
Figure 23: Scaled Model, Oscillations
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Figure 24: Scaled Model, Excitation
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Figure 25: Stability of the Reduced Model While Varying Parameters f and H
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with the smaller value for the rate constant k7r = 5.0x10−6, as a result no multiple

oscillatory relaxations to the steady-state are observed for excitable conditions.

2.8.1 Oscillations

Oscillations are seen in the five-variable model for the conditions seen in figure 25. The

five-variable model qualitatively reproduces some of the features of the six-variable

modified Oregonator. The elimination of q as a dynamic variable affects the dynamics

of the variables j, y, m during oscillatory behavior, while the dynamics of the species x

and z are largely unaffected. Figure 26 shows changes in behavior of the five-variable

model due to the elimination of q as a dynamic variable. The magnitude of variable

m decreases significantly, and the oscillations in j change character. With the large

decrease in magnitude of m, j becomes completely controlled by Process B. This is

seen as the spikes in j and x, both occurring during the autocatalytic reaction 4.

Autocatalysis of m in reaction 6 is not pronounced, because of the relatively small

magnitude of m, plus the second-order removal of m in reaction 8 prevents any large

increases in magnitude.

63



Figure 26: Oscillations in the Five-Variable Model

0 50 100
time (scaled)

10-4

10-2

100

102

C
on

ce
nt

ra
tio

n 
(s

ca
le

d)

x
y
j

0 50 100
time (scaled)

10-4

10-2

100

102

C
on

ce
nt

ra
tio

n 
(s

ca
le

d)

z
m

A=0.06, B=0.02, H=2.5, f =1.5, g=0.2

64



2.8.2 Excitability

The five-variable model also exhibits excitability from the steady state. However,

there is a large difference in the dynamics of the system. Non-monotonic relaxation

to the steady state is no longer observed in y, but appears in j, and to a lesser

extent in m. Excitation is obtained through a small instantantaneous decrease to the

magnitude of y, which is sufficient to initiate Process B. When autocalatylis of x ends

the system returns to equilibrium through Process A. During relaxation to the steady

state j is removed through the slow autocatalysis in Reaction 6. The peak magnitude

of m is delayed compared to that of x, y, and z. The autocatalytic production of

m is responsible for the removal of j, causing the drop in magnitude of j below its

steady state concentration. The overall dynamics of the system, seen in figure 27, is

greatly changed from that of the six-variable model. The model reduction removes the

dip in [Br−], and the five-variable system does not exhibit anomalous wave-velocity

dispersion.
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Figure 27: Excitation from the Steady State in the Five-Variable Model
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3 Travelling Waves in the Modified Oregonator

3.1 Flux Terms

The well-stirred modified model can be extended, by use of Fick’s second law, to

a quasi one-dimensional spatially distributed system analogous to the thin capillary

tube (Hamik and Steinbock (2003); Manz and Steinbock (2006); Bordyugov et al.

(2010)). A grid of points is constructed in one spatial dimension, each point containing

the temporal chemical dynamics of the six non-linear differential equations. Each

differential equation contains an extra term to describe the flux between adjacent

points. The flux term takes the form of Fick’s second law of diffusion, where c is the

concentration of the chemical species, D is the diffusion coefficient, and l is spatial

distance.

δc

δt
=

δ

δl
D
δc

δl
(14)

This equation describes the diffusive change in concentration at a point in terms of

the second dericative of the concentration gradient at that spatial point. In this work

the second derivative is numerically approximated by equation δc
δt

= (D/l2)[ci+1 +

ci−1 − 2(ci)], where i is the grid point at which the flux is desired; i+1 and i -1 are

adjacent grid points.

The diffusion coefficient used for all chemical species is 1x10−5cm2 s−1, which is

a default value used for small molecules in dilute aqueus solution (Field and Noyes

(1974b)). The spacing between grid points (l) is 0.04 cm.

The end result is a set of six partial differential equations, representing both the

reactive and diffusive processes occurring.
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dX
dt

= −R1 +R2− 2.0R3 +R4 + δX
δt flux

dY
dt

= −R1−R2 + 1
2
fR5−R7f +R7r + δY

δt flux

dZ
dt

= 2.0R4−R5 + δZ
δt flux

dJ
dt

= gR4−R6 + δJ
δt flux

dM
dt

= R6−R7f +R7r − 2.0R8 + δM
δt flux

dQ
dt

= R7f −R7r + δQ
δt flux

(15)

These equations are integrated using LSODES (Hindmarsh (1980)) with a varying

number of gridpoints, depending on the requirements of the individual calculation.

