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Luttm an, Aaron B Ph.D., May 2006 M athematics

A Three-dimensional Variational Approach to Video Segmentation 

Committee Chair: John Bardsley, P h .D .'s^ £ ~ >

In order to  engage in photosynthesis, plant leaves absorb CO2 via the opening of pores 
in their surfaces called stomata. Open stom ata, however, result in the evaporation of H 2 O, 
which is a detriment to  plant function. Thus a particular leaf will seek stom atal apertures 
through which its need for CO2 is balanced by its aversion to H2 O loss. In order to  visualize 
a particular leaf’s stom atal aperture, an experimentalist injects the leaf with dye so th a t it 
fluoresces when closing its stom ata. The regions with a higher relative intensity correspond, to 
areas in which the stom ata are closed and the darker regions where the stom ata are open. A 
camera is used to collect the emitted light, and a fluorescence pattern  is measured. Images are 
recorded as these patterns change with time, resulting in a video sequence. The prim ary task 
of this work is to segment these video sequences into fluorescing and non-fluorescing regions. 
To do this, we propose a 3D segmentation m ethod inspired by the active contours without 
edges approach of Chan and Vese [15]. The associated partial differential equations are solved 
within a level-set framework using a three-dimensional semi-implicit numerical scheme. Due 
to noise in the data, preprocessing is required prior to the segmentation step, and for this 
we use the PDE based denoising algorithm of [55] with L 1-fidelity as proposed by Chan and 
Esedoglu in [12].

ii
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N otation s

R" n-dimensional Euclidean space
x  Vector in R"
||x|| Euclidean norm of vector in R”
A  M atrix mapping R" —» Rm
||A|| Spectral norm of matrix
(•, •) Euclidean inner product
M  Manifold or regular surface in R"

(•, -)m Inner product on the manifold M
9Jl(S)  Set of all regular surfaces contained in the set S  C R"
M o  Surface manifold associated with a regular surface Mo
d S  Topological boundary of the set S  C R"
/  Function defined on a subset of R"
E  Surface functional
V /  Gradient of function /
V m / Gradient of function /  with respect to  the surface M
V m E  Gradient of surface functional E  with respect to the surface M
a( t )  Param etric curve in R"
d  (t) Time derivative of a
DX(l<b(x) Directional derivative of $  a t x  along the direction of Xo
il  Image domain (in R2) or Video domain (in R3)
x , y Pixel coordinates
2  Frame number in video sequence
I  [x, y ) single image
I  (x, y, z ) video sequence
t, t Artificial time param eter for surface evolution
At PDE Time Step
.D+u Forward finite difference approximation to  the first partial

derivative of u  with respect to x  
D ~u  Backward finite difference approximation to  the first partial

derivative of u with respect to x  

D®u Centered finite difference approximation to  the first partial
derivative of u  with respect to x  

Dxxu Centered finite difference approximation to the second partial
derivative in the x  direction 

V+m, V “ w Engquist-Osher upwind approximations to the spatial gradient of
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Vo u Gradient of u approximated using centered finite differences

^ i,j,k Function u  evaluated at the discrete point (Xi ,yj ), (xi .yj ,  z^)
Measurable functions /  such th a t | / | p is Lebesgue integrable on

cm(n) Continuous functions on Q whose partial derivatives exist and
are continuous up to the mth order
Functions in C m (Q) with compact support

M(t ) Regular surface evolution

$(x ) Level set representation of regular surface
<D(x,t) Level set representation of regular surface evolution
* (x ) Variation of a level set representation <b(x)

Vn Normal velocity of regular surface evolution
v„ Normal velocity of variational regular surface evolution
£(®) Dirac Delta distribution
h o t ) Heaviside function
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Chapter 1

Introduction

I f  you’re not worrying that something you’re making will come out badly, or that you won’t 

be able to understand something you’re studying, then it isn’t hard enough.

Paul Graham

Image processing is a field tha t today spans the disciplines of computer science, electrical en­

gineering, physics, and applied mathematics. It started as a subfield of electrical engineering, 

as developing the hardware for visualizing digital signals was necessary before algorithms for 

image analysis would be relevant. After the hardware was developed - personal computers, 

monitors, and digital capture devices - computer scientists began working with digital signals, 

because the computational aspects of image analysis were then the prim ary difficulties. Once 

computers became fast enough tha t standard numerical algorithms such as the Fast Fourier 

Transform and image compression techniques could be performed quickly, the field of image 

processing morphed once again.

Today the main difficulties in digital signal analysis are caused by a lack of mathematical

1
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CH APTER 1. IN TRO D U C TIO N  2

models and techniques for solving the applied problems tha t arise on an almost daily basis. 

This drought of mathematics has drawn many mathematicians and physicists into image 

processing in the last decade, and things have changed to the point where even the Society 

of Industrial and Applied Mathematics has its own working group 011 Imaging Science, which 

is the current buzz-phrase used to describe the point at which the methods of engineering, 

mathematics, and computer science meet to solve problem involving digital images and videos.

M athematical biology has also been a booming field in the last ten years. It has been said 

that the relationship between mathematics and biology in the 21st century will be analogous 

to the relationship between mathematics and physics in the 20th century, and we are already 

witnessing an expansion of biological theory based on the introduction of new mathematical 

methods. Some biological subfields, such as cellular and molecular biology, have seen an 

especially dramatic impact. According to  Mathematics and Biology: The Interface, published 

by the Dutch Society of Theoretical Biology, “Molecular biology itself can trace its origins to 

the infusion of physical scientists into biology with the inevitable infusion of mathematical 

tools” [1].

M athematical biology and imaging science have converged in the field of medical imaging, a 

field th a t at one time included only biologists but is now equally influenced by mathematicians 

and engineers. New mathematical models for processing images from MRI, CAT, and other 

medical scans have brought scientists together from all three fields to develop methods for 

interpreting these diagnostic techniques.

Botany is also a field tha t has benefitted from an increased involvement by m athematicians in 

recent years. New and improved mathematical models in biochemistry have allowed botanists 

to  a n a ly z e  th e  c h e m is tr y  a n d  p h y s ic s  o f  p la n ts  in  w a y s th a t  w ere  n o t p o s s ib le  e v e n  a  d e c a d e  

ago. New models in population dynamics have also allowed plant ecologists to better predict 

plant growth and loss in a diverse range of ecosystems.
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1.1. O RG AN IZATIO N  3

The prim ary work of this thesis sits at one of the first crossing points of mathematics and 

imaging science in the field of botany. Though, as was mentioned, mathematics and imaging 

science have been used a great deal in biology, and mathematics and botany have paired 

together to  address many new problems in recent years, there are few examples of all three 

of these fields coming together to analyze applied scientific problems. The reason for this is 

that it is not obvious tha t imaging plants is of scientific interest.

Not all biochemical processes th a t go on inside of a plant can be measured directly. If an 

indirect measurement method can be designed so tha t the data being measured is energy in the 

form of emitted photons from a physical process, then the methodologies from imaging science 

become immediately relevant, as imaging science focuses on the analysis of data  captured by 

CCD devices (digital cameras), which measure photon intensities.

One particular example of a biochemical or physical process tha t occurs in leaves th a t cannot 

be measured directly is the phenomenon of stomatal patchiness. Leaves have special pores 

in their surfaces - called stomata - for absorbing carbon dioxide directly from the air, and it 

often occurs that groups of stom ata work synchronously. It is not known how the stom ata 

synchronize their reactions to the environment, since it can be shown that this happens even 

when the environment is not synchronized. An experiment can be designed in which a leaf 

will fluoresce when it is adjusting its stom ata. An image of this fluorescence is captured using 

a camera and can be analyzed using the mathematical methods designed for image processing. 

It is these methods and their application to this particular botanical problem th a t form the 

focus of this work.

1.1 O rganization

In Chapter 2, the biological problem associated with stom atal patchiness is addressed. The 

corresponding scientific experiment tha t is designed to capture the fluorescence data  is also

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



1.1. O RG AN IZATIO N  4

discussed. The goal of this work is to  segment each video of leaf fluorescence tha t is the result 

of a run of the leaf experiment. The data  provided by the experiment must be preprocessed 

before it can be used in the segmentation algorithm, and Chapter 3 details the three primary 

preprocessing steps. Chapter 4 discusses the starting point for image segmentation in the form 

of some of the traditional methods for image and video segmentation. Chapters 5 and 6 are 

dedicated to the background theory from differential geometry and the calculus of variations 

tha t is required for understanding the video segmentation algorithm. Chapters 7 and 8 discuss 

the mathematical and computational aspects of the segmentation algorithm, and the results 

and future work are presented in Chapter 9.
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Chapter 2

The Leaf

Carbon dioxide (CO2 ) and water (H2 O) are the two essential resources required for a plant to 

engage in photosynthesis. W ater is absorbed from the ground through a p lan t’s roots, bu t CO2 

must be absorbed directly from the air. For this purpose leaves have pores in their surfaces 

called stomata th a t open and close to allow more, or less, CO2 to be absorbed. This process 

is monotonic in the sense tha t the more open the stom ata are, the more CO 2 is absorbed, and 

the more CO 2  absorbed the better. A leaf does not keep its stom ata continually open, because 

H2 O is lost through the stom ata via evaporation, which is a detriment to leaf function.

W hat this means for a leaf is that each stoma must continually regulate its aperture in order to 

ensure tha t a sufficient amount of CO2 is absorbed and that only a tolerable amount of EFO is 

lost. According to Peak, et. al. [50], “A central paradigm of plant biology is that, in the face of 

spatially heterogeneous and temporally varying environmental conditions, a plant continually 

adjusts its stom atal aperture so that, over time, it maximizes CO 2 uptake for a fixed amount 

of water loss.” Moreover, it is thought tha t this optimization occurs over the entire leaf 

rather than for each stoma individually. It is not yet understood how plants solve this global 

optimization problem, but it is hypothesized (cf. [50]) that the stom atal aperture depends

5
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2.1. TH E EX P E R IM E N T  6

on external environmental conditions and on interactions between neighboring stom ata. The 

primary motivation for the latter claim is the observation - made in over 200 plant species 

- that, even under spatially varying environmental conditions, stom atal apertures are often 

synchronized into spatially extended patches, even though patchiness often results in less than 

optimal local CO2 uptake for fixed water loss.

There is no well-understood physical or bio-chemical process by which the stom ata in a leaf 

can be synchronized, as a leaf has no large-scale information transport network through which 

the stom ata can communicate.

2.1 T he Experim ent

In order to better understand the processes by which a leaf’s stom atal apertures are regulated, 

it is natural to attem pt to visualize the process. This can be done using a technique for 

visualizing photosynthesis known as chlorophyll fluorescence. This process is explained in 

detail in [27,60], but we outline the main ideas here.

A Xanthium, strumarium L. (cocklebur) leaf is placed in a light-penetrating chamber such 

that tem perature is completely controlled and gasses can be independently regulated and 

measured both on the top and bottom  surfaces of the leaf. A dye is injected into the leaf, so 

that it fluoresces when its stom ata close. The fluorescence happens a t wavelengths above 700 

nm, and hence it is measured using a camera with a long-pass filter tha t measures light in 

the appropriate spectrum. Stomatal dynamics are initiated by decreasing the concentration 

of H2 O on the upper surface of the leaf. This causes the leaf to close its stomata, since a 

decrease in humidity will correspond to  an increase in H2 O loss through evaporation. The 

closing of stom ata also causes a decrease in the concentration of CO2 in the leaf, since the 

leaf cannot absorb as much as when the stom ata are open. This decrease of CO2 reduces 

the amount of photosynthesis occurring locally, which results in an increase of the measured
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2.1. TH E E X P E R IM E N T  7

fluorescence. Thus there is an inverse relationship between photosynthesis and fluorescence. 

Since the density of stom ata («20,000 per cm2) is of the same order of magnitude as the 

density of image pixels («40,000 per cm2), it is reasonable to assume th a t the measured 

change in intensity at each pixel roughly corresponds to local changes in stom atal aperture. 

In this way, fluorescence can be interpreted as an inverse measure of average stom atal aperture 

size.

As the stom atal apertures of the leaf are adjusted, images of the fluorescence can be measured 

(in the experiments analyzed here the images are taken approximately every 20 seconds). 

The measured data  is then a grayscale video composed from these still images. Each exper­

iment lasts approximately 6 hours, resulting in videos on the order of 800-1000 images. All 

experiments were performed by the Complexity and Stomatal Behavior research lab a t U tah 

State University; further details can be found in [50]. Several example images from different 

experimental runs can be seen in Figure 2.1.

The most common result of the experiment is for stom atal apertures across the entire leaf 

to adjust to  a uniform size in direct reaction to environmental conditions, and this steady- 

state is usually found quite quickly (approximately 30-60 minutes). It is sometimes observed, 

however, th a t spatial groups of stom ata will synchronize their apertures, forming “patches.” 

The stom ata in these patches then act as a unit, opening and closing in synchrony. Moreover, 

each patch can change size and position in time. In most cases, after 1-2 horns of oscillations 

in patch size and shape, the uniform steady state mentioned above is found by the leaf, i.e. 

all stom ata settle to the same uniform configuration. On rare occasions, however, no steady 

state is found for as long as the data  is measured (approximately 6 hours). This suggests 

that the solution state for the global optimization is unstable and tha t the leaf is sensitive to 

microscopic changes in gaseous configurations.
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2.2. TH E GOALS OF THIS W O RK 8

Figure 2.1: Sample Images from Four Runs

2.2 T he G oals o f This W ork

of the Visualization Experiment

The prim ary goal of this work is to develop an algorithm that extracts the actively fluorescing 

regions in each frame of a leaf video. The algorithm should pick out the regions in each image 

of a leaf sequence that are bright due to stom atal dynamics but not segment regions tha t are 

bright or dark independent of the dynamics, such as the vein regions which always appear dark 

(see Figure 2.1). It is hoped tha t a map of the fluorescence over the time of an experimental 

run can give insight into the possible dynamical processes - physiological, bio-chemical, or 

physical - th a t induce the oscillations in the sizes and shapes of stom atal patches.
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Chapter 3

V ideo Preprocessing

The raw video data  returned by a run of the leaf experiment requires several preprocessing 

steps before it can be analyzed and segmented. These preprocessing steps are the focus of 

this chapter. In particular there are two types of noise tha t must be offset before the data  

adequately represents the fluorescence being captured in the experiment. The first type of 

noise, which is common to all digital signal capture devices, is the high frequency random noise 

associated with digital signal instrumentation. The second type of noise is low-frequency and 

is caused by uncontrolled lighting conditions in the lab where the experiment is being run. 

In what follows, I ( x , y )  will denote a single, gray-scale (8 bit) image tha t takes integer values 

from 0 to 255, and 17 C M2 will denote the image domain.

3.1 Im age D enoising

A CCD camera captures an image by counting photons of visible wavelengths on each of its 

pixels. Any counting procedure is an inherently noisy process, and noise must be removed 

from the images before they can be analyzed. Details of noise statistics for CCD cameras can

9
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be found in [62].

10

3 .1 .1  C la ss ic a l M e th o d s  for Im a g e  D e n o is in g

The standard technique for image denoising is convolution with a Gaussian kernel. The 

Gaussian kernel with standard deviation a  is given by G„(x, y) =  exp ((—x 2 — y 2) /2a2). 

and the smoothed image, Ia , corresponding to the convolution with Ga is

TrOo,yo) =  (I  * Ga)(x0,yo) =  /  I { x , y ) G(7(x0 - x , y o - y )  dxdy.
Jn

The function Ga is infinitely differentiable, and if I  £ L2(R2) is convolved with Ga € C^°(R2), 

which denotes the space of infinitely differentiable functions on R2 with compact support, then 

I„ e  Cq°(M2). This is a standard result of real analysis (cf. [72] Theorem (9.3)).

Thus Ia is a smoothed version of I.  This smoothing process is called isotropic diffusion, 

because it is computed by locally averaging in all radial directions equally without regard to 

image content. If such an approach were used on images such as those in Figure 3.1, the result 

would be tha t the veins would be smoothed into the inter-vein regions. One of the primary 

goals of the video segmentation is to determine the effect of the veins on the patchiness of 

the fluorescence, so the vein boundaries must be preserved with sharp edges. Hence Gaussian 

convolution is not appropriate for this application.

3 .1 .2  R O F  D e n o is in g

Several image denoising techniques h a v e  been d e v e lo p e d  th a t  a llo w  for r em o v a l o f  n o ise  while 

retaining sharp edges in an image. These techniques smooth only locally within regions of 

relatively homogeneous intensity. A few examples are the variations of anisotropic diffusion 

methods such as those found in [4,11,51].
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Image 275 Image 400

Figure 3.1: Four Images from Experiment with Patchiness

The most well-known edge-preserving method for denoising images is the method of Rudin- 

Osher-Fatemi (ROF) [55]. The goal is to compute an image I (x ,  y) th a t is a local minimizer 

of the functional

E( I )  =  [  |V /| d x + X  f  (io —  I ) 2  dx. 
J  n Jn

(3.1)

Here x  =  (x,y),
, ' d l  9 I \

~  ^ d x ’ d y ) ’

and Iq(x ) is the measured image. The first term  in (3.1) is a smoothing term, which ensures 

that the resulting I (x , y ) will be differentiable, and the second term is the fidelity term , which
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ensures tha t I ( x , y )  will approximate /q(x ) in L 2(Q).

12

Before detailing the minimization process for this particular functional, we first outline some 

of basic results that ensure tha t the steady-state solution of an evolution equation is a local 

minimizer of a functional. First we require some notation.

D efin ition  3 .1 .1 . Let F : M" —> W  be a differentiable vector field,

F (x) =  ( / 1( x ) , /2( x ) , . . . , / n(x)) =  ( f l ( x 1 , . . . , X n ) ,  f 2 ( x X n ) ,  . . .  , f n ( x 1 , . .  . , £ „ ) ) .

Then
' d f i  dfi

^  1 dx \  ’ ’ dxn

Now we define the variational derivative of a functional with respect to its argument. 

D efin ition  3 .1 .2  (Gelfand, [26], p. 28). Let Q C Mn, and

E( I )  = [  F (x , I,  V I )  dx.
Jo.

