
University of Montana University of Montana 

ScholarWorks at University of Montana ScholarWorks at University of Montana 

Graduate Student Theses, Dissertations, & 
Professional Papers Graduate School 

2006 

Acquisition and evaluation of sedimentologic paleomagnetic and Acquisition and evaluation of sedimentologic paleomagnetic and 

geochemical time -series data from Flathead Lake Montana: geochemical time -series data from Flathead Lake Montana: 

Implications for late Pleistocene and Holocene paleoclimate Implications for late Pleistocene and Holocene paleoclimate 

Michael Sperazza 
The University of Montana 

Follow this and additional works at: https://scholarworks.umt.edu/etd 

Let us know how access to this document benefits you. 

Recommended Citation Recommended Citation 
Sperazza, Michael, "Acquisition and evaluation of sedimentologic paleomagnetic and geochemical time 
-series data from Flathead Lake Montana: Implications for late Pleistocene and Holocene paleoclimate" 
(2006). Graduate Student Theses, Dissertations, & Professional Papers. 9599. 
https://scholarworks.umt.edu/etd/9599 

This Dissertation is brought to you for free and open access by the Graduate School at ScholarWorks at University of 
Montana. It has been accepted for inclusion in Graduate Student Theses, Dissertations, & Professional Papers by an 
authorized administrator of ScholarWorks at University of Montana. For more information, please contact 
scholarworks@mso.umt.edu. 

https://scholarworks.umt.edu/
https://scholarworks.umt.edu/etd
https://scholarworks.umt.edu/etd
https://scholarworks.umt.edu/grad
https://scholarworks.umt.edu/etd?utm_source=scholarworks.umt.edu%2Fetd%2F9599&utm_medium=PDF&utm_campaign=PDFCoverPages
https://goo.gl/forms/s2rGfXOLzz71qgsB2
https://scholarworks.umt.edu/etd/9599?utm_source=scholarworks.umt.edu%2Fetd%2F9599&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:scholarworks@mso.umt.edu


Maureen and Mike 
MANSFIELD LIBRARY

The University of

Montana
Permission is granted by the author to reproduce this material in its entirety, 
provided that this material is used for scholarly purposes and is properly cited 
in published works and reports.

**Please check "Yes" or "No" and provide signature

Yes, I grant permission

No, I do not grant permission

Author's Signature:

Date:

Any copying for commercial purposes or financial gain may be undertaken 
only with the author's explicit consent.

8/98

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



ACQUISITION AND EVALUATION OF 

SEDIMENTOLOGIC, PALEOMAGNETIC, AND 

GEOCHEMICAL TIME-SERIES DATA FROM FLATHEAD 

LAKE, MONTANA: IMPLICATIONS FOR LATE 

PLEISTOCENE AND HOLOCENE PALEOCLIMATE

by

Michael Sperazza

B. S., University of Colorado, Boulder, Colorado 1980 

M. A., University of Montana, Missoula, Montana 2000 

Presented in partial fulfillment of the requirements for the degree of

Doctor of Philosophy 

The University of Montana 

May 2006

Approved by:

/fc-   S.
Chairperson

Dean, Graduate School

S-  2Ss> -QL
Date

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



UMI Number: 3231692

INFORMATION TO USERS

The quality of this reproduction is dependent upon the quality of the copy 

submitted. Broken or indistinct print, colored or poor quality illustrations and 

photographs, print bleed-through, substandard margins, and improper 

alignment can adversely affect reproduction.

In the unlikely event that the author did not send a complete manuscript 

and there are missing pages, these will be noted. Also, if unauthorized 

copyright material had to be removed, a note will indicate the deletion.

®

UMI
UMI Microform 3231692 

Copyright 2006 by ProQuest Information and Learning Company. 

All rights reserved. This microform edition is protected against 

unauthorized copying under Title 17, United States Code.

ProQuest Information and Learning Company 
300 North Zeeb Road 

P.O. Box 1346 
Ann Arbor, Ml 48106-1346

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



Sperazza, Michael, Ph.D., May 2006 Geology

Acquisition and Evaluation of Sedimentologic, Paleomagnetic, and Geochemical Time- 
Series Data from Flathead Lake, Montana: Implications for Late Pleistocene and 
Holocene Paleoclimate.

Chairperson: Dr. Marc S. Hendrix

The main objective of this research was to examine a suite o f time-series proxy data for 
potential use in the reconstruction of post Last Glacial Maximum climate history for the 
northern US Rocky Mountain region. I sought to test the hypothesis that data derived 
from sediments within a very large watershed (>18,000 km2) could provide centennial 
scale resolution when applied to a basin with multiple climate environs. In this study, I 
utilized naturally occurring lacustrine sediments from Flathead Lake, Montana to 
evaluate paleoclimate implications, using a variety of physical, mineralogical, and 
geochemical data with calculated uncertainty. The results of this research include: 1) 
development and testing of a methodology for utilizing laser diffraction to determine size 
fractions of very fine-grained naturally occurring sediments; 2) quantification of 
methodological uncertainty for paleomagnetic secular variation when used as a 
chronostratigraphic tool in lacustrine settings; 3) establishment of methodological 
uncertainty for grain size, mineralogical, and certain geochemical time-series data sets; 
and 4) evaluation o f grain size, mineralogical, carbon/nitrogen, and various elemental 
analyses and their respective uncertainties for use in paleoclimate reconstructions.
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PREFACE

FORWARD

Lake sediment records have long been exploited as a source o f time-series data for 

elucidating past climate changes, because lakes respond quickly to environmental change 

and may be characterized by long periods of uninterrupted sedimentation. Interpreting 

ancient climates from lacustrine sediments is achieved by the development of time-series 

data sets for variable parameters, called proxies, within natural records. A proxy data set 

is utilized as a substitute for one or more climatic, environmental, or physical condition 

that existed in the past, but cannot be measured directly. Proxies are presumed to vary 

predictably with changing climate and so commonly are inferred to represent a record of 

climate change. Accurate calibration and discernment of these data is essential before 

they can be used to understand and predict modern and ancient climate variability.

In this dissertation, I collected time-series data from sediment cores recovered in Flathead 

Lake, Montana. My focus was to quantify the limitations and resolution of the data and 

to examine proxy variations and uncertainty that can potentially be utilized in 

paleoclimate reconstructions.

Chapter 1, entitled “High-Resolution Particle Size Analysis of Naturally Occurring Very 

Fine-Grained Sediment through Laser Diffractometry” has been published in the Journal 

of Sedimentary Research. This paper covers the establishment and testing of operational 

methods for determining grain size using laser diffraction techniques. The chapter

iii
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quantifies uncertainty and the variability of sampling preparation, operational settings 

and optical properties.

Chapter 2, entitled “Assessment of Paleomagnetic Secular Variation Correlation and 

Establishment of a Chronostratigraphic Model for Late Pleistocene and Holocene 

Lacustrine Sediments o f Core 9P from Flathead Lake, Montana” evaluates chronological 

methods applied to core FL-00-9P. A detailed assessment of paleomagnetic secular 

variation is presented that constrains procedural variations and quantifies uncertainty. A 

shortened version o f this chapter is in preparation for publication.

Chapter 3, entitled “Examination of Potential Paleoclimate Proxies for Large Open 

Lacustrine Systems: Late Pleistocene and Holocene Sedimentary Record, Flathead Lake, 

Montana” is an analyses of grain size, mineralogy, and carbon / nitrogen as paleoclimate 

proxies. The chapter tests proxy resolution and reviews the connection of each to climate 

change. Potential limitations of each proxy are considered, including uncertainty and 

external forcing, such as topography, watershed, and sediment redistribution. The 

chapter concludes with a brief interpretation of climate change, considering uncertainty, 

for the proxies acquired from Flathead Lake. Various portions of this chapter will be 

published, including an expanded analysis comparing proxies from other high latitude 

oligotrophic lakes.
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Abstract

In this paper, we present results from a large number of experiments aimed at 

quantifying method and instrument uncertainty associated with laser diffraction analysis. 

We analyzed the size distribution of fine-grained sediment (< 1-50 pm) from Flathead 

Lake, Montana, along with samples from local fluvial, volcanic, and soil systems on a 

Malvern Mastersizer 2000 laser diffractometer. Our results indicate: (1) Optimal 

dispersion o f fine-grained sediment was achieved by adding 5.5 g/1 sodium 

hexametaphosphate for > 24 hours prior to analysis and using 60 seconds of 

ultrasonication during analysis. (2) Obscuration -  a measure of the concentration of the 

suspension during analysis -  produced the most reproducible results at about 20%. (3) 

Variations in refractive-index settings can significantly alter estimated grain-size 

distributions. (4) Assumed values for absorption (the degree to which sediment grains 

absorb the light) can have a profound effect on grain-size results. Absorption settings 

near 0 resulted in unexpected bimodal grain size distributions for sediments in the <10 

pm size fraction and significantly skewed the fine-grained tail of coarser samples, 

probably because of sub-optimal diffraction by particles with a diameter similar in size to 

the laser wavelength. Absorption settings closer to 1 produced very reproducible results 

and unimodal grain-size distributions over a wide range o f refractive indexes.

Our study has shown that laser diffraction can measure very fine-grained sediments (< 

10 pm) quickly, with high precision (~ 5% at 2 standard deviations), and without the 

need for extensive mineralogical determinations. These results make possible a new

2
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generation o f studies in which high-resolution time-series data sets of sediment grain size 

can be used to infer subtle changes in paleohydrology.

Introduction

Grain Size as an Environmental Proxy:

Grain-size distributions o f naturally occurring sediment have long been used as an 

important source of information for the interpretation of sedimentation style (e.g., 

distinguishing underflow from suspension settle-out deposition) and environmental 

reconstruction (e.g., distinguishing littoral from offshore settings). Traditional particle 

size determinations of clay- to sand-size sediment common in offshore lake settings have 

used a variety of technologies. These include analysis by settling tube, sieve, and pipette 

(e.g., Beuselinck et al. 1998; Weber et al. 2003), hydrophotometer (e.g., Jordan et al. 

1971), electrical sensing (Coulter Counter/Multisizer; e.g., Bianchi et al. 1999), and x-ray 

absorption (SediGraph; e.g., Singer et al. 1988; Campbell 1998). These technologies can 

be quite time consuming and relatively imprecise, particularly in the case of sieve and 

pipette analysis. Reported error for these methods ranges from a few percent in the case 

of SediGraph technologies (e.g., Campbell 1998) to error in excess o f 40% in the case of 

sieve and pipette methods. Surprisingly, many studies involving grain size analysis fail 

to report analytic error at all, regardless of the technique, making it difficult to critically 

assess the value o f such data sets.

Over the past few decades advances in laser diffractometry have significantly improved 

the precision and efficiency of fine-grained particle size analyses. As a result, this

3
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technology is becoming more common as a standard sedimentologic tool (Loizeau et al. 

1994; Beuselinck et al. 1998). Unfortunately, however, few published studies involving 

laser diffractometry analysis o f fine-grained, naturally occurring sediments report 

associated analytical uncertainty. Laser particle diffractometers were originally designed 

for determination of droplet size in fuel sprays and are commonly used for analysis of 

synthetic substances such as pharmaceutical compounds and latex paints, all of which 

have known and consistent optical properties. In contrast, naturally occurring sediments 

contain diverse mineral compositions, each mineral with a unique set of optical properties 

that can affect the outcome of laser diffractometry results. Error also can be introduced 

through variations in sample preparation procedures, the means by which the prepared 

sample is introduced to the diffractometer, and the machine settings and parameters.

In this paper, we present results from a series of experiments o f laser particle size 

analysis of very fine-grained sediment. Most samples consist of Pleistocene and 

Holocene sediment from piston and gravity cores recovered from Flathead Lake, 

northwestern Montana. Flathead Lake is a large (510 km ) open lake that receives > 90% 

of its sediment from the Flathead River (Moore et al. 1982). Fine-grained sediment is 

dispersed across the lake bottom through hemipelagic suspension settle-out, with minor 

redistribution through sediment gravity flows close to the Flathead River delta. Sediment 

samples we used in this study were collected from cores located well away (~ 19 km) 

from the delta system, where suspension settle-out sedimentation processes are dominant 

and median grain sizes generally are < 5 pm. To supplement our experimental analyses 

of these very fine-grained lacustrine samples, we also included samples of soil, fluvial
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sediment, glaciolacustrine sediment, and volcanic ash. Our primary goals in this study 

were to establish a set o f standardized sample preparation procedures and to quantify 

both method and machine uncertainty associated with laser diffractometry analysis of 

naturally occurring sediment (Table 1).

Table 1-Summary o f experimental results conducted in this study.

Target Test Tested Range  Analytical Impact  Impact
Sonication 0-5 min Without sonication median 

grain size is overestimated; 
excessive sonication may 
cause aggregation and/or grain 
fracturing.

Low

Sub-sampling Dry, Pipette, 
Direct

Sub-sampling method may 
affect median grain size. 
Consistent methods improve 
analytical results.

High

VX

't,©

Index of 
Refraction

RI 1.43-3.22 Little impact for range of 
natural sediment minerals, if 
absorption properly set.

Low

&© Absorption 0-1 Main optical property, High
Ph improper setting results in
ft cJ high variability and bimodal
V* distribution in < 7 pm
o fraction.

VI
U
©'Ssft
u

Pump Speed 1000-3 OOOrpm Stable between 1800 to 2300 
rpm. High variability < 1400 
rpm, gradual changes > 2300 
rpm

Low

ft
pH Obscuration 2-40% Low values and coarser grain Medium
©
c size return variable results.

p t i Results stabilize in a range of
ft
2 15-25% obscuration.
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As we describe below, careful application of laser diffraction techniques can result in 

total uncertainty (i.e., method plus machine error at the 95% confidence interval) of 6% 

or less for very fine-grained sediments. Such precision makes possible a new generation 

of sedimentologic studies in which subtle time-series changes in grain size may be used 

to infer the paleohydrologic history of watersheds.

Laser Diffractometry:

Laser diffractometry was introduced as a method for particle size analysis in the early 

1970s. Early laser diffractometers used a small number of detectors (typically 31 or less) 

and were somewhat cumbersome to use, some diffractometers requiring lens changes for 

expanded detection range (McCave et al. 1986; Loizeau et al. 1994; Muggier et al. 1997; 

Corcoran et al. 1998). These early instruments had a narrow size detection range (i.e., 

0.5-560 pm) compared to modern instruments (0.02-2000 pm for the Malvern 

Mastersizer 2000), resulting in under representation of the very fine grain-size fraction. In 

addition, early diffractometers used a small number of particle-size bins (e.g., 15) for 

each analysis, resulting in relatively low resolution of grain-size distributions (McCave et 

al. 1986; de Boer et al. 1987; Singer et al. 1988; Loizeau et al. 1994; Buurman et al.

1997; Beuselinck et al. 1998). Modem laser diffractometers utilize a larger number of 

detectors and improved mathematical models, increasing the detection range and 

distribution resolution, and significantly improving the quantification of particles finer 

than 10 pm (Muggier et al. 1997; Wen et al. 2002).

6
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Low-angle laser light scattering (LALLS, commonly called laser diffraction) systems 

typically pass a laser beam of known wavelength through a suspension of the material to 

be analyzed and measure the angular distribution and intensity o f the forward-scattered 

(diffracted) light by the particles in suspension (Fig. 1). A theoretical model, based on 

diffraction of particles with particular properties and grain-size distribution, is then fitted 

to the actual diffraction results. The difference between the measured diffraction pattern 

and the theoretical diffraction pattern is the portion of the measurement unexplained by 

the model. Minimizing this residual reduces the analytical uncertainty.

Two main diffraction theories are typically used in the prediction of laser particle size 

results: Fraunhofer theory and Mie theory. Detailed reviews o f these two methods for 

predicting diffraction patterns along with discussions of the principles of laser 

diffractometry are presented by McCave et al. (1986), de Boer et al. (1987),

LA

FABS

plana
FP

Laser

RL MC

Figure 1-Schematic diagram o f Malvern Mastersizer 2000 laser diffractometer. 
Laser light at a wavelength o f 0.632 pm is focused by Reverse Fourier Optics 
(RL) and collected by backscatter (BS), forward angle (FA), and large angle (LA) 
detectors. Other labeled components are the focal plane detector (FP), obscuration 
detector (Tr), laser power monitor ( M r ) ,  and measurement cell (MC). (Courtesy 
of Malvern Instruments, Ltd.).
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Singer et al. (1988), Agrawal et al. (1991), Loizeau et al. (1994), and Wen et al.(2002) 

and will not be reviewed in detail here. The basic difference between the two light- 

diffraction theories is that Fraunhofer theory approximates particle size from extinction 

efficiency (scatter + absorption) and assumes the same values of extinction efficiency for 

all particles sizes. In contrast, Mie theory provides for variation in extinction efficiency 

as a function of particle size (Webb 2000). Hence, Mie-based diffractometry requires 

that the indices of refraction and absorption be known for both the particles being 

analyzed and the medium being used to suspend the particles.

Prior to the mid-1980s laser diffractometers relied mainly on Fraunhofer theory because 

they lacked the computing power to execute the more complicated Mie-based 

calculations in real time (Wedd 2000). A significant deficiency of Fraunhofer-based 

grain-size determinations is that they tend to underestimate particle sizes close to the 

wavelength of the laser source light (McCave et al. 1986; Singer et al. 1988; Agrawal et 

al. 1991; Loizeau et al. 1994). In contrast, Mie-based calculations are less susceptible to 

grain-size underestimation near the laser wavelength. As a result of these differences 

between the two processing techniques, The International Organization for 

Standardization issued a standardized procedure for the determination of fine-grained 

particle size distributions, which recommends that Fraunhofer-based diffraction be used 

only when mean particle sizes are > 50 pm and concludes that Mie-based diffractometry 

is acceptable for all fine grain fractions (ISO-13220-1 1999; Jones 2003).

8
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Experimental Design 

Instrument Operation:

This study was conducted utilizing a Malvern Instruments Mastersizer 2000 laser 

diffractometer with Hydro 2000MU pump accessory. Two light sources are utilized, a 

red He-Ne laser at 0.632 pm and a blue LED at 0.466 pm. Diffracted light is measured by 

52 sensors and accumulated in 100 size fraction bins. Data were compiled with 

Malvern’s Mastersizer 2000 software version 5. The Mastersizer 2000 takes 1000 

readings (snaps) per second. Each measurement run was set to run for 12 seconds or 

12,000 snaps. Grain-size analyses reported in this paper are the average o f three 

successive laser diffraction runs (total of 36,000 snaps). Prior to accepting an analysis, 

we visually inspected the output from each of the three runs for consistency. This 

method provided a rapid assessment of the potential negative effects o f machine spikes, 

introduction o f air bubbles to the suspension being analyzed, or other operational 

problems. The Mastersizer 2000 utilizes Mie theory to convert the scatter o f light energy 

to grain size and reports grain-size distributions as volume percentage for each size bin.

In contrast, sieve and/or pipette methods of grain-size analysis report mass percentage for 

each size class.

Statistical Representation o f Distributions:

Laser diffractometers typically present grain-size distributions as a cumulative curve or a 

histogram. However, as a convenience when comparing size distributions from different 

samples, a variety o f different statistical measures are available to represent grain-size 

distributions. Important summary statistical parameters include the mean, mode, and

9
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median grain size, along with percentiles, and other weighted mean values (surface and 

volume weighted means). Uncertainties associated with these measures are not uniform 

(Fig. 2), but subject to skewing by low volumetric percentages in non-Gaussian grain-size 

distributions. For example, a positively skewed grain-size distribution (i.e., larger 

volume percentage of fine grain sizes) will have more uncertainty associated with the 

ninetieth percentile, D90 than the tenth percentile, D i0. For this reason, we focused our 

uncertainty analysis on median-grain-size measurements, D50. Typically, researchers 

using grain size as a proxy have found it beneficial to examine changes in multiple 

measurements (i.e., percent clay, silt, and sand) to enhance the understanding of 

hydrologic processes (e.g., Campbell 1998). In this study the % sand measure is not a 

very meaningful quantity for these samples because of the very fine nature of the 

sediments, D50 ~ 3 pm.

In this paper we use the term uncertainty as the measure o f precision. In all cases we 

report uncertainty as a 95% confidence interval, approximated as 2 standard deviations 

above the mean of multiple measurements. To quantify the uncertainty for each of the 

statistical measures tested, we calculated the mean value and standard deviation for a set 

of 4-7 replicate analyses. We divided two standard deviations by the mean value for the 

replicates to calculate the 95% confidence interval as a percentage. We then determined 

the overall uncertainty for the method/procedure by averaging the 95% confidence 

intervals for each different sediment sample. Input variables, such as optical settings, 

equipment settings, and subsampling methods, were tested independently o f all other 

variables.

10
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M easure o f Sedim ent Grain Size

S  Direct H D ry  II Pipette

Figure 2-Histogram showing uncertainty as a function of percentile rank 
of the grain size distribution and aliquot sampling method. Percent 
uncertainty varies with descriptive measures of estimated grain size, in 
this case percentile ranks. High uncertainty at high percentile rank, D90, 
is likely a function of the volume-based measurement of laser 
diffractometry, where a larger grain represents a larger percent volume 
than a smaller grain. Unless otherwise noted, in this report we express 
measured uncertainty for median grain size, D50, at 2 standard deviations.
All uncertainties reported are based on data samples listed in Table 2.

Sample Preparation:

Dispersion and Sonication.—The platy clay size fraction has a very high surface-to-

volume ratio that increases the net effects of the small interparticle attractive forces. The

consequence is that clay has a predisposition to flocculation or agglomeration (McCave et

al. 1986). Flocculated clay particles can present a larger target to the optical laser and

thus skew the particle distribution towards the larger size fraction (e.g., Chappell 1998).

Various techniques have been employed to combat flocculation, including the addition of

dispersing agents (Menking et al. 1993; Muggier et al. 1997; Beuselinck et al. 1998) and
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variations in the duration of sonication (Loizeau et al. 1994; Chappell 1998). Excessive 

sonication, however, actually has been reported to flocculate clay particles (M. Weiand, 

personal communication 2002). We tested dispersion methods that employed sonication. 

Samples were measured with and without the sonicator that is built into the Mastersizer 

2000 instrument. Our objective in applying sonication was to disperse particles while not 

breaking grains or flocculating the clays. In our experiments, we applied from 0 to 5 

minutes of sonication in 10-second increments at two power levels (10 pm and 20 pm tip 

displacement). Dispersion was assisted with the chemical agent of sodium 

hexametaphosphate, (NaPOs)6. The chemical dispersion also prevented grains from 

aggregating after sonication and during the grain-size measurements. In all experiments 

sodium hexametaphosphate was used in a concentration of 5.5 g/1 (Tyner 1939; 

Tchillingrian 1952; Royce 1970).

Subsampling and Aliquot Introduction.— We use the term "sample" to refer to the 

bulk sediment collected from soil, outcrop, tephra, or sediment core. In our case, 3" (7.6 

cm) diameter lake sediment cores were cut parallel to bedding into slices 1 cm thick. The 

"subsample" is that portion of the sample that we processed (dried or dispersed in bulk) 

as part of our aliquot preparation techniques. Each subsample was further divided into 5 

to 7 aliquots for replicate analysis. The "aliquot" is the sediment introduced in to the 

diffractometer.

We explored three different methods of preparing each sediment aliquot and introducing 

it into the laser diffractometer. Method #1 (hereafter referred to as the "dry" method)
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involved drying a sediment subsample in an oven at 50°C for > 24 hours. Aliquots 

consisting of approximately the same volume of dried subsample were placed in a 30 ml 

bottle and dispersed for > 24 hours in 5.5 g/1 sodium hexametaphosphate. Each aliquot 

was of sufficient size (~ 0.1 g) to allow the entire bottle to be introduced to the 

Mastersizer. Method #2 (hereafter referred to as the "direct" method) involved 

subsampling the sediment core sample with a spatula perpendicular to the depositional 

laminae. Each core sample was divided into 5-7 aliquots of approximately the same 

volume and was dispersed in a separate 30 ml bottle with a solution of 5.5 g/1 sodium 

hexametaphosphate for > 24 hours. The contents of the entire aliquot were then 

introduced directly into the Mastersizer. The direct method is limited to undisturbed 

sediments where the original laminations are preserved. The third method (hereafter 

referred to as the "pipette" method) involved placing an entire subsample in a 30 ml 

bottle containing 20 ml o f 5.5 g/1 sodium hexametaphosphate. Each subsample for the 

pipette analysis was volumetrically larger than necessary for an individual measurement 

in the laser diffractometer. After dispersing for 24 hours, the suspension was vigorously 

agitated and an ~ 1.25 ml aliquot of the suspension was extracted with a pipette and 

introduced into the Mastersizer.

To directly compare results among the three aliquot preparation methods, we ran five to 

seven duplicate measurements per method on the same five samples. The average 

percent uncertainty for each method was calculated from these results as well as analysis 

of other samples. Aliquot preparation experiments were conducted only on lacustrine 

sediments from Flathead Lake.
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Optimizing Machine Settings and Initial Experimental Parameters:

In addition to comparing results from the three different methods o f subsampling, we 

conducted a series o f experiments on machine settings and initial machine measurements 

used after the sample is introduced to the diffractometer but prior to the actual grain-size 

analysis. First, we varied the "density" (measured as the degree o f obscuration of the 

laser beam) of the sample introduced to the Mastersizer, and we varied the speed of the 

pump that circulates the suspended aliquot within the analysis cell. Second, we 

experimented with variations in estimated values of refractive index o f the sediment and 

the degree of absorption of the laser by the sediment. These required parameters are used 

in the Mie Theory calculations for development o f the theoretical diffraction pattern that 

is compared against the actual diffraction pattern.

Obscuration.—The default acceptable range for obscuration on the Mastersizer 2000 is 

between 10 and 20%. However, Malvern Instruments recommends that with very fine

grained sediments a lower obscuration may be more appropriate (P. Dawson, personal 

communication 2002). We sought to determine the optimal obscuration range for various 

types of natural sediments and grains sizes. First, we introduced a high-concentration 

suspension (40% obscuration) directly into in the Mastersizer and measured its 

obscuration. We then diluted the suspension by adding additional medium (5.5 g/1 

sodium hexametaphosphate) to reduce the obscuration by ~ 1% before repeating the 

obscuration measurement. We continued this procedure until obscuration was ~ 2%. 

Second, we incrementally introduced sediment by pipette directly into the Mastersizer
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between measurements; starting with an obscuration of ~ 2% and ending with an 

obscuration o f ~ 40%. For each of these two approaches, we conducted five replicate 

analyses to examine the effects of obscuration on grain-size results. Samples measured 

included fluvial, soil, lacustrine, and glaciolacustrine sediments.

Pump Speed.—The Hydro 2000 MU pump unit has variable-speed capabilities to 

compensate for differences in particle size, density, or sample reservoir volume. In our 

experiments we utilized a 600 ml beaker with an initial volume of 500 ml of 5.5 g/1 

sodium hexametaphosphate. We conducted pump-speed experiments by measuring a 

sediment sample over a range of pump rpm values without removing the sample from the 

diffractometer. A total o f twelve samples were measured once over a pump speed 

ranging from 1000 rpm and up to 3000 rpm and increased at 100 rpm increments.

Samples measured included fluvial, soil, lacustrine, and glaciolacustrine sediments.

Optical Properties:

Index of Refraction.—Determining the primary refractive index (RI) o f natural 

sediments is complicated by the fact that most sediment is a mix of different minerals, 

many of which have two or more indices of refraction. To estimate the primary refractive 

index for Flathead Lake sediments analyzed in this study, we performed 82 quantitative 

x-ray diffraction (QXRD) analyses o f core sediment, using the methods established by 

Srodon et al. (2001). We estimated the primary index o f refraction for each sample by 

summing the product of the refractive indices for each mineral and the percent volume 

abundance for each mineral as determined by x-ray diffraction. Because some minerals
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have two or more indices o f refraction, we calculated high, low, and average (weighted 

and unweighted) indices for each mineral. In addition to using the averaged QXRD data, 

we performed a series of experiments to further explore the effects of refractive-index 

extremes on the grain-size distribution. In these experiments, we utilized the refractive 

index of the mineral with the lowest value (opal from volcanic ash; RI = 1.43) and the 

mineral with the highest refractive index (hematite; RI = 3.22).

Absorption.—Along with examining the effects of various input values for RI on grain- 

size distributions, we studied the effects o f varying the value of absorption. Determining 

the degree o f absorption o f natural sediments is very difficult, because this parameter 

changes with particle size and grain shape, chemical alteration of grains, the presence of 

grain coatings, and the extent of grain surface abrasion. Absorption values range 

between 0 (perfectly clear grains) and 1 (perfectly opaque grains). In order to examine 

the effects o f absorption on diffractometry results, we held all other sample preparation 

and machine parameters constant and varied the absorption between 0 and 1. We 

analyzed the range of absorption values for each of refractive index estimations to 

determine if absorption had any dependence on RI.

The Malvern Mastersizer 2000 software allows diffraction data to be reprocessed with 

altered optical settings. In the results presented below, we used software reprocessing to 

examine the effects of variations in refractive index and absorption on grain-size analysis 

of lacustrine, soil, fluvial, and tephra samples.
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Results and Interpretation 

Instrument Precision and Accuracy:

Instrumental precision for the Mastersizer 2000 was very high (~ 1 % uncertainty) for 

samples that were measured 15 times without being removed from the pump unit. 

Accuracy of the Malvern Mastersizer 2000 is based on polymer microsphere standard, 

series 4000, provided by Duke Scientific Corporation. In seven measurements over three 

years all median grains size results were < 1.2% from the stated standard value of 0.993 

pm.

Dispersion and Sonication:

The application o f ultrasonic energy as a dispersion agent showed that dispersion 

increased as additional ultrasonic time was applied to the sample, up to 60 seconds of 

applied ultrasonic energy (Fig. 3). In some samples, additional ultrasonic energy beyond 

60 seconds resulted in a continued slow decrease in grain size, which we speculate may 

be the onset o f grain fracturing by the ultrasonic probe. Some samples showed increases 

in grain size after 60 seconds of ultrasonic application, interpreted as the flocculation of 

the clays. From these results, we conclude that the application of 60 seconds of 

ultrasonic energy with a probe tip displacement of 10 pm, disaggregated samples to 

achieved maximum stable dispersion for very fine-grained sediments without flocculating 

the clays or conspicuously breaking grains.
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Aliquot Introduction:

We calculated total uncertainty for each of the three aliquot methods based on a total of 

between 36 and 60 grain-size measurements for each aliquot method (Table 2). Sediment 

samples for this portion of the study were all from lake cores. Uncertainties of median 

grain size for aliquot preparation and introduction are 6% or less at 2 standard deviations 

(dried = 4.1%, direct = 5.9%, pipette = 3.5%; Table 2). We found no consistent 

statistically significant differences among all samples analyzed by the aliquot sample 

preparation methods (Fig. 4). However, we did observe several significant trends among 

some samples. First, three of the five samples prepared using the dry method show a 

trend of significantly coarser grain size for the Dio and D50 fractions (Fig. 4A, B). We 

interpret these results to reflect the formation of particulate aggregation (cakes) created 

by the drying process. Second, two of the five samples introduced by pipette displayed 

significantly finer grain sizes in the Dio and D50 size fractions (Fig. 4A, B).