3.2 Anomalous Wave-Dispersion

Anomalous wave-velocity dispersion relationships in one and two quasi-dimensions

have been experimentally identified in the CHD-BZ reaction (Hamik and Steinbock

(2003); Manz and Steinbock (2006); Bordyugov et al. (2010)). A normal dispersion

relationship is described as a series of traveling waves proceeding at a constant veloc-

ity, c0 and at a characteristic distance, l0, between consecutive waves (fig. 1). The

original observation of traveling waves of chemical activity in the ferroin-catalyzed

BZ system (Zaikin and Zhabotinskii (1970)) was made in a quasi two-dimensional

system consisting of a thin layer of reagent in a petri dish. The waves appeared as an

expanding target pattern surrounding an initiating center. A quasi one-dimensional

system may be thought of as movement along a straight line passing through the

initiating center. In a system with normal dispersion a wave initated at a distance

less than l0 behind a preceeding wave will fall behind that wave until it reaches the

distance l0 and is traveling at the velocity c0. In a quasi one-dimensional system this

behavior appears as a series of waves of chemical activity starting at the initiation

center and moving down the line with uniform spacing and velocity.
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In anomalous wave velocity dispersion there exists a distance, lmax, between con-

secutive chemical waves below which a secondary wave arising at the initiation center

travels at an increased velocity with relation to the primary wave. If the secondary

wave is located at a distance greater than lmax, it travels at an identical velocity

to that of the primary wave. Various behaviors have been observed experimentally

when a second wave is initiated at an interpulse distance less than lmax. Depending

upon experimental conditions the CHD-BZ oscillator exhibits wave stacking, where

chemical waves travelling in the wake of the primary wave stack up behind it, much

like cars delayed behind a slow driver. Chemical waves are also observed to merge

with the leading pulse, as well as initiate new pulses upon interacting with the wake

of a leading wave.

3.3 Mechanism of Wave Propagation

Travelling waves in a BZ system are generally studied in a region where the chemical

steady-state is stable, but is excitable. This is similar to conditions in the well-stirred

model where a perturbation results in a single oscillatory excursion (Field and Troy

(1979)). A threshold exists that determines the behavior of the system after the

application of a perturbation. Any perturbation below the threshold will result in

a rapid return to the steady state, while a perturbation that exceeds the threshold

requires a complete traverse of the limit cycle to return to the steady state. In the

calculations described here all perturbations applied to the modified Oregonator are

instantaneous decreases to [Br−].

Pulses travel through the excitable medium as a chemical excitation wave. The

pulse is initiated through Process B, the autocatalytic generation of HBrO2, which

causes an increase in oxidized catalyst. The front travels through the excitable media

as an oxidation wave. Ahead of the chemical wave HBrO2 diffuses from the pulse into

the area directly in front of it, causing a decrease in [Br−] via reaction 1. As [Br−]
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ahead of the front is depleted the autocatalytic process B moves forward through

space. If the steady state is maintained in the direction of wave propagation, the

pulse will travel through the excitable medium at constant velocity.

The concentrations of intermediate species returns to the reduced steady state

behind the pulse. A maximum in [ferroin] and [Br−] follows directly behind the pulse

of HBrO2. The profile of the wake is similar to the relaxation of an oscillatory excur-

sion to the steady-state in the well-stirred model, as in fig. 12. [Br−] falls to a level

below the steady-state before recvovery from below. This is the behavior described

previously (section 2.4), and is a necessary feature for development of anomalous wave

velocity dispersion.

The standard Oregonator model produces travelling wave patterns with a normal

dispersion relationship. The interpulse distance is determined by [Br−] in the wake

of the excitation pulse. The trailing end of a travelling wave has [Br−] greater than

that of the steady state. This elevated [Br−] is inhibitory to the propagation of a

second wave. Any excitation wave found in this region will be subject to inhibition of

its movement and will collapse or travel at a reduced velocity until it has reached an

interpulse distance where the elevated concentrations behind the pulse have returned

to the steady state.

