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Churkina, Galina, Ph. D., August 1998 Forestry

Analyzing climatic and human influences on global terrestrial productivity

Director Steven W. Running

The objective of my dissertation is to evaluate climatic and human influences on global NPP. In the 
first part of my study, I evaluated the different approaches used in global terrestrial biospheric models to 
introduce water budget limitations on NPP and tested the assumption that moisture availability is a primary 
driver of the NPP estimated by the current global models. Three methods to restrict NPP by water 
availability were distinguished; I) physiological control on evapotranspiration through canopy 
conductance; 2) supply/demand constraints on ecosystem productivity; 3) water limitation inferred from 
satellite data. A water balance coefficient, calculated as the difference of mean annual precipitation and 
potential evapo transpiration, has been compared to NPP for each grid cell in each of fourteen models. 
While correlation plots revealed similar boundary lines for most global models, there was high variability 
in these distributions related to other environmental controls on NPP.

In the second part. I assessed relative importance of climatic controls (temperature, water availability, and 
radiation) in limiting NPP in the array of climadc combinations found globally. The degree of limitation on 
NPP by climadc controls was defined using an empirical membership function. Results showed that 
temperature or water availability limited NPP over larger land areas (31% and 52% respectively) than did 
radiation limitation (5%). Climatic controls appeared to be important in limiting productivity in most 
vegetation biomes, except for evergreen broadleaf forests. There were areas of the globe (12%) where none 
of the climatic factors appeared to limit NPP.

In the third part measurements o f extracted timber and modeled forest productivity were used to 
investigate the relationship between harvested timber and natural forest productivity for current conditions, 
under doubled CO?, and climate change scenario. The analysis was confined to coniferous forests and 
countries that have coniferous forests within their territories. The results of this study suggested that global 
coniferous forests currently produce more wood than people consume, but this gap would narrow in the 
future. Wood extraction may reach forest regrowth by the middle of the next century, even though most 
coniferous forests are located in high latitudes and would have an accelerated stem growth associated with 
the joint effect of climate change and elevated carbon dioxide concentration in the atmosphere.
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Chapter 1

Introduction

Net primary productivity (NPP) represents the greatest annual carbon flux from 

the atmosphere to the biosphere, and is an important component of seasonal fluctuations 

in atmospheric CO2 concentrations, as well as the most critical biotic component o f the 

global carbon cycle. NPP measures products of major economic and social importance 

such as crop yield and forest production. The mechanisms controlling NPP are complex 

and not limited to the natural drivers only. Spatial climatic variability dominates large- 

scale patterns of NPP, which are subsequently modified by soils, plant characteristics, 

and natural disturbances. People further alter those patterns (use of fertilizers, irrigation, 

plantations, etc.) while attempting to match the productive capacity o f vegetation with 

their demand for vegetation products.

It is the objective o f my dissertation to evaluate climatic and human influences on 

global NPP. Specifically, I looked at some related questions. Is water availability the 

primary limiting factor in the recent generation of global terrestrial models? What is the 

relative importance of climatic controls on global NPP? Can global NPP patterns be 

explained by climatic influence only? What share of global forest NPP do humans 

appropriate? Will timber harvest exceed the level available from forest on a sustainable 

basis?

l
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Review of research problems investigated in Chapter 2

In this chapter, I test the assumption that water availability is the primary limiting 

factor of NPP in global terrestrial biospheric models. A water balance coefficient (WBC), 

calculated as the difference between mean annual precipitation and potential 

evapotranspiration, is compared to NPP for each grid cell (0.5° x 0.5° longitude/latitude) 

in each of fourteen models. Different approaches to introducing water budget limitations 

on NPP are evaluated. Three methods to restrict NPP by water availability are 

distinguished; 1) direct physiological control on evapotranspiration through canopy 

conductance; 2) climatological computation of supply/demand constraints on ecosystem 

productivity; and 3) water limitation inferred from satellite data alone.

Review of the research problems investigated in Chapter 3

In this chapter, the biogeochemical model BIOME-BGC is used to simulate 

global terrestrial NPP and relative importance of climatic controls (temperature, water 

availability, and radiation) in limiting NPP is assessed in the array of climatic 

combinations found globally. The degree o f limitation on NPP by climatic controls is 

defined using an empirical membership function. I shall show that, although climate 

limits NPP over large land areas none o f the climatic factors appears to limit NPP in 

some regions of the globe. Other environmental controls such as nutrient availability, 

disturbance, or biological constraints should then be considered to estimate NPP 

accurately.
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Review of the research problems investigated in Chapter 4

Measurements of extracted timber and modeled forest productivity are used to 

investigate the relationship between harvested timber and natural forest productivity for 

current conditions and under a doubled CO2 and climate change scenario. At this stage, 

the analysis is confined to coniferous forests and countries that have coniferous forests 

within their territories. Annual roundwood production from the database of Food and 

Agriculture Organization (FAO) is used as an approximation of annual timber extraction 

for each country. Annual stem primary productivity of coniferous forests is estimated 

using the BIOME-BGC model. Based on the current rates, annual timber extraction is 

extrapolated for each country for the next 80 years. Then, on a country basis, the timber 

harvest is related to the modeled forest stem productivity, assuming that the area of 

coniferous forest would stay unchanged for the next 80 years. Taking into account 

changing environmental conditions, I shall discuss the natural capacity of coniferous 

forests to sustain increasing wood extraction by people and attempt to identify countries 

where wood shortages may occur in the future.
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Chapter 2

C o m p a r in g  g l o b a l  m o d e ls  o f  t e r r e s t r i a l  n e t  p r im a ry  p r o d u c t iv i t y  

(NPP): T h e  im p o r ta n c e  o f  w a t e r  a v a i la b i l i ty 1

In tro d u c tio n

Net primary production (NPP) is an important quantitative characteristic of the 

biosphere, since it integrates the greatest annual carbon flux from the atmosphere to the 

biosphere and is considered to be the main element of seasonal fluctuations in 

atmospheric CO2 concentrations (Ciais et al. 1995; Keeling et al. 1996). The practical 

importance of NPP estimation is found in its utility to measure crop yield, forest 

production (Milner et al. 1996), and other economically and socially significant products 

of vegetation growth. Sufficient data have only recently become available, such that NPP 

can be characterized by something better than an educated guess. At present, NPP 

receives particular attention in the context of modeling ecosystem parameters at the 

global scale. Given that neither absolute measures nor direct model validations of global 

terrestrial NPP are feasible, intercomparison of global NPP models provides an effective 

tool to check consistency of each model, representations of climatic controls and regional 

patterns o f NPP.

A number of empirical studies suggest that water balance should be a major factor 

in the NPP pattern for the most o f the world’s land ecosystems. Rosenzweig (1968)

1 Churkina G, Running SW, Schloss A (in press) Comparing global models of terrestrial net primary
productivity (NPP): The importance of water availability to primary productivity in global terrestrial
models. Global Change Biology.

4
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predicted annual aboveground NPP of terrestrial plant communities from actual 

evapotranspiration (AET) using a single linear equation:

log NPP = a *  log AET + b

where a and b were constants.

Then, Lieth (1975) determined a curve describing the relationship between mean 

annual precipitation (P) and NPP o f those ecosystems that are not limited by low 

temperatures:

NPP = a * (I - exp (b * P))

where a and b were constants.

Later, a water balance formulation, which integrated precipitation input, soil 

water storage, and atmospheric evaporative demand was found to be the dominant control 

of leaf area index and NPP in forests o f the northwestern United States (Gholz 1982; 

Grier & Running 1977). Finally, Stephenson (1990) and Neilson et al. (1992) illustrated 

the high correlation between the distribution of North American plant formations and 

water-balance parameters. Given that these studies, as well as empirical data, strongly 

suggest that the water balance is the primary driver of variation in NPP, it is interesting to 

ask if  it is also the primary driver in the current generation of global NPP models.

The objectives of this study are to evaluate the different approaches used by 

modeling groups to introduce water budget limitations on NPP and to test the assumption 

that moisture availability is a primary driver of the NPP estimated by the current 

generation of the global models. I first discuss the definitions o f actual and potential 

evapotranspiration and their estimation methods in several global models. This is
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essential for evaluating approaches introducing water budget limitations on NPP in the 

next section. Afterwards, I compare the models regarding their time steps and I evaluate 

the methods for calculating critical water balance parameters such as canopy interception 

and evaporation, soil moisture, and snowpack. Finally, I analyze the relationship between 

a water balance coefficient and NPP outputs from the global models.

M a te r ia ls  a n d  m eth o d s

Models

Since detailed information about modeling water balance parameters was not 

available for all models participating in the “Potsdam ’95” intercomparison workshop, I 

confined our study to fourteen models (BIOME-BGC (Hunt et al. 1996; Running & Hunt 

1993), BIOME-3 (Haxeltine & Prentice 1996), CARAJB (Wamant et al. 1994), CASA 

(Field etal. 1995), CENTURY (Parton et al. 1993), GLO-PEM (Prince & Goward 1995), 

(Kohlmaier et al. 1997), HRBM (Esser et al. 1994), KGBM (Kergoat in press), PLAI 

(Plochl & Cramer 1995), SDBM (Knorr & Heimann 1995), SILVAN (Kaduk 1996; 

Kaduk & Heimann 1996), TEM (Raich et al. 1991), and TURC (Ruimy et al. 1996)).

Methods for estimating actual and potential evapotranspiration

Potential and actual evapotranspiration (PET, AET) are among the most 

significant water balance parameters. PET is the amount of evapotranspiration that could 

occur if  the soil o f a large area having “vegetation typical of the surroundings” was kept 

constantly wet (Rosenzweig 1968; Sellers 1965). AET is the amount o f water actually 

entering the atmosphere from soil and vegetation, i.e. evaporation plus transpiration
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(Rosenzweig 1968; Sellers 1965). The global NPP models used six methods to calculate 

PET (Table 1). The Penman-Monteith (Monteith 1973) and Priestley-Taylor (Priestley & 

Taylor 1972) methods both depend on climatic variables such as temperature and 

radiation as well as on plant cover type. In contrast, Penman (Penman 1948), 

Thomthwaite (Thomthwaite 1944; 1948), Jensen-Haise (Jensen & Haise 1963), and 

Jarvis-McNaughton, which is derived from Penman-Monteith (Jarvis & McNaughton 

1986), use climatic parameters only. Calculation of evapotranspiration is based on 

radiation and temperature in the Jensen-Haise and Jarvis-McNaughton methods, but only 

on temperature in the Thomthwaite estimation. The Penman and Penman-Monteith 

approaches also require air humidity data.

Table 1. Methods for estimating potential and actual evapotranspiration (PET and AET) in the 
fourteen global NPP models2

Model PET AET
a) canopy conductance control on evapotranspiration

BIOME-BGC - Penman-Monteith (Monteith 1973)
BIOME3 Penman-Monteith (Monteith 1973) supply/demand (Federer, 1982)
CARAIB Penman (1948) f  (PET, soil moisture)
KGBM Penman-Monteith (Monteith 1973) modified Penman-Monteith (Kergoat, in press)

b) climate supply/demand constraint
CENTURY modif. Penman-Monteith (Linacre 1977) f  (PET, live plant biomass, dead plant biomass)
FBM Thomthwaite (1944, 1948) f  (PET, soil moisture)
PLAI Priestley-Taylor (1972) f  (PET, soil moisture)
SILVAN Jarvis-McNaughton (1986) supply/demand (Federer, 1982)
TEM Jensen-Haise (1963) f(PET, soil moisture)
CASA Thomthwaite (1944,1948) f  (PET, soil moisture)
SDBM Jarvis-McNaughton (1986) supply/demand (Federer, 1982)
HRBM3 - supply/demand (Federer, 1982)

c) moisture limitation inferred from satellite data
GLO-PEM - -
TURC - -

2 for symbols and abbreviations, cf. Appendix, Table 6.
3 HRBM calculates monthly AET to redistribute the annual NPP over the 12 months, therefore the 
estimated AET does not affect annual NPP.
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BIOME-BGC and K.GBM use the Penman-Monteith method to calculate AET, which 

allowed the reduction o f canopy conductance by plant water stress or soil water 

limitation. CENTURY calculates AET as a function of PET, live and dead plant biomass. 

The remainder o f the models use either a supply/demand theory by Federer (1982) 

(BIOME3, HRBM, PLAI, SDBM, SILVAN) or functions of PET reduction through 

relative soil moisture content (CARAIB, CASA, FBM, TEM) to calculate AET. K.GBM 

and SILVAN distinguish between canopy and soil evaporation, so that estimated AET 

accounts for the difference in those evaporative processes. Overall, each NPP model’s 

unique method for water budget control on NPP determined the subsequent approach to 

AET and PET calculation.

Methods for introducing water balance limitation on NPP

The global models introduced water availability restrictions on NPP in one o f 

three ways: 1) direct physiological control on evapotranspiration through canopy 

conductance; 2) climatological computation of water supply/demand constraints on 

ecosystem production; 3) water limitation inferred from satellite data alone with no 

surface climatic data used.

