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We begin this dissertation with a review of the relevant history and theory behind disease
modeling, investigating important motivating examples. The concept of the fundamental
reproductive ratio of a disease, R0, is introduced through these examples. The compartmental
theory of disease spread and its results are introduced, particularly the next-generation method
of computing R0. We review center manifold theory, as it is critical to the reduction of the
dimension of our problems. We review diseases that have a relapsing character and focus in
on relapsing diseases that are spread by vectors in a host population. The primary example
of such a disease is Tick-Borne Relapsing Fever (TBRF). Motivated by TBRF we establish a
general model for the spread of a vector-borne relapsing disease. We then compare our model
to current literature.

With a model in hand we confirm that it meets the required hypotheses for the use of
compartmental theory. A technical computation then leads to an explicit form of R0 that
is given in terms of the number of relapses. Further technical computations then allow us
to describe the bifurcation at R0 = 1, finding that it is always transcritical regardless of the
number of relapses. We also show the existence of a unique endemic equilibrium for all values
of R0 greater than 1.

Variations of the simple model are explored. Adding in removal to the recovered compart-
ment, in which individuals leave an earlier relapse state and recover, we find how this changes
R0 and show that the bifurcation at R0 is still transcritical. We investigate the addition of
latent infective compartments and describe how they affect R0. We also find the reproductive
ratio when there are two host species that undergo the same number of relapses.

We establish a continuity result between the reproductive ratios of systems with differing
numbers of compartments. This allows us to state the reproductive ratio of a smaller system
as a limit of the reproductive ratio of a larger system. This result is then used to compute
the reproductive ratio for a coupled host-vector system where the hosts undergo a different
number of relapses. We close with some conclusions and directions for future work.
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Chapter 1

Introduction

1.1 A Brief History of Disease Modeling

The first use of calculus to describe the spread of disease was by Daniel Bernoulli in 1760. Using

calculus techniques he argued that inoculation against smallpox is something the State should

promote to the people. D’Alembert would criticize Bernoulli’s assumptions, and suggest that

insufficient data was available to determine whether inoculation increased life expectancy [3].

As scientists learned more about the mechanics of disease spread they began to ask what

contributions a mathematical model could make to their understanding and treatment of

diseases. In 1911 Ronald Ross, a British doctor, wrote The Prevention of Malaria which

looked at the steady states of a set of ODEs that only considered the number of infected

mosquitoes and the number of infected individuals. Ross’ goal was to mathematically establish

his claim that malaria could be “... eradicated simply by reducing the number of mosquitoes”

[3, p.66]. Ross discovered that in a steady state the number of infected humans I and infected

mosquitoes i would only be positive in the case that the total number of mosquitoes n satisfied

1



1.1. A BRIEF HISTORY OF DISEASE MODELING 2

the inequality

n >
amN

b2pp′
.

Where a is the rate at which humans recover from malaria, m is mosquito mortality, N is

the total human population, b is the biting rate, p is the probability of transmission from

human to mosquito, and p′ is the probability of transmission from mosquito to human. The

existence of such a threshold gave credence to Ross’ theory; by making n sufficiently small this

inequality cannot hold. Finding such thresholds is now a standard problem in mathematical

epidemiology.

SIR Models and R0

The first person to investigate disease models which included the susceptible, recovered, and

infected individuals was A.G. McKendrick. In 1926 he published an article entitled “Applica-

tions of mathematics to medical problems” in which he introduced a continuous time model

for epidemics. A population of size N was considered, and the members of that population

fell into one of three categories susceptible S, infected I, and recovered R, and members flowed

from one compartment to another:

S I R

Figure 1.1.1: McKendrick’s compartments.

McKendrick then focused on computing the probability that epidemic would end after infect-

ing n people. Starting in 1927 McKendrick began collaborating with W.O. Kermack, who

three years earlier had been blinded in a laboratory explosion. They published a series of

papers called Contributions to the mathematical theory of epidemics where they did not seek

to answer probabilistic questions, but instead studied deterministic models. The simplified
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form of their model is

dS

dt
= −aSI,

dI

dt
= aSI − bI,

dR

dt
= bI.

(1.1)

A natural assumption is that S(0) > 0, I ≥ 0, and R(0) = 0. The following is informal;

complete discussion see is found in [3]. The total population N(t) = S(t) + I(t) + R(t) is

constant since

dN

dt
=

d

dt
(S + I +R) = S′ + I ′ +R′ = −aSI + aSI − bI + bI = 0.

Since a, b ≥ 0, S is decreasing, and R is increasing. The constant population then implies

that there must be a lower bound for S (S∞) and an upper bound for R (R∞) as t → ∞.

These limits imply that I also has a limit, I∞. Rewrite the first equation of (1.1) as

S′

S
= −aI ⇒ d

dt
(ln(S)) = −aI,

and integrate from 0 to ∞:

ln(S∞)− ln(S0) = −a
∫ ∞
0

I dt⇒ − ln

(
S∞
S0

)
= a

∫ ∞
0

I dt,

where S0 = S(0). Rewriting the second equation of (1.1), we have

dI

dt
= −dS

dt
− bI.
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Again integrating we obtain:

I∞ − I0 = S0 − S∞ − b
∫ ∞
0

I dt⇒ (S0 + I + 0)− (I∞ + S∞)

b
=

∫ ∞
0

I dt.

Since S0 + I + 0 = N −R0 = N and S∞ + I∞ = N −R∞, we have

∫ ∞
0

I dt =
N − (N −R∞)

b
=
R∞
b
,

and so,

− ln

(
S∞
S0

)
=
a

b
R∞. (1.2)

Suppose I∞ 6= 0, then

∫ ∞
0

Idt ∝ R∞ implies R∞ = ∞, which is impossible. Hence, I∞ = 0

and so, R∞ = N −S∞. Substitution of this into the above equation gives an implicit solution

for S∞. Since the initial number of infections tends to be small, we say S0 ≈ N and then

− ln

(
S∞
S0

)
≈ − ln

(
S∞
N

)
= − ln

(
N −R∞

N

)
. (1.3)

Using (1.2):

− ln

(
N −R∞

N

)
≈ a

b
R∞ =

aN

b

R∞
N

.

Replacing ≈ with =, we find when solutions of this equation exist. Letting x =
R∞
N

the

equation becomes

− ln(1− x) =

(
aN

b

)
x.

The graphs of these functions intersect at x = 0. Taking the derivative of the left hand

side gives
1

1− x
, and we see that − ln(1 − x) has a slope larger than 1 for positive x and is

increasing as x → 1. Hence the only way the curves represented by the right hand side and

the left hand side of the above equation can intersect is if
aN

b
is strictly larger than 1, else

the graph of the right hand side lies below − ln(1 − x) for 0 < x < 1. If
aN

b
is less than 1,

then no R∞ can exist that satisfies (1.3).
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Computations like these led McKendrick and Kermack to the conclusion that no epidemic

could occur unless
aN

b
took values larger then 1. aN is the number of people that a single

infected individual will infect in a single unit of time and
1

b
is the average length of time

an individual stays infected. Thus
aN

b
will be the total number of individuals infected by a

single infected individual while they carry the disease. This value is generally called R0 in

disease modeling. McKendrick and Kermack would develop several variations of this model

for disease spread that took other factors into account, e.g., they discussed how the amount

of time an individual is infected affects the infectiousness of that individual.

This concept of R0 was not new. It was researched by several others including Ross in

his work on malaria [13]. It is generally known as the basic reproductive ratio or the basic

reproduction number. In disease modeling it represents the threshold at which invasion of the

susceptible population is possible, and in many models there are important values that are

functions of R0 (see p. 160 in [1]), e.g. the final size of the epidemic. What follows is the

theory needed to give R0 a precise mathematical definition.

