data, when tuned by global adjustment of the relation of NPP to NDVI and of the temperature sensitivity of soil respiration, gives better agreement with the observations than the BIOME-BGC model in its present formulation. The agreement of CO₂ observations with NDVI data, with full knowledge of the deficiencies of the NDVI model, allows assessment of any process model, with the likelihood that NDVI model predictions provide insight as to possible misrepresentations by the process model. This is supported by the general agreement of two different NDVI models in calculating the annual means of atmospheric CO₂ concentrations for different latitudinal zones.

There were four areas where comparisons of BIOME-BGC, the diagnostic NDVI model, and the TM2 transport model of atmospheric CO₂ showed how each of the models may be improved. First, the annual total of NPP in the tropical latitudes was underestimated and the seasonality of NPP in the high northern latitudes was overestimated by BIOME-BGC, in comparison with both the NDVI diagnostic model and atmospheric CO₂ observations. BIOME-BGC and the CO observations indicated that vegetation during late summer were drought-stressed in the middle northern latitudes, which was not consistent with the NDVI model. Finally, the oceanic CO₂ fluxes or TM2 model transport may be in error, leading to poor agreement of simulations with observations in the southern hemisphere, in spite of the good agreement between BIOME-BGC and the diagnostic NDVI model simulations.

The solution that we presented in this study is to test ecosystem models at global scales with data for carbon isotopes, temporal NDVI, and atmospheric CO₂. Carbon isotope data are available worldwide; however measurements of δ¹³C of vegetation depend on knowing the δ¹³C of the atmosphere, so these data can provide only relative agreements between NPP and precipitation. The diagnostic NDVI model is spatially and temporally explicit thereby encompassing the range of vegetation heterogeneity at regional and global scales. The atmospheric CO₂ station data provide seasonal estimates of net ecosystem exchange (NEE), the difference between NPP and Rₚ, for large regions over the globe. This top-down approach complements methods of model assessment using homogeneous plot data. By further development and testing of these combined models, we believe we can estimate the responses of terrestrial ecosystems to the interannual variability of climate that are hypothesized from studies on the anomalies of the global atmospheric CO₂ data.