Then the variational derivative of E  with respect to I  is given by

(3.2)

A necessary, but not generally sufficient, condition for I  to be a local minimizer of E  is that 

the variational derivative of E  is zero at I . This condition,

A F ( x , / , V / ) - V . ( 5 A yF( x , / , V / ) ) =  0.

is called the Euler-Lagrange equation for E . It should be noted here th a t the derivatives of 

F  in (3.2) are not required to exist in the classical sense but only in the weak sense. If the 

derivatives exist almost everywhere, in the sense of Lebesgue measure, then they exist in the
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weak sense. Note also tha t I  and V I  are treated as independent variables.

13

The variational derivative (cf. [26]) obeys the standard rules for classical derivatives such as 

the chain rule and product rule. Thus, in order to compute the variational derivative of a 

functional E(I{x. , t ))  with respect to t. it is only necessary to apply the chain rule,

SE _  SE_8I_ 
St 61 dt

Here t is an artificial time param eter, we assume th a t I  is differentiable with respect to  t in 

the classical sense. This allows us to  develop a minimization procedure for E  by evolving 

I  according an evolution equation th a t will ensure tha t the variational derivative of E  with 

respect to t is non-positive. This is guaranteed when 8 1 /d t =  —S E / S I . Then

SE _  SE_dI_ _  _6E_2 
St ^  SI dt ~  ~  SI  ’

which is clearly non-positive, and a minimization procedure for F ( /(x ,  t)) is given by solving 

the initial-value problem

/(X, ») =  « * ) .

In order to  determine the minimization for (3.1), it is only necessary to compute SE/SI .

Let F (x , I,  V I )  = |V /| +  A (Jo -  I ) 2, then, by (3.2),

w - ! f<x' '■ w)~v■ (im-F(*'wVI))= -2W°-,}-v' iw
Thus the minimization procedure for E( I )  is given by

s  = v-(M) + A(*-i)' (3'3)
where the factor of 2 has been absorbed into the factor A.
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If, rather than computing the fidelity as a measure in L 2(Q), we measure the fidelity in L 1 (Q), 

(3.1) becomes

E( I )  = J  |V /| d x +  A J  110 -  I\ dx. (3.4)
n n

This is a variant of the ROF scheme proposed by Chan and Esedoglu in [12]. A direct 

calculation shows th a t the variational derivative of E  is given by

SE  V A Wsi v i v / i ;  \h-iy

so the minimization procedure is given by the initial value problem

% = v{m\) + xT&\' '<*■<» = *«• <3-5>
Both with the traditional ROF and the Chan-Esedoglu variant, A is a weighting factor for the

fidelity term.

Minimizing the functional in (3.4) according to (3.5) is numerically unstable, so a regularized 

version of the functional must be minimized instead. The regularized functional,

E( I )  — / x /IV /p  +  e dx +  J  ^/ \ I0 - I \ 2 + 5 dx, (3.6)
n si

is minimized by evolving I  according to

^  =  V (  W  ^  w  •
dt \ y / \ V / | 2 +  ey ^/ \I0 - I \ 2 + 5 ’

subject to  7(x,0) =  Iq. The factors e and S are regularization parameters.

(3.7)
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Image 275 Image 400

Figure 3.2: Denoised Images from Experiment with Patchiness

3 .1 .3  N u m e r ic a l S ch em e

Each image in the input video sequence is individually denoised by evolving it according to 

equation (3.7). This must be done numerically. Let / ” • represent the pixel in row i and 

column j  a t the nth numerical iteration and Io{i, j)  be the value of the measured image at the 

pixel. Then equation (3.7) can be discretized explicitly in time to yield the following
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explicit numerical scheme as given in [1 2 ]:

16

TTi+1 _ jn
hj hj _  7- ) -

A t

d ;

D +I™x i,3

{ ( D + I & t  +  i D + I & t  +  e)
(3.8)

\

D+7-.)2 +  ( D+I N )2 +  e) )  \  ( W , j )  -  JT)2 +  <5)
1/2

where the spatial forward and backward finite difference approximations to  the partial deriva­

tives are given by

n+ Tn   Tn _  Tn t~i+ t t i  — rn _  Trt
x  i , j  i + l , j  i . j  ’ y  i , j  i , j + 1 I i , j i

r j — j n    rn    j n  T~)— rn  _ rn    rn
x  i , j  ~  h j  i ~  1 J 5 V i , j  i , j  i j —l  ‘

(3.9)

These notations will be used throughout the sequel.

Note tha t Ax and A y  do not appear in this numerical scheme, because the natural, pixel-based 

discretization, Ax =  A y  =  1, is used.

Denoised versions of the images in Figure 3.1 can be seen in Figure 3.2.

3.2 M edian-change N orm alization

Each run of the leaf experiment lasts approximately six hours, and the lighting conditions in 

the lab are not tightly regulated. The result of this is tha t there are global effects seen in each 

leaf video tha t must be accounted for and offset before a leaf video can be processed.

Pixel intensities in a particular leaf video change for two reasons. The first reason - and 

that which is being analyzed - is the stom atal dynamics, which can cause intensities to both 

decrease and increase. The second reason intensities change is global lighting effects, which
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can also cause both increases and decreases in intensity in time but only a global increase or 

global decrease for a given frame. If we assume that less than half of the pixels in a given 

frame in the video sequence are increasing in intensity due to dynamics and less than  half are 

decreasing due to dynamics, then the median intensity change is caused by the global lighting 

effects for th a t frame. It is believed tha t this is a reasonable assumption for the leaf data 

based on direct observation. In order to offset these effects, the median intensity change must 

be removed. This means tha t each image I ( x , y , z ) in the video sequence, where x  and y  are 

pixel coordinates and 2  corresponds to  the frame number in the sequence, is replaced with 

I*(x, y , z) where

I*(x , y , z )  =  I { x , y , z )  -  median (I{x,y,  z) -  I * ( x , y , z  -  1 )).
{x.y)

This is the median-change normalization. Note tha t this is not equivalent to normalizing 

each image to have the same median value. There is no change at the first image in a video 

sequence, so I*(x,  y,  1 ) =  I (x ,  y, 1 ).

After each image in the video sequence is denoised and the entire video sequence is median- 

change normalized, the entire video sequence is linearly scaled so th a t the intensity values take 

on the full range [0, 255]. Since each image in the preprocessed video sequence was computed 

via (3.7) prior to the median-change normalization, the data is continuous and is not limited 

to integer values on the interval [0,255]. Fully preprocessed images can be seen in Figure 3.3 

and should be compared with those in Figures 3.1 and 3.2.
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Figure 3.3: Fully Proprocessed Images from Experiment with Patchiness
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Chapter 4

Classical Segm entation Techniques

Image segmentation is the term used for the extraction of salient features from digital still 

images or digital video. A salient feature is any information in the image or video th a t is to 

be extracted, such as edges, corners, or regions of homogeneous intensity. Image segmentation 

is one of the primary problems in computer vision and image processing, and there are many 

techniques and approaches for segmenting different types of images based on the specific 

features being segmented. Before developing the m ethod of Chapter 7, we first recall some of 

the classical techniques used for image and video segmentation.

4.1 Im age Segm entation  Techniques

4 .1 .1  T h r e sh o ld -b a se d  T ech n iq u es

The first techniques for segmenting gray-scale images were based on thresholding, a process 

that yields a binary segmentation of the input image. A user would a priori select an intensity 

value so th a t all intensities above th a t value were “bright” and all below that value were

19
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“dark.” The primary reason a technique of this type does not work well is th a t it requires the 

intensity scales to  be the same across an entire image. Regions are segmented globally, and 

locally bright or dark regions would not necessarily be segmented. If regions tha t are only 

locally bright or dark are to  be segmented and the intensities scales are not the same across 

an entire image, then a threshold-based segmentation must be done locally on subregions, a 

process tha t requires a great deal of user interaction.

4 .1 .2  E d g e -B a se d  S e g m e n ta t io n  T ech n iq u es

Since segmenting based strictly on intensity values is not optimal for many types of data, 

the next natural step is to segment based on local intensity extrema. This leads to a class of 

techniques th a t segment based on edge data. An edge in an image is defined as a contour whose 

pixels are local extrema of the absolute value of the intensity gradient. There is a large class 

of methods for computing edges in an image, known as an edge map. The most well-known is 

the Canny edge detector [9], but there are others tha t compute edge maps in related ways. A 

few examples of such methods are the Haralick edge detector [30,31], the M arr-Hildreth edge 

detector [41], and the SUSAN edge detector [61]. Each of these methods detects edges in an 

image and thereby segments an image into disjoint regions tha t are separated by the edges. 

A few such algorithms can be found in [33,43,75].

Another class of unrelated, edge-based segmentation techniques is composed of the original 

active contour models, also called snakes. These methods take a variational approach to edge 

detection by defining edges as extremal values of segmentation functionals [6,35,74], Though 

these approaches are not mathematically similar to the edge detection methods mentioned 

above, the result is the same: a segmentation that separates regions of the input image based 

on edges.

Edge-based image segmentation is not an appropriate method for the leaf data, because the
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Figure 4.1: Edges Correspond to  Veins in the Leaf Images

primary edges in the leaf images are the boundaries of the veins. This can be seen in Figure

4.1. The goal of this work is to segment the regions of the leaf tha t are actively fluorescing at 

a given time, but the boundaries of the fluorescing regions do not form edges th a t are as sharp 

as the edges corresponding to the vein boundaries. An edge-based technique would extract 

the vein boundaries and not yield information about the fluorescing regions.
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4 .1 .3  R e g io n -B a se d  T ech n iq u es

22

The pixels in a region th a t is segmented from an image by an edge-based technique do not 

necessarily have any uniform properties. Such a region is defined only by a boundary that 

is determined by the edge map. For some data, however, it is desired to extract regions 

from an image based on local intensity properties. This leads to  region-based segmentation 

techniques, the primary goal of which is to extract regions from an image tha t have relatively 

homogeneous intensity values. An example of a region-based technique tha t is similar to 

the variational technique that will be introduced in Chapter 7 can be found in [49], where 

the authors use a probabilistic method for developing a gradient descent-type minimization 

procedure for a region-finding functional. Another region-based technique is given in [34], 

where a variational approach is used to segment regions of stereo images for three-dimensional 

object reconstruction.

The primary drawback of these two methods in light of the leaf data  - along with other region- 

based segmentation techniques - is tha t they attem pt to  segment an image based on groupings 

of pixels with similar intensities. This is not an appropriate method for segmenting the leaf 

data, since this would lead to a segmentation tha t is similar to the segmentation given by an 

edge-based technique. An edge-based technique computes the boundaries of the veins in each 

image, whereas a region-based technique would extract the entire vein regions. This is due 

to the fact tha t the only regions in the leaf images with relatively homogeneous intensity are 

the dark regions tha t make up the veins. Even the fluorescing regions, which appear bright to 

the eye, are not relatively homogeneous in intensity, particularly when they cross the veins. 

This is due to the fact th a t the veins in the leaf do not fluoresce in the same way tha t the 

inter-vein regions do, and veins remain dark even when they are in an actively fluorescing 

region. Moreover, since these veins are constant in each image in a leaf video sequence, there 

is no three-dimensional extension of one of these region-based methods tha t would overcome 

this difficulty.
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Threshold-based, edge-based, and region-based techniques have also been combined to form 

a class of hybrid methods (see e.g. [6 6 , 73]) and, though these work well in applications 

where edge-based and classical region-based information are relevant, they do not overcome 

the problems of these methods for the leaf data.

4.2 Background Subtraction  and M otion Tracking

The natural approach to  segmenting the regions of active fluorescence in the leaf video se­

quences is a background subtraction technique. This is a class of methods tha t generate a 

background model based on what the image would look like if there were no intensity dynam­

ics. For a street intersection, a background model would be an image of the intersection when 

there are no cars present. A car could then be detected by comparing the scene with a car 

to the scene without a car. For the leaf data, the background model is an image of the given 

leaf when there is no active fluorescence. Since it is possible to develop such a background 

model for the leaf da ta  directly from the experiment, this is a useful way of determining which 

regions in an image of a leaf video sequence are actively changing their intensities.

The three primary approaches to background-based video segmentation are rigid region or 

feature tracking, classical background subtraction, and blob or non-rigid motion tracking. The 

regions of active fluorescence in a leaf video sequence are constantly changing their size and 

shape in a non-rigid way, so rigid region and feature tracking techniques are not appropriate.

Background substraction has been studied a great deal, and there are many varying tech­

niques. A review of these methods can be found in [44], but most involve subtracting a 

current frame from a dynamic background model that is based on individual pixel statistics 

or frame differencing. If the background model is based on pixel statistics, then each pixel is 

treated statistically independently. This is not appropriate for the leaf data, since the fluores­

cence measured at a pixel due to stom atal dynamics is strongly correlated with fluorescence
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measured at neighboring pixels. If the background model is based on frame differencing, then 

a segmentation based on background subtraction will only yield results looking backward in 

time. W ith the leaf data, it is useful to  take into account the full time series for each pixel 

- rather than  looking only backward in time - as this allows one to compute the continuous 

deformation of the fluorescing regions over the entire video.

Another primary reason tha t traditional background subtraction techniques will not yield 

the desired segmentation for the leaf da ta  is tha t the vein pixels never undergo intensity 

increases of the same magnitude as non-vein pixels, even when a region of fluorescence crosses 

the veins. Pixels corresponding to the veins are dark in the background model, but they 

are dark throughout each leaf video, even when they are in a region of active fluorescence. 

Thus the difference between vein pixels in an active frame and vein pixels in the background 

model would be small, indicating th a t the vein pixels are in the background even when in a 

fluorescing region.

Other classes of techniques, such as Blob tracking or model-based methods for non-rigid region 

tracking, also break down on the leaf data. Blob tracking methods such as the Active Blobs 

of Sclaroff and Isidoro [58] use texture information for tracking non-rigid blobs. In the case of 

the leaf data, texture is caused by the veins, which do not move with the fluorescing regions, 

so texture information cannot be used for extracting or tracking the regions. Methods for 

non-rigid motion tracking such as the Motion of Disturbances method proposed by Halevy 

and Weinshall in [29] or that developed for facial movements in [5] also are not applicable in 

this case as they use dynamic background models or parametric models tha t do not accurately 

model the non-rigid deformation of the fluorescence regions in the leaf data. O ther methods 

for non-rigid motion tracking have similar drawbacks.

Due to the fact tha t none of these classical techniques is appropriate for segmenting the 

leaf videos in 3D, it is necessary to develop another approach tha t does not suffer similar 

drawbacks. Such a development is the motivation for the algorithm in Chapter 7. Before that
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algorithm is described, however, we and discuss the necessary mathematical theory for

variational approach.
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Chapter 5

The Surface M anifold and Its 

Tangent Space

The two primary mathematical tools used in the development of the video segmentation 

algorithm in the chapters tha t follow are the calculus of variations and differential geometry. 

In this chapter the necessary background for the differential geometry of surface functionals 

is detailed. The derivation here is based on tha t of Solem and Overgaard in [63,64], but many 

of the results and definitions are more general results from differential geometry and can be 

found, for example, in [20,32,69].

5.1 F in ite-d im ensional G radients and G radients on Surfaces

Before discussing gradients of surface functionals, we present some definitions and theoretical 

results.

26
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5 .1 .1  G ra d ie n t o f  F u n ctio n s  in  R" a n d  S te e p e s t  D e sc e n t

A local m in im izer  of a function / :  R” —> R is a point x' £ R71 such tha t /(x 'j  < / (x )  for all 

x  in an open neighborhood V  C R” of x'. If /  e C'1(R") and xo S R”, then a m ethod for 

computing a local minimizer of /  is given by solving the initial-value problem

^ x ( f )  =  —V /(x (f)) , x(0) =  xo, (5.1)

where V /,  the gradient o f / ,  is defined by

 a )  I . ,

Minimizing /  by solving (5.1) is called the steepest descent method. In practice the steepest 

descent method does not always yield a local minimizer of / ,  bu t we can say the following.

T heorem  5.1.1. L et x(f) be a solution of (5.1). Then /(x (f))  is a non-increasing function  

of t .

Proof. Applying the chain rule for differentiation together with (5.1) yields

^ / ( x ( t ) )  =  V /(x (t))  • ^ x ( t )  =  V /(x (t))  • (—V /(x (t)))  =  —||V /(x (t)) ||2. (5.2)

Since the time-derivative of /  is non-positive, /  is a non-increasing function of t. □

If /  is not bounded from below, then one cannot expect that x(i) will converge as t  —> oo. 

If x(t) does converge, however, then it must converge to a critical po in t of / ,  i.e. a point x ' 

such tha t V /(x ')  — 0.

T heorem  5.1 .2 . Let x(t) 6 e t/ie solution o f  (5.1), and suppose that x(t) —> x ; as t —> oc. 

T/ien V /(x ')  -  0.
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Proof. Let be a sequence of positive real numbers such th a t hk —> 0 monotonically

as k —> oo. Then, by the definition of the derivative of a function of a real variable,

x (t +  hjf) — x(t) dx(t)
hk dt

as k — > cx).

Let e >  0 be given. Since x(t) —> x ', for each k  € N there exists tk G K+ such tha t 

|x(t) -  x '| <  /ifce for all t  >  tk- Thus, for all t  > tk, |x (t +  hk) — x '| <  and

=  I lim
k —> oo

x(f +  hk) -  x(t)
hk

hk^ hk£

<  lim
k —>oc

x (t +  hk) — x '
hk

+ x(i) -  x '

< lim ( J <  iim (e -P e) =  2e.
k—*oo \  hk hk J k—>oo

Since for any e >  0 there exists tk G K+ such th a t |^ x ( f ) | <  2e for all t > tk, we must have 

tha t ^ x ( t )  —> 0 as t —> oo. Thus

V /(x ')  =  lim V /(x (t))  =  lim — x{t) = 0 .t—>oo t—>oo at

□

Before continuing we note tha t V /(x ')  =  0 is a necessary, but not generally sufficient, condition 

for x ' to be a local minimizer of / .

5.2 R egular Surfaces in Mn and Level Set R epresentations

We now define the gradient of a function on a surface in Mn or a manifold. First we define a 

manifold using the definition of Hormander in [32].

