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Brian R. Bergman, Ph.D., September, 1998 Chemistry

A  N ovel M ethodology for Functionalizing H eterocycles U sing Electron D eficient 
Bonding to Triosm ium  Clusters (p 151)

Director: Edward Rosenberg

A new synthetic methodology for the addition of carbon-based nucleophiles to the 
carbocyclic ring o f  quinolines has been developed which is based on the electron deficient 
bonding o f the C(8 ) carbon and the protective coordination of the nitrogen atom to the metal core 
in the complexes Os3(CO)9(p3-Tl2-C9H5(R)N)(p-H)(35a, R=H; 35b, R =3-C 02CH3; 35c, R=3- 
NH2; 35d, R=4-CH3: 35e, R=4-C1; 35f, R=4-OCH3; 35g, R=4-NH2; 35h, R =4-C 02CH,; 35i, R=5- 
F: 35j. R=5-C1; 35k. R=5-Br, 351, R=5-NH2; 35m . R=6 -CH,; 35n, R=6-C1; 35o, R=6 -OCH3, 35p, 
R=6-C02CH3, 35q. R=6-NH2, 35r, R=6-OH). Compound 35a reacts with a wide range of 
carbanions (R U : R'=Me, "Bu, 'Bu, Bz, Ph, CH=CH2, C^CH^jCHj, CHzCN, (CH3)2CCN. - 
CHS(CH2)2S-; CH2C 0 2‘Bu, RMgBr, CH2CH=CH2) to give the nucleophilic addition products 
Os3(CO)q(|irTl3-C9H7(5-R, )N)((i-H)(37a-371), after quenching with trifluoracetic acid, in isolated 
yields of 25-86%. Substitution at the 3- or 4-position is well tolerated with 35b-35h giving the 
expected nucleophilic addition products Os3(CO)9(Mr'n '-QHef3 or 4-R)(5-R’)N)(p-H) (38b, R=3- 
COzCH,, R'=CH2C 0 2'Bu; 38c, R=3-NH2. R'=C(CH,)2CN; 38d R=4-CH3, R'=C(CH,)2CN; 3 8 e \  
R=4-C1, R^HzCCh'Bu; 38e, R=4-C1, R'=C(CH3)2CN; 38f R=4-OCH3, R’=CH2C 0 2'Bu; 38g, 
R=4-NH2, R'=C(CH3)2CN; 38h, R=4-C02CH3, R=C(CH3)2CN; 38i, R =4-C 02CH3,
R'=C(CH3)2CN). The 6-substituted derivatives 35m  and 35n give >95% o f the cu-diastereomer, 
(Os3(CO)9(P3-Tl3-C9H6(5-R’)(6-R)N)(n-H)(38n, R=C1, R'=C(CH3)2CN; 38m, R=CH3,
R’=C(CH3)2CN). The stereochemistry was verified by a solid state structure in the case of cis 
38m. The stereochemistry is preserved even in the case of less bulky carbanions (cis-38m', 
R=CH3 R’=CH3). In the case o f 38n, a second product is obtained Os3(CO)9(|j3-T|2-C9H5(6-C1)(5- 
C(CH3)2CN)N)(p-H)2 (39n) which is the result o f  protonation at the metal core and 
rearrangement of the carbocyclic ring. The solid state structure o f 39n is reported. The trans- 
diastereomer of the addition products 38m and 38m' is obtained when compound la  is reacted 
with RTUR^CfCH.O^N, CH3) and then quenched with (CH30 ) 2S 0 2. A solid state structure 
trans- 38m is reported. Acetic anhydride can also be used as the quenching electrophile for the 
intermediate anions generated from R'Li (R'=CH3), yielding trans- Os3(CO)9(p3-Ty-G)H6(6- 
CH3CO)(5-CH3)N)(p-H) (38z). Nucleophilic addition occurs across the 3-4 bond in the case of 
351-351 where the 5-position is blocked. The addition products, type 37 and 38 can be 
rearomatized by reaction with DBU/DDQ or by reaction of the intermediate anion with trityl 
cation or DDQ. The resulting rearomatized complexes can be cleanly cleaved from the cluster by 
reflux in acetonitrile under a CO atmosphere yielding the functionalized quinoline and Os3(CO)i2 
as the only two products. Unlike the Jt-bound metal arene complexes which undergo nucleophilic 
attack at the ring with heteroatom nucleophiles, the triosmium clusters coordinate these 
nucleophiles to the metal core, but at the ring with carbanions. This ampiphillic behavior could 
prove very useful. The structural features o f the compounds reported and the mechanistic 
implications o f the reported transformations are discussed and compared with the previously 
reported activation of aromatic systems towards nucleophiles by 7t-complexation.
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Chapter 1

Introduction

1.1 General Background for Transition Metal Arene Complexes

Transition metals are of increasing importance in chemistry as a means of 

activating organic molecules towards specific reagents. Transition metals have outer d- 

orbitals that are only partially filled, acting as donors or acceptors of electron density and 

enabling them to influence the electron distributions in the coordinated organic 

molecules. A related and equally important area of chemistry is the study of transition 

metals being coordinately attached to a ligand for use in asymmetric synthesis.1’2

The organic chemistry of benzene is dominated by electrophilic aromatic 

substitution reactions, but as a coordinated ligand benzene undergoes nucleophilic 

addition / substitution. This stark contrast in chemical behavior is a good example of the 

powerful influence coordination to a metal can have on the chemistry of an organic
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molecule. To better leam how these systems work, it is important to understand how the 

coordination mode of the ligand influences its reactivity.1'3

Interest in exploring the scope and selectivity of nucleophilic attack on aromatic 

systems to yield asymmetric stereoselective products became increasingly important with 

the development of pharmaceuticals and agrochemicals which require better methods for 

producing homochiral materials. This has in turn led the synthetic chemist to explore and 

invent new types of methodology using transition metals suitable for homochiral 

synthesis.

The first arene-metal complexes were prepared in the 1950's, and it was 

immediately recognized that the polarization (electron withdrawal) of aromatic it-electron 

density would promote addition of nucleophiles to the arene-ligand.4*3 In the early 1980's 

many groups built upon this knowledge and began to examine the potential role of arene- 

metal complexes as substrates for nucleophiles. 1

The reactivity of Ti6-arene ligands is summarized in Figure 1.1 which shows the 

general changes in arene reactivity that are observed when a metal (M=Cr, Mn, or Fe) is 

coordinated with the Tt-system. The most dramatic effect of metal coordination to an 

arene is the powerful withdrawal of electron density from the aromatic ring, much like a 

nitro substituent which is sigma bound to the ring. This factor is responsible for the

sig n ific a n t enhancem ent o f  acid ity o f  th e b e n z y lic  h yd rogen s in K -  b ound  T|6-

(aikylarene)-metal complex (Figure l .l) .6'7 Coordination of metals has been known for 

many years to reverse the normal reactivity of carbon K bonds, from being reactive

towards electrophiles to being reactive towards nucleophiles.1’8 Arene ligands show a
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3
dramatic effect of this reversed reactivity and this opened up new reaction Pathways for 

aromatic addition and substitution.

Figure 1.1 Effects of Metal Coordination on Tj6-bound tt-Arene Complexes.

1.2 Arene-Metai Complexes as Substrates for Nucleophiles

The nucleophilic attack (electrophilic reactivity) of an arene ^-coordinated to a 

transition metal has been developed by three distinct methods for coupling nucleophiles 

with aromatic rings: 1.) addition/oxidation (Path a. Scheme 1.1), 2.) addition/protonation 

(Path b. Scheme 1.1), 3.) substitution (Path c. Scheme l . l ) .1'39'14 Each method will be 

discussed in the following sections.

Reduced electron density

Enhanced
Acidity

Steric
Effect

Enhanced
Acidity
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Scheme 1.1

Nu

1

Nil

A ddition
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a.) oxidation

X=H

X
b.) protonation

X=H

No

M*

M*
4

M*
5

M = Cr. Fe, and Mn

lbstitution f t  y — Nu +
=F. a  \ = /

c.) substitution 
X

1.2.1 Nudeophilic Substitution on Metal Arene Complexes

Addition of reactive carbon nucleophiles to arene-metal complexes 1 produces a

stable intermediate T|^-cyclohexadienyl (complex 2) shown in Scheme 1.1.1-2 In 2 a new 

carbon-carbon bond has been formed which can be converted to a variety of products. 

One such product 3 (shown Scheme 1, Path a) can be formed by oxidation of 2 with a 

variety of oxidizing agents (I2, Ce™, CrVI) to induce the loss of the endo hydrogen and 

cleavage from the metal, resulting in nudeophilic substitution for the hydrogen.1~ l0-12 

The resulting formal replacement of a hydride by a carbanion. is referred to as 

addition/oxidation.1'10 This makes for a general substitution process which does not 

depend on the leaving group on the arene. Oxidation of the nudeophilic addition product 

is usually associated with cleavage from the metal for the chromium complexes.1'2
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1.2.2 Nudeophilic Addition /  Protonation on Metal Arene Complexes

Alternatively, after addition of the nucleophile, the T|^-cyclohexadienyl anionic 

complex 2 (Scheme 1.1) is highly electron rich and is susceptible to reactions with 

protons (and electrophiles discussed later in sections 1.7 and 1.8).1’2’15’17 Thus complex 2 

can be protonated with a strong acid to produce a labile t )4-2,4 cyclohexadiene complex 4 

which undergoes H migration (sigmatropic rearrangement) to give the more stable rj4-

1,3- cyclohexadiene isomer 5 affecting nudeophilic addition with reduction of one 

double bond (Path b. Scheme 1.1).‘“ The overall conversion amounts to the addition of 

R-H across the rc-bond of the arene and is referred to as addition/protonation.1 ~ 14

1.2.3 Nudeophilic Substitution on Metal Arene Complexes

If an electronegative atom is present in the ipso-position, elimination of the 

heteroatom (X) leads to nudeophilic substitution (Path c, Scheme l.l).2 Nudeophilic 

substitution is not commonly used in organic synthesis because of the necessity of 

introducing and then removing an activating group.1 ~4J0U With these organometallic 

arene complexes, the activating group (metal moiety) can be easily detached resulting in 

nudeophilic substitution. The smooth replacement of a heteroatom (halide) from arene 

ligands requires reversible addition of the nucleophiles, since the kinetic site of the 

addition is usually at a position bearing a hydrogen substituent for steric reasons (Scheme 

1.2, Path k,).u2
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Scheme 1.2

i

M

+  Nu-

Nu

1
Nu

6

The nudeophilic substitution for halogen is a somewhat limited process where the 

relative rates of each step depend on the nature of the metal and the nucleophile.2 More 

reactive nucleophiles and more reactive complexes disfavor equilibration (k /» k .i) and 

the reaction can stop with the formation of the cyclohexadienyl intermediate.2 Very 

reactive nucleophiles add to the substituted position, and then slowly isomerize to the 

/proposition from which loss of halide can occur.1-2 Equilibration leads through to the 

substitution product, as the nucleophile migrates about the arene ligand, then loss of the 

halide occurs consistent with classical nudeophilic aromatic substitution for halogens in 

electron-deficient halorenes.1'2

1.3 Effects of Metal Complexation on Arenes

There are three (7t-bound) metal-arene complexes that have played significant
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roles in organic synthetic methodology (Figure 1.2): neutral T|6-arene-Cr(CO)3  7 l’Z4‘36~38, 

the isolectronic cationic rj6 -arene-Mn+(CO) 3  8 M'9'39, and the cationic (r|6 -arene)( t j6- 

cyclopentadienyl) Fe(H) 9 complexes and their ruthenium analogs. M ’9 12 The overall 

order of reactivity for electron-deficient arenes is (arene)(CO)3Mn+ > 2 ,4 -(N0 2 )Q H 3Cl > 

(arene)CpFe+ > (NOiK^fiiCl > (areneXCObCr. 2 ' 4 1 8  

Figure 1.2 Common Metal Arene Complexes

Fe+X‘
I
L 
9

L = C5 H5

There are two general methods for formation of these arene-metal complexes: 1.) 

direct thermal displacement of ligands; 2.) Lewis acid-promoted attachment of the arene 

to the metal.1" The simplest is direct thermal replacement of other ligands on the metal, 

and is a process that is carried out very efficiently with chromium complexes 7  under 

mild, low temperature conditions.1" The Lewis acid-promoted attachment of arene rings 

to metals is the general preparation for cationic arene metal complexes ( 8  and 9 ).

1.3.1 Preparation of Arene-Cr(CO)3Metal Complexes

The arene Cr(CO)3  complexes are formed by simple displacement of neutral 

ligands (L = CO. MeCN, NH3 , Py, etc.) from Cr(CO)3L3 by the arene (Equation l . l ) .1"  

This process has been very useful for preparation of many rj6-arene Cr(CO) 3  complexes

OC
CO OC CO

CO

8
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with a variety of substituents on the ring. 1-2*5 The complexes are somewhat sensitive to 

air while in solution, but crystalline solids can be stored with out special precautions. 

However, even mild oxidation will detach the arene by oxidizing the metal. 2  

Equation 1.1

R

+  CrfCOljLj

L=CO. MeCN, NH3. Py. etc.

1.3.2 Preparation of (Arene)-FeCp+ Complexes

Mild and general syntheses of cationic iron and manganese complexes have only 

recently been possible, explaining why the development of complexes 9 as synthetic 

intermediates has progressed less far. 2 The most common reactions for preparation for 

the arene-FeCp cationic complex 9 involves the AlC^-catalyzed exchange of one of the 

Cp groups on the ferrocene for the arene ligand (Equation 1.2) . “ 9 1 9 ' 22 This variation of 

the Fischer-Hafner method employs a Lewis acid such as AICI3 with a reducing agent 

such as aluminum metal, and involves the reduction of the transition metal during the 

process. 1' 2 A difficulty with this method is that certain functional groups on the arene 

ring will undergo serious side reactions. 2 These complexes are very air and heat stable, 

but there are few methods of removing the arene from iron, besides the pyrolysis at > 

200°C. or the use of powerful oxidizing agents. 2 This is also the case for their ruthenium 

analogs.
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Equation 1.2

1.3.3 Preparation of (Arene)-Mn(CO)3+ Complexes

A recent mild procedure has made the [(arene)Mn(CO)3]+ 8  complexes available 

with a variety of substitutions on the arenes. 2-7-9 Direct displacement of CO from the 

perchlorate salts of [Mn+(CO)3(acetone>3 ] or Mn(CO>6 with the arene in dichloromethane 

at reflux leads to the precipitation of 8  [(arene )-Mn+(COb] as the perchlorate salt 

(Equation 1.3) . 2 These conditions are milder than the previous AJCb-promoted 

procedure mentioned earlier (Section 1.3.2). These complexes are air stable and very 

reactive towards nucleophiles, but again like the iron complexes removing the arene from 

the manganese requires powerful oxidizing agents such as the Jones Reagent [Cr V I] . “ 23

Equation 13

Mn(CO)3 (acetone)3+

C1CV
25°C

11
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1.4 Nudeophilic Reactivity of T|6>(Benzene)>Cr(CO)3 Complexes

While aromatic rings are known to form stable complexes with almost every 

transition metal, 1 the Ti6 -arene-chromium tricarbonyl species have been studied in detail 

for development of practical applications in organic synthesis especially in the area of 

substituted arenes where the regioselectivity becomes important and is obtainable in high 

yields.'

Equation 1.4

OCHi

NaOH

OC
CO

OC
CO

10 11

Isolation of the first halo-benzene complex 10 (T|6 -chlorobenzene) chromium 

tricarbonyl (0 ). allowed a test for a direct analogue of classical SnAt reactivity. ‘ -2 - 11-24 

The activating effect of the Cr(COb unit is comparable with a p-nitro-substituent, and it 

was shown that complex 1 0  undergoes nudeophilic substitution by methoxide ion at 

roughly the same rate as p-nitrochlorobenzene (Equation 1.4) . 1-24

For benzene-Cr(CO)3 7, an extensive series of carbanions have been tested and 

generally fall into one of three groups: A.) unreactive, B.) successful, and C.) metalation 

(Table 1.1, and Scheme 1.1) . 1-2 The unreactive carbanions (group A) consisting of
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Grignards, organocuprates, and ketone enolates fail to give conversion to 2 (the anionic 

cyclohexadienyl-Cr(CO) 3  complex). Also included in this group A are heteroatom anions 

such as alkoxide and amines. The successful (group B) anions are formed from carbon 

acids with pKa >20. ' 2 Proton abstraction (or metalation) is the primary reaction with 

carbanions of group C (discussed later in Section 1.7) . 1’2 *11 

Scheme 1 J

CrtCOlj CrtCO lj

Table 1.1 Reactivity of carbanions with (RLi) towards ri6-(benzene) Cr(CO)3.

A.) U n re ac tiv e B .) Successfu l C .) M e ta la tio n

I. L iC H (C O ;M e): 7 . L iCH 2C 0 2'B u 18. Bu”Li

2. Li C H iC O B u1 8. L iC H jC N 19. MeLi

3. M eM gB r 9 . K CH 2C O B u' 20. BulLi

4. B u 'M gB r 10. L iC H (C N )(O R )

5. M eiC uL i 11. L iC H jSPh

6. LiCfCN K PhK O R) 12. 2-L i-1,3-dithiane

13. L iC H =C H 2

14. LiPh

15. LiC=C R

16. L iC H 2C H = C H 2

17. L iC (M e)3
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1-5 Nudeophilic Substitution with Heteroatom Nucleophiles

The cationic arene-Mn(CO)3  complexes are the most reactive of the three 

common arene-metal complexes, and easily undergoe nudeophilic substitution for halide 

with alkoxy, phenoxy, thiolate, amine or azide (Equation 1.5), unlike the chromium 

complexes. 1' 3'7 '9 

Equation 1.5

The potential for the (halobenzene)Fe-Cp cationic complex 14 to undergo 

nudeophilic substitution is demonstrated in the two-stage addition/substitution process 

(Equation 1.6). In the first stage (addition) the nucleophile is added to give the neutral 

intermediate 15 (spectroscopically characterized), followed by the second stage 

(elimination of the chloride) resulting in 16. This process is successful with a variety of 

nitrogen, oxygen, and sulfur nucleophiles. 1' 3 ' 25 

Equation 1.6

12
N u- =  A lkoxy, phenoxy, th io late . am ine, o r azide

13

ci

Nu
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1.6 Regioselective Nudeophilic Addition on Metal-Arene Complexes

Substituted arenes generally bear more than one hydrogen substituent which can 

be the kinetic site of attack by the nucleophile. 2 This leads to an important question. Can 

regioselectivity be obtained and what factors influence the site of the attack? This 

question will be briefly addressed in the following sections 1 .6 . 1  and 1 .6 . 2  for substituted 

benzene-(Cr(CO)?) 17 complexes and indole-Cr(CO)3  complexes 18.1~ 26

1.6.1 Regioselectivity on T)6-<Benzene)-Cr(CO)3 Complexes

Regioselective nudeophilic addition to substituted arene systems has been the 

subject of numerous studies. 2 Substituents attached by a-bonds to the arene ligand are 

the primary influence on site selectivity.1"  Correlations can be made to predict 

regioselectivity with a modest degree of accuracy. 2 For example, with arenes bearing a 

single resonance donor substituent (NRi, OMe, and F) the addition is strongly preferred 

at the meta position with small amounts of ortho substitution (0-10%) (Equation 

1.7) . 1 " 2 7 " 8 

Equation 1.7

X 

>

Cr(CO ) 3

X X
1

X1 R
-s£-(yf *

—^ ^ R

0 - 1 0 % 90-100%
R

X = 'OR, NR2. F 0 %
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However, the selectivity is more complicated with a methyl or chloro-substituent. 

In this case the meta accounts for a significant percentage, but ortho substitution can also 

account for 50-70% of the mixture in some cases. 1 •2 ’2 7 *2 8

1.6.2 Regioselectivity of (Indole)-Cr(CO>3 Complexes 18

The (indole )-Cr(CO) 3 complex 18 is particulary interesting because the Cr(CO) 3 

unit selectively activates the six-membered carbocylic ring, while in free indole the five- 

membered heterocyclic ring dominates the reactivity towards nucleophiles. 2*2 6 '2 9 '30  The 

selectivity in the addition to the indole-Cr(CO) 3 complexes shows a preference for 

addition at C-4 and C-7 (indole numbering Equation 1.8 ) . 2*2 6 *3 0  

Equation 1.8

(OC)3Cr-

4 R‘

| 1
i.) Li-R2

1 —  I 7
N ii.) I2

7 \
Y

18

Table 1.2 Regioselective addition of (indole)-Cr(CO)3, Ratio of Products

Substituents Ratio of products A : B (%)

1.) R2 =C(Me)2 CN. R l=H, Y=Me 99:1

2.) R-=C(Me)2CN, R=CH 2TMS 17:83

3.) R"=C(Me)2 CN. r '= C H 2TMS, 

Y=SiBu‘(Me) 2

95:5
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The selectivity can be somewhat controlled by steric bulkiness of the substituents 

at C-3 and N-l, and the anion. 2 *2 6 3 0  In Equation 1.8, (Example 1, Table 1.2), with a 

hydrogen substituent at C-3 and attack with a tertiary carbanion. leads to selective C-4 

substitution. With a trimethylsilylmethyl substituent at C-3 (Example 2, Table 1.2), the 

addition is preferred at C-7. However, even with a trimethylsilylmethyl substituent at C- 

3, a sufficiently large N-protecting group can disfavor addition at C-7 (Example 3, Table 

1 .2 1.2*26

1.7 Ring Lithiation on Arene-Cr(CO)3 complexes

One strong effect of transition metal coordination as mentioned earlier is the 

enhanced acidity of the ring protons, which allows direct proton abstraction from an 

arene ligand, or lithium-halogen exchange to give an arylithium derivative coordinated to 

the metal. The first examples of metalation of arene ligands were reported in 1968, and 

the first examples with Cr(CO) 3 appeared shortly there after. 2’3 1 3 2  

Scheme 1.4

R

+

CrfCOb

7

( 1.)