Canopy conductance control on evapotranspiration. The water limitation on NPP 

through canopy conductance was simulated by BIOME-BGC, BIOME3, CARAIB, and 

KGBM (Table 2a). Canopy conductance is a complex function of incident radiation, 

vapor pressure deficit, air temperature, leaf water potential, and leaf area index and, 

therefore, exerts a significant physiological control over plant productivity. Well-
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hydrated leaves allow stomata to remain open, facilitating CO2 uptake and nutrient 

transport. Decreasing water content in leaf tissue forces stomata to begin closure and the 

leaf photosynthesis rate to decline. When leaf water potential reaches a threshold value, 

the stomata close completely and the carbon uptake is halted. With all other factors held 

constant, an increase in leaf area results in increased canopy conductance, because 

canopy conductance is the sum of those conductances in different canopy layers working 

in parallel (Nemani & Running 1989b).

Climatological supply/demand control on ecosystem productivity. CENTURY, 

FBM, PLAI, SILVAN, TEM, CASA, SDBM, HRBM used a more direct approach to 

infer moisture restriction on NPP and used scalars describing climatic supply/demand 

control on ecosystem productivity (Table 2b). The ratio o f actual to potential 

evapotranspiration (AET/PET) was a scalar widely used by the modeling groups. This 

ratio provides a measure of how much water is evaporated or transpired from a site 

relative to the evapotranspiration that would occur with an unlimited water supply. In hot 

and dry environments this ratio may be close to zero, while in cool and rainy climates this 

ratio can reach one (Aber & Melillo 1991). CASA and SDBM, both satellite-driven 

models, accounted for water restriction on NPP incorporating both an explicit scalar 

dependent on AET/PET and an implicit water limitation through a light interception 

efficiency coefficient. HRBM used the simplest version o f climatic supply/demand 

controls on ecosystem productivity, a factor dependent on soil type which modified NPP 

obtained from an empirical relationship between annual NPP and mean annual 

precipitation.
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Water limitation inferred from  satellite data. TURC and GLO-PEM inferred 

water availability limitation on NPP entirely from satellite data (Table 2c). Although 

Garcia (1988) showed that water stress limits the Normalized Difference Vegetation 

Index (NDVI) using a hand-held radiometer, subsequent research by Nemani and 

Running  (1989a) and Nemani et al. (1993) demonstrated a method to estimate surface 

moisture status at satellite resolutions more accurately using the relationship between 

NDVI and surface temperature (TixUf). For moist environments, TSUTf provided no 

distinction between soils and leaves. In dry conditions, green foliage increased NDVI, but 

decreased r surf because of the increasing amount of evaporated water. TURC 

incorporated water limitation on NPP solely through a light interception efficiency 

coefficient derived from NDVI data. GLO-PEM included water restrictions on NPP 

through a moisture index dependent on NDVI/rsurf. In contrast to the other models, GLO- 

PEM simulations were based on time-specific observations rather than biome means or 

climatologies.
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Table 2. Methods for introducing water limitation (WL) on NPP in fourteen global NPP models'1

Model Effect o f WL on NPP WL
calculation

Input data

a) canopy conductance control on evapotranspiration
BIOME-BGC canopy conductance (soil moisture; online T, P, Rt (Leemans & Cramer 1991)

VPD) soil texture (Zobler 1986)
wind speed (constant)
air humidity (Friend in press)

BIOME3 canopy conductance (soil moisture; online . T, P, /?, (Leemans & Cramer 1991)
AET) soil texture (Zobler 1986)

CARAIB canopy conductance ( soil moisture offline T, P, R, (Leemans & Cramer 1991)
or relative humidity) soil texture (Zobler 1986)

wind speed (ECMWF5)
air humidity (ECMWF)

FCGBM canopy conductance (soil moisture; online T, P, R, (Leemans & Cramer 1991)
VPD) soil texture (Zobler 1986)

wind speed (constant)
humidity (interpolated from NCDC6)

b) c lim ate supply/dem and constraint
CENTURY scalar dependent on AET/PET (soil online T, P, R, (Leemans & Cramer 1991)

moisture) soil texture (Zobler 1986]
FBM scalar dependent on AET/PET (soil offline r, P (Leemans & Cramer 1991)

moisture) soil texture (FAO/UNESCO 1977; Zobler
1986)

PLAI scalar dependent on AET/PET (soil offline T, P, R , (Leemans & Cramer 1991)
moisture) soil texture (FAO/UNESCO 1977; Zobler,

1986)
SILVAN scalar dependent on AET/PET (soil online T, P, Rt (Leemans & Cramer 1991)

moisture) soil texture (Webb et al. 1992]
TEM scalar dependent on AET/PET (soil online T, P, R, (Leemans & Cramer 1991)

moisture) soil texture (Zobler, 1986)
AET/PET offline vegetation, elevation

CASA scalar dependent on AET/PET (soil offline T, P  (Leemans & Cramer 1991)
moisture) soil texture (Zobler, 1986)
light interception efficiency NDVI (AVHRR)

SDBM scalar dependent on AET/PET (soil offline T, P, Rt (Leemans & Cramer 1991)
moisture) soil texture (Webb et al. 1992)
light interception efficiency NDVI (AVHRR)

HRBM directly through precipitation, soil online P (Leemans & Cramer 1991)
factor soil type (FAO/UNESCO 1977)

c) m oisture lim itation inferred from satellite data
GLO-PEM scalar dependent on NDVI/7 ^ online T ^ t  (AVHRR)

NDVI (AVHRR)
TURC light interception efficiency online NDVI (AVHRR)

4 for symbols and abbreviations, cf. Appendix, Table 6.
5 data supplied by the European Center for Medium Range Weather Forecast, Reading, UK
6 data supplied by the National Climatic Data Center
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Other hydrologic variables

Time step. Time step length plays a significant role in calculating the water 

balance and therefore NPP. Although monthly precipitation data provide the average 

amount of water entering the system, there is no information regarding rain frequency, 

which varies dramatically between different regions of the globe. Rainwater partitioning 

includes canopy interception, snowmelt, evaporation, and subsequent throughfall 

processes represented within a daily time step model. Plants may experience water stress 

and rehydration all in one month, but these dynamics cannot be shown using monthly 

time steps. Therefore, using daily time step improves calculation of water related 

variables.

As summarized in Table 3, the process-based NPP models are capable of 

determining hydrologic processes such as potential and actual evapotranspiration, 

interception, runoff, and soil water availability on a daily or even an hourly basis. In this 

comparison, models required daily climate data inputs either generated weather data 

stochastically (Friend in press), or interpolated monthly data, or distributed monthly 

precipitation into “events” using a statistical method (Rastetter et al. 1992). As a result, 

input climate data adjustments influenced models’ performances.
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Table 3. Time steps for calculating water balance variables by the fourteen global NPP models7

NPP PET AET Int runoff SW
a) canopy conductance control on evapotranspiration
BIOME-BGC d - d d d d
BIOME3 m d d d d d
CARAIB 2b d d d d d
KGBM d d d d d d

b) climate supply/demand constraint
CENTURY m m m m m m
FBM d d d d d d
PLAI d d d d d d
SILVAN 6d d d d d d
TEM m m m m m d
CASA m m m m m m
SDBM m d d d d d
HRBM m - - - - -

c) moisture limitation inferred from satellite data
GLO-PEM8 m - - - - m
TURC m - - - - -

Canopy interception and evaporation. Only seven models treated vegetation 

canopy interception or evaporation (Table 4). Precipitation, leaf area index (LAI) and 

vegetation type can be used to estimate canopy interception. To calculate canopy 

interception, KGBM included all three parameters, whereas BIOME-BGC and 

CENTURY used precipitation and LAI. CARAIB treated canopy interception as a 

function of precipitation. Calculation of canopy interception in PLAI was dependent 

entirely on vegetation type.

7 for symbols and abbreviations, cf. Appendix, Table 6.
8 The temporal resolution of GLO-PEM is dependent upon the temporal resolution of the satellite data used. 
Monthly satellite data were used for the intercomparison.
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Table 4. Methods for canopy interception, evaporation and snow pack treatment in the fourteen 
global NPP models9

Model Canopy Evaporation of Snow pack Snow transformadon to water
interception intercepted rain model

a) canopy conductance control on evapotranspiradon
BIOME-BGC f  (P, LAI) transpiradon with zero 

stomatal conductance
included f(T, R,)

BIOME3 - - included f(7 > -2 C )
CARAIB f(P) interception included f (7)
KGBM f (P, LAI, veg) transpiradon with zero 

stomatal conductance
- -

b) climate supply/dem and constraint
CENTURY f(/>, LAI) interception included f(r>-9-c)
FBM f  (P, veg) - - -
PLAI f(veg) - - -
SILVAN - - - -
TEM - - included f (7 > - l ' C, elevation 500 m)
CASA - - included f(T>0*O
SDBM - - - -
HRBM - - - -

c) moisture lim itadon inferred from  satellite data
GLO-PEM included in canopy 

temperature
- - -

TURC - - - -
Snowpack dynamics. Only liquid water reaching the soil is potentially usable by

plants. While snow is precipitation at the time it falls, it is not accessible to plants until it 

melts. During the winter season, water is not used by plant to grow, despite the 

considerable amount o f precipitation fallen as snow. Snowpack accumulated during the 

winter presents a potential water storage that will be available to the plant as meltwater in 

spring and may supply the plant with water even during the summer depending on the 

original snowpack size and water-holding capacity of the soil. Incorporating snowpack 

treatment allows NPP models to capture this feature. As summarized in Table 4, the 

transformation o f snow to water was treated differently by the global models. It was

9 for symbols and abbreviations, cf. Appendix, Table 6.
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dependent upon threshold temperatures (BIOME3, CARAIB, CASA, and CENTURY), 

or temperature and radiation (BIOME-BGC), or threshold temperatures and site elevation 

(TEM).

Soil moisture and soil textural controls on vegetation growth. Soils are primary 

stores for water usable by plants. By definition, the water available to a plant is the total 

amount of liquid water reaching the soil minus the net change in water stored in the soil. 

Thus, the water balance cannot be calculated accurately unless the water holding capacity 

of the soil is considered (Stephenson 1990). All models except TURC accounted for soil 

moisture in some way (Table 5). Although most of them employed one layer bucket 

models, BIOME3 defined two and CENTURY simulated six soil layers. Most models 

with water limitation through canopy conductance included soil textural controls on 

vegetation growth excluding CARAIB. The models with a supply/demand water 

limitation included soil moisture in AET calculations, but used simpler soil moisture 

constraints on vegetation (e.g., available water capacity or field capacity and wilting 

point were constants). GLO-PEM, a model with moisture limitations from satellite- 

derived data, used a simple one-layer bucket model in combination with the slope of 

NDVI/rsurf ratio.
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Table 5. Methods for sofl moisture treatment and soil textural controls on vegetation growth in the 
fourteen global NPP models10

Model Soil layers Bucket depth Rooting depth Soil texture con­
trol on vegetation

FC, WP. AWC

a) canopy conductance control on evapotranspiration
BIOME-BGC 1 1 m 1 m SW FC= f(text, RD) 

WP= f(veg)
BIOME3 2 0 - 0.5 m 

0.5- 1.5 m
f (grass, woody 
plants)

SW, water 
percolation rate

AWC= frtext)

CARAIB I RD f (veg, text) 
I -2 m

- FC= -33 kPa 
WP=-I500 kPa

KGBM 1 RD 0.6 m grass 
1.2 m
(temp.for.)
1.5 m (trop.for.)

SW AWC= frtext)

b) climate supply/demand constraint
CENTURY 6 0 - 0.15 m 

0.15-0.3 m 
0.3 - 0.45 m 
0.45- 0.6 m 
0.6 - 0.9 m 
0.9 m <

SW FC= -33 kPa 
WP= -1500 kPa

FBM 1 RD f (veg, text) 
<2 m

SW FC= f(text, RD)
WP= f(veg, text, RD)

PLAI 1 1 m 1 m implicit FC= f(text, RD)
WP= f(veg, text, RD)

SILVAN 1 1 m < 1 m FC= -10 kPa 
WP= -1500 kPa 
AWC= f(text)

TEM I RD f (veg, text) 
0.5 - 2.5 m

SW, Cna,, Hna* FC= f(text, RD) 
WP= f(text, RD)

CASA 1 RD 0.5 m (grass, 
crops, tundra) 
1 m (forest)

SW FC= f(text) 
WP= f(text)

SDBM 1 RD < 1 m - FC= -10 kPa 
WP= -1500 kPa

HRBM 1 I m - - AWC= 150 mm
c) moisture limitation inferred from satellite data
GLO-PEM 1 f (aboveground 

biomass)
- -

TURC - - - - -

10 for symbols and abbreviations, cf. Appendix, Table 6.
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Comparison of estimated annual NPP in relation to water availability

Since empirical data suggest that water balance is the primary driver o f variation 

in NPP (Neilson & Marks 1994; Stephenson 1990; Woodward 1987), I test if  it is also the 

primary driver in the current generation o f global NPP models and if the models show 

large differences in the dependence of NPP on water balance. As demonstrated above, 

there were vast differences in the logic employed by the models to account for water 

limitation on NPP. A direct comparison of simulated water balances was, therefore, not 

possible and I had to compare general characteristics of the models.