D efin ition  5 .2.1. A topological Hausdorff space M  with a countable basis is called an Tri­

d im en sion a l m anifold  if  for every point x  G M  there exists an open neighborhood Lrx C M  of 

x, an open set Vx C IRm, and a homeomorphism f x : Ux —̂> Vx .
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Precise definitions of topological terms can be found in [47], but, intuitively, this means th a t 

the local geometry of M  is Euclidean and of the same dimension at every point. This Euclidean 

dimension is the dimension of the manifold. In the remainder of this chapter, M  will denote 

an m-dimensional manifold, which is assumed to  be a subset of R" for some n  > m.

Analogous to what was done in the previous section, our goal is to  find a procedure for finding 

x' G M  such th a t /  (x') < / (x )  for all x  G Ux C M,  where Ux is some open neighborhood of 

x '. In order to generalize (5.1), it is necessary to define the gradient of a function /  th a t is 

defined on a manifold M,  and for this we define the tangent space to a manifold at a point.

D efin ition  5 .2 .2 . Let a  : (—e,e) —► M ,  fo r  some e >  0, be a differentiable curve such that 

a(0) =  xo- Then the vector v  =  ^a( Q)  is called a tangent vector to M  at xo- The tangent 

space to M  at xo, denoted TXoM,  is the set of  all tangent vectors to M  at Xo-

T heorem  5.2 .3 . Given xq G M , TXoM  is a vector space.

Proof. First of all, it is clear th a t the zero vector is an element of TXoM , since it is the velocity 

of the constant map, a f t )  =  xo for all t G (—e, e).

Suppose th a t v  is an element of TXoM  corresponding to the differentiable curve a .  Then cv 

for c G R is also an element of the tangent space to M  at xo- This follows from the facts 

tha t ^  (a(ct))  =  cfjja(t) — cv and tha t a(c.t) is also a differentiable curve on (—e, e) with 

a (c  ■ 0 ) =  a ( 0 ) =  xo- v

Lastly, suppose that Vi and V2  are tangent vectors at xo associated with curves o t f  t) and 

a<2 (t). Then |  ( a i( t)  +  c*2 (t)) is a differentiable curve on (—e,e), 5  (cti(0) +  0 :2 (0 )) =  xq, and

± l ( a i (t) + a 2(t)) =  5  ( 4 a i(°) +  4 “ 2(0)) =  J (v i +  v 2)
t = 0 2 \ d t  d t  J  2

Thus r; (v i +  v 2) is the velocity associated with the curve \  ( a i  +  o 2) it), and, since constant 

multiples of a tangent vector are tangent vectors, we get also tha t v i  +  v 2  is an element of
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the tangent space TXo M .

30

Since differentiation is a linear mapping, the other properties of vector spaces follow immedi­

ately. □

Lem m a 5.2 .4 . The tangent space to a m anifold at a po in t x, TXM ,  is an in n er product space 

with in n er product defined by

(v, w )x =  ^ 2  v iWi, v, w  G TXM.
2 =  1

It is clear th a t this is an inner product, since it is the Euclidean inner product on R".

A function / :  M  —» R is called differentiable if there exists a differentiable function / :  R" —> R

such tha t / (x )  =  / (x ) .  The function /  is called an extension of f  to Rn.
M

D efin ition  5 .2.5. Let f : M —> R b e a  differentiable function, x  G M , and v  G TXM . Suppose 

that a  : (—e,e) —> M  is a differentiable curve such that a (0 ) =  x  and ^ a (O ) =  v. Then the 

differential of /  at x  is the mapping df fx. ): Tx M  —> R given by

(5.3)
t= o

The differential is well-defined, since this definition is independent of the choice of a .

T heorem  5.2.6. Let x  G M  c  R", and suppose that a :  (—e,e) —► M  and f3: (—e,e)  —> M  

are differentiable curves such that a (0) =  /3(0) =  x  and  ^a(O) =  ^/3(0) =  v . Then

d
dt /(«(*))

t= o - t=0
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Proof. Since M  C E n, we can write / (x )  =  f ( x  1 , £2 , x n) and

31

(3(t) = (p1( t ) ,p2( t ) , . . . , f3n (t)), 

a( t )  = (c*i ( t ) , a2{ t ) , . . . , a n(t)).

Let /  be a differentiable extension of /  to  R". Then, invoking the chain rule for differentiation,

t= 0 t=o V ®ai  ^  
da.

d f  da 1 5 /  da,,
da„ dt t= 0

dt t= 0

d
=  ( W ( x ) , ^ a ( 0 )  ) =  ( V /(x ) , v

A similar argument shows that

5 / w * »
i= 0

=  ( V / ( x ) ,v ) ,

and hence, i f { / 3{ t ) )  | t = 0  =  f t f(oc(t)) |i=Q.

This definition for the differential of /  at x  satisfies the basic properties th a t we associate 

with the idea of a derivative.

T h e o re m  5.2 .7 . The differential of f  at x , d /(x), is a linear map from TXM  to R.

Proof. This is clear from the proof of Theorem 5.2.6, since, letting a, b £ E  and v ,w  € TXM  

yields

d /(x )(av  +  5w) =  ( v f ,  av  +  =  a ( v f , \ ^  + b ( v f , w ^ =  a d /(x )v  +  6  d /(x )w

for some fixed differentiable extension /  of / .  This proves the linearity of the differential. □

In order to prove the above result it was necessary to use the gradient of /  where /  is a

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



5.2. REG U LA R SURFACES IN  R "  AN D  LEVEL S E T  REPRESEN TATIO N S 32

differentiable extension of / .  This is, in fact, not necessary, as now we can define the gradient 

of a function on a manifold. The following definition is given in [63].

Definition 5.2.8. L et f : M  —> R be a differentiable function . Then the gradient of f a t x is 

a vector  V m /(x ) F TXM  such that

d f (x )v  =  (VM/(x ) ,v )x

fo r  all v E TXM .

The map d/(x) is independent of the extension / ,  which can be seen from the following result. 

Lemma 5.2.9. The gradient of f  at x, Vm/ ( x), is unique when it exists.

Proof. Suppose tha t v i ,v 2 6  TXM  are such tha t

d/(x)v = (vi, v)x , and d/(x)v = (v2, v)x

for all v £ TXM . Then

(v 1 -  v2,v)x = 0 

for all v € TXM .  Since v i — v2 £ TXM ,  this yields

(vi -  v2, Vi -  v2)x = ||vx -  v2II2 = 0.

Thus vj =  v2. □

Given the above definitions, one can construct a gradient descent algorithm for minimizing a

function /  on a manifold M .  Analogous to equation (5.1), this is given by

^ x ( t )  =  - V M/(x (f)) , x ( 0 ) =  xo. (5.4)
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Minimizing /  by solving (5.4) is called the steepest descent m ethod  for a function /  on M ,

and, following the proof of Theorem 5.1.2, it can be shown that, if lim x(t) exists and equals
t—>oO

x', then V m / ( x ') =  0.

It can be shown that the gradient of /  on M  at x  is the projection of the Euclidean gradient 

of /  at x  onto the tangent space of M  at x. If the manifold M  has an implicit representation 

of the form M  — {x G R" | 4>(x) =  0} for some function $ :  R” —> R such tha t V4>(x) /  0 for 

all x  e  M ,  then

V m / ( x ) =  V /(x )  -  (5.5)

For this reason, (5.4) is often also referred to as the gradient projection  method.

We now restrict to a special class of manifolds, the regular surfaces.

D efin ition  5.2 .10 (Thorpe [69], p. 16). A n m -d im en sion al m anifold M  C Rm+1 is called a

regular surface if  there exists a function  4>: Rm+1 —> R that satisfies the follow ing properties:

1. 4*(x) =  0 i f  and only i f  x  € M,

2. $ e C ( M m+1),

3. For each x  G M  there exists a neighborhood C/x C Rm + 1  o /x  such that $  £ C 1([/x),

4. V4>(x) ^  0 fo r  all x  € M .

We denote the se t o f all regular surfaces in R" by 97l(R").

A function $  that represents a regular surface M  is called a level se t representation  of M  

or a level se t function  for M , because the surface M  is the zero level set of 4>. Level set 

representations of regular surfaces are not unique, but each level set function corresponds to 

exactly one regular surface via its zero level set.
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Note th a t a regular surface M  is a closed set, since it is the inverse image of the closed set 

{0 } C R under its level set representation <f>, which is continuous. The types of surfaces tha t 

arise in our application are not, in general, connected, but each connectedness component 

of these surfaces is bounded. Thus, by the Heine-Borel Theorem (cf. [54]), each of the 

connectedness components of M  is a compact set.

Since a regular surface is a manifold, its tangent space is defined in Definition 5.2.2. Along 

with the tangent space a t a point for a regular surface, it is useful to define a surface normal.

D efin itio n  5 .2 .11. Let M  C R” be a regular surface, then a normal vector to  the surface at 

the point x e M  is a non-zero vector, n(x) € Rn, such that

(n (x ),v ) = 0

for all v  e  TXM .

A regular surface in R" admits exactly two normal vectors of unit length at each point x  e  M  

- the inward and outward normals. These differ only by a sign.

Since a regular surface is topologically closed in R " , we can define the Euclidean distance from 

a point to a regular surface. This is given by

p(x, M ) = min ||x — v|| (5-6)
v<EM

where |j ■ || is the Euclidean norm in Rn. Since each connectedness component of M  is compact, 

the minimum is attained, and hence (5.6) is a well-defined mapping. Thus we can define the 

c a n o n ic a l le v e l s e t  r e p r e se n ta tio n  for a  regu lar  su rfa ce .

D efin itio n  5 .2 .12. Let M  C Rn be a regular surface with level set representation 4/. Then
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the signed distance function to M  is the function

$(x ) =
p(x, M )  ^ (x )  >  0 

(5.7) 
—p(x, M )  ^ (x )  <  0.

Note th a t the sign of the signed distance function is defined in terms of a given level set 

representation of the regular surface M . If another level set representation T is chosen with 

opposite orientation, i.e. (x  £ 1 " j Y(x) <  0 } =  (x  £ M" | ^ (x )  >  0 }, then the signed distance 

function associated with Y is just the negative of the signed distance function associated 

with 'I'. These two signed distance functions have the same continuity and differentiability 

properties, so we wall not distinguish between them.

A lemma is required before it can be shown th a t the signed distance function is an appropriate 

level set representation of a regular surface M . Denote by Dv 'il (x) the directional derivative 

of ^  at x  in the direction v.

L em m a 5 .2 .13. Let M  C Mn be a regular surface with level set representation fH, and let 

x  € M . I f  v  e l "  is a vector with unit length such that D v^ (x )  ^  0, then there exists h o >  0  

such that ^ ( x  +  hv) < 0  or \I>(x 4- hv) >  0  for all 0  <  h < ho.

Proof. Let v 6  1 ” be a vector of unit length. Since a level set representation of a regular 

surface M  is differentiable on a neighborhood of each point of M , D v \I/(x) exists for each 

x  G M , and we assume that Dv'I'fx) ^  0 .

Suppose th a t there exists Hq > 0 such tha t \l/(x +  hv) =  0 for all 0  < h < ho. Then

^  T/ . , ^ (x  +  hv) -  ’J'(x) , 0
D v^ (x )  =  lim —  p- —  =  lim -  =  0,

h-*o h h^O h

contrary to hypothesis.
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Now suppose tha t there exist two sequences of positive real numbers, {hk} and {%}, such 

tha t hk —>0, rjk —* 0, ^ ( x  +  hfcv) >  0 for all k £ N, and ^ (x  +  r/fcv) <  0 for all fcg N . Since 

the directional derivative exists,

B v* (x) =  Um +  =  lim ! ! i + w  > 0

k—* oo hk k—*oo hk

Dv*(x) = ,im + = lim *(x + t̂v) s  0
fc ^ o o  T)k fc— oo rjk

Thus D v 'E(x) =  0, contrary to hypothesis.

Since no two such sequences {hk} and {%} can exist, every sequence {hk} tending to 0 must 

satisfy either ^ (x  +  h/,.v) <  0 or 'h(x +  hfcv) >  0 for all sufficiently large k. This is equivalent 

to the claim. □

L em m a 5.2 .14. Let M  be a regular surface with level set representation and $  be the signed 

distance function given by (5.7). Then, for every x  £ M , V«f>(x) exists and |V<f>(x)| =  1.

Proof. It will be shown that the directional derivative a t x  in the direction v  exists for an 

arbitrary unit vector v  and every x  £ M , but first note that $  is continuous on M".

Let v  £ R" be a vector of unit length, and let x  £ M . Suppose th a t D v5'(x) =  0. Then 

either T (x) is locally constant along the line in the direction of v  through x o r $  (x) is a local 

extremum along the line in the direction of v  through x. If 'L(x) is a local extremum of 

along the line through x  in the direction of v , then, since T(x) =  0 , we have tha t there exists 

ho >  0 such th a t ^ (x  — hv)  is increasing (or decreasing) to 0 as h \  0 (h <  ho) and vh (x +  /;v) 

is decreasing (or increasing) as h \  0 (h <  Iiq). Thus T is either positive on both sides of 

the surface or negative on both sides of the surface, contradicting the definition of a level set 

representation of a regular surface.

If T(x) is locally constant along the line through x  in the direction of v, then there exists 

h0 > 0 such tha t ^ (x  +  hv) =  0 for all 0 <  h < ho- In this case, <f>(x +  hv) =  0 for all

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



5.2. REG U LAR SURFACES IN  R N AN D  LEVEL S E T  REPRESEN TATIO N S  

0  < h < ho, so Dv$(x ) exists and is equal to 0 .
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Now assume th a t D v'I'(x) ^  0. Then, by Lemma 5.2.13, there exists h > 0 such th a t either 

* (x  +  hv) >  0 or $ ( x +  hv) < 0 for all 0 < h < /iq. W ithout loss of generality we assume 

that (x  -f- h \ )  > 0, and note tha t T  and $  have the same sign by construction.

Then, applying the generalized triangle inequality for the distance between points and closed 

sets, we have

D v$(x ) =  lim fr(x  +  h v ) ~  =  lim 1 ( (x  +  ^
ft—>o h ft—o h

I l l  
=  lim - p ( x  +  h \ ,  M ) <  lim - l lx  — x  +  hvII =  lim —/i||v|| =  1 

ft—o h ft—o/i ft—o h

Thus at each point on the surface M , the directional derivative in the direction of an arbitrary 

unit vector exists and is less than  or equal to 1 .

Since all the directional derivatives at x  exist, V<f>(x) exists. Furthermore, taking v  =  

V $ / |V $ | yields |T>v$ (x ) | =  |V $ |, and hence |V $ | <  1. Thus, since |V<h(x)| =  max IDv^ x)!
V

(cf. [67], Theorem 16.28), it remains to  show that there exists a vector v  such th a t |Dv$ (x )| > 

1 .

Let n  be the unit normal to  the surface M  at x. Since the unit normal is orthogonal to the 

tangent space of M  at x, we have tha t p(x, x  +  hh) — h for all sufficiently small h. Therefore

|Ai$(x)| = lim
h—‘0

$ (x  4- hh) — <f>(x)
h

lim i  (p(x +  hh, M ) — p(x, M )) 
h—>o h

lim - p ( x  +  hh, M )
ft—o h

lim — p(x, x  +  hh) 
ft—o h

= lim — h = 1 , 
ft—o h

and thus |V<&(x)| =  1.

T h e o re m  5.2.15. Let M  C Kn be a regular surface with level set representation ’F(x). Then 

the signed distance function  $  given in (5.7) is also a level set representation for M .
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This comes directly from the definition of the signed distance function, Lemma 5.2.14, and 

Definition 5.2.10.

5.3 R egular Surface E volutions and Level Set G eom etry

In this section we define a regular surface evolution using a level set representation and 

introduce the geometric concepts associated with level set functions.

D efin itio n  5.3.1 (Solem, Overgaard, [63]). Let Mo be a regular surface, and let 3>(x, t ) : M" x 

(—e, e) —> R, for some e > 0, be a family of level set functions such that 4>(x, t ) is differentiable 

in t for all fixed x  e  R", V4>(x, t) ^  0 fo r  all x  € {y G R" | 4>(y,t)  — 0}, and 4>(x, 0) is a 

level set representation for Mo. Then the regular surface evolution through M q corresponding 

to $ (x , t) is the family of surfaces given by

M( t )  =  {x e  R" I $ (x ,f )  =  0}.

Note th a t these surfaces are uniquely defined by 4>, since each level set function $(■, t) uniquely 

defines a regular surface by its zero level set. Thus we will often associate the family of surfaces 

{M(t )}  directly with the family of level set functions.

Given the definition of a regular surface evolution, it will be useful to introduce some of the 

geometric concepts of level set functions tha t will be used in proving some of following results.

T h e o re m  5.3.2. Let M  be a regular surface with level set representation 4>(x). Then the 

unit surface normals at x  6  M , n (x ), are given by

ft(x) =  ± i H H r  (5'8)

Proof. I t is clear tha t the definition in (5.8) yields unit vectors, so it is only left to show that
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V<5> ■ v  =  0 for all v  G TXM.

W hat follows is based on the proof given by Thorpe, Lemma 1 of Section 3 [69] (see also 

Section 5, Theorem 2). Let x  G M ,  and let TXM  be the tangent space to M  at x. Suppose

that v  G TXM,  then v has the form v  =  a (0 ) , where a  =  d a / d t ,  for some e > 0 and

some differentiable function a :  (—e,e) —> M  with a (0 )  =  x. Differentiating both sides of 

$ (a ( t) )  =  0  with respect to t a t t = 0  yields

0  =  ^ ( $ o a )  (0 ) =  V<J>(a(0)) • a ( 0 ) =  V $(x ) • v.

Thus V3>(x) • v  =  0 for all v  G TXM,  which is what was to be shown. □

Suppose $ ( x , t) is a regular surface evolution, and let a :  (—e,e) —> R" be a differentiable 

curve such tha t a( t )  G M(t )  for all t. Then the equation <&(a(t),t) = 0 holds for all t. 