We have also observed this trend in other analyses of fine grained sediment (Sperazza et 

al. 2002) and attribute it to heterogeneous suspension during the pipette sampling process 

and the tendency for the pipette to preferentially sample grains with lower settling 

velocities. Third, one of the five samples prepared by the direct method display 

significantly coarser grain sizes in the D90 fraction (Fig. 4C). On the basis of these 

experiments, we conclude that the statistically significant grain size differences 

associated with some of the dried and pipette samples are in part a function of the 

procedure itself. Many grain-size studies have used methods that involve either pipette or 

dry subsampling (e.g., Loizeau et al. 1994; Muggier et al. 1997; Chappell 1998).
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Figure 3 -  Results on median grain size as a function of 
ultrasonic energy for dispersion. A) Eight samples were 
subjected to an increased cumulative period of ultrasonication at 
10 second intervals, and two of the samples were replicated. B) 
First-derivative curves for each analysis show that after about 1 
minute of ultrasonication, median grain size appears stable for 
all samples. Samples did not aggregate with increased duration 
of ultrasonication. All samples analyzed are lacustrine sediments 
using 10 pm tip displacement ultrasonication.

Although our data suggests that statistically significant differences can exist among the

different preparation methods, the high reproducibility of each individual technique
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(<6%) is such that quantitative determinations of time-series change are achievable 

provided that a consistent sample preparation method is used throughout the study. The 

higher uncertainty (5.9%) of the direct aliquot method was an unexpected result (Fig. 2). 

These aliquots were taken from 1 -cm-thick slices o f undisturbed lake core cut parallel to 

depositional laminae. The aliquots themselves were cut perpendicular to bedding and

Table 2 -Calculated uncertainty for the three aliquot introduction 
methods.

Measurement
Direct

Method
Dried

Method
Pipette
Method

Dio 4.4% 2.9% 2.5%
D50 5.9% 4.1% 3.5%
D90 10.3% 6.3% 9.8%

% Clay 5.7% 4.0% 3.1%
% Silt 2.5% 1.7% 1.8%

% Sand 73.3% 37.1% 97.5%

n range 5-7 4-7 6-8
Total n 36 47 60
Samples 6 8 9

Uncertainty is calculated as the average percent of two standard 
deviations. Shown are subsets of the possible descriptive measures 
that can be used to describe the grain size o f a sample. The lower 
part o f the table shows the number of measurements used to 
calculate the uncertainty.

included the entire thickness of the core slice. We interpret that, despite the hemipelagic

nature of the deposits and the large distance from the sediment source, each core slice

was characterized by a laterally heterogeneous grain-size distribution that was within the

detection range of our experiments. These results suggest that mixing a larger

subsample, as required by the dry or pipette methods, may promote homogenization of

the subsample and subsequently improve uncertainty at the aliquot level. Alternatively,
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Figure 4-Aliquot subsampling uncertainty for the three 
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reported in Table 2. All samples are offshore lacustrine 
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improved uncertainty of the dry and pipette methods may be an artifact of incomplete 

sampling or alteration o f the entire grain-size spectrum as discussed above.

Obscuration:

Optimal obscuration occurs when a sufficient number o f suspended particles are present 

to significantly diffract the laser beam but the suspension is not so dense to render the 

suspension impenetrable by the laser light. We tested the effect of obscuration on median 

grain size over a range of 2 to 40%. Our obscuration results show that values less than 

5% produced poor precision and unpredictable trends (Fig. 5). For very fine-grained 

sediments (median grain size < 1 0  pm) the median grain sizes were somewhat higher at 

lower obscuration values than at higher values (Fig. 5A). With increased obscuration, 

median grain size values for very fine-grained sediments continue to decrease slowly but 

are essentially stable between 15 to 20% obscuration (Fig. 5B). Hence, we adopted 15 to 

20% range as a working obscuration target for our standard operating procedure. Coarser 

grained sediments (median grain size > 10 pm) exhibited more erratic behavior, with 

substantial changes in calculated grain size when obscuration was < 15% (Fig. 5). 

Although the curve for coarse-grained sediment flattens in the 15 to 25% range, it has 

higher variability in that range and at greater obscurations than the very fine-grained 

sediments. This may be due in part to the use of the additive method of measuring 

obscuration (see aliquot introduction section above).
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Pump Speed:

We examined the effects o f variations in pump speed on resulting estimated grain- 

distributions. The turbulence created by the Mastersizer pump propeller keeps the
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Figure 5-Results of obscuration experiments for very fine
grained and fine-grained sediments. A) Estimated median grain 
size for all samples decreases with increased obscuration. B) 
The first-derivative curves show median grain size for finer 
sediments stabilize with low variability using an obscuration 
range of 15 to 20%. Results on median grain size from coarser 
sediments are more variable, likely due to difficulty 
maintaining a uniform suspension (B). Variability for all 
samples is highest at obscuration values < 7% (B). Sample 4 is 
glacial lake sediment, sample 32 is river sediment, and the 
remaining samples are lacustrine sediments.
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sediment sample in suspension. Our analyses show that very fine-grained sediments (< 

10 pm) were stable over the entire range examined (1000 to 2500 rpm, Fig. 6). Fine

grained sediment (~ 12 pm) was stable over the range of 1600 to 2300 rpm, with reduced 

precision on the tails of the examined range. Coarser samples (> 40 pm) did not stabilize 

at pump speeds < 1800 rpm. At pump speeds of > 2300 rpm coarse-grained samples (> 

40 pm) gradually fined or coarsened slightly (Fig. 6A). We conclude that the turbulence 

of the pump was not sufficient to maintain the suspension o f the coarser sediment at the 

lower pump speed. Optimal results were achieved with pump speeds between 1800 and 

2300 rpm. In our experiments we maintained a pump speed o f 2000 rpm.

Index o f Refraction and Absorption:

The primary difference between the Mie and Fraunhofer theories is that Mie utilizes the 

index of refraction (RI) and absorption (ABS) of the sediment and liquid medium.

Unlike the industrial applications of laser diffraction, the optical properties o f natural 

sediments are highly variable and usually unknown to the researcher. As a starting point 

we used standard methods provided by the instrument manufacturer to determine the 

proper optical property settings for samples in which the indices of refraction and 

absorption were unknown. This necessitated reprocessing data using the Mastersizer 

software and entering different values o f refractive index and absorption until the lowest 

weighted residual value was achieved. This procedure resulted in values for our 

lacustrine sediments o f RI = 1.52 and ABS = 0.0, the values for typical glass beads. 

Using these optical settings, however, our results showed strongly bimodal grain-size
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distributions, which we viewed as unlikely for hemipelagic lacustrine sediments collected 

19 km from the sediment source.

To independently develop a set of estimated RI values, we obtained data on mineral 

composition by QXRD for 82 lacustrine sediment samples collected over a 7 m section of 

core from Flathead Lake. Using the average, minimum, and maximum percentages for 

each mineral identified in the QXRD analysis and the minimum and maximum RI values 

for each mineral, we calculated a set of weighted-average refractive indices (Table 3).

We calculated the low and high RI averages, with and without the RI outlier value of 3.22 

(hematite).

Table 3-Average mineral composition from 82 QXRD measurements of Flathead Lake 
core samples and the minimum and maximum values of index of refraction for the 
representative mineral for each group.

Mineral Group Avg.% Max % Min % RI Mineral RI Min RI Max
Quartz 27.5 32.7 18.6 Quartz 1.543 1.554
Kspar 2.8 4.1 0.7 Microcline 1.518 1.525
Plagioclase 5.4 10.2 1.1 1.528 1.542
Calcite 2.7 15.0 0.0 Calcite 1.486 1.660
Mg-Calcite 0.3 1.0 0.0 1.500 1.700
Dolomite 2.5 10.8 0.0 Dolomite 1.500 1.681
Halide 0.1 0.8 0.0 Halite 1.544 1.544
Pyrite 0.2 0.9 0.0 Pyrite 1.810 2.000
Siderite 0.2 0.9 0.0 Siderite 1.570 1.788
Opal 0.1 5.5 0.0 Opal 1.430 1.430
Fe (oxy-)hydroxide 0.6 1.2 0.0 Hematite 2.940 3.220
Kaolin 1.0 4.5 0.0 1.715 1.728
2:1 Al Clay 47.6 70.7 21.8 Illite 1.530 1.600
Fe-Chlorite 2.2 9.5 0.0 Chinochlore 1.571 1.599
Mg-Chlorite 7.1 12.8 0.0 Dozyite 1.570 1.580
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Figure 6-A ) Results of estimates of median grain size as a 
function of pump speed. B) First-derivative curves show that 
fine-grained sediments yield stable results for grain size over 
a broad range of pump settings whereas coarser grain 
sediments yield more variable estimates of grain size. 
Samples 2 and 3 are glacial lake sediments, samples 6 - 1 7  
are lacustrine sediments, samples 29-31 are river sediments, 
and 33 and 34 are soil sediments.

Additionally, we used the refractive-index extremes of the minerals present in the 

sediment (opal, 1.43; hematite, 3.22) despite their low volumetric abundance. In this 

paper we report data on RI values of 1.43, 1.52, 1.57, 1.60, 1.78, and 3.22.
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We measured numerous very fine-grained sediment samples with these RI values using 

an absorption value of 0.0. The overall results are highly variable, ranging from 

unimodal to bimodal distributions (Fig. 7A). Median grain-size variability was as high as 

5.9% with an uncertainty of > 13%. Variability in the finest size fraction, Dio, showed 

even higher variability of ~ 9%. Using these RI and absorption settings, we observed 

bimodal distributions in numerous samples of very fine-grained lacustrine sediments. 

Coarser-grained fluvial and soil sediment samples did not display bimodal distributions, 

but displayed some variability within the < 7 pm fraction (Fig 8). Grain-size variability 

for coarse samples was < 1% at D50 and ~ 2% for the Dio fraction.

The internal absorption is a highly variable property between minerals, ranging from 

totally opaque (e.g., pyrite) to optically transparent (e.g., some quartz). Our software 

processing had identified an optimal absorption value o f 0.0 for the lacustrine sediments, 

so we used this value in our initial RI experiments. However, we suspected that these 

sediments did not actually have the same absorption value as clear glass, so we 

experimented with varying absorption values ranging from 0.0 to 1.0. Higher absorption 

values decreased scatter in estimated grain size and produced a more unimodal 

distribution as the absorption setting approached 1 (Fig. 7A-F). In some cases, a 

substantial reduction in the bimodality of a grain size distribution was achieved by 

increasing the absorption value from 0.0 to as little as 0.001. These results were 

consistent for the entire range of tested RI values (1.43-3.22). Figure 7A shows a typical 

highly variable distribution for a sample over the examined RI range when absorption is
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set at 0.0. As absorption values are increased, the distribution becomes more unimodal 

and stable (Fig. 7B-F).

These results are supported and refined by the calculated weighted residual and sediment 

concentration. The weighted residual is lowest when the absorption is set at 0.0, but it 

starts to rise at a value of 0.001, stays high through 0.5, and then declines through a value 

of 1. The reduction of the weighted residual value as absorption is increased towards a 

value of 1 support the appropriateness of the high-absorption setting. High-resolution 

measurements by weight o f actual sediment concentrations also support a value of 1 for 

absorption. As absorption reaches a value of 1, the values for sediment concentration 

calculated by the software are closest to our measured sediment concentrations.

To independently verify our absorption findings we conducted the same experiments 

utilizing a BCR Quartz Reference Particles standard (BCR 66) from Duke Scientific 

Corporation. This standard has a certified distribution and known index of refraction 

(BCR-information 1980; Konert and Vandenberghe 1997). In these experiments 

involving the standard, absorption values of < 0.1 yielded strongly bimodal distributions. 

Absorption values between 0.1 and 0.7 resulted in unimodal distributions but more 

variable grain-size estimates.

At absorption values > 0.8, distribution curves converged with very low variability. We 

conclude that the convergence o f the grain-size distribution curves, concentration data, 

and weighted residual values reflect that as the absorption value approaches 1.0 , it
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approaches the true value for sediment being examined. At absorption settings > 0.9 for 

mixed mineral compositions the difference from varying RI values is negligible (Fig. 7E, 

F).

Estimated grain-size distributions were highly dependent on values o f absorption setting 

for analyses of natural sediment. We found that, even with a known index of refraction, 

values of absorption close to 0 commonly resulted in unreasonable, strongly bimodal 

grain-size distributions. In each case, the "low" point in the curve was consistently below 

10 pm; in many instances, distributions showed an absence o f any grain-size data 

between 0.5 and 0.9 pm (Fig 7A). As the input absorption value approached 1, the 

resulting grain-size distribution evolved into a much more reasonable unimodal 

distribution. Interestingly, none o f the coarser sediments that we analyzed in this study 

(fluvial, soil, volcanic ash) produced bimodal distribution for low absorption values (Fig. 

8). However, variations in the grain-size distribution did occur in the < 7 pm size 

fraction at low absorption values, suggesting that the estimated grain-size distribution for 

all natural sediment types were affected by variations in entered values of absorption. 

Bimodality occurs when a significant volumetric percentage o f the sample is in the very 

fine-grained fraction and typically when the median grain size o f the sample falls below 

10 pm. This issue significantly affects the precision of grain-size distribution data sets 

and seems to be a function of particle size and shape in the range o f the laser light 

wavelength.
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CHAPTER 2

Assessment of Paleomagnetic Secular Variation Correlation and 

Establishment of a Chronostratigraphic Model for Late Pleistocene and 

Holocene Lacustrine Sediments of Core FL-00-9P from Flathead Lake,

Montana
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Abstract:

The establishment of chronostratigraphic models in lacustrine settings often relies heavily 

upon the acquisition of radiometric carbon dates. Unfortunately, however, this dating 

method is limited in some lacustrine environments, particularly oligotrophic lakes with 

poorly preserved organic material. An alternative dating method that has been gaining 

acceptance in lacustrine, marine and terrestrial research is paleomagnetic secular 

variation. The two components of secular variation, inclination and declination, provide 

a time-series record of magnetic pole wandering that has been correlated globally (e.g., 

Noel and Batt 1990; Butler 1992). Secular variation records from well-dated localities 

can be used to establish a chronostratigraphic framework for inclination and declination 

variations. In this study we sought to examine the limitations o f secular variation as a 

dating method and quantify its methodological uncertainty as applied to piston cores 

recovered from Flathead Lake, Montana. We found that interbasinal and extrabasinal 

secular variation records can be correlated with an uncertainty of ± 6.2% and ± 10.4%, 

respectively. The total uncertainty for the method is a function of the reference record 

data set quality and methods used to interpolate the timing of tie points in the 

paleomagnetic record that fall between directly dated stratigraphic horizons. The 

compounded effects o f these methodological uncertainties limit resolution of the secular 

variation chronologic technique to approximately 300-500 years for Flathead Lake cores.

Introduction:

In this study, I describe the techniques and procedures used to establish a 

chronostratigraphic model for fine-grained, organic-poor sediment from piston core FL-
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00-9P (9P), recovered from Flathead Lake, Montana. Flathead Lake is a large 

oligotrophic lake located at the southern end of the Rocky Mountain Trench in 

northwestern Montana. Flathead Lake sediments have proven difficult to date partly 

because of low recovery o f large (> 125 pm) organic fragments (none have been 

recovered from core 9P) and a significant reservoir effect from dead carbon that 

significantly reduces the precision of bulk carbon dating approaches. The maximum total 

carbon (TC) in the sediments is < 4%wt and typically < 2%wt, with total organic carbon 

(TOC) rarely exceeding l%wt. (Sperazza et al. 2003).

Piston core 9P is 7.10 m in length and was recovered from a position in the central part of 

Flathead Lake, 19 km from the mouth of the Flathead River (Fig. 9B). The lowermost 

0.90 m of the core consists of a series of centimeter-scale upward fining successions (see 

Fig. 9C) with very low organic carbon values (average ~ 0.2% TOC) and very fine grain 

size (median ~ 1.6 pm). These centimeter-thick upward fining sequences pass upsection 

into 6.2 m o f weakly laminated silt with a median grain size o f ~ 4 pm and slightly higher 

organic values (average ~ 0.4% TOC). Core 9P contains two tephra deposits, which were 

sent to the Geoanalytical Laboratory at Washington State University for geochemical 

profiling (Appendix A). Analysis of major and minor element distributions in tephra 

glass confirmed, with a 99% confidence level, that these were the Mount Mazama Crater 

Lake tephra (340-375 cm) and the Glacier Peak G tephras (610-611 cm). Calibrated 14C 

dates of 7,630 ± 80 cal. yr. BP have been established for Mt. Mazama (Zdanowicz et al.

1999) and 13,180 ± 120 cal. yr. BP for Glacier Peak (Hallett et al. 2001) by acquiring
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multiple 14C dates in organic horizons above and below deposits o f these two volcanic 

ashes as they occur in various localities around the Pacific Northwest.

By far the most common dating method for late Pleistocene and Holocene sediments is 

radiometric 14C dating (Wagner et al. 2000; Rosenmeier et al. 2002). However, in many 

natural settings the abundance of datable organic material is significantly limited or 

simply is nonexistent. In these instances, some researches have utilized radiometric 

dating of bulk sediment (Colman et al. 1996; Rashid et al. 2003), pollen (Brown et al. 

1989), and carbonates (Dean and Megard 1993; Makhnach et al. 2004; Yi et al. 2004) as 

source material for radiometric 14C dating. However, these sources o f datable material 

are prone to reservoir effects, which can increase the reported 14C age (Doran et al. 1999; 

Geyh et al. 1999; Dumond and Griffin 2002).

Recent advances in dating have been made for sediments in which carbon dating has been 

problematic or inconclusive. Some of these alternative techniques include varve counting 

(Anderson et al. 1993; Brauer et al. 1999), thermal luminescence (Shulmeister et al.

2001; Spencer and Owen 2004), uranium series dating (Szabo et al. 1995), electron spin 

resonance (Molodkov 1993), cosmogenic exposure dating (Jackson et al. 1999; Briner et 

al. 2003), and correlation of paleomagnetic secular variation time-series data sets 

(Verosub et al. 1986; Hagee and Olson 1989; Zic et al. 2002).
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Figure 9 -  A) Location map showing the Flathead Lake (Blue) watershed in northwestern 
Montana and adjacent parts of Idaho and British Columbia, Canada. B) Map of Flathead 
Lake showing location of cores 9P and 9G. Bathymetry in meters. C) Core 9P composite 
photo and X-radiograph with median grain size data. Note the presence of tephras at 345- 
375 cm and 610 cm, and the up ward-fining sequences below 620cm.___________________
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Initial Chronologic Controls:

Top o f  Core:

Piston cores commonly disturb the uppermost water saturated sediments, and some 

analysis is required to determine whether any portion the top o f the core is missing. In 

the case of core 9P, the well-developed oxidized layer seen in gravity cores from 

Flathead Lake was not recovered, suggesting that the youngest portion of the sediment 

record is missing. The youngest recovered sediments in core 9P and core FL-00-9G 

(9G), a companion gravity core recovered simultaneously with 9P and located 

approximately 1 m away from the 9P drive site, are hemipelagic and likely far from any 

bottom hugging traction transport-influenced flow more common near the Flathead River 

mouth. The grain size records of these cores thus are expected to exhibit similar trends 

that could be correlated to estimate the thickness and duration o f time represented by

i 'in
unrecovered sediment at the top of core 9P. Importantly, core 9G has been dated by Cs

910and Pb isotope methods by Chris Fuller at the US Geological Survey in Menlo Park, 

CA (Fig. 10A & B), thereby providing a quantitative basis for estimating the length of 

time missing from the core 9P sediment record. To correlate the grain size between the 

two cores, I shifted the 9P curve until the correlation coefficient between both data sets 

was maximized (Fig. IOC & D). In general, correlation coefficients between the two

'j
cores are low (max. R = 0.354) likely due to differences in sampling methods (direct 

method for 9P and dry method for 9G, see Sperazza et al. 2004) and compressional 

stresses on the gravity core (9G). Whereas the piston cores are transported, processed,
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Figure 10 -  Dating model for core 9G based on 137Cs and 210Pb methods (A). Date 
calculated is for the midpoint of the 0.5 cm intervals. Dates were then extrapolated from 
mid-depth to bottom of interval. (B) Graph plotting isotopic data vs. depth distribution of 
137Cs and 2I0Pb for core 9G (226Ra used as a baseline for 2 °Pb data). Data in panels A &
B was provided by Chris Fuller (USGS). (C) Determination of the top of core 9P is 
based on correlation o f median grain size to core 9G. Statistical best fit of grain size 
suggests top 2.5 cm of core 9P is missing due to over penetration (C). Correlation 
coefficient is low (R2=0.35) due to different sampling methods and compressive forces 
on the cores.
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and stored horizontally, the gravity cores are transported and stored vertically, making 

them susceptible to dewatering and compaction. Additionally, gravity cores are extruded 

and sliced at half-centimeter intervals, which can apply an undetermined amount of 

compressional stress to the sediments. From the grain size correlation data, I estimate 

that the top of core 9P was roughly 2.5 cm below water/surface interface. Accordingly, 

the effective date for the bottom of the first one centimeter interval of core 9P (FL-00-9P-

1-1) is 1908 AD or 92 cal. yr. BP, based on the isotope dating of core 9G.

Middle o f  Core

The central part o f the core is chronologically constrained by the two volcanic tephras. 

The deposit of the younger tephra (Mt. Mazama) is disturbed; it contains four separated 

deposits of the ash between 340 and 375 cm (Fig. 9C). Elsewhere within Flathead Lake, 

the Mazama tephra consists of a single layer that is about 12 cm thick and fines upward. 

The lowermost and uppermost of the four individual Mazama tephra layers in core 9P are 

characterized by a major and minor element distribution that is statistically 

indistinguishable from that of the Crater Lake eruption of Mt. Mazama (Appendix A). 

Between each of the tephra deposits are 1 -5 cm thick deposits of apparently laminated 

hemipelagic sediment (Fig. 11). However, X-radiographs show that the tephras are 

internally disrupted and that sedimentary lamina in hemipelagic sediment between tephra 

layers are not as well preserved as those above and below the zone in which the Mazama 

tephra occurs. As a result, we cannot determine with certainty whether the hemipelagic 

deposits represent significant time between tephra layers. The X-radiographs suggest that 

the hemipelagic sediments between the tephras are likely disrupted.
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Based on this physical sedimentologic analysis, I infer that the entire stratigraphic 

interval that includes the Mazama tephra layers in core 9P is disturbed. Likely, this 

disturbance resulted from local slope destabilization caused by the rapid deposition 

and/or redistribution of the tephra during or immediately after the eruption. Seismic 

reflection data from the basin do not suggest any large scale redistribution of sediment at 

this time (Hofmann et al. 2006), suggesting that sediment destabilization was localized to 

the core 9P site and not a lake-wide phenomenon. Because the Mt. Mazama tephra 

represents a single time horizon (7,630 ± 80 cal. yr. BP) elsewhere across the Pacific 

Northwest and our interpretation of X-radiographs from core9P suggest the presence of 

syn/post-depositional disturbance, we have elected to assign the Mazama date to the 

entire interval between 340 and 375 cm in this core.

The older tephra occurs from 610 to 611 cm in core 9P and is characterized by major and 

minor element profiles matching the G tephra from Glacier Peak (Appendix A). 

Radiometric dating o f organic rich sediments above and below the tephra elsewhere have 

established an eruption date of 13,180 ± 120 cal. yr. BP (Hallett et al. 2001).

Bottom o f the Core

In developing the chronostratigraphic model for core 9P I sought to assign a date to the 

base of each 1 cm core interval. However, no chronologic control was available below 

the Glacier Peak tephra. Sedimentologically, the lower portion of core 9P contains very- 

fine grained hemipelagic sediments (-1.5 to 2.5 gm) between 611-621 cm and 672-688 

cm. These sediments are similar in grain size and structure to those directly above the
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Glacier Peak tephra (Fig. 9C). In sharp contrast, between and below these intervals (622- 

671 and 689-710 cm) beds are coarser (up to 18 gm), significantly thicker, and upward 

fining.

3 6 0 ^

Figure 11 - Enlargement of Mt. 
Mazama tephra in core 9P, X- 
radiograph on left, visible light 
photograph on right. Laminae 
seen in photograph between 
tephra beds (342-351 cm) are 
weakly expressed or 
discontinuous in X-radiograph. 
Between lower tephra deposits 
(357-362 and 368-371 cm) 
laminae in photograph are 
disrupted in X-radiograph.

To estimate the depositional age of the core bottom, I developed a sedimentologic model 

that assumed hemipelagic sediments below the Glacier Peak tephra had the same 

sedimentation rate as those above the tephra. The upward-fining beds are interpreted to 

be event beds deposited by glacial outwash or flood events during the late Pleistocene 

glacial retreat (Sperazza et al. 2002; Hofmann 2005). Each upward-fming bed reflects
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the waning of an episodic flood flow over a short period of time. I assigned a time 

interval of 1 year to each upward-fining bed to reflect the short duration of deposition.

The total thickness of most of the upward-fining beds exceeds the 1 cm step interval used 

in the chronologic model for the entire core. Using core photos and/or grain size data, 

each centimeter below the Glacier Peak tephra was examined to determine the ratio of 

hemipelagic/event bed deposition. Each 1 cm interval was assigned a depositional time 

based on the percent o f hemipelagic laminae (if any) multiplied by the hemipelagic 

depositional rate (26.3 yrs/cm) calculated directly above the Glacier Peak tephra (see 

below) plus one-year for each upward-fining bed present in that interval. Based on this 

formula (see eq. #3 below) the chronology could be extended below the Glacier Peak 

tephra, although there is little basis for quantifying the uncertainty o f this method.

Initial Chronology

Based on the chronological controls discussed above, depositional rates were calculated 

for each of the three segments of core 9P separated by the tephras. The first portion of 

the core covers the interval from the top of the core to the lowest occurrence of the Mt. 

Mazama tephra and has a calculated depositional rate (eq. 1) o f 0.45 mm/yr.

1) (3755 mm - 362 mm ash + 25 mm missing at top of core) / 7630 years or
(3418 mm / 7630yrs = 0.45 mm/yr).

The depositional rate calculation (eq. 2) between the Mt. Mazama tephra and the Glacier

Peak tephra is 0.38 mm/yr.
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2) (2335 mm / 6125 yrs) = 0.38 mm/yr.

The last portion of the core covers from the Glacier Peak tephra to the bottom of the core. 

As discussed above, no solid time constraints exist below the tephra. The age model was 

developed based on the assumptions outlined above (eq. 3).

3) ((1 - %hemipelagic laminae) * 26.3 yr/cm) + 1 year for each upward-fining

bed present in the 1 cm interval.

Figure 12 shows the initial chronological model based on the methods described above. 

Refinement of Initial Age Model:

The initial chronology o f core 9P was based solely on a limited number of date points

177 91n(two-tephra dates and the Cs / Pb isotope correlation date) and was, as a result, 

rather crude. The initial age model provided multi-millennial scale resolution. Refining 

this initial chronology was necessary to tighten our resolution and place the core suite 

into a more useful temporal context.

Bulk Carbon Dating

To test the possibility o f radiometrically dating bulk sediment within core 9P, two 

samples were sent to Beta Analytic, Inc. for 14C AMS dating. The samples were taken 

close to each o f the tephras so that they might provide a basis for assessing potential 

carbon reservoir effects. Sample FL-00-9P-III-82, taken 14 cm below the Mazama
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Figure 12 -  Initial chronostratigraphic model based 
on two tephra tie points, 137Cs/210Pb dating, and 
sedimentary upward-fining beds.

tephra, did not yield a date due to low residual carbon; following pretreatment, the mass 

of recovered bulk carbon was below the one milligram AMS requirement. Sample FL- 

00-9P-V-74, taken 1 cm above the Glacier Peak tephra, returned a radiocarbon date of 

15,720 ± 380 cal. yr. BP (13,070 ± 375 14C BP). This bulk date is two millennia older 

than the Glacier Peak G tephra (Appendix A), almost certainly reflecting a significant 

reservoir o f older carbon. According to Ron Hatfield (2002), from Beta Analytical who 

conducted the analysis, approximately 15% of the carbon in sample FL-00-9P-V-74 is 

radiometric dead (Ron Hatfield 2002, pers. comm.). Sources of the dead carbon can be
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numerous and may include reworked organic material (including bits of Cenozoic coal 

that occurs in the East Kootenay Coal District, British Columbia in the upper Flathead 

River watershed (Kalkreuth 2004), detrital carbonate, authigenic carbonate, and residual 

carbon from the groundwater.

Whereas researchers have made adjustments for reservoir effects in radiometric dating 

(Benson 1993; Geyh et al. 1999) these corrections can be inaccurate and imprecise when 

the carbonate source is uncertain and varies with core depth. To compensate for the 

reservoir effect, most studies have applied a single adjustment to the entire length of the 

core, typically based on a modern reservoir measurements (Lund and Banerjee 1985; 

Benson 1993). However, this approach does not account for reservoir changes over time 

and thus cannot completely constrain the dating uncertainty (Benson 1993; Geyh et al. 

1999; Dumond and Griffin 2002). Because of the large uncertainty involved, establishing 

a reservoir factor for correcting the bulk radiometric dates would not provide the desired 

resolution. Without the ability to quantify accurately the carbon reservoir effect for 

Flathead Lake, I decided to exclude the bulk dates from my initial chronology and not 

pursue the method further.

Paleomagnetic Secular Variation

During the initial analysis of piston cores collected from Big Arm Bay in August of 2003 

(FL-03-15K, FL-03-16K, and FL-03-19K), a number of twigs of sufficient size were 

recovered for dating. O f these, a total of eight woody debris samples were sent to Beta 

Analytic for radiocarbon dating (Table 4, Appendix A). The strategy for refining the
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chronology for core 9P was to correlate the carbon dates among Flathead cores FL-03- 

15K, FL-03-16K, and FL-03-19K and other well-dated reference lakes by way of 

paleomagnetic secular variation (PSV). The use of secular variation previously has been 

established as a dating method for marine and lacustrine sediments (Verosub et al. 1986; 

Hanna and Verosub 1988; Hagee and Olson 1989; Omarzai et al. 1993; Negrini et al. 

2000; Benson et al. 2003). Recent studies have shown that paleomagnetic secular 

variation trends can be correlated across North America and globally between continents 

(Lund 1996; Itota et al. 1997).

Secular variation is a measure o f the total magnetic field that gradually changes over time 

(McElhinny and McFadden 2000). The magnetic field vector can be decomposed into 

inclination and declination components. Declination is the measure o f the azimuthal 

angle between the horizontal component and geographic north, while inclination is the 

vertical or dip component that is measured as the angle down from the horizontal 

component (Butler 1992). These components record both the magnetic dipole (similar to 

a magnetic bar) and nondipole fields (Tauxe 1998). The geomagnetic pole, which is the 

surface projection o f the dipole part of the magnetic field can be derived from secular 

variation data obtained from multiple localities (Butler 1992; McElhinny and McFadden

2000). Complete discussions o f magnetic fields can be found in Thompson and Oldfield 

(1986), Butler (1992), Tauxe (1998), McElhinny and McFadden (2000), and Campbell 

(2003) and are not reviewed here.
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Secular variation measurements on U-channels accurately measure low frequency 

changes in inclination and declination with spatial resolution of 3-5 cm on continuous 

sequences of core sediments (Nagy and Valet 1993). Sediment U-channels were 

extracted from the archive half of cores FL-00-9P, FL-03-15K, FL-03-16K, and FL-03- 

19K and sent to the paleomagnetism laboratory at the University of California-Davis for 

magnetostratigraphic measurements on a 2-G Enterprises Model 755 Cryogenic 

Magnetometer. Timmerman (2005) collected inclination and declination data for each of 

the U-channels and utilized vector and principle component analyses to determine that 

the 30mT demagnetization step accurately represented preserved paleomagnetic vectors 

in the Flathead Lake cores and could be used for secular variation correlations. A 

detailed discussion on the methods used to collect the PSV data are presented in 

Timmerman (2005) and will not be repeated here.