Methods for the comparison

To compare estimated annual NPP in relation to water availability among global 

models, I introduced a simple scalar or water balance coefficient (WBC), which 

differentiated sites with surplus from sites with deficiency of available water. This scalar 

could be used with all models, regardless o f their individual hydrologic computations 

with the advantage o f being independent o f any models and reliant on input climate data 

only. Calculation o f a water balance index including AET and runoff was not appropriate 

in this case, because it required land cover classification and soil texture data to be 

involved in the calculation and could lead to certain biases in the results associated with 

different land cover maps used by global models.

The WBC reflecting water availability was defined as the difference between 

precipitation (P) and potential evapotranspiration (PET):

WBC = P - PET (1)
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Potential evapotranspiration was computed as a function o f temperature and radiation 

from the method by Priestley & Taylor (1972):

X PET = a  [s /(s +y )] (Rs + G) (2)

where X PET is the latent heat flux density, a  is the Priestley-Taylor parameter, Rs is the 

net radiation above the surface, G is the soil heat flux, s is the slope o f the saturation 

vapor pressure-temperature curve at the dry bulb temperature, and y is the psychrometer 

constant. I used the Priestley-Taylor method without land cover dependency (with 

a=1.26 for all vegetation types). Rs was calculated as a proportion of solar radiation and 

G was a function o f temperature.

The global annual water balance coefficient was calculated at each grid cell o f

0.5° x 0.5° longitude/latitude (Fig. 1). Global data for mean annual precipitation, 

temperature, and solar radiation were obtained from the common input data set (Cramer 

etal. submitted).

BALANCE COEFFICIENT

*i

-2750
m m /year

5200

Figure 1. Water balance coefficient (WBC) computed as the difference between annual precipitation 
and potential evapotranspiration (eq.l). WBC was calculated at each 0.5° x 0.5° longitude/latitude
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grid cell. Potential evapotranspiration was computed by Priestley-Taylor method (eq. 2) using the 
global data set (Cramer et aL, in press).

Assuming that water availability was the primary controlling factor o f  global NPP

patterns, I examined if  models showed large differences in the dependence o f NPP on 

WBC. In dry regions, gradually increasing water availability facilitates the regular 

increment of maximum potential vegetation productivity. If an ecosystem receives 

sufficient water available for plant growth, then moisture does not limit plant productivity 

and the maximum NPP saturates. When WBC is high, then NPP below maximum reflects 

control by other climatic variables. For example, although there is plenty of available 

water in the high latitude ecosystems, low radiation and low temperatures restrict 

photosynthesis and NPP. In addition, low nutrient content may limit optimum NPP in 

some areas.

Results and discussion

A comparison of modeled NPP to WBC for all grid cells of the globe (Figs. 2, 3a, 

3b, 4) indicates low correlation (r2 = 0.05-0.3) between these two variables in all models. 

Nevertheless, a closer examination of these correlation plots reveals some general 

characteristics of the dependence of WBC on NPP for the models. As WBC becomes 

more negative, the upper boundary of NPP estimates decreases in all models. It indicates 

that water is the ultimate limiting factor of NPP in these grid cells. The wide distribution 

o f NPP estimates between zero and the upper boundary implies that secondary factors 

(temperature, solar radiation, nutrient constraints, etc.) simultaneously limit NPP at these 

grid cells. Spatial variations in the density of NPP estimates reflect different methods to 

simulate interaction among environmental controls on NPP used by the global models.
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As WBC becomes more positive, NPP estimates of most models reach a maximum of 

1500 - 3000 g C m '2 yr'1 (Figs. 2, 3a, 3b, 4). The high density of NPP estimates at this 

maximum indicates that the models assume optimal environmental conditions for NPP in 

some regions (e.g., the wet tropics). Several models have much higher variability in NPP 

estimates in those regions indicating the importance o f secondary factors such as nutrient 

constraints or land use. Interestingly, half of the models (BIOME3, CARAIB, CASA, 

FBM, GLO-PEM, SILVAN, and TURC) estimated the maximum NPP in regions with a 

negative water balance. The other half of the models (BIOME-BGC, CENTURY, 

HRBM, KGBM, SDBM, TEM, and PLAI) predicted the maximum NPP to occur where

the water balance was positive.

2500 

•C- 2000 
<  1500 

4 . 1000
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0
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-3 000 -2000 -1000  0 1000 2000
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2000
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1000
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-5 0 0
-3 0 0 0 -2000 -1000  0 1000 2000.

’ —  ---- 1 (m m /year;water balance coefficient
-3000-2000-1000 , Q 1000 2000. 
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Figure 2. Relationship between estimated NPP and WBC for models with physiological control on 
evapotranspiration through stomatal control.

A number o f reasons can account for the differences in the comparison results 

discussed above. First, the WBC used for this comparison provided only a general scale
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of potential water available in an ecosystem. It did not give an absolute measure for water 

balance, because it was calculated on an annual basis and did not account for 

precipitation seasonality or the interaction between precipitation seasonality and PET. 

The model sensitivities to climatic factors, however, can change depending on the 

temporal scale at which the comparisons are made (Schloss et al. in press). Second, to 

estimate PET, models used methods which differed from the approach in the WBC 

computation, thus the variations in the relationship of maximum NPP to the WBC may be 

a result o f these differences. Different PET methods may give substantially different PET 

estimates for the same climate and land cover type, and influence AET and NPP 

computations. Federer et al. (1996) showed that although nine different PET methods 

agreed in the general magnitude of PET over a range o f climates and cover types, 

differences among methods were hundreds of millimeters per year. Between methods, 

annual PET varied from about 400 mm at Fairbanks, Alaska to about 1500 mm at 

Phoenix, Arizona and San Juan, Puerto Rico. Methods dependent on land cover type (e.g. 

Penman-Monteith and Priestley-Taylor) were suggested as more appropriate for regional 

or global modeling, because they gave the highest values o f transpiration and soil 

evaporation for wet soils.
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Figure 3 a, b. Relationship between estimated NPP and WBC for models with climatic 
supply/demand control on ecosystem productivity.
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In addition, the methods used to estimate water budget limitation on ecosystem 

productivity also had a significant effect on the model outputs. Models with physiological 

controls over evapotranspiration and NPP (Fig. 2) predicted a smooth increase in the 

range o f NPP with the increasing WBC and the slope of the edge of NPP versus WBC 

was steeper (except BIOME3). It suggests that the deficit o f water available to plants set 

the upper limit on ecosystem productivity. Correlation plots for a few models with the 

climatic supply/demand control on NPP featured the appearance o f concentric lines (Figs. 

3 a and 3b), which biome or soil types with set productivity limitations could explain. 

Plots of the relationship between NPP and WBC from the models based on satellite data 

revealed distinct differences between the two models (Fig. 4). In contrast to TUR.C, 

GLO-PEM showed an even distribution of NPP versus water balance coefficient with the 

monotonic growth of vegetation productivity following the increase in ecosystem water 

supply. These results suggest that soil moisture status can be more accurately represented 

by the relationship between NDVI and TSWf versus NDVI alone.

GLO-PEM TURC
2500

o©
2000

\
E
o

1500

1000
o>
0-

500
a.z 0

-5 0 0

■'.V

-3000-2000-1000  0 1000 2000
water balance coefficient (m m /year;

-3000 -2000 -1000  „  0  ,1000  2000. 
water balance coefficient ^m m /year;

Figure 4. Relationship between estimated NPP and WBC for models with water availability 
limitation inferred through satellite data.
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While water availability may be the most influential variable for NPP, 

multivariate environmental factors interact and restrain NPP in non-linear and 

discontinuous ways. Analysis of measured atmospheric carbon dioxide and satellite- 

derived measurements of temperature and the vegetation index suggested that nutrient 

effects on the carbon cycle could delay ecosystem response to changing climate by as 

much as two years (Braswell et al. 1997). Vogt et al. (1996) attempted to determine what 

climatic and nutrient variables drove fine root productivity using measured NPP data. 

They found no significant or consistent patterns for above- and belowground NPP change 

across the different climatic forest types and by soil order, even though they suggested 

that nutrient concentration in the forest floor controlled belowground NPP. These studies 

imply that vegetation productivity is a result of the interaction of several environmental 

factors and I should not expect a generic dependence between a single environmental 

control and NPP. The strong correlation between NPP and water balance found from 

empirical data in the earlier studies (Lieth 1975; Rosenzweig 1968) can be attributed to 

the location of the sampling sites in the water limited parts of the globe. After all, water 

availability is the dominant constraint on NPP over a larger part of the globe (52%) than 

any other environmental factor (Churkina & Running 1998).

Conclusions

Reflecting our improved understanding of terrestrial ecosystems, global NPP 

modeling has evolved from a simple linear regression between NPP and a climate 

variable to sophisticated simulation o f NPP as a result of multiple environmental factor
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interaction. Consequently, in future model comparison, I should focus more on the 

methods to simulate these interactions rather than on the influence o f a single 

environmental control on NPP.

To understand better the differences between approaches to account for water 

limitation on NPP in global models I suggest that the outputs with hydrological 

parameters (which were not available for this intercomparison) should be developed 

concurrently with NPP in the future model comparisons. These additional outputs would 

help to quantify the relationships between NPP and water balance variables as well as to 

investigate the differences between daily and monthly models (e.g., Schimel et al. 1997).

Another important issue is the accurate determination of maximal annual NPP.

The simulated maximal NPP values (1500-3000 g C m'2 yr'1) do not agree well with the 

highest measured values (1680-2300 g C m'2 yr'1, cf. Ajtay et al. 1979; Olson et al.

1983). Large discrepancies can arise from the computational method o f the areally 

averaged NPP over 1000-3000 km2 grid cells, which often represent a mixture of mature 

and/or disturbed vegetation. Although the delineation of the globe into 0.5 ° x 0.5 ° grid 

cells helps to capture some of the heterogeneity of terrestrial ecosystems, a model which 

assumes that each grid cell is occupied by a single vegetation type and has a mean 

climate may subsequently overestimate or underestimate NPP. Models using satellite data 

may provide more accurate NPP estimates for each grid cell, since they average actual 

vegetation cover present in the grid cell.

Although roots are primary pathways for water and nutrients uptake by plants, 

root treatment was greatly simplified in the global models (Table 5) because of the lack
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of relevant information. A database containing global root biomass and distribution has 

recently become available (Jackson et al. 1996; 1997) and can now be included in the 

standard input package for the global models. Use of this database could refine NPP 

estimates (e.g., improve maximal NPP estimates) as well as standardize rooting depth 

data used by the models, which would simplify future model comparisons.
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Table 6. Common abbreviations, symbols, and acronyms.

AET actual evapotranspiration
APAR absorbed photosynthetically active radiation
AVHRR Advanced Very High Resolution Radiometer
AWC available water capacity
C oax Maximum carbon assimilation rate
d(6d) daily (every six days)
ET evapotranspiration
FC field capacity
FPAR fraction of photosynthetically active radiation absorbed by the canopy
G soil sensible heat flux
GAIM Global Analysis, Interpretation and Modeling (IGBP Task Force)
GCM General Circulation Model
GCTE Global Change and Terrestrial Ecosystems (IGBP Core Project)
GPP gross primary productivity (flux)
GVI Global Vegetation Index
h(2h) hourly (every two hours)
IGBP International Geosphere-Biosphere Programme
Int interception
Nmax Maximum nitrogen uptake rate
LAI leaf area index
Leaf-N nitrogen content of leaves
LUE light use efficiency
m monthly
NDVI Normalised Difference Vegetation Index
NEP net ecosystem production (annual integral)
NPP net primary productivity (flux - net primary production refers to the annual integral)
PAR photosynthetically active radiation at the top of the canopy
PET potential evapotranspiration
P precipitation
Ra autotrophic respiration
RD rooting depth
R h heterotrophic respiration

solar radiation
Soil C&N both carbon and nitrogen in soil organic matter
SW soil water
T (air) temperature
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Tnirf surface temperature
text Soil texture
veg Vegetation type
VegC vegetation carbon (i.e. carbon in leaves, sapwood, heartwood, roots etc.)
Veg N nitrogen content in leaves and roots
VPD vapour pressure deficit
WBC water balance coefficient
WP wilting point
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Chapter 3

C o n t r a s t in g  climatic c o n t r o l s  o n  t h e  estim a ted  pro d u c tiv ity  o f

GLOBAL TERRESTRIAL BIOMES11

In tro d u c t io n

Terrestrial net primary productivity (NPP) represents the greatest annual carbon 

flux from the atmosphere to the biosphere and is considered to be the main cause of 

seasonal fluctuations in atmospheric CO2  concentrations (Ciais et al. 1995; Keeling et al. 