1.2 Compartmental Models

Compartmental models are an extension of McKendrick and Kermack’s SIR model. Given

here is a brief description of these models, following their development in [21]. Suppose a

population can be separated into n homogeneous compartments and the number of members

in each compartment will be represented by the vector x ∈ Rn where the first m compartments

represent infected states while the remaining n −m compartments are uninfected states. It

is natural to insist that x ≥ 0 (inequality is taken componentwise) since we are dealing with

populations. Let Xs = {x ≥ 0 : xi = 0, i = 1, . . .m} be the set of disease free states. Let

Fi(x) be the number of new infections in compartment i (autonomy is assumed). V+
i (x) is

the rate of transfer of individuals into compartment i and V−i (x) is the rate of transfer out
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of compartment i. Assume that these functions are at least twice continuously differentiable.

The disease transmission model can be written as

ẋi = fi(x) = Fi(x) + V+
i (x)− V−i (x) i = 1, . . . n. (1.4)

There are five conditions associated with compartmental models.

Condition 1.

x ≥ 0⇒ Fi,V
+
i ,V

−
i ≥ 0. (1.5)

This is natural to assume since these functions represent a transfer of individuals between

compartments.

Condition 2.

xi = 0⇒ Vi(x) = 0. (1.6)

This condition requires that no individuals can transfer out of an empty compartment. In

particular, if we are in Xs then we have Vi = 0 for i = 1, 2, . . .m. These two conditions

are sufficient to prove that solutions of the ODE will remain nonnegative when the initial

conditions are nonnegative [21, p.31].

Condition 3.

Fi = 0 for i > m. (1.7)

Hence, there are no new infections in the non-infected compartments.

Condition 4.

x ∈Xs ⇒ Fi(x) = 0 and V+
i (x) = 0 for i = 1, . . . ,m. (1.8)

In disease free states there are no new infections and no individuals are transferred into

infected compartments. Let x0 ∈Xs be a fixed point of (1.4). Such points are called Disease
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Free Equilibria (DFE). Compartmental models require DFE to be stable in the absence of

infection.

Condition 5. If F(x) = (F1(x), . . . ,Fn(x))T , then

F(x) ≡ 0⇒ The DFE is stable. (1.9)

Let Vi = V−i − V+
i and V = (V1, . . . ,Vn)T then f = F − V. From the above conditions we

can show

Df(x0) = DF(x0)−DV(x0) =

F 0

0 0

−
V 0

J3 J4

 .

Also, the n × n matrix F is nonnegative, the n × n matrix V is nonsingular and J4 has

eigenvalues with positive real parts. The matrix FV −1 is known as the next generation matrix.

To motivate our interest in this matrix consider the linearization of (1.4) about x0 with no

new infections,

ẋ = −DV(x0)(x− x0),

and add in a small number of infected individuals φ(0) = (φ1(0), . . . , φm(0))T . Reducing to

only the infected compartments we have:

φ′ = −V φ,

which has solution φ(t) = e−V tφ(0). The new infections created by these individuals at a given

time is given by Fφ(t). The total number of new infections produced by these individuals is

∫ ∞
0

Fφ(t) dt =

∫ ∞
0

Fe−V tφ(0) dt = −FV −1e−V tφ(0) dt
∣∣∞
0

= FV −1φ(0).

We can now interpret the entries of FV −1 = (aik). We can compute the total number of new in-

fections from a single individual in the kth compartment by setting φ(0) = (0, . . . , 0, 1, 0, . . . 0),
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where the 1 is in the kth position, and evaluating

FV −1φ(0) =


a1k
...

amk

 .

Thus aik is the number of new infections in the ith compartment by an infected individual

in the kth compartment. φ(0) infected individuals lead to FV −1φ(0) total infected individu-

als. These newly infected will produce another generation of infected individuals resulting in

(FV −1)2φ(0) total individuals. This is why FV −1 is known as the next generation matrix. At

the kth generation there are (FV −1)kφ(0) total infected individuals. If we want the disease

to be removed from the population for arbitrary initial conditions we need

lim
k→∞

(FV −1)k = 0.

By Fact 9.8.4 of [5] this happens when the maximum absolute value of the eigenvalues of FV −1

(the spectral radius) is strictly less than one. This motivates the definition R0 = ρ(FV −1),

where ρ is the spectral radius. It should be noted that R0 is defined with respect to a particular

DFE.

We have motivated the definition, but we have not established anything about the stability

of the DFE for various values of R0. The following is Theorem 2 of [21].

Theorem 1.2.1. If a system (1.4) with a DFE x0 satisfies Conditions 1-5, then x0 is asymp-

totically stable if ρ(FV −1) < 1 and unstable if ρ(FV −1) > 1.
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1.3 Center Manifold Theory

A large amount of material has been written on 1 dimensional and 2 dimensional systems of

ODEs. Compartmental models can be very large and so it is desirable to attempt to reduce

the dimension of the system to 1 or 2 dimensions in order to take advantage of well known

results. One method in achieving this is center manifold theory which is introduced here,

following [6].

Consider a linear system of ODEs ẋ = Ax, when A ∈ Rn×n. It is clear that the origin is a

fixed point of this system. The stability of this fixed point is determined by the eigenvalues

of A. In particular, if all the eigenvalues have negative real parts, it is stable, and if there

is an eigenvalue that has a positive real part it is unstable. The generalized eigenspaces

corresponding to these eigenvalues are invariant subspaces of the system, and solutions on

these manifolds have simple stable-unstable exponential behavior. The generalized eigenspaces

corresponding to the negative real part eigenvalues are called the stable subspace Es, and

the generalized eigenspaces corresponding to the positive real part eigenvalues are called the

unstable subspace Eu. However, when there is an eigenvalue with zero real part, we get an

invariant manifold Ec, which is the generalized eigenspaces corresponding to the zero real

part eigenvalues. The general behavior of solutions on Ec is not prescribed as in Eu and Es.

But since the linear system is completely integrable the behavior on Ec is easily found by

examining the solution.

Now consider a system of nonlinear ODEs

ẋ = Ax + f(x,y),

ẏ = By + g(x,y),
(1.10)

where x ∈ Rc, y ∈ Rs and f and g are r times differentiable. With a suitable change of basis

and translation (1.1C of [24]) we can assume, without loss of generality, that in a neighborhood
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of the origin

f(0,0) = g(0,0) = 0 and Df(0,0) = 0c×c, Dg(0,0) = 0s×s,

and that the eigenvalues of A all have zero real part, and the eigenvalues of B have all negative

real part (one can add in a matrix with eigenvalues with positive real part and get the same

results, they seem to be left out of the literature for convenience’s sake).

If c = 0 then the origin becomes a hyperbolic fixed point, and we can take advantage of

the Hartman-Grobman Theorem [17], which states that in the behavior of the solutions in a

neighborhood of the origin matches the behavior of the linearization, making the qualitative

analysis relatively easy.

When c > 0, we will need other methods to determine the behavior of the solutions near

the fixed point. To this end, we define a center manifold :

Definition 1.3.1. Let h : Rc → Rs be C1 with h(0) = 0, and Dh(0) = 0s×c. Suppose there

is a δ > 0 such that

W c = {(x,y) : |x| < δ,y = h(x)},

is an invariant manifold of (1.10). Then we say that W c is a local center manifold.

The first result, as you might expect, is related to the existence of such a manifold.

Theorem 1.3.2. (1.10) has a center manifold, with h ∈ Cr.