3.4 Single Waves

3.4.1 Wave Initiation From Steady-State Concentration

Traveling chemical waves are obtained by applying a perturbation, an instantaneous

reduction of [Br−], to the modified Oregonator equations in a region where the dy-

namics are excitable, but not spontaneously oscillatory. Regions where the system

is excitable to oscillation can also be used if the slowly changing [Q] is sufficiently

far from its steady-state value to prevent oscillation, but retains single excursion ex-

citability. The perturbation causes the reaction dynamics to be controlled by process
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B. NMR studies (Britton (2003)) of the CHD-BZ system have successfully measured

the speed of traveling waves, as have studies in thin capillary tubes (Hamik and Stein-

bock (2003)). In the calculations presented here, waves are initiated at a zero-flux

boundary condition to ensure propagation in only one direction.

Figure 28 provides a close view of the concentrations of the dynamic variables in

the wave front; the wave is traveling from left to right into an excitable steady-state

medium. The x -axis in this figure shows the spatially coupled points in the quasi

one-dimensional system. The decrease in [Y], which initiates wave propagation, is

clearly visible at the leading edge of the chemical wave. Autocatalytic production of

[X], and its rapid removal, are also visible directly behind the wave front.

Figure 29 provides a wide view of the same traveling wave shown in fig. 28. Visible

here is the recovery of the chemical species in the wake of the traveling wave. The non-

monotonic recovery of Y to the steady state is clearly visible at ~50 cm. This feature

coincides with small peaks in M and X, and a small valley to peak transition in Z.

These features are the result of the augmented Process C in the modified Oregonator.

In the wake of the chemical wave there is initially a large amount of J remaining from

Process B. This is involved in a slow auto-catalysis with M, which in turn aids in the

removal of Y through reaction 7f . The removal of Y causes Process B to begin to

compete favorably here, although the critical point for transition from Process A to

Process B is never reached, and Process B never becomes dominant. The constant

production of Y via reaction 7r is responsible for the retardation of Process B in this

situation. The result of the competition between Processes A and B is an unstable

region contained within the the non-monotonic recovery (dip) of Y to the steady

state, seen in fig. 29 between ~30 cm to ~50 cm. This is the area in which all

anomalous wave velocity is observed.
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Figure 28: Travelling Wave Front Propagation in an Excitable Medium
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Figure 29: Travelling Wave Propagation in an Excitable Medium
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3.4.2 Dynamic Control of the Wake Via Parameters A, B, and the vari-

able Q

The magnitude of the dip in [Br−] present in the wake of a traveling chemical wave is

the primary feature affecting anomalous wave dispersion in a quasi one-dimensional

spatially distributed system. The instability introduced by diffusive coupling through

space occasionally causes unexpected results in regions where the well-stirred model

predicts excitable behavior. This is perhaps analogous to the diffusive spatial desta-

bilization of a spatially homogeneous system leading to the formation of a Turing

structure (Turing (1952)). Altering the parameters A and B allows control of the

dynamics of the system to ensure traveling waves appear.

3.4.3 Parameter B

Figure 30 shows the effect of varying parameter B on the dynamics of [Br−] in a

traveling chemical wave. While parameter A is also changed in these figures, the

magnitude of the effect is much smaller than for changes in B, and can be neglected.

The primary change to the waveform visible in the figure is the broadening of the

Br− wave as [B] is decreased. This is a direct result of B appearing only in Process

C. If [B] is greater, R5 increases, resulting in a faster relaxation to the steady state,

and decrease in breadth of the chemical wave.

3.4.4 Parameter A

Parameter A has little effect on the [Br−] dip. Parameter values are identical in

figures 32a and 32b except for A. The shape of [Br−] is nearly identical, which should

be expected because small changes in A will result in only small changes in the rate

of reaction 2. The values of A used in this work are purposefully kept small to avoid

excessive removal of Br− via reaction 2.
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Figure 30: The Effect of Parameter B on [Br−]
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Figure 31: The Effect of Parameter A on [Br−] “dip”
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3.4.5 Treating [Q] as a Model Parameter

Although Q is a dynamic variable in the modified Oregonator, it can be useful to

consider [Q] as a parameter to affect the stability of the quasi one-dimensional system.