1996). In addition, terrestrial biospheric productivity is critical for the life o f humankind 

and all heterotrophic organisms on Earth because it provides potential food resources and 

a source o f wood for construction, fabrication, and fuel. Population growth and industry, 

however, have potentially negative effects on biospheric productivity and may reduce it 

dramatically. Between one-third and one half of the land surface has already been 

transformed by human action (Vitousek et al. 1997). Consequently, estimating global 

prim ary  productivity and monitoring changes will play an important role in detecting the 

state o f biospheric health.

There are two common experimental ways to estimate NPP: (1) as biomass 

produced during the growing season (Landsberg & Gower 1997) or (2) as net gas 

exchange o f plants, namely the difference between gross primary production and 

autotrophic respiration (Baldocchi et al. 1996) [gross primary production (net 

photosynthesis) is the rate o f atmospheric carbon fixation by vegetation; autotrophic

“  H w rlf in a  G, R u n n in g  SW (1998) Contrasting climatic controls on the estimated productivity of different 
biomes. ECOSYSTEMS, 1,206-215.
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respiration is the rate of carbon return from live vegetation to the atmosphere]. 

Importantly, NPP should not be confused with net ecosystem production (NEP), which is 

the difference between net atmospheric carbon fixation by plants (NPP) and heterotrophic 

respiration. A number of difficulties prohibit precise NPP measurements. Direct 

measurements of biomass involve the challenge o f quantifying belowground processes 

and measuring large units of biomass in forests. Given that gross primary production and 

both autotrophic and heterotrophic respiration are occurring simultaneously, it is very 

difficult to isolate NPP from total gas exchange. In either case, the scale of experimental 

methods is usually limited to single plants or small plots. Thus, direct measures of NPP at 

large scales remain problematic, and model-based estimates are essential at global scales.

Many modeling attempts have been made to predict global terrestrial NPP from 

environmental parameters. First, NPP was estimated empirically from climatic data 

(Lieth 1975; Rosenzweig 1968). Subsequently, a number of ecosystem process models 

were developed from theory linking climate, soil properties, and biome specific 

characteristics to responses in biogeochemical processes of vegetation (Haxeltine & 

Prentice 1996; Kaduk & Heimann 1996; Knorr & Heimann 1995; Kohlmaier et al. 1997; 

Melillo et al. 1993; Parton et al. 1993; Running & Hunt 1993; Wamant et al. 1994; 

Woodward et al. 1995). A few models have been recently designed to compute global 

NPP directly from remotely sensed data (Field et al. 1995; Prince & Goward 1995; 

Ruimy et al. 1996). Overall, NPP models range in complexity from fairly simple 

regressions between key climatic variables and one or several biospheric gas fluxes to 

quasi-mechanistic models which attempt to simulate the biophysical and
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ecophysiological processes occurring at the plant level. Each approach is based on 

simplifying assumptions about how ecosystems are structured and how vegetation may 

respond to changes in various environmental parameters. Consequently, the differences in 

model performance stem from these various simplifying assumptions.

A comparison o f NPP estimated by 17 global biospheric models was conducted at 

two workshops of the Global Analysis, Interpretation and Modeling (GAIM) activity of 

the International Geosphere-Biosphere Program (IGBP) (W. Cramer, submitted). The 

comparison used standardized input variables wherever possible. Large differences in 

sensitivity to precipitation, temperature, and solar radiation were identified among the 

models, even among those that estimated similar global values of NPP (A.L. Schloss, 

submitted). Systematic biases associated with the fundamental modeling strategy, 

however, were not found, although the inclusion of nutrient constraints reduced NPP in 

some regions (D.W. Kicklighter, in press). Participants of the Vegetation/Ecosystem 

Modeling and Analysis Project (VEMAP) compared changes in annual NPP of the 

continental USA with climate change scenarios and current and altered atmospheric CO2 

concentrations (VEMAP 1995). For the altered C 02 and climate scenarios, large 

variability in carbon cycle responses was observed among the biogeochemistry models 

(e.g. NPP ranged from no response to increase of 40%), despite a common input database 

(soils, vegetation classification, and climate). This variability was attributed to the 

different model formulations o f the hydrologic and nitrogen cycles. These studies imply 

that environmental factors controlling NPP influence one another, resulting in broad 

correlations among those factors. NPP models, including richer suites of controlling
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parameters, should therefore be more sensitive to conditions that disrupt the broad 

correlation.

Several studies have analyzed the relative strengths of biotic and abiotic factors in 

limiting vegetation productivity from very different perspectives. Schimel et al. (1996) 

demonstrated an “equilibration” of water with nutrient limitation on NPP based on the 

Century model run under quasi-steady state conditions. Analysis of measured 

atmospheric carbon dioxide and satellite-derived measurements of temperature and the 

vegetation index suggested that nutrient effects on the carbon cycle could delay 

ecosystem response to changing climate by as much as 2 years (Braswell et al. 1997). 

Interestingly, there was also an attempt to determine what climatic and nutrient variables 

drove fine root productivity using measured NPP data (Vogt et al. 1996). The authors o f 

the latter study found no significant or consistent patterns for above- and belowground 

NPP change across the different climatic forest types and by soil order, even though they 

suggested that nutrient concentration in the forest floor controlled belowground NPP. The 

results of all these studies strongly suggest that vegetation productivity is a result of the 

interaction o f several environmental factors, so that I should not expect a generic 

dependence between a single environmental control and NPP from field data.

In this paper, I attempted to quantify the relative fractions of environmental 

controls exerted on productivity in various biomes. I set the stage by spatially 

representing climatic controls (temperature, water availability, and radiation) on net 

prim ary productivity. Afterwards, I determined areas o f the globe where climatic controls 

on NPP were important and areas where other factors like nutrient availability or
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biological constraints limited NPP more than climate. Finally, I analyzed relative 

contributions of temperature and water availability to potential vegetation productivity 

patterns around the globe and to the productivity o f different biomes.

Methods

Modeling NPP

In this study, the ecosystem process model BIOME-BGC (Hunt et al. 1996; 

Running & Hunt 1993) was used to estimate vegetation productivity around the globe. 

The BIOME-BGC model simulates three vital biogeochemical cycles: carbon, nitrogen, 

and water within an ecosystem. NPP was calculated in terms of gas exchange, as a 

difference between gross primary production (GPP) and autotrophic respiration (Ra). GPP 

and Ra were computed for each grid cell at 0.5°x0.5° spatial resolution. NPP of each grid 

cell was determined by the difference between these two values. All computations were 

based on the results of a one-year model run for the whole globe with daily climate; daily 

climate was stochastically generated from monthly mean climate data obtained from the 

CLIMATE database (unpublished manuscript by Cramer, W.P., M.F. Hutchinson, R. 

Leemans, and B. Huntley, an improved version of ILASA climate database; (Leemans & 

Cramer 1991).

The BIOME-BGC model was parameterized for seven structural vegetation 

biomes (Running et al. 1995). The potential vegetation classification used for the model 

run included deciduous needle leaf and broad leaf forests, evergreen needle leaf and 

broad leaf forests, shrubs or deserts, and C3 and C4 grasslands. This structural vegetation
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classification was based on a combination o f three primary attributes o f plant canopy 

structure: permanence of above-ground biomass (forests versus grasses), leaf longevity 

(evergreen versus deciduous), and leaf type or shape (broadleaf versus needleleaf).

The BIOME-BGC method for NPP estimation is key to understanding the results 

o f this study. This estimation results from the interactions of numerous environmental 

controls simulated by the model [as it was mentioned further above, BIOME-BGC 

computed NPP as the difference between gross primary productivity and autotrophic 

respiration]. Consequently, climate, nutrient availability, and vegetation type influence 

NPP through controls on both photosynthesis and respiration processes. In BIOME-BGC, 

the gross photosynthesis limited by climate and nutrients was calculated as:

GPP = f(T . VPD, SW, SRAD, C02, LAI, LEAFN), 

where T  was the air temperature, VPD was the vapor pressure deficit, SW  was the soil 

water content, SRAD was the solar radiation at the top of canopy, C 02 was the carbon 

dioxide concentration in the atmosphere, LAI was the leaf area index, and LEAFN  was the 

nitrogen concentration of leaves. Air temperature, leaf, and root nitrogen contents 

controlled autotrophic respiration:

Ra = / (T, LEAFN ROOTN), 

where ROOTN was the nitrogen concentration o f roots. Thus, BIOME-BGC was able to 

capture effects of a number of abiotic (temperature, vapor pressure deficit, soil water, 

solar radiation, and CO2  concentration) and biotic (leaf area index, leaf, and root nitrogen 

contents) controls on NPP.
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Dominant environmental controls on NPP

Terrestrial primary productivity is sensitive to a number of environmental controls 

such as climate, soils, plant characteristics, natural and human disturbances, as well as 

many other factors. Nevertheless, spatial climatic variability dominates patterns of NPP. 

Given the focus o f this study on estimating NPP of potential vegetation, I tested the 

relationship between climatic variables and NPP, but did not account for NPP variability 

associated with the other environmental factors. Nitrogen limitation on NPP was inferred 

by eliminating other causal factors because a comprehensive spatially distributed global 

database of any nitrogen cycle variable is not available. Consequently, I contrasted only 

temperature, water, and radiation controls on NPP in this article.

Because measured vegetation productivity is a result of the interaction of several 

environmental factors, I did not expect a generic dependence between a single 

environmental control and NPP from field data. Thus, I quantified the degree of 

environmental factor limitation on NPP using the functions shown in Figure 1. To 

determine these functions, I defined measures of climatic factor limitations on NPP 

analogues to membership functions in fuzzy set theory (Terano et al. 1991). The 

membership function quantifies the degree o f an element inclusion in the fuzzy subset for 

each element of a given set. The values of the membership function range between 0 and

1. In this study, I considered a set of all possible values of a climatic parameter (e.g. 

entire range of mean annual temperatures) and its fuzzy subset containing climatic 

parameter values limiting vegetation productivity (e.g. low or very high mean annual 

temperatures). Then, I defined a membership function on the set o f all possible climatic
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parameter values. The closer the function value was to 1 (Figure I), the greater the

likelihood that the value of the 

climatic parameter belonged to 

the fuzzy subset and was more 

limiting to vegetation 

productivity.

Many studies of 

vegetation physiognomy,

productivity, and climate have 

described climate in terms of 

measures related to annual energy 

supply (such as temperature, 

potential evapotranspiration, 

radiation) or annual water supply 

(precipitation) (Lieth 1975; 

Stephenson 1990). These studies 

showed strong relationships between either annual climate means and vegetation 

distribution or annual climate and productivity patterns. Although these annual measures 

do not provide information about seasonal variability and extreme events, they show the 

central tendency of climate events during a year and average climate conditions suitable 

for the existence of a biome. Any change in these annual means can have significant
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implications for plant growth and biome stability. Thus, it seemed reasonable to use 

annual climatic means as indicators of NPP limitation.

Temperature partially determines photosynthetic and respiration rates of 

vegetation as well as the amount of nutrients available for plant uptake through the 

influence on litter decomposition rate. Consequently, plants growing in environments 

with low daily temperatures are usually less productive then plants growing in warmer 

climates. Thus, one can suggest that the NPP o f plants from cold regions is primarily 

limited by temperature. In plant biogeography, the commonly used northernmost thermal 

limit was defined by mean monthly temperature and separated boreal forest from treeless 

tundra (no month has a mean monthly temperature higher than 10° C) (Bailey 1996). This 

limit was not quite appropriate for this study, because biogeographical thermal zones 

delineated areas with similar vegetation types, not with similar limitations on vegetation 

productivity. Indeed, low temperatures limit productivity of tundra as well as boreal 

forest. Though extreme low mean annual temperatures obviously restrict vegetation 

productivity, less extreme low temperatures may also limit plant productivity during the 

period of maximum growth. The degree of thermal limitation on NPP gradually declines 

as the annual temperatures rise; the limitation increases again when the annual 

temperatures get too high. Vegetation productivity can be limited by temperature in very 

hot environments as a result o f an abrupt decrease in gross photosynthesis (specific 

changes in chloroplast and enzyme activity) and a continuous increase in respiration 

(Waring & Schlesinger 1985). These considerations are represented in the function
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defining temperature limitation on NPP (Figure 1). Global mean annual temperatures 

were obtained from the CLIMATE database.

Although precipitation is traditionally considered to be another important climatic 

driver o f vegetation productivity, evapotranspiration primarily determines plant growth. 

Water from precipitation is never completely available to vegetation, but represents the 

maximum possible amount of accessible water. In contrast, available water for plant 

growth depends on the amount and seasonality o f precipitation, soil type, vegetation type, 

and atmospheric evaporative demand. Not all rainfall reaches the soil, but this water is 

partitioned into canopy interception, evaporation, and subsequent throughfall processes. 

Plants may experience water stress at a site with sufficient precipitation because a high 

fraction of incoming water has been intercepted and then evaporated by canopies. 

Consequently, NPP is controlled not by the amount o f precipitation, but by the water 

available to plants.