R

(2 .) OC—Cr 
OC

19

20
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There are three electrophilic sites in [CrfCO^QHe)] 7 as shown in (Scheme 1.3):

1.) the aromatic ring, 2.) attack at carbonyl on the chromium, and finally 3.) metalation 

by attacking the ring protons.2 Most common nucleophiles or bases will add to the ring 

(via nudeophilic addition) as shown in Path 1, although a few organolithium reagents are 

known to react with the CO ligand (Path 2).217-33-34 Selective proton abstraction requires 

high kinetic basicity and low nudeophilic reactivity, this can be accomplished in 

[Cr(CO)3(C6H6)J 7 with lithium diisopropylamide.2'35 This lithiated intermediate complex 

20 can be trapped with an electrophile to provide a new substituted arene complex 21 

(Equation 1.9). There a only a few examples where this process has been shown to be 

synthetically useful.2 

Equation 1.9

LDA

21

In general for q 6-arene-metal complexes quenching with electrophiles other than 

protons leads primarily to electrophilic alkylation of the carbanion owing to the 

reversibility of the nudeophilic addition.2

1.8 Stereoselective Carbon-Carbon Bond Formation to T|6-C«H6 -Cr(CO ) 3

Reactions that transform benzene and substituted benzenes into functionalized
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dihydrobenzenes with complete regio- and stereoselective C-C bond formation are 

scarce. 15 However, when the arene is complexed to the electrophilic CrfCOb group, the 

arenes can be transformed stereospecifically into trans- disubstituted cyclohexadienes 

(Equation 1.10) . 2' 1 5 1 6  This straightforward procedure is carried out by addition of a 

carbanion followed by reaction with carbon based electrophiles (Equation 1.10) yielding 

trans- disubstituted cyclohexadienes. Addition of carbon substituents stereoseiectively 

across an arene double bond is of great interest to organic chemists’. 15' 16 

Equation 1.10

R

H

Cr(CO) 3

RLi
V

R'Br

■Cr(CO) 3

2

trans

In Equation 1.10, alkyl, vinyl, and aryllthium reagents react with t |6 -arene- 

chromiun tricarbonyl complex (7), the exo-nucleophilic addition results in the anionic 

cylcohexadienyl complex 2 previous discussed. 15' 16 Next, addition of an electrophile 

such as primary alkyl, allyl, and benzyl bromides at the carbonyl on the metal from the 

endo- direction resulted in direct reductive elimination yielding the rrans-disubstituted 

cyclohexadiene. 1 5 1 6  Incorporation of CO in this sequence depends on the nature of the 

arene and the migratory aptitude of R’. 1 5 1 6
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Equation 1.11

R

trans

R

H

(alkyl)
R 'B r

- C r tC O )3

2

22 23

In some cases with alkyl halides the electrophile adds to a CO ligand (CO insertion) 

resulting in a acyl complex 22, which upon warming the acyl complex to 25°C brings 

about a /ranj-disubstituted acylcyclohexadiene (Equation 1 . 1 1 ) . 1 1 5 -1 6

1.9 Asymmetric Synthesis Using Homochiral o-Anisa!dehyde-Cr(CO ) 3 as a

Chiral Auxiliary

orr/io-Anisaldehyde chromium tricarbonyl complexes are chiral, and nudeophilic 

addition to the aldehyde carbonyl via Grignard reagents occurs completely 

stereoselectively to give, following decomplexation, homo a-substituted o- 

methoxybenzyl alcohol's result.4 0 -4 5  As shown in Equation 1.12, addition of methyl 

magnesium iodide to (S)-(+)-o-anisaldehyde chromium tricarbonyl 24 at -78°C gives 

quantitatively (S,S)-(-)-o-methoxy-l-phenethanol chromium tricarbonyl 2 5 43 

Decomplexation gave (SM-)-o-methoxy-1 -phenyi-ethanol whose absolute configuration
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Equation 1.12

O C H 3 ,O C H 3 ,OCH3
o Me

M eM gl

H

Oo. E t; Q 
hvH

C rtC O h  

24 (S H + )

C ifC O )3 

25 (S ,S M -)

(S)-(-)

was established via !H NMR, relative to the other known (S)-(+) isomer. This 

methodology has been extended to included cyclizaticn reactions producing o-aryl- 

tetrahydropyrans. In this application the metal acts as a steric blocking group rather than 

as a activator.
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Chapter 2

The Synthesis of Electron Deficient Quinoline 

Triosmium Clusters

2.1 Introduction and Background of Quinolines Complexed to Transition Metals

As previously discussed (Chapter 1) one can see that transition metal activated 

nudeophilic addition and substitution reactions of Jt-bound arenes have proven to be an 

extremely useful addition to the organic chemists’ arsenal for functionalizing arenes, 

cyclizations, and asymmetric synthesis. 1 3  Recently, this methodology has been extended 

to include bicyclic arenes, heterocycles, 4  and indoles, 3-5 with nudeophilic addition to the 

coordinated ring. However, one notable substrate missing from this group for 

nudeophilic activation by transition metals is the quinoline family. One explanation for 

this is that the quinoline prefers r\'-N coordination over x\6 coordination to the 

carbocyclic ring, due to the greater basicity of quinolines (from having the lone electron 

pair on the nitrogen exocyclic to the ring) . 6 There are only a few reported Tt-T)6 arene 

complexes of quinoline, one such example 27 is shown in Equation 2.1.
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Equation 2.1

:,/Nc h 3 MeCNf | 'NCMe MeC 
NCMe

2*

MezCO Rh

NCMe

C 2
CH,27

26
In this example 2-methyIquinoline is coordinated to [Ti5 -CpRh(NCMe)3]2+ to form a 

new T)'-nitrogen bound complex 27 [T|5 -CpRh-T| 1 -(C|oHgN]2", which undergoes a thermal 

rearrangement when heated in acetone resulting in complex 27 with the rhodium t j6 

coordinated to the carbocyclic ring. The overall yield is too low to study its reactivity 

towards nucleophiles. However, transition metal activation of quinoline towards

nudeophilic addition and substitution has been studied for the q -N complexes (as 

demonstrated in 28 Equation 2.2), showing selective nudeophilic addition to the 

heterocyclic ring of the quinoline as is the case for free quinolines. 7 

Equation 2.2

O N ' T  P P h ,

T H F  
-100  °C

ON'- |  -PPhj 
. N ,

29
Major Minor

The chiral rhenium Lewis acid [(q5-C5H5 )Re(NO)(PPh3 )+(THF)] activates quinoline 

forming complex 28 [(f|5-C5H5)Re(NO)(PPh3)-(NC9 H7 )]+ towards diastereoselective
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nudeophilic addition at C-2 (Equation 2.2). The major product 29 is obtained with >92% 

diastereoselectivity, resulting from steric crowding of the bulky triphenylphosphines as 

shown in the stereoview of complex 28 (Scheme 2.1).

Scheme 2.1

28

The use of polymetallic complexes containing organic ligands in unusual bonding 

modes has shed considerable light on how a given organic ligand can interact with a 

polymetallic site on a metal surface.14 The use of polymetallic complexes leads to the 

possibility of multi-site coordination to the ligand. In some cases one metal can 

coordinate or protect one site, while the others can activate the complex by forming an 

electron deficient bond. An earlier example showing this involves the reaction of an 

unusual example of a trimetallic cluster containing a terminal halide (Equation 2.3) 

Os3(CO)9 (p-H)2(|!-Ti2-C=N(CH2 )3 )Br 30 with diphenylmercury under a CO atmosphere, 

which yielded Os3(CO)io(p-ri2-C=N(CH2)3(H-Tl1-C6H5) 31. Thermolysis of 31 at 100°C 

leads to rapid decarbonylation and formation of one major product Os3(CO)g(p-q2- 

C=N(CH2)3)(|i-Tl1 rr^-QHs) 32, making a unique example of a new ji-bonding mode for 

the phenyl ligand. Several other examples of trimetallic clusters containing a Pi-T)1-
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benzene interactions where the benzene ring is part of a more complex ligand system 

have been reported.14 

Equation 2.3

— — N—O
O s'

31

+  Hg(C6H ,):
Benzene 

CO. 50 "C

Os.

7°\\
•Os.

31b

— O
Os Os'

31a

O s '"  +  Hg + C « H 5 H g B r+ H 2

Heat

This multi-metal coordination could be extended to include the quinoline ligand. 

In this case, the use of polymetallic binding holds out the possibility of multisite 

interactions which can alter the molecules reactivity (Scheme 2.2).

Scheme 2.2

M M

The reaction of quinoline with M3(CO)i2 (M=Ru, Os) at elevated temperatures

(130-150°C) has been previously examined and yields complexes of the type 

M3(CO)10(p-Ti2-C9H6N )(^H ) in which the C(2) C-H bond has oxidatively added to the
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cluster, coordinating exclusively at the heterocyclic ring via coordination of C(2) and the

occur involves a dissociation of a single CO from the metal at elevated temperatures, to 

open a single coordination site, followed by coordination of the nitrogen lone pair, and 

Scheme 2.3

rearrangement to an r|2-C=N complex, dissociation of a second CO and finally C(2)-H

unreactive towards hydride donors.15

We have recently studied the reactions of quinoline (and substituted quinolines) 

with the lightly stabilized cluster Os3(CO)io(CH3CN) 2  at ambient temperatures resulting 

in the major product Os3(CO)l0(li-Tl2-C9 H6N)(jA-H) 34 where the nitrogen lone pair and 

the C(8) carbon hydrogen bond has been oxidatively added to the cluster. Minor amounts 

of the previously reported isomeric compound Os3(CO)io(H-Tl2-C9 H6N)(fi-H) 33a were 

also formed. Decarbonylation of 34 thermally or photochemical I y gives the novel 

electron deficient (46 e'system) deep green complexes Os3(CO)9 (p.3- q 2-C9 H6 N)(p.-H) 

35a-r. The quinoline ring is bound to the cluster by coordination of the nitrogen lone 

pair and a three center two electron bond with C(8). Studies with ‘H NMR showed that

nitrogen lone pair (Scheme 2.3).15-16 The mechanism by which this reaction is thought to

/ | \
M3(CO)12

M
130-150°C

33a M=Os
33b M=Ru

bond cleavage.15-16 These complexes are formed in very low yields and were found to be
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the proton on C(5) of these structures 35a-h. 35m-r all show significant downfield shifts 

(0.8 to 1.2 ppm) relative to structures 34.

These electron deficient quinoline complexes are shown to undergo phosphine, 

CO. and H2 addition to the metal which proceeds reversibly (for CO) under moderate 

conditions, analogous to other 46e- trimetallic complexes (discussed later in Chapter 4).8'

ii

We recently studied the reactivity of this family of electron deficient a-p3- T]2 

complexes of quinoline 35a which undergo regioselective nucleophilic addition of 

hydride and a wide range of carbanions at the 5-position (Scheme 2.4).811 

Scheme 2.4

Regioselective Nucleophilic attack

3 5 a

The nucleophilic attack we observed at the 5-position of the carbocyclic ring is 

unprecedented. In quinolines (or V-N coordinated) the normal site of electrophilic attack 

is the 5- and 8- positions, while nucleophilic attack is usually at the 2- or the 4- position if 

the former is blocked (quinoline numbering).711 There has previously been reported
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nucleophilic attack on " a  . k vinyl" complexes of triosmium clusters;7 however, the 

regioselective nucleophilic attack at the 5- position that we have observed is 

unprecedented in complexes of aromatic nitrogen heterocycles which are not 

7t-complexed to the metal center and is completely unique for the quinoline system.7

A discussion of the results of a new methodology for the addition of carbon based 

nucleophiles to the carbocylic ring will follow, which is based on the electron deficient 

bonding of C(8) carbon and the protective coordination of the nitrogen atom to the metal 

core. In light of the importance of the quinoline ring system in drug design and 

development,12 as agonists for neurotransmitters molecules.12 and as intermediates in 

natural product syntheses13 these results represent a potentially useful synthetic 

methodology not available via complexation by mono-metallic species. The structural 

features of the compounds reported and the mechanistic implications of the reported 

transformations are discussed and compared with the previously reported activation of 

aromatic systems (Chapter 1). First however, we will discuss the scope of the synthesis 

of these electron deficient triosmium clusters.

2.2 Results and Discussion

2.2.1 The Synthesis of Electron Deficient Monosubstituted Analogs of 35a

(Os3 (CO)9 )(p3 -Tl2*C,H6 N)(p-H)

The synthesis of mono-substituted quinoline analogs of 35 opens the possibility 

for stereochemically controlled funtionalization of the quinoline systems, after addition 

of the appropriate nucleophile. In cases with attractive functional groups on C(6) or C(4) 

adjacent to the nucleophilic site, it is possible to construct tricyclic systems.
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The synthesis of these electron deficient complexes can be extended to a wide 

range of quinolines substituted in the 3, 4. 5. and 6 - positions (Scheme 2.5) in moderate 

to good yields (Table 2.1). Substitution in the 2 or 7- positions, however, does not result 

in formation of the decacarbonyl precursors to complexes of structural type 3 5 a, 

presumably due to steric crowding of the incipient coordination sites at the 2 and 8 - 

positions. Complexes 35a-r are prepared by the reaction of quinoline (and substituted 

quinolines) with the lightly stabilized cluster 32 [Os3(CO)i0(CH3CN)2] at ambient 

temperatures resulting in the major product 34 [(Os3(CO)i0)(|i-Ti2-C9 H6 N)(p-H)] yellow 

in color, where the nitrogen lone pair and C(8) carbon-hydrogen bond has been 

oxidatively added to the cluster.

Scheme 2.5

ic
(CH3)3NO J  |

c h 3c n

25 OC

OsrfCO),*

Thermolysis

Photolysis
70 - 80% 
35a-r

80 - 85%
t l ' I U I

< 10%
33a-r
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Table 2.1 Yields of Monosubstituted Electron Deficient Quinoline Triosmium

Clusters

Compound Substituent Yield (%)

35a H 68

35b 3-COiCHj 59

35c 3-NH2 50-60

35d 4-CH3 72

35e 4-CI 76

35f 4 -OCH3 69

35g 4-NH, 72

35h 4 -CO2CH3 40

35i 5-F 70

35j 5-C1 70

35k 5-Br 83

351 5 -NH2 82

35m 6 -CH3 84

35n 6-C1 74

35o 6 -OCH3 56

35p 6 -CO2CH3 61

35q 6 -NH2 50-60

35r 6 -OH 43
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Minor amounts of the previously reported isomeric compound [(Os3(CO)io)(M-TT- 

CgH6 N)(p-H)] 33a were also formed. 17 Decarbonylation of 34 (by photochemical or 

thermal dissociation) gives the novel 46-electron deep green complexes [(Os3(CO)io)(p3- 

Tr-C9 H6N)(p-H)] 35a-r.

The quinoline rings in 35a-r are bound to the cluster by coordination of the 

nitrogen lone pair and a three center - two electron bond with carbon C(8 ). A solid state 

structure of 35n [(Os3(CO)i0 )(p3-q 2-G)H5(6 -Cl)NX|i-H)] (the 6 -chloro analogue of 35a) 

is shown in Figure 2.1 with the selected bond lengths and angles in Table 2.2. The bond 

lengths given in Table 2.2 indicate that the aromatic nature of the carbocyclic ring 

remains unperturbed making 35n and its analogues unique examples of an electron 

deficient species containing a pj-heterocyclic aromatic ligand.

The structure of 35n consists of a OS3 triangle with three approximately equal Os- 

Os bonds (Table 2.2). The quinoline ligand sits perpendicular to the metal triangle, and 

Os(l)-C(8 ) and Os(3)-C(8) bonds are almost symmetrical suggesting a three center-two 

electron bond with carbon C(8 ).

In order to assess the impact of an electron donating group on the coordination 

chemistry observed for 35a, we undertook the synthesis of the 3-,5- and 6 - amino analogs 

of 35a. The synthesis of these complexes proceeded in a straightforward manner as 

shown in Scheme 2.5. Significantly, the 5-amino derivative, Os3(CO)9 (|X3-rj2-5 - 

NH2C9 H5 )(|i-H) (351) formed directly, at ambient temperatures, without requiring thermal 

or photochemical decarbonylation (Equation 2.4) . 1 3

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



33
Figure 2.1 Solid State Structure for 35n [(Os3(CO)9)(h3-ti2-C9H5(6 -CI)N)(h-H)] 

Showing the Position for the Hydride.

0s(3) CI23)

CC321

0(32)0 (22 )
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Table 2.2 Selected Bond Distances (A) and Angles (°) for (35n) [(Os3(CO)9)(fi3- 

ti2-C,H5(6.CI)N)(h-H)]

Distances

Os( 1 )-Os(2) 2.75(10) C( 1 )-N 1.30(1)

Os(2)-Os(3) 2.78(10) C(2)-C(l) 1.41(2)

Os(3)-Os(l) 2.77(10) C(3)-C(2) 1.36(2)

Os(l)-C(8 ) 2.24(2) C(4)-C(3) 1.41(2)

Os(2)-N 2.18(12) C(5)-C(4) 1.39(2)

Os(3)-C(8) 2.32(2) C(6)-C(5) 1.34(2)

C(7)-C(6) 1.39(2) C(8)-C(7) 1.36(2)

C(4)-C(9) 1.42(2) N-C(9) 1.35(2)

C(8)-C(9) 1.44(2) C-Ob 1.15(2)

Os-COb 1 .8 8 (2 )

Angles

Os( 1 )-Os(2)-Os(3) 60.04(3) C(7)-C(8)-C(9) 115.7(3)

Os(l)-Os(3)-Os(2) 59.41(3) C(8)-Os(l)-Os(3) 53.8(5)

Os(2)-Os(l)-Os(3) 60.55(3) C(8)-Os(3)-Os(2) 77.1(3)

Os( l)-C(8)-Os(3) 74.90(3) C(8)-Os(3)-Os(l) 51.3 (3)

N(l)-Os(2)Os(3) 83.70(2) Os-C-Ob 177(3)

a Numbers in parentheses are average standard deviations. 

b Average values.
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Equation 2.4

NH-> NH-i

Os i(CO)10(CH3CN>; +

351

This undoubtedly reflects the impact of the strong 7t-electron donor in a position 

para- to the incipient three center-two electron band (Scheme 2.6). The 3- and 6 - amino 

Scheme 2.6

derivatives 35c and 35q did require the usual decarbonylation procedure (Equation 2.5 

and 2.6). In all of these reactions (Equations 2.4-2.6) no detecTable competition for 

coordination of the quinoline nitrogen by the aniline amino groups is seen but the yields 

of 35c and 35q were significantly lower than for 351 and 35a (Table 2.1). This is nicely 

explained by the two resonance structures that are formed as shown in Scheme 2.6.

NH-> &H2

351 351
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Equation 2.5

Os j(CO)|o(CH}CN)2
/?

N H i

NH2 >

 ► —O s^ —— O s-
25 °C / \ | / l  

Os’ hv or A

Equation 2.6

■ w .  ''90 « "Xo
v /  n v  or a  • m

/ K  O s
I '  p

35q

In the case of 3-carboxy quinoline, rp-N-C(8 ) is realized but further reaction with 

the free carboxyl group occurs to give a complex whose ‘H NMR suggests [Os3(CO)9 (p3- 

|r -C 9 H5(3 -C0 2 )N)(p-H)2] where the carboxylic acid hydrogen has oxidatively added to 

the cluster (Equation 2.7).

Methylation of the carboxyl group obviously blocks this secondary reaction and 

good yields of the desired analog, 35b, are obtained after photolysis ( Table 2.1). Similar 

results are realized for 4-carboxy quinoline and 6 - carboxy quinoline methyl esters both 

of which give the desired products, 35h and 35p, in reasonable yields (Table 2.1).
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Equation 2.7

o
//

o
Os,(CO > ni<CH ,CN t.

The oxidative addition of the phenolic OH does not compete with CH oxidative 

addition or N coordination but does reverse the relative yields of the T|2-N-C(8 ) and T|2 -N- 

C(2) products (Equation 2.8 ) with the desired decacarbonyl product being obtained in 

insufficient amounts to warrant further reaction to the 4-hydroxy analog of 35a.

Equation 2.8

This suggests that making the heterocyclic ring electron rich favors CH oxidative 

addition at C(2). This is a fairly subtle effect since the normal ratio of products is 

obtained with 4-methoxy quinoline and good yields are obtained of the 4-methoxy 

analog, 35f, upon photolysis ( Table 2.1 ). The 6 -hydroxy derivative, 35r, is obtained in

OH

Minor Major

reasonable yield as is the 6 -methoxy derivative, 35o."
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2.4 Experimental Section

2.4.1 Material and General Considerations

All reactions were carried out under an atmosphere of nitrogen but were worked 

up in air. Tetrahydrofuran was distilled from benzophenone ketyl. additionally 

methylene chloride and acetonitrile from calcium hydride. Acetone-d^, methylene 

chloride-d2, and methanol-dt were purchased from Aldrich Chemical Co. in single 

ampules and used as received. Chloroform-di was dried over molecular sieves before 

use.

Infrared spectra were recorded on a Perkin-Elmer 1600 FT-IR spectrometer and 

'H and l3C NMR were recorded on a Varian Unity Plus 400. Elemental analyses were 

done by Schwarzkopf Microanalytical Labs, Woodside, New York. Chemical shifts are 

reported downfield relative to tetramethylsilane. Coupling constants are reported only for 

those resonances relevant to the stereochemistry and while only the multiplicities of 

resonances with standard couplings are reported.

Osmium carbonyl was purchased from Strem Chemical, used as received and 

converted to Osj(CO)|0(CH3CN ) 2  by published procedures.21 Quinoline was purchased 

from Aldrich Chemical and distilled from calcium hydride before use. The 3-amino, 4- 

chloro, 5-amino, 6-methoxy, 6-methyl, 6- amino, 6-hydroxy, and 6-chloro quinolines 

were purchased from Aldrich Chemical and used as received. The 5-chIoro22, S-Br22̂ -  

F23. and 4-methoxy24 were prepared according to literature procedures. The 3 -CO2CH3, 4- 

CO2CH3 , and 6 -CO2 CH3 quinolines were prepared from the corresponding carboxylic 

acids (purchased from Aldrich) via an esterification reaction by refluxing for 3h in a 10% 

(H2S0 4 :Me0 H) solution. 25 The 4- amino quinoline was prepared by the Raney Nickel
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catalyzed reduction (6 hrs. at 70°C. 350 p.s.i. H2)of 4-nitro-quinoline-N-oxide. 26 

Compounds 35a, 35d, and 35m were previously reported. 8 ' 10

2.4.2 The Preparation of Electron Deficient Mono-substituted Quinoline 

Complexes: Os3(CO)9 (Mr'n2-CqH5(R)N)(p-H) (R=3-C02CH3, 35b*. R=3-NH2, 

35c: R=4-C1. 35e; R=4-OCH3. 35f; R=4-NH2, 35g; R=4-C02CH3, 35h; R=5-F, 

35i; R=5-C1. 35j; R=5-Br, 35k: R=6-C1,35n; R=6 -OMe, 35o; R=6-C02 CH3 ,35p; 

R=6 -NH2, 35q; R=OH, 35r).

The following procedure was used for synthesizing the substituted quinoline 

triosmium complexes in Section 2.4.2. Os3(CO)io(CH3CN) 2  (0.250-0.500 g, 0.27-0.54 

mmol) were dissolved in 150-300 mL CH2C12 and a two-fold molar excess of the 

appropriate quinoline was added. The reaction mixture was stirred for 12-20 h and then 

filtered through a short silica gel column to remove excess ligand. The yellow-green 

reaction solution was collected in a 500 mL quartz reaction vessel and irradiated in a 

Rayonet photo-reaction chamber for 2-4 h until no further conversion was detected by 

analytical thin layer chromatography (TLC). One exception to this procedure was 351 

(shown separately below). The dark green solution was then filtered through a short 

silica gel column concentrated to 50-150 mL and cooled at -20°C to yield 200-300 mg of 

Os3(CO)9 (M3-TT-C9 H5(R)N)(|i-H). The mother liquor was rotary evaporated and taken up 

in a minimum amount of CH2C12  and eluted on 0.1x20x40 cm silica gel TLC plates using 

(20-40%) CH2C12 /  hexane as the eluent. Three bands were eluted. The two faster 

moving yellow bands contained minor amounts of the decacarbonyl quinoline triosmium
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complexes and slower moving dark green band contained additional product which was 

crystallized from methylene chloride hexanes. The combined total yields (based on 

Os;(CO)i2 ) of the products are listed below with the analytical and spectroscopic data.

Preparation of Os3 (CO)9 (p3 -T|2 -(5 -NH2)C9 H5 N)(p-H) 351

Os3(CO)i0 (MeCN) 2  (0.250 g, 0.268 mmol) was dissolved in CH2CI2  (150 mL) and 

5- amino quinoline (0.080 g, 0.5 mmol) was added. The reaction mixture was stirred for 

16 h at room temperature. The resulting deep green solution was separated and filtered 

through a 14" column containing silica gel and eluted with hexane / CH2CI2 (70:30), 

giving two bands. The first yellow band was a mixture of the isomers Os3(CO)i0 (|i-r|2- 

(S-NHjK^HsNXp-H) (less than 10%). The second fraction yielded (0.223 g, 0.219 

mmol. 82.3% overall from Os3(CO)io(CH3CN)2 ) of the green major product 351, 

Os3(CO)9 (p3-T|2 -(5 -NH2 )C9 H5 N)(p-H) which gave green crystals from hexane / CH2C12 

at -20°C.

2.4.3 Analytical and Spectroscopic Data for 35b, 35c, 35e-351, and 35n-35r.

Compound 35b: Yield for 35b: 59.1%. Anal. Calcd. for C20H9NO11OS3 : C, 23.76; H, 

0.99; N, 1.38 %. Found: C, 23.52; H, 0.82; N, 1.40 %. IR ( u CO) in CH2C12 : 2078 s, 

2050 s, 2022 s. 1994 br, 1954 w cm 1. •H NMR of 35b at 400 MHz in CDCI3 : 5 9.74 (s, 

H(2)). 8.69 (s, H(4)), 8 . 6 6  (dd, H(5)), 8.48 (dd, H(7)), 7.28 (t, H(6 )), 4.04 (s, CH3), - 

12.063 (s. hydride).

with permission of the copyright owner. Further reproduction prohibited without permission.



41

Compound 35c: Yield for 35c: 50-60%. Anal. Calcd for C,8 H8N20 9 0s3: C, 22.38: H. 

0.78: N. 2.76. Found: C, 22.12; H, 1.02: N. 2.84. IR(v(CO) in CH2C12): 2076w. 2050s, 

2017s. 1989m. br. 'H NMR at 400 MHz in Acetone-d*: 5 9.3 l(d. 1H), 8 .6 8 (dd, 1H), 

8.61 (dd, 1H). 7.4 l(d, lH),7.30(dd. 1H), 4.14(s, br, 2H),-12.23(s, IH).

Compound 35e: Yield for 35e: 75.9%. Anal. Calcd for QgHsClNOgOsj : C, 21.90; H, 

0.61; N. 1.41%. Found: C, 22.50; H, 0.70; N, 1.38%. ER (vCO ) in hexane: 2077 m, 

2050 s, 2021 m, 1991 br, 1969 w. *H NMR of 35e at 400 MHz in CDC13: * 9.16 (dd, 

H(2)), 8.83 (dd, H(5)), 8.67 (d, H(7)), 7.29 (dd, H(6 )) 7.18 (dd, H(3)), -12.06 (s, hydride).