Notation

- \(A_{\text{max}} \): maximum rate of photosynthesis (\(\mu\text{mol} \text{ m}^{-2} \text{ s}^{-1} \)).
- \(A_m \): maximum rate of photosynthesis corrected for air temperature (\(\mu\text{mol} \text{ m}^{-2} \text{ s}^{-1} \)).
- \(A_n \): LAI-averaged photosynthetic rate at solar noon (\(\mu\text{mol} \text{ m}^{-2} \text{ s}^{-1} \)).
- \(a \): albedo (dimensionless).
- \(C_a \): ambient CO₂ partial pressure (Pa).
- \(C_i \): intercellular CO₂ partial pressure (Pa).
- \(c_m \): heat capacity of air (\(\text{J kg}^{-1} \text{ °C}^{-1} \)).
- \(D \): vapor pressure deficit between leaf and the free atmosphere (kPa).
- \(d_f \): soil depth (m).
- \(d_t \): declination (degrees).
- \(E_{\text{can}} \): evaporation from the canopy (\(\text{m}^3 \text{ H}_2\text{O} \text{ m}^{-2} \text{ s}^{-1} \)).
- \(E_{\text{soil}} \): evaporation from the soil (\(\text{m}^3 \text{ H}_2\text{O} \text{ m}^{-2} \text{ s}^{-1} \)).
- \(e(T) \): saturated vapor pressure of air at temperature \(T \) (Pa).
- \(ET \): evapotranspiration (\(\text{m}^3 \text{ H}_2\text{O} \text{ ha}^{-1} \text{ day}^{-1} \)).
- \(f_i \): ratio of sapwood cross-sectional area to leaf area (\(\text{cm}^2 \text{ m}^{-2} \)).
- \(G \): growth respiration (kg C ha⁻¹ d⁻¹) for leaves (Lf), stems (st), coarse roots (cr), and fine roots (fr)(G_Lf, G_st, G_cr, and G_fr, respectively).
- \(g \): fraction of photosynthesis for growth respiration of leaves (Lf), stems (st), coarse roots (cr), and fine roots (fr)(g_Lf, g_st, g_cr, and g_fr, respectively).
- \(g_v \): boundary-layer conductance of \(\text{H}_2\text{O} \) (\(\text{mm s}^{-1} \)).
- \(g_m \): stomatal conductance to CO₂ (\(\text{mol m}^{-2} \text{ s}^{-1} \)).
- \(g_{\text{can}} \): canopy-average, daily-average stomatal conductance (\(\text{mm s}^{-1} \)).
- \(g_r \): total canopy stomatal conductance of \(\text{H}_2\text{O} \) (\(\text{mm s}^{-1} \)).
- \(h \): soil surface conductance of \(\text{H}_2\text{O} \) (\(\text{mm s}^{-1} \)).
- \(h_{\text{can}} \): maximum forest canopy height (m).
- \(k \): extinction coefficient of canopy (LAI⁻¹).
- \(L \): leaf lignin mass to nitrogen mass (kg lignin per kg N).
- \(LAI \): leaf area index (\(\text{m}^2 \text{ m}^{-2} \)).
- \(LAI_{\text{max}} \): maximum leaf area index determined by land cover type.
M: carbon mass (kg C ha⁻¹) of leaves (l), stems (st), coarse roots (cr), fine roots (fr), litter (lit), and soil (Mₗ, Mᵣₗ, Mᵢₗ, Mᵣᵣ, and Mₛᵣᵣ, respectively).
NDVI: normalized difference vegetation index (dimensionless).
NEE: net ecosystem exchange (kg C ha⁻¹ y⁻¹ or kg C ha⁻² d⁻¹).
NPP: net primary production (kg C ha⁻¹ y⁻¹ or kg C ha⁻² d⁻¹).
P: atmospheric pressure (kPa) calculated from elevation.
PAR: photosynthetically active radiation from 400 nm to 700 nm wavelength (μmol m⁻² s⁻¹).
PSN: net photosynthesis (kg C ha⁻¹ d⁻¹), gross photosynthesis net daytime maintenance respiration of leaves.
Q₁₀: exponential temperature response factor.
R: respiration (kg C ha⁻¹ d⁻¹) for leaves (l), stems (st), coarse roots (cr), fine roots (fr), litter (lit), and soil (Rₗ, Rᵣₗ, Rᵢₗ, Rᵣᵣ, and Rₛᵣᵣ, respectively).
Rₘ: autotrophic respiration (kg C ha⁻¹ d⁻¹).
Rₜ: heterotrophic respiration (kg C ha⁻¹ d⁻¹).
r: specific rate of respiration (kg C kg⁻¹ C d⁻¹) for leaves (l), stems (st), coarse roots (cr), fine roots (fr), litter (lit), and soil (rₗ, rᵣₗ, rᵢₗ, rᵣᵣ, and rₛᵣᵣ, respectively).
[^1] R: isotopic mass ratio of ^13C/^12C.
rh: relative humidity (%).
Sₐ: canopy absorbed solar radiation (MJ m⁻² d⁻¹).
Sₖ: daily solar radiation (MJ m⁻² d⁻¹).
Sₕ: canopy transmitted solar radiation (MJ m⁻² d⁻¹).
sᵥ: slope of saturated vapor pressure versus air temperature (Pa °C⁻¹).
SLA: specific leaf area (m² kg⁻¹ C).
τ: day of year.
Tₑ: average daily air temperature (°C).
Tₑₑ: daytime average air temperature (°C).
Tₑₓ: maximum daily air temperature (°C).
Tₑₘᵢₗ: minimum daily air temperature (°C).
Tₑₙᵦₑ: nighttime average air temperature (°C).
Tₑₚᵦₑ: optimum temperature for photosynthesis (°C).
Tₑₛᵦₑ: average daily soil temperature at 0.1 m depth (°C).
Wₑₛᵦₑ: maximum soil water content (m³ H₂O ha⁻¹).
Wₑₛᵦₑ: soil water content (m³ H₂O ha⁻¹).
σₛₑ: initial slope of stomatal conductance versus PAR ((mm s⁻¹)/(μmol m⁻² s⁻¹)).
σₛₑₘₐₓ: maximum quantum yield (mol CO₂ mol⁻¹ photons).
σₛₑₚ: quantum yield for photosynthesis (mol CO₂ mol⁻¹ photons).
βₑₘᵢₗ: temperature coefficient of maintenance respiration (°C⁻¹).
βₑᵣᵣ: temperature coefficient of photosynthesis (°C⁻¹).
βₑₛᵣᵣ: temperature coefficient of heterotrophic respiration (°C⁻¹).
γ: psychrometric constant (Pa °C⁻¹).
Γ: CO₂ compensation point of photosynthesis (Pa).
Δ: discrimination of ^13C/^12C from photosynthesis.
ε: PAR conversion efficiency (kg C MJ⁻¹ PAR).
η: fractional allocation of photosynthesis for leaves (l), stems (st), coarse roots (cr), and fine roots (fr) (ηₗ, ηᵣₗ, ηᵢₗ, and ηᵣᵣ, respectively).
Θₛₑ: volumetric water content of soil (m³ m⁻³).
Θₛₑᵣᵣ: volumetric water content of soil at field capacity (m³ m⁻³).
λ: latent heat of vaporization (J m⁻³).
ξ: fraction of daylight period at maximum photosynthesis.
ρₑᵣ: density of dry air (kg m⁻³).
ρₑₒₒₚ: density of wood (kg m⁻³).
ζ: length of daily light period or "daylength" (s d⁻¹).
ζₛₑₚ: number of seconds in 24 hours (86,400 s).
ϕ: latitude (degrees).
Ψₑₛᵦₑᵣᵣ: predawn leaf water potential (MPa).
Ψₑₛᵦₑᵣᵣ: soil water potential (MPa).
Ψₑₛᵦₑᵣᵣ: leaf water potential at stomatal closure (MPa).