This is proved in [6], Theorem 1. The proof is an application of the Fixed Point Theorem

for contraction maps and Gronwall’s inequality. The existence of the center manifold then

characterizes the dynamics restricted to W c as satisfying the reduced system

u̇ = Au + f(u, h(u)), u ∈ Rc. (1.11)
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If we know how u behaves, we can use y = h(u) to find how y behaves on the center manifold.

When c is small, say 1 or 2, the dynamics on the center manifold are quite tractable. Theorem

2 of [6] tells us to what extent the dynamics of (1.11) govern the dynamics of (1.10) near the

fixed point:

Theorem 1.3.3. (a) If 0 is a stable (asymptotically stable) (unstable) fixed point of (1.11),

then (0,0) is a stable (asymptotically stable) (unstable) fixed point of (1.10).

The unstable case is trivially true since instability on the manifold implies instability in the

whole system. When the origin is stable, we can estimate the solutions of (1.10) using the

solution of (1.11)

Theorem 1.3.3. (b) Let (x(t),y(t)) be a solution of (1.10), with (x(0),y(0)) sufficiently

close to the origin. Then there is a solution u(t) of (1.11) such that

x(t) = u(t) + O(e−γt),

y(t) = h(u(t)) + O(e−γt)

as t→∞, where γ > 0 depends only on the matrix B.

The practical content of these theorems is straightforward: We can determine the stability

of a nonhyperbolic fixed point by merely finding the stability of the fixed point on the center

manifold. This leads to a significant dimension reduction of the problem. However, this comes

at quite a cost: finding the function h. We cannot solve the system (1.11) unless we know

something about h, but h is the fixed point of a contraction map, and thus is not constructed

explicitly in the proof of the existence theorem for center manifolds. [24] suggests an approach

for finding h analytically: since y = h(x) on W c, differentiate with respect to time to get

ẏ = Dh(x)ẋ. Using (1.10) we then get that By + g(x,y) = Dh(x)(Ax+ f(x,y)). Using the
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fact that we are on W c gives

Bh(x) + g(x, h(x)) = Dh(x)(Ax + f(x, h(x)).

This is a PDE that could be solved in h. However, we have now made the problem of finding

h more difficult than finding solutions to (1.10).

The solution to this dilemma comes in the form of approximation. Define an operator on

C1 functions φ : Rc → Rs by

Mφ = Dφ(x)(Ax + f(x, φ(x))−Bφ(x)− g(x, φ(x)).

Then Theorem 3 of [6] says

Theorem 1.3.4. If φ(0) = 0, Dφ(0) = 0s×c, and there is a q > 1 such that Mφ = O(|x|q)

as x→ 0, then

|h(x)− φ(x)| = O(|x|q)

as x→ 0.

So then, finding approximate polynomial solutions to Mφ = 0 (which is not too difficult

with undetermined coefficients; see [24]) gives approximations of h to the same order.

Center manifolds need not be unique. In fact some systems have uncountably many center

manifolds through a fixed point. However, there are some important properties that are

necessarily captured by every center manifold. Of particular importance to us will be fixed

points. First note that any fixed point x0 of (1.11) produces a fixed point of (1.10) (x0, h(x0)),

meaning that if we can prove that a fixed point exists in the reduced system, there must also

be a fixed point in the original system. If there is another fixed point of (1.10) sufficiently

close to the origin, it must be contained in every center manifold about the origin, which

means we do not have to worry about choosing the correct manifold about the origin to study
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the stability of a fixed point near the origin [6]. The final thing to note here is that we have

described the center manifold when the system is transformed into (1.10), but since invariant

manifolds persist under linear transformations and translations we can change the system

back into its original coordinates and W c will still exist and be tangent to Ec.

We shall see in the next section that the systems we will be dealing with have the potential

to be quite large. We will be taking advantage of the results of center manifold theory to

tease out results that would otherwise be intractable by direct analysis.

1.4 Host-Vector and Relapsing Disease Modeling

1.4.1 Host-Vector Systems

Returning to Ross’ work in malaria modeling we note that there are two distinct parts to the

population: The hosts, I, and the vectors, i, i.e., people and mosquitoes. As was the case for

many of the models created at the time it was stochastic in nature. Ross’ equations for the

spread of malaria were given as

dI

dt
= fp′i

N − I
N

− aI,

di

dt
= fp(n− i) I

N
−mi,

where a is the rate at which humans recover from malaria, m is mosquito mortality, N is the

total human population, m is the total mosquito population, f is the biting rate, p is the

transmission probability from human to mosquito, and p′ is the transmission probability from

mosquito to human. There are some features worth noting in this model that are common

to vector-host models. The first term of the first equation is a product of four things: the
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biting rate, the probability of the disease being passed, the number of mosquitoes and the

ratio of the susceptible hosts (N − I) and the total population. Terms like this are common

in vector-host models since they have the following important properties:

� If the mosquitoes do not bite (f = 0) there are no new infections.

� If the probability of the mosquitoes passing on the disease is 0 (p′ = 0), there are no

new infections.

� If there are no infected mosquitoes (i = 0) there are no new infections.

� If the whole human population is infected (N = I) there are no new infections.

The second equation of this model involves the spread of the disease among the vectors

themselves, as a result of biting the host. Note the similarity between the first term of the

second equation and the first term of the first, and note that the analogous properties hold.

Transitioning to deterministic models we will not have to deal with probability terms in

our equations. Instead we will encode this information in coefficients that reflect vector com-

petency, which are usually determined by experimentation. In the context of deterministic

compartmental models, the equations for a vector-host model from 6.4.5 of [1] are

I ′h = βhShIv − (µh + γ)Ih,

I ′v = βvSvIh − µvIv,

S′h = Πh − µhSh − βhShIv + γIh,

S′v = Πv − µvSv − βvSvIh,

(1.12)

where µh and µv are removal (death) rates, and Πh and Πv are recruitment (birth) rates. Ih

and Iv are infected hosts and vectors respectively, and Sh and Sv are susceptible hosts and

vectors. βh and βv are constants that reflect the likelihood that an infected host or vector

transfers the disease to a susceptible vector or host when the two interact. γ represents the
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rate of recovery from the disease. Note that we have to include equations for the susceptible

portions of both the vector and host populations, else the compartmental strategy cannot

be used. A particular feature of this model is that there is no lateral transmission, i.e., the

disease cannot be spread from host to host, but only through a vector. Examples of such

diseases include Dengue fever and West Nile virus. Using the analysis of the previous section,

determining R0 from these equations is not difficult. The compartments for this system are

Ih, Iv, Sh, Sv. For each compartment the new infections are given by

F(Ih, Iv, Sh, Sv) =



βhShIv

βvSvIh

0

0


.

The transfers are given by

V(Ih, Iv, Sh, Sv) =



(µh + γ)Ih

µvIv

−Πh + µhSh + βhShIv − γIh

−Πv + µvSv + βvSvIh


.

Finding the disease free equilibrium (DFE) is trivial. In order for the system to be disease

free we need Ih = Iv = 0. Then we solve

0 = Πh − µhSh,

0 = Πv − µvSv,
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which has the solutions Sh0 =
Πh

µh
and Sv0 =

Πv

µv
. Computing the Jacobians at this DFE gives

DF(0, 0, Sh0, Sv0) =



0 βhSh0 0 0

βvSv0 0 0 0

0 0 0 0

0 0 0 0


,

DV(0, 0, Sh0, Sv0) =



µh + γ 0 0 0

0 µv 0 0

−γ βhSh0 µh 0

βvSv0 0 0 µv


.

From this we can see that

F =

 0 βhSh0

βvSv0 0

 V =

µh + γ 0

0 µv

 ;

V −1 is easy to compute, and thus

FV −1 =

 0
βhSh0
µv

βvSv0
µh + γ

0

 .