Compound 35f: Yield for 35f: 69.0%. Anal. Calcd for C 19H9 NO 10OS3: C, 23.24; H, 

0.91: N. 1.43%. Found: C, 23.44; H, 0.93: N, 1.46%. IR (u CO) in hexane: 2075 m, 

2046 s, 2018 m, 1988 br. 'H NMR of 35f at 400 MHz in CDC13: 8  9.03 (d, H(2)), 8 . 8 8  

(dd, H(5)),8.65 (dd. H(7)), 7.14 (dd, H(6 )), 6.42 (d, H(3), 4.08 (s. OCH3) -12.01 (s,

hydride).

Compound 35g: Yield for 35g: 72.2%. Anal. Calcd.C|8HgN2 0 9 0 s3: C, 22.34; H, 0.83; 

N.2.89 %. Found: C, 21.07; H, 0.79; N, 2.58 %. IR (u  CO) in CH2C12 : 2078 s, 2050 s, 

2022 s, 1994 br, 1954 w cm'1. lH NMR of 35g at 400 MHz in CD3COCD3 : 8  9.09 (s, 

H(2)), 8.81 (d, H(5)), 8.65 (dd, H(3)), 7.46 (S broad, NH2), 7.23 (t, H(6 )), 6.48 (d, H(7)), 

-12.072 (s, hydride).
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Compound 35h: Yield for 35h: 40.3%. Anal. CaIcd.C2oH9 NO| 1OS3 : C, 23.76: H, 0.99: N,

1.38 %. Found: C, 23.14: H, 0.88: N. 1.35 %. IR ( u CO) in CH2C12 : 2078 s. 2050 s, 

2022 s, 1994 br, 1954 w c m 1. 'H NMR of 35h at 400 MHz in CDC13 : 8  9.45 (d, H(2)), 

9.41 (d, H(5)), 8.62 (d, H(7)), 7.56 (t, H(3)), 7.28 (t, H(6 )), 4.02 (s, CH3), -12.242 (s, 

hydride).

Compound 35i: Yield for 35i: 70.1%. Anal. Calcd.CigHeNOgFOsa: C, 22.27: H, 0.99: N,

1.38 %. Found: C, 22.84: H, 1.12: N, 1.44 %. IR ( u CO) in CH2C12 : 2076 s, 2050 s, 

2026 s, 1996 m, 1980 m, 1962 w, 1948 w cm'1. ‘H NMR of 35i at 400 MHz in CDCI3 : 5 

9.32 (dd, H(2)), 8.65 (d, H(6 )), 8.32 (dd, H(4)), 7.16 (dd, H(7)), 6.95 (t, H(3)), -12.204 (s, 

hydride).

Compound 35j: Yield for 35j: 69.7%. Anal. Calcd for C 18H6 CINO9 OS3: C, 21.90: H, 

0.61; N, 1.41%. Found: C, 22.66; H, 0.71; N, 1.37%. IR (oCO) in hexane: 2078 m, 2049 

s, 2023 s, 1990 br. 'H NMR of 35j at 400 MHz in CDC13: 8  9.33 (dd, H(2)), 8.52 (d, 

H(6 )), 8.48 (dd, H(4)), 7.27 (d, H(7)) 7.20 (t, H(3)), -12.09 (s, hydride).

Compound 35k: Yield for 35k: 83.1%. Anal Calcd. for Ci8H6 N0 9 Br0 s3: C, 20.97; H, 

0.48, N, 1.36. Found: C, 20.84 ; H, 0.38; N, 1.37; IR(v(CO) in CH2C12): 2077m, 2050s, 

2020s, 1990s, 1977w, 1952w. *H NMR of 35k at 400 MHz in CDC13: 8  9.32(dd, IH), 

8.49(dd, 1H), 8.39(d, 1H), 7.46(d, 1H), 7.19(dd, 1H), -12.07(s, IH).
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Compound 351: Yield for 351: 82.3%. Anal, calcd for C 18H8N2O9 OS3 : C, 22.38, H. 0.78: 

N. 2.76. Found: C. 22.37; H, 0.75; N. 2.83. IR (v(CO) in hexane): 2080w, 2069m, 

2040s. 2013s. 1981s, 1967w. 'H-NMR of 351 at 400 MHz in CDC13: 8  9.25 (dd, H(2)),

7.07 (t. H(3)). 8.00 (dd, H(4». 8.16 (dd, H(6 ), 6.43 (d, H(7)), 5.60 (broad singlet, NH2), -

13.01 (s. hydride).

Compound 35n: Yield for 35n: 73.6%. Anal. Calcd for CisHsClNOgC^: C, 21.90; H, 

0.61: N. 1.41%. Found: C, 22.90; H. 1.01; N, 1.16 %. IR (\>CO) in hexane: 2060 m, 

2031 s. 2027s, 1992 w, 1983 br. lH NMR of 35n at 400 MHz in CDCI3 : 8  9.24 (dd, 

H(2)). 8.35 (dd overlap, H(5) & H(7)), 7.97 (dd, H(4)), 7.13 (dd, H(3)), -12.12 (s, 

hydride).

Compound 35o: Yield for 35o: 56.1%. Anal. Calcd for C 19H9 NO10OS3 : C, 23.21: H, 

0.91; N, 1.43%. Found: C, 22.58; H, 0.87: N, 1.15%. IR (uCO) in hexane: 2102 m, 

2077 s, 2047 s. 2019 s, 1989 br. lH NMR of 35o at 400 MHz in CDCl3: 8  9.04 (d, H(2)), 

8.06 (d. H(7)), 7.92 (dd, H(4)), 7.53 (d, H(5)), 7.04 (dd. H(3)), 3.89 (s, OCH3) -12.27 

(s, hydride).

Compound 35p: Yield for 35p: 61.4%. Anal. Calcd.C2oH9NOnOs3 : C, 23.76; H, 0.99; N,

1.38 %. Found: C, 23.70; H, 1.04; N, 1.57 %. IR (o CO) in CH2C12  : 2079 s, 205 s, 2023 

s, 1994 br, 1954 w cm '1. lH NMR of 35p at 400 MHz in CDCI3 : 8  9.32 (dd, H(2)), 9.02
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(s. H(5)), 8.93 (s. H(7)). 8.12 (dd, H(4)), 7.17 (t. H(3)), 4.01 (s. CH3), -12.063 (s, 

hydride).

Compound 35q: Yield for 35q: 50-60%. Anal. Calcd. for CigHgNiOqOsv C. 22.38; H.

0.78; N. 2.76. Found: C, 22.49, H, 0.86; N, 2.71. IR (v(CO) in CH2CI2): 2076w, 2041s. 

2018s. 1988m, br. 1973w, br, 'H NMR of 35q at 400 MHz in CDC13: 5 8.92(dd, IH), 

7.83(d, IH), 7.79(dd, lH),7.36(d, lH),6.97(dd, IH), 4.79(s, br 2H),-12.23(s. IH).

Compound 35r: Yield for 35r: 43%. Anal, calcd. for Ci8H7NOioOs3 : C, 22.34; H, 0.72; 

N, 1.45%. Found: C, 21.99; H, 0.75; N, 1.41 %. IR (u CO) in CH2C12 : 2076 m, 2058 s, 

2047 s, 2018 s, 1990s, br. 1941 w, br cm '1. ‘H NMR of 35r at 400 MHz in CDCI3 : 8

9.08 (d. H(2)), 8.15 (d, H(7)), 7.91 (d, H(4)), 7.71 (d, H(5)), 7.05 (dd, H(3)), 6.01 (br, 

OH), -12.07 (s. hydride).

2.5 X-ray Structure Determination of 35n.

Crystals of 35n for X-ray examination were obtained from saturated solutions of 

each in hexane / CH2C12 solvent systems at -20°C. Suitable crystals were mounted on 

glass fibers, placed in a goniometer head on the Enraf-Nonius CAD4 diffractometer, and 

centered optically. Unit cell parameters and an orientation matrix for data collection 

were obtained by using the centering program in the CAD4 system. For each crystal, the 

actual scan range was calculated by scan width = scan range + 0.35 tan0 and 

backgrounds were measured by using the moving-crystal moving-counter technique at 

the beginning and end of each scan. Two representative reflections were monitored every
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2 h as a check on instrument and crystal stability. Lorentz, polarization, and decay 

corrections were applied, as was an empirical absorption correction based on a series of 

Y scans, for each crystal. The weighting Scheme used during refinement was I/o2, based 

on counting statistics.

Each of the structures was solved by the Patterson method using SHELXS-8 6 , 2 7  

which revealed the positions of the metal atoms. All other non-hydrogen atoms were 

found by successive difference Fourier syntheses. The expected hydride positions in 

each were calculated by using the program HYDEX, 15 hydrogen atoms were included in 

each structure and were placed in their expected chemical positions using the HFIX 

command in SHELXL-93. 28 The hydrides were given Fixed positions and U’s; other 

hydrogen atoms were included as riding atoms in the final least squares refinements with 

U’s which were related to the atoms ridden upon. All other non-hydrogen atoms were 

refined anisotropically in 35n.

Scattering factors and anomalous dispersion coefficients were taken from 

International Tables for X-ray Crystallography. 29 All data processing was carried out on a 

DEC 3000 AXP computer using the Open MolEN system of programs. 30 Structure 

solution, refinement and preparation of Figures and Tables for publication were carried 

out on PC’s using SHELXS-8 6 . 27 SHELXL-9328 and SHELXTL/PC31 programs.
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Chapter 3

Reactivity of Carbanions with (Os3CO)9(p.3 -ri2-C9 H6N)(|i-H) 

and its Monosubstituted Analogues

3.1 Introduction

We have previously discussed in Chapter 2 the reactions of quinoline (and 

substituted quinolines) with the lightly stabilized cluster Os3(CO)to(CH3CN ) 2 at ambient 

temperatures resulting in the novel electron deficient (46 e system) deep green complexes 

Os3(CO)<,(p3-Tl2-C9 H6 N)(n-H) 35a-r . 1'4  The quinoline ring in complexes 35a-r is bound 

to the cluster by coordination of the nitrogen lone pair and a three center two electron 

bond with C(8 ).M Studies with lH NMR showed that the proton on C(5) of these 

structures 35a-h, 35m-r ail show significant downfield shifts (0.8 to 1.2 ppm) relative to 

structures 34.M
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These electron deficient quinoline complexes are shown to undergo phosphine, 

CO. and Hi addition to the metal which proceeds reversibly (for CO) under moderate 

conditions, analogous to other 46e' trimetallic complexes (discussed later in Chapter 4).M

We recently studied the reactivity of this family of electron deficient 0 -^ 3- rj2 

complexes of quinoline 35a which undergo regioselective nucleophilic addition of hydride 

and a wide range of carbanions at the 5-position (Equation 3.1).M

The nucleophilic attack we observed at the 5-position of the carbocyclic ring is 

unprecedented. In quinolines (or r |l-N coordinated) the normal site of electrophilic attack 

is the 5- and 8 - positions, while nucleophilic attack is usually at the 2- or the 4- position if 

the former is blocked (quinoline numbering) . 7 ' 11 There has previously been reported 

nucleophilic attack on " a  , 7t vinyl" complexes of triosmium clusters; 7 however, the 

regioselective nucleophilic attack at the 5- position that we have observed is 

unprecedented in complexes of aromatic nitrogen heterocycles which are not 

7t-complexed to the metal center and is completely unique for the quinoline system. 7

A discussion of the results of a new methodology for the addition of carbon based 

nucleophiles to the carbocylic ring will follow, which is based on the electron deficient 

bonding of C(8 ) carbon and the protective coordination of the nitrogen atom to the metal 

core. These results represent a potentially useful synthetic methodology not available via 

complexation by mono-metallic species. The structural features of the compounds 

reported and the mechanistic implications of the reported transformations are discussed 

and compared with the previously reported activation of aromatic systems (Chapter 1).
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3.2 Results and Discussion

3.2.1 Reactions of Carbanions with (|i-H)(Os3 CO)9 (p.3 -r|2 -C9 H6 N) 35a

When compound 35a is reacted with a two-to-three fold excess of the carbanions 

listed in Table 3.1 at -78°C. the dark green THF solution turns orange or amber. After 

stirring and warming to 0°C the solution is cooled to -78°C and quenched with a slight 

excess (relative to the total carbanion added) of trifluoroacetic acid to give a red orange 

solution (Equation 3.1). After chromatographic purification, the nucleophilic addition 

products [Os3(CO)9(p3-T)3-C9H7(5-R’)N)(p-H)](37a-371) are isolated in the moderate 

yields reported in Table 3.1.

One specific example that demonstrates this novel nucleophilic attack at the 5- 

position of the quinoline is shown when phenyllithium was reacted with 3 5 a, resulting in 

37e [Os3(CO)9 (p3-Tl3-C9 H7 (5 -C6 H5 )N)(p-H)] in a 6 6 % yield (Equation 3.1). The solid 

state structure of this nucleophilic addition product 37e was determined in order to 

compare it with the previously reported a-Jt-vinyl quinoline triosmium carbonyl complex 

37m [Os3(CO)9 (P3--n3 -C9 H8 )N)(p-H)] formed by the H'/H* addition to 35a. 1

The structure of 37e is given in Figure 3.1, selected bond angles and lengths in 

Table 3.2. The bond lengths and angles of 37m and 37e are almost identical, as shown 

below in the comparison of the two. The bond lengths of structure 37e will be given first 

followed by the bond lengths for 37m being underlined. The structure consists of an 

isosceles triangle of Os atoms with two approximately equal metal-metal bonds (Os( 1 )- 

Os(3) (2.85(3) A)- (2.84(2) A) ,and Os(2)-Os(3) at (2.89(3) A)-(2.88(2) A), and the 

shorter bond Os(l)-Os(2 ) at (2.77(2) A)—(2.77(2) A). The hydride was located using the
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program HYDEX. 5 The hydride is tucked below the plane of the metal triangle. This 

calculated position for the hydride is confirmed by the positions of the carbonyl groups 

CO( 13) and CO(33). The most interesting aspects of the structure of 37e are the carbon- 

carbon and carbon-nitrogen bond lengths. The N(l)-C(2 ) (1.34(2) A) — (1.35(2) A), and 

N(l)-C(9) (1.35(2) A) — (1.35(2) A) bonds lengths and those between the rest of the 

heterocyclic atoms range from 1.32-1.41 A which indicate that the ring has retained its 

aromaticity. However, the saturated bonds on the carbocyclic ring results in a distortion 

away from planarity forming a puckered-boat configuration. The C(5)-C(6), C(6)-C(7). 

and C(7)-C(8) bonds can be considered as single, single, and double bonds respectively 

based on the observed distances (1 .54(2)-1.54(2). 1.57(2)--1.54(2). and 1.39(2)-1.38(2) 

A). The assignment of a ct interaction between Os(l)-C(8 ) (2.13(3)~2.14(2) A) and a rt 

interaction between Os(3)-C(8) (2 .2 1 (2 ) -  2.23(2) A) and Os(3)-C(7) (2.36 (3)—2.38(2) A) 

is consistent with previous studies of a —k  interactions on triosmium clusters. 6

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



53
Equation 3.1

35a

N i l '

THF

N u  H

N u  H

N u

Os—

37a-«

36a-l
Intermediate Anion

The only carbanion tried which did not result in nucleophilic addition on the ring 

was sodium diethyl malonate which apparently complexes with 35a at the metal core as 

evidenced by the reversible color change from green to yellow when this reagent is added 

to 35a at -78 °C and then warmed to room temperature. This behavior, and the associated 

color change, is similar to that observed for the reaction of 35a with neutral two electron 

donors as shown in Equation 3.2 (discussed later in chapter 3).M Methoxide also failed to 

react with 35a. It can be seen from the yields listed in Table 3.1 that the harder, more
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Table 3.1 Isolated Nudeophilic Addition Yields from the Reaction of 

Os3(CC»9(m.3-ti2-C9H«N)(h-H) (35a) with Carbanions

Compound Carbanion Yield (%)

37a LiMe 65

37b LinBu 45

37c Li'Bu 52

37d LiBz 48

37e LiPh 6 6

37f LiCH=CH: 51

37g LiC2(CH2 )3CH3 25

37h LiCH2CN 72

37i. LiC(CH3)2CN 69

37j Li-CHS(CH2 )2S- 72

37k LiCH2C 02‘Bu 8 6

37a MeMgBr 43

371 CH2=CHCH2MgBr 53
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Figure 3.1 Solid State Structure for (H-HKOsaCCOM^-T^-C^HS-CsHs) (37e) 

showing the calculated position of the hydride.
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Table 3.2 Selected Bond Distances (A) and Angles(°) for 37e

Distances

Os( I )-Os(2) 2.77(2) C(7)-C(8)

Os(2)-Os(3) 2.89(3) C(6)-C(7)

Os(3)-Os( 1) 2.85(3) C(5)-C(6)

Os(l)-C(8 ) 2.13(3) C(5)-C(10)

Os(3)-C(8) 2 .2 1 (2 ) C(5)-C(40)

Os(3)-C(7) 2.36(3) C(10)-C(4)

Os(2)-N( 1) 2.18(3) C(3)-C(4)

C(9)-N(l) 1.35(2) C(2)-C(3)

Os-COb 1.89(2) N(l)-C(2)

C-Ob 1.14(2)

Angles

Os( 1 )-Os(2)-Os(3) 60.32(3) C(6)-C(7)-C(8)

Os(l)-Os(3)-Os(2) 57.90(3) C(5)-C(6)-C(7)

Os(2)-Os(l)-Os(3) 61.79(3) C(6)-C(5)-C(10)

Os( 1 )-C(8)-C(7) 119.9(4) C(10)-C(5)-C(40)

Os(3)-C(8)-C(7) 78.1(4) C(2)-N( 1 )-C(9)

Os(l)-Os(2)-N(l) 8 6 .2 (2 )

Os-C-O 176(4)

Numbers in parentheses are average standard deviations 

Average values.

1.39(2)

1.57(2)

1.54(2)

1.55(2)

1.56(2)

1.38(2)

1.41(2)

1.32(2)

1.34(2)

119.6(3) 

108.9(3) 

107.9(3) 

115.3(3) 

118.2(3)
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Equation 3.2

35a 38

nucleophilic carbanions give somewhat lower yields than the softer nucleophiles. This is 

probably due to competing attack at the coordinated carbonyl groups, leading to 

decomposition. Overall, 35a reacts with a broader range of nucleophiles relative to the 

neutral monometallic 7t-arene complexes. 7 This is undoubtedly due to localization of the 

electron deficiency at the 5- position resulting from the electron deficient bonding to the 

cluster. 1 4 -6  Thus lithium t-butyl acetate reacts quite well with 35a while in the case of 

[(tc -r j 6  arene)Cr(COb] yields were quite low except in the presence of very polar solvents 

such as HMPA. 7 Methyl lithium and n-butyl lithium deprotonate [(it-Ti6-arene) 

Cr(CO)?] while 35a yields the usual nucleophilic addition products. 7 Indeed, we have 

attempted deprotonation with lithium diisopropyl amide but observed no evidence for this 

mode of reaction with 35a.

The structure of the intermediate anions 36a-I produced after nucleophilic attack 

remained in question until examination of VT-NMR of a l3CO enriched sample of the 

anion resulting from hydride attack on 35a. Two possible structural types are possible 

based on room temperature *H NMR data: 1) a tilted fi3- q 4-allyl which is undergoing 

rapid o-ic-interchange; and 2 ) a p - r f  alkylidene in which the quinoline remains
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perpendicular to the metal and is stabilized by electron delocalization to the metal core 

(Scheme 3.1).

Scheme 3.1

At both +22°C and -80°C, five carbonyl resonances are observed at 191.90, 

186.76. 185.43, and 181.11 ppm in a relative intensity of 2:1:2:2:2. We feel this supports 

the perpendicular |i -q 2-structure since the a-Jt-interchange process usually has a barrier 

of 40-50 kJ/mole in related systems and should be at least partially frozen out on the NMR 

time scale at -80°C.1

3.3 Reactions of the 3-, and 4- Monosubstituted (ji3-T)2)-Quinoline Triosmium 

Carbonyl Complexes with Carbanions

Substitution at both the carbocyclic and heterocyclic ring over a range of 

functional groups is well tolerated for the nucleophilic additions described above. Thus, 

the 3-substituted derivatives 35b and 35c (Equation 3.3 ) react with LiC(CH3)2CN to give 

the expected nucleophilic addition products [Os3(CO)9(p3-Ti3-C9H6(3-W)(5-R,)N)(p-H)] 

(W=C02CH3, R'=C(CH3)2CN 38b; W=NH2, R'=C(CH3)2CN 38c; Equation 3.3) are 

obtained in reasonable yields. Similarly, the 4-substituted derivatives 35d-35g react with
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LiC(CH3)2CN and/or LiCH2C 0 2‘Bu in an analogous manner to give [Os3(CO)9 (p3-Ti3- 

C9 H6 (4-X)(5-Rr)N)(p-H)] (X=CH3, R’=C(CH3)2CN, 38d; X=CI, R'=C(CH3)2 CN, 38e; 

X=C1. R’= CH2C 0 2‘Bu. 38e'; X=OCH3, R’=C(CH3 )2CN, 38f, X=OCH3, R’= CH2C 0 2‘Bu, 

3 8 f ; X= NH2. R'=C(CH3 )2CN, 38g, Equation 3.4). The 4-carboxymethyl derivative, 35h, 

Equation 33

r;  h

R'Li
THF

35b W = C02 CH3  

35c W = NH2

H— Os

R̂  H

R' = C(CH3)2CN
38b & 38c

reacts cleanly with allyl magnesium bromide to give the expected nucleophilic addition 

product, [Os3(CO)9 (p3-Ti3-C9H6 (4 -X)(5 -R,)N)(p-H)] (X=C02CH3. R’=C(CH3 )2CN, 38h, 

Scheme 3.4).

Equation 3.4

/
—Qs—\ — Os—

H— 0 s ”  /  \

35d-h

R'Li
THF

H— Os -O s

/ h
38d-h
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It is significant that in the case of the 3- and 4-carboxymethyl derivatives, attack of 

the carbanion at the carbonyl group not does represent a competitive pathway since the 

expected nucleophilic addition products are obtained in good yield. Attack at the ester 

carbonyl group is only observed when an excess of carbanion is used, resulting in the 

normal addition product, and a second double alkylated product (Equation 5.8) as will be 

discussed later in section 5.5. Also if deprotonation of the methyl and amino groups in 

complexes 35c, 35e and 35g is occurring it does not interfere with subsequent nucleophilic 

addition since reasonable yields of the expected products are obtained without the need to 

add an increased amount of carbanion relative to 35a.

3.4 Stereospecific Nucleophilic Addition Across C(5)-C(6) of the Quinoline

With a substituent on the 6 -position of quinoline prior to nucleophilic addition it 

adds the element of stereochemistry across the C(5)-C(6) bond to be introduced. The 

stereochemistry can be controlled selectively to obtain either trans or cis isomers. The 

methodology for this stereochemically controlled addition will be discussed in this 

follwing section.

3.4. 1 The Reaction of (35n) [Os3(CO)9 (p3-Tl2-C9 H5 (6 -Cl)(p-H)] with LiC(CH3)2CN

The 6 -substituted quinoline derivatives undergo nucleophilic addition with 

interesting differences. Complex 35n reacts with LiC(CH3)2CN to give two major 

products, the expected nucleophilic addition product, [Os3 (COk(p3-q 3-C9 H6 (6 -Cl)(5 - 

C(CH3 )2CN)N)(p-H)] (38n) and a dihydrido complex [OssCCOMprTf-QHsfb-CIXS- 

C(CH3 )2 CN)N)(m-H)2] (39n), apparently resulting from competitive protonation at the
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metal core (Equation 3.5) . 5 '6  From the NMR data alone, the bonding mode to the 

trimetallic core could not be assigned with certainty. A solid state structural investigation 

was therefore undertaken.