The scaling and model reduction of equations 13 suggests [Q] as a candidate for model

reduction through the steady-state approximation, because the reverse reaction 7 is

very slow. By supplying an initial condition [Q]0 that is far from its steady-state

concentration one can affect the stability of the quasi one-dimensional system through

the size of the [Br−] dip. An increase in [Q] results in a significant increase in [Br−]

during all model Processes. Figure 32 shows the difference in character of the [Br−]

dip in conditions where [Q] initially lies at the steady state, and where it has been

increased. Although the parameters A, B, H, and g are identical in the example,

the parameter f must be varied to obtain conditions where the system is excitable

to a single excursion. The very high value for f (6.5) is necessary for excitability in

conditions where [Q] lies at the steady state, while a much lower value for f can be

used if [Q]0 is far from the steady state. This is not unexpected, because [Q] has a

large role in Br− production. Altering [Q]0 is merely an alternate method of affecting

Br− and changing the stability of the system.

3.5 Multiple Traveling Chemical Waves

It is possible by applying a second perturbation to Y in the wake of a traveling

chemical wave to observe the dynamics of multiple chemical waves in the quasi one-

dimensional spatially distributed system. The presence of multiple waves allows the

study of anomalous velocity dispersion.

3.5.1 Anomalous Velocity Dispersion in a Pair of Chemical Waves

Figures 33 and 34 show in different formats the same pair of chemical waves traveling

through an excitable medium. Figure 33 is a time-space plot, where the lines in the
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Figure 32: The Effect of [Q] on [Br−] “dip”
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Figure 33: Two Traveling Chemical Waves Exhibiting Anomalous Velocity Distribu-
tion
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body of the plot represent the front of a chemical wave. The x -axis is the distance

from the origin, and the y-axis is total time elapsed. The inverse slope of the line at

any point is the velocity of the wave front in cm/min at that point. The figure clearly

shows the approach of the second chemical wave to the first, and the accompanying

increase in propagation velocity. As the second wave reaches the local minimum of

[Br−] its velocity slows to that of the first wave. Figure 34 shows the [Br−] at three

different times. The second wave approaches the non-monotonic wake of the first,

and quickly catches up before slowing.

3.5.2 Multiple Chemical Waves Displaying Anomalous Velocity Disper-

sion

Figure 35 shows conditions where multiple perturbations have been applied to a

system near to the steady state. It must be mentioned that the initial value of [Q]

has been modified to provide additional stability to the system. Temporally uniform

perturbations were applied, creating eight spatially non-uniform pulses. Pulses are
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Figure 34: Multiple [Br−] peaks in a Quasi One-Dimensional System
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Figure 35: Multiple Traveling Waves Exhibiting Anomalous Velocity Dispersion
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counted from the origin, increasing in number along the y-axis. The second pulse in

the sequence travels at an increased velocity with relation to pulse one, and reaches

the dip in [Br−]. Upon reaching the first pulse there is no longer a decresed [Br−], and

the second pulse travels with identical velocity to pulse one. The temporally uniform

perturbations result in the pulses formed having non-uniform spatial distribution.

Pulses three through eight are near lmax, and do not display anomalous velocity.

Figure 36 shows a calculation performed with identical paramater conditions to

fig. 35. In this calculation the time between perturbations was decreased, thus the

interpulse distance has also decreased. The behavior in fig. 36 has a striking resem-

blance to the behavior described by (Bordyugov et al. (2010)) as “wave bunching.”

The pulses in both experiment and calculation have a tendency to form pairs because

of the non-uniform spatial distribution in the reaction medium.
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Figure 36: Multiple Traveling Waves Exhibiting Anomalous Velocity Dispersion
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Figure 37: Space–time Trajectories of Fronts in a System with Bunching Dynamics

[H2SO4]=2.0 M, [CHD]=0.15 M, [NaBrO3]=0.14 M. Figure from Bordyugov et al.
(2010).
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3.5.3 “Backfiring” and Stable Wave Trains

Steinbock and co-workers have observed a phenomena described as “backfiring” in

experiments on the CHD-BZ system. This phenomenon arises in the six-variable

spatially distributed model under a variety of parameter conditions. Backfiring is

observed when the [Br−] falls to the critical level in the dip behind a wave front, and

Process B becomes dominant. Figure 38 is a time-space plot showing the emergence

of a backfiring event at the tail end of a wavetrain. A second perturbation applied

at a distance of 20.4 cm behind the first resulted in a multiple oscillatory excursion.