Computing the eigenvalues,

λ = ±

√
βhSh0βvSv0
µv(µh + γ)

.

Both eigenvalues have the same absolute value. Thus

R0 =

√
βhSh0βvSv0
µv(µh + γ)

.

This form allows us to easily determine how changes in certain parameters affect the spread

of the disease. For example, R0 can be made smaller by increasing either the removal rates
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or the recovery rate. Increasing the steady state values of either susceptible population will

raise R0 as will increasing the βh or βv. From this form we can easily verify Ross’ assertion

that if we only reduce the number of mosquitoes (increase µv) we can reduce R0 below 1 and

stop an epidemic. Notice that the recruitment rates for either population do not factor into

the value of R0.

1.4.2 Relapsing Dynamics

An antigen is a structural element (for our purposes on a pathogen) to which the antibodies

of an immune system can bind, which is critical to the immune response. However, certain

bacteria can vary the antigens on their surface. The mechanisms which drive the variation of

these antigens are complex and diverse, and can include both random and programmed vari-

ation. The control of the antigenic genes can be activated by DNA recombination, alterations

in DNA repeat length, or no DNA alterations at all [8, p.4]. Once the antigen has changed,

different antibodies are required to identify the pathogen to the immune system, and this can

lead to a relapse of the disease.

We want to quantify the effect relapses of a disease have on the dynamics. The compart-

mental model is apt for this situation. Suppose a disease relapses only one time, then we could

consider a simple compartmental setup, see Figure 1.4.1. So far we have not been concerned

S I1 I2 R

Figure 1.4.1: A single relapsing disease model.

with recruitment and removal in the compartmental models. For the sake of generality, from

now on we will add recruitment and removal to the models. See Figure 1.4.2. What is not

contained in the conceptual diagrams for the models is how disease is spread from one indi-

vidual to the other. That will need to be specified in the model equations in the transmission
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S

µs

β(N) I1

µ1

I2

µ2

R

µr

Figure 1.4.2: One relapse with recruitment and removal. N is the total population.

term. Additional relapses can be added into the model in the obvious way.

Of particular interest is the combination of the host-vector and the relapsing systems. To

start off, we can consider a host population N and a vector population Ñ . S̃ and Ĩ will

represent susceptible and infected vectors. When a susceptible host S is brought into contact

with an infected vector Ĩ, the disease will be transferred at some rate. The infected host will

now begin to traverse the relapse stages of the disease, of which there could be arbitrarily

many. While in this infected state, the infected host at relapse i, Ii may come into contact with

a susceptible vector S̃, who then acquires the disease and spreads it among other susceptible

hosts, while the infected host eventually recovers (R). For the sake of simplicity we will

suppose that the vectors are not subject to relapses themselves and once infected remain

infected. Figure 1.4.3 gives the conceptual model for a one relapse vector host system. The

S

µs

β(N) I1

µ1

I2

µ2

R

µr

Ĩ

µ̃i

fcv

α1 γ

S̃

µ̃s

βv(Ñ ,N)

fc
fc

Figure 1.4.3: One relapse vector-host system.

various parameters are as follows:
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S

µs

β(N) I1

µ1

. . . Ij

µj

R

µr

Ĩ

µ̃i

fcv

α1 γ

S̃

µ̃s

βv(Ñ ,N)

fc
fc

αj−1

Figure 1.4.4: The case of j − 1 relapses.

� f is the biting rate.

� αi is the rate of transfer between relapses.

� cv is the vector competency, a number reflecting how likely the vector is to give the dis-

ease to the host. In particular, if kv is the number of bites of the vector that successfully

transfer the disease per unit time, then cv ∝
1

kv
.

� c is the “host competency”, a number reflecting how likely an infected host is to give

the disease to a susceptible vector. Similar to above, if k is the number of bites that

result in the vector getting infected per unit time, then c ∝ 1

k
.

� γ is the recovery rate.

We require that the recruitment for the vectors depends on the total host population N and

the total vector population Ñ . The equations for this model are given below. First the host
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equations

S′ = β(N)− fcv Ĩ
S

N
− µsS,

I ′1 = fcv Ĩ
S

N
− α1I1 − µ1I1,

I ′2 = α1I1 − α2I2 − µ2I2,
...

I ′j−1 = αj−2Ij−2 − αj−1Ij−1 − µj−1Ij−1,

I ′j = αj−1Ij−1 − γIj − µjIj ,

R′ = γIj − µrR,

(1.13)

and now the vector equations:

S̃′ = βv(Ñ ,N)− fcS̃

N

j∑
k=1

Ik − µ̃sS̃,

Ĩ ′ =
fcS̃

N

j∑
k=1

Ik − µ̃Ĩ.
(1.14)

1.5 Examples of Relapsing and Host-Vector Systems

1.5.1 Tick-borne Relapsing Fever (TBRF)

The model given at the end of the previous section is motivated by TBRF. The description

given here comes from the text and references of Ch. 15 of [8]. Relapsing fever (RF) is

characterized by three or more episodes of high fever, with a week of good health between them.

Clinical descriptions of RF date back to ancient Greece, and they were the first recognized

example of antigenic variation. TBRF is transferred to a host from a bite of a soft bodied tick

of the genus Ornithidoros. The relative immobility of these ticks generally means that they

live their lives in animal (generally rodent) habitations, they will usually feed on one type of

animal in their lifetime, and the feedings often occur at night. Humans come into contact

with these ticks while sleeping in rodent infested cabins in mountainous areas. Bitten humans

often will not notice the tick bite itself, but after a few days they will have a fever of 39◦C
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or more. The fever itself is a result of the Borrelias spirochetes, filamentous bacteria with

more than three spirals, reproducing throughout the body. Experiments have shown that a

single spirochete can initiate a RF infection, and they multiply at a rate of one cell division

every 6-12 hours. At the peak of the first fever episode there can be between 105 and 107

extracellular spirochetes per millilitre of blood, but between episodes the spirochetes are not

visually detectable. Muscle and joint aches are also common symptoms during the relapses.

Louse borne relapsing fever, caused by Borrelia recurrentis, behaves much in the same way

as TBRF, but differs in the transfer mechanics. While TBRF can be caused by some different

Borrelias, louse born relapsing fever is caused exclusively by Borrelia recurrentis. It is carried

in the feces of the louse, and is introduced into the body when the host scratches the bite

site. This is the only Borrelia infection that occurs in epidemics, and it generally infects only

humans.

1.5.2 Tuberculosis

Tuberculosis in humans is generally transmitted from one person to another by the coughing

and sneezing, etc. What makes TB interesting from a modeling perspective is the existence of

a latency period, where an individual is asymptomatic and will not infect others. Among those

infected approximately 5% develop into active disease in the first few years, but most stay

in the latent state. Of those who develop active symptoms, 5%-10% will relapse and develop

TB later in life. So, modeling the spread involves splitting the population into susceptible

S, exposed E, infected I, and recovered R. Analysis of the most basic SEIR model is not

difficult. However, the addition of other factors can complicate the analysis. For example,

individuals with HIV are at higher risk for TB infection and relapse. In [20] the population is

split into 11 compartments based on the current state of their TB and HIV/AIDS infections.

Bovine TB involves TB infections of cows. As with normal TB, there is a latent period, and
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it is spread by contact from cow to cow. However it can sometimes be spread with opossums

and badgers acting as vectors [16]. There is no current research on this interaction from a

compartmental perspective.

1.5.3 Gambian Sleeping Sickness

Sleeping sickness is spread by the tsetse fly among humans and other animals. Like TB,

it has a latency period in which the infected host is asymptomatic. The paper [2] uses a

compartmental model that also takes into account re-invasion of flies from outside sources.