Equation 3.5

35n

HR

1.) RLi, 2.) H+ 

THF

R=C(CH3)2CN

> 95% cis 
els- 38n

HR

2 isomers

The solid state structure of 39n is shown in Figure 3.2, selected distances and bond 

angles are shown in Table 3.3. The structure consists of an OS3 triangle with two 

approximately equal metal-metal bonds (Os(l)-Os(3) and Os(2)-Os(3) at 2.814(1) and 

2.786(1 )A) and one elongated metal-metal bond (Os( 1 )-Os(2 ), 2.962(1 )A). The two 

hydride ligands were located using the potential energy minimum program, Hydex. 5 As 

expected, the elongated metal-metal bond has the hydride ligand located in-plane while 

the doubly bridged Os(l)-Os(3) edge has the hydride ligand tucked well below the OS3 

plane. 1 Compound 39n is bound to the cluster by an electron precise sp3 -p-alkylidene 

linkage with C(8 ). The bonding is slightly asymmetric (Os(l)-C(8)=2.17(l) and Os(3)- 

C(8 )=2 .2 1 (8 )A). These electron precise bonds are considerably shorter than the related 

electron deficient bonds in 35a (2.28(1) and 2.32(1)A). The Os(2)-N bond length in 39n 

on the other hand is exactly the same as in 35a (2.13(1)A). The C(5)-C(6), C(6)-C(7) and
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C(7)-C(8) bonds can be considered as single, double and single bonds respectively based 

on the observed distances (1.46(2), 1.36(2) and 1.48(2)A). In the solid state, only one of 

two geometric isomers of 39n is observed, with the hydride bridging the Os(l)-Os(2) edge 

syn- to the isobutyronitrile group. In solution, a minor isomer can be observed (about 10% 

of the major) by ‘H NMR. We have reported the solid state structure of 39n.4

The formation of 39n from 38n can be rationalized by the electron withdrawing 

effect of the chloride, making protonation at the 6 -position less favorable and resulting in 

competitive protonation at the metal core. 3 4  To some extent, the relative amounts of 38n 

and 39n can be controlled. When a ten-fold excess of acid is used to quench the 

nucleophilic addition, 38n and 39n are formed in a 3:2 ratio. When one equivalent of acid 

is used, the ratio is 5:1. This reflects the greater statistical probability for protonation at 

the OS3 core relative to the C(6 ) position of the ring. Attempts to convert 39n to 38n by 

heating at 80°C in C6 D6  for several hours failed. In metal cluster chemistry it is not 

uncommon to observe the formation of two isomeric products which do not interconvert at 

temperatures below the decomposition temperature of the compounds. 8 The formation of 

39n lends credence to our proposed structure for the intermediate anion as it is identical in 

structure to one of the resonance forms proposed (Equation 3 .1 ).

The reaction of 35n with LiQCHshCN gave only one of two possible 

diastereomers of 38n ( Equation 3.5). The observed coupling constant between the C(5) 

and C(6 ) protons of 5.77 Hz gave no firm indication of the stereochemistry across the 

C(5)-C(6) bond since this value is right on the borderline between the values for cis- and 

trans- orientations around the C(3)-C(4) bonds in cyclohexenes.9 In addition, the metal 

ligand bonding framework for structural types 37 and 38 imparts an unusual puckered

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



geometry to the carbocyclic ring which makes inferring stereochemistry from coupling 

constants dangerous. 1 Unfortunately, we were unable to obtain X-ray quality crystals for 

38n.

Figure 3.2 Solid State Structure for 39n [Os3(CO)9 (fi;j-Tl2-C9 H5(6 -Cl)(5 -

C(CH3 )2CN)N)(|i-H)2J Showing the Calculated Hydride Positions.

0(32)
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Table 3.3 Selected Distances (A) and Angles(°) for 39n

Distances

Os( 1 )-Os(2) 2.962( 1) C(8)-C(9)

Os( I)-Os(3) 2.814(1) C(7)-(8)

Os(2)-Os(3) 2.786(1) C(6)-C(7)

0s( 1 )-C(8 ) 2.19(1) C(6)-C(5)

Os(3)-C(8) 2.21(1) C(6 )-C(l)

Os(2)-N(l) 2.13(1) C(5)-C(40)

Os-COb 1.89(2) C-Ob

Angles

0s( l)-Os(2)-Os(3) 58.53(2) C(6)-C(7)-C(8)

Os( 1 )-Os(3)-Os(2) 63.86(2) C(5)-C(6)-C(7)

Os(2)-Os( l)-Os(3) 57.61(2) C(6)-C(5)-C(10)

Os( l)-C(8)-Os(3) 79.6(4) C(10)-C(5)-C(40)

Os(3)-Os(2)-N(l) 81.9(3) C(2)-N(l)-C(9)

Os-C-Ob 177.(1)

Numbers in parentheses are average standard deviations. 

Average values.

1.46(2)

1.47(2)

1.36(2)

1.46(2)

1.75(1)

1.59(2)

1.13(2)

125.(1)

124.(1)

109.(1)

110. ( 1) 

117.(1)
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3.4.2 The Reaction of [OsjfCOM^-T^-CgHs^-CHjH/i-H)] (35m) with Carbanions 

LiR (R=C(CH3 )2 CN, CH 3)

The reaction of 35m with Li QCHj^CN gave one major product in 71% yield 

(Equation 3.6), c/s-Os3(CO)9 (M3 -T,'C 9H6 (6 -CH3 )(5 -C(CH3)2 CN)N)(fj-H) (38m). This 

compound was also isolated as one diastereomer and showed a vicinal coupling constant 

for the C(5)-C(6) protons of 5.95 Hz, very similar to 38n (Equation 3.5).

Equation 3.6

purification showed the presence of only one diastereomer of 38m in addition to starting 

material. Thus, the single diastereomer appears to be the kinetic product and is not the 

result of equilibration on the silica gel used for purification. The solid state structure of 

38m revealed that it exists as the cri-diastereomer and therefore, based on the similar 

vicinal coupling constants, 38n is as well. Suitable crystals of 38m for X-ray analysis 

were obtained and allow us to firmly establish the stereochemistry across the C(5)-C(6) 

bond.

H Nu

35m > 95% cis 
cis- 38m

Nu s  LiC(CH3)2CN

Examination of the crude reaction mixture by 'H NMR prior to chromatographic
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The solid state structure of 38m is shown in Figure 3.3, selected distances and 

bond angles in Table 3.4. The cis- configuration around the C(5)-C(6) double bond is 

obvious from the solid state structure of c/j-38m as is the anticipated puckered-boat 

configuration of the carbocyclic ring. The overall structure and bonding mode is very 

similar to the previously reported Os3(CO)9(p3-Ti3-C9H8N)(|i-H) from the H7H* addition 

to 35a, and complex 37e.' The carbomethoxy derivative, 35p, also exclusively gives the 

cis- isomer, 38p, when reacted with allyl magnesium bromide in good yield ( Scheme 1)

The a-7C -vinyl bonding mode is most likely undergoing a (T-7t-interchange in 

solution as observed in related compounds but it is not possible to ascertain if this process 

is operative owing to the asymmetry in 38m-38p.1 The cis- stereochemistry can be 

rationalized by exclusive trans- protonation of an essentially planar anionic intermediate 

(Equation 3.1 and 3.6), where the bulky nucleophile blocks one face of the carbocyclic 

ring at C(6). This is not the case for deuteride as a nucleophile where both cis- and trans- 

isomers are observed in similar amounts when 35m is treated with D /FT.1 When 35m is 

reacted with C H 3U , one major stereoisomer is obtained in 67% yield, Os3(CO)9(p 3-r|3- 

C9H6(5,6-CH3)iN)(p-H) (38m'), which we can identify as the cis- diastereomer from 'H 

NMR decoupling experiments which reveal a vicinal Hz across the C(5)-C(6)

bond. A trace amount of a second diastereomer is observed as companion peaks in the 'H 

NMR of 38m'. Thus, even a relatively small alkyl group on C(5) is sufficient to induce 

almost exclusive trans- protonation.
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Figure 33  Solid State Structure for cw-38m [OsjCCOMPr r|3-C9H6(6 -CH3)(5 -

C(CH3)2CN)N)(p-H)J Showing the Calculated Hydride Position.
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Table 3.4 Selected Distances(A) and Angles(°) for cis-38m
68

Distances

Os( 1 )-0s(2) 2.886(2) C(7)-C(8) 1.35(3)

Os( l)-Os(3) 2.851(2) C(5)-C(6) 1.52(3)

Os(2)-Os(3) 2.776(2) C(6)-C(7) 1.54(3)

Os(l)-C(8) 2.16(3) C(5)-C(10) 1.58(3)

0s( 1 )-C(7) 2.43(3) C(5)-C(40) 1.65(4)

Os(3)-C(8) 2.09(2) C(6)-C(44) 1.42(3)

Os(2)-N(l) 2.18(2) C(9)-N( 1) 1.33(3)

Os-COb 1.86(3) C(9)-C(10) 1.40(3)

C-Ob 1.16(2)

Angles

Os(l)-Os(2)-Os(3) 60.44(5) C(6)-C(7)-C(8) 127(2)

Os(l)-Os(3)-Os(2) 61.68(5) C(5)-C(6)-C(7) 107(2)

Os(2)-Os(l)-Os(3) 57.88(5) C(6)-C(5)-C(10) 110(2)

Os(l)-C(7)-C(8) 62(2) C(10)-C(5)-C(40) 106(2)

Os(l)-C(8)-C(7) 84(2) C(2)-N(l)-C(9) 126(2)

Os(3)-C(8)-C(7) 126(2) Os(3)-Os(2)-N(l) 84.5(5)

Os-C-Ob 173(3)

Numbers in parentheses are average standard deviations. 

Average values.
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3.4.3 Synthesis of the frans-38m Os3(CO)9(n3-q3-C9H6(5-C(CH3)2CN)6- 

CH3)N)(m-H)

If our hypothesis about trans- protonation is correct, then it should be possible to 

obtain trans-38m by treatment of 35a with LiQCHj^CN followed by reaction with an 

alkylating agent (CHjOhSCK (Equation 3.7).

Equation 3.7

CH2CI2

Nu": (38m') CH3Li '
(38m) L iC (C H 3)2CN trans- 38m ', & 38

Source of CH3+: (CH30)2S02

This is indeed the case (Equation 3.7), although complete conversion to trans-38m 

is not realized, as significant amounts (-40%) of 37i are formed. Presumably this occurs 

by incomplete alkylation of the anion intermediate, followed by protonation on workup 

with silica gel. It was not possible to separate frans-38m from 37i by thin layer 

chromatography but analytically pure samples were obtained by reverse phase high 

pressure liquid chromatography. Although it was immediately obvious that trans-38m 

was a different stereoisomer than cis-38m, the vicinal coupling constant across the C(5)-
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C(6 ) bond was observed to be < I Hz. This seemed very unusual for a trans- isomer, but a 

solid state structure determination of this product revealed that it was indeed rranj-38m.5 6

The solid state structure of trans-38m is shown in Figure 3.4, selected distances 

and bond angles in Table 3.5. The geometry across the C(5)-C(6) bond is trans- and the 

conformation of the carbocyclic ring is such that the dihedral angle between the alkyl 

groups is 154° and between the calculated positions of the C(5) and C(6 ) hydrogen atoms 

is 80°. This explains the small coupling constant across this bond and suggests that the 

detailed conformation of the carbocyclic ring is controlled by steric interactions of the 

alkyl group across the C(5)-C(6) bond as well as the bonding mode to the metal core. The 

related dihedral angles in c/s-38m are 52° and 51°, respectively. The remainder of the 

structure is virtually identical with cij-38m.

The same reaction sequence with 35a using CH3U and (C ^O ^SO a yields trans- 

38m' (Equation 3.7). In this case, alkylation was also incomplete and 37a was isolated as 

a coproduct. The vicinal coupling constant in the case of trans-3Sm' is 11.98 Hz 

indicating that with the smaller methyl group, the carbocyclic ring can adopt a 

conformation where the hydrogens are approximately trans- diaxial. 9

The anion generated from the treatment of 35a with CH3U  can also be quenched 

with acetic anhydride to give trans-38z Os3(CO)9 (ji3-'n3 -C9H6 (5 -CH3 )(6 -CH3CO)N)(p-H) 

(Equation 3.8). The vicinal coupling constant across the C(5)-C(6) bond is 12.12 Hz. As 

might be expected, the more sterically compact sp2 carbon of the acetyl group allows the 

substituents on C(5) and C(6 ) to adopt a diequatorial conformation resulting in a trans- 

diaxial relationship for the hydrogens on these carbons as for rra/u-38m'.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



Figure 3.4 Solid State Structure for trans-38m [Os3(CO)*(|I3-ti3-C*H6(6 -CH3)(5 -

C(CH3)2CN)N)(|»-H)] Showing the Calculated Hydride Position.
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Table 3.5 Selected Distances(A) and Bond Angles(°) for Trans-38m
72

Os( 1 )-Os(2) 2.789(1)

Distances

C(7)-C(8)

Os( 1 )-Os(3) 2.840(1) C(6)-C(7)

Os(2)-Os(3) 2.880( 1) C(5)-C(6)

Os( 1 )-C(8) 2.11(1) C(5)-C(10)

Os(3)-C(8) 2.26(1) C(5)-C(40)

Os(3)-C(7) 2.45(2) C(6)-C(44)

Os(2)-N(l) 2.18(1) C(9)-N(l)

Os-COb 1.91(2) c-ob

Os(l)-Os(2)-Os(3) 60.09(3)

Angles

C(6)-C(7)-C(8)

Os( l)-Os(3)-Os(2) 58.37(3) C(5)-C(6)-C(7)

Os(2)-Os(l)-Os(3) 61.54(3) C(6)-C(5)-C(10)

Os( 1)-C(8)-C(7) 123(1) C(10)-C(5)-C(40)

Os(3)-C(8)-C(7) 80(1) C(2)-N(l)-C(9)

Os(3)-C(7)-C(8) 65(1) Os( 1 )-Os(2)-N( 1)

Os-C-Ob 177(1)

Numbers in parentheses are average standard deviations 

Average values.

1.37(2)

1.55(2)

1.55(2)

1.52(2)

1.56(3)

1.54(3)

1.30(3)

1.14(2)

124(1)

109(1)

109(1)

112 ( 1)

120( 1)

84.2(4)
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Equation 3.8

Hv
H3C (0)C '

N  (CH jC 0 )20

CH2c i2

trans- 38

3.5 Reactivity of 5 -Substituted Complexes: Addition Across the C(3)-C(4) Bond

The highly regioselective nature of the nucleophilic additions observed for 

structural type 35 regardless of the nature or location of the substituents on the quinoline 

ring poses the question as to what would occur if the 5-position were substituted with a 

reasonable leaving group. In the case of halide substituted x-q6 arene complexes, 

nucleophilic substitution competes with nucleophilic addition.7 The reaction of the 5- 

chloro derivative 35j with LiC(CH3 )2CN results in nucleophilic addition across the 3,4- 

bond of the quinoline ring to yield Os3(CO)9(p3-q2-C9H6(5-Cl)(4-C(CH3)2-CN)N)(p-H) 

(39j, Equation 3.9).

In the 5-substituted complexes 35i-351 addition with nucleophiles R'Li (R'= n- 

BuLi, and C(CH3)2CN) is observed across the 3,4-bond of the quinoline, regardless of the 

size of the substituent, showing no evidence of nucleophilic substitution as with n-arene 

systems.7 The reaction of the 5-fluoro, 35i; 5-bromo, 35k; and 5- amino, 351 derivatives 

with R'Li (R=C(CH3)2CN, R’= n-BuLi) yields the analogous nucleophilic addition
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products Os3(CO)9(p3-ri2-C9H6(5-NH2)(4-R’ or R)N)(p-H) 39i, 39i’, 39k. 39k'. 391, and 

391' (Scheme 3.9).

The ‘H-COSY NMR of 39j clearly shows the coupling of the most downfield 

aromatic resonance (i.e.. the C(2)-H) resonance coupled to the most upfield aliphatic 

resonances and two separately coupled aromatic resonances. These data are consistent 

with the structure shown in Equation 3.9 and this has been verified by a solid state 

structure determination of this complex.3'4 

Equation 3.9

1.) NU', 2.) H+
THF ** 

N ifs'C fM efeC N

35i X=F
35j X=CI 39i, 39j, 39k, & 39I
35k X=Br 
35I X=NH2

The solid state structure of 39j is shown in Figure 3.5, selected distances and bond 

angles in Table 3.6. The solid state structure of 39j is that proposed from the *H NMR 

data. The core consists of an essentially equilateral triangle with a hydride bridging the 

Os(l)-Os(3) edge. The electron deficient bonds between C(8), Os(l) and Os(3) are 

slightly asymmetric and the bond vectors are about the same as in 35a ( 2.31(1) and 

2.26( 1 )A in 39j and 2.32( 1) and 2.28( 1 )A in 35a). The Os(2)-N( 1) bond is slightly
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Figure 3.5 Solid State Structure for Os3(CO)9(M3-n2-C*H6(5-Cl)(4-C(CH3)2-

CN)N)(|i-H) 39j Showing the Calculated Position of the Hydride.
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Table 3.6 Selected Distances(A) and Bond Angles(Deg) for 39j

Distances

Os( I )-Os(2) 2.772(1) N(l)-C(2) 1.30(1)

Os( I )-Os(3) 2.756(1) C(2)-C(3) 1.50(1)

Os(2)-Os(3) 2.770(1) C(3)-C(4) 1.51(2)

Os( l)-C(8) 2.26(1) C(4)-C(10) 1.51(1)

Os(3)-C(8) 2.31(1) C(4)-C(40) 1.59(2)

Os(2)-N(l) 2.17(1) C(5)-C1 1.73(1)

Os-COb 1.92(2) C(5)-C(6) 1.36(2)

C-Ob 1.13(2)

Angles

Os( l)-Os(2)-Os(3) 59.65(2) N(l)-C(2)-C(3) 122(1)

Os( 1 )-Os(3)-Os(2) 60.22(2) C(2)-C(3)-C(4) 112(1)

Os(2)-Os( 1 )-Os(3) 60.12(2) C(3)-C(4)-C(10) 108(1)

Os( 1 )-C(8)-Os(3) 74.2(3) C(3)-C(4)-C(40) 112(1)

Os(3)-Os(2)-N( 1) 84.9(2) C(10-C(5)-C1 120(1)

Os( I )-Os(2)-N( 1) 82.4(2) C(7)-C(8)-C(9) 116(1)

Os-C-Ob 176(1)

Numbers in parentheses are average standard deviations. 

Average values.
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elongated in 39j with respect to 35a (2.17(1) and 2.I3(1)A respectively) as observed in 

cis- and trans-37m. The N( 1 )-C(2) bond, at 1.30( 1 )A is typical of a C-N double bond and 

the remaining bond lengths are unremarkable.

3.6 Rearomatization of the Nucleophilic Addition Products

The reaction of 35o with LiCHzCOi'Bu gives the green aromatized complex 

Os3(CO)9(P3-T|2-C9H4(6-OCH3)(5-CH2C02,Bu)N)(p-H) (35s, Equation 3.10) in 54% yield. 

Equation 3.10

35o 35s 35t

In addition, 35% of the corresponding phenol, Os3(CO)9(p3-r|2-C9H4(6-OH)(5- 

CHiCCVBuJNXij-H) (35t) is also isolated, probably as a result of hydrolysis by trace 

moisture during the acid quench or on workup on silica gel. This probably takes place 

prior to rearomatization from the hydrolytically sensitive allyl ether intermediate. The 

facile oxidation (dehydrogenation) of the intermediate nucleophilic addition product is a 

result of the presence of the strongly tt-electron donating 6-methoxyl group and the alkyl 

substituent in the 5-position. Small amounts of rearomatized products were also noted in 

the reactions of 35m with LiCH3 and LiQCHshCN. Consistent with this idea is the fact
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that the 6-carboxymethyl derivative, 35p, forms the expected nucleophilic addition 

product Os3(CO)9(h3-ti3-C9H6(5-CH2CH=CH2)(6- C 0 2CH3)N)(h-H) (38p, Scheme 3.3) 

on reaction with allylmagnesium bromide in good yield.

The facile rearomatization of the nucleophilic addition product derived from the 

addition of UCH 2CO2 BU to 35o (Equation 3.10) prompted us to attempt to reproduce this 

process in a deliberate manner. There are several methods which proved adequate. The 

addition of trityl cation to the anions (36b & 36k, R="Bu, and ‘BuOAc) resulting from the 

addition of alkylating agents R'Li (R’=n-Bu, CHaCOi'Bu) to 35a gave the rearomatized 

products Os3(CO)9(M3-n2-C9H5(5-R,)N)(p-H) (35u, R = "Bu; R = 35v, CH2C 02‘Bu; 

Equation 3.11) in 53% and 83% yield respectively.

Equation 3.11

R'

35u R’ = n-Bu 
35v R’ = CH2C 0 2tBu

In some other cases, we found the coproduct, triphenyl methane difficult to 

separate from the products. An alternative route is the addition of dichlorodicyanoquinone 

(DDQ) followed by an ethanol quench of the resulting hydroquinone anion and excess 

carbanion. Thus, 35a is treated with CH3Li then DDQ/EtOH) to yield Os3(CO)9 (p3-q2- 

C9H5(5,6-CH3)2)N)(p-H) (35w, Equation 3.12).
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Equation 3.13

1.LiCHj
2. DDQ/EtOH*

35m

Finally, one can add a deprotonating agent such as diazabicyclononane (DBU) to 

the isolated nucleophilic addition products of type 37 or 38 followed by DDQ/EtOH, as 

demonstrated with 37a, which yielded [Os3(CO)9(p3-Tr-C9H5(5-CH3)N)(p-H)] (35x) 

(Equation 3.13).

Equation 3.13

Os-

Os

37a

1. DBU
2 . DDQ/EtOH*

35x

Attempts to react complexes 37 or 38 with DDQ directly failed. Choosing the best 

route from among these methods remains uncertain at present except that DDQ seems to 

tolerate functionality a bit better and its reaction products are easier to separate from the 

cluster reaction products. In cases where multiple products result, isolation of the
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nucleophilic addition product followed by DBU/DDQ treatment would be the method of 

choice.

3.7 Cleavage of the Functionalized Quinoline from the Cluster

In order for this synthetic methodology to be developed as a useful tool for the 

synthesis of novel quinoline derivatives, a clean method for cleavage of the quinoline 

ligand from the cluster is required. For the rearomatized derivatives of structural type 35 

the method for cleavage proved to be heating the quinoline cluster complex at 70°C in 

acetonitrile under an atmosphere of carbon monoxide. This leads to isolation of the free 

quinoline and formation of Os3(CO)i2 (Equation 3.14). The Osj(CO)i2 precipitates almost 

quantitatively from the cooled reaction solution while the quinoline can be recovered by 

evaporation of solvent and Filtration through silica if necessary.

Equation 3.14

Including the aromatization procedures outlined above, successful cleavage by this 

method constitutes a stoichiometric cycle for selectively alkylating quinolines at the 5- 

position (Scheme 3.2).

R

P

C H ,C N , C O     ► 
8 0  °C

+ OS3(CO)]2
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Scheme 3.2 Complete Stoichiometric Cycle
81

R

Os3(CO)10(CH3CN)

-CO

Unfortunately, this method does not extend to the nucleophilic addition products of 

structural types 37 or 38 . Although cleavage is observed at elevated pressures of carbon 

monoxide for 37 & 38, the reaction is not clean resulting in a mixture of products. Other 

approaches to cleaving these ligands are currently being explored. A summary of all the 

chemistry discussed in this chapter is given in Scheme 3.3.
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Scheme 3 3  Summary of Reactions of Carbanions with Electron Deficient 

Quinoline Triosmium Complexes

82
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3.8 Conclusions

The three center two-electron bonding of the C(8 ) carbon of the quinoline ring 

with two metal atoms of the Os3 triangle imparts a significant electron deficiency to C(5) 

of the quinoline ring making it subject to regiospecific attack by a wide range of 

carbanions. In sharp contrast to the 7t-q6-chromium arenes. we do not observe lithiation 

with CH3Li or n-BuLi. 7 Substitution is not observed in the case of the 5-halo quinoline 

derivatives while for the rt-q6-arene complex, substitution is competitive with nucleophilic 

addition for most nucleophiles with halogen substituted arenes. 7 Substitution of halogen 

at the 5-position redirects nucleophilic attack to the 4-position resulting in nucleophilic 

addition across the 3,4 double bond after acid quench.

These results suggest that the electron deficiency is localized at the 5-position (and 

presumably the 7-position which is apparently sterically blocked). The failure to observe 

lithiation even with small relatively hard carbanions probably reflects this concentration of 

the electron deficiency, whereas in the ^-coordinated arenes, the electron withdrawing 

effect of the metal is distributed among all six carbon atoms. That substitution for 

halogens is a less accessible pathway for these quinoline derivatives than for 7t-q 6 arenes 

is more difficult to rationalize but may be due to the fact that the direction of electron 

polarization is along the reaction coordinate for substitution in the case of the tr-q6 arenes 

while this is not the case for the p 3-q2 quinoline complexes.