Differentiating with respect to t yields

9 $  d a  <9<h 9 $
0  =  • —— h —— =  —— h a  ■ V<f>. (3-9)

d a  dt dt dt

This is called the level set equation. Denote vn — a  ■ n , then the evolution given by equation

(5.9) can be described by an evolution in the direction normal to  the surface by

d<& d<L V $  dQ
_  +  4 . V * - ^  + ^ * | . ^ s i  =  w  +  ( * .» ) |V * |  =  ^  +  ^ |V * | ,

which yields the normal evolution of equation (5.9) reformulated as

<9$
—  +  un |V $ |= 0 .  (5.10)

The quantity vn is called the normal velocity. The tangential components of a level set 

evolution correspond only to reparameterizations of each surface (or a different family of level 

set functions representing the same regular surface evolution), so, even though evolutions
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as defined in (5.10) have velocity only in the normal direction, they are actually completely 

general.

The fundamental property of a regular surface evolution, {M(t )} ,  is th a t it is independent of 

the level set function 4>(x, 0) chosen to  represent M ( 0).

T h e o re m  5.3 .3  (Solem, Overgaard, [63] Lemma 1). Let M ( t ) be a regular surface evolution 

with level set representation 3>(x, t), and let a : (—e, e) —> Mn be a differentiable path such that 

a (0 ) =  xo € M (0) and a( t )  € M(t )  fo r  all t  € (—e, e). Then the normal velocity at xo, 

^n(xo)> is independent o f a  and of the level set representation of the evolution, in particular 

it is independent o / <!>(•, 0 ).

Proof. The normal velocity at xo is given by vn — a ( 0) • n(xo), which is clearly independent 

of $ .

On the other hand, equation (5.10) yields

_  4>f (xo, 0)
|V4*(x0 ,0)| ’ (5-U )

which is independent of the curve a .  Note th a t V $(xo,0) A- 0  by the definition of a level

set representation of a regular surface evolution, so the division on the right-hand side is

allowed. □

There are two reasons this result is im portant. First of all, it shows th a t the normal velocity 

of a regular surface evolution is an intrinsic property of the evolution itself and not a property 

of any of the representations of the evolution. Secondly, it allows us to choose any level set 

representation for a given evolution. In particular, given an initial surface M (0), the regular 

surface evolution M(t )  can be represented by <h(x, t) where 4>(x. 0 ) is the signed distance 

function from M ( 0). This will be useful in what follows.
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In this section it will be shown that to each regular surface one can associate an entire family 

of regular surfaces and th a t a formal gradient can be defined on this family of regular surfaces.

Definition 5.4.1 (Solem, Overgaard, [63] section 4). Let Mo be a regular surface, then the 

surface manifold, A 4o, associated with M q is the se t o f all regular surfaces that can be obtained  

from  Mo by a regular surface evolution.

The surface manifold is closely related to  the families of level set functions tha t can be evolved 

from the original level set representation of M q -

The surface manifold M o  is not actually a manifold in the sense of Definition 5.2.1. Nonethe­

less it is possible to define a tangent space to a surface manifold. The first step in proving 

this is to show th a t the surface manifold associated with Mo induces an equivalence relation.

T heorem  5.4.2. W rite M  ~  Mo i f  M  can be produced from  M q by a regular surface evolution, 

i.e. i f  M  E Mo- Then ~  is an equivalence relation on 9Jt(Mn).

This result is stated, but not proven, in [63]. We prove it here.

Proof. First of all, it is clear tha t Mo ~  M q . since M q can be produced from itself by the 

constant regular surface evolution, i.e. 4>(x,t)  =  T(x, 0 ) for all t  € (—e,e). Thus ~  is a 

reflexive relation.

Now suppose tha t M  ~  Mq and tha t 4>(x. t) is the regular surface evolution which yields M  

from M 0  at time T. Then 4>(x. T  — t )  is a regular surface evolution which produces M q  from 

M. This demonstrates th a t ~  is a symmetric relation.

Lastly, it must be shown th a t ~  is a transitive relation. Suppose tha t M q , M i, and M 2 are 

regular surfaces such th a t Mo ~  M\  and M\  ~  M 2 . Then, without loss of generality, there
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exist regular surface evolutions given by the level set functions 4>(x,f) and ^ (x , t) such tha t

M 0 =  {x e  l n I 4>(x, o) =  0}

M 2 =  {x e  Mn I (x, 1 ) =  0 }.

Define

T (x ,t)  =
$  (x, - 2 12 + 2 1) t £ [0 , 5 ]

$  ( x , 2 12 - 2 t + l)  t £  [ i, l] ,
(5.12)

then
T (x ,0 ) =  4>(x, —2 (0 ) +  2(0)) =  4>(x, 0)

T(x>l) = ^ (x ̂—2 (i)2 + 2 (i)) = $(x-5)
T ( x , I )  =  ^ ( x , 2 ( I ) 2 - 2 ( I )  +  l )  =  ¥ ( * ,* )

T ( x , l )  =  \I>(x, 2(1) 2 — 2(1) 4- 1) =  t f (x ,l) .

Thus T  continuously evolves Mo to M2.

It is only left to be shown th a t T  is differentiable with respect to  t. Since 4> and T are 

differentiable,
/

( -At  +  2) $ f(x, - 2 t2 + 21) t e  [0 , i]

(4t — 2) (x, 2t2 — 2t +  1) t e [ i ,  1] .

This function is clearly well-defined for t £  [0, ^) U  (4, l ] . It is also well-defined for t = 1/ 2 , 

since
J jm _ T t (x ,t)  -  ( - 4 ( i ) + 2 ) ^ ( x , - 2 ( i ) 2 +  2 ( i ) )  =  0  

=  ( 4 ( i )  - 2 ) ® t ( x , 2 ( i ) 2 - 2 ( i )  + l )  =  0

Applying L’Hospital’s Rule, it can be shown that this suffices for T  to be time-differentiable.

Thus T  is a regular surface evolution from Mq to M2, which shows tha t ~  is transitive.

Tt(x,t) =

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



5.4. TH E TAN G E N T SPACE TO  THE SURFACE MANIFOLD

As ~  is reflexive, symmetric, and transitive, it is an equivalence relation.

43

□

Since Mo is any arbitrary regular surface in M o , we will simply write M  to be a surface 

manifold and not specifically associate it with any one of its elements.

Before defining the tangent space to  a surface manifold, we first define the normal velocity for 

a surface evolution. The next three definitions are all due to Solem and Overgaard [63,64].

Definition 5.4.3. L et t  i—► M( t )  be a regular surface evolution with level se t represen tation  

$ (x , t ) .  Then the normal velocity of the surface evolution, denoted M ,  is given by

(5.13)
x e M (t )

By Theorem 5.3.3 and its proof, this is a well-defined quantity tha t is independent of 4>. Since 

4>(x, t)  is continuously differentiable with respect to t  and is continuously differentiable with 

respect to x  on M , M{ t )  is a continuous function of the spatial variable x  on M( t )  for each t.

We now formally define a tangent vector to a surface manifold.

D efin ition 5.4 .4 . L et M  be a surface m anifold, and let Mo G M .  A  tangent vector to

the surface m anifold M  a t Mo is a norm al velocity M  associated with any regular surface 

evolution M ( t )  such that Af(0) =  M q .

As noted above, tangent vectors to  M  at M  are continuous functions on M . Also, the 

condition th a t M (0) G M  is equivalent to the condition tha t M( t )  G M  for any surface in 

the evolution, but M  is a tangent vector to M  at the “point” M (0).

Definition 5.4 .5 . The tangent space to a surface m anifold M  a t a po in t M , denoted Tm M ,

is the se t o f  all tangent vectors to M  a t M .

A natural question to ask is whether or not there exist any tangent vectors to an arbitrary
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surface manifold Ad at an arbitrary point M . It turns out that the existence of many tangent 

vectors can be guaranteed. The following theorem can be found in [63], and we present a 

simplified variation of the proof given there.

Theorem  5.4.6. L et Ad be a surface m anifold, and let M  £  Ad. I f  v  £  C 2( M) ,  then v  is a 

tangent vector to M  a t M .

Proof. Let v  G C 2 (R” ) be an extension of v  G C 2 (M ), and let 4>o(x) be the signed distance 

function to M . Define

$ (x ,t)  =  4>0 (x) -  ifi(x )|V $ 0 (x)| =  4>o(x) -  ffi(x),

and let M ( t )  =  (x  € Kn | $ (x ,i)  =  0 }. Recall th a t |V$o| =  1- Since $f(x ,£) =  — fi(x), there 

exists e >  0 such tha t 4>(x, t) G C x(—e,e) for each x  G Mn. Now

V $ (x ,t)  =  V $o(x) — tVv(x).

Since V $o(x, 0) #  0 for x  € M  and Vt) G C ^ R "), there exists e >  0 such tha t V $ (x ,t)  ^  0 

for x  G M( t )  for all t  G (—e,e), which means th a t M( t )  is a regular evolution for t  G (—e,e) 

with M (0) =  M .  Furthermore

This shows, in particular, th a t C 2( M)  C Tm A4  C C ( M ) ,  as it was already noted (see com­

ments following Def. 5.4.3) tha t normal velocities are continuous functions on M.

Now we can show that the tangent space to M  at M  is a vector space.

T heorem  5.4.7. Let Ad be a surface m anifold, and let AI G Ad. Then T^jAd is a vector

Thus v  is a tangent vector. □
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space.

This is stated in [63] without proof, so we prove it here.

Proof. The proof follows tha t of Theorem 5.2.3. Let M i, M 2 G TmA4. It must be shown that 

M i  +  M 2 G T m M , th a t cM \ G T m M  for all c e l ,  and finally th a t the zero vector is an 

element of TmM .. All other properties of vector spaces will follow immediately.

First of all, it is clear th a t the function M  =  0 is an element of T m M , since this is the velocity 

associated with the constant surface evolution.

Now suppose tha t M (0) G T m M  is the normal velocity for some regular surface evolution 

M( t )  at t =  0 and tha t a :  (—e,e) —> R n is a differentiable path  such tha t a (0 ) =  x  G M (0) 

and a f t )  G M( t )  for all t. Then, by (5.13),

which implies that
.............................. d ,

• n ( x ) .cM (0) =  ca(0) • n ( x )  =  - 7 - a ( c t )
dt t= 0

Since a ( c t ) is a differentiable curve such tha t a(c(0)) =  x, cM (0) is also a normal velocity

for the regular surface evolution associated with a( c t ) .  Thus cM (0) G T m M .

Similarly, suppose th a t M\  (t ) and Mo (t ) are regular surface evolutions in M  such tha t M \  (0) =  

M2 (0) and tha t M i(0) and M 2 (0) are tangent vectors to M  at M i and M2, respectively. Let 

a i , a 2 : (—e.e)  —> R" be differentiable paths such th a t a i ( 0 )  =  a 2 (0) =  x  G M[(0) =  M 2 (0)

and such tha t a \ ( t )  G M\ { t )  and a 2 (t) G M 2 (t) for all t  G (—e ,e) .  Then

i  (M i( 0 ) +  M 2(0)) =  X-  (« i(0 ) • n(x) +  a 2 (0) • n (x)) =  “  ( « i (*) +  a 2(t)) • n ( x ) .
t= 0
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Since ^ (a i( f )  +  a  2 (t)) is a differentiable curve such th a t ^ ( a i ( 0 ) +  0 :2 (6 )) =  x, we have

Since each connectedness component of each surface is assumed to be bounded, there is an 

inner product on the tangent space to a surface manifold, A i, at each point M  £ M .  In what 

follows we assume th a t M  is bounded.

Lem m a 5.4.8. Let M  be a surface manifold. Then Tm M. is an in n er product space with  

inner product given by

where d S  is the Lebesgue surface measure on M .

Since v i,V 2 are continuous functions and M  is a bounded set, it is clear th a t the integral 

exists. Thus for each surface manifold M , the tangent space at each point M  € M  is a 

subspace of L 2( M) .

The Lebesgue surface measure, dS,  on a regular surface is related to  the Lebesgue volume 

measure, dx, by the next result.

Theorem  5.4.9 ([32], see Theorem 6.1.5). L et M  c  Mn be a regular surface. Then

1
2 (0) +  M 2 (0 )) g Tm M .  Since constant multiples of elements of Tm M  are in Tm M ,

M i(0 ) +  M 2 (0 ) g Tm M ,  which is what was to be shown. □

|V$|<S($(x)) dx.

Here 6 (x) is the Dirac delta distribution, and d(4>(x)) will often be denoted simply as <5(4>).

Thus we have the following corollary to Lemma 5.4.8.

Corollary 5.4.10. L et M  be a surface m anifold and M  6 M  be a subset of Mn. Suppose
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that v i ,V 2 € Tm M  and that v i ,V 2  are continuous extensions o f v i ,V 2 , respectively, to all o f 

M". Then

( v i , v 2 ) M = /  v i ( x ) v 2 ( x ) | V 4 > ^ (4 > )  d x .  ( 5 . 1 5 )
J  R "

This is a useful representation of the inner product on Tm M  as will be seen in the next 

chapter.
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Chapter 6

Gradient D escent for Surface 

Functionals

In this chapter we introduce the results from the calculus of variations th a t are required for 

the development of the video segmentation algorithm. These results are then combined with 

the results from the previous chapter to develop a gradient descent algorithm for computing 

local minimizers of surface functionals.

6.1 Surface Functionals

First we define a surface functional.

Definition 6.1.1. Let M  be a surface m anifold, M  €  M  a bounded regular surface, and $  

a level se t representation  fo r  M . Suppose that g is an integrable function  o f x, d>, and  Vd> 

defined on M  and that f  is an integrable function  o f x, d>. and  Vd> defined on M” . Then a

48
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surface functional is a m apping E : Ad —> IR of one o f the follow ing form s:

E ( M ) =  [  S( x ,$ ,V $ )  dS,  (6 .1 )
J M

E ( M )  =  [  / ( x ,$ ,V $ ) d x .  (6 .2 )
J  R"

Such functionals will often be w ritten E ( $ )  for some fixed level set representation of the 

surface M .

Noting again (see Theorem 5.4.9) th a t the Lebesgue measure, dS,  on a surface M  with level set 

representation 4>, is given by | V<4>|<5(<I>)rlx, a surface functional of type (6.1) can be rewritten 

as a surface functional of type (6 .2 ) by

£ ( $ ) = /  5 (x ,$ ,V $ )  d S  =  [  <Kx,$,V«f>)|V4>|<5($)dx, (6.3)
J M J Rn

where g  is an arbitrary continuous extension of g  to K". This demonstrates th a t a surface 

functional against the Lebesgue surface measure on M  can be written as a surface functional 

against the Lebesgue area (volume) measure on Mn.

6.2 D ifferentiability and th e  G radient o f Surface Functionals

We now define differentiability for a surface functional. The next two definitions are found in 

[63]-

Definition 6.2.1. Let E:  M. —> M be a surface functional. Then we say that E  is differen­

tiable at M  if, fo r  every regular surface evolution M( t )  such th at M { 0) =  M , the m apping

1 1—> E ( M ( t ) )  is differentiable a t t  =  0, i.e.

Um E ( M ( h ) ) - E ( M ( 0 ) )  
h^o h
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exists and is finite.

We now define the differential of E.

D efin itio n  6 .2 .2 . Let E:  M  —> K be a differentiable surface functional, and let M  € M . I f  

M  (t ) is a regular surface evolution such that M (0) =  M  and v  =  M ( t ) , then the differential 

of E  a t M  is the mapping d E ( M ) : T m M  —> M given by

d E ( M ) v  = j t E{M {t))
t=o

This definition is the direct analogue of the definition of the differential of a function on 

a manifold as is given in (5.3), but it does not necessarily endow the differential with the 

properties we associate with derivatives.

T h e o re m  6 .2 .3 . Let E : M  —> M be a differentiable surface functional at M  6 M.. Then 

dE( M)  is a homogeneous mapping of degree 1 .

Proof. Let c G M. Then M(ct )  is a regular surface evolution such th a t M( c t ) j/=0 =  M  and 

M(ct)  — cM(t) .  Thus dE( M)  is homogenous, since

dE(M)(cv)  =  — E(M(ct ) )
t =o

= c dE{M)w.
t=o

This is what was to be shown. □

Though the differential is homogeneous, it is not necessarily additive and therefore not nec­

e ssa r ily  lin ea r . N e x t  w e  d e fin e  th e  g r a d ie n t o f  a  su r fa ce  fu n c t io n a l, a n d , w h e n  th e  g r a d ie n t o f  

a surface functional exists, it will be shown that the differential of the surface functional is a 

linear map.

D efin itio n  6.2.4. Let E : A4 —* R be a surface functional that is differentiable at the point
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M e  M ,  and suppose there exists w  E Tm M  such that

d E{ M ) v  =  (w ,v )M =  f  w (x)v(x) dS  (6.4)
J M

for all v  E  T m M .  Then w  is called the gradient of E  at M  and is denoted by N E ( M ) .

In the definition of gradient given in 5.2.8, the gradient vector was always an element of the 

tangent space of M  at x. The analogous result does not hold in this case, as a vector w  that 

satisfies (6.4) may exist in L 2 (M)  but not in T m M .  We will refer to w  as the gradient only 

when it exists and is an element of T m M .

It is clear tha t the differential is linear when the gradient exists, since it is given by an inner 

product.

L em m a 6.2 .5 . Let M  be a surface manifold, and M  E M . Suppose that E : M  —> R is 

a surface functional such that V E ( M )  exists and is an element o f Tm M .  Then N E ( M )  is 

unique.

Proof. This follows the argument given in the proof of 5.2.9.

Suppose th a t w i,W 2 E Tm M  are such that

(w i,v )M -  (w2 , v ) m =  0  

for all v  E T m M .  Then, since w ; — W2 E T m M , we have

(wi -  w 2,Wi -  W2)M =  ||wi -  W2| | | 2(M) =  o.

Thus w j — w 2 =  0, which implies tha t w j =  w 2. □

The primary question tha t remains is whether or not the gradient of any surface functional
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exists. It will be shown in Section 6.4 tha t the gradient does exist for the surface functionals 

in which we are interested and tha t the differential of such functionals is a linear map.

6.3 G radient Flow for M inim izing a Surface Functional

Our primary task is to  define a minimization procedure for surface functionals analogous to 

the steepest descent method tha t was presented in Chapter 5 for functions on manifolds. A 

gradient flow  (following the terminology of Evans [23]) for a surface functional is an evolution 

equation whose steady-state solution is a local minimizer of the surface functional. Such a 

method is often referred to as a gradient descent, and the two term s will be used interchange­

ably here.