Sleeping sickness is also peculiar in that the tsetse flies can only obtain an infection from the

host when they are less than three days old. In addition, by adding in weights for certain

portions of the population the authors have taken into account the feeding preferences of the

fly. It is shown that fairly low prevalence of sleeping sickness in the invading flies can cause

large changes in the prevalence rate among humans.

1.5.4 Diffusion with Latency and Relapse

In [23] a diffusive model with latency and relapse is considered. It is an SEIR model with the

assumption that the quantities are functions of time and position. Each equation looks very

much like a normal SEIR model with diffusion terms di
∂2·
∂x2

added in. Neumann boundary

conditions are used, which are interpreted as the population not crossing the boundary. R0

is defined in the same general way, as the number of secondary infections from single infected

individual. Travelling wave solutions are solutions of the form S(x, t) = φ(x + ct), I(x, t) =

ϕ(x+ct). The authors prove that when the diffusion coefficients di are equal and R0 > 1, then

there is a travelling wave solution connecting the disease free state and an endemic steady

state.
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1.5.5 Rift Valley Fever

Rift Valley fever is an Old World mosquito-borne illness. It is spread among livestock, and it

has two vector species. In [11] a compartmental model that involves two vectors is given. One

the vectors, Aedes mosquitoes, spread the disease to their offspring, while the other vector,

Culex mosquitoes, do not. This means that there is a lateral transmission of the disease among

one species of vectors and not the other. The model also assumes a latency period for both

vectors and hosts, and relapses are not considered. The authors of [11] give an expression for

R0 following the method of [21].

1.6 Comparison with the Relapsing Model

With the previous section in mind, some time can be spent discussing what the model (1.4.3)

offers over those mentioned above. Relapsing fever is not a condition of moving from an

infected state into a latent state and then infected again. It truly is moving between distinct

infected compartments, each defined by the antigenic variation of the Borrelia. In fact, in

Africa many cases of TBRF are misdiagnosed as failure of malarial treatment [9]. [9] discusses

the reemergence of relapsing fevers, citing a relatively recent outbreak in France of louse-borne

relapsing fever among the homeless. But louse-borne relapsing fever is limited to humans and

TBRF can infect many more hosts, which presents a challenge in controlling the spread of the

disease, and understanding its potential for spread to a region. Perhaps analysis of the model

for the spread of the disease can shed some light on these issues.

Mathematically, the model offers more generality than the ones above, which is more of a

mathematical advantage than a biological one. Analysis of (1.4.3) can tell us how the addition

of a relapse state will affect the dynamics of the disease, in particular the stability of the DFE.

Dealing with an arbitrary number of compartments, particularly when employing the methods
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of [21], can lead to some difficult calculations, and so, most of the models tend to have a set

number of compartments so that computations can be concrete. Hence, the methods used in

the analysis of this model could also be used in the analysis of other models with an arbitrary

number of compartments.



Chapter 2

Vector-Borne Relapsing Diseases: A

Simple Model

Recall the equations for the vector-borne relapsing disease. First the host equations:

S′ = β(N)− fcv Ĩ
S

N
− µsS,

I ′1 = fcv Ĩ
S

N
− α1I1 − µ1I1,

I ′2 = α1I1 − α2I2 − µ2I2,
...

I ′j−1 = αj−2Ij−2 − αj−1Ij−1 − µj−1Ij−1,

I ′j = αj−1Ij−1 − γIj − µjIj ,

R′ = γIj − µrR,

(2.1)

and the vector equations:

S̃′ = βv(Ñ ,N)− fcS̃

N

j∑
k=1

Ik − µ̃sS̃,

Ĩ ′ =
fcS̃

N

j∑
k=1

Ik − µ̃Ĩ.
(2.2)

25
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cv represents the vector competency, a number which reflects how often a biting vector will

transfer the disease to the host. c plays a similar role but in the other direction: how often

an infected host will pass the infection to a susceptible vector. The growth rates β and βv are

logistic, given as follows:

β(N) = β1N −
(
β1 − µs
S

)
N2,

βv(Ñ ,N) = βv1ÑN −
(
βv1N − µ̃s

Sv

)
Ñ2.

Here S and Sv are constants. It is then easy to see that

(S, I1, . . . , Ij , R, S̃, Ĩ) = (S, 0, . . . , Sv, 0)

is a fixed point of the system, a so-called Disease Free Equilibrium (DFE). We will make the

natural assumptions in this model that µi ≥ µs, µr ≥ µs, and that µ̃ ≥ µ̃s. We are assuming

that having the disease will only serve to increase the death rate compared to the susceptible

population. This leads to the following result:

Proposition 2.0.1. The manifolds N = S and Ñ = Sv are invariant if and only if µs = µi,

µs = µr, and µ̃ = µ̃s.

Proof. First suppose that µs = µi and µs = µr. Substituting this into the system (3.9), and

summing the equations, we have that

N ′ = β(N)− µsN = β1N −
(β1 − µs)N2

S
− µsN = (β1 − µs)N

(
1− N

S

)
.

So we can see that if N(0) = S, then N(t) = S, and N = S is invariant.

Now assume that N = S is invariant. Then if N(0) = S, N is constant. The first equation

then reduces to

S′ = µs(S − S)− fcv ĨS

S
.
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Then, summing the equations gives that

N ′ = µsS +

j∑
k=1

µkIk + µrR− µsS.

But since N is constant we get that N ′ = 0, and we use the fact that s +
∑
k

Ik + R = S so

the above equation becomes

0 =
∑
k

(
µk
µs
− 1

)
Ik +

(
µr
µs
− 1

)
R.

Now, Ik, r ≥ 0, and since µi ≥ µs and µr ≥ µs we have

µi
µs
≥ 1 and

µr
µs
≥ 1.

Since each term is nonnegative, the only way the sum can add to zero is if each term is zero.

Since Ik and R can, at some time, be nonzero we must have
µi
µs
− 1 = 0 and

µr
µs
− 1 = 0. Thus

µs = µi = µr.

The proof for the manifold Ñ = Sv follows in the exact same way.

When the death rates are equal the host population has simple logistic dynamics:

N ′ = (β1 − µs)N
(

1− N

S

)
.

In particular, if β1 > µs and Ñ(0) = Sv, we have (N, Ñ) = (S, Sv) is an attracting fixed point

of the system. We can then apply the results from Chapter 2 of [15]: a fixed point that is

asymptotically stable when restricted to the manifold N = S is asymptotically stable. This

will be relevant to our discussion of endemic equilibria later.

Before we can use the theory of compartmental models from the first chapter we must first

confirm that our model meets the needed conditions.
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Proposition 2.0.2. The system (3.9), (2.2) satisfies Conditions 1-5.

Proof. First we rearrange the system into the form described in [21]:

d

dt



I1

I2
...

Ij−1

Ij

Ĩ

S

R

S̃



=



fcv Ĩ
S

N

0

...

0

0

fcS̃

N

j∑
k=1

Ik

0

0

0



+



0

α1I1
...

αj−2Ij−2

αj−1Ij−1

0

β(N)

β(N, Ñ)

γIj



−



(α1 + µ1)I1

(α2 + µ2)I2
...

(αj−1 + µj−2)Ij−2

(αj−1 + µj−1)Ij−1

(γ + µj)Ij

µ̃Ĩ

fcv Ĩ
S

N
+ µsS

fcS̃

N

j∑
k=1

Ik + µ̃sS̃

µrR



. (2.3)

Having written the system in this way (1.4), we see that conditions 1,2 and 3 follow directly.