Appendix A: Description of BIOME-BGC

Climatic Inputs

The inputs from extant climatic data (Table 1) for a given day of the year are: Tₑ_max, Tₑ_min and daily precipitation (mm H₂O d⁻¹). Some inputs which may either be from data or derived (Table 1) are rh, Tₑₛᵦₑ, Sₑₕ, and PAR. According to Gates [1980], φ and dₑ are used to calculate η or "day length:"

$$\eta = 480 \cos^{\wedge}(-\tan \phi \cdot \tan d_{e})$$ (A1)

where 480 converts the half-day length to a full day given 240 s of time per degree longitude. Tₑₑₜₐₜ is taken to be the mean of Tₑ_max and Tₑₘᵢₗ, whereas Tₑₑₙᵦₑ and Tₑₑₙᵦₑ are calculated:

$$Tₑₚᵦₑ = 0.212 (Tₑ_max - Tₑₘᵢₗ) + Tₑₚᵦₑ$$ (A2)

$$Tₑₚᵦₑ = 0.5 (Tₑₚᵦₑ + Tₑₘᵢₗ)$$ (A3)

from Running and Coughlan [1988]. D is

$$D = e_{ₚ}(Tₑₚᵦₑ) \cdot (1 - rh)$$ (A4)

Tₑₛᵦₑ is calculated from Zheng et al. [1993]:

$$Tₑₛᵦₑ(t) = Tₑₛᵦₑ(t - 1) + [Tₑₛᵦₑ(t) - Tₑₛᵦₑ(t - 1)] \exp(-kₗ Aₗᵢ)$$ (A5)

with LAI slowing the rate of increase in Tₑₛᵦₑ. Sₑₕ and Sₑₚ through the canopy are calculated using the Beer-Lambert law:

$$Sₑₚ = (1 - a) Sₑₚ \exp(-kₗ Aₗᵢ)$$ (A6)

$$Sₑₔ = (1 - a) Sₑₔ \exp(-kₗ Aₗᵢ)$$ (A7)

where a is set to 0.15 as a global average. The Beer-Lambert extinction coefficient k was assumed to be 0.5 for all land cover types on a one-sided leaf area basis, which is approximately the average for conifers and deciduous broadleaved trees [Jarvis and Leverenz, 1984] and for grasses [D. S. Schimel, personal communication, 1994].

Stomatal Conductance and the Hydrologic Budget

Wₑₛᵦₑ is calculated from Θₛₑᵣᵣ, multiplied by dₑ and corrected for coarse fragment content and the number of square meters in 1 ha (10,000 m² ha⁻¹). Daily, Wₑₛᵦₑ is calculated from the net sum of the various hydrologic fluxes (Figure 1), then Θ is calculated from
Monteith equation: because conductances in parallel are additive, multiplication by conductances is calculated from the Penman-Monteith equation:

$$E_{\text{sat}} = \left(S_\varepsilon S_\varepsilon / \varepsilon + \rho \varepsilon \varepsilon \varepsilon \varepsilon D / \left[\lambda (S_\varepsilon + \gamma \varepsilon \varepsilon \varepsilon) / E_{\text{sat}} \right] \right)$$ \hspace{1cm} (A8)

where E_{sat} is the maximum g_{sat} divided by the square root of the number of days since rainfall [J. B. Stewart, personal communication, 1993]; maximum g_{sat} is set to be 2 mm s\(^{-1}\) as reported by Baldocchi and Meyers [1991]. Total daily soil evaporation (m\(^2\) ha\(^{-1}\) d\(^{-1}\)) is equal to E_{sat} \times 10,000 m\(^2\) ha\(^{-1}\).