It is also noteworthy that these quinoline derivatives react reasonably well with 

methyl and allyl Grignard reagents while the 7t-q6  arenes do not. This is probably also 

related to the localization of the electron deficiency, as described above. In addition, this 

may be a consequence of the fact that that the carbonyl ligands on the osmium cluster may
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be less subject to competitive nucleophilic attack than the carbonyls in the 7t-q6  chromium 

arenes owing to their higher average infrared stretching frequencies and/or force constants 

of the C-O carbonyl ligand bonds. 10

The strictly trans- addition of the electrophiles (FT, CH3+CH3CO+) is a 

consequence of the planar structure of the intermediate anion (Equation 2.3). What is 

surprising here is that even with the relatively small methyl group trans- addition is >95% 

by 'H NMR while with hydride as the nucleophile and proton as the electrophile, the 

stereoselectivity is completely lost, with both cis- and trans- addition taking place to about 

the same extent. 7 These results indicate that the stereoselectivity is steric in origin rather 

than being directed by prior coordination of the electrophile to the metal core or the 

carbonyl ligands. That complex (dihydride) 38n does not convert to 37n is consistent with 

this interpretation. In the case of 7u-q6  arene complexes quenching with electrophiles 

other than protons leads primarily to electrophilic alkylation of the carbanion owing to the 

reversibility of the nucleophilic addition. 14 We see no evidence for reversible addition in 

the reaction of 35 with nucleophiles although 2:3-fold excesses of the carbanions were 

sometimes necessary to drive the reaction to completion. Stereoselective trans- acylation 

is observed for 7t-q6  arenes with methyl iodide as the electrophile in the presence of 

carbon monoxide and in this case, interaction with the carbonyl ligands on chromium 

directs the trans- addition. 7 Topside attack of both nucleophile and electrophile to give 

overall cis- addition is observed in the nucleophilic additions across the 5,6-bond of tr-q6  

dihydro-napthyl chromium tricarbonyls. 11

Overall, there are distinct steric and electronic differences between the activation 

of quinolines by the p 3-q2 bonding mode to triosmium clusters and the well known tc-q6
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arene complexes. Of course, none of this chemistry would be possible without the 

presence of the third metal atom which coordinates the nitrogen lone pair and apparently 

blocks attack at the 2 - position, the normal site of nucleophilic attack in quinolines.1'  

Indeed, this chemistry is extendable to a wide range of benzoheterocycles with pyridinyl 

nitrogens. Thus, the synthetic methodology outlined here is applicable to quinoxaline, 

benzothiazole 2-methyl benzimidozoles, benzotriazoles and phenanthradines. 13 This work 

is currently underway in our laboratories.

3.9 Experimental Section

3.9.1 Material and General Considerations

All reactions were carried out under an atmosphere of nitrogen but were worked up 

in air. Tetrahydrofuran was distilled from benzophenone ketyl, methylene chloride and 

acetonitrile from calcium hydride.

Infrared spectra were recorded on a Perkin-Elmer 1600 FT-IR spectrometer and ‘H 

and l3C NMR were recorded on a Varian Unity Plus 400. Elemental analyses were done 

by Schwarzkopf Microanalytical Labs, Woodside, New York. Chemical shifts are 

reported down field positive relative to tetramethylsilane and coupling constants are 

reported only for those resonances relevant to the stereochemistry and while only the 

multiplicities of resonances with standard couplings are reported.

Dichlorodicyanoquinone and trityl tetrafluoroborate were purchased from Aldrich 

Chemical and used as received. Trifluoroacetic acid and diisopropylamine were 

purchased from Aldrich Chemical and distilled from phosphorous pentoxide and calcium 

hydride respectively before use. The carbanion reagents CPLLi, n-BuLi, ‘BuLi,
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CH?MgBr. and allylMgBr were purchased from Aldrich and used as received. The 

carbanion reagents BnLi and PhLi were prepared in ether directly before use by the 

reaction of the corresponding diorganomercury compound (Strem) with lithium metal 

(Aesar). The other carbanions were generated by deprotonation of their corresponding 

neutral precursor with lithium diisopropyl amide which was generated from diisopropyl 

amine and Li "Bu according to published procedures 14 except for the carbanions resulting 

from 1,3-dithiane and vinyl bromide which were generated by treatment with n-BuLi and 

'BuLi respectively, at -78°C.

3.9.2 Preparation of Os3(CO)9(M3-ti3-C9H7(R’)N)0i-H) (37a-237), Os3(CO)9(M3-Tl3- 

C9H6(R)(R’)N)(p-H) (38b, 38c, 38d, 38e, 38e\ 38f, 38f\ 38h, m -38n, 39n, cis- 

38m, cis-38 m')

The following procedure was followed for the compounds listed above. 25-200 

mg (0.025-0.20 mmol) Os3(CO)9 (p3-T|2-C9 H5(R)N)(p-H) was dissolved in 5 mL THF and 

cooled to -78%. at which time a 1.5-3 molar excess of the appropriate carbanion was 

added slowly by syringe. The amount of carbanion added was governed by an observable 

color change from deep green to dark amber or orange. The reaction mixture was warmed 

to 0°C, stirred for 0.25 to lh. cooled again to -78°C and quenched with an amount of 

trifluoroacetic acid, 10% in excess of the amount of carbanion used. The solution 

generally turned orange-red as it warmed to room temperature. The clear orange-red 

solution then rotary evaporated, taken up in minimum CH2CI2 , filtered and then purified 

by thin layer chromatography on 0.tx20x20cm or 0.1x20x40 cm silica gel plates using 

CHiCh/hexanes (20-50% CH2CI2 as eluent. In general, one major orange band containing
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the nucleophilic addition product was observed in addition to minor amounts of 

unconsumed starting material, Os3(CO)i0(p-T|2-C9 H5(R)N)(p-H) and in the case of cis- 

38n, complex 39n was obtained as a yellow band moving faster than the major product 

but slower than the starting material. Yields are given along with the analytical and 

spectroscopic data below.

Compound 37a: Yield for 37a: 65.9%. Anal. Calcd for C 19H11NO9 OS3 : C, 23.58; H, 1.14; 

N, 1.45%. Found: C, 23.86; H. 0.83; N, 1.38%. IR (vCO) in hexane: 2117 m, 2078 s, 

2046 s, 2024 s, 1989 br, 1968 br. 'H NMR of 37a at 400 MHz in CDC13: 6  8.41 (d, 

H(2)), 7.39 (d, H(4)), 6.84 (t, H(3)), 4.09 (t, H(7)) 2.84 (m, H(5)), 2.28 m & 1.98 m 

(H(6 ), 2H ),), 1.17(d, CH3), -16.99 (s, hydride).

Compound 37b: Yield for 37b: 44.6%. Anal. Calcd for C2 2H,7NO<,Os3 :C, 26.20; H, 

1.69; N. 1.36%. Found: C. 26.05: H, 1.67; N, 1.23%. IR (v CO) in hexane: 2079 s, 2047 

s, 2024 s. 1998 w, 1991 br. 1967 w. *H NMR of 37b at 400 MHz in CDC13: 6  8.42 (dd, 

H(2)), 7.36 (dd. H(4)), 6.82 (t, H(3)), 4.03 (t, H(7)). 2.52 (m, H(5)). 2 .31 (m 2H, CH2 on 

butyl), 1.50 m (H(6 ). 2H), 1.29 (m. CH2 ,4H), 0.86 (t, CH3) -16.99 (s, hydride).

Compound 37c: Yield for 37c: 51.6%. Anal. Calcd for C ^H nN O ^S s^ , 26.16; H, 1.68; 

N, 1.38%. Found: C, 25.82; H, 1.70; N, 1.32%. IR (v CO) in hexane: 2102 m, 2078 m, 

2057 w, 2048 s, 2023 s, 2003 w, 1989 m, 1969 br. 'H NMR of 37c at 400 MHz in CDC13:
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6  8.49 (dd, H(2)), 7.36 (dd, H(4)), 6.82 (t, H(3)), 4.06 (t, H(7)). 2.70 m & 2.16 m (H(6 ), 

2H). 2.28 (d, H(5)), 0.934 (s, 9H,CH3 on t-Butyl) -16.95 (s, hydride).

Compound 37d: Yield for 37d: 48.2%. Anal. Calcd for C25HisN09Os3:C, 22.17; H, 1.36: 

N. 1.27%. Found: C, 28.17: H, 1.33: N, 1.29%. IR (v CO) in hexane: 2079 s, 2046 s, 

2024 s, 1990 s, 1967 br. 'H NMR of 37d at 400 MHz in CDCI3: 6  8.40 (dd, H(2)), 6 . 6 8  (t, 

H(3)), 6.97 (dd, H(4)), 2.70 (m, H(5)), 2.27 m & 2.12 m (H(6 ), 2H), 4.03 (t, H(7)), 7.22 

(m, 4H), 6.95 (m, 1H). 2.86 (m, CH2 of benzyl).-16.99 (s, hydride).

Compound 37e: Yield for 37e: 66.11%. Anal. Calcd for C2 4H l3N0 9 0 s3 :C, 27.96: H, 

1.26: N, 1.25%. Found: C. 27.55: H, 1.33: N, 1.25%. IR (v CO) in hexane: 2079 s, 2047 

s. 2025 s. 1991 s, 1969 br. 'H NMR of 37e at 400 MHz in CDC13: 6  8.46 (d, H(2)), 7.09 - 

7.32 (m. 5H) 7.03 (d, H(4)), 6.77 (dd, H(3)), 4.02 (m, H(7)), 3.97 (m,H(5)), 2.48(m, H(6 ), 

2H). -16.99 (s. hydride).

Compound 37f: Yield for 37f: 50.8%. Anal. Calcd for C2oHuN09 Os3 :C, 24.52; H, 1.12; 

N. 1.43%. Found: C, 24.43: H, 1.07; N, 1.42%. IR (vCO) in hexane: 2101 w, 2079 s, 

2047 s, 2024 s, 2001 w, 1991 br, 1969 w. 'H NMR of 37f at 400 MHz in CDCly. 6  8.45 

(dd. H(2)), 7.38 (dd, H(4)), 6.84 (t, H(3)),5.69 (m, 1H), 5.25 & 5.04 (d, 2H), 4.02 (t, 

H(7)), 3.42 (m, H(5)), 2,25(m, H(6 ), 2H), -17.00 (s, hydride).
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Compound 37g: Yield for 37g: 48.0%. Anal. Calcd for C2 4H17NO9 OS3 : C. 27.86; H, 1.65; 

N. 1.35%. Found; C, 27.77; H, 1.81; N, 1.16%. IR (vCO) in hexane; 2102 w, 2079 s, 

2046 s. 2025 s, 1990 br. 1968 w. 'H NMR of 37g at 400 MHz in CDCI3: Diastereomer 1: 

6  8.42 (dd. H(2)). 7.35 (dd. H(4)). 6.82 (t, H(3)). 4.03 (t. H(7)), 2.58 (m, CH2). 2.21 m 

(H(6 ), 2H), 1.72 (m. CH2), 1.52 (m, H(5)), 1.28 (m. CH2), 0.978 (t, CH3) -17.00 (s. 

hydride). Diastereomer 2: 6  8.40 (dd, H(2)), 7.31 (dd, H(4)), 6.79 (t, H(3)), 3.93 (t, 

H(7)), 2.53 (m, CH2), 2.15 (m, H(6 ), 2H), 1.68 (m, CH2), 1.49 (m, H(5)), 1.22 (m, CH2  ), 

0.851 (t, CH3 ) , -17.10 (s, hydride),

Compound 37h: Yield for 37h: 72.1%. Anal. Calcd for C20H|oN20 9 0 s3 : C, 24.16; H, 

1.01; N, 2.42%. Found; C, 24.07; H, 1.22; N, 2.51%. IR (v CO) in hexane: 2057 w, 2048 

s, 2023 s, 2003 w, 1991 m, 1969 br. lH NMR of 37h at 400 MHz in CDCI3 : 6  8.52 (dd, 

H(2)), 7.49 (dd, H(4)), 6.92 (t. H(3)), 3.90(t, H(7)), 3.06 (m, H(5)), 2.39(m, CH2), 2.32(m, 

H(6 ), 2H), -17.06 (s, hydride).

Compound 37i: Yield for 37i: 69.1 %. Anal. Calcd for C2 2H 14N2O9OS3 : C, 25.90; H, 1.27; 

N, 2.74%. Found: C, 26.04; H, 1.38; N, 2.50%. IR (v CO) in hexane: 2050 s, 2025 s, 

2003 w, 1991 m. 1969 br, 1957 w. ‘H NMR of 37i.at 400 MHz in CDC13: 6  8.58 (d, 

H(2)), 7.54 (d, H(4)), 6.91 (t, H(3)), 3.93 (m, H(7)), 2.81 dd & 2.64 dd (H(6 ), 2H), 2.25 

(d, H(5)), 1.42 (s, CH3), 1.35 (s, CH3), -17.00 (s, hydride).
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Compound 37j: Yield for 37j: 72.4%. Anal. Calcd for C^H^NOgOssS,: C. 24.63; H, 

1.40; N, 1.31%. Found: C, 24.56 ; H, 1.34; N, 1.21%. IR (v CO) in hexane: 2102 m. 2078 

m. 2057 w, 2048 s, 2023 s, 2003 w, 1989 m. 1969 br. 'H NMR of 37j at 400 MHz in 

CDCU: 6  8.45 (dd. H(2)), 7.48 (d, H(4)). 6.83 (t. H(3)). 4.04 (t, H(7)), 4.21 (d. 1H). 1.79 

(m, H(5)), 2.82(m, 2H), 2.17(tt, H(6 ), 2H), 2.05 (m, 2H), 2H), -17.00 (s. hydride).

Compound 37k: Yield for 37k: 85.8%. Anal. Calcd for C2 4H 19NO 11OS3 : C, 26.98; H, 

1.78: N, 1.31%. Found: C, 27.38; H, 1.55; N, 1.27%. IR (v CO) in hexane: 2079 s, 2047 

s, 2025 s. 1991 m. 1969 br. 'H NMR of 37k at 400 MHz in CDCI3 : 6  8.43 (dd, H(2)), 

7.45 (dd, H(4)), 6.82 (t, H(3)), 3.99 (t, H(7)), 3.14 (m, H(5)), 2.45 (dd,H(6 ), 2H), 2.22 

(t, CH2), 1.39 (s, CH3, 9H) -17.04 (s, hydride).

Compound 371: Yield for 371: 52.6%. Anal. Calcd for C2 |H ,3N0 9 Os3: C, 25.35; H, 1.31; 

N, 1.41%. Found: C, 25.31; H. 1.36; N, 1.31%. IR (y CO) in hexane: 2079 s, 2046 s, 

2024 s, 1991 m, 1969 br. 'H NMR of 371 at 400 MHz in CDC13: 6  8.42 (dd. H(2)). 7.33 

(dd. H(4)), 6.81 (t, H(3)), 5.64 (m, 1H), 5.05 (m, 2H) 4.01 (t. H(7)). 2.65 (m, H(5)), 

2.23(m.H(6), 2H), 2.25 (m. CH2), -17.00 (s, hydride).

Compound 38b : Yield for 38b: 50.3%. Anal. Calcd.C24H I7N20 [l0 s3 : C, 26.64.H, 1.57; 

N, 2.59 %. Found: C, 26.48; H, 1.34; N, 2.57 %. IR ( u  CO) in CH2C12  : 2082 s, 2051 s, 

2028 s, 1994 br, 1971 w c m 1. lH NMR of 38b at 400 MHz in CDC13 : 5 9.13 (s, H(2)),
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8.08 (s. H(4)), 3.49 (s, CH3 on carboxy), 3.87 (m, H(7)),2.68 (d, H(5)), 2.83 & 2.22 (dd &

q of q, H(6) two protons), 1.39 & 1.37 (s & s CH3 6 protons),-17.027 (s, hydride).

Compound 38c: Yield for 38c: 60.1%. Anal. Calcd for C^HistyOgOs^ C, 25.51; H, 

1.54; N, 4.05%. Found: C, 27.12; H, 1.87; N. 3.75%. ER (v CO) in hexane: 2080 m, 2049 

s, 2027 s. 2004 m. 1992 s, 1969 w, 1964 w,1952 w. 'H NMR of 38c at 400 MHz in 

CDC13: 6 8.06 (d, H(2)), 7.29 (br, NH2), 6.73 (s, H(4», 3.95(dd, H(7)), 2.71 & 2.25(m, 

H(6), 2H), 2.54 (d, H(5)), 1.40 (s. CH3), 1.33 (s, CH3), -17.01 (s, hydride).

Compound 38d : Yield for 38d: 71.2%. Anal. Calcd.C23Hi6N209Os3: C, 26.60;H, 1.54; 

N. 2.70 %. Found: C, 26.48; H, 1.49; N, 2.60 %. IR ( u CO) in CH2C12 : 2080 s, 2050 s, 

2026 s, 1990 br, 1968 w, 1954 w c m 1. lH NMR of 38d at 400 MHz in CDC13 : 6 8.42 (dd, 

H(2)), 6.77 (d, H(3)), 3.92 (m, H(7)), 2.97 (dd, H(5)), 2.73 & 2.09 (m & m. H(6) two 

protons), 2.19 (s, CH3 on C(4)), 1.46 & 1.42 (s & s CH3 6 protons),-17.022 (s, hydride).

Compound 38e’: Yield for 38e’: 53.6%. Anal. Calcd for C24HhC1NOhOs3: C, 26.08; H, 

1.81: N, 1.27%. Found: C. 26.12; H, 1.93; N, 1.16%. IR (y CO) in hexane: 2081 m, 2050 

s. 2028 s, 2002 m, 1975 w, 1968 w, 1955 w. ‘H NMR of 38e’ at 400 MHz in CDC13: 6 

8.31 (d, H(2)), 6.85 (d, H(3)), 3.90 (t, H(7)), 3.45 (m, H(5)), 2.46 (m, CH2), 2.05 (m, H(6), 

2H), 1.44 (s, CH3, 9H) -17.05 (s, hydride),.
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Compound 38e: Yield for 38e: 67.1%. Anal. Calcd for C2 1H13CINO9 OS3 : C, 25.02; H, 

1.23: N, 2.65%. Found: C, 24.96; H. 1.15: N. 2.31%. IR (y CO) in hexane: 2081 s, 2050 

s. 2027 s. 1992 br. 1972 w, 1958 w. *H NMR of 38e at 400 MHz in CDC13: 6  8.46 (d, 

H(2)). 6.94 (d, H(3)), 3.92 (dd, H(7)), 3.17 (m, H(5)), 2.19(m, H(6 ), 2H), 1.47 (s, CH,), 

1.43 (s, CH3 ), -17.02 (s, hydride).

Compound 3 8 f : Yield for 38r: 64.0%. Anal. Calcd for C is^iN O ^O ss: C, 27.32; H, 

2.01: N, 1.27%. Found: C, 27.81: H, 2.20: N. 1.06%. IR (y CO) in hexane: 2104 m, 2080 

s. 2048 s, 2027 s, 1991 br. *H NMR of 38F at 400 MHz in CDC13: 6  8.30 (d, H(2)), 6.32 

(d, H(3)), 3.91 (dd, H(7)), 3.82 (s, OCH3), 3.43 (m, H(5)), 2.02 (dt, H(6 ), 2H), 2.76 m &

2.35 dd (CHi of t-BuAc) 2.12 (s, CH3 , 9H), -17.06 (s, hydride).

Compound 38f: Yield for 38f: 72.0%. Anal. Calcd for C2 3H16N2O 10OS3 : C, 26.28; H, 

1.42: N. 2.61%. Found: C, 26.60; H, 1.22; N, 2.54%. IR (y CO) in hexane: 2104 m, 2088 

s. 2048 s, 2028 s. 1990 br. 'H NMR of 38f at 400 MHz in CDC13: 6  8.43 (d, H(2)), 6.41 

(d. H(3)). 4.00 (dd. H(7)). 3.84 (s, OCH3), 3.10 (d, H(5)), 2.73 m, -2.18 m, (H(6 ), 2H), 

1.37 (s, CHj), 1.35 (s, CH3), -17.06 (s, hydride).

Compound 38h: Yield for 38h: 31.1 %. Anal. Calcd for C2 3H 15N 1O11OS3 : C, 26.64; H, 

1.43; N, 1.33%. Found: C, 26.88; H, 1.53; N, 1.53%. IR (v CO) in hexane: 2080 s, 2050 

s, 2026 s. 1999 m, 1990 br, 1969 w, 1958 w c m 1. ‘H NMR of 38h at 400 MHz in CDC13: 

6  8.52 (d, H(2)), 7.28 (d, H(3)), 5.71 (m, allyl proton), 5.04 (dd, terminal two allyl
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protons). 3.92 (m. H(7)). 3.89 (s, CH3), 3.54 (m. H(5)), 2.48 & 2.29 (m & m, H(6 ) two 

protons), 1.93 & 1.95 (t & t, 1st CH2 on allyl), -17.007 (s, hydride).

Compound 381: Yield for 38i: 41.3%. C2 4Ht7 N2O u Os3: C, 26.64.H. 1.57; N, 2.59 %. 

Found: C, 26.41; H. 1.41; N, 2.46 %.. IR (y CO) in CH2C12: 2104 m, 2088 s, 2048 s, 2028 

s. 1990 br. lH NMR of 381 at 400 MHz in CDC13: 6  8.73 (d, H(2)), 7.10 (d, H(3)). 3.91 

(dd, H(7)), 3.81 (dd, H(5)), 2.78 and 2.24 (dd & dd, (H(6 ), 2H), 1.34 (s, CH3), 1.31 (s, 

CH3), -16.99 (s, hydride).

Compound 39i: Yield for 39i: 57.2 %. Anal. Calcd for C2 2HnN2OgOs3F: C, 25.41; , 

1.25; N, 2.69%. Found: C, 25.68; H, 1.39; N, 2.53%. IR (vCO) in CH2C12: 2155w, 

2125w. 2076 s, 2047 s, 2020 s, 1989 m c m 1. ‘H NMR of 391 at 400 MHz in CDC13: 6  

8.50 (dd, H(2)), 8.32 (dd, H(6 )), 6.73 (dd, H(7)), 3.48 (d, H(4)), 3.25 (m, H(3) two 

protons). 1.41 & 1.22 (s & s, methyls), -13.014 (s, hydride).

Coumpound 39i’: Yield for 39i’: 52.3 %. Anal. Calcd for C2 2Hi3N2 0 9 Os3F: C, 25.70; H, 

1.55; N. 1.36%. Found: C, 25.32; H, 1.42; N, 1.21%. IR (vCO) in CH2C12: 2155w, 

2l25w. 2076 s, 2047 s, 2020 s, 1989 m cm'1. 'H NMR of 391* at 400 MHz in CDC13: 6  

8.54 (d, H(2)), 8.21 (dd, H(6 )), 6.77 (t, H(7)), 3.31 (q, H(4)), 3.04 & 2.83 (dd & dd, H(3) 

two protons), 1.37 (q, 1 st CH2 on butyl), 1.21 (m, 2nd CH2  on butyl), 1 . 1 1  (m, CH2), 0.82 

(t, terminal CH3), -13.134 (s, hydride).
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Compound 35j: Yield for 35j: 65.5%. Anal. Calcd CriHuClN^OgC^. C. 25.02; H, 1.20; 

N 2.65%. Found: C. 25.15; H, 1.09; N, 2,59%. IR (v CO) in hexane: 2077 m, 2050 s, 

2023 s. 1991 s. 'H NMR of 35j in CDC13: 6  8.78 (dd. H(2)), 8.22 (d, H(6 )), 6.96 (d.

H(7)). 3.68 (d, H(4)), 3.24 ( dd. H(3), 2H). 1.47 (s. CH3 ), 1.28 (s, CH3), -12.78 (s, 

hydride)

Compound 39k: Yield for 39k: 50.5 %. Anal. Calcd for C22Hl3N20 9 0 s3Br: C, 24.02; H. 

1.18: N, 2.54%. Found: C, 24.56; H, 1.16; N, 2.52%. ER (v CO) in hexane: 2077 s. 2050 

s. 2023 s. 1991 m c m 1. *H NMR of 39k at 400 MHz in CDC13: 6  8 . 8 6  (dd. H(2)), 8.12 (d, 

H(6 )), 7.14 (d, H(7)), 3.31 & 3.20 (dd & dd. H(3) two protons), 1.49 & 1.31 (s & s, 

methyls), -12.713 (s, hydride).

Compound 39k': Yield for 39k': 48.4 %. Anal. Calcd for C2 2 Hl6NiO<}Os3Br: C, 24.33;

H. 1.29: N, 1.47%. Found: C, 24.45; H, 1.41; N. 1.56%. IR (v CO) in CH2C12: 2155w, 

2l25w. 2076 s, 2047 s, 2020 s, 1989 m c m 1. *H NMR of 39k’ at 400 MHz in CDC13: 6  

8.80 (dd. H(2)), 7.82 (dd, H(6 )), 6.81 (d, H(7)), 3.31 (dd, H(4)), 2.39 & 2.24 (m & m. 

H(3) two protons), 1.60 (m, Ist CH2 on butyl), 1.42 (q, 2nd CH2 on butyl), 1.22 (m, CH2), 

0.943 (t. terminal CH3), -12.974 (s, hydride).

Compound 391: Yield for 391: 51.2%. Anal. Calcd.C^HisNsOgOs^ C, 25.51;H, 1.54; N,

4.05 %. Found: C, 25.89; H, 1.69; N, 3.89 %. IR ( v  CO) in CH2C12 : 2078 s, 2049 s, 

2021 s, 1984 br, 1944 w cm'1. *H NMR of 391 at 400 MHz in CDCI3 : 8  8 . 8 8  (dd, H(2)),
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7.89 (d. H(6 )), 6.27 (d, H(7)), 4.88 (s, NH2). 3.20 (dd, H(4)), 3.15 & 3.01 (dd & d,H(3) 

two protons), 1.37 & 1.34 (s & s CH3 6  protons),-13.778 (s, hydride).