In addition to the paleomagnetic data collected for the cores from Flathead Lake, I used 

Holocene and latest Pleistocene secular variation data from two well-dated reference 

lakes: St. Croix Lake (Lund and Banerjee 1985) and Fish Lake (Verosub et al. 1986; 

Verosub 1988). I also considered a reinterpreted data set for Fish Lake (Steve Lund, 

2004, written, comm.).

The methodology for correlating the paleomagnetic secular variation entails visually 

correlating the inclination and declination records of the reference records to those of the 

core to be dated. Software aids for the correlation of time-series data, such as secular
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Lake/Core
Depth
(mbsf) 14C Yrs. BP cal. yr. BP Source

FL-00-9P 3.78* 6845 ± 85 7630 ± 8 0 Zdanowicz et al. 1999
6.742 13070 ± 40 15720 ±380 Beta-176803
6.76J 11200± 120 13180 ± 120 Hallett et al. 2001

FL-03-15K 0.44 2880 ± 5 0 2980± 145 Beta-184123
0.901 6845 ± 85 7630 ± 80 Zdanowicz et al. 1999
0.95 6890 ± 40 7700 ± 65 Beta-183410
2.22 8780 ± 40 9760± 125 Beta-183411
3.533 11200± 120 13180 ± 120 Hallett et al. 2001

FL-03-16K 0.44 4450 ± 40 5040 ± 205 Beta-183412
2.701 6845 ± 85 7630 ± 8 0 Zdanowicz et al. 1999
3.39 7900 ± 40 8650 ± 8 0 Beta-183413
4.54 9040 ± 50 10210 ± 4 0 Beta-183414
5.99 10340 ± 50 12220 ± 95 Beta-183415
6.54J 11200± 120 13180 ± 120 Hallett et al. 2001

FL-03-19K

Lake St 
Croix4

1.471 6845 ± 85 7630 ± 80 Zdanowicz et al. 1999
2.973 11200± 120 13180 ± 120 Hallett et al. 2001
4.96 12230 ± 5 0 14150± 145 Beta-183416

0.72 100± 125 75 ± 100 Lund and Banerjee 1985
1.95 416 ± 72 505 ± 75 Lund and Banerjee 1985
3.65 802 ± 72 710 ± 8 0 Lund and Banerjee 1985
5.80 1096 ± 72 985 ± 75 Lund and Banerjee 1985
8.9 1944 ±78 1895 ± 8 5 Lund and Banerjee 1985

11.9 2928 ± 92 2930± 100 Lund and Banerjee 1985
14.9 4683 ± 87 5445 ± 95 Lund and Banerjee 1985
16.75 6964± 107 7790 ±115 Lund and Banerjee 1985
18.78 9634± 129 11005± 135 Lund and Banerjee 1985

Table 4 -  Radiometric 14C dates for cores in this study. Calibration to calendar years BP 
based on InterCal98 model (Stuiver et al. 1998) and calculated using OxCal version 3.9 
for non Beta data. Calibrated date uncertainty based on 1 sigma results. Notes: '-Mt. 
Mazama Crater Lake tephra dates based on (Zdanowicz et al. 1999). 2-Bulk sediment 
carbon date excluded from chronology due to reservoir effect. 3-Glacier Peak G tephra 
date based on (Hallett et al. 2001). 4-Radiometic dates from Lund and Banerjee (1985), 
calendar year calibration based on OxCal version 3.9. M bsf = meters below sediment 
surface.
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variation, are very few in number. In his preliminary secular variation correlation among 

some of the Flathead Lake cores, Timmerman (2005) used AnalySeries version 1.2 (e.g., 

Prell et al. 1986). However, AnalySeries still requires the operator to manually identify 

visual correlations and only simplifies the correlation process by stretching or 

compressing PSV data between specific date points. In this study, I elected to correlate 

tie points and graphically shift PSV curves manually on an Excel spreadsheet. I 

accomplished visual correlations with the aid of Grapher software version 5.

Specifically, I correlated a set of tie points between the reference cores from Fish and St. 

Croix lakes and assigned the appropriate resulting date to the corresponding 1 cm depth 

interval in the Flathead Lake core. I then calculated a sedimentation rate for each 

segment between the dated tie points and constructed a new chronostratigraphic model 

that assigns a date to each centimeter of the core.

Declination Rotation

The analysis of paleomagnetic declination measurements required some rotation about a 

vertical axis prior to correlation, so that all of the individual sections within a single core 

are consistently oriented. The misalignment of declination data from individual core 

sections can be caused by several variables, including: 1) rotation of sediment as it enters 

the core barrel during the drive, 2) inconsistent orientation o f each core segment during 

the splitting process, 3) insertion of the U-channel into the core at an angle that is non- 

orthogonal to the split core surface, and 4) partial rotation of sediment that is not retained 

in the U-channel and must be extracted from the core section and placed into the U- 

channel by hand.
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Three methods are available for aligning declination data o f adjacent core sections: 1) 

point matching -  rotation of a core section so that the two data points across the core 

section gap have the same declination value. This method assumes that no large 

declination change has occurred across the gap. 2) trend matching -  the trend of 

declination data from one core section is extended across the section gap to the adjacent 

core section. This method assumes that a trend, which may be only derived from two 

points, can be projected across the gap. 3) cross-correlation -  using a replicate core to 

reconstruct the gap from the matching declination record. This method assumes that the 

core segments have not rotated (see below) and a replicate core has been recovered.

Since cross-correlation does not make any assumptions regarding the actual variation of 

the declination, it affords the best reconstruction across the section gaps (Lund and 

Banerjee 1985). Because replicate piston cores were not recovered in Flathead Lake, 

however, it was necessary to use either the point matching or trend matching techniques.

During initially processing core 9P, no efforts were made to maintain a consistent 

orientation while splitting the core sections horizontally. This was not the case when 

processing cores from 2003, which were split with the orientation line (a hand drawn line 

down the entire length of the polypropylene core barrel) facing up. Thus it was necessary 

to rotate each of the core sections from 9P about a vertical axis in order to maintain a 

consistent declination record. In this study, the point matching method accomplished 

declination rotations between core sections.
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Rotation of sediments within the core liner during the coring operation has been 

mentioned as a possible problem but is a poorly understood process and difficult to 

recognize (e.g., Breckenridge et al. 2004). During the recovery o f sediments from 

Flathead Lake, several cores reached the lake surface either wrapped in the trigger wire 

or showing a spiral pattern on the mud coating on the outside o f the metal core barrel. 

Both occurrences suggest the core barrels had rotated, likely during removal of the core 

from the bottom after the drive.

In order to investigate potential disturbances or rotation during the coring process, I 

visually inspected the sediments, core photographs, and X-radiographs from cores 9P, 

15K, 16K, and 19K. These inspections suggested the presence o f one disturbance, in 

core 19K (400-490 cm) that may have occurred during coring, although a naturally 

occurring disturbance during sediment deposition could not be ruled out. In this core 

section, horizontally-stratified glacial varves show a progressive disturbance starting with 

intact but moderately-dipping beds that grade into steeply-dipping, deformed beds and 

end with beds that appear to be sub-vertical in the upper -40  cm of the section. The 

disturbed structures are present in both photographs and X-radiographs.

As part of this analysis, I examined photographs taken during the coring operation for 

clues that might suggest core barrel rotation during recovery. Photos showing the core 

barrel with the mud coating clearly display both straight and spiral lineations (Fig. 13). 

Based on the limited number of photographs available, it appears that the spiral lineations 

crosscut the straight lineations. Rotation of the core barrel during recovery does occur, as
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indicated by the tangled trigger cable that is secured above the core barrel during the 

decent. However, rotation during the core drive is likely to be insignificant as descent of 

the core barrel is paused about three meters above the sediment-water interface, allowing 

the Kullenberg coring apparatus to stabilize prior to release and penetration. The spiral 

lineations are o f low rotational frequency, usually one to two rotations per core length 

(-10 m), suggesting small rotational stress as tension is reapplied to the twisted cable. 

While these investigations suggest core rotation is a post drive recovery process, these 

processes remain poorly understood and not well documented.

To further investigate potential sediment rotation resulting from to the coring, I examined 

the magnitude o f corrective declination rotation for the 2000 and 2003 PSV data sets 

from Flathead Lake. The idea behind this investigation is that cores processed with an 

effort to maintain consistent orientation should show smaller declination corrections than 

cores that were split without attempts to maintain a consistent orientation. Despite every 

effort to keep sampling procedures consistent down the length o f an entire core, some 

orientation variability is still expected and reasonable due to the following: 1) the 

orientation line is hand drawn on a curved core liner surface and is not always perfectly 

straight. 2) During the core splitting process, the orientation line is positioned by eye to 

be facing directly up. However, no alignment marks exist on the cutting apparatus, so it is 

likely that up to five degrees of uncertainty in core orientation is introduced in this 

manner. 3) It is possible that minor rotation of the sediment within the split core liner can 

occur during handling of the core. 4) A non-orthogonal insertion of the U-channel into
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Figure 13 -  Coring photos. A) Coring platform from the University of Minnesota 
Limnological Research Center. B) Trigger wire in coiled position prior to core drive.
C) Trigger wire after core drive tangled and wrapped around weight stand. D and E) 
Sample photos o f predominately straight lineations in mud covering the exterior o f steel 
core barrel. These two samples show straight lineations are consistent over the length of 
the core. D) Photo of straight lineations at the top o f the core barrel (note weight stand 
at top of photo) and lineations shown in the middle of another core barrel (E).
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the split core surface might introduce slight rotational variations among individually 

sampled core sections. 5) It is difficult to maintain the surface of the split core half in a 

perfectly horizontal orientation during the sub-sampling process, due to the curvature and 

flexure of the core liner and the fact that significant pressure must be applied to the U- 

channel to drive it into compacted mud of the core. 6) Recovery o f the tephras and 

terminal few centimeters of each core section occasionally would not stay firmly inserted 

in the U-channel, requiring placement by hand.

A graphical analysis of the declination data for the entire suite o f Flathead cores (Fig. 14) 

shows a higher degree o f corrective rotation for the 2000 cores than the cores processed 

in 2003. Additionally, with only a couple of exceptions, declination records did not 

contain any sharp shifts that may indicate a rotation within the core section. The three 

exceptions to this are in core 22K sections I & III and section IV o f core 8P. Each of 

these mid-section shifts are contained within the top or bottom 20 cm of the section and 

are likely related to displacement of sediments during U-channel acquisition. 

Additionally, rotation during coring operation would likely produce a ‘smeared’ 

appearance in the declination data instead of a quantum jump or some sort of step- 

function; this ‘smearing’ effect is not observed at any of these mid-section shifts. A 

single exception appears to exist in the Mt. Mazama interval o f core 9P, where the PSV 

declination record is ‘smeared’, suggesting rotation of the sediments during slumping.

Timmerman (2005) performed declination rotation for all cores utilized in this study. In 

core 9P the declination poles of sections II-V were normalized to section I by adding or
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Figure 14 -  Rotation o f paleomagnetic 
declination for Flathead cores used in dating 
correlation. Lines show amount of core 
rotation by section. The legend ‘00’ identifies 
cores recovered in 2000 and ‘03’ for cores 
from 2003.
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Declination 30 mT

-----------------  Rotated
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______________ i__________________ I______
Figure 15 -  Rotation of paleomagnetic
declination for sections of core 9P. Rotated
line shows data points (red). Un-rotated line
indicates amounts of rotation applied to core
9P. Mazama tephra (-340-385 cm) shows
internal rotation, assumed to reflect post-
depositional reworking or slumping. This
section was not rotated but assigned the same
age of deposition. Two sharp shifts at -415
and -453 cm are graphical artifacts of
plotting spherical data in two dimensions.
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subtracting the appropriate number of degrees to align the uppermost declination 

measurement with the bottom of the preceding section (Fig. 15). Section III was 

complicated by three repeated sections of the Mt. Mazama tephra, each of which likely 

occurred during syn/post-depositional reworking and/or slumping, as discussed above. In 

section IV, two sharp shifts are present at -415 and -453 cm (Fig. 15). These are 

graphical artifacts o f spherical declination data that vary about a continuous 360-degree 

pole, but are being graphically displayed on a two-dimensional plot.

Correlation Data

Two types of reference data were available for PSV correlation work in this study: data 

within Flathead Lake and data external to the lake basin. Data from within the lake, 

particularly cores FL-03-15K, FL-03-16K, and FL-03-19K, were preferred for correlation 

because I expected them to contain the fewest significant angular PSV variations due to 

location differences and because local magnetic anomalies might be expected to affect 

each o f the Flathead Lake cores in the same manner.

Data external to the lake basin was obtained for two well-dated PSV reference lakes,

Lake St. Croix (Lund and Banerjee 1985, Steve Lund, 2004, written comm.), and Fish 

Lake (Verosub et al. 1986, Steve Lund, 2004, written, comm., Kenneth Verosub, 2004, 

written, comm.). The actual 14C date points for Lake St. Croix were published (Table 4, 

Lund and Banerjee 1985), however the 14C data for Fish Lake have not been published 

and are apparently lost (Kenneth Verosub, 2004, pers. comm.). The original data for Fish 

Lake have been reinterpreted by Lund (1996). Additionally, Lund (1996) identified a set
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of major peaks and valleys in Holocene declination and inclination records from eight 

lacustrine settings and one ARCMAG record forming a traverse across North America. 

These nine localities, which include Lake St. Croix and Fish Lake, can be used as PSV 

reference sections for correlation with PSV records from new localities, such as Flathead 

Lake (Appendix B). Using the nine independently dated PSV records, Lund (1996) 

calculated the average date and dating uncertainty for each of the major inclination and 

declination tie points.

Graphical Correlations

The goal behind the PSV technique is to use the shape of the PSV curves to correlate 

among cores within the Flathead Lake (FHL) basin and, by extension, correlate dated 

stratigraphic levels among cores to erect a lake wide chronostratigraphy. An important 

component of this work is to correlate dated portions of the reference lake cores outside 

the FHL basin with the PSV signal from Flathead Lake cores. Declination and 

inclination records are considered to be separate data sets; correlations of each were made 

independently (Omarzai et al. 1993; Breckenridge et al. 2004; Rolph et al. 2004).

All PSV data first were considered plotted against core depth (Figs. 16 & 17). However, 

using PSV data with a depth scale created visual correlation problems. First, no depth 

data was available for the original Fish Lake data set (Verosub et al. 1986). Second, 

differences in sediment accumulation rates vertically distorted the PSV records, even 

within Flathead Lake. Accordingly, all PSV records were plotted based on age scale 

prior to initial correlation, using the tephras as the initial tie points among the Flathead
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cores and with the PSV age models for Fish Lake (which includes the Mazama tephra) 

and Lake St. Croix (Figs. 18 & 19). Age model plots in Figures 18 & 19 for the Flathead 

cores use a simple linear interpolation between the dated points (tephra or 14C). Selected 

dates from published age models for Lake St. Croix (Lund and Banerjee 1985) and the 

revised Fish Lake data (Lund 1996) were converted from l4C years to cal. yr. BP with 

OxCal 3.9 calibration software. The inclination and declination data were then plotted 

based on the calibrated dates for use in the graphical correlations.

Inclination and declination records o f core 9P were correlated separately using the North 

American tie points identified by Lund (1996) for Fish Lake and Lake St. Croix reference 

lakes and the 14C data from the Flathead cores. I started by plotting all the actual date 

points (tephra or radiometric) on each core, along with data uncertainty values (Figs. 20 

& 21, and Table 4). Core FL-03-19K (not shown) was of little value in this correlation, 

because it contains only one direct radiometric date that, based on visual correlation of 

up-ward fining beds, is older than the bottom of core 9P. Figures 18 to 23 only plot the 

original Fish Lake data set because the PSV variations are the same for either of the two 

slightly different age models(Verosub et al. 1986; Lund 1996).

As a second step, I used the major tie points identified by Lund (1996) for Fish Lake and 

Lake St. Croix to correlate these records with core 9P. Most of the tie points identified 

by Lund (1996) could be reasonably identified; however a few were less obvious because 

they were not located on a maximum or minimum within the time-series data set (Figs.

22 & 23). Less convincing tie points were not utilized in this study. Figures 22 & 23
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show that the average dates calculated by Lund (1996) contain a much higher uncertainty 

than the potential correlation points from the specific reference lakes (see uncertainty 

discussion below).

Based on this visual correlation approach, I was able to identify 15 separate tie points for 

the inclination curve and 16 tie points for declination curve (Figs. 22 & 23, and Table 5). 

The inclination and declination tie points were selected independently and thus provide a 

means of checking the reasonability of each correlation. Using a simple linear fit 

function between the declination and inclination-based tie points, age models were 

created and plotted (Fig. 24). The independent inclination and declination age models 

have a high linear correlation, R = of 0.994 and a p-value = <0.0001.

Tie Point Uncertainty

The strength of PSV correlation as a chronostratigraphic tool is limited by the 

researcher’s ability to identify tie points between the record o f interest and a reference 

data set. Even software tools designed to aid the correlations, such as Analyseries, relies 

on manual selection of tie points. Efforts by Lund (1996) to establish major tie points for 

the North American Holocene PSV record are the first step towards establishing a 

uniform methodology with constrained uncertainty. One component of PSV uncertainty 

is the uncertainty introduced from different operators locating the tie points based upon 

visual inspection. To measure this uncertainty, I asked three other individuals to pick the 

declination tie points in core 9P based on the data in Figure 21.
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Tie Point
Average Age 
14C Yrs. BP

Calibrated Age 
Cal. Yrs. BP

Inclination 1 87 0 ± 180 7 8 0 ± 185
2 1250± 180 1190 ± 185
3 1555 ± 180 1420± 185
6 2735 ±380 2840 ± 400
7 3415 ±250 3680 ± 275

16K 4450 ± 40 5040 ± 205
FL-I1 4500 ±250 5600 ± 250

10 6230 ± 300 7190 ±325
Mazama 6845 ± 85 7630 ± 80

12 6990 ±300 7795 ±325
16K 7900 ± 40 8650 ± 8 0
15K 8780 ± 40 9760 ± 125
16K 9040 ± 50 10210 ± 4 0
16K 10340 ± 5 0 12220 ±95

Glacier Peak 11200± 120 13180 ± 120

Declination 1 9 6 5 ± 180 915 ± 185
2 1295 ± 270 1215 ±325
4 1670 ± 6 0 1550 ± 95
5 2060± 180 2000 ± 245
6 2530 ±300 2730 ± 425
7 3435 ± 320 3710 ±450
9 4025 ± 270 4515 ±275

16K 4450 ± 40 5040 ± 205
11 4925 ±380 5675 ± 600
12 5485 ± 360 6295 ± 450

Mazama 6845 ± 85 7630 ± 80
16K 7900 ± 40 8650 ± 8 0
15K 8780 ± 40 97 6 0 ± 125
16K 9040 ± 50 10210 ± 40
16K 10340 ± 50 12220 ±95

Glacier Peak 11200 ± 120 13180 ± 120

Table 5 -  Tie point data, based on correlations in Figures 18 to 23. Average ages 
taken from Lund (1996) showing date and uncertainty from eight well dated North 
American lakes and one ARCMAG locality (Appendix B). L-Il calculated based 
on a Fish Lake curve date. Data in table only includes tie points used in this study. 
Radiometric calibration to cal. yr. BP from OxCal 3.9, except Flathead radiometric 
dates calibrated by Beta using Intercal v4.

71

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



Declination Age (cal. yr. BP)
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Figure 24 -  Scatter plot of simple linear fix-function for inclination and declination tie 
points (thick line) and linear fit 1:1 line (thin line). Variations of the two data sets are 
highly correlated, R2=0.994.___________________________________________________

I compared tie point placement between core 9P and Lund’s (1996) North American 

Holocene PSV data set from the three independent geoscientists against my own picks.

If the tie point placement was different than my placement, I used a simple linear model 

to calculate a date for the tie point interval. The uncertainty of each date was calculated 

as the percent difference among all of the tie points selected by all study participants.

The average uncertainty for all 14 tie points (tephras were not included) was 3.6%. All 

four individuals identically selected the stratigraphic locations of seven of the nine major
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tie points identified by Lund (1996) in the core 9P data set. In contrast, none of the five 

Flathead carbon dates were identically placed by all individuals. The average uncertainty 

for the Lund (1996) major tie points was 2.8% vs. 5.1% for the Flathead dates. One of 

the Lund (1996) dates was particularly problematic (D ll, uncertainty = 19.3%), 

contributing the bulk of the uncertainty for the major tie points. The higher uncertainty 

for the Flathead carbon dates is likely due to these dated stratigraphic points fortuitously 

being located on a sloped segment of the inclination or declination curve versus at an 

obvious maximum or minimum which likely would have made the tie points easier to 

consistently identify.

Interpolation Methods

All PSV age models use some interpolation method to construct the age model between a 

limited number of evenly or irregularly spaced dated points. However, no standardized 

interpolation function has been established, and the subject has received very little 

discussion in recent studies that have utilized PSV correlation dating. In fact, very few 

studies mention the interpolation method utilized, creating difficulties in comparing 

results and determining uncertainties (Lund 1996), even though changes in the 

interpolation function utilized (i.e., linear, polynomial, cubic) or parameters selected (i.e., 

3rd or 4th degree) will yield very different overall age models.

The simplest age model would be a linear interpolation between points, which has the 

advantage of including each of the actual date points in the model (Hanna and Verosub 

1988; Blais-Stevens et al. 2001; Verosub et al. 2001). However, a linear model method
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requires the derivation of separate equations for each curve segment. This yields a fixed 

sedimentation rate for each segment and creates an unrealistic, step-function type model 

for sedimentation rate that can imply the presence of an unconformity at each step 

boundary. Interpolation with a polynomial fit (Verosub et al. 1986; Breckenridge et al. 

2004) has the advantage of providing a single equation for the modeled chronology and 

yields a varying sedimentation rate that is smoothed to an extent that depends on the 

sampling interval. However, polynomial models may not pass directly through all the 

date points and tend to suffer from boundary effects at the top and bottom of the PSV 

data set, thus posing a different type of problem with these models.

In this study I examined linear and polynomial models to evaluate their effects on the 

final chronology and to establish the most realistic age model based on fit to the tie points 

and the geological reasonability of the computed sedimentation rate curve (see discussion 

below) for Flathead core 9P. I considered each interpolation model for declination and 

inclination data sets independently. For core 9P, I developed the age model to a depth of 

622 cm. This approach includes the last interval o f hemipelagic deposition, just above 

the uppermost upward-fining deposit.

I examined five polynomial models for core 9P, two of which (Full 3 and Full 4) modeled 

through the Mazama tephra with a date for the tephra located in the middle. Two other 

models (Gap 3 and Gap 4) compressed the depth scale for the Mazama tephra to a single 

centimeter. Once the Gap polynomial equation was developed it was applied to the entire 

35 cm of the tephra to create the age model. In both the ‘full’ and ‘gap’ approaches, I
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calculated 3rd and 4th degree polynomials. In the last approach to modeling the tephra, I 

split the data set to develop two polynomial equations, one above and one below the 

tephra. All the polynomial equations were developed using the core 9P tie points (Table 

5) on Grapher v.5 software; models were calculated using an Excel spreadsheet. The 

results of the polynomial modeling are shown in Figure 25 and the calculated 

sedimentation rates are shown in Figure 26.

o
1000
2000
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4000

5000

ol 6000 
CO
£ 7000 
75
°  8000 

9000 

10000 
11000 
12000 
13000 

14000

Figure 25 -  Age models for declination (left) and inclination (right) are considered 
separately. Linear model represented by tie points, line not shown. Dates are based on 
average dates for each tie point calculated by Lund (1996) or tie points derived from 
Flathead cores (see Table 5).

As mentioned, polynomial interpolation functions are not required to pass directly

through any date point and as such are subject to boundary effects at the top and/or
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bottom of the data set. All polynomial models shown in this study suffered, to varying 

degrees, from this boundary condition. For example, the first centimeter of core 9P has a 

calculated 210Pb/137Cs date of 92 cal. yr. BP. However, the modeled polynomial dates 

ranged from -83 to 193 cal. yr. BP. These boundary effects were actually compounded 

when higher degree polynomials were attempted (not shown). To evaluate the best fit 

polynomial, I calculated a correlation R2 between the tie point dates and the date modeled 

by each polynomial and the % Standard Deviation (%StDev) o f the difference (Table 6).

100 —

200

g  300 —

400

500

600 -

700

■

Declination Models
---------------  Full 3
--------------- Gap 3

------------ Full 4
------------ Gap 4

--------------- Split Poly
• Linear

100

200

g  300 —I
o

aa>
°  400

500 —

600

700

Inclination Models 
Full 3 
Gap 3 
Full 4 
Gap 4 
Split Poly 
Linear

0.4 0.8 1.2
Sedimentation Rate (mm/yr)

0.4 0.8 1.2
Sedimentation Rate (mm/yr)

1 1 I
1.6 2

Figure 26 -  Comparison of sedimentation rates for each o f the considered age models. 
Declination (left) and inclination (right) are considered separately. Linear model shown 
as bars. Dates are based on average dates for each tie point calculated by Lund (1996) or 
tie points derived from Flathead cores (see Table 5).

76

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



I also calculated the %StDev without the first date, which suffered from the strongest 

boundary effects. The average uncertainty for the polynomial age modeling was 5.03% 

for declination and 11.35% for inclination at lo  and is calculated as the average standard 

deviation of the percent difference of each modeled date to each tie point date.

Statistical measurements are only part o f the model selection process. The selected 

model also has to be sedimentologically valid. Whereas this approach involves some 

subjectivity, I based the evaluation on a few key points: 1) we know the top of the core 

does not have a negative date, 2) the tephra dates for the core should be closely modeled, 

and 3) that the overall model fits well with all the 14C dated points. Overall the split 3rd 

degree polynomial presented the best fit to the data. This model had an average 

difference of 9.02% to the tie points and an average R2=0.98704. While these are not the 

best statistical fit, Paillard (1996) noted

“ Unfortunately, the ‘f i t ’ ts not always as good as with the simple visual 

correlation. A mathematical measure such as a correlation coefficient will 

indeed give more weight to the large timescale signal fluctuations (low- 

frequency variations) where much o f  the variance is located, than to the rapid 

ones that usually account fo r  little o f  the variance.”

Model fits for the declination data have lower variability than the model fits for the 

inclination data (%StDev 5.03 vs. 11.35). For reasons not fully understood, the 

inclination models seem to be affected to a greater degree by the boundary conditions,
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Model Declination Inclination
Polynomial Full 3 R2 = 0.995114 

%StDev = 4.95%
%StDev w/o top = 3.78%

R2 = 0.991249 
%StDev = 12.08% 
%StDev w/o top = 6.11%

Polynomial Full 4 R2 = 0.995727 
%StDev = 43.59% 
%StDev w/o top = 3.36%

R2 = 0.992798 
%StDev = 71.14% 
%StDev w/o top = 8.52%

Split Polynomial Upper R2 = 0.993476 
Lower R2 = 0.980604 
%StDev = 21.17% 
%StDev w/o top = 3.75%

Upper R2 = 0.994731 
Lower R2 = 0.988664 
%StDev = 7.00% 
%StDev w/o top = 5.70%

Polynomial Gap 3 R2 = 0.995606 
%StDev = 35.88% 
%StDev w/o top = 4.41%

R2 = 0.991249 
% StDev= 11.94% 
%StDev w/o top = 6.24%

Polynomial Gap 4 R2 = 0.99672 
%StDev = 27.86% 
%StDev w/o top = 3.81%

R2 = 0.992798 
%StDev = 70.73% 
%StDev w/o top = 7.90%

Table 6 -  Statistical measures for polynomial age models for core 9P. All 
statistics are between the modeled dates and the tie point dates in Table 5.

particularly at the bottom of the core. These effects are dramatically seen in the split 

inclination model’s sedimentation rate (Fig. 26). This observation may be due, in part, to 

a down core compounding effect of inclination-shallowing, a systematic decrease in 

inclination angle as sediments are compressed (Verosub 1977; Rolph et al. 2004).

Reference Source Uncertainty

In PSV correlation dating the premise is simple: correlate a declination or inclination 

reference record to your data set and transfer over the dates to the appropriate part of the 

undated record. The general application of this method has been shown to be valid 

(Verosub 1988; Butler 1992; Rolph et al. 2004) and correlations can be made globally
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(Itota et al. 1997). However, determining exactly what date to assign a particular tie 

point is more complicated. Logically the optimal situation would arise from correlation 

of dated points from a local well-dated reference lake in which magnetic drift and local 

magnetic anomalies are minimized (Lund and Banerjee 1985).

Although local well constrained PSV records are not always available, regional lacustrine 

reference records have been developed from several well-dated lakes (Turner and 

Thompson 1982; Lund 1996). And, standard tie points that can be identified across 

North America and globally have been established for the Holocene (Lund 1996; Itota et 

al. 1997) and are being developed for the Pleistocene (Steve Lund, written comm.).

While these standard tie points can be correlated globally, each regional reference lake 

assigns slightly different dates to these points due to the cumulative effects of: 1) 

modeling differences, 2) dating uncertainty, 3) local magnetic anomalies, and 4) magnetic 

drift (which is poorly constrained). Thus, choices need to be made as to which reference 

data set to use.

All dating methods contain some amount of uncertainty, and radiometric dating is no 

exception. For direct l4C dates, the instrument uncertainty typically is reported and, once 

converted to calibrated years BP, an uncertainty range based on the calibration curve is 

added to the instrument uncertainty. In the case o f regional reference lakes the actual 

radiometric dates rarely fall on the curve minima and maxima that are most easily used in 

the correlation, requiring some interpolation to estimate dates between maxima and 

minima tie points.
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The best correlations for core 9P would be derived from a radiometrically well-dated 

source from within the lake basin, but this source does not currently exist. Some locally 

derived PSV date points exist within Flathead Lake (i.e., FL-03-15K and FL-03-16K), 

but these dates are limited and are concentrated between the two tephras.

Geographically, Flathead Lake is located between Fish Lake (-500 km west) and Lake 

St. Croix (-800 km east); chronologic correlation with either o f these reference records 

can be conducted for the Flathead Lake data set. Additionally, a set of average dates for 

the major tie points across North America have been calculated, providing another 

potential reference chronology and another source of uncertainty (Lund 1996).

In this study I examined the potential impacts and uncertainty o f utilizing these three 

reference chronologies. Average dates for the major tie points were obtained from Lund 

(1996, Appendix B) and calibrated using OxCal 3.9 (Table 7). To compare the reference 

source differences, each of the correlated tie points were plotted (Fig. 27) using the tie 

point dates derived from Fish Lake, Lake St. Croix and the North American average dates 

(Table 7, Lund and Banerjee 1985; Verosub et al. 1986; Lund 1996). The tie point 

reference dates including the tephras dates were modeled using a 3 rd degree polynomial 

(Fig. 27). Inclination and declination models using the average North American dates 

(Fig. 27A) graphically show a higher degree of similarity than the Fish or St. Croix 

chronologies (Fig. 27B & C). When visually comparing the inclination and declination 

chronologies from all three-reference sets (Fig. 28), it is apparent that the North 

American dates have a higher association to the St. Croix dates above the Mazama tephra 

and Fish Lake below the tephra. Uncertainty between the three chronologies as
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N. American 
Average Age 

14C Yr. BP 
Inclination

N. American 
Calibrated 

Age 
Cal. Yr. BP

Lake St.
Croix 

14C Yr. BP

Lake St. 
Croix 

Cal. Yr. BP

Fish Lake 
14C Yrs. 