For each land cover type (Table 2), E_{sat} is determined from the literature correcting for a bias of measuring young, healthy leaves. We applied the logic of Rastetter et al. [1992] for canopy-average photosynthetically active rate for calculating g_{sat}:

$$g_{\text{sat}} = (g_{\text{sat max}} / k \text{ LAI}) \cdot \ln \left(g_{\text{sat max}} + a_{p} \text{ PAR} / \left[g_{\text{sat max}} + a_{p} \text{ PAR} \exp \left(-k \text{ LAI} \right) \right] \right)$$ \hspace{1cm} (A9)

Then a series of multipliers, $f(D)$, $f(\Psi_{\text{soil}})$, $f(T_{\text{soil}})$, and $f(T_{\text{sub}})$, all ranging from 0.0 to 1.0, are calculated for stomatal responses to D, Ψ_{soil}, T_{soil}, and T_{sub}, respectively [Running and Coughlan, 1988]. The multiplier $f(D)$ is equal to 1.0 when D is less than or equal to 7.5 kPa, 0.0 when D is greater than or equal to the vapor pressure deficit causing stomatal closure (Table 2), and is linear between these two points. Using an equation from Rastetter et al. [1991], $f(T_{\text{sub}})$ is:

$$f(T_{\text{sub}}) = \exp \left[\ln \left(45 - T_{\text{sub}} / (45 - T_{\text{opt}}) \right) \beta_{p} (45 - T_{\text{opt}}) \right] \exp \left[\beta_{p} (T_{\text{sub}} - T_{\text{opt}}) \right]$$ \hspace{1cm} (A10)

where 45°C is the maximum temperature and β_{p} is a temperature coefficient which we set to be 0.2 for vegetation with the C\(_{3}\) pathway and 0.12 for vegetation with the C\(_{4}\) pathway. The $f(\Psi_{\text{soil}})$ assumes Ψ_{prelaw} is -0.5 MPa when Ψ_{sat} is greater than -0.5 MPa, and Ψ_{prelaw} is equal to Ψ_{soil} when Ψ_{sat} is less than -0.5 MPa. Thus

$$f(\Psi_{\text{soil}}) = 1 - (-0.5 \cdot \Psi_{\text{prelaw}}) / (-0.5 - \Psi_{\text{stress}})$$ \hspace{1cm} (A11)

where Ψ_{stress} is given in Table 2. Then

$$g_{\text{sat}} = g_{\text{sat}} f(D) f(\Psi_{\text{soil}}) f(T_{\text{sub}}) f(T_{\text{opt}}) \text{ LAI}$$ \hspace{1cm} (A12)

because conductances in parallel are additive, multiplication by LAI is required for g_{sat}. E_{can} is calculated using the Penman-Monteith equation:

$$E_{\text{can}} = \left(S_\varepsilon S_\varepsilon / \varepsilon + \rho \varepsilon \varepsilon \varepsilon D / \left[\lambda (S_\varepsilon + \gamma \varepsilon \varepsilon \varepsilon) / E_{\text{can}} \right] \right)$$ \hspace{1cm} (A13)

where g_{sat} is assumed to be a constant for each land cover type (Table 2). Total daily transpiration is then calculated as $E_{\text{can}} \times 10,000$ m\(^2\) ha\(^{-1}\). ET is the sum of daily transpiration, evaporation from the soil, and evaporation of intercepted precipitation.

The leaves of deciduous forests and grasses, and the fine roots of all land cover types, have certain periods of the year when they are actively respiring. Coarse roots and stems respire year round, controlled by soil and air temperature, respectively. Leaves photosynthesize and transpire when they are green and active. For the fine roots of all land cover types, and for the leaves of the two grassland and shrub cover types, activity commences on a day of the year when conditions are favorable. We assume that favorable conditions occur when $\Psi_{\text{sat}} > -0.025$ MPa and $T_{\text{soil}} > 3^\circ$C. When conditions are unfavorable, $\Psi_{\text{sat}} < \Psi_{\text{stress}}$ (Table 2) or $T_{\text{soil}} < -1^\circ$C, activity ceases on that yearday and LAI is set to zero in the model. For the two land cover types of deciduous forest, leaf activity commences when an 11-day running average of previous $T_{\text{sub}} > 3^\circ$C and ceases when that running average of $T_{\text{opt}} < -1^\circ$C. Leaves for the two evergreen forest cover types are “active” at all times, however, rates of photosynthesis and transpiration are negligible during periods with low T_{opt} or low Ψ_{sat}. These are our best guesses to explain the correlation of activity to degree days, which can not be extended in either space or time.