Compound 391’: Yield for 391’: 53.3%. Anal. Calcd.C2 2 H1gN2O.1Os3 : C, 25.80:H, 1.76; N, 

2.73 %. Found: C, 25.59; H. 1.65; N, 2.67 %. IR ( \> CO) in CH2C12 : 2076 s, 2047 s, 

2021 s, 1988 br, 1942 w cm'1. 'H NMR of 391' at 400 Mz in CDCI3 : 6  8.83 (dd, H(2)), 

7.86 (d, H(6 )), 6.19 (d, H(7)), 4.65 (s, NH2), 2.63 (dd, H(4)), 2.95 & 2.85 (dd & d,H(3) 

two protons), 1.39-1.18 (m, CH2 .-CH2-CH2 6  protons),-13.846 (s, hydride).

Compound m -38m : Yield for cis-38m: 71.3%. Anal. Calcd for C23H 16N2 O9 OS3 : C, 

26.60; H, 1.54; N, 2.70%. Found: C, 26.56; H, 1.53; N, 2.69%. IR (v CO) in hexane: 

2080 s. 2050 s. 2026 s, 1999 m, 1990 br, 1969 w. 1958 w. ‘H NMR of m -38m  at 400 

MHz in CDCI3 : 6  8.55 (d, H(2)), 7.42 (d, H(4)), 6 . 8 8  (t, H(3)), 3.64 (d, H(7)), 2.72 (d,

H(5). JH(5)-H(6)=4.80 H z,), 2.59 (m, (H(6 ), 2H, JH(6)-H(7)=5.95 Hz), 1.64 (d, CH 3 , on 

C(6 )), 1.40 (s, CH3), 1.32 (s,CH3) -17.03 (s, hydride).

Compound cis-38m’: Yield for cis-38m': 67.1%. Anal. Calcd for C20H 13NO9 OS3 : C, 

24.49; H. 1.32; N, 1.43%. Found: C, 24.42; H, 1.07; N, 1.43%. IR (vCO) in hexane: 

2078 s, 2047 s, 2024 s, 1990 m, 1968 br. ‘H NMR of cis-38m' at 400 MHz in CDC13: 6  

8.39 (dd, H(2)), 7.33 (dd, H(4)), 6.78 (tt, H(3)), 3.52 (d, H(7)), 2.53 (m, H(5) JH(5)- 

H(6)=4.50 Hz, ), 2.37 (m, H(6 ), JH(6)-H(7)=4.0 Hz), 1.25 (d, CH3on C(6 )), 1.04 (d, CH3 

on C(5)), -17.02 (s, hydride).
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Compound c£s-38n: Yield for cfr>38n, 1 eq of acid used -10% 39n obtained: 63.0%. 

Anal. Calcd for C 2 2H,3C1N20 90 s 3: C, 25.02: H, 1.23; N, 2.65%. Found: C, 25.46: H, 

1.28: N. 2.19%. IR (v CO) in hexane: 2102 m, 2083 m, 2076 m, 2051 s. 2030 m. 2018 w, 

1995 br. 'H NMR of cis-38n at 400 MHz in CDC13: 6  8.58 (d, H(2)), 7.51 (d. H(4)), 6.96 

(t, H(3)), 4.47(t.H(6), JH(5)-H(6)=5.77 Hz)), 3.74 (d, H(7)), 3.02 (d, H(5)), 1.64 (s, CH3), 

l.50(s, CH3), -17.26 (s, hydride).

Compound 39n: Yield for 39n 10 eq of acid used -50% 38n obtained : 36.1%. Anal. 

Calcd for C^HnClN.OgOsj: C, 25.02; H, 1.25; N, 2.65%. Found: C, 25.41; H, 1.31; N, 

2.32%. IR (v CO) in hexane: 2101 s, 2076 s, 2046 s, 2015 s, 1999 br, 1969 br. *H NMR

of 39n at 400 MHz in CDC!: 6  7.49 (d, H(2)), 7.04(d, H(4)), 6.69 (s, H(7)), 5.79 (t, H(3)),

3.52 (s, H(5)), 1.18 (s, CH3), 0.88 (s, CH3), -13.51(d, hydride, J Hydride-Hydride=1.6 

Hz), -14.52 (d, hydride).

Compound cis-38p: Yield for cis-38p: 57.2%. Anal. Calcd.C23Hi5N i0 90 s 3: C, 26.24;H, 

1.43: N, 1.33 %. Found: C, 26.16; H, 1.35; N, 1.30 %. IR ( x> CO) in CH2C12 : 2080 s, 

2050 s, 2026 s, 1990 br, 1968 w, 1954 w c m 1. ‘H NMR ofcis-38p at 400 MHz in CDC13 

: 5 8.43 (d, H(2)), 7.30 (d, H(4)), 6.81 (t, H(3)), 5.61 (m, 2nd H on ally)), 4.97 & 4.78 (m & 

m. terminal allyl two protons), 4.15 (d, H(7)), 3.82 (s, CH3 on carboxy), 3.09 (m, 1st allyl 

proton). 2.99 (m, H(6)),2.27-2.23 (m, H(5) and -1st proton of allyl), -17.085 (s, hydride).
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Compound 35s: Yield for 35s: 54.1%. Anal. Calcd for C2 5H 19NO12OS3 : C. 27.32; H, 

1.73; N, 1.27%. Found: C, 27.39; H, 1.75; N, 1.29 %. IR (v CO) in hexane: 2075 s, 2047 

s. 2019 s. 1989 br, m. 'H NMR of 35s at 400 MHz in CDC13: 6  9.15 (dd, H(2)), 8.36 (s, 

H(7)). 8.14 (dd, H(4)), 7.08 (tt, H(3)), 3.95 (s, OCH3 on C(6 )), 3.77 (s, CH2 on C(5», 1.3 

(s, 9H). -11.99 (s, hydride).

Compound 35t: Yield for 35t: 35.2%. Anal. Calcd for C24Ht7NOl2Os3: C, 26.56; H, 1.57; 

N, 1.29%. Found: C, 27.21; H, 1.45; N, 1.257o. IR (vCO) in hexane: 2075 s, 2048 s, 

2019 s, 1989 br, m. lH NMR of 35t at 400 MHz in CDC13: 6  9.16 (dd. H(2)), 8.24 (dd, 

H(4)), 8.22 (s, H(7)), 7.15 (t, H(3)), 7.81 (s, OH on C(6 )), 3.75 (s, CH2 ), 1.406 (s, CH3. 

9H) -12.27 (s, hydride).

3.9.3 Preparation of Os3(CO)9 (p3-r|3 -C9 H*(6 -R)(5 -R’)N)(p-H) (trans- 38m, trans- 

3m’, trans 38z).

A 50-100 mg (0.05-0.100 mmol) sample of la  was dissolved in 5 mL THF, cooled 

to -78°C and treated with a 2-3 molar excess of LiC(CH3)2CN or LiCH3. The reaction 

solution is warmed to 0°C, the THF removed by trap distillation and then 5 mL CH2C12  

added after, with a two-fold excess (based on the amount of carbanion used) of 

dimethylsuifate or acetic anhydride is slowly added by syringe. The reaction mixture was 

then warmed to room temperature, rotary evaporated, taken up in minimum methylene 

chloride, filtered and then purified by thin layer chromatography using CH2Cl2/hexanes as 

eluent. In the case of trans- 38m and trans- 38m’, it was not possible to separate these

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



98
products from 371 and 37a respectively which were formed (40% of total yield by lH 

NMR) as a result of incomplete electrophilic alkylation of the intermediate anion. The 

two compounds were separated by preparative HPLC using a reverse-phase C -I8  column 

and 15% water-acetonitrile as the eluting solvent. In the case of 38, the formation of 37a 

was also observed (-10%) but as a distinct orange band on the TLC plate. Isolated yields 

of trans- 38m, trans- 38m* and 38 are given below with the spectroscopic and analytical 

data.

Compound trans-38m: Yield for trans-3Sm: 41.1%. Anal. Calcd for C23H 16N2O9 OS3 : C, 

26.61: H, 1.54; N, 2.70%. Found: C, 26.56; H, 1.53; N, 2.69%. IR (vCO) in hexane: 

2080 s, 2050 s, 2026 s, 1999 m, 1990 br, 1969 w, 1958 w. lH NMR of/ra/w-38m at 400 

MHz in CDCI3 : 6  8.60 (dd, H(2)), 7.52 (d, H(4)), 6.90 (t, H(3)), 4.54 (d, H(7)), 2.74 (t, 

(H(6 )) J H(6)-H(7)=8.0 Hz), 2.42 (s, H(5), J H(5)-H(6) = < 1 Hz), 1.05 (d, CH3 on C(6 )),

1.36 (s, CH3 ), 1.30 (s,CH3), -16.51 (s, hydride).

Compound/ra/is-38m': Yield for trans-3Sm': 30.1%. Anal. Calcd for C20H 13NO9 OS3 ; C, 

24.49: H, 1.32; N, 1.43%. Found: C, 24.41; H, 1.08; N, 1.41%. IR (vCO) in hexane: 

2078 s, 2024 s, 1990 m, 1967 br. 'H NMR of trans-3&m' at 400 MHz in CDC13: 6  8.40 

(dd, H(2)), 7.47 (dd, H(4)), 6 . 8 6  (t, H(3)), 3.74 (d, H(7)), 2.55 (m, H(5), J H(5)-

H(6 )=l 1.98 Hz), 1.76 (m, (H(6 ), J H(6)-H(7)=4.0Hz), 1.24 (t, CH3 on C(6 )), 1.15 (d, CH3 

on C(5)), -17.01 (s, hydride).
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Compound trans-38z: Yield for trans-3Sz: 56.1%. Anal. Calcd for C2 1H 13NO 10OS3 : C. 

24.95: H. 1.29: N, 1.39%. Found: C, 25.31: H, 1.18: N, 1.27%. IR (v CO) in hexane: 

2080 s. 2049 s. 2026 s. 1991 m. 1967 w. ‘H NMR of trans-38 at 400 MHz in CDC13: 6  

8.42 (d, H(2)), 7.48 (d. H(4)), 6.92 (t, H(3)), 3.60 (d, H(7», 3.18 (m, H(5), J H(5)- 

H(6)=12.12 Hz), 2.73 (m, (H(6 )), J H(6)-H(7)=4.40 Hz), 2.36 (s, COCH3 on C(6 )), 1.12 

(d.CHi on C(5)), -17.12 (s, hydride).

3.9.4 Preparation o f Os3(CO)9(p3-tl2-C9H5(R’)N)(p-H) (R ’=n-Bu, 3Su;

R ’=CH2CP2*Bu, 3 5 v ) ;  Rearomatization o f  the Nucleophilic Addition Products 

with PI13CBF4.

A sample consisting of 50 mg (0.025 mmol) la  in 5 mL THF is treated with a two­

fold molar excess of LiR’(R’-n-Bu, CH2C 0 2 'Bu) at -78°C. The reaction solution warmed 

to 0°C, and the solvent removed by trap-to-trap distillation. Next, 5 mL CH2C12 is added 

and then 2 .1 equivalents of P l^ C  BF4 (based on la) is added as a solid and the reaction 

mixture was stirred for 30 min, rotary evaporated and then purified by TLC using 

CH2Cl2/hexanes (50% CH2C12) to yield one major band 30-35 mg (55-60%) of 

Osx(CO)9 (p 3-C9 Hs(R’)N)(p-H)(R=n-Bu 35u, R=CH2C 0 2 ‘Bu, 35v). Additional minor 

bands due to products derived from the trityl cation were also present (Ph3CH, Ph3C- n-Bu 

or Ph?C-CH2C 0 2 'Bu).

Compound 35u: Yield for 35u: 53.2%. Anal. Calcd for C^HisNOgOss: C, 26.21; H, 

1.49; N, 1.39%. Found: C, 26.05; H, 1.70; N, 1.27%. IR (v CO) in hexane: 2077 s, 2047 

s, 2019 m, 1990 m. *H NMR of 35u at 400 MHz in CDC13: 6  9.27 (dd, H(2)), 8.49 (d.
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H(6 )), 8.27 (dd, H(4)). 7.13 (t, H(3)). 7.04 (d, H(7», 2.78 (t. CH2 on C(5)), 1.68 (m, - 

1.45 m, 4H), 0.957 (t, CH3 ), -12.29 (s, hydride).

Compound 35v: Yield for 35v: 83.4%. Anal. Calcd for C24Hi7NOiiOs3: C, 26.64; H,

1.66; N, 1.29%. Found; C, 27.64; H, 1.58; N, 1.23%. IR (v CO) in hexane: 2075 m, 2047 

s, 2018 m, 1990 s, 1973 br. lH NMR of 35v at 400 MHz in CDCI3 : 6  9.29 (dd, H(2)), 

8.53 (d, H(6 )), 8.25 (dd, H(4)), 7.14 (t, H(3)), 7.08 (d, H(7)), 3.75 (s, CH2  on C(5)), 1.32 

(s, 9H), -12.24 (s, hydride).

3.9.5 Preparation of Os3(CO)9(n3-Ti2-C9H4(5 -CH3)(6 -CH3)N)(p-H) (35w): 

Rearomatization with 2,2 dichloro-3^3*dicyanoquinone (DDQ).

50 mg (0.025 mmol) 35m in 5 mL THF was treated with a two-fold molar excess 

of LiCH3 in THF/hexane at -78°C. The reaction mixture was wanned to room temperature 

and the solvent removed by trap-to-trap distillation. To the reaction residue. 5 mL 

absolute ethanol was added followed by 1.1 equivalents of DDQ in 1.0 mL absolute 

ethanol. The reaction mixture was stirred for 20 min, then rotary evaporated, taken up in a 

minimum amount of CH2C12 , filtered and then purified by TLC using 1 : 1  CH2Cl2/hexane 

as eluent. In addition to a minor amount of 35m, one major green band 35w was isolated, 

33 mg (58%).

Compound 35w: Anal. Calcd for C ^ n N C M ^ :  C, 24.48; H, 1.12; N, 1.43%. Found: C, 

24.37: H, 0.97; N, 1.42%. IR (v CO) in hexane: 2075 s, 2045 s, 2017 m, 1987 br, m.. *H
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NMR of 35w at 400 MHz in CDC13: 6 9.19 (dd, H(2)). 8.34 (s, H(7)), 8.27 (dd, H(4)).

7.08 (t. H(3)), 2.54 (s. CH3 on C(5)), 2.24 (s, CH3 on C(6)). -12.29 (s, hydride).

3.9.6 The Reaction of Os3(CO)9 (p3-Ti3 -C9 H 7(5-CH3 )N) (37a) with

Diazabicyclononane (DBU)/2v2,dichloro-3r3-dicyanoquinone (DDQ).

To 50.0 mg (0.025 mmol) 37a in 5 mL CHiCL was added 1.1 equivalent DBU by 

syringe. The solution was stirred for 5 min and then l.l  equivalent of DDQ in 1.0 mL 

absolute ethanol was added by syringe. The reaction mixture turned dark green almost 

immediately and was stirred for Ih, rotary evaporated and then purified by TLC using 1:1 

CH^CL/hexanes as eluent. One major band was isolated 36 mg (67%) which was 

identified as Os3(CO)9 (p3-q 2-C9 H5(5-CH3)N)(p-H) 35x.

Compound 35x: Yield for 35x: 67.3%. Anal. Cald for Ci9 H9 N0 9 0 s3: C, 23.62; H, 0.932; 

N, 1.45%. Found: C, 23.94; H, 1.00; N, 1.45%. IR (y CO) in hexane: 2075 s, 2046 s, 

2018 m. 1990 br,m. 'H NMR of 35x at 400 MHz in CDCI3: 6  , 8.25 (dd, H(2)), 8.19 (dd, 

H(4)), 7.97 (d, H(7)), 7.18 (d, H(6 )), 7.06 (dd, H(3)), 3.15 (s, CH3 on C(5)), -12.851 (s, 

hydride).

3.9.7 Cleavage of the Quinoline Ligand from Os3 (CO>9 (p3- q 2  - C9 H5 (5-R)N)(p-H) 

(R=H, 35a; R=n-Bu, 35u; R=CH2 C0 2 lBu, 35v)

The following procedure , given here for 35a, worked equally well for the other 

complexes of type 35. A 100 mg (0.10 mmol ) is dissolved in 15 mL CH3CN and 

degassed with CO. The initially deep green solution turns bright yellow and is stirred at
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70°C for 36 h. under a CO atmosphere, during which time a precipitate of Osj(CO)i2 

begins to form. The paler yellow solution is cooled to -20°C to complete the precipitation 

of the carbonyl, filtered, rotary evaporated and extracted with hexane. The residue from 

the extraction is combined with the initial precipitate to yield 61 mg ( 7 5 % ) of pure (by 

IR) Os3(CO)i2 .Rotary evaporation of the hexane extract yielded 9.2 mg (80%) quinoline 

which was > 95% pure by *H NMR.

3.10 X-ray Structure Determination of c£s-38m, /rans-38m, and 39n and 39j.

Crystals of cw-38m, trans-38m, 39n and 39j for X-ray examination were obtained from 

saturated solutions of each in hexane/dichloromethane solvent systems at -20°C. Suitable 

crystals of each were mounted on glass fibers, placed in a goniometer head on the Enraf- 

Nonius CAD4 diffractometer, and centered optically. Unit cell parameters and an 

orientation matrix for data collection were obtained by using the centering program in the 

CAD4 system. For each crystal, the actual scan range was calculated by scan width = 

scan range + 0.35 tan0 and backgrounds were measured by using the moving-crystal 

moving-counter technique at the beginning and end of each scan. Two representative 

reflections were monitored every 2  h as a check on instrument and crystal stability. 

Lorentz, polarization, and decay corrections were applied, as was an empirical absorption 

correction based on a series of Y scans, for each crystal. The weighting Scheme used 

during refinement was l/o2, based on counting statistics.

Each of the structures was solved by the Patterson method using SHELXS-8 6 , 15 

which revealed the positions of the metal atoms. All other non-hydrogen atoms were

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



103
found by successive difference Fourier syntheses. The expected hydride positions in each 

were calculated by using the program HYDEX, 5 hydrogen atoms were included in each 

structure and were placed in their expected chemical positions using the HFIX command 

in SHELXL-93. 16 The hydrides were given Fixed positions and U’s: other hydrogen 

atoms were included as riding atoms in the Final least squares reFinements with U's which 

were related to the atoms ridden upon. All other non-hydrogen atoms were reFmed 

anisotropically in rra/w-38m, 39n and 39j; however, only the osmium atoms in c/j-38m 

could be reFined anistropically due to the poor crystallinity of the sample. In addition, 

there was dichloromethane solvent present in the lattice of trans-iSm which could not be 

modeled precisely.

Scattering factors and anomalous dispersion coefFicients were taken from 

International Tables for X-ray Crystallography. 17 All data processing was carried out on a 

DEC 3000 AXP computer using the Open MolEN system of programs. 18 Structure 

solution, refinement and preparation of Figures and Tables for publication were carried 

out on PC’s using SHELXS-8 6 , 15 SHELXL-9316 and SHELXTL/PC19 programs.
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Chapter 4

Reaction of [Os3(CO)9(p3-r|2-C9H6N)(p-H)] 
with Heteroatom Nucleophiles and Protic Acids

4.1 Introduction

Chapter 2 covered the synthesis and reactivity of a novel class of electron deficient 

triosmium clusters Os3(CO)q(|i3-ri2-C9 H6 N)(p.-H) 35a (and its substituted analogues) from 

the reaction of quinoline with Os3(CO)io(CH3CN)2 followed by thermolysis or photolysis 

of the initially formed decacarbonyl (Scheme 2.5 and Table 2.1).1'3 This type of compound 

can be synthesized in good yield with a wide range of substituents in the quinoline ring.14

The reaction of the electron deficient clusters Os3(CO)9 (p3-q2-C9 H6 N)(p-H) (35a) 

and Os3(CO)9(U3-n:-XG,H5N)(p-H) (X = 5-NH2, 351; 3-NH2,35c; 6-NHz 35q: 5-Br, 35k; 

5-CH3.35x) complexes with soft nucleophiles such as phosphines results in ligand addition 

at the metal core 40 along with rearrangement (Equation 4 .1).IJ 

Equation 4.1
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On the other hand, reaction with hydride1 or carbanions4 results in nucleophilic attack

at the 5-position of the quinoline ring. Subsequent protonation leads to a nucleophilic

overall nucleophilic substitution (Equation 3.11 & Scheme 3.2) . 4 In light of this diverse 

reactivity, we thought it would be useful to study the reactivity of 35a with amines and 

carboxylic acids which are intermediate in nucleophilicity relative to phosphines and 

carbanions.

We recently completed detailed studies of the reaction of these ligands with the 

electron precise, but quite reactive p.3 imidoyl complexes of the type, Os3(CO>9(p.3-T|2 -C=N(- 

CH2-)3(H-H), where coordination was highly selective for primary amines and where the 

formation of two axially coordinated isomers, Os3(CO)9(p 3-q 2-C=N(-CH2-)3(p.-H)L (42  and 

42’) was observed (Equation 4.2 ) . 5 

Equation 4.2

The neutral adduct Os3(CO)9 (p3-q2-C=N(-CH2-)3(|i-H)2 (CF3C0 2 ) (43), was the 

main product of the reaction of trifluoroacetic acid with the fi3-imidoyI complexes but a 

small amount of a monoprotonated species was observed to be in equilibrium with the

addition product (Equation 3.1 ) 4  and hydride abstraction from the intermediate anion effects

41 42 42'
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adduct (Equation 4.3). In the case of non-coordinating anions such as BF4\  only simple 

protonation was observed. 6 ' 7 

Equation 4 3

We report here the results of studies on the coordination chemistry of ammonia, 

aliphatic amines, and protic acids with 35a, in an attempt to define the stereodynamics of 

its coordination sites and how these differ from those observed in 42 and 43(Equation 4.2 

and 4.3). One of our research goals in developing the chemistry of complexes such as 35a 

was to understand the degree of electronic communication between the quinoline ring and 

the metal core. Our initial efforts in this area have resulted in the synthesis of the compounds 

Os3(CO)9 (H3-ti2-XC9 H5N)(h-H) (X = 5-NH2, 351; 3-NH2, 35c; 6 -NH2,3 5 q; 5-Br,35k; 5- 

CH3, 35x), previously discussed in Chapter 2. We report here our initial results of the 

reactivity that reveal the extraordinary impact of the electron deficient bonding mode of the 

cluster on the substituent in the 5-position and vice versa.

4.2 Results and Discussion

4.2.1 Reactions With Amines

The addition of a large excess (50 fold) of ammonia and various aliphatic amines to
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35a results in an instant color change from green to orange and the appearance of two new 

hydride peaks in the *H NMR in the range of -12 to -14 ppm (Table 4.1). The resonance at 

higher field (isomer I) is invariably in greater intensity (except in the case of NH3) and the 

lower field resonance (isomer II) gradually increases in intensity until a final ratio (I/H). in 

the range of 0.5 to 4.8, is reached which does not change further (Table 4 . 1 ).

Table 4.1 Chemical Shifts (ppm) and Isomer Ratios for Amine Adducts of 

Os3(CO)9(n3-Tl2-C,H«N)0i-H), 35a

Isomer I Isomer II Solvent Temperature I/II

NH3 -13.65 -13.05 CDCI3 RT 0.5

-13.40 -12.70 Acetone RT 1.3

EtNH2 -13.66 -13.06 CDCI3 RT 1.3

13.43 -12.77 acetone -40 °C 3.8

EtiNH3 -13.80 CDCI3 RT

t-BuNHz -14.12 -13.56 CDCI3 -40°C 7.4

s-BuNH2b -13.59/ -12.97/ CDCI3 -40°C 3.3

-13.62 -13.00

n-BuNHz -13.39 -12.76 CDC13 RT 2 . 8

QHnNHz -13.61 -13.03 CDCI3 RT 3.1

-13.46 -12.81 Acetone RT 4.8

a only one resonance observed 
b four hydride resonances observed
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The l3C NMR (CDCI3, -60 °C ) of a l3CO enriched sample of 35a treated with 

excess ammonia shows two sets of nine carbonyls (I: 187.3. 185.5,185.6, 180.4, 179.8, 178.8 

(:J I3C-'H=I4 Hz ). 177.3(2J i3C-iH=9 Hz ). 176.7. 176.2 ppm; II: 187.3. 186.7, 184.6, 

182.0. 180.8, 177.8(2J13C-1 H= 12.5 Hz). 177.5 r J^ C - 'H ^ .b  Hz ), 176.8. 176.2 ppm). 