D efin itio n  6 .3 .1 . Let E  : Ad —> M be a surface functional, and M{t)  E Ad a regular surface 

evolution on (—e, e) such that V E ( M( t ) )  exists for all t € (—e,e) .  Then M( t )  is called a 

gradient flow for E  if it is a solution of

M( t )  = —V E ( M ( t ) )  (6.5)

for all t E (—e, e).

The next two theorems are analogues of Theorems 5.1.1 and 5.1.2 and are the primary results 

that will be used in the chapters th a t follow.

T h e o re m  6.3 .2 . Let M{t )  be a gradient flow for a surface functional E : Ad —> M. Then 

1 1—> E( M( t ) )  is a non-increasing function of time.
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Proof. Invoking Definition 6.2.2 and (6.5) yields

j E { M { t ) )  =  dE( M( t ) ) M( t )  = ( v E ( M ( t ) ) , M ( t ) ) M{t)

= - ( V E ( M ( t ) ) , V E ( M ( t ) ) ) M{t)< 0.

Thus 1 1—> E( M( t ) )  is a non-increasing function of time. □

Note th a t using this proof, analogous to what is often done with minimization algorithms for 

functions of real variables, one can define a descent direction in general for a functional.

D efin itio n  6 .3 .3 . Let E  be a surface functional and M  a surface manifold. Then a descent 

direction for E  at M  € M  is any vector v  G Tm M  such that

d E ( M ) v  — ( V E , v ) m  < 0. (6.6)

Note th a t this allows one to develop a large number of minimization algorithms for a differ­

entiable surface functional by choosing different descent directions. Moreover, it is easy to 

determine whether or not a vector v  G Tm M  is a descent direction by checking whether or 

not it satisfies (6.6).

T h e o re m  6.3 .4 . Let M( t )  be a gradient flow such that M(t )  —> Mo as f -> oo. Then 

VE(Mo)  = 0.

Proof. Let xo G M (0) and a : [0, oo) —> Mn be a differentiable curve such th a t a (0 ) =  xo and

a( t )  G M (t) for all t. Since M(£) —> Mo, we have tha t a( t )  —* x ' G Mo as t —> oo. By the

proof of Theorem 5.1.2, a( t )  = ^ a ( t )  —► 0 as t —> oo. Then by (5.14),

M(t )  = a( t )  ■ n (a(t))  —> 0 as t —> oo,

which implies, by (6.5), th a t NE ( M( t ) )  —> V £ ,(Mq) =  0. □
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Let 4>(x, t) be a level set representation of the gradient flow M(t) .  Due to the fact tha t 

M(t )  = — 4>*(x, t ) /  |V4>(x,f)| (see (5.13)), the gradient flow equation can be written

™ = V E \ V * \ .  (6.7)

The im portant thing to note here, in contrast to  gradient descents for functions on manifolds, 

is that, if M (0) G M. then an evolution given by (6.7) yields a regular surface evolution M(t )  

such tha t M (t ) G JA for all t, i.e. the gradient flow produces a continuous time evolution that 

remains on the surface manifold associated with M (0) for all time. This is a direct result of 

the definitions of regular surface evolution and gradient flow.

6.4 C om puting th e G radient o f Surface Functionals

In this section we compute the gradient of three classes of surface functionals by computing the 

Gateaux derivative of each of them. First, we define a variation of a level set representation 

of a regular surface evolution.

D efin itio n  6 .4 .1 . Let $  be a level set representation of a regular surface M  G M . Then a 

variation o /$ (x ) , T fx), is another level set representation of M , and the variational regular 

surface evolution of $  along T is the regular surface evolution given by t —> +  tT  for

t G (—e, e).

The next definition is a general definition from the calculus of variations for a large class of 

functionals, but we include it here only for surface functionals.

D efin itio n  6 .4 .2 . Let E  be a differentiable surface functional, M  be a surface with level set 

representation 4>, and 4/ be a variation of 4>. The Gateux derivative of E  along T is given by

j t m + m
t = 0
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I f  this derivative exists fo r  all variations 'I', then we say that E  is Gateux differentiable at the 

point M  = {x € Mn | $ (x , 0) =  0} of the surface manifold M .

Using this definition, the Gateux derivative is just the first variation of a surface functional 

as defined using the calculus of variations (cf. [17,26]).

The Gateux derivative of a surface functional is useful to us, because, in many cases, it is the 

differential of the functional.

Another point tha t should be made and will be used in what follows is the next result.

T h e o re m  6.4 .3 . Let 3>(x) be a level set representation of a regular surface M , and let ’i'(x ) 

be a variation of $ . Then the normal velocity of the variational regular surface evolution of 

$  along t —► 3>(x) +  t^ (x ) ,  is

Vn =  i w i  (6-8)

at t — 0.

Proof. According to equation (5.13), the normal velocity for the regular surface evolution 

1 1—> $  +  is given by

0 ( $ ( x ) + i t f ( x ) ) /0 i
v 7), —

_  1 /  d$( x )  _  d( t*(x) )

t=o lv $ (x )l \  dt dt
- ^ ( x )  

i=o |V*(x)||V($(x) +  tff'(x)|

This completes the proof. □

Let H(x)  denote the Heaviside function,

1 x >  0
H(x)  = <

0 x  < 0.

Since this function is not continuous, it is not differentiable in the classical sense. It is
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differentiable in the sense of distributions, however. The distribution derivative of H  (see 

Section 5.4 of [21]) is the function H ' such that

</, t f '($ (x ) ) )  = -  f ($ (x )) / '(x )  dx =  -  ( / '( x ) ,  (*(x))>
J Rn

for all /  € Co°(M"). It can be shown that the Dirac delta distribution is the unique distribution 

tha t satisfies this relationship. Thus

- < / ' ( x ) , Jff($(x))>  =  (/(x),(5($(x)))

for all /  € Co°(Rn). In this sense we can “differentiate” the Heaviside function inside an 

integral, i.e.

A  f  H ( * ) d x i = f  * (* )d x .
JRn JRn

T h e o re m  6.4 .4 . Let f  € L 2 (M.n), M  be a regular surface vrith level set representation 4>, and 

E  be a surface functional given by

E ( M )  = [  / (x )  dx,
Ja

where 12 is the interior of M , i.e. fi =  {x 6 Mn | 4»(x) <  0}. Then V E  = / (x ) .

Proof. To see this, we compute the Gateux derivative of E.

E ( M)  = j  / (x )  dx =  f  / (x )  (1 -  H( $) )  dx, (6.9)
Jn J Rn
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so

4 - E ( $  +  sV )
as s = 0

/ (x )  dx

= [  f ( x )  (1 -  i f  ($  +  s tf )) dx
s = 0  J

=  f  - ^ / f ( $ ( x )  +  s$(x))
J  R" US

= [  (-^(x))<5($(x))/(x) dx
Jun

=  f T ^ J r / ( x ) |V$|<S($) d x =  f  v „ (x ) /(x )  (vn , / ) M ,
|V<P|

where v„ =  —'h/|V<h| is the normal velocity of the variational regular surface evolution of 

$  along \h. Since any function v„ e  TmM. can be written in the form — '& /1V<J>| for some 

variation 4/ e  L 2 (M ) of <J>, Definition 6.2.4 yields tha t V E  = f ( x )  and, moreover, th a t the 

Gateux derivative of E  at M  is the differential of E  at M  applied to the normal velocity 

- ¥ / |V $ | .  □

Applying (6.7), a gradient flow for (6.9) is given by

H  =  / (x ) |V * |.  (6.10)

This is a well-known result th a t can be found, for example, in [36,49]. The proofs are given 

there are in two dimensions and do not scale to higher dimensions. The proof given here is 

independent of dimension.

An immediate corollary of Theorem 6.4.4 is th a t if E  is defined by

E ( M )  =  [  f ( x )  d x — f  f ( x ) H( $ ( x ) )  dx,
J Rn\n  J m

then V E  = —/(x), and a gradient flow for E ( M)  is given by

<9$
*= - /< *> |V * | .
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Combining these two results yields th a t if E  is a surface functional of the form

E ( M ) =  f  / ( x ) d x =  f  / ! ( x ) ( l - . f f ( $ ( x ) ) )  d x +  /  / 2(x )ff($ (x ))  dx,
J Rn J J Kn

where / i , / 2  6 L2(M” ) are such th a t / i (x )  =  / (x )  on 12 and / 2 (x) =  / ( x )  on Mn \  12, then 

V E  = f \  — / 2 and the gradient flow for E  is given by

^  =  ( / i ( x ) - / 2(x )) |V $ |. (6.11)

Before computing the gradient of the next surface functional, we require some notation. 

Definition 6.4.5. Let g : Rn —> I "  be a differentiable function with components

g(x) =  (fin(x),...,3n(x)).

Then the divergence of g is given by

div(g) =  V - g  =  £ | | .
i—i l

If g: M  —> M, define g a (x ) : M  —> Mm+1 by

5fi(x) =  Vg(x) -  (n(x), Vff(x)) n(x), (6.12)

where n(x) is unit normal to M  at x. Note th a t n ( x ) : M  —> S rn. where

S m =  {x  e  Km+1 : |]x|j =  1}, 

and, hence, following (5.5), g„(x ) =  V s m9-

T heorem  6.4.6. Let M  C Mm+1 be a regular surface, g: M  x S m —> M be integrable on M ,
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and let E  be a surface functional o f the form

E ( M)  — f  </(x,n(x)) dS, (6.13)
JM

where n is normal to the surface at x. Suppose further that g is continuously differentiable 

with respect to x  and twice continuously differentiable with respect to n, then

=  V • (gn +  gh) (6.14)

where gf, is given by (6.12).

This result is well-known, and and a proof in two dimensions is given in [28]. T hat proof does

not scale, so we give a scalable proof here. The results of the four following lemmas are stated

without proof in [63]. We include the statem ents and proofs.

We must compute the Gateux derivative of (6.13). First note tha t

e{m)=L 9(x'fl) dS=/,.9 ("■ iHi)IV41 w  ̂
where 4> is a level set representation of the surface M . The following short sequence of results 

will be combined to prove the theorem.

L em m a 6 .4 .7 . Let 'If be a variation o/4>. Then

i . | V ( $  +  stf)|
as

V<3>
=  = - 1 — .V E . (6.15)

s=o lv $l lv *l
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Proof. Invoking the quotient rule for differentiation yields

— |V ($  +  stf)|as
8 = 0

=  — |V $  +  sV ^ |
as s= 0

d V ($  +  s 'f )  • V ($  +  stf) 
da |V ($  +  s«0| s= 0

|V<h|2 2 s V $ -V *  s2|V ^ |2
+  T=T^ ^T7 +

d
ds \ \ V( t y  + sty)\ ' |V ($  +  s$ ) | ' |V ($  +  s$ ) | S = l

|v($ + st ;;;''; -  |v$|2f  |v($ + s )̂|
|V ($  +  s tf ) |2 +

2 |V ($  +  s $ ) |V $  ■ V® -  2sV $ • V ® £ |V ($  +  aV)| 
|V ($  +  s tf) |2

2 s |V ($  +  a *  )||V tf |2 -  s2|W |2^ |V ( $  +  sty)| 
|V ($  +  s tf ) |2 8=0

— |V ($  +  stf)| 
ds 9= 0

,v$ ■ v i /

1 |v$| ■

Thus

— |V ($  +  stf)|
ds

V t y - V t y  V<f> „ T
5=0 =  iv $ i =  ]v¥T'

L em m a 6 .4 .8 . Again let ty be a variation o fty . Then

d /  V ($  +  «tf)
ds V |V ($ +  s1-)|

V<h /  V<f> Nty
s=0 lv $ l lv $ l V |V *| |V $

+
:0

□

(6.16)
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Proof. A direct computation, along with (6.15), yields

61

d f  V ($  +  s$ ) 
Ts V |V ($ +  s ^ ) | s = 0

|V(3> +  s t f ) |£ v ( $  +  8 * )  -  V ($  4- s * ) £ |V ( $  +  s$ ) | 
|V ($  +  s tf) |2 

V tf |V $ | V ($  +  stf) /  V $
stf)|2 VTvij

V® \
|V<h|2

v #
|V(<&

v $  /  v $
|v$| |v¥] Vfvij" '

5=0

L em m a 6 .4 .9 . The Gateux derivative of g is given by

d_
ds~

Proof. Let n s =  then

d (  V ($  +  s<L)
d s 9  VX’ |V ($  +  s¥ ) |

V ($  +  stf) \ W
L’ | v ( $ +  53017 s = 0 — 9n V<1>|

d a  <9x dhs dns
s = 0  — 77 ' t;— r  gfis ■ ~r~ <7X os ds =  9ns ' ~7

s= 0  ds s= 0

Now

gAS • h s = [Ng -  (Vfl, n*> n s] • n s = (Vg,  h s) (1 -  \\ns \\2) =  0,

so invoking equation (6.16) yields

9ns
dhs
ds

d V ($  +  s30 
s=0 =  ' Ts |V (*  +  s * ) l s= 0

v $  /  v $  V3- 
_|V<h| ~  |V3>| V |V $| ' |V $|
V41 . (  V4> V41

=  9h ■ 7 ^ 7  -  K9h ■ n y

=  9 n '

|V $ | |V $ | |V $ |
V3-
Tv¥|

This is what was to be shown.

5=0

□

(6.17)

□
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L e m m a  6 .4 .1 0 . The Gateux derivative of <5(<t>) is

62

4 -S ($  + s* )
as

(6.18)
s= 0

where <5;(3>) is the distribution derivative of the Dirac delta at 3>.

Proof. The classical chain rule for differentiation, which also holds for distribution derivatives, 

yields

A <5'($ +  s $ ) ¥  |s=0 =  <S'($)tf.4 -d ($  + S'S!) 
ds 5=0

These four results will be combined to prove the final result.

Proof of Theorem 6 .4 .6 . The goal is to compute the gradient of the surface functional E  by 

computing the Gateux derivative. Recalling the change of variables in (6.3) and the functional 

in (6.13), we have

as =0 JR." d s
dx.

s= 0

Computing the derivative of the integrand by invoking the above lemmas yields

d_
ds ’ |V ($  +  s* ) | s=0

=  <7^-(|V($ +  stf) |a($ +  atf))
CIS 5=0

+  | V ( $ M $ ) - 9  x
V(<f> +  S'S!)  

|V ($  +  s¥ ) |

=  9 |V ($ ) |tf '($ )® +  5($) ivil

s=0

=  5 |V$|(S'(#)tf +  <*($) (gA + gn) ■ V ' f .
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Therefore

4 - E ( $  + s V )
ds = f  3 |V $ |5 '($ )¥  +  d($) (gA + gh) • V $  dx

=0 dMn

= f g |V $ |5 '($ )^  dx +  f (g& • V tf) dx 
JR” JR«

+ f g(h ■ Vtf)<S($) dx.
JRn

Let F  = <7nd (<1*) VL, then applying the product rule for the divergence of a vector field gives

divF  =  gAS{$ ) • V<L +  $  (V • Sfi<5($)).

By Gauss’ Divergence Theorem (cf. [42], p. 506),

[  d iv F d x  =  [  ( F - n )  dS  = [  <S($)$(x) ■ 7 ^ 7 )  dS  = 0,
Vk" J m  J m  V lv ® l /

since 'I'(x) =  0 for all x  € M . Thus

f d iv F d x  =  f gAS($)  • V *  +  ^  (V • g&6 (&)) dx  =  0,
JRn JRn

and therefore

/  (</n’ V4>)d($) dx =  /  ( - t f ) ( V - Sfi<S(*)) dx.
4R« dRn

Applying similar’ arguments yields

LXsmwX™d*=l{-v V<J>|
dx.
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Thus

64

— E ($  +  
ds s= 0 -  [  ( - tf )« / |V$|<J,( * ) d x +  f ( - * )  [V • (flfl<J($))] dx

JRn JRn

+ /  )JRn

f (-*)
J K«

[  ( - * )JRn

v  • (9 n6 m  +  V • g6 (*)
V4> \

-  <7|V*|<J'(*) dx

(an • V $ )5 '($ ) +  (V • flfi)<S($) +  V • g'|V4>|
d ( 4 > )

V4>
+ g j ^ - V * * ,( * ) - fl|V<!>|a'($) dx

As was noted above, ry„ ■ n  =  0, which implies that <?n • V4> =  0. Also • V $d;($)

(7|V4>|<5'(4>), so the last two terms cancel. Therefore

_d
ds

E {$  + sW) =o =  [  ( - * )
J Rn

- /J R

=  /J  A

d ( 4 > )

1 — )n v i v $ i ;

- 9
M  \ |V $ !

V -

V -

9 n + 9 

9n + 9

V4>
] w j
V4>
|V4>|

V $ |

|V $ |d ($ ) dx

dS

dx

|V<f> ■,v 5n +  5-
V $
v i j M

and hence the gradient of the surface functional E  is given by V E  = V • (//ft +  <?n). □

This implies, following (6.7), that a gradient flow for E  as given in (6.13) is

9 $  „  
~dt ~ 9A +  9'

V $
v¥T

|V $ | (6.19)

C o ro lla ry  6 .4 .11 . The gradient of the surface functional

E ( M )  = f g{ 
J m

x) dS . (6 .20)

for g € C  (M” ), is given by V E  = V • (gti) =  V •
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This is an immediate consequence of the preceding theorem, since g is no longer a function of 

the normal n. A gradient flow for (6.20) is therefore
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Chapter 7

Leaf V ideo Segm entation

Given the theoretical developments in Chapters 5 and 6, we now return  to the problem at 

hand. In Chapter 3, the preprocessing steps for a leaf video were discussed. Now we can 

address the actual segmentation of a preprocessed leaf video, i.e. the extraction of the regions 

of active fluorescence from each frame.

We follow the general approach of Mumford and Shah in [46], which was reformulated within 

a level set framework by Chan and Vese in [15] and Kimmel in [36,37].