Photosynthesis and Stable Carbon Isotope Discrimination

For C\(_{3}\) photosynthesis, a biochemical photosynthesis model based on the equations of Farquhar et al. [1980] and McMurtrie et al. [1992] is used to simulate A_{max} at the optimum temperature as a function of atmospheric CO\(_{2}\) [Hunt and Running, 1992a]. As we are using 1987 data, with an average atmospheric CO\(_{2}\) concentration of 347 ppm [Keeling et al., 1989a], we selected an A_{max} for each land cover type from data derived from numerous field studies (Table 2), again correcting for a bias of measuring the rates of younger leaves. Daily A_{max} is calculated:

$$A_{\text{max}} = (A_{\text{max}} / k \text{ LAI}) \ln \left((A_{\text{max}} + a_{p} \text{ PAR}) / \left([A_{\text{max}} + a_{p} \text{ PAR} \exp \left(-k \text{ LAI} \right)] \right) \right)$$ \hspace{1cm} (A14)

For C\(_{4}\) photosynthetic plants, a_{p} is simply set at 0.05, and for C\(_{3}\) photosynthetic plants, a_{p} depends on T_{opt} and C_{i} [Ehleringer and Björkman, 1977]:

$$a_{p} = (a_{\text{max}} - 0.0010 \cdot T_{\text{opt}}) / (C_{i} + 2 \Gamma)$$ \hspace{1cm} (A15)

where a_{max} is 0.0825 mol CO\(_{2}\) per mole photons, C_{i} is initially estimated from A_{max} and Γ is calculated from T_{opt} and atmospheric O\(_{2}\) concentration [Farquhar et al., 1980]. For solar noon, A_{max} is

$$A_{\text{max}} = (A_{\text{max}} / k \text{ LAI}) \ln \left((A_{\text{max}} + a_{p} \text{ PAR}) / \left([A_{\text{max}} + a_{p} \text{ PAR} \exp \left(-k \text{ LAI} \right)] \right) \right)$$ \hspace{1cm} (A16)

from Rastetter et al. [1992]. A_{max} must be integrated over the daylight period, so we assumed the instantaneous value of PAR varies from dawn to dusk as a sine curve, with the daylight period from 0° to 180°. We defined relative variables as the ratios of the instantaneous rates of A_{max} and PAR to their maximum values for the day, substituted these relative variables for A_{max} and PAR in equation (A16), and integrated this equation to determine f_{ξ}. The range of ξ for various values of A_{max}, LAI, k, and a_{p} was from 0.81 to 0.89; thus, we set ξ to be the median value, 0.85. PSN was calculated from A_{max} by converting moles of CO\(_{2}\) to kilograms of carbon:
PSN = \(A_s \) LAI \(\zeta \xi \) 10,000 m² ha⁻¹

12x10⁹ kg C \(\mu \)mol⁻¹ CO₂

(A17)

The \(g_s \) is calculated from \(g_a \) by first dividing by 1.6 to account for the difference in diffusivities between \(H_2O \) and CO₂ and using the perfect gas law to convert to units of moles; hence \(C_i \) is calculated:

\[
C_i = C_a \cdot A_p / g_a
\]

(A18)

where \(P \) is determined from elevation [Farquhar et al., 1980, 1989].

As both \(A_s \) and \(g_a \) are independently estimated, the isotopic discrimination against \(^{13}C \)CO₂ during photosynthesis can be used as a check on the relative magnitudes of \(A_{\text{max}} \) and \(g_{\text{max}} \). The \(^{13}C/^{12}C \) ratio is commonly expressed as a \(^{13}C \) value calculated from

\[
\delta^{13}C = \frac{^{13}R}{^{12}R} - 1
\]

(A19)

[O’Leary, 1993]. Daily \(\Delta \) is calculated for \(C_3 \) photosynthetic vegetation as

\[
\Delta = 0.0044 + (0.027 - 0.0044) C_i / C_a
\]

(A20)

and for \(C_4 \) photosynthetic vegetation as

\[
\Delta = 0.0044 + (-0.0057 + 0.0087 - 0.0044) C_i / C_a
\]

(A21)

assuming 29% of the CO₂ leaks from the bundle sheath cells of \(C_4 \) photosynthetic plants [O’Leary, 1993]. With the \(^{13}C \) of the air designated as an input parameter, the vegetation \(^{13}C \) is calculated according to Körner [1988] for \(C_3 \) photosynthesis:

\[
\delta^{13}C = -0.0077 - \Delta (1 + 0.028)
\]