To estimate the amount of available water, I computed a water balance coefficient 

(WBC) as a difference between mean annual precipitation and potential 

evapotranspiration (Churkina G., S.W. Running, and A. Schloss, in press), where 

potential evapotranspiration was a function o f mean temperature and net solar radiation 

(Priestley & Taylor 1972). WBC computation was based on global means of annual 

precipitation, solar radiation, and temperature from the CLIMATE database. This water 

balance computation has the advantage o f being independent o f any models and can be 

derived purely from climate data. To develop the relationship between NPP limitation 

and water balance coefficients I followed a logic similar to the one suggested by
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Stephenson (1990). Stephenson showed the importance o f the annual deficit limit (the 

evaporative demand that is not met by the available water supply) in North American 

plant distribution and discussed its role in primary productivity o f different plant 

formations. In this study, I suggested that vegetation productivity of areas with extreme 

negative water balance coefficients was limited by moisture availability and this 

limitation declined as water balance coefficients approached zero. Sites with positive 

water balance coefficients were not moisture limited or were limited very slightly. The 

function describing the dependence of the degree of the water limitation on NPP (Figure 

1 ) clearly delineated sites with available water deficiencies versus excesses.

Figure 2. Map of weighed climatic controls on net primary productivity determined from water 
availability, average temperature and cloudiness. Each data point represents three values of the 
membership functions based on annual mean temperature, water balance coefficient, and percentage 
of sunshine hours per year one 0.5 * xO.5 * grid cell.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



Radiation is another important environmental control on NPP because 

photosynthesis occurs only in environments with a sufficient amount o f light. Although 

clouds can dramatically reduce the amount of incoming photosynthetically active 

radiation, plants still assumed that cloudiness considerably reduced incoming solar 

radiation and NPP in areas with low percentages of sunshine hours per year. Vegetation 

productivity was not limited by radiation in areas without clouds or with negligible cloud 

cover. Cloudiness data, expressed in sunshine hours per year, were derived from the 

CLIMATE database.

According to the aforementioned assumptions made, I mapped weighted climatic 

controls (temperature, water availability, and radiation) on NPP over the land surfaces of 

the globe (Figure 2). The value of each 0.5° x 0.5° grid cell on this map is a result of an 

integration of three variables that were calculated from the three membership functions of 

temperature, water availability, and radiation limitation. Temperature limitation on NPP 

was coded in blue, water availability limitation in red, and radiation in green. To 

investigate the relationship between climatic controls and the productivity estimated by 

the BIOME-BGC model, I plotted estimated NPP in the climate space of temperature and 

water availability (Figure 3).
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Figure 3. Annual global NPP simulated by BIOME-BGC in climate space represented by mean 
annual temperature and water balance coefficient.

To analyze the relationships between environmental controls and productivity of 

different vegetation biomes, I determined the relative importance of each climatic factor 

to biome productivity. First, I determined which o f the three membership functions had 

the largest value for each 0.5° x 0.5° grid cell. The climatic factor for which the 

membership function had the largest value for a grid cell was defined as the dominant 

control for this grid cell. For example, if  the value of the temperature limitation function 

was 0.8 and the values of radiation and water limitation functions were 0.6 and 0.3, 

respectively, for a grid cell, temperature limited NPP of this grid cell. Second, I overlaid 

the biome classification map with the map of environmental controls on NPP and 

determined how many grid cells of each biome were limited by temperature, water 

availability, or radiation. Finally, the environmental factor limiting productivity o f the 

majority of biome grid cells was defined as a dominant environmental control on biome 

productivity (Table 1). The grid cells where the values of all three membership functions 

were below 0 . 3  were identified as cells with no climatic limitations on productivity.
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Nutrient availability, or biological constraints, or limited absorption o f photosynthetically 

active radiation by multi-layer canopies (shaded lower canopy layers) might limit 

vegetation productivity in those areas.

Table I. Biome types and environmental controls on their productivity.

Biome type Temperature Water
availability

Radiation
reduction

No climate 
limitation

Environmental
controls

C3 grassland 76% 21.5% 1.5% 1% temperature, water
C4 grassland <1% 99% 0% <1% water
Deciduous broadleaf 
forest

11% 64% 8% 17% water, other controls 
than climate

Deciduous needle 
leaf forest

80% 8.5% 4.5% 7% temperature, water

Evergreen broadleaf 
forest

4% 31% 12% 53% other controls than 
climate, water

Evergreen needle 
leaf forest

74% 4% 16% 6% temperature,
radiation limitation

Shrubland / Desert 4.5% 95% <1% <1% water

R e su lts  a n d  d iscussion

The map of weighted climatic controls (Figure 2) showed that the productivity of 

most terrestrial ecosystems was controlled by more than one climatic factor, while the 

NPP of some ecosystems was not controlled by climate at all. In the high latitudes, 

temperature (indicated by dark blue on the map) appeared to be the primary control on 

NPP. However, a combination o f either temperature and radiation (shades o f cyan) or 

temperature and water availability (shades of magenta) limited NPP in the middle 

latitudes. In the low latitudes, water availability (bright red) became more dominant than 

either of the other environmental factors. Interestingly, none of the climatic factors were 

limiting in the tropical regions o f South America, Africa and South-East Asia (dark gray 

to black on the map). Among the climatic controls considered, temperature and water
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availability controlled the vegetation productivity over more land area (31% and 52% 

respectively) than did radiation (5%). This conclusion can be easily visualized using the 

map of climatic controls on NPP (Figure 2) where large areas are bright red and blue, but 

none of the areas are bright green.

Given that temperature and water availability controlled larger areas o f  the globe 

than radiation reduction, I focused on contrasting temperature and water availability 

limitations on modeled global NPP. NPP estimates obtained from BIOME-BGC 

simulations were plotted for each grid cell in the climate space represented by mean 

annual temperature and water balance coefficient (Figure 3). The overall picture of NPP 

distribution in climate space was quite satisfactory, even though a few outlier values were 

detected. The lowest NPP values were typical for environments limited by moisture 

availability, or low temperatures, or a combination o f both factors. These low 

productivity ecosystems might correspond to high latitude biomes such as tundra with 

negative mean annual temperatures or desert areas, where evaporative demand greatly 

exceeded the amount o f precipitation entering the ecosystem during a year. The highest 

productivity occurred in areas with excess available water (positive WBC) and moderate 

temperatures (mean annual temperatures from 10° to 25° C). A few NPP estimate outliers 

could be attributed to possible errors in data layers used for simulations, or a prolonged 

growing season (Hunt et al. 1996).
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Forest biomes with different leaf types and C3 versus C4 grasslands were clearly 

distinguished in the climate space composed o f mean annual temperature and water 

balance coefficient (Figure 4). Shrub/desert vegetation was the only biome that stretched 

through the whole temperature interval from -20°C up to 27°C, but featured negative 

water classification scheme, which combined cold and hot deserts into one class, could 

possibly explain the long temperature stretch o f  the shrub/desert biome. Both temperature

and water availability
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Figure 4. Biomes in climate space represented by mean 
annual temperature and water balance coefficient. Each 
data point represents one 0.5 * x0.5 * grid cell.

clearly discriminated C3 

from C4  grassland. Low 

mean annual temperatures 

(below 10°C) and moderate 

water availability (WBC 

between - 1 0 0 0  and 1 0 0 0  

mm/year) characterized 

climates suitable for C3 

grasslands, while C4  

grasslands were located in 

warmer (temperature above 

5°C) and dryer (negative 

WBC) areas. Mean annual 

temperature was the best
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discriminator for needleleaf versus broadleaf forests. Deciduous and evergreen needleleaf 

forests occupied regions with annual mean temperatures below or close to the freezing 

point and with evaporative demand close to precipitation. In contrast, broadleaf evergreen
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Figure 5. Relationship between estimated annual 
NPP and water balance coefficient for the water 
limited biomes such as C4 grassland, deciduous 
broadleaf forest, schrubland/desert, and 
evergreen broadleaf forest. Each data point 
represents one 0.5 * xO.5 * grid cell.

and deciduous forests occurred mostly 

in the environments with positive 

mean temperatures and WBC 

scattered in a wide range o f  values 

ranging from negative to positive.

Water availability largely 

controlled productivity o f  the 

vegetation biomes such as C4  

grassland (99% of the biome area), 

deciduous broadleaf forest (64%), and 

shrub/desert (95%) (Table I). 

Environmental controls other than 

climate were of secondary importance 

(17%) for deciduous broadleaf forest.

Evergreen broadleaf forest productivity was mostly limited by environmental factors 

other than climate (53%); water availability held the secondary priority for this biome 

(31%). An important feature of the correlation between the productivity o f the water 

limited biomes and WBC (Figure 5) was a restriction on the maximum NPP estimates set 

by the WBC values. The upper boundary of NPP estimates increased following increases
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in WBC up to zero value. The situation when NPP did not reach the maximum for a 

given water balance value indicated that the biome productivity in this cell was limited by

some other factors as well.

This study showed that 

temperature was the major limiting 

factor for the productivity o f C3 

grassland (76% o f the biome area), 

deciduous (80%), and evergreen 

needleleaf forests (74%) (see Table 1). 

Water availability holds the secondary 

priority for C3 grasslands (21.5%) and 

deciduous needle leaf forest (8.5%). 

Radiation limitation was of secondary 

importance to the productivity of the 

evergreen needle leaf forest (16%). Although the correlation between productivity and 

mean annual temperature o f these biomes was weak (Figure 6 ), the tendency of a linear 

increase in maximum NPP values with an increase in mean annual temperatures was 

evident. The distribution o f productivity values between zero and its potential maximum 

for a given temperature suggested that other environmental controls reduced NPP below 

its potential maximum.
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Conclusions

The results o f this study illustrate the complexity of the interactions between 

different environmental factors influencing ecosystem productivity. The map of 

environmental controls has shown that the productivity of most terrestrial ecosystems is 

controlled by more than one environmental factor. Temperature and water availability 

represented primary environmental controls on NPP for larger areas o f the than radiation. 

None climatic parameter appeared to limit vegetation productivity in some areas on the 

globe. Other environmental controls (e.g. nutrient availability, biological constraints, or 

limitation on PAR by multi-layer canopies) should be considered for accurate NPP 

modeling in those areas. The map of environmental controls on NPP resulting from this 

study can also be helpful in determining where environmental factors other than climate 

would be especially important for accurate NPP modeling and to locate more precisely 

sites for future field studies. Moreover, the logic I developed for the BIOME-BGC model 

analysis can be useful for intercomparison or analysis o f complex terrestrial biospheric 

models.

The map of environmental controls proposed in this paper reveals their relative 

importance to global NPP for mean climate, however changing climate conditions may 

alter these environmental controls over NPP. For instance, a warmer climate can result in 

increased evaporative demand and decreased water availability. As a result, water 

limitation may become a dominant limiting factor in the regions where it was not limiting 

before. Furthermore, elevated nitrogen deposition can also change the hierarchy of 

environmental controls over NPP. Nitrogen deposition has the potential to alleviate
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nitrogen limitation of productivity in terrestrial ecosystems and stimulate plant 

production (Townsend et al. 1996). Faster growing plants will require more water and, 

eventually, may become water limited.

With respect to the BIOME-BGC analysis, I conclude that temperature and water 

availability represent the ultimate limiting factors of NPP for certain biomes, since the 

upper boundary o f NPP estimates decreases as the water availability or temperature 

becomes lower. The wide distribution of NPP estimates between zero and the upper 

boundary values in the correlation plots indicate that the BIOME-BGC model captures 

the influence of secondary multivariate environmental factors relevant to biosphere 

productivity.

Given the natural intricacy of an ecosystem, a mechanistic modeling approach 

might be considered most appropriate to capture these numerous interactions, since it 

involves a very detailed description o f most physiological ecosystem processes. 

Interestingly, a new generation of much simplified NPP models, primarily driven by 

remote sensing (Field et al. 1995; Prince & Goward 1995; Ruimy et al. 1996), are able to 

provide large-scale actual vegetation productivity estimates and can also account for 

certain environmental controls on NPP. Importantly, models o f this type embody the 

effects of climatic drivers implicitly through light use efficiency and remotely sensed 

Normalized Difference Vegetation Index (NDVI) data. Such simplified, remote sensing 

driven NPP modeling will be used to produce a standard, weekly NPP map of the world 

from the Earth Observing System beginning late in 1998 (Running et al. 1994).
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Chapter 4

In v estig a tin g  th e  b a l a n c e  b e t w e e n  tim b er  ex tr a c tio n  a n d

PRODUCTIVITY OF GLOBAL CONIFEROUS FORESTS

Introduction

A widely held assumption in forest economics is that the demand for timber will 

exceed the maximum level available from forests on a sustainable basis (Williams 1994). 

Sharma (1992) estimated that demand for wood products would increase by 50% with an 

increase of the world’s population by about 70% during 1987 - 2025. Demand for 

fuelwood and building poles will increase most in absolute terms, while demand for 

industrial wood products will increase most in percentage terms (Sharma et al. 1992). 

The global trend since 1950 has been continued forest cover loss associated with rapid 

clearance in the developing countries, and stability or increase in forest area in most of 

the developed countries (Riebsame et al. 1994). An increase in forest area, however, may 

not necessarily lead to an increase in net forest productivity because the forests might 

suffer from air pollution or adverse effects of changing climate. About six million 

hectares of European forests have been destroyed or severely damaged because of air 

pollution originating from poorly equipped, old, or inefficient factories (Mackenzie & 

Mackenzie 1995).