7.1 T he Background M odel

The goal is to extract the regions in each frame of a leaf video tha t are bright due to  fluo­

rescence dynamics. This is not possible directly from the intensity values of the preprocessed 

video, /(x ) . The vein regions in each frame are dark throughout the leaf video, so all pixels 

that do not correspond to veins would be treated as bright. These pixels are not necessarily 

bright due to dynamics and are therefore not to be extracted. Since the goal is to extract the

66
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regions th a t are fluorescing, another approach is required.

67

It is possible to record several frames of the leaf before the dynamics are initiated. This 

results in images tha t reflect the light intensity of the leaf when there is no fluorescence. A 

background model, B( x , y ) ,  is then generated by averaging the intensity of each pixel over 

these initial frames. In the experiments seen here, between 20 and 60 images were averaged 

to  generate the background model. Since this background model reflects the leaf intensities 

when there is no fluorescence, it is appropriate to compare each frame in the entire video 

sequence to this model, which depends only on the x  and y coordinates.

It is possible to use intensity-based region segmentation techniques for extracting the fluores­

cence regions by separating

D(x)  = |/(x ) -  B{x,y) \ ,  ( x  = ( x , y , z ) )  (7.1)

into regions of high intensity and regions of low intensity. Regions of a leaf video tha t cor­

respond to  high values of D(x)  are those whose intensities at a given time are different from 

the corresponding intensities in the background model. These are the regions of active fluo­

rescence.

The function D  (x) treats regions tha t are bright due to dynamics equally to  regions tha t 

are dark due to dynamics. This is not a problem in our experiments, because dynamics are

always initiated by causing the stom ata to close. Thus the stom atal dynamics cause only

bright regions in each experimental video.

In order to enhance the segmentation, D(x)  is first linearly scaled to take on the full range of 

values in [0,1], It is then scaled non-linearlv and replaced with D*(x)  where

D*(x) — ^ a rc tan  («i (D(x)  — s%)) + 0.5. (7.2)
7T
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Here sq is a scale factor tha t determines the extent to which the data  is scaled and ,S'2 is 

a param eter th a t is a lower bound for the values to segmented. This scaling pushes values 

greater than  or equal S2 above 0.5 and values less than S2  below 0.5. A similar scaling can be 

done w ith any ‘S ’-curve, such as a cumulative probability density function. After the nonlinear 

scaling, D{x)  is again scaled linearly to take on values in the full range [0,1]. Though the 

original video data  was discrete, taking integer values in the interval [0,255], the preprocessed 

data - and therefore also the background model - are continuous in the sense th a t they take 

non-integer values. Therefore the scaled D (x)  can take any value in [0,1], not just the values 

1/n  for n  6 { 0 ,1 ,2 , . . . ,  255}.

Images of D (x)  for a particular experiment can be seen in Figure 7.1. The “bright” regions 

in this data  correspond to the regions that are actively fluorescing at each point in time.

7.2 Segm entation  Functional

The data  in Figure 7.1 is not binary; it takes values in the full range [0,1] on the bounded 

video domain Cl. There are, however, distinguishable bright regions. The goal is, therefore, 

to approximate -D(x) by a binary function, i.e. a piecewise-constant function tha t takes 

on exactly two values. This formulation is called a shape reconstruction problem. There 

are several techniques for shape reconstruction problems. In [2,48], the authors use level 

set methods based on shape derivatives. It has also been shown that shape reconstruction 

problems can be solved within a variational level set framework (cf. [7,8,56]). An overview of 

both types of methods can be found in [68]. The approach based on regular surface evolutions 

used here is a hybrid of methods based on variational and shape derivative techniques.

Let u: M3 —> R be a piecewise-constant function th a t takes the two values c\ and C2 , and let 

Qi =  (x  6 n  | u(x) =  ci}, 0.2 =  (x  G Q | u(x) =  C o}.
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Image 275 Image 400

Figure 7.1: Non-linearly Scaled D (x)  with si =  15 and s2 =  0.33

We define the functional

E (u ,c i ,c 2) = ||D (x) -  u ( x ) | | |2(n) =  f  (D(x) -  u (x))2 dx
J

=  f  (D(x) — u(x))2 dx + (  (D(x) — u (x) )2 dx  
J171 Jil2

= f  (D(x) -  c i)2 dx +  f  (D(x) -  c2)2 dx.
J 171 J SI2

(7.3)

Minimizing this functional with respect to u, c\, and c2 allows us to  compute the sets Qi 

and O2 th a t best segment fl into bright and dark regions with respect to D. This is called
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a minimum partition problem and was first described by Mumford and Shah in [46]. Similar 

methods have been used by Chan, Vese, and Kimmel in [13-15,36,37].

First we compute the optimal values of c\ and c2.

L em m a 7.2 .1 . Let E  be as in (7.3). Then, for fixed u, the minimum of E ( u , c i , c 2 ) occurs at

f „ D ( x ) d x  f n D ( x ) d x
Cl =  — y ----- -  , and c2 =  — ------ - -------- . (7.4)

Jnj  dx  Jn2 d x

Thus the optimal values for cj and C2 are the mean values of D (x)  on fii and i l2, respectively.

Proof. Assume th a t u  is fixed. In order to compute the minimum of E  with respect to c\, we 

compute the first derivative

~r~E{c\ , c2) = - j -  [  (-D(x) -  c i)2 dx +  -j— f  (D (x) -  c2)2 dx
dci aci dci Jq2

— [  -j—{D{x) — c\)2 d x — [  2(D(x)  — ci) dx.
Jn dci drij

Since D  —Ci and D  -  c2 are uniformly bounded and Oi and fl2 are bounded sets, interchanging 

the order of integration and differentiation is justified.

A local minimizer or maximizer occurs where the first derivative with respect to ci is 0, and

r fo D (x) dx
/  2(D(x)  — ci) dx =  0 => ci =  — y   ------.

M  JQl dx

This is the only extremum of E  with respect to ci for fixed u. It must be a minimizer, since 

E  is bounded from below with respect to ci but is unbounded from above.

A similar argument shows tha t the minimum of E  with respect to c2 occurs at

f n 2 D (x ) d x
c2 =

fa ,  dx
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The formulae in (7.4) assume that the measure of the regions fli and O2  are finite and nonzero. 

Since they are contained in fi, which is bounded, it is clear tha t the measure of these sets is 

finite. If the measure of one these sets is zero, then there is no constraint on the corresponding 

constant. □

Lemma 7.2.1 allows us to write E  only in terms of u. since c\ and C2 have explicit represen­

tations in terms of u. Thus the segmentation functional is

E{u) =  f  (£>(x) -  c i)2 dat+ ( (-D(x) -  C2 ) 2 dx. 
J Q l  J  £^2

(7.5)

Minimizing (7.5) is not a well-posed problem in tha t neither the existence nor the uniqueness 

of minimizers is guaranteed for D  E  L 2(U).

7.3 Level Set Form ulation o f Segm entation  Functional

Minimizing (7.5) with respect to u is useful, because the set Qj corresponds to the regions of 

the leaf video tha t are fluorescing due to stom atal dynamics. Equation (7.5) cannot be mini­

mized directly, as we are unaware of any minimization procedure for minimizing a functional 

over a set of piecewise-constant functions th a t take on exactly two values. The video domain

is a subset of R3. Thus, if the boundary of 12] is a regular surface, we can recast (7.5) using

a level set formulation.

Assume th a t cAIi is a regular surface in R 3 such tha t dll  1 has Lebesgue measure 0, and let 

be a level set representation of dtti  such that

Oi =  {x E  f2 | a(x) =  Ci} =  (x  E  R 3 | 4>(x) <  0},

Q2 =  {x E  f2 | tz(x) =  C2 } =  {x E  R 3 | 4?(x) >  0},
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where set equality is assumed to be up to  a set of Lebesgue measure 0. Then (7.5) can be 

rewritten

E ($ )  = [  (.D(x) -  c i)2 d x +  [  (D(x)  -  C2 ) 2 dx, (7.6)

where

ci =  mean { D (x) \ x  e  £2, 4>(x) < 0 }

C2  =  mean { D (x) | x  G fi, <&(x) >  0}.

The goal is to  compute a local minimizer of E(<&) with respect to 4>. Since E  is a surface 

functional of the form in Theorem 6.4.4, a gradient flow for (7.6) is given by (6.11). Given an

initial regular surface on the surface manifold M. with level set representation <f>o(x), we 

seek the steady-state solution of the initial-value problem

If this gradient flow converges, then the steady-state solution is not necessarily a local mini­

mizer to  (7.6) over all functions u  th a t are piecewise-constant taking on exactly two values. 

The zero level set of the solution is, however, a local minimizer on M .

7.4 R egularization  o f th e  Segm entation  Functional

Since the existence of minimizers for (7.5) is not guaranteed, it is also not guaranteed tha t the 

gradient flow in (7.7) will converge. It is therefore necessary to regularize the segmentation 

functional so th a t the resulting gradient flow will converge.

—  = [ { D { x ) - Clf - { D { x ) - c 2f }  |V<f>

(7.7)
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7.4.1 G eodesic A ctive Contours

73

In [46] (see Theorem 5.1), it is proven tha t there exists a piecewise-constant function /*  £ 

L 2(fl) and a closed set Qj C Q that are minimizers of the functional

E ( f )  = [  (-D(x) -  / ( x ) ) 2 dx +  a  [  dS,  (7.8)

under the assumption tha t D  is continuous. The first term  can be viewed as a fidelity term  

ensuring th a t the solution /  approximates D  in T2(0); the second term  provides regularization 

in tha t it ensures the existence of minimizers of E  and also ensures a regularity of the boundary 

of fii; and a  is the regularization param eter. Existence of minimizers of (7.8) is also proven 

in [18].

More generally, it is desirable to use a regularization term  that is data-dependent. We follow 

[36] and regularize (7.6) by adding a geodesic active contour (GAC) term  [10]. This is given 

by

-EgaciW  = a  [  d(x ) dS. (7.9)
J

Here g : ft —> R is depends on the measured data; we use the standard edge-indicator

9( x , y , z )  i  +  Ix (Xjy iZ)2 +  i y (̂Xjy jZ)2'  (7 -10)

where I  is the preprocessed video sequence. An edge-indicator function should only yield 

edge information, and edges are two-dimensional features. Thus g is computed using only the 

partial derivatives of I  with respect to  x  and y.

Though the function in (7.10) has been used for regularization of segmentation functionals 

similar to (7.6), this particular usage is different. In [36], the GAC term  is used to regularize 

a segmentation functional tha t segments based directly on the measured data. Thus both the 

segmentation term  of the functional and the regularization term act on the input image. Here
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the regularization term  acts on the preprocessed input video, but the segmentation term  acts 

on background-subtracted data.

The functional in (7.9) is of the form in Theorem 6.4.6. Thus a gradient flow for this functional 

is given by
<9$ /  V4> \
—  =  adiv |V $ |. (7.11)

The corresponding regularized segmentation functional is therefore given by

E {§ )  =  (3 f (H(x) — c i)2 dx +  (3 f (-D(x) — c?)2 dx +  a f g(x) dS. (7-12)

This is a variation of the segmentation functional found in [36], where the segmentation is 

performed directly on the measured data  and does not involve a background model.

The param eter [3 in (7.12) is a weighting factor for the segmentation terms of the functional. 

It is added so tha t the weights of the segmentation and regularization can be controlled 

individually. Such a weighting factor is not necessary, because (3 can be normalized to  1. 

Having it explicitly represented in the functional, however, eases the numerical approximation 

developed in the next chapter.

The functional in (7.12) is a generalization of the Mumford-Shah functional in (7.8), where 

g = 1 (see also [14,15]). Problems tha t involve minimizing functionals tha t are sums of volume 

energies and surface energies, such as (7.12), are called free, discontinuity problems [19].

The existence of minimizers of this functional follows from the existence of minimizers of the 

Mumford-Shah functional. This is shown in [3,18], assuming tha t g G L°°(fi), which clearly 

holds for g as in (7.10).
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Combining (7.7) and (7.11), the gradient flow for (7.12) is

^  =  (a d iv  ( s p D j )  +  /?(<* -  Cl) ( t > -  i ( Cl +  c2) ) )  |V * |,  $ ( x ,0 )  =  $ 0(x). (7.13)

Extracting the zero level set of the steady-state solution of (7.13) yields the boundary of the 

set ffi th a t we seek. The decomposition of Q into the sets fli and is then the desired the 

segmentation of the video sequence.
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Chapter 8

Num erical M ethods

Here we address the numerical techniques required for computing an approximate solution to 

the equation

^  =  (a d iv  +  Pi** ~  ci) ( d  -  i ( c i  +  c2) ) )  |Vd>|, $ (x ,0 ) =  $ 0(x), (8.1)

presented in the previous chapter. This will be referred to as the hyperbolic form of the 

segmentation PDE. The video domain, Ci, is discretized as a uniform cubic grid with points 

(xi,yj,Zk) for i = j  =  and k = 1 , . . . ,nfc.  We denote by the

approximation to $  at the n th numerical iteration at the spatial point (.7; , ,  y :j .  Zf,.).

8.1 A n Explicit M ethod

The most direct method for computing a numerical approximation to the solution of (8.1) is 

to discretize the equation explicitly in time and to  approximate the spatial derivatives using 

a conservative numerical flux  function for hyperbolic conservation laws and Hamilton-Jacobi

76
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equations. Conservative schemes are generalizations of upwind schemes for approximating 

spatial derivatives tha t numerically account for the formation of shock waves along the char­

acteristic curves of the PDE.

8 .1 .1  E x p lic it  T im e  D is c r e t iz a t io n

The explicit discretization of the time derivative is given by

dt A t

Next we approximate ftipi — ci) (D — \{c\  +  C2 )) |V3>| and define

(8 .2 )

recalling tha t c\ and C2 depend on <t>. Following the notation in [59], the Engquist-Osher [22] 

conservative numerical approximation to F F k |V $ n | is given by

F^j.k|V $ ” | ~  max(Fj” fc, 0)V+ +  min(F"j fe, 0)V

where

V+ =  [ m ax(Da. ^ JJe, 0)2 +  m i n ( D + 0 ) 2 

m a 0 ) 2 +  m in(D + ${E fc, 0)2 

m a x ( D j ^ . fc,0 )2 +  min(L»+$"jJe, 0)2]1/2
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and

V -  =  [m in (D -$ ”jfc,0 )2 +  max(Z}+$”jfc, 0)2 

min(L>“ $ ^ fe, 0)2 +  m a x ( £ > + fc, 0)2 

m m {D -$ Z j k ,0)2 +  max(Z)+<^jfc,0 )2]1/2.

Recall th a t D+ and D “ are the forward and backward finite difference approximations to the 

partial derivative in the x  direction (see (3.9)), likewise D + , D ~ , D f , D~  are the forward and 

backward finite difference approximations to the y  and z partial derivatives. The theory of 

conservative numerical schemes for hyperbolic conservation laws, along with other conservative 

numerical schemes, can be found in [53].

Finally we approximate the regularization term  of (8.1),

div (9̂ ) iV4>! = (*“* ($j)+ v»' iw)|v*'
=  </|V3>|k +  V g  • Vd>. (8-3)

There are two choices for the curvature, k , in three dimensions: the mean curvature and the 

Gaussian curvature. We choose the mean curvature here. Curvature is a geometric quantity 

tha t can be approximated using centered differences. The centered difference approximations 

to the first and second derivatives in the x  direction are given by

CP. <T>n.

«  2 A x (8‘4)

£>zx*ij,k «  ^ 2  ($ "j + l,fc -  2K j ,k  + ■

Similar formulas hold for the y and 2  derivatives.
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Mean curvature is given by

k i +  k2
+  $2 +  $2)3/2’

where

« 1  =  ( % y  +  * z z ) * l  +  ( $ x x  +  * z z ) & l  +  ( & y y  +

^2 =  2 .

The norm of the gradient, |V $ |, in (8.3) can also be approximated using centered differences.

The second term  in (8.3), V g ■ V<£, is not a geometric term, and Vd> cannot be approximated 

using centered differences. Since g is a time-independent function, its gradient can be approx­

imated with centered differences, and we define Vog, the centered difference approximation 

to the spatial gradient of g, by

The inner product of Vg  and V3> is a passive advection field, which does not require a 

conservative scheme, so we approximate V g  ■ V4> using the upwind scheme

Thus we have the complete discretization of (8.1) using an explicit time discretization.

Vogi.j.k — {Dxgi.j.k' Dy9i.j,k^ ^z9i,j.k) ■ (8.5)

max(DPgiJik, 0)Dx <t>T,lj k  +  mm(D°xgljM. 0) D + k 

+  max(D °gij,k , 0 ) 0 ' ^  k +  min(D°gij ,k , 0)D+

+  max(D°zgiJ)k, 0 ) D 7 +  mm(D°zgUJ,k . ())DZ<S>"jik
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8 .1 .2  T h e  C F L  C o n d it io n  for th e  E x p lic it  S ch em e

80

Solving (8.1) using the numerical approach outlined in this section yields a complicated nu­

merical scheme, since three different approximations to  the gradient are required for the three 

different terms. This makes the scheme computationally intensive, but not prohibitively so. 

In order to ensure numerical stability of the scheme, however, the time step, A t,  and the spa­

tial discretization steps, Ax =  A y  = A z  = 1, must satisfy a Courant-Friedrichs-Lewy (CFL) 

condition [52].

Let h = A x  =  A y  = A z ,  then it can be shown (cf. [59]) that the CFL condition for (8.1) is 

given by

max
n

V3> \  ( I
adiv ( — J +  p(c.2 -  ci) ( D  -  -  (Cj +  c2) A t <  h. (8-6)

Since this maximum can be quite large and h. = 1 is fixed for this problem, A t is required to  be 

small. Moreover, the left-hand side of (8.6) is time-dependent, so A t must be updated at each 

numerical iteration to ensure tha t (8.6) still holds. Table 8.1 shows the required time steps

Iteration 1 2 3 4 5 6 7 8 9 10

Required A t (x lO -6 ) 7.91 10.38 7.65 5.55 4.0 3.07 2.47 2.05 1.74 1.51

Iteration time (seconds) 131 131 132 131 131 132 131 132 132 131

Table 8.1: Required Time Step for First 10 Iterations of Explicit Scheme

for the first ten iterations of the explicit segmentation method for the data  seen in Figure 7.1 

along with the actual time required to compute each iteration. Since the correct segmentation 

occurs for t «  2, the explicit scheme requires on the order of 106 iterations which, a t 131 

seconds per iteration, would take almost 4 years to complete.