Significantly, the spectrum shows no resonances with l3C satellites that, if present, are 

indicative of a large trans- carbonyl coupling associated with the presence of an Os(CO ) 4  

group. 5 The previously reported amine complexes of triosmium clusters, 42 and 42’, 

invariably have the amine (or ammonia) in an axial position (Equation 4.2) . 5  Based on these 

facts alone, we can propose two alternative structures for the set of isomers formed from the 

interaction of amines with 35a (Equation 4.4). One set has the hydride and the quinoline 

ring sharing a common edge while the amine occupies either axial site on the third, 

unbridged osmium atom (structures A, A', Equation 4.4). This structure is directly analogous 

to that observed related to 113 imidoyl complexes, 42 and 42’, for which solid state structures 

are available (Equation 4.2 ) . 5
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Equation 4.4
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On the other hand, coordination of the amine at the electron deficient Os edge of 35a 

could lead to a structure where the quinoline ring and the hydride are on different edges with 

the amine occupying an axial position on the osmium atom bridged by the hydride but not 

by the quinoline ring (structures B, B \ Equation 4.4). This type of structure has been 

observed in the case of one imidoyl complex 45 bearing ethyl and propyl groups on the 

imidoyl carbon and nitrogen atoms, respectively (Equation 4.5) . 8 We have also obtained 

indirect evidence for this structural type as a short-lived intermediate from the selective 

incorporation of carbon monoxide into 35a . 3 In the case of phosphines reacting with 35a, 

such an intermediate is probably the initial product as well but goes on to rearrange as shown 

above (Equation 4.1 ).IJ
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Equation 4.5

The initial formation of one isomer followed by the gradual appearance of a second 

has been shown to be an intermolecular process for the related (1 3 -imidoyl complexes. 5 It 

would appear that this is also the case for 35a reacting with amines since the overall behavior 

of 35a towards amines is so similar. 5 The question of the structure of the amine adducts of 

35a (A or B) still remains unanswered in the absence of a solid state structure.

The change in longitudinal relaxation time (Ti) of hydrides in metal clusters induced 

by proximal ligand protons can be used to qualitatively assess the distance between these two 

types of hydrogens. 9 Thus, for OsjCCOholp-Ty-CqHsNXii-H) (9) the T| of the hydride is 7.0 

s while for 35a it is 4.0 s (Scheme 4.1). We can attribute the shorter relaxation time in 35a 

to the proximity of the hydrogen of C(7) to the p-hydride. If the amine adducts of 35a have 

a structure identical to their p3- imidoyl analogs then the T| of the p-hydride would be 

expected to have a relaxation time similar to 9. In fact, the Ti of the ammonia adduct of 35a 

is 1.4 s which is consistent with a structure where the ammonia protons are proximal to the 

hydride; i.e., the structure resulting from addition of the ligand to the carbon bridged edge 

of the cluster without further rearrangement (structure B, Equation 4.4).
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Scheme 4.1

»Q0
:,fci

/ \ , / l
Os

/  | N.

/I W / l
H — Os

T, = 7 s T, = 4 s

B

-O s O s -

Os 
'  I v

n h 3

B’

Ti = 1.4 S

This suggested structure is further supported by the ‘H NMR data obtained for the 

s-butyl adduct 35a. Here, four hydride resonances are observed. This is undoubtedly due 

to the presence of diastereomers induced by the presence of the chiral center on the s-butyl 

amine. In the structure proposed based on the Ti measurements (structure B, Equation 4.4), 

the environment on the osmium atom bound to the amine is quite asymmetric owing to the 

presence of the bridging hydride on one of the two edges of the triangle associated with the 

amine coordinated osmium atom. In the case of the structure adopted by the p.3-imidoyl 

amine adducts (42 and 42' Equation 4.2), the localized environment on the amine bound
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nitrogen is more symmetric and indeed only two hydride resonances are observed for the s- 

butyl complex . 5

Finally, the structure proposed is most consistent with a reversible amine 

coordination based on the principle of least motion since only the motion of the C(8 ) carbon 

pivoting on the coordinated nitrogen is required to reform 35a from its corresponding amine 

adduct. This motion is related to the reversible coordination of the C=N bond observed in 

the |i3- to (i- to |i3- imidoyl interconversions. 5

In our previous study of the imidoyl amine adducts, the initially formed isomer has 

the amine on the same face of the osmium triangle as the pyrrolidine ring (i.e., .syn- ) . 5 This 

isomer is more favored for the bulkier amines and this also appears to be the trend for the 

amine complexes of 35a (Table 4 .1). In fact, for the secondary amine Et2NH only one isomer 

with a hydride chemical shift similar to the proposed syn- isomer is observed ( Table 4 .1 ). 

Our initial thought for the imidoyl series was that the strictly sigma-bond framework of the 

pyrrolidine ring was less bulky than the carbonyl ligands which have Jt-electrons. 5 In light 

of the isomer ratios observed for the amine complexes of 35a, this cannot be the case since 

the quinoline ring also has 7t-electron density. Yet, the syn- isomer is still favored for bulkier 

ligands and the anti- isomer for the least bulky (ammonia). In order to further investigate 

this point, we measured the effect of temperature and solvent on the isomer ratio for three 

amine adducts of 35a. There are two obvious trends in the data (Table 4.2). First, it can be 

seen that the population of the syn- isomer is enhanced in the more polar solvent acetone 

(Table 4.2). This, of course, is sensible in light of the expected greater polarity of the Os-N 

bonds with the quinoline and amine relative to the Os-CO bonds. Overall, the AH° values
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hover around zero, ranging from -3 to +2 kJ/moIe. The most significant differences between 

compounds and between solvents are in the AS0  (Table 2). Significantly, the ammonia 

complex is the only one with a negative AS0. This indicates that solvation, not steric effects, 

can account for the observed differences in the isomer ratios. Apparently, the more polar 

syn- isomers lead to more disordered solute-solvent interactions and this effect is enhanced 

by the presence of non-polar substituents on the amine. That the larger cyclohexyl group 

shows a less positive AS0  than the ethyl group is difficult to rationalize but may relate to the 

mobility of this ligand in the adduct.

Table 4.2 AH° (kj/mol) and AS° (J/mol K) for Amine Adducts of Os3(CO)9 (fi3-T|2- 

G,H 6N)(m-H) 35a

KCI/II) 233K K(I/II) 298K AH° (kj/mol) AS° (J/mol K) Solvent

n h 3 0.55 0.49 -0.85+0.19 -0.844+0.77 CDC13

n h 3 1.55 1.33 -2.15+0.75 -4.38+2.9 Acetone

NH2Et 1 .2 2 1.34 3.35+0.48 13.9±1.8 CDC13

NH2Et 4.0 3.85 2.20+0.74 19.7+2.9 Acetone

q h „ n h 2 3.45 4.07 -0.95+0.54 6.76±2.2 CDCU

C *H ,,N H : 5.12 4.81 (extr.) -1.44+0.27 8 . 2 1 ±  1 . 1 Acetone

a Values and errors obtained by taking the least squares fit to the function In I/II — AH° -T 
AS° for at least ten temperatures between 233 and 298 K.

The trends in the equilibrium constants for the formation of amine complexes with 

35a follow the trends observed for the related p 3 imidoyl species, n-Bu>j-Bu>r-Bu. The
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absolute values for the equilibrium constants for 35a however, are much greater being 44.4, 

2.7. and 0.39: and 1.25, 0.37, and 0.005 for 35a and the p 3- imidoyls respectively. 5 This 

undoubtedly reflects the greater electron deficiency for the 46e‘ cluster relative to the reactive 

but electron-precise fi3- imidoyls.

The reaction of 351 with /1-BUNH2 in both CDiCli and CD3OD showed no sign of 

complex formation even in the presence of a 100-fold excess of /1-BUNH2 . This can be 

attributed to the electron donating ability of the amino group which funnels electron density 

down to the electron deficient C(8 )-Os2 bonding framework by conventional benzenoid 

resonance.

The 3- and 6 - amino derivatives 35c and 35q do coordinate /1-B11NH2 , as in 35a. The 

formation constants are of the same order of magnitude as for 35a, with 35q showing a 

significantly larger formation constant than 35c or 35a (Table 4.3). As for 35a, isomer I, 

presumably the more polar isomer is favored with the equilibrium ratios of 1M being two to 

three times larger than for 35a (Table 4.3). One might have expected the Kr for 35q to be 

less than that of 35c since the electron donating amino group is on the carbocyclic ring, albeit 

in the meta position. Clearly, the magnitude of Kf and the I/n ratio depend on a subtle 

combination of factors which cannot be delineated at this time. The one firm conclusion that 

can be drawn from these studies is the profound influence that substitution at the 5- position 

of the quinoline ring has on the electron density at the metal core. This is bom out by our 

studies of the Os3(CO)9 ((i3-r|2-(5 -Br)C9H5N)(|i-H) 4  (35k) where the electron withdrawing 

bromine in the 5- position gives the largest Kf of all the derivatives of 35a investigated so 

far. In the case of Os3(CO)9(p3-r|2-(5 -CH3)C9H5N)(p-H) 4  (35x), where there is only a weakly
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electron donating group in the 5 - position amine complex formation was also not observed 

even in the presence of a large excess of n-BuNH2 -

Table 4.3 Equilibrium Constants and Isomer Ratios for n-BuNH2 Complexes of

Electron Deficient Quinoline Complexes

Compound Kform m i 8 hydride I(II) Solvent

35a 44.4 2.8 -13.39(-12.76) CDCI3

35c 53.9 7 . 3 -13.42(-12.81) CD2CI2

35q 66.7 4 . 6 -13.42(-12.79) CD2CI2

35k 94.5 1 . 2 -13.47C-12.90) CDCI3

a ± 10 % at 22 °C

4.2.2 Reactions with Protic Acids

In order to further probe the electron distribution in 35a, 351,35c, 35k, 35q, and 35x 

we investigated their reactions with the acids CF3CO2H and HBF4. Addition of a six-fold 

excess of CF3CO2H to a CD2CI2 solution of 35a results in complete conversion to a deep 

orange solution which exhibits two hydride resonances at -13.66 and -11.61 ppm in a 1:1 

ratio. The aromatic resonances are all shifted downfield with respect to 35a. An equilibrium 

constant for protonation was calculated from a titration of 35a with CF3CO2H (Table 4.4). 

The 13C-NMR ( CD2CI2) of a 13CO  sample of 35a in the presence of the same excess gives 

a l3C NMR in the carbonyl region showing nine resonances at 180.65, 175.20, 172.50, 

172.45, 171.01, 167.93,166.52, 159.84, and 159.99 ppm. The two resonances at 159.84 and 

158.99 ppm appear as doublets of doublets in the proton coupled spectrum (2J l3C-lH= 13.74,
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4.58 and 13.73. 6.10 Hz respectively) while the two at 180.65 and 172.45 ppm appear as 

doublets (2J 13C-‘H=9.15 and 7.63 Hz). Protonation with the non-coordinating acid, HBF4  

yields the virtually identical ‘H (Table 4) and 13C NMR (CDiCh ) data (180.61, 175.78, 

172.92, 172.36. 171.43, 168.13. 166.71, 159.94, 158.85 ppm with an identical coupling 

pattern). These data are consistent with simple protonation to give a dihydride cation 

(Equation 4.6) as opposed to acid adduct formation (Equation 4.3). The equilibrium constant 

for formation of the cation is considerably larger for the stronger acid, HBF4  (Table 4.4). 

The observation of well resolved carbonyl- hydride couplings indicates that the protonated 

species is rigid on the NMR time scale while the hydrides in the related cationic p.3- imidoyl 

species are fluxional at ambient temperatures.

Equation 4.6

The protonation of 35a with aliquots of CF3CO2H reveals that the 5-amino derivative 

is considerably more basic at the metal core than 35a (Table 4.4). After the first aliquot 

(slightly in excess of 1 equivalent) is added, 351 is completely converted to the dihydride 

cation and the resonance at 5.60 ppm attribuTable to the amino resonance is no longer 

observed. Instead, a broad resonance at 7.82 ppm is observed which is attribuTable to a 

partially averaged signal of the CF3CO2H and the amino group of 351. The CF3CO2H proton
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resonance is observed at 8.00 ppm in the presence of 35a. As more CF3CO2 H is added to 

the solution of 351. the acid amine resonance shifts to lower fields and sharpens somewhat 

indicating more rapid exchange between the amine and the acid. Significantly, the amine 

resonances for 35c and 35q are found at considerably higher fields than for 351 at 4.14 and 

4.79 ppm, respectively. On treatment with CF3CO2 H, the same overall behavior as for 351 

is observed for 35c and 35q except that the partially averaged acid/amine resonance is found 

between 35c and 35q ppm, suggesting a higher degree of amino protonation. The 

protonation equilibrium values (Table 4.4) obtained from these experiments are consistent 

with 351 having the greatest influence on the electron density at the metal core. A Hammett 

plot of the equilibrium data using standard values of a 10 yields a reasonably good straight 

line with a correlation coefficient of 0.93 and p value of -0.13 (Figure 4.1).

4.3 Conclusions

The electron deficient P3-TI2- quinoline triosmium clusters exhibit behavior towards 

amines similar to the related |X3-t\ 2 pyrrolidine triosmium clusters. 5 Both show initial 

formation of a single isomer which then equilibrates to a mixture of two complex'es. The 

equilibrium constants in both series depend on the steric bulk of the amine with the overall 

magnitudes being much greater for the quinoline series. Based on the NMR evidence 

accumulated to date, the actual structure of the amine-quinoline adducts is different from that 

of the imidoyls. However, definitive conclusions about the actual structures must await solid 

state structural determinations which have been difficult to obtain owing to the instability of 

the adducts as crystalline solids.
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Table 4.4 Protonation Equilibria for Electron Deficient Triosmium Clusters*

Compound Acid 5 hydrides Solvent

35a 0 . 1 2 CF1CO2H -13.66

-11.61

CDCI3

35a 1 2 . 2 h b f 4 -13.70

-11.65

CDCI3

351 2 0 . 8 CF3C0 2 H -14.35

-12.60

CDCI3

35c 0.72 CF3C0 2 H -13.81

-11.73

CDCI3

35q 1 . 8 8 CF3C0 2 H -13.72

-11.70

CDCI3

35k 0.05 CF3C0 2 H -13.78

-11.50

CDCI3

35x 1.19 CF3C0 2 H -14.00

-12.15

CDCI3

a Measured by ‘H NMR ±10% at 22°C
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Figure 4.1 Hammet, a  p Plot of the Protonation Equilibria for Compounds 35a, 

351,35c, 35q, 35k, and 35x Reacting with CF3CO2H (error bars for the <7

values are from reference [  IOJ and are + 10% for Keq values).

-36*

-2JOO - 1.00 2.00 -  3.00 4.00 5.00 6.00

4sr
-0.20
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In sharp contrast to the (ij-r | 2 -imidoyl clusters, the p 3-q2  -quinoline clusters do not 

form acid adducts but simply undergo protonation in the presence of CF3CO2 H.

The most interesting aspect of these studies is the profound influence that 

substituents in the 5- position have on the electronic properties of the metal core. That the 

simple free energy relationship normally applied to organic reactions can be used to 

rationalize the relationship between substitution on the carbocyclic ring and protonation at 

the metal core is reassuring in that the relatively complex interactions (from an orbital point 

of view) between an organic moiety and two metal atoms can be understood in terms of a 

traditional physical organic chemistry model. The isomer I and n  populations and the 

somewhat higher value of Kf for the 6 - amino quinoline derivative, are less well understood, 

but seem to be dominated by solvation effects, at least from the data gathered so far. Unlike 

the p-bound metal arene complexes which undergo nucleophilic attack at the ring with 

heteroatom nucleophiles, the triosmium clusters show coordination to the metal core, but at 

the ring with carbanions. This ampiphillic behavior could prove very useful.

4.4 Experimental Section

4.4.1 Materials and General Considerations

Synthesis of compounds 35a1, 35c, 35k11, 35111, 35q, and 35x4 were previously 

discussed in Chapter 2. Methylene chloride was distilled from calcium hydride before use. 

Acetone-d^, methylene chloride^, and methanol-d* were purchased from Aldrich in single 

sample ampules and used as received. Chloroform-di was dried over molecular sieves before 

use. NMR spectra were recorded on Jeol EX-400 or Varian Unity Plus 400 NMR
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spectrometers. Samples for Ti measurement were previously degassed by three freeze thaw 

cycles. The non selective inversion recovery pulse sequence was used to obtain Ti values 

Infrared spectra were recorded on a Perkin-Elmer 1600 spectrometer and elemental analyses 

were performed by Schwarzkopf Microanalytical Laboratories. Woodside, New York.

4.5 Evaluation of Isomer Ratios and Equilibrium  Constants

Compounds 35a or 351, 35c, 35k, 35q, and 35x were weighed directly into flame 

dried NMR tubes in 9-11 mg samples (-0.01 mmol). 0.60 mL of the NMR solvent was then 

added by syringe, followed by syringe addition of 2-20 pL of the amine or acid. The NMR 

tube was then capped and shaken and the proton or 13C NMR monitored for at least 24 h after 

which time no further changes in the spectra were observed. The isomer ratios and 

equilibrium constants were evaluated by integration of the appropriate resonances. For 

formation constants, the equilibrium expression was:

KKL/mol) = fcluster-amine adductl 
[cluster] [amine]

In most cases the equilibrium constant was evaluated at several concentrations of added 

amine and an average value is reported in Table 3. For the protonation equilibrium, the 

expression used was:

Kn = Muster m  fX'l 
[cluster] [HX]

Again, the value of the equilibrium constant was evaluated at several acid concentrations in 

most cases.
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Chapter 5

Unresolved Problems and Future Work

5.1 Reaction of Os3(CO)9 (fi3 -T|2-C9 H5(4 -Cl)N)(H-H) 35e with Excess Lithium t-

Butyl Acetate to Form Complex (53).

In the reaction of Os3(CO)9 (|1 3 -ti2-C9 H5(4 *C1)N)(|I-H) 35e with lithium t-butyl 

acetate at -78°C in a solution of THF an unusual rearrangement of the ‘BuOAc fragment 

is observed upon addition of excess nucleophile. Addition of the nucleophile (enolate 

anion) at C(5) forms the expected carbon-carbon bond to generate the anionic complex 

47 as shown in Scheme 5.1. The normal addition was isolated after protonation of the 

anionic complex yielding a-Jt-vinyl Os3(CO)9(p3-Ti2) (C9 H5 (4 -CI)(5 -'BuOAc)(p-H) 

complex 38e' discussed in Chapter 3 (Scheme 3.2). Next, a secondary attack by excess 

of the enolate anion gives carbon alkylation to the ester, resulting in the tetrahedral- 

intermediate 48, which then releases t-butoxide. Upon protonation of 49 followed by 

liberation of isobutylene gas (formation of isobutylene gas is the driving force for the
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reaction via the Le Chatelier’s principle) complex 50 is produced. Complex 50 then 

undergoes a decarbonylation reaction resulting in the acetoyl complex 53.'

Initially the one and two dimensional *H NMR studies of complex 53 were 

inconclusive requiring us to analyze a solid state structure to determine the exact 

structure. The solid state structure of 53 is given in Figure 5.1, with the selected bond 

distances and angles given in table 5 .1.

The overall structure of 53 is very similar to the previously reported a-7t-vinyl 

complex [Os3(CO)9 (p3-Tl2-C9H8N)(n-H)] (formed from the H-/H+ addition to 35a), and 

complexes 37e (section 3.1.1), ro*38m (section 3.3.2), and trans-3Sm (section (3.3.3). 

The structure of 46 consists of an isosceles triangle between the osmium atoms with the 

metal-metal bond lengths between 2.77-2.88 (A). The hydride was located using the 

program HYDEX.2 The hydride is tucked below the plane of the metal triangle. This 

calculated position for the hydride is confirmed by the positions of carbonyl groups 

CO(13) and CO(33).

The bond lengths in the heteroaromatic ring are all in the range of 1.33-1.40(A) 

indicating that the bonds have remained delocalized. However, the saturated carbocylic 

shows some ring puckering as a result of the lengthened sigma bonds in the ring system. 

The C(5)-C(6) bond at 1.52(A) is clearly a single bond, while the C(6)-C(7) and C(7)- 

C(8) bond lengths 1.46(A) and 1.44(A) respectively indicate shortened Tt-bonds.
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The assignment of the sigma (a)-interaction between Os(3)-C(8) of length 2.10 

(A) and the pi (k) interaction between Os(l)-C(7) (2.43(A) and Os(l)-C(8 ) 2.23 (A) is 

consistent with previous studies of a—n interactions on triosmium clusters. 3

In order to prove this theory we must perform two alkylation reactions on isolated 

ct-Tt-vinyl addition products Os3(CO)9 (p3-Ti2) (C9 H5(4-Cl)(5-tBuOAc)N)(fi-H) 38e’ and 

Os3(CO) 9 (Hj-ti2) (C9 H6(5-'BuOAc)N)(p.-H) 37k with the Li-'BuOAc nucleophile to try 

induce the 54 rearrangement complex intentionally. Addition of 1-2 molar excess of Li- 

‘BuOAc will be added at -78°C to a THF solution containing complex 37k or 38e\ Then 

the solution will be warmed to room temperature for lh, followed by protonation with 

CF3COiH at -78°C. These experiments are currently being carried out in the Rosenberg 

laboratory.
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Figure 5.1 Solid State Structure for Os3(CO)9(^-ty-C9H6(4-Cl)N)(p.-H)

Showing the Calculated Positions of the Hydride.
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Table 5.1 Selected Bond Distances (A) and Angles (°) for Complex 53

Distances

Os(l)-Os(2) 2 . 8 8  (2 ) 0(1)-C(15) 1.18(3)

Os(2)-Os(3) 2.77 (2) C(5)-C(10) 1.41 (3)

Os(3)-Os(8) 2 . 1 0 (2 ) C(2)-C(3) 1.40(3)

Os(l)-Os(3) 2.85 (2) C(3)-C(4) 1.37 (3)

Os(l)-C(8 ) 2.23 (2) C(4)-C(10) 1.36 (3)

Os(2)-N(l) 2.17(2) C(5)-C(6) 1.52(3)

N(l)-C(2) 1.33 (2) C(6)-C(7) 1.46(3)

C(5)-C(14) 1.47 (3) C(7)-C(8) 1.44 (3)

C(14)-C(15) 1.60 (4) C(8)-C(9) 1.48 (2)

C(I5)-C(16) 1.43 (3) Os(3)-C(8) 2 . 1 0 (2 )

c-ob 1.17(3) Os-COb

Angles

1.89 (3)

Os(3)-Os(2)-Os(l) 60.62(4) C(8)-C(7)-Os(l) 64.6(11)

Os(3)-Os(l)-Os(2) 57.78(4) N(l)-Os(2)-Os(3) 86.10(4)

C(8)-Os(l)-Os(2) 71.20(5) C(7)-C(6)-C(5) 114(2)

C(8)-Os(3)-Os(2) 75.20 (5) C(7)-C(8)-C(9) 115(2)

C(8)-Os(3)-Os(l) 50.6(5) Os(3)-C(8)-Os(l) 82.6 (7)

Os(2)-Os(3)-Os(l) 61.61(4) Os-C-Ob 174(3)

a Numbers in parentheses are average standard deviations. 
b Average values.
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5.2 Reaction of Os3(CO)90i3—q2-C9H5(5-F){V)(p.-H) 35i with Lithium n-Butoxide.

When the 5-fluoro quinoline complex 35i is reacted with lithium n-butoxide 

substitution for the fluoro group is observed. This is the only example of a nucleophilic 

substitution reaction observed on these electron deficient ( |i j-q 2) metal bound quinoline 

complexes. Attempts to substitute the flouro (and other halogens) with carbon 

nucleophilies resulted in addition across the C(3)-C(4) bond as discussed in section 3.4. 

Equation 5.1

35i /  | \

54

Initial 'H NMR eluted to a aromatic structure with the carbon alkylation on the n- 

butyl group at the 5- position. The presence of the heteroatom oxygen forming the ether 

linkages wasn't obvious via NMR techniques. Fortunately we were able to obtain X-ray 

quality crystals for solid state work to be performed.

The structure of 54 is very similar to complex 35a previously reported, and 35n in 

section 2.2.1. The structure of 54 consists of an isosceles triangle with three
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approximately equal Os-Os bonds (table 5.2) with the metal-metai bond lengths 

between 2.76-2.78 (A). The hydride was located using the program HYDEX. The 

hydride is tucked below the plane of the metal triangle. This calculated position for the 

hydride is confirmed by the positions of carbonyl groups CO(13) and CO(33). The 

planar quinoline ligand sits perpendicular to the metal triangle, Os(l)-C(8 ) and Os(3)- 

C(8 ) bonds are almost symmetrical (2.29 and 2.24 (A)) suggesting a three center-two 

electron bond with carbon C(8 ). The bond lengths in the quinoline ring system range 

from (1.30-1.47 A) indicating a completely delocalized ring system.