BP
Fish Lake 

Cal. Yrs. BP

1 870± 180 780± 185 960 ± 90 870 ±190 1190 ±90 1120 ± 170
2 1250± 180 1190± 185 1310 ± 140 1250 ±300 1525± 105 1480 ±220
3 1555± 180 1420± 185 1520 ±40 1415± 105 1915 ± 65 1850 ± 150
6 2735 ±380 2840 ± 400 2530± 130 2625 ± 325 2870 ± 90 3050 ±300
7 3415 ±250 3680 ±275 3425 ± 145 3725 ±375 3715 ± 145 4075 ± 475
9 4475 ± 240 5200 ± 245 4385 ± 135 5000 ±450 4635 ± 105 5275 ±325

FL-I1 4500 ±250 5600 ±250 — — 4500 ±250 5600 ±250
10 6230 ± 300 7190 ±325 6315 ± 95 7210 ±220 6300± 130 7150 ± 350
12 6990 ± 300 7795 ±325 6955 ±65 7800± 140 6855± 155 7700 ±300
14 8400 ± 470 9400 ± 750 9200 ± 200 9210 ± 190 8225 ±115 10425 ±275

Declination
1 965± 180 915 ± 185 955 ±75 875 ± 175 1045± 175 975 ±325
2 1295 ±270 1215 ± 325 1225 ± 55 1135 ± 145 1455 ±85 1360± 180
4 1670 ±60 1550 ±95 1640 ±80 1530± 190 1910 ± 60 1850± 150
5 2060± 180 2000 ± 245 2065± 105 2075 ± 275 2415 ±85 2525 ±225
6 2530 ±300 2730 ±425 2460 ± 140 2500 ±350 2740± 100 2875 ±375
7 3435 ±320 3710 ± 450 3415± 135 3325 ±375 3670± 100 4000 ±350
9 4025 ± 270 4515 ± 275 4165± 145 4750 ± 600 4365 ± 65 5050 ±230

10 4330 ±500 4875 ± 700 4415± 105 5075 ± 275 4570 ±40 5245 ± 205
11 4925 ± 380 5675 ± 600 5070± 120 5875 ±325 5105 ± 105 5900 ± 300
12 5485 ±360 6295 ± 450 5560± 130 6325 ±375 — —

15 8060 ±360 8975 ±450 8140 ±200 9100 ± 350 7855 ± 125 8730 ± 250
16 8280 ±350 9100 ±500 8705 ± 165 9825 ± 325 8095 ±45 9115 ± 125
17 8375 ± 320 9300 ±300 9130 ± 130 10340± 160 8250 ±90 9220± 190

Table 7 -  Tie point data, except FL-I1, taken from (Lund 1996) showing date 
variation from well dated lakes. North American data shown includes dates from 
lakes not used in this secular variation study, but are included to constrain dating 
uncertainty. FL-I1 calculated based on a Fish Lake curve date. Data in table only 
includes tie points identified in reference lakes and not all were identified in core 9P. 
Radiometric calibration using l-o  error values in cal. yr. BP from OxCal 3.9.
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average percent standard deviation of the differences at lo  is 7.07% for declination and 

11.3% for inclination. While the date uncertainties for the reference lakes themselves are 

lower than the average North American dates, the uncertainties for the reference lakes are 

only stated as the radiometric uncertainty and do not include any modeling uncertainty 

(Fig. 28).

Longitudinally based variation in paleomagnetic secular variation is well documented but 

poorly constrained and not well understood (Verosub et al. 1986). The PSV drift affects 

the timing of locally derived minima and maxima on the PSV data curves (Lund 1996).
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Figure 27 -  Comparison of date models for core 9P based on tie points identified by 
Lund (1996) and the Flathead tephras, using calculated average dates and dates from 
reference lake (Fish Lake and St. Croix Lake) age models. All dates from Lund (1996). 
Notes: TP=tie points, Poly=Polynomial, Dec=declination, and Inc=inclination_________
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Minimizing date variability can be achieved by selecting, when available, a reference 

lake close to the record o f interest (Verosub et al. 1986), thus reducing local magnetic 

disturbances and PSV drift problems. However, with the presence of these types of 

discrepancies, utilizing an average date model spread over a number of localities seems 

advantageous by assigning more realistic dates despite the higher average uncertainties 

(Lund 1996). Uncertainty for the average North American dates is large enough to 

encompass the local variation in the Fish and St. Croix polynomials at most of the tie

>■ 7000

10000
>■ NA-TP 

NA Poly11000
• F ish-T P  

F ish-Poly

• LSC-TP 

LSC Poly

200 400 
Depth (m)

600

>: 7000

10000

11000

12000

13000

14000

+ NA-TP 

NA Poly

♦ F ish -T P  

F ish-Po ly

• LSC -T P 

----------------------- LSC Poly

200 400 
Depth (m)

600

Figure 28 -  Comparison o f tie points dates for three possible chronologic models. Plots 
for core 9P declination curve on left; inclination curve on right. Tie point dates shown 
and associated 3rd degree polynomials based on reference lake date data and North 
American average dates (Lund 1996, Appendix B). Uncertainty bars shown for each 
date point. Tephras noted with arrows, in the declination graph a tie point overlies the 
Mazama tephra.________________________________________________________________

83

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



points (Fig. 28). The North American calibrated uncertainty ranges from ± 80 to ±700 

yrs for the declination data and from ± 185 to ±750 yrs for the inclination, with an 

average uncertainty of ±353 yrs and ±313 yrs respectively. These average North 

American dates for the tie points represent the most conservative reference set for the 

establishment of a the chronologic model.

Final Model Considerations

In constructing a correlative chronostratigraphy based on PSV data sets, it is the 

researcher’s job to interpret the data and present the most parsimonious model with the 

lowest acceptable uncertainty. It is not unusual for the researcher to select sections of 

various records, with justification, to compile the final model (Gary Acton 2004, pers. 

comm.). Construction of a composite chronologic model in this way allows the best fit 

solution to be used and can constrain uncertainty (Tailing and Burbank 1993). Care must 

be exercised to assure all chronologic data sets use the same absolute dating schemes 

(e.g., radiocarbon years before present, 14C BP, vs. radiocarbon calendar year, 14C Cal., 

vs. calibrated years before present, cal. yr BP). Many o f the data sets utilized in this 

research were published as 14C BP dates. I converted these radiocarbon years to 

calibrated years, using OxCal calibration software version 3.9 developed by University of 

Oxford’s Radiocarbon Accelerator Unit (http://www.rlaha.ox.ac.uk/orau/oxcal.html). All 

presented figures in this study use cal. yr. BP.

In constructing the final age model for core FL-00-9P I started with the two tephras and 

correlation of 2I0Pb/137Cs data from core 9G to constrain the top of the core. For further
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refinement o f the core 9P chronology, I investigated the potential PSV correlation with 

well-dated reference lakes. From these investigations I conclude that PSV is an effective 

method for dating a core where limited datable material is available. However, the 

uncertainty of the method is greater than the few hundred years claimed by Hanna and 

Verosub (1988). When considering uncertainties from tie point selection, modeling, and 

reference sources, I estimate average uncertainty at 300 to 400 years for dates that are 

derived from outside the local basin. This uncertainty is reflected in the average North 

American dates that were calculated by Lund (1996) and that were selected for use in the 

conservative approach I adopted in constructing the chronology for core 9P. In addition 

to the PSV reference dates published by Lund (1996), I also used dates available from 

other Flathead Lake cores. These intrabasinal dates likely do not suffer from longitudinal 

variation, model extrapolation, or regional magnetic anomalies to the extent that the 

average reference dates published by Lund (1996) do and thus reduce uncertainty, where 

utilized.

The overall chronologies based on declination and inclination tie points have a high 

degree of correlation, R2 = of 0.994 for a linear model. The fit between declination and 

inclination can be improved based on the tie point model selected (Fig. 29). For example, 

a simple regression of the 4th degree polynomial model has a R2 = of 0.999, while Split 

model has an R2=0.996. However, differences are apparent from the uncertainties among 

the declination (5.03%) and inclination (11.35%) models (Table 6). Based on the lower 

uncertainty I elected to model core 9P utilizing the declination tie points. To model the 

final chronology for core 9P, I selected a fit function using the split 3 rd degree polynomial
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as previously discussed (Figs. 25, 26 & 29). This split declination model has an average 

percent difference of 9.02% from the tie points and the best overall fit to the date points 

contained in core 9P. However, this modeling function may not be the best fit for all data 

sets due to the repeated tephra section and I would suggest modeling each core 

individually. Lastly, for the upward-fining interval below the Glacier Peak tephra I
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each of the considered model functions. R2 values shown in panel for each model.
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utilized the model developed in the initial chronology that multiplied the percent of 

hemipelagic deposition o f each centimeter by the sedimentation rate modeled by the 

polynomial. To compensate for the boundary effect on the sedimentation rate at the 

bottom of the core, I used the average sedimentation rate (0.51 mm/yr) calculated 

between the last two tie points (555 and 611 cm).

Chronostratigraphic Model and Uncertainty

The final chronostratigraphic model for FL-00-9P (Fig. 30 & 31) was constructed based 

on the considerations discussed above. The goal was to develop a model with the 

greatest sedimentologic authenticity and the least uncertainty. To this end, the initial 

model has been refined with PSV correlations and the transfer of the tie point dates to 

core 9P. Above the Mt. Mazama tephra the nine declination tie points were derived from 

a PSV Holocene study by Lund (1996), one correlation to core 16K, and the 210Pb/137Cs 

correlation to core 9G (Fig. 30). Uncertainty in this portion of the core was calculated as 

the date point uncertainty plus 7.6% for polynomial modeling uncertainty for the top 

portion of the core, plus 2.8% for the point selection uncertainty. Between the tephras, 

four declination tie points were correlated to core 9P from Flathead cores 15K and 16K 

(Fig. 30). Uncertainty o f these tie points was calculated as the date uncertainty plus 

1.05% for the modeling uncertainty, plus 5.1% for the point selection uncertainty. The 

uncertainty for the tephra radiometric dates is calculated as the date uncertainty plus the 

modeling uncertainty o f 1.05%.
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Sample / ,4C Date Calibration Curve and Uncertainty Calibrated Date
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Figure 30 -  Tie points for the final chronostratigraphic model for core FL-00-9P. Tie 
point and 14C BP date shown on left. Graphs and calibrated years BP (right) calculated on 
OxCal.

The refinement of the age model with PSV correlations did strengthen the chronology by 

providing an expanded data set that confirmed the initial simplistic model and allowed a 

more realistic depositional model to be created (Fig. 31). The refined model above the 

Mazama tephra differs slightly from the simple model but is generally within the 

uncertainty. However, the uncertainty in this portion of the model is greater due to the
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limited dateable material in the Flathead basin. When utilizing tie point dates from

within the basin between the tephras, the refined age model is nearly identical to the

simple model and uncertainty is greatly reduced (Fig. 31). The overall agreement of the

models strengthens the suggestion that the core 9P does not contain major gaps or

rotations and it can provide a complete paleoclimatic record for the Flolocene and late
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Pleistocene. Additionally, this study has demonstrated that PSV correlations can be 

quantified and used to provide a basis for age modeling within the uncertainty limits 

discussed.

Sedimentologic Model Validation

One of the criteria to consider when constructing a chronological model is the 

sedimentologic validity o f the input parameters and the model created. In this study 

independent data sets can be utilized to test the soundness o f the chronologic and 

sedimentation rate models. As previously stated no known unconformities exist in core 

9P, with the exception of possible missing record due to Mazama tephra slumping. The 

step-function style sedimentation rate of the linear model implies that unconformities 

exist where no other data support this suggestion. The selected split model used in this 

study does have independent support in that the declining sedimentation rate between 

-12,000 and 13,000 cal. yr. BP, corresponds to a period o f glacial retreat (Smith 2004; 

Hofmann 2005) and lower hydrologic flow (lower median grain size). A shift in the 

sedimentation rate at the Mt. Mazama tephra accounts for the erosional unconformity due 

the tephra slumping. And, widespread seismic onlap onto the Mazama reflector 

(Hofmann 2005) indicates a lake level lowstand immediately after deposition of the 

Mazama tephra, followed by an increase in hydrologic flow during the lake refilling. The 

chronologic model for core 9P shows acceleration in the sedimentation rate beginning 

above the Mazama tephra (Fig. 31). These independent sedimentologic supports provide 

additional strength to the discussed modeling decisions used to construct the core 9P 

chronology.
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CH APTER 3

Examination of Potential Paleoclimate Proxies for Large Open 

Lacustrine Systems: Late Pleistocene and Holocene Time-Series Core 

Data from Flathead Lake, Montana
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Abstract:

Time-series proxy data acquired from lake sediments are routinely used to reconstruct 

regional climate histories. However, no standard set of proxies can be consistently 

applied to understand past paleoclimate, and significant complications can arise both 

from the integration of proxy signals over the area of the catchment basin and from 

processes o f destructively interfering proxy signals within the watershed.

In this study I present the initial analysis and evaluation o f a suite o f proxies commonly 

utilized in paleoclimate reconstructions as derived from sediments in Flathead Lake. The 

investigations presented herein concentrate on sediment core FL-00-9P, recovered from 

the lake bottom in 2000. This study focuses on changes in grain size, carbon and 

nitrogen, and mineralogical data at a millennial to centennial time-scale. I present the 

methods utilized in obtaining these time-series data sets, critically review the use of 

similar proxies at other localities, and evaluate the overall effectiveness of each proxy as 

a tool for reconstructing paleoclimate. My results suggest that many proxies routinely 

used to reconstruct paleoclimate do not provide a statistically robust means of quantifying 

paleoclimatic variability in the Flathead Lake basin. This result may be partly due to a 

combination of factors, including periodic interference in the proxy signals from different 

climatic environs in the mountainous upper Flathead catchment basin, low signal/noise 

ratios within the datasets due to analytic uncertainty, and smoothing effects created by 

sediment recycling within the catchment.
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Introduction:

The record of past climatic variability is a powerful guide in understanding and 

predicting future natural climate change. In particular, understanding the range of 

prehistoric natural climate variability is important for placing ongoing anthropogenic 

modifications of climate into a longer-term perspective (Magny 1993; Alexander and 

Windom 1999; Einsele et al. 2001). In many published studies, the interpretation of 

ancient climates is achieved by the development of time-series data sets, called proxies, 

for variable parameters within natural records. A proxy data set is utilized as a substitute 

for one or more climatic, environmental, or physical conditions that existed in the past 

but cannot be measured directly (Henderson 2002). Proxies are presumed to vary 

predictably with changing climate and so represent a record o f climate change. The 

proxies of ancient global and local climates can be preserved in a variety of natural 

records, including glacial ice sheets, ocean and lake sediments, tree rings, and corals 

(Patterson et al. 1977; Allen and Anderson 2000; Horiuchi et al. 2000; Sarkar et al. 2000; 

Wagner et al. 2000). Commonly used proxies for climate studies include variations in 

micro and macro fossils, isotopic ratios, magnetic susceptibility, sediment grain size, 

mineralogy, elemental composition, and carbon chemistry (Mathewes and Rouse 1975; 

Dean and Megard 1993; Forester and Carter 1998; Cohn 2003).

Lake sediment records have long been exploited as a source o f paleoclimate proxy data. 

Lakes respond quickly to environmental change and may be characterized by long 

periods of uninterrupted sedimentation. Lacustrine climatic studies traditionally have 

concentrated on small closed lake systems, which are sensitive to local climate change
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and allow researchers to work with a localized set of proxy input variables (Whitlock et 

al. 1993; Meyer et al. 1995; Long et al. 1998; Millspaugh et al. 2000). This approach 

may accurately record regional paleoclimate in some situations, such as the North 

American Great Plains where mountains do not increase microclimate variability (Szeicz 

and MacDonald 2001). However, in mountainous regions, closed lacustrine systems may 

also record local orographical microclimate effects that may not accurately reflect the 

greater regional trends. Local microclimatic variability can impact both temperature and 

precipitation, both of which are major components of a fluvial/lacustrine system (Szeicz 

and MacDonald 2001; Wang et al. 2002). Although the processes contributing to 

climatic variability between montane drainages are not completely understood, large 

open lake systems should integrate the variability of montane microclimates and record a 

more regional signature of climatic fluctuations derived from its watershed.

The main objective of this study is to construct and analyze a series of commonly used 

time-series proxy data sets from Flathead Lake, Montana, to investigate the utility of 

these proxies as recorders of ancient climate. In particular, I seek to conduct a rigorous 

analysis of analytic uncertainty to quantify the signal/noise ratio and test the hypothesis 

that these proxy data do record statistically significant variations that can be attributed to 

ancient climate change. This work seeks to test the hypothesis that, using time-series 

proxy data sets, a predictable record of paleoclimate change can be extracted from 

sediments in a large, open lake. In addition, I seek to test the hypothesis that 

microclimate variability in mountainous terrain integrates paleoclimate signals derived 

from proxy studies downstream.
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The Flathead watershed (over 18,000 km2, Fig. 32 A) drains a network of mountainous 

and high valley terrain, and experiences variable climatic conditions due to the spatial 

heterogeneity of montane microclimates (Bartlein et al. 1998b; Rial and Anaclerio 2000; 

Weber 2001). Flathead Lake is the largest freshwater lake (496 km2) west o f the

AlbertaBritish C olum bia

Washington

Idaho

Montana

Figure 32 - Location Map o f Flathead Lake 
and study core sites. A) Map of western 
North America, shaded area is watershed for 
Flathead Lake, Lake shown in blue. B) 
Flathead Lake showing study core locations. 
Location for core 9P includes core 9G. 
Coarse bathymetry o f lake is shown with 
contour lines. The recovery depth of the 
cores are 9P and 9G 32 m, and 9Gb-31 m.

Mississippi with a maximum length of 43 km and width of 23 km. The lake is located at 

the former southern terminus o f the Cordilleran ice sheet during the last glacial maximum 

(Fig. 33, Atwater 1986) between the Mission and Flathead Valleys in northwestern 

Montana. The Mission and Flathead Valleys are located at the southern end of a large
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linear valley system called the Rocky Mountain Trench, that extends for approximately 

1,600 km from northern Montana to the British Columbia-Yukon border (Leech 1966). 

The Mission and Flathead valleys are structural features created by the Mission Fault, a 

large down to the west normal fault, and is bounded on its eastern margin by the Mission 

Mountains (Fig. 34). Seismic reflection data o f the fault beneath the lake however

124 .49120 116
FHLobeCordilleran Ice S h ee t

Glacial 
tftla k e  Columbia

45
2 0 0  km

116!120

Figure 33 - Map of approximate maximum extent o f the Cordilleran 
Ice Sheet in Western North America. Flathead Lake is positioned 
under the Flathead ice lobe (Hofmann 2005).

shows that the Mission Fault is a complicated system of extensional and strike-slip 

structures (Hofmann et al. 2006). Flathead Lake occupies a structural low in the valley 

that contained the Flathead Lobe of the Cordilleran ice sheet during much of the late 

Pleistocene (Fig. 33). Sedimentologic and seismic reflection data show that the Flathead 

Lake basin existed as a proglacial lake in the late Pleistocene and provides a record of 

glacial retreat and subsequent lake development over the transition to the Holocene
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(Curry et al. 1977; Smith 1977; Chambers et al. 1989; Ostenaa et al. 1990; Levish 1997; 

Smith 2004; Bondurant 2005; Hofmann 2005; Timmerman 2005).

Figure 34 - Aerial image of Flathead Lake and the surrounding landscape. A major 
normal fault system runs through the eastern part o f the lake forming the scarp face seen 
on the western side o f the Mission Mountains (dash line approx. main fault location).
Map image courtesy o f William Bowen at the California Geographical Survey.

Flathead Lake currently has a mean surface elevation of -881 m above sea level. Since

the 1938 completion of Kerr Dam the lake level has been maintained at ~2 m higher than

the mean annual elevation of 879 m prior to the dam construction. Current lake surface

elevations range from 879 to 882 m versus the 878 to 881 m pre-dam range (Fig 35). On

the western side o f the lake a broad bathymetric bench exists with an average water depth

of 35 m (Fig. 32B). The eastern side of the lake has a north-south trending bathymetric

trough (Fig. 32B) that has a maximum depth of 117 m (Moore et al. 1982). Contained
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within the sediments of the bathymetric trough is the sub-surface expression of the 

Mission Fault (Hofmann et al. 2006).

Flathead Lake Hydrograph

2,aao
Jan Jal SepMar May

Figure 35 - Hydrograph of Flathead Lake showing spring runoff before 
construction o f Kerr Dam (solid line) and post-dam (dashed line). Since 
operation o f Kerr Dam began the Flathead Lake water level has remained high 
for most of the year to supply power generation and enhance recreation. The 
result has been transformation and erosion of the Flathead River delta front 
(Moore et al. 1982).

Flathead Lake is an open system that drains over 18,000 km2 of the northern US Rocky 

Mountains and southern Canadian Rocky Mountains (Fig. 32). Based on stream 

discharge data from the USGS (http://waterdata.usgs.gov/mt/nwis/dv?) for the last 20- 

year period, approximately 86% of the lake’s modern inflow is delivered by the Flathead 

River at the northern lake margin while an additional 10% is transported from the 

southeast part of the watershed through the Swan River. Annual discharge of the 

Flathead River is dominated by melting of the winter snowpack in the high altitude
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regions of the catchment. Flathead Lake is oligotrophic, with relatively low rates of 

primary productivity (Moore et al. 1982; Moore 1983) due to limited nutrient loading 

(Spencer and Ellis 1990; Spencer and Owen 2004).

Methods and Results:

In 2000 Dr. Marc Hendrix and Dr. Johnnie Moore from the University of Montana 

Department of Geology undertook a new round of research focused on Flathead Lake and 

the surrounding basin. This new effort followed initial work on the basin and lake by Dr. 

Moore and others over 20 years earlier (i.e., Decker 1966; LaPoint 1973; Joyce 1980; 

Kogan 1980; Moore et al. 1982; Moore 1983). The initial focus of this new research was 

the documentation o f climatic and hydrologic change during the late Pleistocene and 

Holocene (-16,000 cal. yr. B.P. to present) from analysis o f sediment cores collected in 

the Flathead Lake basin. Material for these analyses was obtained in the fall of 2000 with 

the recovery of 8 piston cores and 6 gravity cores. Subsequently additional cores were 

recovered from Flathead Lake in the summer of 2001 (4 gravity cores and 2 freeze cores), 

the fall of 2002 (15 gravity cores), and the summer of 2003 (11 piston cores and 8 gravity 

cores). All the piston cores were recovered using the modified Kuhlenberg coring 

facilities from the Limnological Research Center at the University o f Minnesota (Fig.

36). To maintain targeting control on subsurface structures during coring, the longer 

piston cores were mostly located along one of the 3.5 kHz seismic reflection lines 

recovered in 1979 (Kogan 1980).
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General Core Processing:

The focus of this research is on core FL-00-9P (9P) that was recovered in September 

2000 at a depth of 32 m, using the modified Kuhlenberg piston-coring platform (Fig. 36). 

The core location is in the center of the lake (UTM, N5308023.793 and E716377.5239), 

along seismic line 28 (Fig 37 & 38), one of the 3.5 kHz reflection lines recovered in 1979 

(Kogan 1980). The core is situated atop a broad bathymetric bench that occupies the 

western portion of the lake (Figs. 32B, 37 & 38).

Figure 37. -  Map of Flathead Lake 
showing position of core 9P on seismic line 
28. Seismic data collected in 1979 (Kogan 
1980) and core 9P recovered in 2000.
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The recovered core includes only the top -10%  of the sediment package, based on the 3.5 

kHz seismic reflection data that suggest that an intact sediment package over 60 m thick 

exists at the coring site (Kogan 1980; Hofmann et al. 2006). However, lower frequency 

seismic reflection data, which is deeper penetrating but o f lower resolution, suggests an 

even thicker sediment package with a depth to bedrock o f -130 m (Wold 1982). Initial 

observations of core 9P suggest that it contains a continuous sedimentation record 

without any bioturbation.

Mt. Mazama asl

Glacier.Peak ash
blockwith water 

; structures and

turtridite
Mt. Mazama asli

Glacier Peak ash

10x vertical exaggeration

Figure 38 - Interpretation of seismic line 28 shows intact sediment package below Core 
9P. The two dashed lines mark the position of the Mount Mazama (7,630 cal. yr. BP) and 
the Glacier Peak tephras (13,180 cal. yr. BP). The solid black line is the sediment-water 
interface. A strand o f the Mission Fault can be traced on the west side of the trough; no 
fault is imaged on the east side of the trough in this seismic line. Slump structures and 
turbidites (possible seismites) appear to be between 15,000 years and 7,000 years old. 
(Modified from Hofmann and Hendrix 2002)
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Core 9P is chronostratigraphically constrained by tephras from Mt. Mazama (7,630 ± 80 

cal. yr. BP) and Glacier Peak (GPA; 13,180 ± 120 cal. yr. BP). The tephras are located at 

375 cm and 611 cm, respectively, below the lake floor and demonstrate that the 

sedimentary record extends to the Late Pleistocene. In this study all dates utilized are 

based on a chronology prepared for core 9P (Fig. 39) that was derived from the tephra 

dates, 137Cs and 210Pb isotope correlations, and paleomagnetic secular variation 

correlations (Chapter 2, this dissertation). In addition to core 9P, this study examines 

data from two gravity cores FL-00-9G and FL-02-9Gb. Chris Fuller of the USGS in

1T9 910Menlo Park, CA dated these gravity cores with Cs and Pb isotope methods.

In November 2000, core FL-00-9P was split along its long axis and photographed with a 

Leaf Microlumina digital camera equipped with a Nikon AF Micro Nikkor 60 mm lens. 

The images were processed and joined using Adobe Photoshop version 5.5 (Fig. 40).

One half of the core was archived for future research, while the other half was sectioned 

at one-centimeter intervals (pucks) over its entire 7.10 m length for analyses. In 

December 2000, the archived half of the core was brought to the Curry Heath Center at 

The University o f Montana to acquire X-radiograph images. The X-radiographs were 

processed and joined using Adobe Photoshop version 5.5 (Fig. 41). In August of 2002, 

the archived half o f core FL-00-9P was transported, with the other piston cores, to the 

Limnological Research Center at the University o f Minnesota for analysis using a Geotek 

Multi-Sensor Core Logger (Geotek) for physical property description. The Geotek 

collects data for magnetic susceptibility, P-wave amplitude and velocity, impedance,
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Figure 39 -  (A) Final chronostratigraphic model for 
core FL-00-9P. Age model plotted for time vs. 
depth, points o f correlation are shown with dots. 
Uncertainty shown with error bars for each tie point 
and with gray shadow range. Dashed line is initial 
age model. Graph on right shows sedimentation rate 
(unadjusted for water content) based on modeled 
timescale, bottom peaks truncated at right end of x- 
axis (oval). (B) Truncated portion of sedimentation 
rate graph (oval in A) showing sedimentation rate 
associated with upward-fining beds drafted to scale.
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porosity, and sediment density. In June, 2003, U-channels were extracted from the 

archived core halves and sent to the paleomagnetism laboratory at the University of 

Califomia-Davis for magnetostratigraphic measurements (Timmerman 2005; Sperazza et 

al. in prep.).
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Section I Section  II Section  IVSection III Section V

Mt. M azam a Ash 
7,630 cal yr B.P.

Glacier Peak Ash 
13,180 cal yr B.P.

Figure 40 - Photograph of the five recovered sections in core 9P. Scale is cumulative 
for the total depth of the core. Two volcanic tephras are labeled; these serve as the 
basis of the initial chronostratigraphic model. Note some of the sharp color changes 
are due to image splicing and do not represent sedimentologic changes. Images are 
horizontally exaggerated by -60% .____________________________________________
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Figure 41 -  X-radiographs of core 9P by section. Some sharp contrast 
changes are artifact of image splicing. Images are horizontally 
exaggerated by -60%.___________________________________________
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Core pucks from both the piston (working half) and gravity cores were subsampled for 

wet and dry analyses. Wet samples are needed for grain size, pollen, diatom, ostracode, 

and charcoal analyses. Approximately 2/3 of the each core puck has been either freeze- 

dried or dried in an oven at a temperature of 50 to 70 °C. Dry samples are utilized for 

geochemical analyses (TOC, TIC, elemental components), mineralogy, and discrete 

magnetic susceptibility measurements.

Sedimentary Facies:

A total of six sedimentologic facies are present in core 9P. Each was described based on 

initial core descriptions, photographs, and X-radiographs (Figs 40, 41 and Appendix C). 

Facies units are differentiated and described on the basis of changes in grain size, bed 

thickness, and abundance of black sulfide bands, presumed consist of mono-sulfide 

compounds (Fig. 42). The core 9P facies are described as follows:

Tep - The sedimentologic unit most visible in the core are two tephras located at 340-375 

cm (Mt. Mazama, Crater Lake tephra) and at 610-611 cm (Glacier Peak, G tephra). The 

tephras are coarse grained (D50 18 to 35 pm), and light in color ranging from 5/1 2.5Y to 

6/1 2.5Y based on the Munsell Soil Color Chart. The upper tephra (Mazama) contains 

four beds of ash separated by deposits fine-grained sediment with faint laminae. These 

separate Mazama deposits likely represent tephra slumps due to rapid deposition on a 

subaqueous slope (Sperazza et al. in prep.).
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U fb  - This sedimentologic unit consists of 13 coarse-grained (up to 18  pm), sharp-based 

upward fining deposits located between 622-671 cm and 691-710 cm. The individual 

upward-fining beds are cm- to dm-scale, with the thickest bed -14  cm. The beds are in 

two groupings separated by 20 cm of fine-grained hemipelagic mud (Hp4, see below). 

These upward-fining beds are believed to represent glacial flood deposits associated with 

Flathead Lobe retreat (Sperazza et al. 2002; Hofmann 2005).

H p l - Fine-grained (typically between 3.0 and 5.0 pm) hemipelagic lacustrine beds 

with evenly spaced surface laminae from mono-sulfides and evenly spaced mm-scale 

laminae in X-radiographs. Mono-sulfide beds rapidly oxidize and are lost visually 

within a few hours o f splitting the core. In this facies, most surface laminations are 

composed of the black bands presumed to be mono-sulfides; mm-scale laminations 

are barely visible or not seen. However, sub-cm laminations are imaged in the X- 

radiographs, due to density differences in the sediment. The preservation of fine 

lamina in the X-radiographs demonstrates the lack of post-depositional sediment 

disturbances due to coring or bioturbation.

Hp2 - Very-fine grained (typically between 2.0 and 3.0 pm) hemipelagic lacustrine 

beds with surface mono-sulfides laminations evenly spaced -1 cm apart and evenly 

spaced < 1 cm lamina in X-radiographs. Found in two intervals between 60 to 95 cm 

and 108 to 142 cm, with a color of 5/2 10YR.
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Figure 42 -  Flathead Lake core 9P showing composite description of sedimentary 
units, Core photograph, X-radiograph, and grain size.
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Hp3 - Very fine-grained (typically between 2.0 and 3.5 pm) hemipelagic lacustrine 

deposits with patchy unevenly spaced mono-sulfide lamina and evenly spaced -cm  

laminations in X-radiographs. Massive hemipelagic deposits from 143 to 588 cm, 

interrupted only by the Mazama tephra, with color grading upward from 5/2 7.5YR to 

5/2 10YR.

Hp4 -  Very fine grained (typically < 2.1 pm) hemipelagic lacustrine deposits with no 

mono-sulfide beds, and only weakly expressed sub-cm lamina in X-radiographs. This 

facies is only found at the bottom of the core, between the upward-fming beds and 

only up to 588 cm. Beds have a color of 5/2 7.5YR.

Core description sheets for core 9P provide additional information about core color, 

bedding, and other initial observations. These sheets can be found in Appendix C, 

however the sheets for section I and II have been lost.