Setting I1 = . . . = Ij = Ĩ = 0 gives condition 4. For the final condition, assume that the first

vector on the right hand side of the above equation is 0. Then, taking the Jacobian will yield

a lower triangular matrix. Furthermore, the elements of the diagonal of this matrix, when

evaluated at a DFE (0, . . . , 0, S,R, Sv), are

−(α1 + µ1), . . . ,−(αj−1 + µj−1),−(γ + µj),−µ̃,−µs,−µr,−µ̃s,

and since all the parameters are held to be positive, the diagonal elements, which are also the

eigenvalues, are all negative.
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2.1 R0 for the single host-vector system with j − 1 relapses.

2.1.1 Dimensionless Form

To ease some calculation we will put equations (3.9) and (2.2) in dimensionless form. Letting

τ = γt, and scaling all the population variables by the corresponding initial total populations

N(0) and Ñ(0) gives the dimensionless form:

ds

dτ
= a1n− a2n2 − kiv

s

n
− bss,

dii
dτ

= kiv
s

n
− q1i1 − b1i1,

di2
dτ

= q1i1 − q2i2 − b2i2,

...

dij−1
dτ

= qj−2ij−2 − qj−1ij−1 − b(j−1)ij−1,

dij
dτ

= qj−1ij−1 − ij − bjij ,

dr

dτ
= ij − brr,

ds̃

dτ
= av1ñn− a2ñ2 −

ls̃

n

j∑
m=1

im − b̃ssv,

d̃i

dτ
=
ls̃

n

j∑
m=1

im − b̃ĩi,

with n =
N

S
, ñ =

Ñ

Sv
, s =

S

S
, s̃ =

S̃

Sv
, ik =

Ik

S
, ĩ =

Ĩ

Sv
, r =

R

S
, bs =

µs
γ

, bk =
µk
γ

, qk =
αk
γ

,

b̃s =
µ̃s
γ

, k = fcv/γ and l = fc/γ.
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2.1.2 General form for R0

Following [21], we consider the reduced equations

d

dτ



i1

i2
...

ij−1

ij

ĩ


=



kĩ
s

n

0

...

0

0

ls̃

n

j∑
k=1

ik


−



q1i1 + b1i1

−q1i1 + q2i2 + b2i2
...

−qj−2ij−2 + qj−1ij−1 + bj−1ij−1

−qj−1ij−1 + ij + bjij

b̃ĩi


= w − v.

Next, we take the Jacobians of w and v and evaluate them at the disease free equilibrium in

order to find the matrices W and V , i.e.

W =



0 . . . 0 k
s

n

0 . . . 0 0

...
...

...

ls̃

n
. . .

ls̃

n
0



∣∣∣∣∣∣∣∣∣∣∣∣∣
DFE

.

At the DFE we note that the entire host and vector populations are susceptible and there are

no hosts in any of the relapse states. This means that n = s = s and ñ = s̃ = sv (the carrying

capacities of each population). Hence

W =



0 . . . 0 k

0 . . . 0 0

...
...

...

lsv
s

. . .
lsv
s

0


.
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For V , we note that the Jacobian is made up of constant values, namely

V =



q1 + b1 0 0 . . . 0 0 0 0

−q1 q2 + b2 0 . . . 0 0 0 0

0 −q2 q3 + b3 . . . 0 0 0 0

...
...

...
...

...
...

...

0 0 0 . . . −qj−2 qj−1 + bj−1 0 0

0 0 0 . . . 0 −qj−1 1 + bj 0

0 0 0 . . . 0 0 0 b̃i



.

Clearly the matrix V is invertible (lower triangular, nonzero diagonal elements), although

computing such an inverse is nontrivial. However, all we require is the dominant eigenvalue of

WV −1. Because W is fairly sparse we will not need to know all the entries of V −1 to extract

it. Also, note that W and V are both (j + 1)× (j + 1) matrices.

The action of W on V −1 is to multiply the last row by k, make middle rows 0, and sum the

first j elements of each columns and multiply it by the constant ρ =
lsv
s

. Let us denote the

elements of the last row of V −1 by εk and the sums of the first j elements of the kth column

by δk. WV −1 then has a relatively simple form

WV −1 =



kε1 . . . kεj+1

0 . . . 0

...
...

0 . . . 0

ρδ1 . . . ρδj+1.


From here we can move ahead with the eigenvalue calculation. This involves computing the
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determinant of

WV −1 − λI =



kε1 − λ kε2 . . . kεj+1

0 −λ . . . 0

...
...

...

0 0 . . . 0

ρδ1 ρδ2 . . . ρδj+1 − λ

.


Expanding along the first column we have

det(WV −1 − λI) = (kε1 − λ) · det


−λ 0 . . . 0

...
...

...
...

ρδ2 ρδ3 . . . ρδj+1 − λ



+ (−1)j+2ρδ1 · det



kε2 . . . kεj kεj+1

−λ . . . 0 0

...
...

...

0 . . . −λ 0


.

Computing the determinants in this expression is straightforward, noting that both are j × j

matrices and that the first is a lower triangular matrix, and thus the determinant is the

product of the diagonal elements (−λ)j−1(ρδj+1 − λ). For the second we expand along the

last column to see that the determinant is

(−1)j+1kεj+1 · det(−λI) = (−1)j+1kεj+1(−λ)j−1

Hence

det(WV −1 − λI) = (kε1 − λ)(−λ)j−1(ρδj+1 − λ) + (−1)j+2ρδ1(−1)j+1kεj+1(−λ)j−1,

and the characteristic polynomial only involves ε1, εj+1, δ1 and δj+1, and we need only to
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know the first and the last column of V −1. These can be computed by looking at the first

and last rows of the cofactor matrix. For ε1 we look at the minor of vj+1,1, and note that the

top row is all 0’s, so that the minor, and thus the cofactor are 0, and thus, ε1 = 0. To find

δj+1 we must find the cofactors of the first j elements on the bottom row of V , but when the

bottom row is eliminated to compute the cofactor, the last column is all 0’s, and hence, each

of the cofactors is 0. Thus δj+1 = 0. The characteristic polynomial then reduces to

(−λ)j−1λ2 − (−λ)j−1ρkδ1εj+1.

Setting this expression equal to 0 and factoring we get

λ = ±
√
ρkδ1εj+1.

We have reduced finding the largest magnitude eigenvalue to computing the last element of

the last column of V −1 (εj+1) and the sum of the first j elements in the first column of V −1

(δ1).

To find εj+1, we note that the last row of V times the last column of V −1 should be equal

to 1. Multiplying the last column by the last row gives

b̃iεj+1 = 1⇒ εj+1 =
1

b̃i
.

Finding δ1 will involve a similar approach. Let uij be the elements of V −1. Taking the first

row of V and multiplying it by the first column of V −1 yields

u11 =
1

q1 + b1
.

Taking the next row multiplied by the 2nd column of V −1 will produce

−q1
q1 + b1

+ u21(q2 + b2) = 0,
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and thus

u21 =
q1

(q1 + b1)(q2 + b2)
.

Continuing the process, the (k+ 1)st row of V has vk+1,k = −qk, vk+1,k+1 = qk+1 + bk+1, and

the rest of the entries are 0, so

uk,1 =

∏k−1
`=1 q`∏k

`=1(q` + b`)
.

Then

−qku1,k + (qk+1 + bk+1)uk+1,1 = 0,

and thus,

uk+1,1 =
qku1,k

(qk+1 + bk+1)
=

qk
(qk+1 + bk+1)

∏k−1
`=1 q`∏k

`=1(q` + bi`)
=

∏k
`=1 q`∏k+1

`=1 (q` + b`)
.