Because the gradient requires multiple approximations at each numerical iteration and At 

must be very small and updated at each numerical iteration, solving (8.1) numerically is an 

untractable problem using an explicit time discretization.
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8.2 E lim inating th e  N orm  o f th e Gradient

81

Since solving (8.1) numerically is not feasible using an explicit time discretization, it is neces­

sary to develop methods th a t are computationally simpler and tha t will not require restrictive 

time steps for numerical stability.

The first approximation tha t is often made is tha t |V $ | =  1. Note tha t this is not a problem 

for the initial level set function, since 3>(x, 0) can be chosen to be the signed distance function 

from the initial surface (cf. Theorem 5.3.3). At each further numerical iteration, however, 

this constraint will not hold and must be enforced.

Under the constraint th a t |V $ | =  1, the resulting form of (8.1) is

^  =  ad iv(gV^)  + P(c2 - c i )  ( ^ D - ^ ( c i  + c2)J , $ (x , 0) =  $ 0(x). (8.7)

8 .2 .1  R e in it ia liz a tio n

In order to  ensure tha t |V $ | =  1 at each numerical iteration, it is necessary to reinitialize $  

to be the signed distance function to its zero level set. This is done by replacing T ” with U 

where i/j U the steady-state solution of

^  =  sign($") (1 -  |V '0 |) , ^ (x , 0) =  (8.8)

Using an explicit discretization in time and a variation of the Engquist-Osher conservative 

approximation to the spatial gradient yields

-  A r * » W W C M & * )
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where A t  is the time step and r] is the iteration count (cf. [15]). Let

82

then

A = m ax(D “ 0)2, A'

B =  m m ( D + iN kA))2. B'

C = m ax(L > -^T fc,0 )2, G

D II 3 5 £ ?r O to D'

E -  max(Dz -tpTk,0)2, E'

F = m .m (D + ^ j k ,0)2, F'

m in (D -^ L fc,0 )2, 

max(L>+V^-fc,0 )2, 

m in (L > -^ jfc,0 )2, 

m ax(D + i ’i j 'k ’ 0)2! 

m in(L > -^L fc,0 )2, 

m ax(D + i/;^fc,0 )2,

G ^ ’U )  -

> o(max(A, B)  +  max(C, D) +  m ax(£ , F ) )1//2 — 1 

(max(A', B')  +  max(C", D')  +  m ax(£ ', F '))1/2 -  1 k <  0

0, otherwise

In practice it is not necessary to perform a large number of iterations, since it is only necessary 

to m aintain accuracy near the zero level set of <hn. A stopping procedure (cf. [76]) for the 

reinitialization is given by computing

Q  = ------- -----------------------------M

where M  is the number grid points such tha t |$7jfcl < 1 -  If Q < At, then the solution is 

considered stationary and the reinitialization procedure is stopped.

Thus the algorithm for solving (8.1) is given by iterating the following two steps:

1. given <&", compute $ n+1 using (8.7);

2. reinitialize $ ”+1 to  be the signed distance function from its zero level set by approxi­

mately solving (8.8) using the above procedure.
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In all examples shown here, 4>o(x) is chosen to  be the signed distance function to a sphere

contained entirely inside the video domain, Q, and the orientation is chosen so tha t 4,o(x) is 

negative on the interior of the sphere.

8.3 D iscretizing th e  D ivergence O perator

There are no derivatives in the term  (3{c2 — c \) (D — ^(ci +  C2 )), so it is only necessary to 

develop a spatial discretization for

d iv (5 (x )V * (x ,i))  (8.9)

at the grid point (X i , y j , Zk). We follow the argument given in Morton and Mayers ([45], Section 

6.3). Suppose tha t we want to solve the equation V • (</V4>) =  0. Rather than  discretizing 

this equation directly, it is possible to discretize an integral form.

Suppose th a t V  is the cube given by the solid lines in Figure 8.1. This is the cube whose faces 

are parallel to the coordinate axes and whose volume is 1/8 the volume of the cube centered 

at ( x i , y j , Z k )  whose vertices are the neighboring grid points (the cube given by the dashed 

lines in Figure 8.1). Each solid black dot is a point on the discretization grid for this problem. 

The points marked by an “x ” are the half-grid points along the coordinate directions, each 

of which is the center point of a face of V.

Given this picture, solving V • (gV4>) =  0 a t (Xi ,yj ,Zk) is equivalent to solving the integral

form Jv  V • ($V4>) dx =  0 at ( x t . y . j , Zk ) .  By Gauss’ divergence theorem (cf. [42], Section 8.4)

J  V • (5V4>) dx =  J  ff(x) dS, (8.10)

where d & /dn  is the normal derivative of 4>. This is a particularly useful expression given 

the volume element V, since the normal directions to  the boundary of V  are the coordinate
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Figure 8.1: Volume Element for Discretizing the Divergence Operator

vectors. This means th a t the normal derivatives of $  along the faces of V  are just the regular 

partial derivatives, i.e. the normal derivative on the top face of V  is , the normal derivative 

on a vertical face parallel to the yz  plane is and the normal derivative on a vertical face 

parallel to  the xz  plane is

Recalling tha t A x  — A y  = A z  = 1 and noting tha t the area of each face of V  is 1, we 

approximate
r / f) ib\

dS = 0 (8.11)
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by

9 i + \ / 2 , j , k  — *&i , j , k)  ~  9 i - l / 2 , j , k  {*&i , j ,k ~  ^ i —l , j , k )

+  9 i , j + l / 2 , k  ( $ i , j + l , k  ~  $ i , j , k )  ~  9 i , j - \ / 2 , k  ~

+  9 i , j , k + \ / 2  ( $ i j , k + 1 “  $ i , j , k )  ~  9 i , j , k - l / 2  _  $ i , j , k - l )  =  0  ( 8 - 1 2 )

The finite difference approximation $ij+i,fc ~  &i,j,k Is the centered difference approximation 

to  the x  partial derivative at the point 3>ij+i/2,fc- If we approximate the value of gl_:j+\/2 .k by 

linearly interpolating in the x  direction, then

9 i , j + l . k  +  9 i , j , k  
9 i , j + l / 2 , k  ~  2

The approximation given by (8.12) can then be rewritten

2 ^  '  ( 9 l , j , k  d" 9 i , j , k ) {*&l , j ,k ~~ *&i , j ,k)  T  ~ ^  '  ( 9 i . l , k  A  9 i , j . k ) ~~ *&i , j ,k)

\  Y  ( 9 i , j , i  +  9 i , j , k )  = 0. (8.13)
iG { fc + l , f c - l }

The discretization technique on the left-hand side of (8.13) is called a finite volume method, 

and we will use it to approximate the divergence term  in of (8.7).

8.4 A Semi-implicit Scheme with Operator Splitting

It was noted above tha t there are two primary drawbacks to using the hyperbolic form of the 

segmentation PDE (8.1). The first is tha t the gradient must be approximated in three different 

ways. We have overcome this difficulty by enforcing |V $ | =  1 at each numerical iteration. 

The second difficulty is th a t the CFL condition for the equation requires an extremely small
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time step. This is prohibitive, since, in our case, a large number of iterations are required.

8 .4 .1  S e m i-Im p lic it  S ch em e

Rather than  discretizing (8.7) explicitly in time, it is necessary to  develop a more stable 

technique. One such scheme is the semi-implicit time discretization of (8.7). This scheme is 

given by

d -  aA td iv  =  *?Jtk + m { c n2 -  c?) ( D i j ,k - \ W  + c ? ))  • (8-14)

Using the theory of scale-spaces, it is shown in [70,71] tha t this scheme is numerically stable 

for all A t >  0.

Let
d c)

As = d s 9 ds ' S 6 {x,2/,z}- (8-15)

Expanding the divergence on the left-hand side of (8.14) yields

-  a A t  (Ax + A y + A z) + m { c n2 -  c?) ( d ^  -  ^(c? +  c? ))  . (8.16)

Thus the time update for <3>n+1 is given by

=  (T -  q A t (Ax + A y + A z) T l ( V  +  (3At.(c2 -  c?) ( d  -  i (c ?  +  c £ ) ^  , (8.17)

where 1  is the identity operator.
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8.4.2 A dditive O perator Splitting

87

The inverse operator required in (8.17) can be computed directly using a multigrid approach, 

but it is also possible to use operator splitting. Two common forms of operator splitting are 

the multiplicative splitting methods ADI (cf. [45]) and the locally one-dimensional (LOD) 

scheme (cf. [36]). The LOD method uses the approximation

( I  -  a A t  (Ax + A y + A2))_1 «  ( I  — a A t A x)~l ( I  -  a A t A y ) ^  ( I  -  a A t A z)~l . (8.18)

The operators on the right-hand side do not commute, so the order in which they are applied 

affects the solution. This introduces an axial bias, which is undesirable. O ther multiplicative 

splitting schemes suffer from the same problem.

We use, instead, additive operator splitting (AOS) (cf. [39,40,70,71]), where the following 

approximation is used:

( l - c t A t { A x + A y + A z) ) - l ^ \  V  ( l - 3 a A t A s)~l . (8.19)
O

s€{x ,y ,z}

This operator splitting yields an 0 ( A t 2) approximation to the semi-implicit scheme as can be 

seen from the Taylor series expansions

( I  — a A t (A x +  Ay +  A z))  ̂v =  v +  cnAt(Ax -I- Ay +  A z)v +  O(At^),

and

^ (1  — 3aAL4X)-1?; +  ^  ( I  -  S a A tA y )^ 1 v +  ^  ( I  -  3aA tA z)~l v

=  ^  iv +  3 a A tA x u) +  ^  (v + 3 a A tA yv) +  -  (v +  3 a A tA zv) +  0 ( A t 2)
o o tS

=  v + a A t (A x +  Ay + A z)v + 0 ( A t 2).
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Thus, since (8.17) is already an 0 ( A t 2) scheme, the global error does not change when AOS 

is used.

To compute the approximation to A x , we use a one-dimensional version of the finite-volume 

discretization in (8.13). Let m be the number of elements in row i of frame k from the leaf 

video sequence, and Pt_k E  R™ be the vector whose /th element is Then A x :

is given by

Dm . Tom

(.AxP^k)[ ~ n  (.9i,l+l,k T  9i,l,k) (^i,/+l,fc n (9i,l—l,k "t" 9i,l,k) (^i./—l,fc ?

for I E  {2, . . .  ,rn — 1}. For row i in frame k, the m atrix corresponding to  A x is then the 

tridiagonal

I € {j  +  1, j  — 1},

5 3  i . 9 i ,n .k  9 i , j , k ) /  2, I j ,  
n € { j - l , j + l }

otherwise.

(8 .20)

Boundary pixels are assumed to have only one neighbor, so the first row of A x is

9  (f f i.l .fc  +  9 i , 2 , k ) i  2  ( 9 i , l , k  +  9 i . 2 , k ) j 0 ,  . . . , 0 ^  . (8 .21 )

The last row is computed analogously. The operator A x is computed individually and applied 

independently to each row in each frame of the video sequence.
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Similarly, for a fixed column j  in a fixed frame k, the A y approximation has the form

— *

Z G {i +  1, Z — 1},

T.  (9n,j,k d" 9i,j,k) /  2, Z Z,
n € { i —

(8 .22 )

0, otherwise.

The A y operators are computed individually and applied independently to each column in 

each frame of the video sequence.

Finally, for a fixed row Z and fixed column j ,  the A-  approximation is given by

(Az)kJ ~  i

i E {fc +  1, fc — l},

(8.23)

0, otherwise.

The A z operators are computed individually and applied independently to the time series for 

each pixel in the video sequence.

The boundary conditions for the operators A y and A z are analogous to those for A x . following 

(8.21). Given these operators, the time update for the AOS scheme is

* n+1 = \  ( ^ - 3 a A f A 8) - 1 ^ n +  /8 A t ( ^ - c ? ) ( D - i ( c ?  +  ^ ) ^ .  (8.24)
s e { x , 3/ ,s}
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8.4.3 Stability  o f Linear E volution Equations
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We define numerical stability for a finite-difference or finite-volume approximation to a parabolic 

partial differential equation, bu t first we classify the segmentation PDE.

D efin itio n  8 .4 .1 . A partial differential equation of the form

^ ^  =  A (x )S (x ,t)  +  F (x ,i) , (8.25)

for some linear differential operator A, is called a linear parabolic evolution equation (see 

[23], Chapter 1).

The segmentation PDE given by (8.7) is not quite linear, because the function

E "  =  /?(<£-<?)  ( D - ^  + Ef)}

implicitly depends on <f>. Wre can treat (8.7) as a linear equation, however, since F  is uniformly 

bounded for all time independent of 4>, which implies tha t the dependence of F n on <f>” does 

not affect the amplification of numerical errors. Even though c\ and ci depend on <f>, their 

values are uniformly bounded above and below by rninD (x) <  C\,C2 <  m ax fi(x ). Thus

-(3  m a x P (x )2 < F n <  /3max D ( x ) 2

for all time.

Now we define stability of a numerical approximation to a linear parabolic PDE (see [45], 

Section 5.5).

D efin itio n  8 .4 .2 . Suppose that B\ and B q are m  x m  matrices and that

B ^ n+l = B 0$ n + F n (8.26)
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is a finite-difference or finite-volume approximation to the solution of (8.25) such that B \  is 

of the form

B  ̂ = N7 + T - A t
(8.27)

for some linear operator T  that is independent of A t .  Then (8.26) is numerically stable for  

all A t  > 0 i f

l lB f1!! <  C iA t, (8.28)

for some constant C\ > 0, and

< c 2 (8.29)

for all n  G N and fixed C2 > 0.

Here || ■ || is the spectral m atrix norm, i.e.

„„„ (Ax., Ax)
A =  sup .

x # 0  (x .x)

8 .4 .4  S ta b ility  o f  A O S

The unconditional stability of (8.24) is proven in [71] using scale-space theory, but it can be 

proven directly using Definition 8.4.2.

We define

$ ”+1 =  ( I  -  3 a A tA xf f l ($ ” +  A t  F n) (8.30)

=  ( I  _  S a A t A y f f 1 ($ n +  A t  F n) (8.31)

$ ”+1 — ( I  — 3aA tA 2)_1 ($ "  +  A t  F n) , (8.32)

and note th a t 4>"+ 1 =  4 (<h"+1 +  4>y+1 +  4>"+ 1). It will be shown that the numerical schemes

given in (8.30)-(8.32) are unconditionally stable, so their mean is also stable.
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Equation (8.30) can be rewritten

(8.33)

Let B \ — — 3aAx , and note th a t this satisfies (8.27). Let B q = -%fl. We must show that

B \  and B q as defined here satisfy (8.28) and (8.29).

First we show that (8.28) is satisfied.

L em m a 8 .4 .3 . The matrix operators (—3 a A s) : Mm —> Rm, for s 6 {x , y , z } ,  are symmetric 

and positive semi-definite.

Proof. By the definitions given in (8.20), (8.22), and (8.23), it is clear th a t the operators A x , 

A y, and A z are symmetric, so therefore —3a A x , —3a A y, and —3aA z are also symmetric. It 

is left to  be shown that they are positive semi-definite.

Let x  € Mm be nonzero. Then —3aA x is positive semi-definite if x T (—3a A x) x  >  0. Write 

x  =  ( x i , X2 , • • • , x m)T . Then

(—3aAx) x  =  ( -3  aAx) (xi , x2, ■ ■ . , x m)T

f
§ a ( S i , i , f c  + g i , 2, k)  ( ^ i  -  X 2)

f a  [(5i,i,fc +  5»,2,fc) { x 2 ~  x i )  +  (gi ,2,k  +  9i ,3,k)  { x 2 -  x 3 )]

V

2 Q  [ ( d i . m —2,k T  9 i . m —\ , k )  (Xrn — 1 2 ) T  { . 9 i ,m—l , k  “t  9 i . m . k ) ( X m  — 1 ^ m ) ]

2 ^  ( 9 i , m , k  A  9 i . m  — l , k )  (Xjn X m  — 1 ) /
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so, since g is non-negative,

xT (~ 3 a A x) x  =  x i  Q a  (giXk +  g ^ k )  (^l -  x 2)^

+  oc2 Q a  { { g i x k  +  9 i a , k )  ( x 2  -  * i )  +  ( 9 i . 2 , k  +  9 i , i , k ) ( * 2  -  ^ 3 ) ] ^  

+  . . . +  X m  ^ 2 ^  ( 9i,Tn,k “1“ 9 i , m —\ , k )  ( x m  X m —l ) ^

3 3
=  2 a  ( 9 i A k  +  9 i , 2 , k )  ( ^ 1  -  2-2 ) 2 +  2  a  ( 9 i , 2 , k  +  9 i , 3 , k )  ( X 2  ~  X 3 f

3

P  ■ • • “I" 2 ^  i . 9 i , m —l , k  P  9 i , m , k )  { x m —1 3 -m )

> 0.

Thus —3a A x is symmetric and positive semi-definite. A similar argument shows tha t —3a A y 

and —3 aA-  are also positive semi-definite. □

Since —3a A s is symmetric and positive semi-definite, its eigenvalues are real and non-negative. 

Thus B i =  - ^ T  — 3aA , is symmetric and positive-definite, and its eigenvalues have the form

1 , x 1 +  AAt 
A t + ~  A t ’

where A is an eigenvalue of — 3a A r . Thus the eigenvalues of B ^ 1 satisfy

'1 +  A A A -1 A t
A t  J  1 +  AAf

< At.

Since B 1 1 is symmetric and all of its eigenvalues are real numbers less than  or equal to At,  

H V d  ^  AT This shows th a t B \  satisfies (8.28) with C\ — 1.

Now we show that (8.29) is also satisfied. This follows from

( B ^ B 0) n \\ < | |VIP IIBoll" < (A t)” ( ^ ) n = I-
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Thus (8.29) is satisfied with C<i — 1.

94

Since (8.28) and (8.29) are both satisfied, the numerical scheme in (8.30) is stable for all 

A t  >  0. A similar argument holds for the schemes in (8.31) and (8.32). Since all three of 

these schemes are stable, their mean is also stable. Thus (8.19) is a stable numerical scheme 

for approximating the solution to (8.7) for all A t  >  0.