Proxies:

Since the direct measurement of past climate conditions is not possible, proxies are 

utilized to indirectly provide insight into climatic variability. Proxies however only 

measure the product of climate change, such as weathering rates, salinity, species 

adaptation, or compositional changes (Parrish 1998; Cronin 1999; Cohn 2003). The 

individual proxy may be recording changes within the lake (authigenic or endogenic) 

and/or changes derived from the watershed (allogenic or detrital) (Boyle 2001).
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Additionally, most proxies can be influenced by more than one environmental change. 

For example, changes in types of tree pollen reaching a potential core site are affected by 

long-term variations in precipitation in addition to variations in temperature (Bartlein et 

al. 1998a). Thus, most paleoclimate studies utilize a multi-proxy approach to climatic 

reconstructions in order to discern simultaneous changes of multiple conditions (e.g., 

Mayle and Cwynar 1995; Andrews and Giraudeau 2003).

In paleoclimate research no specific set of proxies are universally used in all settings, 

although pollen and isotope-based studies are gaining popularity (e.g., Dansgaard 1987; 

Anderson 1993; Grootes 1993; Whitlock et al. 1993). The result is an assortment of 

proxy suites that make direct study-to-study comparisons difficult. One possible reason 

for the variations in the proxy suites utilized at different localities may be that not all 

proxies work in all settings, although this rarely if ever mentioned in the literature. The 

effectiveness of time-series proxy data from lakes can be influenced by topography and 

geology in the lake watershed, as well by the preservation of the proxy record within the 

lake sediments. Additionally, a researcher’s expertise, available equipment, and funding 

constraints can influence proxy selection.

Proxy data archived in the sediments of small, closed lake systems frequently have been 

used to reconstruct regional and global climate histories through the establishment of 

multi-proxy time-series data sets (Mayle and Cwynar 1995; Campbell 1998; Yuretich et 

al. 1999; Andrews and Giraudeau 2003). In contrast, fewer such studies are conducted
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on large, open lakes because o f difficulties associated with understanding these more 

hydrologically and limnologically complex systems and the perception that sedimentary 

archives will be less sensitive to high frequency climate change because of the integration 

of the proxy record across the watershed.

In this study, I sought to examine the paleoclimatic potential of a set of proxies in a large 

lake setting situated in the northern US Rocky Mountains. The starting point of the 

research was an examination of the published literature to identify what proxies have 

been used and what potential climatic variations could be elucidated. The goal was to 

examine a broad spectrum of proxies, quantify their uncertainty, and assess their potential 

for climate reconstructions. These goals were necessarily constrained by available 

expertise, access to analytical equipment, and funding. Below I discuss the proxy groups 

investigated with respect to: 1) background review of past paleoclimate use in the 

literature, 2) data collection methodology employed in this study, 3) uncertainty 

calculations, and 4) potential as a climate indicator for Flathead Lake.

In this paleoclimate proxy analysis I collected data from 3 proxy categories: grain size, 

mineralogy, and carbon/nitrogen. From these analyses a total of 36 individual time-series 

proxies (26 measured directly and 10 calculated, typically as ratios of two proxies) were 

available for climatic consideration. All proxy data are presented as figures in Appendix 

D and in digital form in Appendix F.
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Grain size

Background - The grain size of transported sediment is directly affected by the 

hydrologic competency o f the transporting current. Transport of sediment has been 

correlated to flow velocity; a doubling of flow velocity can displace particles up to 64 

times larger (Brooks et al. 1991). Therefore, variability o f grain size recorded in 

lacustrine sediments may reflect changes in sediment load and thus river discharge, as 

shown in Pine Lake, Alberta, where coarse-grained sediment layers were correlated to 

periods of high streamflow (Campbell 1998). There, grain size increases were 

determined to be a function of the short residence time o f the water within the lake and 

transport of the clay fraction out of the system during periods o f increased through-flow 

(Campbell 1998; Campbell and Campbell 2002).

Alternatively, in the Mediterranean region of Europe Harrison and Digerfeldt (1993) 

found that increases in sediment grain size were caused by erosion of exposed lake 

sediments during lake-level lowstands. This climatic interpretation was strengthened by 

temporal correlation o f lake level changes to other lake systems in the region (Harrison 

and Digerfeldt 1993), although lake level changes may also have physical, non-climatic 

origins, such as spill point down-cutting or basinal changes due to tectonic activity 

(Digerfeldt 1986). Grain size variability within a time-series data set may also be 

influenced by post-fire basinal erosion (MacDonald et al. 1991) or eolian dust transport 

(Porter 2000).
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Methods - Traditional measurements of sediment grain size have employed settling tubes 

or pipette technology based on Stokes Law (Stokes 1880; Beuselinck et al. 1998;

Baoping et al. 2002). However, these traditional methods have had a margin o f error that 

can exceed 40 percent (Horiuchi et al. 2000; Wagner et al. 2000). The recent technology 

of laser diffractometry has greatly reduced the error in grain size measurements, therefore 

expanding the value o f grain size as a potentially sensitive paleoclimate proxy (Buurman 

et al. 1997; Beuselinck et al. 1998; Rawle 2000). In this study we analyzed grain size of 

core FL-00-9P on a Malvern Mastersizer 2000 with a Hydro 2000MU pump at 1 cm 

intervals for the entire 7.1 m core. All samples for core 9P were taken perpendicular to 

the depositional bedding using the direct-aliquot method, as described by Sperazza et al 

(2004), to assure a representative sample. Reported results are the average value of 3 

measurements, totaling 36,000 pulses on the laser diffractometer. In this study we report 

measures o f grain size commonly used in climate studies. These include median grain 

size (D 50), and standard fine-grained sediment descriptors of percent clay, silt, and sand 

(Boggs 1995). More detailed discussions of laser diffractometry for sediment grain size 

can be found in de Boer et al. (1987), Beuselinck et al. (1998), and Sperazza et al. (2004) 

and are not covered here.

Uncertainty - Methodological measurements of grain size by laser diffraction following 

those established by Sperazza et al. (2004) have an uncertainty o f ~5% at 2 sigma. In this 

study we utilized two quality controls during the acquisition of grain size data. The first 

quality control protocol was that samples were measured three times, with each 

measurement collecting data from 12,000 laser pulses. The three measurements were
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evaluated and accepted if  the variation in median grain size was less than 5%. Samples 

not within this tolerance were rerun or, occasionally, reported as the average of only two 

measurements. Discrepancies in the three measurements were rare. Possible sources for 

inconsistency among the three individual measurements might include: 1) introduction of 

an air bubble during one or more of the measurements, 2) differential measurement of a 

few coarse grains, or 3) an unexplained machine spike.

The second quality control protocol was that I assessed uncertainty by measuring 

replicate sediment samples every ~15 cm over the length of the core. A total of 38 

replicate samples were analyzed to calculate grain size uncertainty for core 9P. Total 

uncertainty is composed of two components; percent difference o f the replicate samples 

and two standard deviations (St. Dev.). Table 8 shows the components and total 

uncertainty for those measures report herein, along with some additional percentile 

measures. Uncertainty o f median grain size ( D 5 0 )  is comparable to reported 

methodological values by Sperazza et al. (2004).

Measure Dio D20 Dso Dso D90 %Clay %Silt %Sand
% Difference 2.01% 2.01% 2.26% 3.52% 6.09% 2.36% 1.27% 47.50%
2 St. Dev. 2.55% 2.72% 3.20% 5.69% 12.20% 3.28% 1.78% 94.77%
Total
Uncertainty 4.56% 4.73% 5.46% 9.22% 18.29% 5.63% 3.05% 142.27%
Table 8 -  Grain size uncertainty calculated for core FL-00-9P. Percentiles s 
Dx measures, percent divisions based on Boggs (1995).

row as
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Coarser size measures (Dso, D90, and %Sand) have higher uncertainty values due to the 

very fine-grained nature of the core 9P lacustrine sediments and the presence of relatively 

few sand size grains.

Results and Discussion - Grain size data from core 9P reveal a series of cm- to dm-scale 

upward fining sequences from the bottom of the core (710 cm) to 622 cm, with the 

exception of the interval from 692 to 672 cm (Fig. 43). The thickness of the upward 

fining sequences ranges from 8 to 10 cm, some possibly being truncated by the overlying 

sequence. Above the uppermost upward fining sequence (621 cm) median grain size 

progressively increases from < 2 pm to -4.5 pm just below the top of the core.

Sediments gradually coarsen upward over the length of the core above 621cm, but are 

interrupted by the two relatively coarse volcanic ashes between 611-610 (Glacier Peak; 

D5o -  35 pm) and 375-341 cm (Mount Mazama; D50 -  28 pm). The upward coarsening 

nature of the core is within the measured uncertainty, however at a few intervals the 

change in grain size (coarsening or fining) is beyond calculated uncertainty and is 

therefore significant. Deviations from the general upward-coarsening (excluding the 

tephras) can be seen in median grain size, %Clay, and %Silt at 569-562, 539-531, 399- 

387, 325-320, 163-161, and 29-21 cm (Fig. 43). One of these deviations is particularly 

noteworthy; in the 399-387 cm interval %Clay smoothly increases to a peak of 41%, an 

increase of -35%  over the baseline above and below this interval. Also identified is a 

significant shift in the grain size records at a depth o f 146 cm. The shift occurs 2 cm 

below a section break in the core (between sections I and II) and does not appear to be
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related to the core section break. The magnitude of the shift is significant, increasing the 

average %Clay value by - 6  percentage points before continuing the upward coarsening 

trend. Grain size becomes more variable above 48 cm with apparent but statistically 

insignificant increases in the sand fraction (sand is within uncertainty).

Core 9P contains two distinct sedimentation styles (excluding the tephras); 1) coarse 

grained (up to 18 pm) upward fining centimeter scale beds and 2) very fine grained 

(<4|im) sub-cm scale laminae. The upward-fining beds are sharp-based and 

morphologically consistent with a waning flow, similar to sequences described and 

interpreted by Bouma (1962) to represent deposition by low density turbidity currents. 

Potential mechanisms for upward-fining beds at the bottom of core 9P include: low 

density turbidite sedimentation due to flood events (Miall 1990) or seismically-produced 

resedimentation events. However, seismic reflection data from Flathead Lake do not 

suggest that a seismic event occurred at this time (Hofmann et al. 2006; Hofmann et al. In 

Press). In addition, analyses o f grain size from cores recovered in 2003 demonstrates that 

the upward-fining beds are a lake-wide feature, currently identified to occur across -1 8 0

•y

km of the lake floor. These observations suggest that the upward-fining beds are not 

local features (Fig. 44).

The beds are deposited in two clusters, separated by an interval of very-fine grain 

sediment. A reasonable explanation of the upward-fining beds is the release of ice or 

sediment dammed bodies of water. These swift releases of water would occur as dams of
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ice or sediment failed or were downcut by streams that drained proglacial lakes that may 

have occupied tributary valleys upstream of Flathead Lake. The valleys east and 

northeast of Flathead Lake are numerous and likely contained proglacial lakes. In 

addition to existing glacially scoured lakes (such as Lake McDonald), evidence exists for 

pro-glacial lakes in the Nyack Valley (Nate Harrison 2004, per. comm.), Star Valley 

(Smith 2004), Swan Valley (Locke 1995), and in the Salish Mountains (Smith et al.

2000). Support for this interpretation also is found in the upper Flathead Valley itself, 

where the upper Flathead River has terraced and downcut glaciolacustrine sediments by 

more than 15 m. The anomalously fine-grained interval between the turbidites may 

represent ice lobe stagnation and lake level stability due to temporary climate 

amelioration. Alternatively, it may represent the establishment of a short-lived sediment 

trap behind one or more of the recessional moraines north o f Flathead Lake (Smith 2004) 

and below the retreating ice lobe.

Upcore, the very-fine grained sediments contain no evidence o f traction transport, such as 

ripples, and are likely deposited primarily by suspension settle-out. Two possible 

mechanisms with paleoclimatic implications that have been proposed for the 

interpretation of hemipelagic grain size variability include: 1) lake lowering and 2) 

adjustments of sediment delivered to the lake as a result o f changes in flow (i.e., 

Digerfeldt 1986; Meyers et al. 1993; Campbell 1998)

The hydrology of Flathead Lake currently is dominated by alpine snowmelt. Moisture in 

the Flathead watershed is stored as snowpack and released in the spring as melt water.
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Because ~ 90% of the sediment is delivered by the Flathead River, the spring melt water 

develops an annual sediment plume that can drift south over the length of the main lake 

body (-33 km). Based on traditional river transport dynamics, the resulting peak in 

annual discharge (Fig. 35) of the Flathead River should carry coarser sediments (Brooks 

et al. 1991; Boggs 1995) and may provide a potential proxy recorder o f paleoprecipitation 

(Campbell 1998; Campbell et al. 1998). However, the duration and magnitude of melt 

water discharge into the lake also is influenced by the rate o f temperature increase during 

the spring, cloud cover, and spring rainfall.

Modem observations support a correlation between high discharge events, maximum 

winter snowpack, and large sediment plumes transported southward through the lake

'y
system (Moore et al. 1982). Annual precipitation is strongly correlated (R =0.6764) with 

flow gauge data from the Flathead River (Fig. 45 A) and tracks well with historical 

precipitation trends (Fig. 45B, Sperazza et al. 2005). Data shown in Figure 45 are based 

on 10 year running averages; precipitation data are from weather stations predominately 

located on valley floors with varying record durations. Prior to 1940 available station 

data are poorly maintained and represent a smaller fraction o f the total precipitation in the 

drainage basin, but still track flow data (Sperazza et al. 2005).

Flathead Lake has a short residence time (-2  years) (Hofmann 2005; Sperazza et al.

2005) and a dominant inflow source, similar to Pine Lake, Alberta, and could be used to 

test the grain size response to changes to precipitation, as proposed by Campbell (1998). 

Grain size data from six gravity cores with radiometric 210Pb/137Cs dating control were
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examined and compared to historical precipitation data. The cores were recovered 

between 3.8 and 18.8 km south of the Flathead River mouth. Because of the reduction in 

sedimentation rates away from the sediment source, the cores have a different number of 

grain size data points over the 100-year historical record. Campbell (1998) proposed a 

mechanism whereby hydrologic flow due to increased precipitation exported a larger 

fraction of the clay size grains out o f the system, producing a period of partial sediment 

bypass and effectively increasing the overall grain size o f the sample.

If the model Campbell (1998) proposed for Pine Lake also applied to the Flathead Lake 

system, median grain size should increase during periods o f intensified precipitation. 

However, most Flathead gravity core data appear to show decreased median grain size 

and higher %Clay size grains during times of highest precipitation in the historical 

record, as defined by 5 and 10-year average precipitation data (Fig. 46). The possible 

exception is core 9G, 18.8 km from the Flathead River, which shows a general agreement 

with Campbell’s (1998) hypothesis, although data points for core 9G are limited due to 

the generally low sedimentation rate > 18 km from the river mouth.

Further evidence against Campbell’s (1998) hypothesis as an analog to Flathead Lake is 

grain size data collected from the Flathead River in the spring o f 2003. These data were 

collected at two locations, one near the head of the delta (Flathead River Bridge) and the 

other -39  km upstream (Old Steel Bridge). Grain size of sediments suspended in the 

river water were sampled and measured five times over the course of the spring runoff 

during 2003 (Fig. 47). Approximately 5 gallons of river water were hand-sampled and
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transported to UM. Samples were allowed to settle one week and excess water was 

siphoned off to a volume of < 450 ml. Samples were completely introduced and 

measured on the Malvern Mastersizer using procedures established by Sperazza et al. 

(2004). Correlations of grain size changes with river flow data are very poor, the best 

comparison being flow to %Clay with a R2 = 0.34. These data, while limited, suggest 

that precipitation has not been the dominant control on sediment grain size in Flathead 

Lake during the previous century.

Broadly, variations in grain size have been used to interpret fluctuations in lake level. 

Some investigators have used grain size as an indicator o f proximity to sediment source 

during lake level fluctuations (Heimann and Braun 2000; Andrews and Giraudeau 2003; 

Curtin et al. 2003; Zybala et al. 2003), whereas others have suggested that grain size 

varies as a function o f erosion and remobilization of exposed shoreline sediments during 

transgressive and regressive phases (Harrison and Digerfeldt 1993; Venczel 2005). The 

use of grain size as a proxy for lake level fluctuation has been strengthened through 

correlation with other proxy data. For example, lower lake levels were interpreted from 

Summer Lake, Oregon based on changes in the ratio of %silt and %clay and the 

correlation of these data with TOC (Negrini et al. 2000; Zic et al. 2002).

Lake level fluctuations of large lakes mostly have been attributed to structural changes of 

the basin or down cutting of the spillway. However, in a hydrologic model of lake level 

changes in Lake Malawi, Owen et al. (1990) demonstrated that small changes in the
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precipitation / evaporation ratio could appreciably lower lake levels. For example, they 

found a 10% change in lake volume and 150 m drop in level was produced by only a 30% 

decrease in precipitation. The decrease in lake level elevation, which was estimated 

through modeling to have occurred over 200 years, did not coincided with an appreciable 

change in the percentage of carbonate sedimentation in the lake. These observations 

suggest that the concentration of carbonate ionic species had not reached a supersaturated 

level (Finney and Johnson 1991).

In the Flathead Lake basin, shoreline terraces from higher lake stands are evident on the 

Poison and Big Arm moraines where they represent temporary highstands by a proglacial 

lake that occupied the valley during deglaciation (ancestral Flathead Lake, Smith 2004). 

Although the ages o f these terraces are unknown, they can be explained by physical down 

cutting o f the spillway through the poorly consolidated moraine sediments.

In Big Arm Bay, an embayment with less bathymetric relief than the rest of the lake, 

seismic reflection lines exhibit a series of onlap and toplap stratigraphic geometries 

(Kogan 1980; Hofmann et al. 2003; Hofmann et al. 2006) that reflect lake level 

fluctuations. Seismic onlap geometries such as these suggest erosion due to lake level 

lowering and commensurate lowering of wave-base elevations, followed by redeposition 

during transgression of the lake level (Mitchum et al. 1977). A series o f  cores (FL-03- 

14K, FL-03-15K, and FL-03-16K) recovered along one o f the seismic lines in 2003 

confirms the presence of the most pronounced truncation surface in the seismic data
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(Hofmann et al. 2003). Correlation of the seismic and core data in Big Arm Bay suggest 

that erosion associated with this surface occurred immediately after deposition of the 

Mount Mazama tephra (7,630 cal yr BP, Zdanowicz et al. 1999).

The surface elevation of Flathead Lake during this Early Holocene lowstand is estimated 

to be -15 m below the current the bedrock-controlled spillway elevation, which sits on a 

ridge of Proterozoic metasedimetary Belt Supergroup rock approximately 6 km upstream 

of Kerr Dam (Levish 1997; Hofmann 2005; Sperazza et al. 2005; Hofmann et al. 

Submitted). No lower elevation spillway or alternative path for the inflowing Flathead 

River has been identified, and the seismic reflectors within the lake lack any offset at this 

time that might indicate a tectonic cause for the observed stratal geometries.

The most plausible explanation for the lake level lowering associated with the observed 

erosional surface at the top of seismic unit D (Fig. 8, p. 124, Hofmann et al. 2006) is 

climate change and a severe drought that reduced lake volume by an -  25%. Given these 

interpretations, it is necessary to explain the lack o f carbonate deposition in the 

sedimentary record for this time period, because increased evaporative concentration of 

lake water would push the chemistry of the system in the direction o f carbonate 

precipitation.

Significant lake level fluctuations have been reported elsewhere without carbonate 

precipitation (Johnson et al. 1996; Johnson et al. 1998). Geochemical modeling of 

Flathead Lake water chemistry in relation to ground and surface waters have
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demonstrated that a rapid decrease in lake level would not result in precipitation of 

carbonate minerals (Hofmann 2005; Sperazza et al. 2005; Hofmann et al. Submitted). An 

independent confirmation o f Early Holocene lake level lowering comes from Foy Lake, a 

small closed lake system in the watershed north of Flathead Lake. The Foy Lake seismic 

data contains onlap and toplap structures similar to, and temporally synchronous, with the 

Flathead Lake record (Colman 2003).

Rapid and severe climate change associated with the post-7.6 ka erosion surface is 

suggested by multiple grain size records from Flathead Lake cores (Fig. 43 and 48), 

although the presently available data does not require the interpretation that all grain size 

fluctuations observed in core records from Flathead Lake are controlled by lake level. In 

the early Holocene record from core FL-00-9P, some peaks or trends identified in core 9P 

are not present in the other core records (Fig. 48), suggesting that the entire system is not 

behaving in phase with respect to temporal fluctuations in grain size. I propose that the 

general upward-coarsening Holocene trend in median grain size from core 9P (Fig. 43) 

and corresponding overall decreasing trends in %clay from cores 15K and 16K (Fig. 48) 

are a function o f reduced distance to the sediment source (river mouth) resulting from 

delta progradation, rather than a direct result of climate related lake-level fluctuation.

To explore this hypothesis, I analyzed sediment grab samples collected from a grid across 

Flathead Lake (Fig. 49C) and measured for grain size using settling tube methods (Moore 

et al. 1982). The results strongly suggest a relationship between grain size and distance
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20 O

O  40

10000 12000 4000
Cal. Yr. BP

Figure 48 - % Clay for three cores in Flathead Lake plotted against time, using a linear 
interpolation o f date points for cores 15K and 16K and age model for core 9P (Chapter 
2, this dissertation). Late Pleistocene through mid-Holocene coarsening (i.e., reduction 
in %Clay) can be observed in all three cores. Coarsening at -7,600 drought is present in 
all cores, although other trends or peaks are not as convincing. Core 15K (top, scale on 
right), core 9P with error bars (middle, scale left), and core 16K (bottom, scale left).

from sediment source (Fig. 49A). The correlation is strengthened by excluding samples 

located well away from areas affected by the annual spring sediment plume as well as 

samples collected along the shore which are prone to shoreline reworking and eddy 

effects (Fig. 49B).

In order to compare settling tube derived grain size results reported in Moore et al (1982) 

with grain size results collected through laser diffraction analysis o f presently available 

cores from Flathead Lake, I attempted a replication study. Laser diffraction grain size 

data were measured from the core sediment layers that correlated to 1980 (the year of the
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Moore et al. samples), based on available 137Cs/210Pb dating. Grain size distributions as 

determined from laser diffraction were recalculated to match the 4 pm clay/silt division 

of the original study (Moore et al. 1982). Whereas the laser diffraction results are 

limited, they do not show the same correlation between grain size and distance to the 

main sediment source (the Flathead River mouth) (Fig. 50). A possible explanation for 

observed differences between laser diffraction and settling tube data include the 

amalgamation of larger sediment samples (grab sample) during recovery and/or the 

higher uncertainty o f the settling tube methodology (Moore et al. 1982; Sperazza et al. 

2004). Other efforts to find a relationship between distance and grain size based on the 

cores recovered between 2000 and 2002 have yielded the same weak correlation shown 

in Figure 50. While grain size data from additional cores may clarify the influence of 

lake level on grain size distributions across the lake basin, I posit that the grain size 

record is buffered by overlapping controls that include lake level, sediment throughflow, 

and sediment distribution across the lake bottom. Therefore, I conclude that grain size 

data is only sensitive enough to reflect large hydrologic changes consistently across the 

lake.

Mineralogy

Background -  Variations in mineral concentrations, ratios, and indexes have been shown 

to serve as proxies for variation in precipitation, weathering and lake productivity (Hay et 

al. 1991; Li et al. 1997; Ergin et al. 1999). However, paleoclimate interpretations rely in 

part on an understanding of the provenance o f minerals that comprise lake sediments.
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Some minerals are truly detrital, whereas others are authigenic (Last 2001). 

Understanding o f the genesis of sediment contributions is particularly important when 

carbonate and clay minerals are used to infer paleoclimate. Although diagenesis of clay 

minerals can be substantial in older lake sediments, it has been reported as insignificant 

for paleoclimate interpretations in Pleistocene/Holocene sediments (Chamley 1989).

In this study, a total of 21 mineralogic proxies were developed either as percent 

concentration o f individual minerals or mineral groups or as calculated indices from the 

Flathead Lake QXRD data. Of these 21 proxies, eight have been presented as indicators 

of paleoclimatic by other researchers and are reviewed herein.

Illite Crystallinity:

The crystal structure of the clay mineral illite is susceptible to weathering from increased 

moisture. During the weathering process, cations are removed from the illite structure 

and other clay minerals are produced as a secondary product (Barshad 1966). The illite 

crystallinity index has been utilized in lacustrine (Horiuchi et al. 2000; Fagel et al. 2003) 

and marine (Ehrmann 1998; Thamban et al. 2002) studies as a proxy for weathering 

intensity and an indicator of warmer, wetter climate conditions. A low illite crystallinity 

index indicates low or slow rates of weathering, suggestive o f cooler drier climates 

(Horiuchi et al. 2000; Fagel et al. 2003) and more dominate physical weathering 

conditions (Chamley 1989; Ehrmann 1998). Conversely, a higher index indicated by a 

wider 10 A peak on X-ray diffraction data, indicates reduced crystallinity and increased 

weathering (Chamley 1989).
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Clay Minerals:

The clay mineral kaolinite and the ratio o f kaolinite/illite clays also have been used as 

weathering proxies for changes in precipitation and humidity (Lauer-Leredde et al. 1998; 

Clayton et al. 1999; Foucault and Melieres 2000; Ruffell and Worden 2000; Gingele et al. 

2001). Kaolinite develops in sediments that have been exposed to heavy chemical 

weathering in which cations are leached out, commonly in warm moist climates (Keller 

1970; Yuretich et al. 1999; Fagel et al. 2003). Conversely, illite formation is prevalent 

under arid/cool conditions(Ergin et al. 1999). Given these general observations, 

researchers have suggested that the kaolinite/illite ratio can serve as a humidity indicator 

(Chamley 1989; Thamban et al. 2002). Chlorite minerals also are susceptible to chemical 

weathering and degradation from transportation (Biscaye 1965), and have been used to 

infer periods o f physical weathering or glacial processes (Ehrmann 1998).

Biogenic Silica Concentrations:

Increases in diatom abundance and speciation (i.e. primary lake productivity) have been 

utilized by researchers to suggest periods of warmer temperatures in both marine and 

lacustrine environments (Wagner et al. 2000; Chebykin et al. 2002). In the Indian Ocean, 

biogenic silica concentrations in bottom sediment (a measure of diatom productivity) 

increased northward from the equatorial region after the last glacial maximum due to 

increasing temperatures and oxygenation of the waters (Bareille et al. 1998). Moreover, 

strong agreement between %opal (biogenic Si) and the GRIP2 8180 temperature proxy 

has been shown at Lake BasaltsO, East Greenland (Wagner et al. 2000). Although
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diatom productivity has been shown to correlate with temperature variations, it is also 

sensitive to other climatic conditions, such as duration and extent o f ice and snow cover 

and nutrient loading (Colman et al. 2005; Mackay et al. 2005). Biogenic silica (also 

called biogenic opal) has served as a proxy for diatom abundance in many paleoclimatic 

studies (Bareille et al. 1990; Qiu et al. 1993; Bareille et al. 1998; Brauer et al. 1999; 

Talbot and Laerdal 2000; Fedotov et al. 2004). However, a recent study in Lake Baikal 

cautions against using only biogenic silica to infer lake productivity, because differential 

diatom preservation in the sedimentary record may not be climatically controlled 

(Battarbee et al. 2005).

Siderite Concentrations:

The mineral siderite has been suggested to indicate increased precipitation in forested 

basins with developed soils, due to mobilization of iron into the lake (Sifeddine et al. 

2003). Siderite formation is favored in environments that are suboxic, non-sulfur 

bearing, and with available iron and low organic carbon concentrations (Berner 1981). 

However, siderite formation in the water column has also been suggested during warm 

and humid periods with abundant inflow of Fe and Si, which would then be preserved in 

anoxic bottom waters due to restricted turnover (Hsu and Kelts 1978), reduced sediments 

from organic decay (Wagner et al. 2000), or rapid burial (Williamson et al. 1998). The 

periods of siderite precipitation in the Black Sea that are inferred to represent heavy 

chemical weathering of a warm humid environment also are supported by palynological 

studies from the basin (Rajan et al. 1996).
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Carbonate Mineral Species:

Carbonate minerals are heavily used as important paleoclimate proxies in saline and 

hyper-saline lacustrine settings (e.g., Valero-Garces and Kelts 1995; Anderson 2001). 

The assemblage of precipitated carbonate minerals is sensitive to changes in temperature 

and water chemistry (Cohn 2003) and productivity of calcareous organisms (Dean and 

Megard 1993; Dean 1999). However, microbial activity also has been shown to 

contribution to carbonate precipitation in oligotrophic lakes, thereby complicating the 

paleoclimatic interpretation (Moore 1983). Additionally, authigenic carbonate can 

develop from ionic concentration and salinity saturation of the water column due to 

climate-driven lake lowing.

Understanding lake water balance controls is complicated and subject to many variables 

(Hofmann 2005). For example, in a hydrologic model involving lake level changes in 

Lake Malawi, Owen et al. (1990) demonstrated that small changes in the precipitation / 

evaporation ratio could appreciably lower lake surface elevations. They reported a 10% 

reduction in lake volume and 150 m drop in lake level with only a 30% decrease in 

precipitation. Nevertheless, according to (Finney and Johnson 1991), decreases in lake 

level, which was modeled to occur over 200 years, were not necessarily recorded in the 

sediments as calcite deposition if carbonate concentrations had not reached a 

supersaturated level.
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Methods - Mineralogical data was collected at 10 cm intervals for the entire length of 

core 9P and at 5 cm intervals for that section of the core that brackets the 

Pleistocene/Holocene boundary (684-584 cm). In this study quantitative mineral 

determinations were calculated utilizing randomly-oriented sediment samples with an 

internal standard (Chung 1974) to measure bulk mineral phases and major clay mineral 

families (Srodon et al. 2001). Core samples with the internal standard (10%wt. zinc 

oxide) were precision wet ground, to achieve a narrow grain size distribution, in a 

McCrone Micronizing Mill. Mineralogic data were acquired by X-ray diffraction 

analysis on either a Bruker-AXS D5000 Diffractometer or a Bruker-AXS D8 

Diffractometer. The diffraction scans used Cu Ka radiation recording data over a range 

from 5 to 65 °20 with incremental steps of 0.02 °20. Counting rate at each step was 4 s. 

Calculations of quantitative X-ray diffraction (QXRD) analysis followed the sample 

preparation methods and analytical techniques detailed by Srodon et al. (2001), and are 

not reviewed here. All QXRD analyses were performed at the Houston Research Center 

of Chevron Corporation.

Mineralogic indices are calculated values based on the graphical measurement of an X- 

ray diffraction peak width and/or height. In this study the illite crystallinity index was 

calculated by measuring the width of illite (001) peak, which is found at a d-spacing of 

10 A. The peak width is measured at half the distance between the peak maximum 

intensity and the baseline on the XRD pattern (Horiuchi et al. 2000). The other 

calculated mineral index is biogenic opal, which is measured at the cristobalite (101) 

peak or the maximum opal bulge height. Three different methods to calculate biogenic
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opal have been described by Goldberg (1958), Eisma and Van der Gaast (1971), and 

Fagel et al. (2003). All three techniques reflect relative changes as compared to other 

values prepared by the same procedures. The simplest method is to record and compare 

the total counts at the maximum of the 4.04 A (21.98 °20) peak (Goldberg 1958). 

Biogenic opal at the 4.04 A peak base is measured over the baseline and multiplied by 20, 

as described by Fagel et al.(2003). However, for graphical presentation in this study, 

these data are shown without the multiplication factor. Eisma and Van der Gaast (1971) 

suggested measuring the maximum opal bulge at 26 °20 above a baseline drawn straight 

between the base points at 17 °20 and 46 °20. All three methods yield similar results 

(Appendix D), but with varying intensities. In this study the method described by 

Goldberg (1958) is used to assess biogenic Si as a paleoclimate proxy. All relevant 

calculations were performed using the digital XRD data and an Excel spreadsheet.