We have established the form of u1,k for 2 ≤ k ≤ j − 1. For uj,1 we compute

−qj−1uj−1,1 + (1 + bj)uj,1 = 0,

and thus,

uj,1 =
qj−1uj−1,1

1 + bj
=

qj−1
1 + bj

∏j−2
`=1 q`∏j−1

`=1(q` + b`)
,

If we define q0 = 1 and qj = 1, then

δ1 =

j∑
k=1

uk,1 =

j∑
k=1

∏k−1
`=0 q`∏k

`=1(q` + b`)
=

j∑
k=1

k∏
`=1

q`+1

q` + b`
.

We can rewrite this sum as

δ1 =
1

q1 + b1

(
1 +

q1
q2 + b2

(
1 +

q2
q3 + b3

(
1 + . . .

qj−2
qj−1 + bj−1

(
1 +

qj−1
1 + bj

)
. . .

)))
.
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This gives that

R0 =

√
ρk

b̃i

1

q1 + b1

(
1 +

q1
q2 + b2

(
1 +

q2
q3 + b3

(
1 + . . .

qj−2
qj−1 + bj−1

(
1 +

qj−1
1 + bj

)
. . .

)))
.

Recall that ρ =
l sv
s

. Moving out of dimensionless form, we find

R0 = f

√
ccvSv

µ̃S

1

α1 + µ1

(
1 +

α1

α2 + µ2

(
1 +

α2

α3 + µ3

(
1 + . . .

αj−2
αj−1 + µj−1

(
1 +

αj−1
γ + µj

)
. . .

)))
.

This is the form that was conjectured in [14]. Alternatively,

R0 = f

√√√√ccvSv

µ̃S

j∑
k=1

k∏
l=1

αl−1
αl + µl

,

where α0 = 1 and αj = γ. We can now apply Theorem 1.2.1 and see that a bifurcation occurs

at R0 = 1.

Notice that R0 is directly proportional to the biting rate f , the roots of the competencies

c and cv, and the root of the carrying capacity of the vector population. R0 is inversely

proportional to the death rate of the vectors µ̃ and the carrying capacity of the host population

S. Thus, R0 can be completely controlled by these parameters. It is also worth noting that

R0 only depends on the ratio of the vector and host populations and not just on the size of

each. If the ratio of the populations is the same, R0 is the same.

To investigate how R0 depends on the transfer rates αi, consider a model with µi = 0. Then,

letting β = f

√
ccvSv

µS
, we have

R2
0 = β2

(
1

α1

(
1 +

α1

α2

(
1 +

α2

α3

(
1 + . . .

αj−2
αj−1

(
1 +

αj−1
αj

)
. . .

))))

= β2
(

1

α1
+

1

α2

(
1 +

α2

α3

(
1 + . . .

αj−2
αj−1

(
1 +

αj−1
αj

)
. . .

)))
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= β2
(

1

α1
+

1

α2
+

1

α3

(
1 + . . .

αj−2
αj−1

(
1 +

αj−1
αj

)
. . .

))
and so on, until

R2
0 = β2

(
1

α1
+

1

α2
+

1

α3
+ . . .+

1

αj−1
+

1

αj

)
.

Let Ti be the average amount of time spent in the ith compartment, then Ti ∝
1

αi
, so that

R2
0 ∝ β2

∑
Ti.

As the rates increase, the Ti will decrease, and thus, R0 will decrease as well. Also, we can

add relapses to the model, but keep R0 the same by fixing the total amount of time spent in

the relapsing states. Thus, the addition of relapses to the model increases R0 because we are

increasing the amount of time that an infected host spends being infectious.

2.2 The Bifurcation at R0 = 1.

Using Theorem 1.2.1 we have established that the DFE undergoes a bifurcation at R0 = 1.

We wish to learn more about the bifurcation. To do this we shall take advantage of center

manifold theory introduced in the previous chapter. Namely, if the zero eigenvalue of the

linearization is simple, then the dynamics on the center manifold are one dimensional, and we

can discover with relative ease the existence and stability of an additional equilibrium.

Consider the system (3.9), (2.2). It is an easy exercise to show that the Jacobian of this
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system takes the form



−α1 − µ1 0 0 . . . 0 0
fcvS

N
0 0 0

α1 −α2 − µ2 0 . . . 0 0 0 0 0 0

0 α2 −α3 − µ3 . . . 0 0 0 0 0 0

...
...

...
. . .

...
...

...
...

...
...

0 0 0 . . . αj−1 −γ − µj 0 0 0 0

fcS̃

N

fcS̃

N

fcS̃

N
. . .

fcS̃

N

fcS̃

N
−µ̃ 0 0 0

0 0 0 . . . 0 0 −fcvS
N

−µs 0 0

−fcS̃
N

−fcS̃
N

−fcS̃
N

. . . −fcS̃
N

−fcS̃
N

0 0 −µ̃s 0

0 0 0 . . . 0 γ 0 0 0 −µr



.

We evaluate this at the DFE and then determine the algebraic multiplicity of the zero eigen-

value when R0 = 1. The eigenvalue matrix is



λ+ α1 + µ1 0 0 . . . 0 0 −fcv 0 0 0

−α1 λ+ α2 + µ2 0 . . . 0 0 0 0 0 0

0 −α2 λ+ α3 + µ3 . . . 0 0 0 0 0 0

...
...

...
. . .

...
...

...
...

...
...

0 0 0 . . . −αj−1 λ+ γ + µj 0 0 0 0

−fcS̄v
S̄

−fcS̄v
S̄

−fcS̄v
S̄

. . . −fcS̄v
S̄

−fcS̄v
S̄

λ+ µ̃ 0 0 0

0 0 0 . . . 0 0 fcv λ+ µs 0 0

fcS̃

N

fcS̃

N

fcS̃

N
. . .

fcS̃

N

fcS̃

N
0 0 λ+ µ̃s 0

0 0 0 . . . 0 −γ 0 0 0 λ+ µr



.

The Jacobian matrix has block form

Df(x0) =

T 0

L D

 ,

and the multiplicity of the zero eigenvalue will be the sum of the multiplicities of the diagonal
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blocks [5]. However, the multiplicity of 0 in D is 0, since it is diagonal. Hence, we need only

to compute the multiplicity of zero in T . The relevant calculation is

p(λ) = det



λ+ α1 + µ1 0 0 . . . 0 0 −fcv

−α1 λ+ α2 + µ2 0 . . . 0 0 0

0 −α2 λ+ α3 + µ3 . . . 0 0 0

...
...

...
. . .

...
...

...

0 0 0 . . . −αj−1 λ+ γ + µj 0

−fcS̄v
S̄

−fcS̄v
S̄

−fcS̄v
S̄

. . . −fcS̄v
S̄

−fcS̄v
S̄

λ+ µ̃


.

First, we expand along the top row

p(λ) = (λ+ α1 + µ1) det



λ+ α2 + µ2 0 . . . 0 0 0

−α2 λ+ α3 + µ3 . . . 0 0 0

...
...

. . .
...

...
...

0 0 . . . −αj−1 λ+ γ + µj 0

−fcS̄v
S̄

−fcS̄v
S̄

. . . −fcS̄v
S̄

−fcS̄v
S̄

λ+ µ̃



+(−1)j(−fcv) det



−α1 λ+ α2 + µ2 0 . . . 0 0

0 −α2 λ+ α3 + µ3 . . . 0 0

...
...

...
. . .

...
...

0 0 0 . . . −αj−1 λ+ γ + µj

−fcS̄v
S̄

−fcS̄v
S̄

−fcS̄v
S̄

. . . −fcS̄v
S̄

−fcS̄v
S̄


.