(A22)

and for \(C_4 \) photosynthesis:

\[
\delta^{13}C = -0.0077 - \Delta (1 + 0.014)
\]

(A23)

where -0.028 and -0.014 are the mean \(^{13}C \) of \(C_3 \) species and \(C_4 \) species, respectively [Körner, 1988], and -0.0077 is the mean \(^{13}C \) of the air in 1987 [Keeling et al., 1989a]. The value of \(^{13}R \) is taken to be 0.0112372 [Craig, 1957]. From \(^{13}\delta \) of vegetation and PSN, the mass of \(^{13}C \) is calculated and summed over the year. We assume there is no net isotopic fractionation of \(^{13}C \) by autotrophic respiration; hence annual vegetation \(^{13}C \) is determined from PSN and the mass of \(^{13}C \).

Autotrophic and Heterotrophic Respiration

From LAI, initial values were calculated for various pools of carbon and nitrogen (Fig. 1). \(M_{\text{f}} \) is

\[
M_{\text{f}} = \text{LAI} \cdot \rho_{\text{wood}} / f_{\text{s}}
\]

(A24)

where \(h \) is equal to \(h_{\text{max}} (\text{LAI}/\text{LAI}_{\text{max}}) \) (Table 2), \(f_s \) is assumed to be 0.35 cm² m⁻² [Waring and Schlesinger, 1985], and \(\rho_{\text{wood}} \) is 2.50 kg C m⁻³. For grasslands, \(M_{\text{f}} \) is set equal to \(M_{\text{d}} \) to obtain a 1:2 ratio of aboveground to belowground mass [D. S. Schimel, personal communication, 1994], whereas for forests, \(M_{\text{f}} \) is equal to 0.33 \(M_{\text{d}} \), and for shrubs, \(M_{\text{f}} \) is set equal to 0.5 \(M_{\text{g}} \) using reasonable averages from biomass values reported in numerous studies [Cannell, 1982]. The nitrogen contents for leaves, stems and coarse roots, fine roots, litter, and soil are set equal to 0.02 \(M_{\text{f}} \), 0.005 \(M_{\text{f}} \), 0.01 \(M_{\text{f}} \), 0.02 \(M_{\text{f}} \), and 0.056 \(M_{\text{f}} \), respectively. The nitrogen cycle is calculated on the annual time step and controls allocation of carbon and nitrogen for future years (Figure 1), hence for a single-year simulation, BIOME-BGC is not regulated by the nitrogen pools, in contrast to some other ecosystem models. However, the important effects of leaf nitrogen on photosynthetic rates and stomatal conductances [Schulze et al., 1994; Kelliher et al., 1995] are approximated for each land cover type by differences in \(A_{\text{max}} \) and \(g_{\text{max}} \) (Table 2).

Maintenance respiration rates are calculated by

\[
R_{\text{m}} = r_{\text{m}} \exp(\beta_{\text{m}} T_{\text{night}}) M_{\text{f}}
\]

(A26)

\[
R_{\text{c}} = r_{\text{c}} \exp(\beta_{\text{c}} T_{\text{night}}) M_{\text{f}}
\]

(A27)

\[
R_{\text{f}} = r_{\text{f}} \exp(\beta_{\text{f}} T_{\text{night}}) M_{\text{f}}
\]

(A28)

where \(r_{\text{c}}, r_{\text{m}}, \) and \(r_{\text{f}} \) were obtained from field data (median from numerous studies). The exponential temperature response of organisms is described in terms of a \(Q_{\text{net}} \), which is the relative increase in rate for a 10°C increase in temperature. Maintenance respiration usually has a \(Q_{\text{net}} \) of about 2.0, so \(\beta_{\text{m}} \) was set at 0.069. \(R_{\text{f}} \) (if active) is calculated using \(T_{\text{night}} \):

\[
R_{\text{f}} = r_{\text{f}} \exp(\beta_{\text{f}} T_{\text{night}}) \{c_{\text{f}}/c_{\text{a}}\} M_{\text{f}}
\]

(A29)

Total maintenance respiration \(R_{\text{m}} \), kg C ha⁻¹ d⁻¹ is the sum of the daily amounts for leaves (nighttime only), stems, coarse roots, and fine roots.