An important consideration when using mineralogy for paleoclimatic research is the 

determination o f the mineral origin. Are the grains allogenic (detrital) or authigenic (Last

2001)7 This determination was made by visually examining the mineral grains on a 

Hitachi S-4700 Scanning Electron Microscope (SEM) at The University of Montana, 

Department of Biological Sciences. The theory and operational details of the SEM can 

be found in Goldstein et al. (1981) and Dykstra (1992) and are not reviewed here. 

Mineralogic determinations also made use of elemental data collected on a Gresham 

Scientific Instruments, Energy Dispersive Spectrometry (EDS) Sirius Model 30, with 

Quartz X One (v.5) software. Dried sediment samples were gently split with a razor and 

then mounted on the stage with either silver glue or on carbon tape. Samples received
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two coats of conductive metal (Au:Pd) for 30 s at 18 mA with a Pelco Model 3 Sputter 

Coater 91000. Additional detail of sample preparation for geologic samples can be found 

in Welton (1984).

In these SEM studies, I sought to characterize carbonate and clay mineral origins, 

because both mineral classes can be detrital or authigenic in this natural setting. I also 

wanted to find supporting data for the biogenic opal results calculated from the X-ray 

diffraction data (Goldberg 1958; Eisma and Van der Gaast 1971; Fagel et al. 2003).

SEM samples were selected from core 9P based on the minerals of interest, so that high 

and low QXRD values could be examined (Fig. 51). One sample from core 9P (FL-00- 

9P-I-2) did not have direct mineralogic data and was examined to characterize modern 

sediment textures and compositions, to the extent possible. A few samples were 

examined from core 16K to characterize the Mt. Mazama tephra (FL-03-16K-II-145) and 

the deposits just above the tephra (FL-03-16K-II-130 and FL-03-16K-II-129).

Uncertainty -Srodon et al. (2001) reportedly achieved error margins o f less than 2%wt 

for typical mudstone composition. This method compares favorably to other semi- 

quantitative methods that have estimated uncertainty of ±5 - 10% (Biscaye 1965). 

However, the accuracy for the QXRD methodology is based on artificial mineral 

mixtures with a limited number (2 or 3) of constituents (Eberl 2003).

In this study, I conducted an error analysis of the quantitative X-ray diffraction 

mineralogic assessment technique described above. Specifically, I reanalyzed 20 samples
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between 2 to 4 times and determine the average %difference for each mineral phase. 

Total uncertainty reported for mineral phases are based on the QXRD analyses and 

calculated as the %difference of replicate analyses plus 2 standard deviations of the 

%difference. Table 9 shows the average uncertainty for each mineral phase and the 

totals, and includes the average %composition for the 20 replicate samples. In this study 

I found total uncertainty to range from 5.4% to 249.7% and the average %difference to 

range from 2.3% to 124.5% for the individual mineral phases. Uncertainty for the 

average total QXRD analysis was 7.0% and 2.5% for the %difference o f the replicates 

(Table 9 and Figure 52).

M ineral
Avg.

%Composition
Avg.

%Difference 2 St. Dev.
Total

Uncertainty
Quartz 25.2 2.3% 3.0% 5.4%
Potassium Feldspar 2.4 40.4% 86.0% 126.4%
Plagioclase 3.5 16.3% 31.1% 47.5%
Calcite 1.2 34.0% 36.4% 70.4%
Mg-Calcite 0.2 67.1% 100.8% 167.9%
Dolomite 1.3 28.8% 49.9% 78.8%
Pyrite 0.3 48.7% 62.1% 110.8%
Siderite 0.1 74.0% 110.4% 184.4%
Opal 0.3 124.5% 119.2% 243.7%
Fe (oxy-)hydroxide 0.7 30.7% 55.3% 86.0%

Sum non-Clay 34.9 4.5% 9.9% 14.4%
Kaolin 0.8 66.2% 101.2% 167.4%
2:1 Al Clay 57.2 6.1% 14.2% 20.2%
Fe-Chlorite 0.9 77.4% 172.3% 249.7%
Mg-Chlorite 7.2 53.1% 115.1% 168.2%

Sum Clay 65.9 4.1% 8.0% 12.1%
Total Minerals 100.9 2.5% 4.5% 7.0%

Table 9 -  Uncertainty for QXRD analyses from core 9P.
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Analyzing the uncertainty data I found that percent composition of a mineral directly 

influences the resulting uncertainty. For example, when %composition is >10%, 

uncertainty is 11.8%, however when the mineral phase or total composition was < 10% 

average uncertainty jumped to 114.8% (Fig. 53). The average %difference for the two 

mineral phases with >10% composition (Quartz & 2:1 Al Clay) is 4.2%. This is double 

the <2% precision reported by Eberl (2003), but considering the differences in 

compositional complexity, may be comparable. Other studies using the same 

methodology with naturally occurring sediments either fail to report uncertainty (Kile and 

Eberl 2003) or only briefly mention the ~2%wt precision reported by Eberl (2003) (Eberl 

2004; Hochella et al. 2005; Hein et al. 2006).

655 25 35 45 5515

Figure 52 -  Representative sample of QXRD fit (red) to experimental data set (black). 
Sample shown is FL-00-9P-II-150._____________________________________________

148

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



Our data suggests the QXRD methodology ( Srodon et al. 2001; Eberl 2003) provides 

reasonable accuracy for mineral phases with %weight in excess of 10%. Data below this 

level likely suffer from resolution limitations and have correspondingly high 

uncertainties. However, given high enough variability these data may still provide 

significant paleoclimate information.
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Figure 53 -  Chart showing %difference of replicates by volume for major mineral 
phases. When mineral volume is >10% of total composition, precision is greatly 
improved.______________________ ___ _______ _____ _______________________

Two other types of mineralogic data were considered in this study in addition to mineral 

volume percentages; mineral ratios and calculated indices (i.e., kaolin/illite and illite 

crystallinity index). Uncertainty for mineral ratios simply is reported as the product of
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the individual total uncertainties. The uncertainty of calculated indices proved to be 

somewhat problematic, as they are based on a graphical measurement of 20 peak heights 

or widths. However, three independent measures o f biogenic opal were made based on 

similar methodology (Goldberg 1958; Eisma and Van der Gaast 1971; Fagel et al. 2003). 

The three methodologies returned data sets with correlations that ranged from 0.95 to 

0.97, although the magnitudes o f the data varied (Fig. 54). Therefore, to utilize the three

5000
—  Goldberg
—  Eimsa
—  Fagel

4000

3000

2000

1000

700400 
Depth (cm)

500 600100 200 300

Figure 54 -  Calculated biogenic opal data from 4.04 °20 X-ray diffraction peak 
based on three methodologies (Goldberg 1958; Eisma and Van der Gaast 1971; 
Fagel et al. 2003).______________________________________________________
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methods as replicate measurements, they had to be normalized. Normalization was 

accomplished by calculating Z-scores in SPSS. Uncertainty for biogenic opal was then 

calculated as the %difference of Z-score for the individual value. To provide some 

measure of uncertainty for the illite crystallinity index, where no replicates are available,

I show the QXRD illite uncertainty of 20.2%, which is partly responsible for variation in 

peak height and width.

Results and Discussion - In core 9P the illite crystallinity index lingers just below the 

transition line (0.38) between fresh and moderately weathered clay (Horiuchi et al. 2000), 

suggesting low chemical weathering. However, most of the variation in the crystallinity 

index is within the uncertainty. A few intervals o f moderately crystalline illite exist in 

core 9P between 625-540, 510-470, 330-300, and 220-210 cm (Fig. 55). The most 

intense weathering illite occurs at 330cm, after an interval of relatively fresh illite. This 

is the only illite crystallinity peak that exceeds the uncertainty.

Excluding the Mazama tephra, the only %illite trends that exceed uncertainty are below 

640 cm, the interval associated with the upward-fining beds (Fig. 54). The variability in 

%kaolinite and kaolinite/illite ratio is within the uncertainty over the entire length of the 

core. This is partly due to the low %kaolinite in the core contributing to the high 

uncertainty (see above). However, compared to the lower half of the core, the percent 

kaolinite and the kaolinite/illite ratio are generally elevated between 380-0 cm (Fig. 55). 

Although the trend that occurs within the uncertainty suggests higher weathering rates in
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the upper part of the core, this trend in not supported by a similar trend in the illite 

crystallinity (Fig. 55).

Biogenic silica data has been utilized as an indicator of primary productivity, because 

diatom tests have been found to be the main source o f biogenic Si (Bareille et al. 1990; 

Qiu et al. 1993; Bareille et al. 1998; Brauer et al. 1999; Talbot and Lasrdal 2000; Fagel et 

al. 2003; Fedotov et al. 2004). The biogenic Si data in core 9P suggests intervals of 

greater productivity between 710-684, 638-599, and 494-385 cm, and oscillating 

productivity between 250-165 cm. These peaks and trends are generally outside 

uncertainty although some of the data points within the trends do not exceed the 

uncertainty. Variations in uncertainty within the data set result from the fact that 

uncertainty calculations were discretely applied to each point versus calculated as an 

average of all the points (see above). Transitions between trends are relatively abrupt, 

suggesting long periods o f greater or lower productivity within the lake (Fig. 54 & 55).

Despite the suggestion of variations in biogenic Si in core 9P and the possibility that 

these reflect significant changes in lake productivity, qualitative visual examinations of 

core sediments do not support these interpretations. Randomly selected smear slides with 

high and low biogenic Si values and the previously mentioned SEM scans did not show 

high concentrations o f diatoms where elevated XRD based biogenic Si suggested they 

should be present. Smear slides from the top of core 9P contained abundant diatom 

fragments, while biogenic Si suggests low productivity. Similar relationships were 

observed in other smear slides. The SEM scans also suggested the presence of very few
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diatom frustules in samples with high biogenic Si. The SEM samples with the greatest 

abundance of diatoms were FL-03-16K-II-130 and FL-03-16K-II-129, located just above 

the Mazama tephra, where low biogenic Si values are present in core 9P (Appendix E, 

plates 1 & 2).

The variation o f the %siderite is completely within the uncertainty and thus of little value 

for interpreting paleoclimate. As mentioned above, this is mostly due to the lower 

resolution o f the QXRD analysis when mineralogic concentrations are < 10% (Fig. 53, 

Table 9). Carbonate mineralogy (%calcite and %dolomite) contain a number of peaks 

and trends that are outside the uncertainty and might provide some paleoclimate 

information. Variation in %calcite associated with the upward-fining beds below 640 cm 

is beyond the uncertainty although %dolomite, which shows the same variation, is 

overlapped by the uncertainty (Fig. 55). The trend of lowered %calcite values from 265 

cm to the top of the core is outside the uncertainty, as are two peaks within this interval at 

185 and 165 cm (Fig 55). The trend of %dolomite above 265 cm does not covary with 

the decreasing %calcite trend, although the magnitude of dolomite variability in this 

interval is greater. Dolomite is generally within analytic uncertainty above 265 cm, with 

exceptions at 50 and 10 cm where %dolomite peaks exceed the uncertainty. Visual 

inspection using the SEM did not reveal the presence of any authigenic carbonate grains 

(Appendix E, Plates 3 & 4), although EDS elemental maps for some o f the SEM samples 

identified intergranular calcium concentrations suggestive o f possible carbonate cement 

formation (Appendix E).
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The overall resolution o f mineralogic proxies in core 9P is limited. Data below 640 cm 

for carbonates, illite crystallinity, and %illite suggest increased hydrologic activity with 

low weathering indices and high carbonate input, which is in agreement with 

carbon/nitrogen and grain size data. The lower values o f  %calcite above 265 cm 

correlate with a lower trend in TIC, and the reductions above -100 cm in %dolomite, 

kao 1 inite/illite, and %kaolinite correlate with reductions in TC and larger decline in TIC 

(see below). However, most o f these correlations are tenuous since many data sets are 

within the uncertainty.

Carbon / Nitrogen

Background - Variations in the organic carbon/nitrogen ratio (C/N) have provided insight 

into the sources of carbon in lacustrine systems (Qiu et al. 1993; Jellison et al. 1996).

C/N ratios below 10 indicate that organic carbon is largely from algal/phytoplankton 

sources. C/N ratios above 20 indicate dominance o f carbon derived from vascular, 

cellulose-bearing terrestrial plants (Meyers and Lallier-Verges 1999). C/N values 

between 10 and 20 generally indicate a mixed source o f algal and terrestrial plant 

material.

Higher C/N ratios from lake sediments have been used as indicators o f greater terrestrial 

input associated with increased precipitation-derived runoff (Horiuchi et al. 2000;

Wagner et al. 2000; McFadden et al. 2004). However, Meyers and Lallier-Verges (1999) 

caution that wetter climate intervals also can increase algal production in the absence of
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terrestrial input, resulting in lower C/N ratios and an increase in total organic carbon 

(TOC) values. Furthermore, Kaushal and Binford (1999) found significant increases in 

C/N ratios that could only be attributed to deforestation and not to precipitation.

Research has suggested that C/N values shift lower due to algal production in nitrogen 

starved environments (Healey and Hendzel 1980; Hecky et al. 1993; Talbot and Lasrdal 

2000). Hecky et al. (1993) suggested that, in nitrogen-limited environments, C/N ratios < 

8.3 indicate dominance by phytoplankton, whereas C/N ratios between 8.3 and 14.6 

indicate mixed contributions. A terrestrial source o f carbon from higher plants (C3) is 

suggested by C/N ratios > 14.6 (Hecky et al. 1993; Horiuchi et al. 2000; Talbot and 

Lasrdal 2000).

Changes in sediment TOC levels have been used as a proxy for primary productivity in 

lacustrine and marine environments (Qiu et al. 1993; Jellison et al. 1996; Johnson et al. 

1998; Brauer et al. 1999; Li et al. 2000; McFadden et al. 2004). Positive correlations 

between TOC and productivity also have been demonstrated for carbon-poor oligotrophic 

lake systems (Cohn 2003). When examined in conjunction with C/N values, TOC can be 

used to determine if  primary productivity is largely aquatic (C/N < 8.3) or terrestrial (C/N 

> 20) (Finney and Johnson 1991).

Methods -  Total carbon (TC) and nitrogen (TN) data were obtained at 5 cm intervals in 

core FL-00-9P to a depth of 610 cm. Below 610 cm, data were obtained at 1 cm intervals 

to improve resolution at the postglacial transition. Total carbon and nitrogen analyses
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were performed on dried samples by gas chromatography on a CHNS-1110 elemental 

analyzer (EA). Total inorganic carbon (TIC) analysis was performed on a Coulometrics 

Carbon Analyzer on the same core intervals as the total carbon and nitrogen 

measurements. Total organic carbon (TOC) was determined indirectly by differencing 

the total carbon and inorganic carbon values. The C/N ratio is calculated as a molar ratio 

of TOC and TN. All carbon and nitrogen results in this study are reported as percent by 

weight of dry sample.

Uncertainty - Accuracy for all analyses was determined by performing duplicate 

measurements on every 10th sample. Standard errors were calculated from mean percent 

differences of the duplicate measurements and the associated standard deviations. 

Equipment precision is reported at the l a  confidence level. Precision testing of the 

CHNS-1110 analyzer was based on a laboratory reference soil standard, ThermoQuest 

SpA. P/N 338 40025, which was measured after calibration and every 10th sample. For 

total carbon, the percent difference between the mean of the measured values and the 

standard was 1.1%. The relative standard error (std. error/mean) was 0.1%. Precision 

testing of the coulometer was based on a calcium carbonate reference standard measured 

3 times before the first sample run and following every 10th sample. The percent 

difference between the mean of the measured values and the standard was 0.33%, the 

relative standard error was 0.27%.

Uncertainty analyses in this study are reported as %difference o f replicate samples, plus 2 

standard deviations of the %difference. A total of 19 replicate measurements were
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recorded on the elemental analyzer for core 9P. The uncertainty for total carbon was 

13.3% with an average %difference of 2.8% (Table 10). Uncertainty for the total 

nitrogen data was considerably higher at 171.6%, with the average %difference at 35.6%. 

Nitrogen values in Flathead Lake are very low (<0.12%) and in some intervals were 

below the EA detection limits. The low TN values are the leading cause of the high 

uncertainty figures. Coulometer TIC uncertainty is based on 21 replicate samples from 

core 9P with total uncertainty, amounting to 11.8% with an average %difference of 2.6% 

(Table 10). Total organic carbon is a calculated value and therefore the uncertainty is 

calculated from the components, as the TIC uncertainty plus the TC uncertainty. 

Uncertainty for the C/N ratio was calculated as the sum of the TC and TN uncertainties 

(Table 10). The C/N uncertainties also are uncommonly high due to low TN values.

TN TC TIC TOC C/N
Avg. %difference 35.6% 2.8% 2.6%
2 St. Dev. 136.0% 10.5% 9.3%
Total Uncertainty 171.6% 13.3% 11.8% 25.1% 184.9%
Table 10 -  Uncertainty values for carbon / nitrogen data

Results and Discussion -  Overall Flathead Lake sediments contain very low levels of 

total carbon, generally <1.8% (Fig. 56). However, from the bottom of the core to 622 

cm, total carbon (TC) contains two sequences of peaks in which TC reaches a maximum 

of 3.8%. These peaks in TC are associated with upward-fining beds identified in the 

median grain size record (Figs. 43 and 44). Peak values exceed the uncertainty range of 

the baseline TC values between the two sequences and above the uppermost upward-

158

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



fining bed. At 621 cm TC decreases to < 0.6%, then gradually increases between 622 

and 528 cm to -1% . Between 524 and 150 cm TC values fluctuate between 0.8% and 

1.8% mostly within the uncertainty, excluding the Mount Mazama tephra. At 150 cm TC 

decreases outside of the uncertainty to < 1% and remains at that level to the top of the 

core.

TC tracks TIC from the bottom of the core to 185 cm (Fig. 56). In this part of the core 

TIC typically represents more than 50% of the TC, although it exceeds 90% in the 

upward-fining beds (622-670 and 692-705 cm). Above 180 cm TIC contribution is < 

50%, except a peak at 155 cm and three small peaks at 115, 50, and 10 cm, where TIC 

reaches -50%. At 105 cm TIC drops sharply, outside the uncertainty, and remains at the 

lowest levels to the top o f the core (Fig 56).

Total organic carbon (TOC) in Flathead Lake is generally low (< 1%), increasing from a 

low (< 0.1%) at 622 cm to the top of the core, but the trend remains mostly within the 

uncertainty, excluding the tephras (Fig. 56). A few narrow peaks in TOC occur between 

the bottom of the core and 633 cm and are associated with some o f the upward-fining 

beds. Relatively higher TOC levels exist between 540-525 cm (up to 0.57%). Above 

525cm, TOC increases upward through the rest of the core, excluding the Mount Mazama 

tephra. However, nearly all of this upward increase in TOC is within the analytical 

uncertainty of the data (Fig. 56).
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Total nitrogen in core 9P is very low (< 0.1%) and was below detection limit of the EA 

between 614-535 cm and from 295-145 cm (Fig. 56). The lack o f nitrogen data created 

two large gaps in the nitrogen and C/N curves, limiting their value for paleoclimate 

interpretations. The low TN values also contribute to the high TN and C/N uncertainty. 

Consequently all but a few C/N ratios at the bottom of the core are within the calculated 

uncertainty. Where available, C/N ratios are mostly below 10 (Fig. 56) indicating lake 

primary productivity from algal plants. Values > 20 are present only as narrow peaks 

associated with the upward-fining beds.

The low TN values indicate that Flathead Lake has remained a nitrogen-starved system 

for the duration of available core 9P data. I also examined the C/N data based on the 

ratio breaks suggested by Hecky et al. (1993) for nitrogen starved systems (Fig. 57). 

Comparing the two methods, only 1 additional data point (from a former total of 12) 

crosses the terrestrial boundary (14.6) for low N system, with the bulk of the data 

remaining <8.3 and suggestive of an organic carbon system dominated by algal 

production. All but one of the C/N data points in excess of 14.6 are directly associated 

with the upward-fining beds (labeled ‘turbidite’ in Fig. 57). The remaining point (labeled 

‘lacustrine’ in Fig. 57) is located between two upward-fining beds. It is likely that this 

sample received some detrital organic material from the surrounding flood beds.

In general, variability in the carbon and nitrogen data is small and within the uncertainty, 

thus limiting the ability to construct paleoclimatic interpretations. The low nitrogen 

values are similar to current levels in Flathead Lake (Spencer and Ellis 1990) suggesting
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oligotrophic lake conditions since glacial retreat, -13,000 cal. yr. BP. The intervals 

where TN values are below detection suggest that lake productivity exceeded external TN 

input (Wetzel 1983). A trend of increasing values up core in TOC and TN imply higher 

primary productivity in the lake across the Holocene, although these trends are within the 

analytic uncertainty (Fig. 56).

•  Lacustrine

•  Tephra
•  Turbidite

0 .1 .2 .3 .4 .5 .6 .7 .8 .9

%TOC

Figure 57 -  Scatter plot of %N vs. %TOC for core 9P sediments showing that most of 
the organic material in Flathead Lake is derived from within the lake by algal 
production (area above upper dashed line). Dashed boundaries are based on Hecky et 
al.(1993) for nitrogen starved systems (upper line = C/N of 8.3, lower = 14.6), solid 
blue lines are boundaries (upper = 10, lower = 20) based on Meyers and Lallier- Verges 
(1999). Yellow fill area shows value range of mixed algal/terrestrial organic source 
material. All but one point of terrestrially derived organics (below lower dashed line) is 
associated with the upward-fining beds (turbidites) from the lowest part of the core (see 
text).
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In core 9P, carbon sources inferred from C/N data mostly indicate an algal-based carbon 

system, although some parts of the core show a mix of terrestrial and algal input. Late 

glacial upward-fining beds, interpreted to be flood deposits related to deglaciation, 

commonly show substantial terrestrial carbon input, although this may in part be function 

of extremely low levels of lake productivity during deglaciation. With this said, C/N 

ratios have very limited variability in the post-glacial period, suggesting an algal based 

oligotrophic lake since deglaciation.

In Lake Biwa, Japan, periods of increased C/N ratios and TOC that are coeval with 

changes in the pollen record that are inferred to record productivity and temperature 

increases (Meyers et al. 1993). In Flathead Lake this relationship also may be present, 

represented by an increasing C/N and TOC trend in the upper part o f the core (Fig. 56), 

although both of these trends are within the uncertainty. However, caution must be used 

with TOC data in oxic bottom waters, such as Flathead Lake, where post-burial 

degradation may decrease organic carbon levels until burial in anoxic sediments (Meyers 

and Teranes 2001).

In the lowest part of the core the upward-fining beds contain high TIC and C/N values, 

suggesting terrestrial input into the lake. The coarse grain size o f these beds (Fig. 43) 

supports an influx of detrital carbonate and organic material at this time. Qualitative 

SEM examinations of the core sediments suggest that all carbonate material in the 

upward-fining beds is detrital (Appendix F). Additionally, the SEM examination failed
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to observe any authigenic carbonate in the samples from cores 9P or 16K. These results 

suggest that the TIC data set is primarily detrital and not an indicator of lake productivity.

Conclusions:

Paleoclimate reconstructions are accomplished by analysis o f proxy data sets, which are 

inferred to represent one or more climate conditions that cannot be directly measured. 

Since most proxies are a partial function of multiple climatic inputs, proxies are best 

evaluated in groups for the most accurate reconstruction of the preserved climatic signal. 

However, multiple proxies can behave out of phase for all or a portion of the record. 

Discrepancies between proxy signals can be caused by a number o f factors that include:

1) varying sensitivity of the proxies to climate change; 2) sensitivity of a proxy to 

multiple climatic conditions (i.e., dependence on both temperature and precipitation); 3) 

lag effects where a proxy responds to a climatic change after a period of time (i.e., the 

time taken by a tree to mature before releasing pollen); 4) dilution o f a proxy signal due 

to destructively interfering multiple signals within a large montane watershed; 5) shifts or 

missing peaks in a proxy due to different analytical resolution; 6) differential 

fractionation of sediments across the lake bottom due to currents and other unquantified 

depositional processes; and 7) other poorly understood or unquantified factors, such as 

proxy preservation and post-depositional reactions. Additionally it should be mentioned 

that most proxies only reflect qualitative changes in climate conditions and do not 

provide a quantitative estimate of the magnitude o f the climate change. This is because 

the magnitude of a proxy peak typically does not reflect a known absolute value that 

directly correlates to the measured climate change.
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A certain amount o f uncertainty exists in all measurements. This uncertainty must be 

considered to fully evaluate the utility of the proxy for paleoclimate interpretation. 

Unfortunately, most paleoclimatic reconstructions fail to fully consider uncertainty in 

their interpretations or only provide it a passing mention (e.g., Harrison and Digerfeldt 

1993; Brauer et al. 1999; Horiuchi et al. 2000; Talbot and Laerdal 2000). In contrast, 

many paleoclimate studies recognize chronological uncertainty (e.g., Mayle and Cwynar 

1995; Yu 2000; Thamban et al. 2002).

In this study uncertainty calculations were conservative and sought to provide climate 

interpretations based on > 95% probability. Using this approach, many o f the small 

variations in the Flathead Lake record are less than convincing with respect to the proxy 

connection to a climate change.

Interestingly, proxy variations of a magnitude similar to those found in the Flathead 

record have been deemed climatically significant in other published studies (i.e., Qiu et 

al. 1993; Yuretich et al. 1999; Talbot and Laerdal 2000). The comparison o f multiple 

proxies is becoming standard practice when using lacustrine sediment records to infer a 

climate change. This approach is particularly important when proxy variability is within 

the uncertainty (i.e., Mayle and Cwynar 1995; Schmidt et al. 2002; Andrews and 

Giraudeau 2003; Stevens et al. 2006).
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An additional buffer that needs to be considered in the interpretation of the Flathead Lake 

Holocene paleoclimate record is the effect that reworked glaciolacustrine sediment stored 

in the Flathead Valley may have had on the paleoclimate signal. Glaciolacustrine varved 

sediments have been mapped throughout the Flathead Valley (Smith 2004) and are 

generally confined to within the 943 m elevation contour line (Fig. 58A).

Glaciolacustrine outcrops in the Kalispell area have exposures up to 19 m in height and 

show indications o f being eroded by the upper Flathead River. The age of these 

sediments is poorly constrained, although Smith (2004) differentiated between late 

Pleistocene and Holocene deposits based on color and morphology. The older beds are 

attributed to a glacial lake stage (Smith 2004) based on their similarity to varved deposits 

in the Mission Valley attributed to glacial Lake Missoula (Levish 1997).

To calculate the potential glaciolacustrine sediment erosion due to downcutting and 

mobilization, I used various mean elevations of lake deposits in the Flathead Valley. In 

ARCGIS v.9 I could then calculate the volume of sediment from the sediment terrace 

down to the current topography. Estimates of eroded glaciolacustrine deposits range 

from 3.75 to 22 km3. However, an assessment of the volume o f sediments that may have 

been eroded due to wave action of lake stands above current lake elevation is 

unconstrained. These reworked sediments would likely have been redeposition locally as 

lacustrine sediments in the broad plain above Flathead Lake. Estimates based on well 

logs suggest that the clay and silt layers, interpreted as lacustrine deposits, between 

Flathead Lake and Kalispell are as thick as 150 m with some interbedded gravels (Smith 

2004).
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Within Flathead Lake the coarse upward-fining beds are posited to be flood deposits that 

represent a period of glacial retreat from the Flathead Valley. The Glacier Peak tephra 

(13,180 ± 120 cal. yr. BP) is located above these beds in the lake cores and also is found 

in Flathead Valley where it is overlain by eolian sediments. These observations support 

the interpretation that the Flathead Valley had undergone glacial retreat and drying by 

this time (Smith 2004). Thus, I could calculate the volume of sediment deposited in the

I

Figure 58 -  A) Map of Flathead Valley showing area containing glaciolacustrine and 
fluvial reworked sediments. Orange line is 943 m contour that is a known lake highstand. 
B) Map of primary depositional zone in Flathead Lake used to estimate area of deposited 
sediments. Colors are subsurface slope, grade increasing from green-yellow-red.________
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lake, since the glacial retreat, based on the sediment thickness of Flathead Lake cores 

between the sediment water interface and the upward-fining beds. These calculations are 

based on the major depositional regions within the lake (Fig. 58B) and consider 

coarsening of sediments closer to the river mouth. I estimate sediment deposition in 

Flathead Lake since glacial retreat (i.e., above the last upward-fining bed) to range from 

1.9 to 3 km3.

Whereas the actual reworked glaciolacustrine percent contribution to the core 9P 

sediments is unquantified, based on these crude sediment erosion and deposition 

calculations it is likely to be substantial. Particularly when the composition o f the 

glaciolacustrine sediments is considered, these very-fine grained sediments are most 

likely to be transported to the middle of the lake and therefore likely contributed to core 

9P sedimentation.

I propose that erosional reworking of previously deposited fine-grained glaciolacustrine 

sediments in the upper Flathead valley buffered the paleoclimate signals derived from 

time-series proxy data and, at times, provided the main signal captured by the climate 

proxies. This finding suggests that caution must be exercised in using proxies records 

developed from high latitude oligotrophic lakes that derive most of their climate signal 

from detrital sources. Many of these lakes were larger during post-glacial periods, and 

many have glaciolacustrine sediments mantling large portions of their watersheds.
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Climatic Inferences:

The sedimentary record recovered in core 9P does not reach the Last Glacial Maximum 

(LGM) (Levish 1997; Smith 2004) as indicated by the chronology (Chapter 2) and by the 

lack of the progressively thickening (down core) varved record observed in longer cores 

from Flathead Lake (Hofmann et al. 2003). The lack of glacial varve sedimentation 

suggests that the lake was not seasonally ice covered at the time of deposition of the 

lowermost beds in core 9P (Anderson 1993). The lower most part o f the core contains a 

series of upward-fining beds that have been identified in subsequent cores throughout the 

southern part of Flathead Lake (Hofmann et al. 2003). High C/N rations of 25-40 

indicate vascular terrestrial input of carbon (Meyers and Lallier-Verges 1999) and 

suggest that the relatively coarse-grained sediment flows were derived from outside the 

lake (Figs. 44 and 56). The lower series of upward-fining beds passes upcore into a dm- 

thick section of very fine-grained laminated sediments that are not varved.

The upward-fining beds and the interbedded very fine-grained more homogeneous 

sediments below the Glacier Peak tephra are temporally correlative with the late stages of 

the Bolling/Allerod episode (BA) reported in the GRIP cores (Asioli et al. 2001) and

elsewhere (e.g., Alley et al. 2002; Hendy et al. 2002). The Bolling/Allerod is described

1 8as a rapid warming as recorded in 8 O proxy and the time of postglacial sea level rise 

(Yu 2000; Alley et al. 2002; Seltzer et al. 2002; Ciampo 2003). Paleoclimate models 

suggest that the Bolling/Allerod episode of warm and relatively wet climate rapidly 

ended, giving way to a cool/dry glacial climate around 13,000 cal. yr. BP (Walker 2001). 

This cool/dry period, called the Younger Dryas (YD), is identified in climate
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reconstruction records as a rapid climate reversal to cold conditions that lasted for 

between 1,000 and 1,500 years (Alley 2000; Yu and Wright 2001; Kovanen and 

Easterbrook 2002). The YD is correlative with the last Bond cycle and HO Heinrich layer 

(Bond and Lotti 1995; Alley 1998; Yu and Wright 2001). However, paleoclimate 

reconstructions differ on the question as to whether the YD was a wet or dry period 

(Renssen et al. 2000; Lambeck et al. 2002; Renssen and Vandenberghe 2003).