One can argue, however, that human beings will solve the environmental crisis 

they created through scientific and technological innovations, and probably through some 

implicit influence on the environment. “Science and technology have liberated humans 

from the harshness of the environment. They will now liberate the environment from
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humans” (Ausubel 1998). Wemick et al. (1998) suggest that foresters have leverage to 

grow trees faster and thus use less forest land to grow and harvest timber. Moreover, a 

number of recent studies suggest an increase in the vegetation productivity in the 

Northern Hemisphere, which may not be unrelated to human activities. Based on long­

term field measurements, forest growth increase at specific sites was noticed by several 

European scientists (Elfving et al. 1996; Mielikainen & Sennov 1996; Skovsgaard & 

Henriksen 1996). An unprecedented increase in growing stock o f European forests was 

reported as well (Kauppi et al. 1992). Increased vegetation growth in the high latitudes of 

the Northern Hemisphere from 1981 to 1991 was suggested from analysis of remotely 

sensed data (Myneni et al. 1997).

To see which prediction might be closer to the truth, both the current balance 

between timber extraction and forest natural productivity of global coniferous forests, and 

the balance between extrapolated timber demand and forest productivity under doubled 

CO2 and climate change scenario, are investigated in this study. First, annual stem 

productivity of coniferous forests is estimated using the BIOME-BGC model (Running & 

Hunt 1993; Hunt et al. 1996; Thornton 1998). Second, on a country basis, the amount of 

harvested softwood is related to modeled forest productivity. Then, the natural capacity 

of coniferous forests to sustain increasing wood extraction by people is discussed, taking 

into account changing environmental conditions. Finally, the countries are identified 

where wood shortages may occur in the future if the timber products continue to be 

consumed at the current rates.
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Methods

The analyses o f this chapter were confined to the global coniferous forest and to 

countries that have coniferous forests within their territories. In particular, I have focused 

my analysis on seven countries with the largest coniferous forest productivity (former 

USSR, Canada, USA, China, Sweden, Finland, and Norway). Countries with smaller 

coniferous forest productivity12 will be referenced as “other countries”.

Estimation of forest productivity from biophysical data

First, forest productivity was estimated using the biogeochemistry model BIOME- 

BGC for current environmental conditions. Subsequently, the results obtained were 

compared to published data. Finally, projections of forest productivity were made using 

global change scenarios.

Modeling forest productivity 

M odel

Various environmental factors including climate, soil composition, fire, as well as 

anthropogenic factors such as air pollution, acid deposition, fertilization, and 

management practices influence forest growth. Different methods exist to estimate forest 

productivity from environmental conditions. A traditional method is to estimate forest 

growth and yield from stand age, density and site index. This method works well for 

natural stands and individual trees where data on past growth can be used to predict 

future growth. Under changing environmental conditions this method is not very useful. 

Gap forest modeling is based on the dynamics of individual trees: disturbance,
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recruitment, and mortality processes, which are determined by site variables including 

climate (Bugmann e t al. 1996). These models, however, are of limited use at a large 

spatial scale because o f the increasing complexity of simulations.

Biogeochemical models estimate forest growth using seasonal dynamics of 

canopy carbon and nitrogen balances. An advantage o f the biogeochemical modeling 

approach is that it not only allows estimates of forest productivity over large areas, but it 

also quantifies causes o f possible decline or increase in forest growth. In this study the 

biogeochemical model BIOME-BGC (Running & Hunt 1993; Thornton 1998) was used 

to estimate stem primary productivity (SPP) of global coniferous forests, which is driven 

by the following factors:

SPP =f(T,  VPD, SW, SRAD, C 02, NDEP, LAI, SOILC, SOILN), 

where T is the air temperature, VPD is the vapor pressure deficit, SW  is the soil water 

content, SRAD is the solar radiation at the top of canopy, C02 is the atmospheric carbon 

dioxide concentration, NDEP is the atmospheric nitrogen deposition, LAI is the leaf area 

index, SOILC is the carbon concentration of soil, and SOILN is the nitrogen concentration 

of soil. Thus, BIOME-BGC is able to capture effects o f a number o f abiotic (temperature, 

vapor pressure deficit, soil water, solar radiation, atmospheric CO2 concentration, and 

atmospheric nitrogen deposition) and biotic (leaf area index, soil carbon and nitrogen 

contents) controls on stem productivity.

Input data and m odel param eterization

12 Chile, Japan, Mongolia, New Zealand, Argentina, Australia, Austria, Turkey, UK, Poland, North and 
South Koreas, Italy, former Yugoslavia, France, Germany, former Czechoslovakia.
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The model was parameterized for a coniferous forest with a maximum projected 

leaf area index below 0.6. For each grid cell, the leaf carbon pool was initialized from the 

maximum leaf area index. Fine root carbon was assumed to be equal to the leaf carbon. 

Coarse root and stem carbon pools were initialized at 0.

The distribution o f  coniferous forest at 1.0' x 1.0 * spatial resolution was derived 

from a map at 8 km resolution for 1987 (DeFries et al., in press) using a cubic 

convolution resampling method. Nitrogen deposition distribution used in this study 

included wet and dry nitrogen deposition (NOy, and NHX) simulated by the three- 

dimensional chemical transport model MOGUNTIA (Dentener & Crutzen 1993; 

Dentener & Crutzen 1994; Holland et al. 1997; Lelieveld et al. 1998) for both 1985 and 

the pre-industrial times. Daily climate data (precipitation, maximum and minimum 

temperatures) used for BIOME-BGC simulations were for 1985-1987 (Piper & Stewart 

1996). "Global Distribution o f Country Codes at l°xl° Resolution" (Matthews E, 

unpublished manuscript) was used to estimate stem primary productivity of different 

countries. This data reflect the political boundaries o f the world in 1993.

Stem increm ent calculation

To convert predicted annual stem primary production (SPP) to equivalent

increment of wood volume (IWV) the following equation was used:

IWV [m3]  = SPP fkgC] * BtoC [kg/kgCJ /  WD [kg/m3], 

where BtoC is biomass to carbon ratio, and WD is wood density.

The BIOME-BGC model estimated net stem primary productivity. Biomass to 

carbon ratio was set to 2 kg/kg C. Wood density varies among tree species, within one 

tree family (Yanchuk & Kiss 1993; Khasa et al. 1995; Dean & Baldwin 1996), and even
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within one tree stem (Rueda 1992; Castro et al. 1993; McDonald et al. 1995). Most 

coniferous trees or softwoods have lower wood density (360-660 kg/m3) than broad­

leaved trees or hardwoods (410-990 kg/m3) (Young & Giese 1990). It was also shown 

that tree age can have a considerable effect on wood density (Castro et al. 1993). Given 

that it was problematic to distinguish between different conifer species or ages of the 

trees at the global scale, a wood density of a mature conifer tree o f 434 kg/m3 was used in 

this study. This wood density was calculated as an average of the wood densities of the 

most common in the United States’ coniferous species (Turner et al. 1995).

Corrections to m odeled stem prim ary productivity

The current version o f the BIOME-BGC model simulated stem productivity

taking into account natural forest mortality associated with pest and disease outbreaks 

and but not other natural and anthropogenic factors affecting forest growth. The natural 

factors omitted from model simulations were tree competition with other tree species, 

wood increment changes with tree age and stand structure, and forest fire losses. The 

excluded anthropogenic factors encompassed degradation o f forests associated with 

pollution from industrial and transportation sources. In addition, I had to correct stem 

productivity for harvest efficiency (subtract wood residues left behind after a harvest 

from modeled stem growth). The latter correction was necessary for making the 

estimated stem growth comparable to roundwood production from economic data, 

because wood residues comprise a considerable part of a typical harvest and ignoring this 

variable could lead to the overestimation of wood available for consumption.

Forest Growth. Although it is difficult to say if  inclusion of tree age, stand 

structure, or species competition would increase or decrease estimated annual stem
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increment, forest fire losses certainly decrease the amount of wood available for harvest. 

Fire is the major disturbance regime in boreal forests, with a natural fire cycle of 50-200 

years in the North American boreal forests. An average of 5-6 million hectares of North 

American and Eurasian boreal forests was burned annually in the 1980’s (Stocks 1991). 

One to two million hectares of forest were burned annually in the USA (Powell et al. 

1994). The coniferous forest area burned by fire in Canada was 2.4 million hectares on 

average in the 1980’s (FAO/ECE, 1988). In Russia, fire annually burned from up to 2.7 

million hectares of forest (Korovin 1996). Enormous forest fire losses in Siberia were 

documented in the 1900’s; the largest fire occurred in 1915 with 12 million hectares 

burned (Valendik 1996). The forest area burned annually in China averaged at about 0.9 

million hectares and could reach up to 2.8 million hectares in a dry year (1994). Sweden 

reported that between 400 to 6887 hectares of forest were burned from 1975 to 1980 (the 

collection of forest fire statistics was discontinued in 1980) (FAO/ECE, 1988). In 

Finland, fire losses of coniferous forest were between 100 and 300 hectares in the 1980’s. 

Coniferous forest area burned was much lower in Norway (31-126 hectares). For 

countries where published forest fire losses did not distinguish between different forest 

types, I assumed that all forest burned were coniferous. Then, based an average stem 

productivity, the forest productivity losses associated with fire may reach 3-10 million m3 

in Canada, 2-3.5 million m3 in the USA, 2-6 million m3 in China, 0.5-3 million m3 in the 

former USSR, 520-8953 m3 in Sweden, 150-450 m3 in Finland, and 43-176 m3 in 

Norway. Consequently, only 0.5-2 % of annual stem productivity, on average, may be 

lost after a fire in Canada, the USA, China, and the former USSR. Fire losses are much 

lower (0.01-0.3% of annual stem productivity) in Scandinavian countries. To account for
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fire losses in this study, annual stem productivity was reduced by 1% in Canada, the 

USA, China, and the former USSR; it was decreased by 0.1% in Sweden, Finland, and 

Norway.

The anthropogenic factors not included in the forest growth estimates in this 

analysis encompassed degradation of forests associated with pollution from industrial and 

transportation sources. Although pollution effects can be really damaging to a forest 

(17% stem growth decline in one year as a result of acidic precipitation; Smith 1990), 

distribution of these areas is unknown at the global scale. Moreover, some studies suggest 

that these areas are not significant at a continental scale (Kauppi et al. 1992) with, for 

instance, only 0.5% severely damaged forest of the total forest area in Europe.

Harvest Efficiency. Although timber-harvesting practices have improved 

dramatically in the recent years, large volumes of wood residues and salvable material 

remain unused in the logged areas. Forest residues remaining on logged sites include 

small trees, cull and broken logs, tops, and dead timber. A primary barrier to more 

efficient utilization is the added cost of recovering residue material. Typically, the value 

of residues will not cover the costs of harvesting them, unless the volume of recoverable 

material is extremely high. The amount of residues left after logging depends on the type 

of logging operation, topography, forest type, logging crew skills, and some other factors 

(Barger & Benson 1979). In the US, at least 15% of the wood fiber in a typical timber 

harvest is left behind as broken or defective (Harmon 1990). In the former Soviet Union, 

the efficiency of logging operations is much lower, 30-50% o f all cut logs are left on the 

ground and lost during transportation (Isaev et al 1996, WRI 1996). In this study, I 

assumed that countries with more advanced harvest technologies had 15% residues and
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the countries with low timber harvest efficiency lost 40% of harvest. To obtain the wood 

volume that will be actually available for consumption, net forest productivity (after fire 

losses) was reduced by 15% in Canada, the USA, Sweden, Finland, and Norway; it was 

decreased by 40% in the former USSR and China.

Corroboration of modeled forest productivity

The reliability of the BIOME-BGC model has been tested in a number of studies 

where FOREST-BGC, a stand-level version of BIOME-BGC, was used to estimate forest 

growth. Korol et al. (1991) simulated the 5-year growth increments o f 176 Douglas-fir 

trees in British Columbia, Canada, using the FOREST-BGC model. They found that 

individual tree stem growth increments from field measurements were in close agreement 

with those from the model simulations (rMJ.95). Running (1994) used FOREST-BGC to 

simulate the accumulation of stem biomass over a century for mature forests on seven 

sites across the Oregon transect in the United States. A range of stem biomass (10-700 

t/ha) measured along this climatic gradient was replicated well by the model (r2=0.79). 

Milner et al. (1996) correlated the modeled stem productivity to the site index for two 

climatic regions in Montana, USA, and found a relatively good correspondence (f*= 

0.67).