If daily PSN is greater than total maintenance respiration, then the difference is allocated among leaves, stems, coarse roots and fine roots using constant allocation parameters [Running and Coughlan, 1988]. The amount of respiration used for growth is

\[
G_{\text{f}} = g_{\text{f}} \eta_{\text{f}} (\text{PSN} - R)
\]

(A30)

\[
G_{\text{c}} = g_{\text{c}} \eta_{\text{c}} (\text{PSN} - R)
\]

(A31)

\[
G_{\text{r}} = g_{\text{r}} \eta_{\text{r}} (\text{PSN} - R)
\]

(A32)

\[
G_{\text{s}} = g_{\text{s}} \eta_{\text{s}} (\text{PSN} - R)
\]

(A33)

Since there is little information about allocation patterns and growth respiration rates, for this study, \(g_{\text{f}}, g_{\text{c}}, g_{\text{r}}, \) and \(g_{\text{s}} \) are assumed to be 0.33 [Sprugel et al., 1995]. Thus differences in allocation among plant organs do not affect total daily growth respiration; total autotrophic respiration is the sum of total maintenance and growth respiration.

\(R_{\text{a}} \) is the sum of \(R_{\text{m}} \) and \(R_{\text{f}}, \) both of which are limited by soil
temperature and soil moisture content [Parton et al., 1987]. A soil temperature multiplier \(f(T_{soil}) \) is calculated by

\[
f(T_{soil}) = \exp \left[\beta (T_{soil} - 26.0^\circ C) \right]
\]

(A34)

where \(\beta \) is set to achieve a Q10 of 2.4 [Raich and Schlesinger, 1993] and 26.0°C is the reference soil temperature from Taylor et al. [1989]. The \(f(\Theta) \) is set equal to unity if the ratio \(\Theta/\Theta_{max} > 0.75 \), and is set to 0.1 when \(\Theta/\Theta_{max} < 0.25 \), and a linear interpolation between the above points is used for \(0.25 < \Theta/\Theta_{max} < 0.75 \). \(R_{soil} \) is

\[
R_{soil} = r_{soil} f(T_{soil}) f(\Theta) M_{soil}
\]

(A35)

where \(r_{soil} \) is set equal to 0.00035 kg C kg⁻¹ C d⁻¹ (a combination of the active and slow soil carbon pools in the Century model [Parton et al., 1987]). The nitrogen concentration of the litter is assumed to be one half of the leaf nitrogen concentration. Litter lignin and nitrogen concentrations are used to calculate a lignin:N ratio \(L/N \) (L, kg lignin per kg N). The \(r_{soil} \) is calculated by

\[
r_{soil} = 1 - \exp\left(\frac{3}{365} \ln\left(0.999L + 45.7\right) / 100\right)
\]

(A36)

where 365 converts the above equation from Taylor et al. [1989] to a daily time step. Then

\[
R_{soil} = r_{soil} f(T_{soil}) f(\Theta) M_{soil}
\]

(A37)

\(M_{soil} \) and \(M_{soil} \) are decreased by the amount of respiration daily. NPP is equal to PSN - \(R_{soil} \), and NEE is equal to PSN - \(R_{soil} - R_{soil} \), by definition.

Annual Time Step

The annual time step of BIOME-BGC (Figure 1) is similar to that of FOREST-BGC [Running and Gower, 1991], with modifications as described below. All of the processes of the annual time step of BIOME-BGC are called on day 365 of the year (Figure 1). Via the decomposition of leaf and fine root litter, the litter C:N ratio gradually decreases. If the C:N ratio is greater than a critical value (25 from Parton et al. [1987]), then nitrogen is immobilized, and the transfer of litter nitrogen and carbon to the soil requires nitrogen from the available N pool. If the C:N ratio is less than the critical value, then nitrogen is mineralized and transferred to the available nitrogen pool. Then 30% of the original litter carbon (from the ligninocellulose hypothesis of Melillo et al. [1989]) and an amount of litter nitrogen that maintains the critical C:N ratio is transferred to the soil carbon and nitrogen pools, respectively. Soil carbon turnover releases soil nitrogen into the available nitrogen pool with a C:N ratio of 12 [Parton et al., 1987]. If the amount of available nitrogen is high, then some nitrogen is lost from the system [Johnson, 1992]. Each year, nitrogen is added to the available nitrogen pool through N2 fixation, N deposition, and retranslocation of nitrogen from senescing leaves (assumed to be 50% of leaf nitrogen). The net nitrogen available is then allocated to the various vegetation pools.

From the ratio of NPP and the sum of N inputs and N losses, carbon and nitrogen are allocated to leaves, stems, coarse roots, and fine roots [Running and Gower, 1991]. Transfer of available carbon to storage carbon (Figure 1) is not implemented in this global version of BIOME-BGC but is important for time series analyses [Hunt et al. 1991b]. The use of an annual time step called on day 365 of the year was originally designed for northern latitudes where vegetation activity is minimal during the winter months. In subsequent model simulations, we will replace annual allocation with a more realistic specification for both hemispheres depending on land cover type.