In Flathead Lake no physical evidence (such as increase in grain size or varved 

sediments) exists to suggest glacial ice returning to the valley, and other proxies remain 

within uncertainty. It is likely that the YD ice advances documented just north in British 

Columbia (Mathewes et al. 1993; Mayle and Cwynar 1995) either did not cross the Libby 

Divide into the Flathead watershed or that glacial sediments were trapped in smaller 

upstream lakes, minimizing any signal in Flathead Lake sediments.

Researchers studying Holocene sediments in Canada and the Great Plains have 

documented an anomalous warm interval commonly referred to as the mid-Holocene 

Hypsithermal (ca. 4,700 to 9,000 yr. BP) (Mathewes and Rouse 1975; Alley 1976). In 

Flathead Lake, few statistically significant shifts are recorded in the proxy data to support 

this warming. An exception to this generalization is significant changes in the biogenic 

Si time-series data, although this proxy is suspect based on SEM observations (see text 

above). Most time-series data sets for core FL-00-9P are within analytic uncertainty, 

rendering climatic interpretation based on these data alone tenuous at best. Two 

noteworthy trend changes occur at -6,500 cal yr. BP when both %calcite and %TIC
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decrease significantly, and at 4,500 yrs when the %TIC and %TC decrease again. 

Although, SEM observations suggest that TIC and carbonate minerals are primarily 

detrital and poorly connected as a climatic proxy, suggesting a non-climatic control.

My examination of the historical climate records for the watershed suggests caution must 

be exercised when using lake records to reconstruct paleoclimate in mountainous 

topography. Mountains that separate valley lakes serve to partition the direction and 

magnitude o f climate change in complicated topography. In small lake systems, these 

variations may provide a local signal that is only partially in phase with the more regional 

paleoclimate picture. Large drainage systems can integrate these climatic variations, 

although the integration also serves to dampen proxy signals recorded in the sediments. 

Reworking o f older lake sediments within the basin represents another possible source of 

noise or buffering in the paleoclimate signal. Lastly, uncertainty in the time-series data 

sets must be considered to accurately evaluate data set variations and best improve the 

quality of paleoclimatic interpretations derived from lake sediments.
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^  Washington State University
mm D epartm en t ol G eology PO Box

IVIIman. >«A 99164 
509-335' 

PAX 509-335'

January 12, 2001

Professor Marc S. Hendrix 
Department of Geology 
University o f Montana 
Missoula, MT 59812-1019

Dear Marc,

I have enclosed the results on the samples from Flathead Lake, unused tephra, and the microprobe 
mount (under separate cover). There are no surprises in the results—they are what you expected.

The composition of the glass in FL-00-9P-III 45-46 is quite consistent and is an excellent match 
(similarity coefficient = 0.99) to that in a sample collected at Liao Rock at Crater Lake. Thus 45- 
46 represents either the climactic eruption of 6850 BP or a precursor approximately a few  
hundred years earlier. My educated guess is that your sample is mostly likely from the climactic 
eruption.

Sample FL-00-9P-II 78-79 consists mostly of Mazama tephra with a few shards of a more mafic 
glass o f unknown origin. The bulk composition is a good match (similarity coefficient = 0.97) to 
published data (Westgate et al., 1970) on a sample o f  Mazama tephra and when the composition 
of the more mafic component in removed (see FL-00-9P-II 78-79 , glass 2  in Table 1) the 
coefficient increases to 0.99. I don’t trust the match o f  Mount St Helens T for glass 1 in this 
sample as the match for two of the more reliable element, Fe and K, is considerably off.

Sample FL-00-9P-V appears to be from one of the three major Glacier Peak eruptions (B,M, or 
G) which took place over a span of a few hundred years around 11,200 BP. Tephras from these 
eruptions cannot be distinguished on the basis of EMP determined glass compositions. The 
similarity coefficients of the matches range from 0.96 to data reported by Westgate et al. (1970) 
to 0.99 for a sample LIB-B I will soon publish on and am pretty sure is from Glacier Peak.

If you have any questions regarding these analyses please do not hesitate to call or email me 
(foit@ mail .wsu.edu).

Sincerely,

AjtcfcL

Franklin F. (Nick) Foit, Jr.
Professor and Director of Microbeam Lab
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ANALYTICAL PROCEDURES AND FINAL REPORT

Final Report

T h e  final report p a c k a g e  in c lu d e s  th e  final d a te  report, a  s ta te m e n t  outlin ing our analytical 
p r o c e d u r e s , a  g lo s s a r y  o f  p retrea tm en t te r m s, c a le n d a r  calibration  in form ation , billing d o c u m e n ts  
(con ta in in g  b a la n c e /c r e d it  in form ation  a n d  th e  n u m b er o f  s a m p le s  su b m itted  w ithin th e  yearly  
d isco u n t p eriod ), an d  perip h era l ite m s to  u s e  with future su b m itta ls . T h e  final report in c lu d e s  th e  
individual a n a ly s is  m eth o d , th e  d elivery  b a s is ,  th e  m aterial ty p e  a n d  th e  individual p retrea tm en ts  
ap p lied . T h e  final report will b e  s e n t  by m ail, fax  or e -m ail, w h e r e  a v a ila b le .

P re tr ea tm en t m e th o d s  are  rep orted  a lo n g  with e a c h  resu lt. All n e c e s s a r y  ch em ica l and  
m e c h a n ic a l p r e tr e a tm e n ts  o f  th e  su b m itted  m ateria l a re  a p p lied  at th e  lab oratory  to  iso la te  14C 
w hich  m a y  b e s t  r e p r e se n t  th e  tim e e v e n t  o f  in terest. W h en  interpreting th e  resu lts , it is im portant t> 
c o n s id e r  th e  p r e tr e a tm e n ts . S o m e  s a m p le s  ca n n o t b e  fully p retrea ted , m akin g  their  14C a g e s  m ore  
su b je c t iv e  th a n  s a m p le s  w h ich  ca n  b e  fully p retrea ted . S o m e  m a ter ia ls  r e c e iv e  n o  p retrea tm en ts. 
P le a s e  rea d  th e  p retrea tm en t g lo ssa r y .

M ateria ls m e a s u r e d  by th e  rad iom etric  te c h n iq u e  are a n a ly z e d  by s y n th e s iz in g  sa m p le  
ca rb o n  to  b e n z e n e  (92%  C), m ea su r in g  for 14C c o n te n t in a  sc intillation  sp e c tr o m e te r , an d  th en  
ca lcu la tin g  for rad io ca rb o n  a g e .  If th e  E x te n d e d  C ou n tin g  S e r v ic e  is  u se d , th e  14C c o n ten t is 
m e a s u r e d  for a  g rea tly  e x te n d e d  period  o f  tim e. A M S resu lts  a re  d er iv ed  from  red u ction  o f  sa m p le  
ca rb on  to  gra p h ite  (1 0 0  % C), a lo n g  with s ta n d a r d s  an d  b a ck g ro u n d s. T h e  g ra p h ite  is th en  d e te c te d  
for 14C c o n te n t  in an  a c c e le r a to r -m a s s -s p e c tr o m e te r  (A M S) lo c a te d  at o n e  o f  9  co llab oratin g  
r e se a r c h  facilities , w h o  return th e  raw d a ta  to  u s  for verification , iso to p ic  fraction ation  correction , 
ca lcu la tio n  c a le n d a r  calibration , an d  reporting.

T h e  " C on ven tion al 14C A g e  (*)" is th e  resu lt after ap p ly ing  13C /12C c o r r e c tio n s  to  th e  
m e a s u r e d  a g e  an d  is th e  m o st ap p rop riate rad iocarb on  a g e  (th e  is d is c u s s e d  at th e  bottom  o f  
th e  final report). A p p lica b le  c a le n d a r  ca lib ra tion s are  in clu d ed  for m a ter ia ls  0  a n d  a b o u t 2 0 ,0 0 0  BP. 
If certa in  ca lib ra tio n s a r e  not in clu d ed  w ith a  report, th e  r e su lts  w e r e  e ith er  to o  y o u n g , to o  old, or 
in ap propriate for calibration .
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BETA ANALYTIC INC.
RADIOCARBON DATING LABORATORY 
CALIBRATED C-14 DATING RESULTS

Calibrations of radiocarbon age determinations are applied to convert BP results to calendar 
years. The short term difference between the two is caused by fluctuations in the 
heliomagnetic modulation of the galactic cosmic radiation and, recently, large scale burning 
of fossil fuels and nuclear devices testing. Geomagnetic variations are the probable cause of 
longer term differences.

The parameters used for the corrections have been obtained through precise analyses of 
hundreds of samples taken from known-age tree rings of oak, sequoia, and fir up to about 
10,000 BP. Calibration using tree-rings to about 12,000 BP is still being researched and 
provides somewhat less precise correlation. Beyond that, up to about 20,000 BP, correlation 
using a modeled curve determined from U/Th measurements on corals is used. This data is 
still highly subjective. Calibrations are provided up to about 19,000 years BP using the most 
recent calibration data available (Radiocarbon, Vol 40, No. 3,1998).

The Pretoria Calibration Procedure (Radiocarbon, Vol 35, No. 1,1993, pg 317) program has 
been chosen for these calendar calibrations. It uses splines through the tree-ring data as 
calibration curves, which eliminates a large part of the statistical scatter o f the actual data 
points. The spline calibration allows adjustment of the average curve by a quantified 
closeness-of-fit parameter to the measured data points. A single spline is used for the precise 
correlation data available back to 9900 BP for terrestrial samples and about 6900 BP for 
marine samples. Beyond that, splines are taken on the error limits of the correlation curve to 
account for the lack of precision in the data points.

In describing our calibration curves, the solid bars represent one sigma statistics (68% 
probability) and the hollow bars represent two sigma statistics (95% probability). Marine 
carbonate samples that have been corrected for 5 13/12C, have also been corrected for both 
global and local geographic reservoir effects (as published in Radiocarbon, Volume 35, 
Number 1,1993) prior to the calibration. Marine carbonates that have not been corrected for 
5 13/12C are adjusted by an assumed value of 0 %o in addition to the reservoir corrections. 
Reservoir corrections for fresh water carbonates are usually unknown and are generally not 
accounted for in those calibrations. In the absence of measured 8 13/12C ratios, a typical value 
of -5 % o  is assumed for freshwater carbonates.

(Caveat: the correlation curve for organic materials assume that the material dated was living 
for exactly ten years (e.g. a collection of 10 individual tree rings taken from the outer portion 
of a tree that was cut down to produce the sample in the feature dated). For other materials, 
the maximum and minimum calibrated age ranges given by tbe computer program are 
uncertain. The possibility of an "old wood effect" must also be considered, as well as the 
potential inclusion o f younger or older material in matrix samples. Since these factors are 
indeterminant error in most cases, these calendar calibration results should be used only for 
illustrative purposes. In the case of carbonates, reservoir correction is theoretical and the local 
variations are real, highly variable and dependant on provenience. Since imprecision in the 
correlation data beyond 10,00 years is high, calibrations in this range are likely to change in the 
future with refinement in the correlation curve. The age ranges and especially the intercept 
ages generated by the program, must be considered as approximations.)
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PRETREATMENT GLOSSARY

Pretreatm ent of submitted materials is required to  eliminate secondary carbon components. These 
components, if not eliminated, could result in a radiocarbon date which is too young or too old. 
Pretreatment does not ensure that the radiocarbon date will represent the tim e event of interest. This is 
determined by the sample integrity. The old wood effect, burned intrusive roots, bioturbation, secondary 
deposition, secondary biogenic activity incorporating recent carbon (bacteria) and the analysis of multiple 
components o f differing age are just some examples of potential problems. The pretreatm ent philosophy is 
to reduce the sample to a single component, where possible, to minimize the added subjectivity associated 
with these types of problems.

"acid/alkali/acid"

The sample w as first gently crushed/dispersed in deionized water. It was then given hot HCI acid washes 
to eliminate carbonates and alkali washes (NaOH) to  remove secondary organic acids. The alkali washes 
were followed by a final acid rinse to neutralize the solution prior to drying. Chemical concentrations, 
tem peratures, exposure times, and number of repetitions, w ere applied accordingly w ith the uniqueness of 
the sample. Each chemical solution was neutralized prior to application of the next. During these serial 
rinses, mechanical contaminants such as associated sediments and rootlets were eliminated. This type of 
pretreatm ent is considered a "full pretreatm ent". On occasion the report will list the pretreatment as 
"acid/alkali/acid - insolubles" to specify which fraction o f the sample was analyzed. This is done on 
occasion w ith  sediments (See "acid/alkali/acid - solubles"

Typically applied to: charcoal, wood, some peats, some sediments, textiles

"acid/alkali/acid - solubles"

On occasion the alkali soluble fraction will be analyzed. This is a special case w here soil conditions imply 
that the soluble fraction will provide a more accurate date. It is also used on some occasions to verify the 
present/absence or degree of contamination present from secondary organic acids. The sample was first 
pretreated w ith  acid to remove any carbonates and to weaken organic bonds. A fter the alkali washes (as 
discussed above) are used, the solution containing the alkali soluble fraction is isolated/filtered and 
combined w ith  acid. The soluble fraction which precipitates is rinsed and dried prior to combustion.

"acid washes"

Surface area w as increased as much a possible. Solid chunks w ere crushed, fibrous materials were 
shredded, and sediments w ere dispersed. Acid (HCI) was applied repeatedly to ensure the absence of 
carbonates. Chemical concentrations, temperatures, exposure tim es, and number of repetitions, were 
applied accordingly w ith the uniqueness of each sample. The sample, for a number of reasons, could not 
be subjected to alkali washes to ensure the absence of secondary organic acids. The most common reason 
is that the primary carbon is soluble in the alkali. Dating results reflect the total organic content of the 
analyzed material. Their accuracy depends on the researcher's ability to subjectively eliminate potential 
contaminants based on contextual facts.

Typically applied to: organic sediments, some peats, small wood or charcoal, special cases 

"collagen extraction"

The material w as first tested for friability ("softness”). Very soft bone material is an indication of the 
potential absence of the collagen fraction (basal bone protein acting as a "reinforcing agent" within the 
crystalline apatite structure). It was then washed in de-ionized w ater and gently crushed. Dilute, cold HCI 
acid w as repeatedly applied and replenished until the mineral fraction (bone apatite) w as eliminated. The 
collagen w as then dissected and inspected for rootlets. Any rootlets present w ere  also removed when 
replenishing the acid solutions. Where possible, usually dependant on the amount o f collagen available, 
alkali (NaO H) was also applied to ensure the absence of secondary organic acids.

Typically applied to: bones

1
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'a c id  e tch '

The calcareous m aterial w as firs t w ashed in de-ionized w ater, rem oving associated organic sediments and 
debris (w h ere  present). The m aterial w as  then crushed/dispersed and repeatedly subjected to  HCI etches  
to  elim inate secondary carbonate com ponents. In the case o f th ick shells, the surfaces w ere  physically  
abraded prior to  etching do w n to  a hard, prim ary core rem ained. In th e  case o f porous carbonate nodules 
and caliche, ve ry  long exposure tim es w ere  applied to  allow  infiltration o f th e  acid. A cid  exposure tim es, 
concentrations, and number o f repetitions, w ere  applied accordingly w ith  th e  uniqueness o f the sample.

Typically applied to: shells, caliche, calcareous nodules

'neutralized"

Carbonates precipitated from  ground w ater are usually subm itted in an alkaline condition (amm onium  
hydroxide or sodium  hydroxide solution). Typically this solution is neutralized in the original sample 
container, using deionized w ater. If  larger volum e dilution w as required, the precipitate and solution w ere  
transferred to  a sealed separatory flask and rinsed to neutrality. Exposure to  atm osphere w as minimal.

Typically applied to: Strontium  carbonate. Barium carbonate
(i.e. precipitated ground w ater samples)

"none”

No laboratory pretreatm ents w ere  applied. Special requests and pre-laboratory pretreatm ent usually 
accounts fo r this.

"acid /alkali/acid/cellulose extraction”

Follow ing fu ll acid/alkali/acid pretreatm ents, the sample is rinsed in N a C I0 2  under very controlled 
conditions (Ph =  3 , tem perature =  7 0  degrees C ). This eliminates all com ponents except wood  
cellulose. It is useful for w oods w hich are either very old or highly contam inated.

Applied to : w ood

“carbonate precipitation"

Dissolved carbon dioxide and carbonate species are precipitated from  subm itted w ater by 
complexing them  as am onium  carbonate. Strontium  chloride is added to  th e  am m onium  carbonate 
solution and strontium  carbonate is precipitated fo r the analysis. Th e result is representative o f the  
dissolved inorganic carbon w ith in  the w ater. Results are reported as "w ate r D IC “ .

Applied to: w ater

2
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UNIVERSITY BRANCH

wmkksu
REPORT OF RADIOCARBON DATING ANALYSES

M r .  M i c h a e l  S p e r a z z a  R e p o r t  D a t e :  3 / 2 8 / 2 0 0 3

U n i v e r s i t y  o f  M o n t a n a  M a t e r i a l  R e c e i v e d :  2 / 2 4 / 2 0 0 3

S a m p l e  D a t a M e a s u r e d  

R a d i o c a r b o n  A g e

1 3 C / 1 2 C

R a t i o

C o n v e n t i o n a l  

R a d i o c a r b o n  A g e ( * )

B e t a - 176803 13 0 9 0 + /-4 0  BP -26.4 o/oo
SA M PL E : FL009PV 74 
A N A L Y S IS : A M S-Standard delivery
M A TER IA L/PR ETR EA TM EN T : (organic sedim ent): acid washes 
2 SIGM A C A LIB R A TIO N  ; Cal BC 14090 to 13340 (Cal BP 16040 to  15280)

13070 W-40 BP

Dates are reported as RCYSP (radiocarbon years before present, 
■present" = 1950A.D.). By International convention, the modern 
reference standard was 95% of the C14 content of the National 
Bureau of Standards' Oxalic Acid & calculated using the Libby C14 
half life (5568 years). Quoted errors represent 1 standard deviation 
statistics (68% probability) & are based on combined measurements 
of the sample, background, and modern reference standards.

Measured C13/C12 ratios were calculated relative to the PDB-1 
international standard and the RCYBP ages were normalized to 
-25 per mil. If the ratio and age are accompanied by an (*), then the 
C13/C12 value was estimated, based on values typical of the 
material type. The quoted results are NOT calibrated to calendar 
years. Calibration to calendar years should be calculated using 
the Conventional C14 age.
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C A L I B R A T I O N  O F  R A D I O C A R B O N  A G E  T O  C A L E N D A R  Y E A R S

( V a r i a b l e s :  C  1 3 / C  1 2  =  - 2 6 . 4 : l a b .  m u l t =  1 )

L a b o r a t o r y  n u m b e r :  B e t a - 1 7 6 8 0 3

C o n v e n t i o n a l  r a d i o c a r b o n  age:  1 3 0 7 0 ± 4 0  BP

2 S i g m a  c a l i b r a t e d  resul t :  C a l  BC 1 4 0 9 0  to 1 3 3 4 0  ( C a l  B P  1 6 0 4 0  to  1 52 8 0 )
( 95% p r o b a b i l i t y )

I n t e r c e p t  d a t a

I n t e r c e p t  o f  r a d i o c a r b o n  a g e

w i t h  c a l i b r a t i o n  c u r v e :  C a l  B C  1 3 7 6 0  ( C a l  B P  1 5 7 2 0 )

1 S i g m a  c a l i b r a t e d  r e s u l t :  C a l  B C  1 4 0 2 0  t o  1 3 4 2 0  ( C a l  B P  1 5 9 7 0  t o  1 5 3 7 0 )

( 6 8 %  p r o b a b i l i t y )

1 3 0 7 0 ± 4 0 B P O rg a n ic  s e d im e n t

1 3 1 8 0  —

1 3 1 6 0  -

1 3140

1 3 1 2 0  -

1 3 1 0 0

1 3 0 8 0

1 3 0 6 0

1 3 0 4 0

1 3 020

1 3 000

1 2 9 8 0

1 2 9 6 0  -

1 2 9 4 0  -

p— |
1 3600  1 35001 3 8 0 0 1 3 7 0 0 1 3 4 0 0 1 3 3 0 0 13204 0 0 0 1 3 9 0 0

C a l BC

R e  f e r e n c e s :
D a  t a b a s e  u s e d

s p i

C a l i b r a t i o n  D a t a b a s e  
E d i t o r i a l  C o m  m e n t

S t u i v e r ,  M. ,  v a n  d e r  Pl i cht ,  H.,  1998,  R a d i o c a r b o n  4 0 ( 3 ) ,  px i i - x i i i  
I N T C A  L 9 8  R a d i o c a r b o n  A g e  C a l i b r a t i o n

St u i v e r ,  M-,  et.  al. ,  1998,  R a d i o c a r b o n  40  (3),  p 1 04 J - 1 0 8 3  
M  at h e m a  t i cs
A S i m p l i f i e d  A p p r o a c h  t o  C a l i b r a t i n g  C 1 4  D a t e s

T a l ma ,  A.  S. ,  Voge l ,  J. C. .  1 993,  R a d i o c a r b o n  3 5 ( 2 ) ,  p 3 ! 7 - 3 2 2

(id-0'**? B e t a  A n a l y t i c  I n c .
49H5 StV "4 Court ,  Miami ,  Florida 331 55 l /SA * Tel: (305)  6 6~ 5I6~  • Fax: (305) 663 0964 • E-Mail :  beta@ radiocarbon .com

* L~*. • ,*  't<r+ A d i
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REPORT OP RADIOCARBON DATING ANALYSES
M r .  M i c h a e l  S p e r a z z a  R e p o r t  D a t e :  1 0 / 2 1 / 2 0 0 3

U n i v e r s i t y  o f  M o n t a n a  M a t e r i a l  R e c e i v e d :  9 / 2 5 / 2 0 0 3

S a m p l e  D a t a  M e a s u r e d  1 3 C / 1 2 C  C o n v e n t i o n a l

R a d i o c a r b o n  A g e  R a t i o  R a d i o c a r b o n  A g f i ( ‘ )

B eta  -  183410  6 9 5 0  + /- 4 0  B P -2 8 .7  o /o o  6 8 9 0  + /-  4 0  B P
S A M P L E : F L 0 3 1 S K -I9 5
A N A L Y S IS : A M S -S ta n d a rd  d e liv e ry
M A T E R IA L /P R E T R E A T M E N T : (w o o d ): ac id /a lk a li/ac id
2  SIG M A  C A L IB R A T IO N  : C al B C  5 8 4 0  to  5 7 1 0  (C a l B P  7 7 9 0  to  7 6 6 0 )

B e ta -1 8 3 4 1 1  8 8 2 0 + / - 4 0  B P  -2 7 .4  o /o o  8 7 8 0 + / - 4 0  B P
S A M P L E : F L 031S K -1I69  
A N A L Y S IS : A M S -S ta n d a rd  d e liv e ry  
M A T E R IA L /P R E T R E A T M E N T : (w o o d ): a c id /a lk a li/ac id
2 S IG M A  C A L IB R A T IO N  : C al B C  8 1 5 0  to  8 1 4 0  (C al B P  101001O 10090) A N D  C al B C  7 9 7 0  to  7 7 2 0  (C al B P  9 9 2 0  to  9 6 6 0 )

B e ta -1 8 3 4 1 2  4 4 3 0  + / -4 0  B P  - 2 3 .8 o /o o  4 4 5 0  + / - 4 0  B P
S A M P L E : F L 0 3 1 6 K -I4 4
A N A L Y S IS  : A M S -S ta rtd a rd  d e liv e ry
M A T E R IA L /P R E T R E A T M E N T : (w o o d ): ac id /a lk a li/ac id
2 S IG M A  C A L IB R A T IO N  : C al B C  3 3 4 0  to  2 9 3 0  (C’al B P  5 290  to  4 8 8 0 )

B e ta  - 183413 7 9 2 0  + /- 4 0  B P  - 2 6 .1 o /o o  7 9 0 0  + /- 40  B P
S A M P L E  : FL0316K I1163 
A N A L Y S IS  : A M S -S ta n d a rd  d e liv e ry  
M A T E R IA L /P R E T R E A T M E N T : (w o o d ): ac id /a lk a li/ac id
2 S IG M A  C A L IB R A T IO N  : C al B C  7 0 3 0  to  6 8 6 0  (C a l B P  8 9 8 0  to  8 8 2 0 )  A N D  C al B C  6 8 5 0  to  6 6 5 0  (C a l B P  8 8 0 0  to  8 6 0 0 )

B e t a - 183414  9 0 3 0  + /- 50  B P -24 .3  o /o o  9 0 4 0  + /-5 0  BP
S A M P L E  : F L 0 3 1 6 K -IV 2 7
A N A L Y S IS : A M S -S ta n d a rd  d e liv e ry
M A T E R ]A L /P R E T R E A T M E N T : (w o o d ): a c id /a lk a li/ac id
2  S IG M A  C A L IB R A T IO N  : Cal B C  8 2 9 0  to  8 2 1 0  (C a l B P  10240 to  10160)

Oates are reported as RCYBP (radiocarbon years before present, 
"present" * 195QA.D.). By International convention, the modern 
reference standard was 96% of the C14 content of the National 
Bureau of Standards' Oxalic Acid & calculated using the Libby C14 
half life (SS63 years). Quoted errors represent 1 standard deviation 
statistics (68% probability) & are based on combined measurements 
of the sample, background, and modern reference standards.

Measured C13/C12 ratios were calculated relative to the POB-1 
international standard and the RCYBP ages were normalized to 
-25 per mil. If the ratio and age are accompanied by an (*), then the 
C13/C12 value was estimated, based on values typical of the 
material type. The quoted results are NOT calibrated to calendar 
years. Calibration to calendar years should be calculated using 
the Conventional C14 age.
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BETA ANALYTIC INC. U N IV ERSITY  B R A N C H  
4 9 8 5  S .W . 7 4  C O U R T  
MIAMI, F L O R ID A , U SA  3 3 1 5 5

E - M A I L :  b e t a @ r a d l o c a r b o n . c o m

REPORT OF RADIOCARBON DATING ANALYSES

M r .  M i c h a e l  S p e r a z z a  R e p o r t  D a t e :  1 0 / 2 1 / 2 0 0 3

S a m p l e  D a t a  M e a s u r e d  1 3 C / 1 2 C  C o n v e n t i o n a l

R a d i o c a r b o n  A g e  R a t i o  R a d i o c a r b o n  A g e ( * )

B e t a - 183415 10320 + / - 5 0 B P  -2 3 .7  o /oo  10 3 4 0 + / - 5 0  B P
S A M P L E : F L 0 3 1 6 K -V 2 0  
A N A L Y S IS  : A M S -S ta n d ard  d e liv e ry  
M A T E R IA L /P R E T R E A T M E N T : (w ood): a c id /a lk a li/ac id
2  S IG M A  C A L IB R A T IO N  : C a l BC. 10820 to  1 0800  (C al B P  12760 to  12740) A N D  C al B C  10700  to  10510 (C a l B P  1 2650  to
12460) Cal B C  1 0450  to  9 9 5 0  (C a l B P  12400 to  11900)

B e t a - 183416 1 2 2 2 0 + / - 5 0  B P  -2 4 .6  W oo 12 2 3 0 + / - 5 0  B P
S A M P L E : F L 0 3 1 9 K -1 V 4 4  
A N A L Y S IS  : A M S -S ta n d a rd  d e liv e ry  
M A T E R IA L /P R E T R E A T M E N T : (w ood): a c id /a lk a li/ac id
2  S IG M A  C A L IB R A T IO N  : C a lB C  13360 to  1 2700  (C al B P  15310 to  14650) A N D  C al B C  I 2 4 2 0 to  12130 (C a l B P  I4 3 7 0 to
14080) Cal B C  1 1950 to  11920 (C al BP 1 3900  to  13870)

Dates are reported as RCYBP (radiocarbon years before present, 
"present" * 1950A.D.). By International convention, the modern 
reference standard was 95% of the C14 content of the National 
Bureau of Standards' Oxalic Acid & calculated using the Libby C14 
half life (5568 years). Quoted errors represent 1 standard deviation 
statistics (68% probability) & are based on combined measurements 
of the sample, background, and modern reference standards.