Two comparisons were made to corroborate the results of the BIOME-BGC 

simulations. First, I compared the areas of coniferous forest distribution used for the 

model simulation to statistics available on a country basis; second, I compared modeled 

forest annual growth to data from the national forest inventory. Both comparisons were 

done at a country level because o f data availability.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



70

Forest area

The coniferous forest distribution data used for the model simulation were from a 

land cover classification derived from the NASA/NOAA Pathfinder Land data set with a 

spatial resolution of 8 km. This data set has a length of record of 14 years (1981-1994), 

providing the ability to test the stability of classification algorithms (DeFries et al. in 

press). Furthermore, this data set includes red, infrared, and thermal bands, in addition to 

Normalized Difference Vegetation Index (NDVI). In addition, 156 high resolution scenes 

from Landsat Multispectral Scanner System, and a few from Landsat Thematic Mapper 

and Linear Imaging Self-Scanning Sensor (LISS), were used to identify the pixels to be 

used for training of Pathfinder data. In this classification, a pixel was defined as 

evergreen or deciduous needleleaf forest if 60% was covered by one o f these vegetation 

types.

Both coniferous forest definitions, and mapping techniques from ground 

measurements, vary by country and sometimes even within the same country. For 

example, in the former USSR, a land with 50-80% of forest cover is classified as forest 

(Kolchugina & Vinson 1993). For China and Finland, the data on coniferous forest area 

were available only for closed forests. The term “forest”, however, does not necessarily 

mean the same term for these two countries, because it includes all lands with minimum 

tree crown cover o f 10% in developing regions and 20% in developed regions (WRI 

1996). Different definitions of “forest” are possible even within the same country, 

especially in vegetation transition zones (e.g., tree line). For instance, in Canada, various 

limits of tree size and density were used to estimate the forest area in different provinces 

(Lowe et al. 1994).
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Stem prim ary productivity

All possible adjustments to the modeled forest growth and to the estimated forest 

growth were undertaken to make modeled and estimated forest growth comparable. 

Nevertheless, a strict comparison of modeled and reported coniferous forest growth 

remained problematic, because different countries provided different statistics of 

coniferous forest growth. Estimation of the average annual growth of coniferous forests 

in the former Soviet Union (619 million m3) was based on forest statistical data, which 

did not include coniferous forests in the Southern regions (Kolchugina & Vinson 1993). 

It was unknown, however, if  these estimates were for timber productive timber land only 

or for the entire forest. Net annual growth o f coniferous forest of growing stock on 

timberlands in 1991 (340 million m3) was known for the United States (Powell et al. 

1994). For Canada, annual average growth o f coniferous forests was estimated from 

reported average annual forest growth of timber productive forests (364 million m3) 

assuming that coniferous species contribute 78% o f this growth and timber productive 

land was 60% o f Canada’s total forest area (Lowe et al. 1994). Various statistics are cited 

for gross annual growth in China’s forests; they differ between 150 and 300 million cubic 

meters per year (Richardson 1990). Therefore, gross coniferous forest growth in China 

was estimated as between 105 and 210 million cubic meters per year (assuming 70% of 

the total growing stock was coniferous forest). Gross average increment of growing stock 

of coniferous forests in Finland for 1921-1994 (46 million m3) was obtained from the 

National Forest Inventories (Tomppo 1997). For Sweden, gross annual growth of 

coniferous forests (59 million m3) was averaged over 1923-1982 (Bengtsson et al. 1989). 

Coniferous forest mortality data were unavailable for China, Finland, and Sweden. To
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obtain net forest growth in these countries, I reduced their gross forest growth by fire 

losses (1% in China, 0.1% in Finland and Sweden). Only estimations o f the average 

annual growth were available for Russia and Canada. Forest growth statistics were 

inaccessible for Norway.

Forest productivity under global change

Global change scenarios

The climate change scenario used in the simulations was based on an atmospheric

general circulation model (GCM) experiment for doubled CO2 in the atmosphere and an

equilibrium climate. The scenario was taken from the Canadian Center for Climate

Modeling and Analysis (CCCMA) at 3.7° x 3.7° lat/long spatial resolution (Boer et al. in

press). In this simulation experiment, the GCM was implemented with an ocean

representation at I.8°xl.8° spatial resolution and 29 vertical levels. In addition, the direct

forcing effect of sulfate aerosols was included by increasing the surface albedo. Changes

in monthly mean temperature were represented as first differences (Figure 1) and those in

precipitation as change ratios (Figure 2). The GCM grid point values were derived from

the archives o f the CCCMA and interpolated to a 1.0° grid representation. This provided

smoothed monthly change fields that were applied to the base climate (1985-1987 climate

data) to generate altered-climate inputs (three years of altered monthly maximum and

minim um  temperatures and precipitation). Then, daily climate values were generated

from monthly means using MTCLIM (Running et a l 1987; Kimball et a l 1997;

Thornton & Running 1998).
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Annual average temperature change 2040—BQ minu9 1975—95
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Figure 1. Annual average temperature change 2040-60 minus 1975-95 at 3.7°x3.7° lat/long grid for 
CCCMA climate change scenario.

Annual precipitation _chonae ratio 2040—60 to 1975—95

0.66 1.00 2.08

Figure 2. Annual average precipitation change ratio of precipitation for 2040-60 and for 1975-95 at 
3.7°x3.7° lat/long grid for CCCMA climate change scenario.

To evaluate the single and joint effects of doubled atmospheric CO2, altered 

climate, and enhanced nitrogen deposition on forest growth, the model was run with the 

following scenarios:
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1) Reference: industrial nitrogen deposition, current atmospheric CO2  concentration 

(350 ppm), contemporary climate (1985-1987);

2) Pre-industrial N: pre-industrial nitrogen deposition, current atmospheric CO2 

concentration, contemporary climate;

3) Climate Change: industrial nitrogen deposition, current atmospheric CO2 

concentration, altered climate;

4) 2x C02'. industrial nitrogen deposition, doubled atmospheric CO2  concentration (700 

ppm), contemporary climate;

5) 2x COj and Climate Change: industrial nitrogen deposition, doubled atmospheric 

CO2 concentration, altered climate.

For each scenario the BIOME-BGC model was run for 100 years with 3-year climate 

input repetitively. Then, stem productivity of each grid cell was averaged over the 100- 

year period (Figure3).

An important component of global change, the change in coniferous forest cover 

was assumed to be negligible in this study. This assumption was based on the evidence 

for stabilization or even slight increase of temperate forest cover within developed 

regions from 1980 to 1990 (WRI 1996). This internal conservation was possibly achieved 

not only because of improved harvest and wood processing technologies, but also at the 

expense of the producers in the tropical world, who are ready to supply hardwood for 

hard currency (Williams 1994). Of the countries considered in this study only China lost 

under four percent of its natural forest cover between 1980 and 1990 (WRI 1996).
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Annual Stem Primary Productivity (reference scenario)
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Figure 3. Annual stem primary productivity of coniferous forest simulated by the BIOME-BGC 
model for the reference scenario at 1.0°xl.0° lat/long resolution.

Analysis o f  forest productivity responses to  global change

To analyze the response o f forest productivity to changing environmental 

conditions, the stem ratio was related to environmental controls (annual average 

temperature and water balance coefficient; Churkina & Running 1998), to changes in 

annual temperature (difference between annual average temperatures for 2040-60 and for 

1975-95), and precipitation ratio (ratio between annual average precipitation for 2040-60 

and for 1975-95). The stem growth ratio (SGR) was calculated for each grid cell (l°xl° 

lat/long) and for each global change scenario as:

where CSP was stem productivity for this scenario, RSP was stem productivity for 

reference scenario.
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Data

Wood production in any country is driven by the demand for wood products and 

is limited by forest resources availability. Wood demand is defined by factors such as 

country population, its affluence, and market prices (Laarman & Sedjo 1992). To account 

for all social and political factors influencing wood production, a country-based socio­

political model would be a desirable tool. Regretably, an appropriate model to predict 

wood production in each country producing softwood was not available for this study, 

and a simpler method was used to project wood production o f  different countries. 

Roundwood (unprocessed primary wood) production was chosen to be an indicator of 

wood demanded in the countries. Roundwood is wood at an intermediate stage between 

tree harvest and wood products. It can become lumber, composites, pulp, fuel, plywood, 

or veneer for furniture and construction.

Extrapolation of wood extraction

To extrapolate into the future and to estimate current roundwood production, a 

time series analysis of roundwood production by countries was used (FAO quarterly 

bulletin o f statistics, 1980-1996). For extrapolation of roundwood production, an 

assiunption was made that the social factors (e.g., politics, population, income) of the 

current year have more influence on roundwood production then ones o f the previous 

year, that the economic situation in a country in the previous year has more influence 

than the year before, and so on. Weights from 0.0 to 1.0 were assigned to roundwood
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production for each year and each country* following this assumption. Roundwood 

production in 1985 had the smallest weight (0.06), and roundwood production in 1996 

had the largest weight (1.0). Weighted linear regressions of roundwood production were 

performed for each country and country roundwood productions were extrapolated from 

obtained linear equations for the next 100 years (Figure 4). Two distinct regression lines 

were plotted for the former USSR. The first regression line represented wood production 

rate, if  it were to stay at the level it was before the collapse of the USSR and its economy 

(1989). The second regression line depicted the recent trend in wood production in the 

former USSR based on the data for the last years (1994-1996).

600 r
PRODUCTION OF ROUNDWOOD FROM CONIFEROUS TREES

measured
extrapolated

.„bi na

E 200 Canada

Sweden -----
Fin lan dormer USSR

Norway
1980 1990 2000 2010 2020 2030 2040 2050 2060

Figure 4. Extrapolated and measured production of roundwood from coniferous trees for different 
countries.

* Wood productivity data for the last three years (1994-1996) were used in the case of the former USSR.
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R esu lts  an d  D iscussion

Corroboration of the modeled forest productivity

The two comparisons, area of coniferous forest distribution used for model 

simulations to the country statistics, and modeled forest annual growth to the data from 

national forest inventory data yielded satisfactory results.

Forest area

The areas of coniferous forest estimated from satellite observation data were 

similar to the published data (Table 1). For most countries, forested areas were slightly 

higher based on the satellite-derived map as compared to those from ground 

measurements, except for the former USSR and the USA. Given that various literature 

sources offered different estimates of the forested area in the former USSR, it was 

unclear if the area used for model simulations was over- or underestimated. For the USA, 

the coniferous forest area from remotely sensed data was consistently lower than the area 

reported by the US Forest Service. Various definitions of coniferous forest used in the 

satellite-derived classification and in the ground measurement (see Methods section) can 

partially explain existing discrepancies. In addition, the vegetation classification 

algorithm, conversion between different map projections, and an aggregation from a finer 

(grid cell area = 64 km2) to a coarser (grid cell area = 100-8000 km2) spatial resolution 

could potentially contribute to the error in the final estimation of coniferous forest area. 

Errors of the vegetation classification algorithm arise from a definition of conifer forest 

(i.e., what proportion of pixel should be covered by conifer forest to define it as a conifer 

forest). Errors associated with map projection conversion occur from stretching or
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compressing of some pixels. Errors o f resampling the vegetation classification to the 

coarser spatial resolution originate from an aggregation of several pixels into one. Forest 

area, therefore, may be underestimated in the countries with sparse forest cover and 

overestimated for countries with contiguous forests. Edge effect and country size can also 

contribute to the error value. The larger the country area, the smaller the error of over- or 

underestimation (Table 1).

Table 1. Comparison between coniferous forest areas derived from countries’ statistics and 
calculated from a satellite derived map. Forest areas from remotely sensed data and those 
from ground measurements are not strictly comparable because of differences in 
classifications (see Methods section). The percentage difference between area from remotely 
sensed data and from ground measurement data is calculated based on ground measurements 
as 100%.

Country Area from remotely sensed data 
110** ha|

Area from ground measurements 
110° ha]

difference

Former USSR 553 516-59313 ± 7
Canada 272 26214 + 4
USA 168 170-190'5 -0.7-(-13)
China 120 no16 + 8
Sweden 26.5 2317 + 13
Finland 22 18'8 + 18
Norway 10 8.519 + 15

Stem productivity

For most countries, the magnitude of the modeled annual growth increment was 

comparable to the values published (Table 2). The annual growth increment simulated by 

the BIOME-BGC model was lower then the one obtained from forest inventory in the 

United States, Sweden, and Finland; it was higher in the former Soviet Union, Canada,

13 Kolchugina, 1993, Richardson, 1990.
14 Estimated from Lowe (1994)
15 Estimated from Powell (1994)
16 Richardson, 1990
17 Estimated from UN/ECE timber database.
18 Richardson, 1990
19 Estimated from UN/ECE timber database.
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and China. Several causes may underlay the results from the comparison. First, the model 

simulations were performed on a relatively coarse grid (spatial resolution of 1° x 1° 

lat./long) and each input data layer could add aggregation errors. Second, modeled stem 

productivity was averaged over 100 years; the stem annual growth from country statistics 

was not necessarily a long term average. Third, the only controls simulated by BIOME- 

BGC for stem primary productivity were the direct effects o f climate and soil type. It did 

not account for a number o f anthropogenic factors, such as forest fertilization and various 

management practices that enhance forest growth. The forest cover definition can 

significantly contribute to the final estimates of stem growth (Table 2). For instance, 

although the discrepancy in forest area estimates of the former Soviet Union did not seem 

significant relative this country area (7%), the forest productivity o f this “discrepancy” 

area (47 million m3 assuming this forest has average productivity) could be comparable to 

the productivity of the entire Sweden.