Appendix B: Biomass Burning as a Source of CO₂

In this study, we have included one additional CO₂ source for the TM2. Emissions from biomass burning produce significant seasonal variation of atmospheric CO₂ in the tropics and the southern hemisphere as shown, for example, by Iacobellis et al. [1994]. We have constructed a time-dependent biomass burning source from the global data set of Hao and Liu [1994]. These authors estimated the spatial and temporal variation of biomass burning on the basis of Food and Agriculture Organization survey data, global vegetation and cultivation maps [Matthews, 1983], and on published data of biomass density. Emissions from deforestation, savanna burning, and shifting cultivation were distributed monthly on the basis of surface ozone concentrations during a 6-month dry season, which in turn was determined on the basis of rainfall data from Jaeger [1976]. The burning of fuelwood and agricultural residues were assumed to be constant over the year. Hao and Liu [1994] did not provide the spatial distribution for Australian emissions; therefore, we derived this from information provided to us by W. M. Hao (personal communication, 1993).

Hao and Liu [1994] provide biomass burning totals appropriate for the late 1970s. On the basis of further information provided in their study, we increased the deforestation totals by 36, 22, and 88% in tropical America, tropical Africa and tropical Asia, respectively, and increased fuel wood burning uniformly by 34% to provide totals applicable to the late 1980s for our study. The total increase was only 0.19 Pg C per year, about half of it in the nonseasonal fuelwood burning. We used a factor of 0.45 g C per g dry biomass [Hao et al., 1990] to convert from biomass carbon in CO₂. In our final source, global CO₂ emissions totaled 2.62 Pg C per year, with savanna fires accounting for almost half of the total. Changes in NPP associated with loss and recovery of plants owing to biomass burning are roughly accounted for in our NDVI model by the biweekly satellite NDVI data, and approximately in the BIOME-BGC model, which used the annual maximum NDVI to establish the maximum LAI, and hence biomass, in each grid cell. On the other hand, to maintain a steady state in each cell, our \(R_{soil} \) fluxes should be reduced by the amount of CO₂ lost to biomass burning. However, biomass burning is much more seasonal than the \(R_{soil} \) fluxes, according to Hao and Liu [1994], most burning occurs in the 3 months of the dry season and involves only 6.9 \times 10^{12} m³, or about 13% of the area of tropical vegetation. Thus, as we are concerned only with the seasonality in our simulations, we have simply added the biomass burning fluxes, neglecting a small adjustment to the \(R_{soil} \) source. We remapped the 5° x 5° source to our 7.83° x 10° transport model grid for the TM2 model simulations.

Acknowledgments

Funding for this research was provided by NASA grant NAGW-2987 to C. D. Keeling and S. C. Piper, Electric Power Research Institute grant RP8011-20 to C. D. Keeling, DOE NIGEC grant W/JEC 91-022 to C. D. Keeling, NASA Earth Observing System Contract NASS-31368 to S. W. Running, NASA grant NAGW-3151 to R. R.
Neumann, and NASA grant NAG 5-2065 to E. R. Hunt Jr. Computations at Scripps were additionally supported by San Diego Supercomputer Center and the S. I. O. block grant administered by Steven Constable. We thank Elisabeth Stewart from the Scripps Institution of Oceanography and Hal Dorsman, Matt Rollins, Peter Thornton, Joe White, and Kim Hodgson from the University of Montana. We also thank Martin Heimann from the Max Planck Institute for Meteorology for providing us with the atmospheric transport model, TM2; David Miskus and colleagues at the U. S. Climate Prediction Center and Mike Changery at the U. S. National Climatic Data Center for help in interpreting the daily climate data and quality flags, Rachel Pinker of the University of Maryland for supplying the satellite-derived PAR data, Ye Qi from the Theory Center of Cornell University for his work on the Gallo-NDVI data; and Cort Willmot of the University of Delaware for supplying us with his climate data gridding routine.

References

Goward, S. M., C. J. Tucker, and D. G. Dye, North American vegetation patterns observed with the NOAA-7 advanced very high resolution radiometer, Vegetatio, 64, 3-14, 1985.

Jaeger, L., Monatsskalender des Niederschlags für die ganze Erde, Ber. 139, Bd. 18, Dtsch. Wetterdienstes, Offenbach, Main, Germany, 1976.

Running, S. W., and E. R. Hunt Jr., Generalization of a forest ecosystem process model for other biomes, BIOME-BGC, and an application for