Measured C13/C12 ratios were calculated relative to the PDB-t 
international standard and the RCYBP' ages were normalized to 
-25 per mil. If the ratio and age are accompanied by an (*), then the 
C13/C12 value was estimated, based on values typical of the 
material type. The quoted results are NOT calibrated to calendar 
years. Calibration to calendar years should be calculated using 
the Conventional 014 age.
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CALIBRATION OF RADIOCARBON AGE TO CALENDAR YEARS
(V ariab les: C 1 3/C 12= -28 .7 :lab . m u lt=  1)

L a b o r a to r y  num ber: Beta-183410

C o n v e n t io n a l  rad iocarbon  age: 6890±40 BP

2 S ig m a  ca l ibrated  result: C a lB C  5840 to 5710 (Cal BP 7790 to 7660)
(95%  probability)

Intercept data

In tercep t o f  radiocarbon age
w ith  ca libration  curve: Cal BC 5 7 4 0  (C al BP 7 7 0 0 )

1 S ig m a  calibrated  result: Cal BC 5 7 9 0  to 5720 (C al B P  7 7 4 0  to 7 6 8 0 )
(68%  probability)

7020
689QM0 BP Wood

7000

6 9 40 -

6 8 40 -

6820 -

6 8 00 -

6780

6760 -

5800 5740
Cal BC

5840 5720 570C

R eferen ces:
D atabase u sed

IN T C A L 98  
C alibra tion  D a tabase  
E d ito r ia l C o m m e n t

S tu iver, M , van  der Plickt, H., 1998, R adiocarbon 40(3), p x ii-x iii  
IN T C A L 9 8  R a d io ca rb o n  A ge C alibration

S tu iver, M., et. a t ,  1998, R adiocarbon 40(3), p i 0 4 1 -1083 
M a th  em  a tics
A S im p lif ie d  A p p  roach to C alibrating  C14 Dates

Ta lm a, A. S., Vogel, J. C., 1993, R adiocarbon 35(2), p3  J 1-322

Beta Analytic Radiocarbon Dating Laboratory
4 9 8 5 S .  W. 74th Court ,  Mi ami ,  F l o r i d a  33 i 55 • Tel: ( 305) 667- 5167  • Fax:  ( 3 0 5 ) 6 6 3 - 0 9 6 4  • E-Mai l :  b e t a @r a d i o c a r b o n . c o m
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CALIBRATION OF RADIOCARBON AGE TO CALENDAR YEARS
(V ariables: C l 3/C 12=-23.8:lab . m u lt= l)

Laboratory  number: Beta-183412

C onvention a l radiocarbon age: 4450±40 BP

C a lB C  3340 to 2930  (Cal BP 5290 to 4880)2 S igm a calibrated result: 
(95% probability)

Intercept data

Intercept o f  radiocarbon age 
w ith  calibration curve: C a lB C  3090  (Cal BP 5040 )

1 S ig m a  calibrated results: Cal BC 33 10 to 3230 (C al BP 52 6 0  to 5 180) and 
(68%  probability) C a lB C  31 10 to 3020 (C al BP 5 0 6 0  to 4 9 7 0 )

4 5 8 0
4 4 5 0 ± 4 0  B P

4 5 6 0  -

4 5 4 0 -

4 5 2 0 -

4  5 0 0 -

4 460

4 4 4 0

4 4 2 0

4 4 0 0

4  3  8 0 -

4 3 6 0  -

4 3 0 0

3 3 5 0 33 0  0 3 2 5 0 3 2 0 0 3 0 5 03 4 0 0 3 1 5 0  3 1 0 0
C a l  B C

R eferences:
D atabase u sed

IN TC AL98  
C alibration D atabase  
E dito ria l C o m m e n t

Stu iver, hi., van der Plicht, H., 1998, Radiocarbon 40(3), p x ii-x iii 
IN T C A L 9 8  R adiocarbon  A ge  C alibration

Stuiver, M., et. a l ,  1998, Radiocarbon 40(3), p !0 4 1  -1083 
M ath  em atics
A  S im p lifie d  A pproach  to C alibrating C14 Dates

Talm a, A. S., Vogel, J. (?., 1993, Radiocarbon 35(2), p31 7-322

Beta Analytic Radiocarbon Dating Laboratory
498 5  S.  W. 74th Court ,  Miami ,  Fl or i da  3 3 155 * Tel: (305)667- 5167 • Fax: ( 3 0 5 ) 6 6 3 - 0 9 6 4  • E-Mai l :  be t a@r ad i oc ar bon . com
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CALIBRATION OF RADIOCARBON AGE TO CALENDAR YEARS
(V ariables: C l 3/C 1 2 = -2 6 .1 :lab. m u lt= l)

Lab oratory  num ber: Beta-183413

C onvention a l radiocarbon age: 7900±40 BP

2 S igm a calibrated  results: C a lB C  7030 to 6860 (Cal BP 8980  to 8820) and 
(95% probability) C a lB C  6850 to 6650 (Cal BP 8800  to 8600)

Intercept data

Intercept o f  radiocarbon age 
w ith  calibration  curve: C a lB C  67 0 0  (Cal BP 86 5 0 )

S ig m a  calibrated result: C al BC 68 10 to 6670 (C al BP 8 7 6 0  to 8 6 2 0 )
(68%  probability)

8 0 4 0
7 9 0 G ± 4 0  B P W o o d

B 0 2 0  -

8 0 0 0

7  9  6 0 -

7 9 4 0

7 9 0 0

7 8 8 0

7 8 6 0

7  8  40  -

7 8 2 0  -

7 7 6 0

7 0 5 0 7 0 0 0 6 9 5 0 6 9 0 0 6 8 5 0  6 8 0 0
C a l  B C

6 7 5 0 6 7 0 0

R eferences:
D atabase u sed

INTCAL98 
C alibration D atabase  
E dito ria l C o m m e n t

Stu iver, M., van der Plicht, H., 1998, Radiocarbon 40(3), p x ii-x iii  
IN T C A L 9 8  R ad iocarbon  A ge Calibration

Stu iver, M., et. a ( , 1998, R ad iocarbon 40(3), p l0 4 1  -1083 
M ath  em atics
A S im p lifie d  A p p ro a ch  to C a libra ting  C I4  Dates

Talm a, A. S., Vogel, J. C., 1993, R adiocarbon 35(2), p 3 17-322

Beta Analytic Radiocarbon Dating Laboratory
4 9 8 5 S . W.  74th Court .  Mi ami ,  F lor i da  3 3 155 • Tel: (3 05 ) 667- 5167  • Fax: ( 3 0 5 ) 6 6 3 - 0 9 6 4  • E-Mai l :  be t a @r a d i o c a r ho n . c o m

203

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

mailto:beta@radiocarhon.com


C A L I B R A T I O N  O F  R A D I O C A R B O N  A G E  T O  C A L E N D A R  Y E A R S

( V a r i a b l e s :  C  1 3 / C  1 2  =  - 2 4 . 3 : l a b .  m u l t = l )

L a b o r a t o r y  n u m  b er :  B e t a - 1 8 3 4 1 4

C o n v e n t i o n a l  r a d i o c a r b o n  a g e :  9 0 4 0 ± 5 0  BP

2 S i g m a  c a l i b r a t e d  r e s u l t :  C a l  B C 8 2 9 0  to 8 2 1 0  ( C a l  B P  1 0 2 4 0  t o  1 0 1 6 0 )
( 9 5 %  p r o b a b i l i t y )

I n t e r c e p t  d a t a

I n t e r c e p t  o f  r a d i o c a r b o n  a g e

w i t h  c a l i b r a t i o n  c u r v e :  C a l  B C  8 2 6 0  ( C a l  B P  1 0 2 1 0 )

1 S i g m a  c a l i b r a t e d  r e s u l t :  C a l  B C  8 2 8 0  t o  8 2 4 0  ( C a l  B P  1 0 2 3 0  t o  1 0 1 9 0 )

( 6 8 %  p r o b a b i l i t y )

9 0 4 0 ± 5 0  B P W o o d

B900

8 8 5 0

8 2 9 0 8 2 8 0 8 2 7 0 B 260 3 2 5 0 6 2 4 0 8 2 3 0 5 2 2 0
C a  BC

to 8 9 5 0  -

R e f e r e n c e s :
D a t a b a s e  u s e d

C a l i b r a t i o n  D a t a b a s e  
E d i t o r i a l  C o m m e n t

S t u i v e r ,  M .. v a n  d e r  Pl i c h t ,  H.,  1 9 9 8 ,  R a d  io c a r  b o n  4 0  (3) ,  p x i i - x i i i  
I N  T C A  L 9 8  R a d i o c a r b o n  A g e  C a l i b r a t i o n

S t u i v e r ,  M. ,  et .  al . ,  1 9 9 8 ,  R a d  i o c a r b o n  4 0 ( 3 ) ,  p  1 0 4 1-J 0 8 3  
M  at h e m  a t i cs
A S i m p l i f t e d  A p p r o a c h  t o  C a l i b r a t i n g  C 1 4  D a t e s

T a l m a ,  A.  S. .  Vo g e l ,  J.  C. ,  I 9 9 3 ,  R a d i o c a r b o n  3 5 ( 2 ) ,  p 3 1 7 - 3 2 2

B e t a  A n a l y t i c  I n c .
4 9 8 5  S W  ~ 4  C o u r t ,  M i a m i ,  F l o r i d a  3 3 1  5 5  U S A  4 T e l :  ( 3 0 5 )  6 6 ?  5 1 6 ?  4 F a x :  ( 3 0 5 )  6 6 3  0 9 6 4  • E - M a i l :  b e t a @ r a d i o c a r b o n . c o
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C A L I B R A T I O N  O F  R A D I O C A R B O N  A G E  T O  C A L E N D A R  Y E A R S

( V a r i a b l e s :  C  1 3 / C  1 2  =  - 2 3 . 7 : l a b .  m u l t = l )

L a b o r a t o r y  n u m b e r :  B e t a - 1 8 3 4 1 5

C o n v e n t i o n a l  r a d i o c a r b o n  a ge :  1 0 3 4 0 ± 5 0  BP

2 S i g m a  c a l i b r a t e d  r es ul ts :  C a l  BC 1 0 8 2 0  to 1 0 8 0 0  ( Ca l  B P  1 2 7 6 0  to  1 2 7 4 0 )  a nd
( 9 5 %  p r o b a b i l i t y )  C a l  BC 1 0 7 0 0  to 1 0 5 1 0  ( C a l  B P  1 2 6 5 0  to  1 2 4 6 0 )  a n d

C a l  BC 1 0 4 5 0  to 9 9 5 0  ( C a l  B P  1 2 4 0 0  to  1 1 9 0 0 )

I n t e r c e p t  d a t a

I n t e r c e p t s  o f  r a d i o c a r b o n  a g e

w i t h  c a l i b r a t i o n  c u r v e :  C a l  B C  1 0 3 6 0  ( C a l  B P  1 2 3 1 0 )  a n d

C a l  B C  1 0 2 7 0  ( C a l B P  1 2 2 2 0 ) a n d  

C a l  B C  1 0 2 1 0  ( C a l  B P  1 2 1 6 0 )

1 S i g m a  c a l i b r a t e d  r e s u l t s :  C a l  B C  1 0 6 4 0  t o  1 0 5 5 0  ( C a l  B P  1 2 6 0 0  t o  1 2 5 0 0 )  a n d

( 6 8 %  p r o b a b i l i t y )  C a l  B C  1 0 4 2 0  t o  9 9 9 0  ( C a l  B P  1 2 3 7 0  t o  1 1 9 4 0 )

1 0 3 4 0 ± 5 0  BP W oo d

9 9 0 01 0 9 0 0  1 0 8 0 0  1 0 7 0 0  1 0 6 0 0  1 0 5 0 0  1 0 4 0 0  1 0 3 0 0  1 0 2 0 0
C a l  BC

R e  f e r e n c e s :

D a t a b a s e  u s e d

C a l i b r a t i o n  D a t a b a s e  
E d i t o r i a l  C o m  m e n t

S t u i v e r ,  M. ,  v a n  d e r  Pl i cht ,  H.,  1998 ,  R a d i o c a r b o n  4 0 ( 3 ) ,  p x i i - x i i i  
I N  T C A  L 9 8  R a d i o c a r b o n  A g e  C a l i b r a t i o n

S t u i v e r ,  M ., el.  a  I., 1 99 8 ,  R a d  i o c a r b o n  40  (3 ) ,  p  1 041 • 1 0 8 3  
M  at h e m  a t i c s
A S i m p l i f i e d  A p p r o a c h  t o  C a l i b r a t i n g  C 1 4  D a t e s

T a l m a ,  A.  S . ,  Voge l .  J. C. ,  1 993,  R a d i o c a r b o n  3 5 ( 2 ) ,  p 3 I 7 - 3 2 2

B e t a  A n a l y t i c  I n c .
4 9 8 5  S f v  ~ 4  C o u r t . M i a m i .  F l o r i d a  3 3 1 5 5  U S A  • T e l :  ( 3 0 5 )  6 6 ~  5 1 6 7 • F a x :  ( 3 0 5 )  6 6 3  0 9 6 4  • E - M a i l ,  b e t a @ r a d i o c a r h o n . c o m
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(B
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C A L I B R A T I O N  O F  R A D I O C A R B O N  A G E  T O  C A L E N D A R  Y E A R S

'  ( V a r i a b l e s :  C  1 3 / C  I 2  =  - 2 4 . 6 : i a b .  n i  u l t =  1 )

L a b o r a t o r y  Dumber :  B e t a - 1 8 3 4 1 6

C o n v e n t i o n a l  r a d i o c a r b o n  a g e :  1 2 2 3 0 ± 5 O  BP

2 S i g m a  c a l i b r a t e d  r e s u l t s :  C a l  B C 1 3 3 6 0  to 1 2 7 0 0  ( C a l  B P  1 5 3 1 0  t o  1 4 6 5 0 )  a n d
( 9 5 %  p r o b a b i l i t y )  C a l  B C 1 2 4 2 0  to 12 1 3 0  ( C a l  B P  1 4 3 7 0  t o  1 4 0 8 0 )  a n d

C a l  B C 1 1 9 5 0  to 1 1 9 2 0  ( C a l  B P  1 3 9 0 0  t o  1 3 8 7 0 )

I n t e r c e p t  d a t a

I n t e r c e p t  o f  r a d i o c a r b o n  a g e

w i t h  c a l i b r a t i o n  c u r v e :  C a l  B C  1 2 2 0 0  ( C a l  B P  1 4 1 5 0 )

1 S i g m  a  c a l i b r a t e d  r e s u l t s :  C a l  B C  1 3 3 2 0  t o  1 2 7 2 0  ( C a l  B P  1 5 2 7 0  t o  1 4 6 7 0 )  a n d

( 6 8 %  p r o b a b i l i t y )  C a l  B C  1 2 4 0 0  t o  1 2 1 5 0  ( C a l  B P  1 4 3 5 0  t o  1 4 1 0 0 )

1 2 2 3 0 1 5 0  B P W  o o d

1 225Q

12000
11 
I

1 3 2 0 0 1 3 0 0 0 1 2 8 0 0 1 2 8 0 0 1 2 4 0 0 1 2 2 0 0 12000
C a l  B C

1 3 6 0 0 1 3 4 Q 0
r

1 1 8 0 0

R e f e r e n c e s :

D a t a b a s e  u s e d

C a l i b r a t i o n  D a t a b a s e  
E d i t o r i a l  C o m  m  e n t

S t u i v e r ,  M. ,  v a n  d e r  Pl i c h t ,  / / . .  1 9 9 8 ,  R a d i o c a r b o n  4 0 0 ) ,  p x i i - x i i i  
US T C A  1 9 8  R a d i o c a r b o n  A g e  C a l i b r a t i o n

St u i v e r ,  M. ,  et .  al . ,  1 9 9 8 ,  R a d i o c a r b o n  4 0 0 ) .  p  104 1  - 1 0 8 3  
M  a t h e m  a  t i cs
A S i m p l i f i e d  A p p r o a c h  t o  C a l i b r a t i n g  C 1 4  D a t e s

T a l m a ,  A.  S. ,  Vo g e l ,  J. C. .  1 9 93 ,  R a d i o c a r b o n  3 5 ( 2 ) ,  p 3 1 ? - 3 2 2

B e t a  A n a l y t i c  I n c .
4 9 8 5  S W  ” 4 C o u r t ,  M i a m i ,  F l o r i d a  3  3 1 5 5  U S A  • T e l :  ( 3 0 5 )  6 6 ' '  5 1 6 ~  » F a x ?  0 0 5 )  6 6  3  0 9 6 4  • I - • M a i l :  he i cF dj  r a t l i n  c a r b o n . c u m
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BETA ANALYTIC INC.
D R. M .A. T A M E R S  a n d  M R. D .G . H O O D

U N IV ERSITY  BRA N CH  
4 8 8 5  S .W . 7 4  C O U R T  
MIAMI, F L O R ID A , U SA  3 3 1 5 5
PH; 305(667-518? FAX; 305/883-0964 
E-MAIL: ketasradiosarbon.com

REPORT OF RADIOCARBON DATING ANALYSES
M r .  M i c h a e l  S p e r a z z a  R e p o r t  D a t e :  1 0 / 2 4 / 2 0 0 3

U n i v e r s i t y  o f  M o n t a n a M a t e r i a l  R e c e i v e d :  10 / 1 5 / 2 0 0 3

S a m p l e  D a M e a s u r e d  

R a d i o c a r b o n  A g e

1 3 C / 1 2 C

R a t i o

C  n  i t i  n a l  

R a d i o c a r b o n  A g e { *

B eta  - 184123 N A  N A  2 8 8 0  */« 50 BP
S A M P L E : F L 0 3 I 5 K 4 4 4
A N A L Y S IS  : A M S -S ta n d a rd  d e liv e ry
M A T E R IA L /P R E T R E A T M E N T : (w o o d ): ac id /a ik a ii/ac id
2  S IG M A  C A L IB R A T IO N  : C a lB C  1210 t o  9 2 0  (C a l B P  3 1 6 0  to  2 8 7 0 )
C om m ent: the  o r ig in a l s a m p le  w as to o  sm a ll f o r a  I3 C /1 2 C  ra tio  m easu rem en t. H o w ev er, a  r a t io  in c lu d in g  b o th  n a tu ra l and  
lab o ra to ry  e ffe c ts  w as m e a su re d  d u r in g  the  14C d e tec tio n  to  d e riv e  a  C o n v e n tio n a l R a d io c a rb o n  A g e , su ita b le  fo r  a p p lic a b le  
ca len d a r ca lib ra tio n .

Dates are reported as RCYBP (radiocarbon years before present, 
“present’’ * 1950A.D.). By International convention, the modern 
reference standard was 95% of the C14 content of the National 
Bureau of Standards' Oxalic Acid & calculated using the Libby C14 
half life (5566 years). Quoted errors represent 1 standard deviation 
statistics (68% probability) & are based on combined measurements 
of the sample, background, and modern reference standards.

Measured C13/C12 ratios were calculated relative to the PDB*1 
international standard and the RCYBP ages were normalized to 
•25 per mil. if the ratio and age are accompanied by an (*), then the 
C13/C12 value was estimated, based on values typical of the 
material type. The quoted results are NOT calibrated to calendar 
years. Calibration to calendar years should be calculated using 
the Conventional C14 age.
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C A L I B R A T I O N  O F  R A D I O C A R B O N  A G E  T O  C A L E N D A R  Y E A R S

( V  a r i a b  l e s :  C  1 3 / C  1 2  =  - 2 5 : l a b . m  u l t  =  1 )

L a b o r a t o r y  n u m b e r :  B e t a - 1 8 4 1 2 3

C o n v e n t i o n a l  r a d i o c a r b o n  a g e :  2 8 8 0 ± 5 0  BP

2 S i g m a  c a l i b r a t e d  r e s u l t :  C a l  BC 1 2 1 0  to 9 2 0  ( C a l  B P  3 1 6 0  to 2 8 7 0 )
( 9 5 %  p r o b a b i l i t y )

I n t e r c e p t  d a t a  

I n t e r c e p t  o f  r a d i o c a r b o n  a g e

w i t h  c a l i b r a t i o n  c u r v e :  C a l  B C  1 0 3 0  ( C a l  B P  2 9 8 0 )

1 S i g m a  c a l i b r a t e d  r e s u l t :  C a l  B C  1 1 2 0  t o  9 9 0  ( C a l  B P  3 0 7 0  t o  2 9 4 0 )

( 6 8 %  p r o b a b i l i t y )

2 8 8 0 ± 5 0  B P  W o o d

3 0 0 0  -

1 2 5 0  1 2 0 0  1 1 5 0  1 1 0 0  1 0 5 0  1 0 0 0  9 5 0  9 0 0
C a l  B C

R e  f e r e n c e s :

D a t a b a s e  u s e d

C a l i b r a t i o n  D a t a b a s e  
E d i t o r i a l  C o m  m  e n t

S t u i v e r ,  M. ,  v a n  d e r  P l i c h t ,  H.,  1 9 9 8 ,  R a d i o c a r b o n  4 0 ( 3 ) ,  p x i i - x i i i  
I N  T C A  L 9 8  R a d i o c a r b o n  A g e  C a l i b r a t i o n

S t u i v e r ,  M. ,  et .  a!., 1 998 ,  R a d  i o c a r b o n  4 0 ( 3 ) ,  p  /  0 4 1  - !  0 8 3  
M  nth e m  a t i c s
A  S i m p l i f i e d  A p p r o a c h  t o  C a l i b r a t i n g  C I 4  D a t e s

T a l m a ,  A.  S. ,  Vo g e l ,  J. C. ,  1 9 9 3 .  R a d i o c a r b o n  3 5 ( 2 ) ,  p 3 1 7 - 3 2 2

B e t a  A n a l y t i c  I n c .
4 9 8 5  S W  ~ 4  C o u r t ,  M i a m i ,  F l o r i d a  3 3 1  5 5  ( I S A  • T e l :  ( 3 0 5 )  6 6 "  5 1 6 ~ • F a x :  ( 3 0 5 )  6 6 3  0 9 6 4  •  E - M a i l :  b e  f a @  r a d i o c a r b o n  . c o m
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Appendix B:

Figures and Tables from  Lund (1996)
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Figure from Lund (1996), page 8009.
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Appendix C

Core Description Sheets
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Appendix D:

Data Figures

In this appendix I have included figures of all data collected and/or calculated on the 

three cores discussed in this dissertation, FL-00-9G, FL-00-9P, and FL-02-9Gb. Figures 

are presented utilizing current dating models for the particular core. The digital data used 

to create the figures can all be found within Appendix F. Most o f the data is contained in 

a master spreadsheet created for each core called '{core /iawe)-Master-Calc.xls’. The 

files are located on Flathead CD #1, in a folder named ‘Data Master’ under each core 

data folder. Uncertainty at 2o is show gray bars.

FL-00-9G Data

Figure 59. Carbon/Nitrogen D a ta .................................................................................  220

Figure 60. Dating M o d el...............................................................................................  221

Figure 61. Grain Size / %Water D a ta ........................................................................... 223

Figure 62. Elemental D a ta .............................................................................................  224

FL-00-9P Data

Figure 63. Carbon/Nitrogen D a ta .................................................................................  231

Figure 64. Paleomagnetic Secular V ariation...............................................................  232

Figure 65. Geotek D a ta .................................................................................................  233

Figure 66. Grain Size / %Water D a ta ........................................................................... 234
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Figure 67. Gray Scale D a ta ............................................................................................  235

Figure 68. Elemental D a ta ............................................................................................... 236

Figure 69. Magnetic Susceptibility D a ta ........................................................................  243

Figure 70. Mineralogy D a ta ............................................................................................  244

Figure 71. X-radiographs................................................................................................. 248

FL-02-9Gb Data

Figure 72. Carbon/Nitrogen D a ta ................................................................................... 249

Figure 73. Dating M odel................................................................................................. 250

Figure 74. Grain Size / %Water D a ta ............................................................................  252
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I II III IV V

Figure 71 -  X-radiographs o f core 9P. Each of the 5 sections 
shown separately, large ticks on scales are at 1 Ocm intervals, small 
ticks are 1 cm.

248

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



<0

O

m

©
CO

o
o
o

CO

M

o

ID

M

CO

CO

o

o oM o
CO

o om
dS sja |eo

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Fi
gu

re
 

72 
- 

Co
re

 
FL

-0
0-

9G
b 

ca
rb

on
 

an
d 

ni
tro

ge
n 

da
ta

.



Fl
at

he
ad

 
La

ke
 

sit
e 

FL
02

-9
G

b

r -
CO CO CO CM

olO

10I ■M-
CDm

CO
CM
CM

S & Z t'

> ^ m
■

+ «$ a
♦  4  ■

a0"O
o
CM

.Q
CLO
CM

3o1-

1̂
CO
</)a

CO CM

(B/!Od) iziso

a
o3

Q
60
e)■
o3
Q
o

B
4)
a_o

'S
cd
Pi
0
ON1oo

I

Ph
CD
ChO

O

ro
<ous60

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

25
0



o
m-

sz

o

oco o om o
CD

o ooo o
0 5

o o o
CM

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Fi
gu

re
 

73 
(c

on
’t)

 - 
Co

re 
FL

-0
0-

9G
b 

Da
tin

g 
M

od
el

.



Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Fi
gu

re
 

74 
- 

Co
re 

FL
-0

0-
9G

b 
W

at
er

 a
nd

 
Gr

ain
 

Si
ze

 
D

at
a.



oo
I ?*  Q.

Q. O w O (0
§ °
CM

in
co ^  
CO E w o.
csi B  
N 0>
in 00

ooo
CM

S E5  Q.CM

O 1 
CM

OO
CM

CM
O 1= 
CM Q.
<0 Q. 
CM “

OO

COin(N

CM

E
CO a  

Q.
<D  '— ’ 

(A
* <
CM

Ooo
CM

g  *Eg  Q.
§ SY”

<
ooooo

o o
CM

o o
CD

o
00

o

d a  sja  ibo

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Fi
gu

re
 

75 
- 

Co
re

 
FL

-0
0-

9G
b 

El
em

en
ta

l 
D

at
a.



  g E
o.

cmS
CO „  

  CO —1

M

* E a a  o  '
§ *
CM

©oo
s ?
o a. o a o© <y 
CM LL Ooo
C O

C O
CM

CM
CM
CM E

« =
» o

CO
CM

CM ^  
o £ 
CM Q.

C M  O

iTi(N

00

oo
CO

o
C O

oo o
C M

° ° ?  
i"- a  

oto <3

d a  sja  ibo

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Fi
gu

re
 

75 
— 

Co
re 

FL
-0

0-
9G

b 
El

em
en

ta
l 

Da
ta 

(c
on

’t)
.



00
CM

^  C
"  I

Q.

©
CMh-

(0 Q.

© ^
<0
V)

CM

00

*" Eco Q. 
t -  Q.

?  Z
CM

o
CM

o E
00 Q.a

(0
s z

inin
CN

o
s?a

Q. 

O  C

o o
CM

o o
CO

ooo o

oo© _
£ ?o £■O © w © O)
oo

da -SJA 1*0

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Fi
gu

re
 

75 
- 

Co
re

 
FL

-0
0-

9G
b 

El
em

en
ta

l 
Da

ta 
(c

on
’t)

.



o oCM o oCO o
00

o

MCO
OOCs|

ECMQ.OaCM
<o>
T*
CM

O
CM
OoCMEoCOQ.a
oCM r—
ooo

CMCO
ooCM

ECMQ.
OQ.
CML.
co CO
CM
T“

lOCM
OCM
COET" a
o a

c
IDto
O

oo00
ooCOEaQ.oo T_

CO
ooCM
ooCO
ooin?a
o a.
o to
ooCO

VOin<N

da sja ibo

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Fi
gu

re
 

75 
- 

Co
re 

FL
-0

0-
9G

b 
El

em
en

ta
l 

Da
ta 

(c
on

’t)
.



(0

O
§ 5  0

+ E

i<3

o  jS

ooo

(N|W n  

C O  E© o s©
M

^  o>ir ^ s «
^  o co n c

© o  S

o

r-
(N

10o©
Lit (Q 
T f O

O coa;
IO 'ooI
HiCM
COo

CO

© N
o

o o
CM

o o
CO

o
CO

o

da SJA -|B0

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Fi
gu

re
 

75 
- 

Co
re 

FL
-0

0-
9G

b 
El

em
en

ta
l 

Da
ta 

(c
on

’t)
.



CM

O <D ~  O U- «

II
o
©

co iS  d  «  O 
«o» £
o
o

co
u>
in ^  
*o H _c5 

«  O 
^  CO ^

in
CO

CM
CO _  O — ^
d <  .2  ̂ o 

ECO

CO

o
0
o
CM

O - C
O K  COCM II ■? _  o
o < £
CO

o o o
CO

o
00

oo
CM

oo
o00 *-*
o ? -
CO (0

6  E

O
CM

00in<N

da sja ibo

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Fi
gu

re
 

75 
- 

Co
re 

FL
-0

0-
9G

b 
El

em
en

ta
l 

Da
ta 

(c
on

’t)
.



Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Fi
gu

re
 

75 
- 

Co
re 

FL
-0

0-
9G

b 
El

em
en

ta
l 

Da
ta 

(c
on

’t)
.



DESCRIPTION OF PLATES

Photographic plates provide a representative sampling of SEM images taken during 

qualitative analysis of sediments. A full set of the SEM images and EDS analyses can be 

found in Appendix F. Dr. Jeffery Stone, University of Nebraska-Lincoln performed all 

identifications of diatoms species or genera found on plates 1 and 2.

Plate 1: ................................................................................................................................

a) FL-03-16K-II-129 Photo 12, image of benthic, shallow water diatom Naviculoid,

possibly Anomoeoneis costata.

b) FL-03-16K-II-129 Photo 28, image of benthic, shallow water diatom Naviculoid,

possibly Anomoeoneis costata.

c) FL-03-16K-II-129 Photo 17, image of benthic, shallow water diatom

Campylodiscus, probably Campylodiscus hibernicus.

d) FL-03-16K-II-129 Photo 17-2, close up of Campylodiscus, probably

Campylodiscus hibernicus shown in image c.

e) FL-03-16K-II-129 Photo 16, image of benthic, shallow water diatom Cymatopleura

solea v. apiculata.

f) FL-03-16K-II-129 Photo 6, image of benthic, shallow water diatom Staurosira

construens v. venter.
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Plate 2:

a) FL-03-16K-II-129 Photo 15, image of benthic, shallow water diatom

Pseudostaurosirapseudoconstruens.

b) FL-03-16K-II-129 Photo 24, image of tychoplantic diatom Aulacoseira, probably

Aulacoseira distans.

c) FL-03-16K-II-129 Photo 22, image o f tychoplantic diatom Aulacoseira, possibly

Aulacoseira italica or Aulacoseira distans.

d) FL-03-16K-II-129 Photo 7, image of planktic, deeper water diatom Cyclotella,

probably Cyclotella ocellata.

e) FL-03-16K-II-129 Photo 2, image of planktic, deeper water diatom Cyclotella/ sp.

f) FL-03-16K-II-129 Photo 18, image of planktic, deeper water diatom Cyclotella

ocellata.

Plate 3: ...............................................................................................................................

a) FL-00-9P-I-2 Photo 6, image of detrital quartz with some clay plates. EDS

analysis of center of view shown in Figure 76.

b) FL-00-9P-III-30 Photo 1, image cluster of detrital illite plates. EDS analysis of

cluster shown in Figure 77.

c) FL-00-9P-III-30 Photo 5, field are image of sample showing quartz grain (middle)

surrounded by clays. EDS analysis of field view shown in Figure 78.

d) FL-00-9P-IV-10 Photo 3, image of detrital illite. EDS analysis of clay in center of

view shown in Figure 79.
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e) FL-00-9P-IV-10 Photo 6, image of detrital quartz with plates of detrital illite. EDS

analysis o f center o f view shown in Figure 80.

f) FL-00-9P-V-10B Photo 5, image o f detrital dolomite. EDS analysis of center of

view shown in Figure 81.

Plate 4: ...............................................................................................................................

a) FL-00-9P-V-120 Calcitel, image of detrital calcite grain with clay coating. EDS

analysis of grain shown in Figure 82.

b) FL-00-9P-V-120 Cal4, image of detrital calcite grain with clay coating. EDS

analysis o f grain shown in Figure 83.

c) FL-00-9P-V-120 Dolomite, image of detrital dolomite with coating o f clay. EDS

analysis o f grain shown in Figure 84.

d) FL-03-16K-II-145 Photo 1, image of Mt. Mazama tephra. EDS analysis of ash

grain in center of view shown in Figure 85.

e) FL-03-16K-II-145 Photo 8, image of Mt. Mazama tephra. EDS analysis of ash

grain in center of view shown in Figure 86.

f) FL-03-15K-V-161 Photo 1, image of detrital clays from glacial varve. EDS

analysis of field view shown in Figure 87.
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Plate 4
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Figure 76 -  EDS graph for sample FL-00-9P-II-2 Photo 6, plate 3a.
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Figure 77 -  EDS graph for sample FL-00-9P-III-30 Photo 1, plate 3b.
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Figure 78 -  EDS graph for sample FL-00-9P-III-30 Photo 5, plate 3c.
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Figure 79 -  EDS graph for sample FL-00-9P-IV-10 Photo 3, plate 3d.
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Figure 80 -  EDS graph for sample FL-00-9P-IV-10 Photo 6, plate 3e.
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Figure 81 -  EDS graph for sample FL-00-9P-V-10B Photo 5, plate 3f.
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Figure 83 -  EDS graph for sample FL-00-9P-V-120 Cal4, plate 4b.
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Figure 84 -  EDS graph for sample FL-00-9P-V-120 Dolomite, plate 4c.
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Figure 85 -  EDS graph for sample FL-03-16K-II-145 Photo 1, plate 4d.
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Appendix F:

Data CD -  Contents and Descriptions

The figures presented within this dissertation represent only a portion of the total data 

collected in the coarse o f this research. In the course o f my research a total of -4.25GB 

of data were collected in -2600 files. This makes printing all the data tables cost 

prohibitive and impracticable for use by future researchers. This Appendix includes two 

digital video discs (DVD) that contain all the data collected on Flathead Lake regardless 

if it was utilized in these chapters. The files contain both the raw and processed data. 

Most data files can be opened or imported into a spreadsheet program like Microsoft 

Excel. Other files are graphics that require programs such as Golden Software Grapher, 

Adobe Photoshop or Illustrator.

On Disc 1 are all core data is contained in folders organized by core number. Within the 

core folders are sub-folders for each of the proxy data group. The Data Master folder 

contains data summaries and/or files that compare multiple proxies. One spreadsheet file 

labeled ‘core number-Master’ or ‘core number-Master-Calculations’ contains the 

summary of all proxies for each interval analyzed and is the file that is linked to most of 

the graphic files.

On Disc 2 are all the piston core photos under folders for the coring year. One folder 

contains all the SEM and EDS images and data files. Another folder contains data 

generally related to Flathead Lake or the basin.
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