The dip following the tenth pulse in the series initates Process B, and a new initiation

point is formed, which undergoes a single oscillatory excursion. A time series of pulse

formation is shown in figure 39. The line with negative slope in the upper left hand

corner of figure 38 is a newly formed pulse traveling in the opposite direction. While

backfiring pulses have been observed experimentally (Manz and Steinbock (2006)),

the initation center has not been seen to form a new pulse traveling in the forward

direction as well as the reverse, as is seen here. Initiation points spontaneously formed

in the wake of traveling chemical waves may also undergo multiple oscillatory excur-

sions.

3.6 Five-Variable Spatially Distributed System

The five-variable model reduction is also extended into a spatially distributed quasi

one-dimensional system using Fick’s second law of diffusion. The equations become:

(ε)dx
dτ

= ρy − xy + x(1− z/c0)− x2 + δx
δτ flux

(ε′)dy
dτ

= fz − xy − ρy + δy
δτ flux

dz
dτ

= x(1− z/c0)− z + δz
δτ flux

(χ) dj
dτ

= gx(1− z/C0)− jm+ δj
δτ flux

(ψ)dm
dτ

= jm− p′m2 + δm
δτ flux

(16)
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Figure 38: Backfiring in an Unstable Wave Train
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The five-variable model fails to produce anomalous wave velocity dispersion. The

figures 40 and 41 show calculations performed using the five-variable reduced model.

While a non-monotonic recovery to the steady-state concentration is observed in j,

this is not the inhibitor species in wave propagation. Consequently, conditions do not

exist in the five-variable reduced model where anomalous velocity dispersion observed.
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Figure 39: [Br−] Time Series of “Backfiring”
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Figure 40: Five-Variable Spatially Distributed System
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A=0.1 M, B=0.05, H=2.0 M, f =2.5, g=0.2. Pulses are applied at τ=0, 0.25, and
0.5 in scaled time.
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Figure 41: Five-Variable Spatially Distributed System
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A = 0.1 M, B = 0.05 M, H = 2.0 M, f = 2.5, g = 0.2. Perturbations are applied at
τ = 0 and 0.6 in scaled time.
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4 Conclusions and Future Direction

The modified six-variable Oregonator model presented here successfully reproduces a

significant amount of the experimental behavior observed in the CHD-BZ system. The

phenomena of anomalous velocity dispersion, wave-stacking, and backfiring have been

successfully reproduced numerically in terms of a non-montonic [Br−] decay to the

steady state in the wake of an excitation pulse. The origin of anomalous dispersion as

the result of such a non-monotonic decay curve in [Br−] has been suggested previously

by Steinbock et. el, Szalai et. el, as a precondition for anomalous dispersion. However,

the work presented here is the first successful representation of anomalous dispersion

using a chemical model. This model is based on the well-understood chemistry of the

Oregonator model of the Belousov-Zhabotinsky reaction, coupled to a second pathway

(based on chemistry related to uncatalyzed bromate oscillators) for the oxidation of

organic substrate to provide the new dynamics.

We believe that future work in this area should begin with re-evaluation of the

mechanism based upon what has been learned with the modified Oregonator model

presented here, and recent new experimental results (Jichan Wang, private commu-

nication). Potential unification of this model with the five-variable skeleton model

presented by Szalai et al. should also be pursued. While the Szalai model does not

produce non-montonic decay in [Br−] to the steady state, it provides an experimen-

tally based mechanism for a second oxidation pathway of the organic substrate. It

is possible that this chemistry can provide insight into the identities of intermediate

species in the CHD-BZ system.

The effect of Parameters A, B, H, and f on wave velocity is also a potential

area for exploration. These parameters play an important role in the stability of the

modified Oregonator model. It is reasonable to explore their impact on the [Br−]

steady state, and resulting effect on wave velocity. Exploration of diffusion effects on

the waveforms as well as the role of [Br−] on wave velocity is also a potential area of
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interest.
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