8.4.5 Convergence of AOS

Here we show th a t the AOS scheme in (8.24) converges to the solution of (8.7) as A t —> 0 for 

a fixed ratio A t/  max {Ax, A y,  Az}. In order to show this, we first require a definition.

D efin itio n  8 .4 .4 . Let u be the exact solution to a linear parabolic evolution equation as in 

(8.25), and let B \ and Bo be as in (8.26). The truncation error, T n, of the numerical scheme 

is given by

T n =  B lUn+1 -  [B 0un + F n],

where un — u(tn). The numerical scheme determined by B\ and Bo is called consistent if 

T n —> 0 as A t  —> 0 for a fixed ratio A t /  max{Ax, Ay,  Az}.

We continue with a special case of a classical theorem of numerical analysis, the Lax-Equivalence 

Theorem ([45], Theorem 5.1).

T h e o re m  8.4 .5 . I f  the numerical scheme given by (8.26) is consistent, satisfies H-B]-1!! < 1, 

and is stable, then it is convergent.

It has already been shown that the AOS scheme in (8.24) is stable and satisfies |[ A?j-1 j| <  1. 

Thus, in order to  show that the AOS scheme is convergent, it is only left to be shown that 

this scheme is consistent. Again, we will show that each of the schemes in (8.30)-(8.32) are
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consistent and th a t their sum is also consistent. First of all, noting (8.15),

d d .
A x —> —  o—— as A x  —> 0. 

d x y dx

Thus, for a fixed ratio A t /  Ax ,

1  o „  \  n + i  1  ™  du (  d . 9  \—  -  3a A x un+L -  — un -  F n -> —  -  3a — g —  ) u - F n.
A t  XJ A t  dt  \ d x  d x J

A similar results holds for (8.31) and (8.32). Thus, since u is the exact solution for (8.7),

q n

—  (un+l -  un) -  3a  (Ax + A y + A z) un -  3F n -> 3 - ^  -  3adiv (gVu) -  3F = 0. 

Thus the AOS scheme is consistent, and, therefore, by Theorem 8.4.5, convergent.

8.5 A dvantages o f AOS

There are two reasons th a t the AOS scheme in (8.24) is computationally advantageous over the 

semi-implicit scheme (8.17). Since the operators T  — 3 a A t A s are strictly diagonally dominant 

and tridiagonal, the well-known Thomas algorithm - a special form of Gaussian elimination 

for strictly diagonally dominant, tridiagonal systems - can be used to  solve the linear systems

( I  -  3 a A t A s) $ n+1 =  +  PAt((% -  c?) ( d  -  i (c ?  +  <$)

for 4>n+ l. This is a fast method for linear system backsolves, since the computational com­

plexity of the method grows only linearly with the number of grid points. Also, each of the 

linear systems to be solved at each numerical iteration is independent of each of the others. 

Thus each of the backsolves can be performed in parallel. The operator A x acts independently 

on each row of each frame in the data set. Likewise A y acts on each column independently, 

and A z acts on each pixel’s time series independently. This means each of the linear systems
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to be solved is small, but there are a large number of linear systems to be solved at each 

numerical iteration (708608 for the first example in the next chapter). Such a large number 

of linear system solves would be computationally problematic if they could not be done in 

parallel. As it is, they can be solved in parallel, and the method is computationally efficient.

The second primary advantage to the AOS scheme is th a t it is unconditionally stable with 

respect to At. Thus A t can be chosen to be quite large, so tha t few iterations are required. 

Whereas each numerical iteration of the explicit m ethod is much faster than a numerical 

iteration of the AOS method, using AOS requires on the order of 10 numerical iterations in 

order to compute the steady-state solution of (8.7) as opposed to on the order of 106 iterations 

required for the explicit method.

8.6 Im plem entation  D etails

The numerical method described in this chapter was implemented using ANSI C /C + +  with 

no third-party libraries. Computations were performed on an SGI Origin 2000, administered 

by the University of M ontana Molecular Computational Core Facility, with 32 processors 

(300 Mhz) and 32 gigabytes of RAM. Parallelization was achieved using the OpenMP shared- 

memory parallelization library. Testing was performed using M atlab and C /C + +  on a PC 

running SUSE Linux with a 1 Ghz AMD Opteron-64 and 4 gigabytes of RAM.

8.7 M odel V alidation

In order to demonstrate th a t the segmentation algorithm and numerical scheme here presented 

segment gray-scale data  correctly, we demonstrate the algorithm on binary data. The data  

used is generated using a two-dimensional cellular neural network (CNN) density classifier 

[16]. The initial state, i.e. the first image in the video sequence, is a random pattern  of 0’s
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and l ’s, and the evolution in time is determined by the density classifier. The final state 

has all 0’s. Each image in the video sequence is 200 x 200 pixels, and there are 375 images 

in the sequence. Though the patterns produced are not identical to the patterns generated 

by stom atal patches, this data is useful for demonstrating the power of the segmentation 

algorithm. Since the data  is binary, it is assumed that the background model is already 

subtracted. Thus only the segmentation component of our algorithm is demonstrated and not 

the background model generation. Example images for the CNN segmentation can be seen in 

Figure 8.2. Note that the boundary separating the black and gray regions is captured very 

well. For this segmentation a  = 1, /3 =  2, and A t =  0.15. Only 3 iterations of the numerical 

scheme were required for this data, so the example images are shown at f =  0.45.
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Image 50 Image 100

Image 150 Image 200

Image 250 Image 300

Figure 8.2: Segmentation of CNN Images
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Chapter 9

R esults and Future Work

In this chapter we present the results of the video segmentation algorithm. We also present 

some preliminary pattern  analysis results and outline future work.

9.1 R esu lts

We present the results of the video segmentation in two formats. First, we view the segmenta­

tion by overlaying the solution surface directly on the data  D(x) and /(x ) . The segmentation 

contour in each frame is the cross-section of the solution surface for tha t time. The primary 

goal of the segmentation is to  analyze the pattern  dynamics of the fluorescing regions, so we 

also compute the binary patterns tha t the segmentation yields.

9 .1 .1  C o n to u r  S e g m e n ta t io n

The result of the video segmentation algorithm is a function $  that is the steady-state solution 

to the parabolic form of the segmentation PD E (8.7). The zero level set of $  is the surface

99
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th a t segments the video domain into fluorescing regions and non-fluorescing regions. First, we 

view the zero level set overlayed directly on the data  D(x).  Figures 9.1 through 9.3 show the 

segmentation contours overlayed on D(x) .  The results were obtained using a  — 1.0, ft =  2.0, 

and A t =  0.15, and the steady-state was computed after 15 iterations (t =  2.25). In these 

images, the data  is scaled so tha t the bright regions appear gray. The segmenting contours 

are in white. These example images come from a sequence of 436 frames tha t are 512 x 512 

pixels. This particular sequence is indicative of the stomatal patchiness being investigated. 

The contours can also be viewed directly on the video data 7(x), as can be seen in Figures 

9.4 through 9.6.

In image 400, a bright region is segmented along the largest vein in the lower left of the image. 

This is not an error of the segmentation but an artifact caused by errors in the background 

model. In order to eliminate this region - since it is not actually fluorescing - it is necessary 

to adjust the background model around the large veins. That is not done here.

In Figure 9.7, we show the same segmentation for Image 2. Note tha t there is no segmen­

tation contour on this image. If there were a contour, that would indicate tha t there are 

fluorescing regions in th a t image. Since there is no contour, the video segmentation algorithm 

has correctly computed th a t there are no fluorescing regions, as there are no dynamics in the 

early frames. If the same segmentation algorithm were applied to each frame in the video 

sequence independently in two dimensions, an incorrect result would be obtained for Image 2. 

It is necessary for the algorithm to compare the scales of fluorescence across the entire video 

sequence, so the solution must be computed in three dimensions on the entire video sequence.

Results from a second leaf video sequence of 500 images can be seen in Figures 9.10 and 9.11, 

again using the param eter values s j  =  15, S2 =  0 .4 , a  =  1 .0 , f t  =  2 .0 , and A t  =  0 .1 5 . This 

sequence demonstrates initial stom atal patchiness, but the steady-state where all stom atal 

apertures are uniformly adjusted is attained after 250 frames.
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Image 150

Figure 9.1: £)(-. •, 150) with Segmentation Contour Overlayed

Image 275

Figure 9.2: 275) with Segmentation Contour Overlayed
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Image 400

Figure 9.3: D ( ■, -,400) with Segmentation Contour Overlayed

T ---------------------------------------------------------------------' t----- " ----------

Image 150

Figure 9.4: /(-, •, 150) with Segmentation Contour Overlayed
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Image Z75

Figure 9.5: /(•, -,275) with Segmentation Contour Overlayed

Image 400

Figure 9.6: 400) with Segmentation Contour Overlayed
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Image 2

Figure 9.7: D(-,-,2) and 2) with Segmentation Contour Overlayed

9 .1 .2  S e n s it iv ity  to  P a r a m ete rs

All of the segmentations in Figures 9.1-9.6 were computed using the same set of param eter 

values. The segmentation is not, however, very sensitive to the choice of the param eter 

values a  and (3. The im portant quantity is the ratio of a  to  (3, and example images are 

presented in Figure 9.8 computed using several different values for a  and (3. Note th a t the 6 

examples represent ratios of a  to (3 of 1 /5 ,1 /3 ,1 /2 ,1 ,2 ,3 ,5 . As can be seen in the figure, the 

segmentation is similar for each set of parameters such tha t a / (3 < 1. For the cases where a  > 

/3, the regularization dominates the segmentation and the correct regions are not segmented. 

Thus the algorithm is sensitive only to  which factor is dominating the segmentation, and, as 

long as the segmentation is the dominant term  (i.e. (3 > a),  the algorithm is robust to the 

actual value of the ratio at/ f3.
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cl =  1 ,  p  =  5  cl =  1 ,  p  =  3

a  = 3, p = 1 c l = 5, p = 1

Figure 9.8: Segmentation of Image 300 with Differing Values of a  and j3
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Image 275 Image 400

Figure 9.9: Binary Segmented Images

9 .1 .3  B in a r y  S e g m e n ta t io n  an d  P a tte r n  A n a ly s is

In order to analyze the dynamics of the two-dimensional patterns seen in a leaf video, it is 

necessary to look at a binary form of the segmentation. Sample images can be seen in Figure 

9.9. The white regions in the binary segmentation correspond to the areas of the leaf tha t are 

actively fluorescing, and the gray regions of each image correspond to  areas of the leaf that 

are not fluorescing.

Given the binary segmentation, it is possible to use the methods of two-dimensional pattern
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Image 50 Binary Segmentation

Image 100 Binary Segmentation

Figure 9.10: Segmentation and Binary Results from a Second Leaf Video Sequence
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Image 150 Binary Segmentation

Image 200 Binary Segmentation

Figure 9.11: More Segmentation and Binary Results from Second Leaf Video Sequence
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Number of Regions in Each Frame of Video S equence
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Figure 9.12: Number of Regions of Size 100 Pixels or Larger in Each Frame
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analysis to develop models based on statistical mechanics tha t can generate similar patterns. 

The first step is to reduce each two-dimensional pattern  to a single measure, so the entire 

video sequence can be analyzed as a time series. There are several different measures tha t can 

be used, but the first is the number of fluorescing regions in each frame. A plot of the time 

series can be found in Figure 9.12. While the number of regions steadily increases over the 

first half of the experiment, it seems to stabilize after image 300. In the last 136 frames the 

number of regions oscillates but the oscillations decrease in amplitude. For this computation 

only regions containing 100 or more pixels are counted.

The size of each of these regions is also im portant, and a second useful measure is therefore 

the mean region size in each image. Figure 9.13 shows the time series associated with mean 

region size. Once the dynamics are initiated, the mean region size oscillates heavily, but after 

frame 275 the oscillations decrease substantially in amplitude. Thus the mean region size, as 

well as the number of regions, stabilizes towards the completion of the experiment.

9.2 Future Work

We can take several different directions in our future analysis. The first step in improving the 

segmentation algorithm is computing a more accurate background model. This will eliminate 

the incorrect segmentation along the veins. Improving the segmentation to yield more regular 

patterns, i.e. patterns with smoother boundaries, is another im portant step. More regular 

patterns are more likely to be modeled using known systems in mechanics. One way of 

producing patterns with smoother boundaries is by denoising the data using a Gaussian 

convolution. The bright regions in the non-linearly scaled data Z?(x) would then have a more 

regular shape. As was noted in Chapter 3, this would remove all information about the vein 

boundaries bu t might yield patterns tha t can be modeled more readily.

A second improvement to  the numerical segmentation algorithm could be accomplished by
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incorporating the reinitialization directly into the segmentation functional as in [38]. This 

would remove the need for the reinitialization step. A drawback to  such a m ethod is that 

it requires an explicit numerical implementation, so the semi-implicit scheme outlined here 

would no longer be applicable.

As far as the binary patterns are concerned, a more sophisticated analysis of pattern  dynamics 

can yield more information as to  the possible physical system th a t produces the patterns seen 

in the leaf videos. For example, one can compute the two-dimensional Shannon entropy 

and an associated two-dimensional excess entropy [24] - using approximation methods for 

the Shannon entropy of the two-dimensional images [57] - in order to determine the scale 

of correlations among fluorescing pixels. This would yield further insight into the coupling 

between neighboring regions of fluorescence. Further analysis of stom atal patterns can be 

done using topological properties of the patterns, such as measuring higher-order homology 

[25]. One can also perform an archetypal analysis [65] to determine the characteristic patterns 

of the stom atal patches.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



Chapter 10

Conclusion

Leaves have pores in their surfaces called stom ata tha t open and close to regulate CO2  uptake. 

Water is lost through open stom ata via evaporation. It is believed th a t for a fixed amount 

of water loss a leaf will globally optimize CO2  uptake, but it is not known how the stom ata 

in a leaf regulate their apertures in order to accomplish this. It has been observed in over 

200 plant species tha t neighboring stom ata form patches across which apertures are uniformly 

regulated. These patches often result in less than optimal local CO2  uptake, and it is not 

understood how such patches can produce a maximum in global CO 2 uptake. In order to 

visualize stom atal apertures, a video is taken of chlorophyll fluorescence in the leaf. A dye 

is injected into the leaf tha t fluoresces when reacting with CO2 . This leads to an inverse 

relationship between fluorescence and photosynthesis, which implies an inverse relationship 

between fluorescence and stom atal aperture.

In order to analyze the fluorescence patterns in a leaf video, it is first necessary to extract the 

regions in each frame that are actively fluorescing. A method for the segmentation of these 

regions is the primary focus of this work.

112
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10.1 Preprocessing

113

Before the fluorescing regions can be extracted, the leaf video must first be preprocessed. 

There are three steps to the preprocessing: denoising, median-change normalization, and 

scaling. The denoising process removes the high-frequency instrumentation noise associated 

with the capture of digital signals. We use an Z^-fidelity variant the ROF scheme, which 

is a m ethod tha t denoises locally within regions of relatively homogeneous intensity while 

preserving sharp edges. Preserving the edges tha t form the vein boundaries is necessary 

in order to  determine the effect th a t veins have on the dynamics of the stom atal patches. 

The median-change normalization is designed to remove low-frequency noise effects caused by 

uncontrolled lighting conditions in the lab. These effects are not known a priori, but must 

be removed nonetheless. By assuming tha t the median intensity change is caused by global 

effects, these effects can be offset by subtracting them  out of each frame in the video sequence. 

The last preprocessing step is a linear scaling of the video data.

10.2 Regular Surface Evolution

The video segmentation technique for extracting the fluorescing regions of the leaf video is 

a level set-based, variational formulation. It must be shown that such a m ethod can yield 

the desired set of regions, and, in order to show this, we develop surface manifolds and 

regular surface evolutions. A regular surface evolution is a level set representation of a time- 

differentiable deformation of one surface into another, and it is shown that the gradient descent 

method for surface functionals yields a regular surface evolution. In particular, the regular 

surface evolutions corresponding to the steepest descent method for surface functionals of the
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form

E ( M ) =  f 5 (x ,$ ,V $ )  dS,
J M

E ( M )  = [  / ( x ,  $ , V $) dx
J Rn

are computed.

10.3 Background Model

The first step in developing the segmentation algorithm is to  produce a background model, 

B(x) ,  for the video data, J(x). Since the stom atal dynamics in a leaf experiment are initiated 

by the experimentalist, it is possible to take several images of the leaf prior to the s tart of the 

fluorescence. These frames are then averaged pixel-wise to produce an image of the leaf with 

no fluorescence. Thus, rather than segmenting based directly on the image intensities in the 

video sequence, we segment based on the absolute difference between the image intensities 

and the background model, D (x) =  |/(x )  — B ( x , y )|. The resulting data  is bright in regions 

corresponding to fluorescence and dark elsewhere. In order to  further enhance the segmen­

tation, the difference data  is nonlinearly scaled to make the bright patches brighter and the 

dark patches darker.

10.4 Video Segmentation

The goal is to extract the bright regions of D(x).  and this can be done by computing an 

approximation, u(x),  to the data  such that u(x) is piecewise-constant taking on exactly two
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values. This approximation is computed by minimizing the functional

E(u)  — [  (-D(x) — u(x))2 dx,
Jn

which is just the distance from D  to  u  in L 2(Q). This is a surface functional whose gradient 

descent is a regular surface evolution, so it can be minimized if it is reformulated in a level 

set framework. A regularization term  is added to the functional to  ensure the existence of 

minimizers.

10.5 R esu lts

The segmentation algorithm produces contours tha t form the boundaries of the fluorescing 

regions in the video sequence. These contours can be viewed directly on the data  in order to 

visualize the segmentation, but the more useful results are the binary images tha t are produced 

by setting the fluorescing regions to be white and all other regions to black (or gray). These 

images can then be analyzed using the methods of two-dimensional pattern  analysis, such as 

computing the number of fluorescing regions and their sizes.

Possible future work includes more sophisticated methods of pattern  analysis, including com­

puting pattern  measures such as two-dimensional m utual information, Shannon entropy, and 

excess entropy.
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