Equation 5.2

Attempts to react Os3(CO)9 (|j.3-Ti2 )-(C9 H5(5 -Br)N)(p.-H) 35k with Lithium n- 

butoxide were unsuccessful (Equation 5.2). This seems consistent with the 7t-arene 

complexes which undergo addition / elimination reactions with heteroatom nucleophiles 

at a much faster rate with flouro than bromo substituents. 5 Attempts reproduce the n- 

butoxide nucleophilic substitution reaction on 35i are currently being carried out to better 

determine the percentage yield, but are slowed from the limited supply of 5 -flouro 

quinoline ligand to prepare complex 351.

54
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Figure 5.2 Solid State Structure for 54 Os3(CO),(*ir -Ti2-C,Hs(5-Ol,Bu)N)(ji-H)
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Table 5.2 Selected Bond Distances (A) and Angles (®) for Complex 54

Distances

Os( 1 )-Os(3) 2.76(13) N( 1 )-C(2) 1.40 (2)

Os(2)-N( I) 2.13 (10) N( 1 )-C(9) 1.30 (2)

Os(l)-Os(3) 2.76(10) C(2)-C(3) 1.35 (2)

Os(l)-C(8 ) 2.29(12) C(3)-C(4) 1.44 (2)

Os( 1 )-Os(2) 2.78(14) C(5)-C(6) 1.37 (2)

Os(2)-Os(3) 2.78(13) C(6)-C(7) 1.37 (2)

Os(3)-C(8) 2.24(11) C(7)-C(8) 1.39 (2)

0(1)-C(5) 1.38 (2) 0 (  1 )-C(51) 1.44 (2)

C(8)-C(9) 1.47 (2) C(51 )-C(52) 1.58 (2)

C(52)-C(53) 1.38(3) C(53)-C(54) 1.52(5)

Os-COb 1.17(3) Os-COb 1.85 (3)

Os(3)-Os(l)-Os(2) 60.21 (3)

Os( 1 )-Os(3)-Os(2) 60.05 (3)

Os(3)-C(8)-Os(l) 75.1 (4)

C(8)-Os(3)-Os(2) 78.8 (3)

N(l)-Os(2)-Os(3) 82.9 (4)

C(5)-0(l)-C(51) 119.2(11)

Os-C-O 174.2 (8 )

Angles

C(5)-C(6)-C(7) 110.4(11)

C(6)-C(5)-0(l) 115.9(12)

C(8)-Os(l)-Os(3) 51.6(4)

Os( 1 )-Os(2)-Os(3) 59.74 (3)

N(l)-Os(2)-Os(l) 82.9(4)

C(8)-Os(3)-Os(l) 78.8(3)

a Numbers in parentheses are average standard deviations. 
b Average values.
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S 3  Carbon C(6) Hydroxylation of Complex 35m: Preparation of the Phenolic 

Complex Os3(CO)9(P3-Tl3-C9H6(5-tBu)(6-CH3)(6-OH)N)(p-H) 55 

When complex 35m the 6 -methyl substituted quinoline complex is reacted with t- 

buty! lithium at -70°C in a solution of THF, the anionic complex 36m with the new 

carbon-carbon bond at C(5) is formed as previously discussed in chapter 3. When this 

anionic complex 36m is applied directly to a silica gel thin layer chromatography plate, it 

undergoes a hydroxylation reaction to generate the phenolic complex 55 (Equation 5.3). 

Equation 53

This procedure provides an excellent method for direct hydroxylation of the 

anionic complex 36m at carbon C(6 ) in a simple one step procedure. One possible 

mechanism of reaction involves a reaction with an oxygen electrophile. However, 

oxygen electrophiles are very uncommon, since oxygen does not bear a positive charge 

very well. 6 There have only been a few reports of direct hydroxylation by an 

electrophilic process. 6  One notable reaction that can be mentioned is shown in Equation 

5.4, use trifluoroperacetic acid and boron trifluoride to hydroxy late an aryl system . 6  In

H tBu H tBu
HjC

35m 36m 55
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general, poor yields are obtained, partly because introduction of an OH group activates 

the ring to further attack. Quinone formation is common.

Equation 5.4

Ar-H +  F3C—C— O -O H  _ B F ^  Ar-OH
O

A proposed reaction to validate this hypothesis, would involve reacting the 

intermediate anion complex 36m with trifluoroperacetic acid and boron trifluoride to 

hydroxylate at carbon C(6 ).

Another possible explanation for the formation of 55 involves a radical pathway 

by reaction of 36m with free hydroxyl radicals generated from the silica gel surface. A 

reaction to test if indeed this is the mechanism, uses Fenton's Reagent (a good source of 

hydroxyl radicals) to hydroxylate complex 36m.6 If this proves successful other radical 

sources should be tried, such as bubbling oxygen through the reaction solution of 36m to 

generate the quinone complex.

A solid state structural investigation of complex 55 was carried out to 

confirm the conformation of the structure proposed from the ‘H NMR data. The solid 

state structure of 55 is shown in Figure 5.3, with selected bond lengths and angles given 

in table 5.3. Again, the overall structure is very similar to the previously reported 

or-Jt-vinyl complex [Os3(CO)9 (H3- r j 2 -C9 H8N)(p-H)] (formed from the H-/H+ addition 

to 35a), and complexes 37e (section 3.1.1), ro-38m (section 3.3.2), and tazn£-38m 

(section (3.3.3), and 53. The structure of 55 consists of an isosceles triangle between the 

osmium atoms with the metal-metal bond lengths between 2.80-2.90 (A). The hydride
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137was located using the program HYDEX . 2 The hydride is tucked below the plane of the 

metal triangle. This calculated position for the hydride is confirmed by the positions of 

carbonyl groups CO( 13) and CO(33).

The bond lengths in the heteroaromatic ring are all in the range of 1.32-1.41(A) 
indicating that the bonds have remained delocalized. However, the saturated carbocylic 

shows some ring puckering as a result of the lengthened sigma bonds in the ring system. 

The C(5)-C(6) bond at 1.60 (A) is clearly a single bond, while the C(6)-C(7) and C(7)- 

C(8 ) bond lengths 1.52(A) and 1.39(A) respectively indicate shortened 7t-bonds.

The assignment of the sigma (a)-interaction between Os(l)-C(8 ) of length 2.13 (A) and 

the pi (7t) interaction between Os(3)-C(7) (2.40(A) and Os(3)-C(8) 2.26 (A) is consistent 

with previous studies of a-Jt interactions on triosmium clusters. 3

Work is currently underway to see if this hydroxylation procedure can be 

extended to include other complexes, to determine the limitations of the system (for 

example if the presence of the activating groups at C(5) and C(6 ) are necessary).
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Figure 5.3 Solid Stale Structure for Os3(CO)9 (Hi-TV-C9 H5 (5 -tBu)(6 -CH3 M6 -

OH)N)(fi-H) 55 Showing the Calculated Positions of the Hydride.
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Table 5.3 Selected Bond Distances (A) and Angles (°) for Complex 55

Os( 1 )-Os(2) 2.80(6)

Distances

C(4)-C(5)

Os(2)-Os(3) 2.90 (6 ) C(5)-C( 10)

Os(3)-Os(8) 2.26 (8 ) C( 1 )-C(2)

Os( 1 )-Os(3) 2.84 (5) C(2)-C(3)

Os(3)-C(7) 2.40(4) C(3)-C(4)

Os(2)-N(l) 2.17(6) C(4)-C(9)

N( 1 )-C( I ) 1.32(2) C(5)-C(6)

N( 1 )-C(9) 1.35(2) C(6)-C(7)

C(7)-C(8) 1.39(3) C(8)-C(9)

C-Ob 1.14(3) Os-COb

Os(2)-Os(l)-Os(3) 61.86(4)

Angles

C(7)-C(8)-Os(3)

Os(l)-Os(3)-Os(2) 58.50(4) N( 1 )-Os(2)-Os(3)

Os( 1 )-C(8)-Os(3) 80.60(2) C(7)-C(6)-C(5)

C(8)-Os(I)-Os(3) 51.60(2) C(7)-C(8)-C(9)

C(8)-Os(3)-Os(l) 50.6(5) C(7)-C(8)-Os(3)

C(7)-Os(3)-Os(2) 104.8(4) Os-C-Ob

a Numbers in parentheses are average standard deviations. 
b Average values.
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1.54(3) 

1.41 (3) 

1.39 (3)

1.37 (3) 

1-41 (3)

1.38 (3) 

1.60 (3) 

1.52 (3) 

1.48 (2) 

1.89 (3)

121.4 (7) 

86.10(4)

108.4 (7) 

114.0 (7) 

78.6 (7) 

177 (3)
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5.4 The Restricted a-jt-Vinyl Interchange on Complex Os3(CO)9(fi3-r|3- 

C9Hs(5-CH2C 0 2‘Bu)(6-Cl)N)(p-H)cis-56

When complex 35n is with lithium t-butyl acetate at -78°C in a solution of THF a 

new carbon-carbon bond is formed at carbon C(5) and after protonation complex ctr-56 is 

isolated in a 64.6% yield (Equation 5.5).

Equation 5.4

H tBuOAc H iBuOAc

L i^ 'B u O A c

cis-56

Upon examining the ‘H NMR spectra of complex 49 (p.3-r|3-C9 H5(5 -,BuOAc)(6 - 

Cl)N)(p-H) it was discovered that the H(7) proton resonance was broadened. Broadening 

on spectra in a - 7t-vinyl systems usually indicates some type of fluxional interchange 

occurring (at a slower rate relative to the NMR time scale) between the ligand and the 

cluster attached at carbon C(8 ) (Scheme 5.2).

We therefore attempted to study this system using variable temperature ‘H NMR 

collecting a series of spectra at temperatures ranging from -45-55°C shown in Figure 5.4. 

At the high temperature limit we observed a doublet for the H(7) proton resonance at 

3.65ppm. Upon cooling the sample, this H(7) peak broadened, and then at the lower limit
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Scheme 5.2
141

-Os—\ ------O s -

Os

cis-56

H .tBuOAc

O s -d s

-45°C was again observed as a doublet a 3.51 ppm. The change in chemical shift and the 

sharpening, broadening, and resharpening of the resonances indicates the presence of an 

undetectable isomer of cis-56 which is probably the result of conformational change in 

the ring. Apparently this change must strongly influences the shift of H(7). The 

monosubstituted complexes appear to be much more fluxional as would be expected from 

the less steric crowding across the C(5)-C(6) bond. The exact nature of the difference 

between the two isomers remains unclear and a thorough study of related complexes is 

currently underway.
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Figure 5.4 Variable Temperature *H NMR Spectra for Proton H(7) In cis-56
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5.5 Attempted Two Step Lithiation Followed by Electrophile Trapping

After examining the (|i3- t |2) electron deficient quinoline triosmium carbonyl 

systems reactivity towards nucleophiles (discussed in chapters 2-4) we were interested in 

whether these systems could be lithiated, and then trapped with an appropriate 

electrophile. We learned from our survey of nucleophiles that this selective proton 

abstraction would require high kinetic basicity and very low nucleophilic reactivity. The 

large range of successful carbon nucleophiles (including n-butyl lithium) made lithium 

diisopropylamide (LDA) the best choice.

The first complex selected was the normal 48-electron complex 34a 

Os3(CO)io(p.2-Tl2-C 9 H6 N)(|i-H). This electron precise system was similar in reactivity 

to free quinoline (with the nitrogen protected), and it was thought that carbon C(4) would 

be the site of lithiation.

When one equivalent of LDA was added at -78°C to the yellow THF solution 

containing 34a, a red color change was observed (Equation 5.6). This color change 

hinted to possible lithiation. Next, a trap to trap distillation of the THF solvent followed 

by replacing with a fresh methylene chloride solvent. However, upon addition of the 

electrophile (D+, CH3I, (CHjO^SOi) the solution returned to the original yellow color. 

After purifying the product the 'H NMR revealed it to be 34a the starting material. 

Equation 5.6

Li E

34a
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Next, the electron deficient complex 35a was reacted using the same procedure, 

unfortunately negative results were also obtained (Equation 5.7). As with metal rc-arenes 

(section 1.7) there are very few examples where lithiation / electrophilic trap process has 

been shown to be synthetically useful.2 

Equation 5.7

35a

The questions to be answered did lithiation occur successfully? And / or was 

electrophile alkylating in a reversible process? Or did the LDA coordinate to the metal 

core reversibly (as other amines were shown to do in chapter 4), and then exchange with 

a CO group formed from the decomposition of some complex? The answers to these 

questions will hopefully be found from the studies on these system that are currently 

being carried out in by Rosenberg research group.
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5.6 Double alkylation a t Carbon C(5) and the Ester Carbon on C(4): Reaction 

of 35h with Excess Carbanion

The 4-carboxymethyl derivative. 35h. reacts cleanly with ally! 

magnesium, and Li-C(CH3)2CN to give the expected nucleophilic addition product 

Os3(CO)9(^3-Ti3)(C9H6(4-C02CH3)(5-allyl)N)(n-H) 38h and 38i Os3(CO)9(li3-Tl3)- 

(C9H6(4-C02CH3)(5-C(CH3)2CN)N)(|i-H) as shown in Equation 5.8.

Equation 5.8

o

1. LiOCHjhCN

2.H*

38i R=C(CH3)2CN 
38h R=allyl

35h 38h & 38i 57h & 57i

It is significant that in the cases of the 3- and 4- carboxymethyl derivatives, attack 

at the ester carbonyl does not represent a competitive pathway since the 38h & 38i are 

obtained in moderate yields. Attack at the carbomethoxy group is only observed when an 

excess of carbanion is used, resulting in the additional products 57h & 57i alkylated at 

ester carbonyl.

So far we only observed these products from alkylating 35h. Complexes 38h and 

38i are thought to alkylate at the more electron deficient hetrocyclic ring to yield 

complexes 57i and 57h. Currently the Rosenberg group is attempting to react the isolated
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complexes 38h and 38i with a 1-1.5 molar equivalent of the appropriate carbanion to 

show that this alkyation procedure can be done in a stepwise manner.

These complexes being doubly alkylated may prove useful for the 

functionalization of tri. and tetra-cyclic lactones and lactams across the C(4)-C(5) carbon 

bond.

Some targeted ring synthesis that were attempted and are being pursued further 

are as follows: Using a palladium-catalyzed cyclization across the C(5)-C(6) bond the of 

the quinoline. Starting form isolated complex Os3(COM|i3-Ti3)(C9H6(5-allyl)(6- 

COiCHsXp-H) m -38p and reacting with iodotrimethylsilane (TMSI) to generate the free 

acid. Then the cyclization is carried out catalyzed by Pd(OAc)i as shown in Equation 5.9 

resulting in the formation of the lactone. If the ring strain become too severe in these 

reduced systems, it may be necessary to aromatize prior to ring closing. This same 

procedure can be used to cyclize lactones across C(4)-C(5).8 

Equation 5.9

T M S I Pd(O A c)2

ris-38p
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Another system is the lactam system, starting with amino complexes and again 

involving the palladium(II)-catalyzed cyclization across C(4)-C(5) and C(5)-C(6) 

positions of the quinoline.9

Indeed, this chemistry is extendable to a wide range of benzoheterocycles with 

pryidinyl nitrogens. Thus, the synthetic methodology outlined here is applicable to 

quinoxaline. benzothiazole, 2 -methyI-benzimidozoIes, benzotriazoles and 

phenanthridines.

5.7 Experimental Section

5.7.1 Material and General Considerations

All reactions were carried out under an atmosphere of nitrogen but were worked 

up in air. Tetrahydrofuran was distilled from benzophenone ketyl, methylene chloride 

and acetonitrile from calcium hydride.

Infrared spectra were recorded on a Perkin-Elmer 1600 FT-ER spectrometer and 

'H and l3C NMR were recorded on a Varian Unity Plus 400. Elemental analyses were 

done by Schwarzkopf Microanalytical Labs, Woodside, New York. Chemical shifts are 

reported down Field positive relative to tetramethylsilane and coupling constants are 

reported only for those resonances relevant to the stereochemistry and while only the 

multiplicities of resonances with standard couplings are reported.

The preparation and charecterization of compounds 34a, 35a, 35e, 35h, 351, 35m, 

and 35n were previously reported in chapter 2, and 38h and 38i in Chapter 3.
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Trifluoroacetic acid and diisopropylamine were purchased from Aldrich 

Chemical and distilled from phosphorous pentoxide and calcium hydride respectively 

before use. The carbanion reagents Li "Bu, Li ‘Bu, and allylMgBr were purchased from 

Aldrich and used as received. The other carbanions Li-(C(CH3 )2CN), Li-'BuOAc were 

generated by deprotonation of their corresponding neutral precursor with lithium 

diisopropyl amide which was generated from diisopropyl amine and n-BuLi according to 

published procedures at -78°C.3 The electrophiles (CHjOhSO*, CH3I,) were purchased 

from Aldrich Chemical Co. and and distilled from phosphorous pentoxide.

5.8 Preparation of Complexes 53-57i

The following procedure was followed for the compounds listed above. 50 mg 

(0.050 mmol) Os3(CO)9 (p 3-T|2 "C9 H5(R)N)(p-H) was dissolved in 5 mL THF and cooled 

to -78%. at which time a 1.1-1.5 molar excess of the appropriate carbanion was added 

slowly by syringe, except for the case of 57h and 57i where a 5 molar excess was used. 

The amount of carbanion added was governed by an observable color change from deep 

green to dark amber or orange. The reaction mixture was warmed to 0°C, stirred for 0.25 

to lh. cooled again to -78°C and quenched with an amount of trifluoroacetic acid, 10% in 

excess of the amount of carbanion used. The solution generally turned orange-red as it 

warmed to room temperature. In cases where electrophiles were used a trap to trap 

distillation of the THF solvent, followed by replacing the solvent with fresh CH2CI2 . 

The clear orange-red solution then rotary evaporated, taken up in minimum CH2CI2 , 

filtered and then purified by thin layer chromatography on 0 . 1 x2 0 x2 0 cm or 0 .1x20x40cm 

silica gel plates using C^C^/hexanes (20-50% CH2CI2 as eluent. In general, one major
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orange band containing the nucleophiiic addition product was observed in addition to 

minor amounts of unconsumed starting material. Os3(CO)io(p-il2-C9 H5(R)N)(p-H). 

Yields are given along with the analytical and spectroscopic data below.

5.9 Analytical and Spectroscopic Data

Compound 53: Yield for 53: %. Anal, calcd. for C2 iHi2NIO|0 Os3 : C, 24.14; H, 1.15;

N. 1.33%. Found: C, 24.26; H, 1.03; N, 1.31%. IR (7 CO) in CH2C12. 2079s. 2055s, 

2024s, 2008m, 1998s, 1972m. 1959m, 1949m cm*1. *H NMR of 46 at 400 MHz in 

CDCI3: 8  8.314 (d, H(2)), 6.85 (d, H(3)), 3.82 (q, H(7)), 3.52 (m, H(5)), 2.80 (q, H(6 )), 

2.54 (dd, H(6 )), 2.43 & 2.05 (dd & tt, CH2 two protons), -17.039 (s, hydride).

Compound 54: Yield for 54: 36.7 %. Anal, calcd. for C2 2Hi4N 1OioOs3 : C, 25.33 H, 

1.34; N, 1.34%. Found: C, 25.06; H, 1.43; N, 1.38%. IR (7 CO) in CH2C12: 2076s, 2050s, 

2026s, 1996s, 1980m, 1962w, 1948w cm*1. lH NMR of 47 at 400 MHz in CDC13: 5 9.21 

(d, H(2)), 8.46 (d, H(6 )), 8.42 (dd, H(4)), 7.05 (t, H(3)), 6.95 (d, H(7)). 4.17 (t, 1st CH2 on 

butyl)), 1.84 (m, CH2 two protons), 1.54 (m, CH2), 1.02 (t, terminal CH3), -12.607 (s, 

hydride).

Compound 55: Yield for 55: 75.0 %. Anal, calcd. for C 23H 19N 1O 10OS3 : C, 26.54; H,

1.82; N, 1.34%. Found: C, 26.54; H, 1.47; N, 1.12%. ER (yCO) in CH2C12: 2156w,

2126w, 2080s, 2048s, 2023s, 2006m, 1983w, I952w cm'1. *H NMR of 48 at 400 MHz 

in CDCI3: 58.42 (d, H(2)), 7.33 (d, H(4)), 6.78 (7, H(3)), 3.65 (s, H(7)), 2.48 (s, H(5)), 

1.713 (s, CH3), 1.21 (s, OH), 0.989 (s, t-butyl), -17.371 (s, hydride).
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Compound cis-56: Yield for cis-56: 73.1 %. Anal, calcd. for C2 1 H 1 2 N 1O 1 0 OS3 : C, 24.14;

H. 1.15; N. 1.33%. Found; C. 24.26; H, 1.03; N, 1.31%. IR (7 CO) in CH2C12: 2079s. 

2055s, 2024s. 2008m, 1998s, 1972m, 1959m. 1949m cm 1. lH NMR (Temp.= 25°C) of 

cis-49 at 400 MHz in CDCI3 : 5 8.45 (dd. H(2)), 7.58 (dd, H(4)), 6.85 (t, H(3)), 4.33 (t. 

H(6 )), 3.61 (br, H(7)), 3.32 & 2.93 (m & dd, CH2 two protons), 2.46 (q, H(5)), 1.35 (s, t- 

butyl), -17.335 (s, hydride).

Compound 57i: Yield for 571; %. Anal, calcd. for C2 iHi2NiOioOs3: C, 24.14; H,

I.15; N, 1.33%. Found: C, 24.26; H. 1.03; N, 1.31%. IR (7 CO) in CH2C12: 2079s, 2055s, 

2024s, 2008m, 1998s, 1972m. 1959m, 1949m c m 1. ‘H NMR of 50 at 400 MHz in 

CDCI3: 5 8.76 (d. H(2)), 7.15 (d, H(3)), 3.89 (m, H(7)), 3.37 (d, H(5)), 2.72 & 2.37 (dd & 

dd, H(6 ) two protons), 1.68 (d, methyl on C(4)), 1.33 (d, methyls on C(5)), -17.012 (s, 

hydride).

Compound 57h: Yield for 57h: %. Anal, calcd. for C2 !Hi2N|OioOs3 : C, 24.14; H,

1.15; N, 1.33%. Found: C, 24.26; H, 1.03; N, 1.31%. IR (7 CO) in CH2C12: 2079s, 2055s, 

2024s, 2008m, 1998s. 1972m, 1959m, 1949m cm*1. *H NMR of 57h at 400 MHz in 

CDCI3: 8 8.34 (d, H(2)), 6.72 (d, H(3)), 5.49-5.71 (m, middle proton on allyls 2 total), 

5.21-4.71 (m, terminal allyl protons 4 total), 3.87 (m, H(7)), 3.59 (m, H(5)), 2.77 (dd, 

H(6 )). 2.50-2.25 (m, 1st CH2 on allyl 4 total), 1.86 (tt, H(6 )), -17.073 (s, hydride).
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5.10 X-ray Structure Determination of 53-55.

Crystals of 53-55 for X-ray examination were obtained from saturated solutions 

of each in hexane/dichloromethane solvent systems at -20°C. Suitable crystals of each 

were mounted on glass fibers, placed in a goniometer head on the Enraf-Nonius CAD4 

diffractometer, and centered optically. Unit cell parameters and an orientation matrix for 

data collection were obtained by using the centering program in the CAD4 system. For 

each crystal, the actual scan range was calculated by scan width = scan range + 0.35 tan0 

and backgrounds were measured by using the moving-crystal moving-counter technique 

at the beginning and end of each scan. Two representative reflections were monitored 

every 2 h as a check on instrument and crystal stability. Lorentz, polarization, and decay 

corrections were applied, as was an empirical absorption correction based on a series of 

Y scans, for each crystal. The weighting Scheme used during refinement was l /o \  based 

on counting statistics.

Each of the structures was solved by the Patterson method using SHELXS-86," 

which revealed the positions of the metal atoms. All other non-hydrogen atoms were 

found by successive difference Fourier syntheses. The expected hydride positions in 

each were calculated by using the program HYDEX,2 hydrogen atoms were included in 

each structure and were placed in their expected chemical positions using the HFIX 

command in SHELXL-93.12 The hydrides were given fixed positions and U’s; other 

hydrogen atoms were included as riding atoms in the final least squares refinements with 

U's which were related to the atoms ridden upon. All other non-hydrogen atoms were 

refined anisotropically in trans-3%m, 39n and 39j; however, only the osmium atoms in 

c/'s-38m could be refined anistropically due to the poor crystallinity of the sample. In
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addition, there was dichloromethane solvent present in the lattice of rra/i5-38m which 

could not be modeled precisely.

Scattering factors and anomalous dispersion coefficients were taken from 

International Tables for X-ray Crystallography.13 All data processing was carried out on a 

DEC 3000 AXP computer using the Open MolEN system of programs.14 Structure 

solution, refinement and preparation of Figures and tables for publication were carried 

out on PC’s using SHELXS-86." SHELXL-9312 and SHELXTL/PC15 programs.
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