Table 2. Modelled annual growth compared to the annual growth of coniferous forests estimated for 
countries with the largest coniferous forest productivity. Differences between modelled and 
reported by country stem growth may originate from different definitions of stem growth and 
forest cover.

Country Modeled stem annual 
growth 

| MO" m5|

Stem annual growth from 
countries' statistics 

| '1 0 “ m ' I

Possible discrepancies 
from forest coser 

definition | *10“ nr j
Former USSR 6 5 8 61 920 ± 4 7
Canada 4 1 2 3 5 0 21 - 18
USA 2 8 3 3 4 0 22 + 3.5-1 + 38)
China 2 6 2 105-21023 - 18
Sweden 4 2

*(NCOto - 5
Finland 26 4 5 2S - 6

20 Average annual growth of coniferous forest (Kolchugina, 1993)
21 Average annual growth of coniferous forest (Lowe, 1994)
22 Net a n n u a l growth of the coniferous forest (Powell, 1994).
23 Net a n n u a l growth of coniferous forest estimated from Richardson (1990), incl. fire losses.
24 Net a n n u a l growth of coniferous forest estimated from Bengtsson (1989), incl. fire losses.
25 Net an n u a l growth of coniferous forest estimated from Tomppo (1997), incl. fire losses.
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Forest productivity response to global change

The model simulation results suggested that individual and joint changes of 

environmental conditions considered in this study (enhanced nitrogen deposition, doubled 

CO2, and climate change) would favor stem growth in most cases (Table 3).

Table 3. Responses of stem productivity to pre-industrial nitrogen deposition, donbled C 02, climate 
change, and both doubled C 02 and climate change as estimated by the BIOME-BGC model.

E stim ated  stem  annual grow th  [ *10'’ n r1)
Global

coniferous
forests

Former
USSR

Canada USA China Sweden Finland Norway Other
countries

Reference
scenario

2039 657 413 283 262 42 26 14 341

Response 
to pre- 
industrial 
nitrogen

-17.9 -13.4 -15.3 -19.9 -17.7 -31.2 -15.3 -27.6 -26.2

Response 
to climate 
change

+10.5 +30.4 +16.5 -22.4 -6.0 +20.5 +25.3 +25.5 +1.7

Response 
to 2xCO->

+10.2 +8.9 +7.2 +18.5 +12.8 +5.2 +4.6 +5.5 + 8.3

Response 
to climate 
change & 
2xC (h

+25.4 +44.3 +27.1 +3.8 +12.5 +26.2 +30.7 +31.0 +13.8

Industrial nitrogen deposition increased forest growth especially in Sweden (31%), in 

Norway (27%), and in the USA (20%). This result was not surprising given that the 

largest increase in nitrogen deposition from pre-industrial times was documented in 

Europe and the South-Eastern United States (Figure 5).

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



82

Industrial minus Prefndustrial Nitrogen Deposition
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Figure 5. Industrial minus pre-industrial wet and dry nitrogen depositions at I0°x 10° lat/long grid 
from the MOGUNTIA model.

Changes in climate decreased forest growth in the USA (-22%) and China (-6%), but 

increased stem productivity in all other countries, with the largest increase in the former 

USSR (30%). Forest growth decreased in the USA and China because vegetation 

productivity in a large part of these countries was not temperature limited, but was 

instead water limited (Churkina & Running 1998). Temperature increases, therefore, lead 

to enhanced water limitations and, consequently, to decreased stem production (stem 

growth ratio <1; Figure 7a). The largest increase in stem productivity (stem growth ratio 

> 2) under changing environmental conditions occurred in the areas with annual average 

temperatures below zero (Figure 6a) and temperature increase of 3-4° C (Figure 6b). 

Thus, countries with temperature limited territories (the former USSR, Norway, and 

Finland) benefited from the climate change the most.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



83

Pr»—industrial N

-1000

4
S -2000

Climate Change
C* 2000

s  -1000

1 -2000
ariiSil avaraqa tampaaSLi* (d«g%)

-2000

-2000

2xC0,

2xC0, + Climote Change

annual avaraq* tamparalur* (dag% )

Figure 6 a. Relation of stem growth ratio to climatic controls on vegetation productivity for pre- 
industrial nitrogen, climate change, 2xCO* and 2xCOi + climate change scenarios. Each data point 
represents one 1.0° x 1.0° longitude/latitude grid ceil.
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Figure 6 b. Relation of stem growth ratio to precipitation ratio (ratio of precipitation for 2040-60 to 
1975-95) and temperature change (temperature difference between 2040-60 and 1975-95) for both 
climate change and 2xCOi + climate change scenarios. Each data point represents one 1.0° x 1.0° 
longitude/latitude grid celL

The doubled CO2 concentration in the atmosphere elevated forest growth in all countries. 

The greatest increases in stem productivity were in the USA (18%) and China (13%) 

(Figure 7), because o f a stronger C 02 fertilization effect in dry and warm areas (Figure
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6a). The jo in t effect o f  climate change and doubled CO2 enhanced stem productivity in all 

countries. The former USSR, Norway, Finland, Canada, and Sweden benefited from this 

combination of global changes the most, with increases in forest productivity o f 44%, 

31%, 31%, 27%, and 26%, respectively. The effect o f  climate change on stem 

productivity was enhanced by the CO2 fertilization effect in countries located in high 

latitudes (former USSR, Canada, Norway, Finland, and Sweden). Countries located in 

mid-latitudes (the USA and China) had a smaller increase in stem productivity because 

the negative influence of increased temperatures offset the CO2  fertilization effect. The 

former USSR benefited from these changes the most, because 65 percent of the Siberian 

forests are located in the permafrost zone.
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Responses of stem productivity to changing environmental concitions (n 
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Figure 7. Responses of stem productivity to pre-industrial nitrogen, climate change, 2xC02, and 2xC02 
+ climate change scenarios in different countries.

Projections of timber harvest

Results of the extrapolation of roundwood production indicated that by the year 

2060, softwood extraction slightly increased in Canada and Finland, and dramatically 

increased in Sweden and China, assuming constant rates of timber harvest (Figure 4). A 

decline in timber harvest was predicted in the USA and Norway. Harvest o f coniferous 

trees would increase in the former USSR and be doubled by 2060 if the softwood 

extraction rate returned to its 1980’s level (upper red line on Figure 4). As a result o f the 

USSR’s collapse in the late 1980’s, by 1996, roundwood production plunged to 30% of 

the 1989 level. A negative trend in roundwood production in the early 1990’s would lead 

to zero forest production by 2025 (lower red line on Figure 4). This situation, however, is
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not realistic given that forest industry has always been an important part o f  the Russian 

economy and accounted for about 5 percent of total industrial output (World Bank, 

1997). There also is a chance that a good part of harvested timber was not reported to and 

documented by Russian authorities, so that numbers published by FAO are severely 

underestimating the amount o f harvested timber.

Comparison between modeled forest productivity and timber extraction

The model results suggested that at an aggregated level, the amount of extracted 

softwood remains and will remain well below the estimated productive capacity of the 

global coniferous forests (Figure 8). About 75% of the total modeled forest growth 

(corrected for harvest efficiency) was harvested in 1995; this share is significantly higher 

than was suggested earlier (Waring & Running 1998) for global forests (15%). This 

proportion, however, reached 100% of the total coniferous forest growth by 2060 in 

modeled projection if timber continued to be consumed at the constant rates, the climate 

changed, and atmospheric carbon dioxide concentration increased according to the 

scenario used in this study.
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Figure 8. Comparison of timber harvest in 1995 and 2060 to stem productivity for reference and 
2xCOj + climate change scenarios for different countries.

The difference between timber harvest and modeled forest productivity changed 

from country to country (Figure 9, Table 4). Under the 2xCC>2 and Climate Change 

scenario, the modeled productivity of coniferous forests exceeded the value extrapolated 

for extraction o f  softwood in the former USSR, Canada, and Norway. In the USA and the 

USSR, the difference between extrapolated timber harvest and forest growth under global 

change, however, was not as prominent. In the future, these countries may achieve a 

negative balance between forest growth and timber harvest if  climate change has stronger 

adverse effects on forest productivity, mortality or both than suggested by the scenario 

used in this study, or if the rates o f roundwood extraction increase. The modeled 

productivity o f coniferous forests was lower than the timber extraction in Finland and 

Sweden, because neither the use of fertilizer nor management practices were considered 

in this analysis (Kauppi et al 1992; Mielikainen & Sennov 1996).
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Sweden, because neither the use o f fertilizer nor management practices were considered 

in this analysis (Kauppi et al 1992; Mielikainen & Sennov 1996).

OtlMr Finland Norway Swadan China USA Canada Formar USSR
counlriaa

■ Present ■Future

Figure 9. Timber extraction as a percentage of forest growth (corrected for harvest efficiency) for 
different countries

The literature, however, provided evidence that these factors might be additional 

important drivers of elevated forest productivity in these countries. The forest growth 

analysis conducted in Finland showed an increase of more than 40% in annual forest 

volume growth from 1950 to 1990 (Mielikainen & Sennov 1996). Moreover, a steady 

increase in the estimated productivity o f forested lands was documented by the Swedish 

National Forest Inventory since the inventory began in 1923 (Elfving et al. 1996). A 

relative increase of about 60% was observed in this country between 1920 and 1990. 

Although in both cases changes in silvicultural practices and stand structure were
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suggested as the main reasons for this increase, global change was on the list of possible 

causes as well.

Table 4. Modelled stem primary productivity of coniferous forest (ind. harvest efficiency) for global 
change scenario compared to measured timber harvest in 1995 and projected timber harvest 
in 2060.

Timber Harvest [* l(f ms] Forest Productivity [* l(f m11

Country
In 1995 In 2060 Reference Scenario 2xC02 and Climate 

Change Scenario

Former USSR 91 550 394 569

Canada 158 170 351 446

USA 287 200 241 250

China 143 270 157 177

Sweden 54 100 36 45

Finland 42 60 22 29

Norway 8.5 8 12 16

Other countries 344 500 344 290
Total 1127 1858 1S03 1862

Conclusions

According to model estimates, global conifer forests have currently the capacity 

to satisfy people’s demand for softwood. At the same time, this study suggests that the 

gap between timber harvest and forest growth will be getting smaller and smaller in the 

future. The accelerated stem growth under the joint effect of climate change and elevated 

carbon dioxide concentration in the atmosphere will not be able to compensate for the 

increasing timber extraction. Unless people improve harvest efficiency and decrease 

timber harvest rates, we may reach the dangerous margin, when forest extraction equals 

growth, by the middle of the next century. Importantly, global change would have 

differential effects on forest productivity in different countries. The USA may reach a 

negative balance between forest growth and harvested softwood if the current rates of
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roundwood consumption increase and climate change has more adverse effects on 

coniferous forest productivity and mortality that this study suggested. Timber extraction 

may exceed forest regrowth even faster than predicted in this study if the forest cover 

declines. The projections for China’s wood production look the most discouraging, 

because of deforestation (of all the countries considered here, there is an evidence for 

forest cover decline in China only, WRI 1996) accompanied by adverse climate change 

effects on forest growth. In contrast, the coniferous forests o f the former USSR, the major 

beneficiary from predicted global change, may be producing one third of the wood to be 

consumed in 2060. On the other hand, given extrapolated high wood extraction rates and 

inefficient wood harvest techniques, the wood production in the former Soviet Union 

may become dangerously close to forest regrowth.

Clearly, there will be winners and losers from the ongoing global change. If 

Russia, the major winner, is to take the full advantage o f the effects o f global change on 

forest production, it may become the single leading producer o f roundwood from 

coniferous trees in the next century. China and the USA, losers from global change, may 

become more dependent on imported wood and become the largest consumers of wood 

from Russian forests. The following trends corroborate these model predictions. For 

example, there is evidence that the total amount o f roundwood imported into China from 

Russia increased by almost 40 percent from 1973 to 1993 (WRI 1996). In 1995, US 

markets were finally opened to Russian roundwood imports after the US Department of 

Agriculture enacted new rules lifting the ban on the import of raw logs (WRI 1996). 

According to these rules, Russian raw logs must be sterilized to kill pests prior to 

reaching US shores.
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An increase in stem productivity associated with climate change and CO2 

fertilization, however, can be offset by contamination from industrial plants and 

uncontrolled logging of areas that can not be reforested, especially in countries with 

ineffective management policies and uncertain property rights. The 1986 Chernobyl 

nuclear power plant accident contaminated 4 million hectares of forest located within 

Russia, Belarus, and Ukraine. The process of logging itself is another significant source 

o f degradation; for example, approximately 65% of Siberian forests are in the permafrost 

zones and are particularly sensitive to disturbances. Logging exposes frozen soils to 

sunlight, and once the top layer o f permafrost melts, these areas often convert to swamp, 

making reforestation impossible. Mountain areas are also prone to soil erosion when tree 

cover is removed.
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