The determinant of the first matrix is the product of the diagonals, being that it is lower

triangular. To compute the determinant of the second matrix we divide the bottom row by

−fcS̄v
S̄

. For the value of the determinant to stay the same, we also multiply it by the same



2.2. THE BIFURCATION AT R0 = 1. 39

amount. Hence, we compute

(−1)j
f2ccvS̄v

S̄
det



−α1 λ+ α2 + µ2 0 . . . 0 0

0 −α2 λ+ α3 + µ3 . . . 0 0

...
...

...
. . .

...
...

0 0 0 . . . −αj−1 λ+ γ + µj

1 1 1 . . . 1 1


,

by expanding along the bottom row. Then at each step of the expansion we will take the

determinant of a block diagonal matrix, and each matrix along the diagonal will be a tri-

angular matrix. In particular, once the kth column and the bottom row are removed, the

diagonal to the left of the column has the elements −α1, . . . ,−αk−1 with the only other

nonzero elements above this diagonal. To the right of the column the diagonal elements are

λ+ αk+1 + µk+1, . . . , λ+ γ + µj , and on this side the only other nonzero elements are above

the diagonal. Thus the minors can be written in this form:

A 0

0 B

 .

According to [5] the determinant of this minor will be the product of the determinants of

the diagonal matrices, and as we have already mentioned A is upper triangular and B is

lower triangular. Thus, the determinant of the minor is the product of the diagonal elements.

The signs for the minors along the bottom are (−1)j+k. Furthermore we will multiply the

k − 1 negative elements in the upper matrix. Hence, the sign of each term is (−1)j+k+k−1 =

(−1)j+2k−1 = (−1)j−1. None of these depend on k; we can factor it out and combine it with

the (−1)j on the outside, and have (−1)j+j−1 = −1. Thus, the characteristic polynomial
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takes the form

p(λ) =(λ+ α1 + µ1) . . . (λ+ γ + µj)(λ+ µ̃)

− f2ccvS̄v
S̄

[(λ+ α2 + µ2) . . . (λ+ γ + µj)

+ α1(λ+ α3 + µ3) . . . (λ+ γ + µj)

+ . . . α1 . . . αk(λ+ αk+2 + µk+2) . . . (λ+ γ + µj) + . . .+ α1 . . . αj−1]

.

To show that 0 is a simple eigenvalue, we must show that when R0 = 1, the constant term of

this polynomial is 0 and the linear term is nonzero. In order to ease some of the calculation

we next build up some notation. For indexing purposes define α0 = 1. Now let ξi = αi + µi

for 1 ≤ i ≤ j − 1, and ξj = γ + µj , and ξj+1 = µ̃. This sets up a consistent notation for the

parameters. Also, we need to take products of all but one of these parameters, so we define

the following

ξ1 . . . ξ̂i . . . ξj = ξ1 . . . ξi−1ξi+1 . . . ξj .

The hat tells us which of the parameters is deleted from the product. We can now rewrite R0

using this notation

R0 = f

√√√√ ccvS̄v
S̄ξj+1

j∑
k=1

α0 . . . αk−1
ξ1 . . . ξk

,

and p(λ) becomes

p(λ) =

j∏
i=1

(λ+ ξi)−
f2ccvS̄v

S̄

j−1∑
i=0

α0 . . . αi(λ+ ξi+2) . . . (λ+ ξj). (2.4)

The constant term is found by evaluating p(0):

p(0) =

j∏
i=1

ξi −
f2ccvS̄v

S̄

j−1∑
i=0

α0 . . . αiξi+2 . . . ξj .
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Next, we solve p(0) = 0.

1 =
f2ccvS̄v

S̄

1

ξ1 . . . ξjξj+1

j−1∑
i=0

α0 . . . αiξi+2 . . . ξj

=
f2ccvS̄v
S̄ξj+1

j−1∑
i=0

α0 . . . αiξi+2 . . . ξj
ξ1 . . . ξj

=
f2ccvS̄v
S̄ξj+1

j−1∑
i=0

α0 . . . αi
ξ1 . . . ξi+1

.

Letting k = i+ 1, this becomes

=
f2ccvS̄v
S̄ξj+1

j∑
k=1

α0 . . . αk−1
ξ1 . . . ξk

= R2
0.

This implies that the linear term is 0 if and only if R0 = 1. This only establishes that the 0

has nontrivial algebraic multiplicity (which we knew already because there is a bifurcation).

To establish simplicity we check that the coefficient of the linear term is nonzero when R0 = 1.

Given a product of factors

(λ+ a1) . . . (λ+ an),

the coefficient of the linear term, in the “hat” notation, is

n∑
i=1

a1 . . . âi . . . an.

Applying this to (2.4) we find the coefficient of the linear term of the characteristic polynomial

to be
j+1∑
i=1

ξ1 . . . ξ̂i . . . ξj+1 −
f2ccvS̄v

S̄

j−2∑
k=0

α0 . . . αk

j∑
i=k+2

ξk+2 . . . ξ̂i . . . ξj .

Assume that this is equal to zero when R0 = 1, and we will arrive at a contradiction. Multi-
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plying the second term by
ξj+1

ξj+1
,

0 =

j+1∑
i=1

ξ1 . . . ξ̂i . . . ξj+1 −
f2ccvS̄v
S̄ξj+1

j−2∑
k=0

j∑
i=k+2

α0 . . . αkξk+2 . . . ξ̂i . . . ξjξj+1,

where, upon some manipulation, the expression yields

1 =

f2ccvS̄v
S̄ξj+1

j−2∑
k=0

j∑
i=k+2

α0 . . . αkξk+2 . . . ξ̂i . . . ξjξj+1

j+1∑
i=1

ξ1 . . . ξ̂i . . . ξj+1

.

But R2
0 = 1, so

f2ccvS̄v
S̄ξj+1

j∑
k=1

α0 . . . αk−1
ξ1 . . . ξk

=

f2ccvS̄v
S̄ξj+1

j−2∑
k=0

j∑
i=k+2

α0 . . . αkξk+2 . . . ξ̂i . . . ξjξj+1

j+1∑
i=1

ξ1 . . . ξ̂i . . . ξj+1

.

Canceling the constant in front, and multiplying by the denominator, we get

j∑
i=1

j+1∑
k=1

α0 . . . αi−1ξ1 . . . ξ̂k . . . ξj+1

ξ1 . . . ξi
=

j−2∑
k=0

j∑
i=k+2

α0 . . . αkξk+2 . . . ξ̂i . . . ξjξj+1.

We can split the first sum into two parts depending on the largest value of k. In particular,

when k ≤ i, ξk will not cancel out of the denominator, but when k ≥ i + 1 the whole

denominator will cancel. So we write

j∑
i=1

i∑
k=1

α0 . . . αi−1ξi+1 . . . ξj+1

ξk
+

j∑
i=1

j∑
k=i+1

α0 . . . αi−1ξi+1 . . . ξ̂k . . . ξj+1

=

j−2∑
k=0

j∑
i=k+2

α0 . . . αkξk+2 . . . ξ̂i . . . ξjξj+1.
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Exchanging i and k on the right hand side, we obtain

j∑
i=1

i∑
k=1

α0 . . . αi−1ξi+1 . . . ξj+1

ξk
+

j∑
i=1

j∑
k=i+1

α0 . . . αi−1ξi+1 . . . ξ̂k . . . ξj+1

=

j−2∑
i=0

j∑
k=i+2

α0 . . . αiξi+2 . . . ξ̂k . . . ξjξj+1.

Shifting the i index up by 1 on the RHS yields

j∑
i=1

i∑
k=1

α0 . . . αi−1ξi+1 . . . ξj+1

ξk
+

j∑
i=1

j∑
k=i+1

α0 . . . αi−1ξi+1 . . . ξ̂k . . . ξj+1

=

j−1∑
i=1

j∑
k=i+1

α0 . . . αi−1ξi+1 . . . ξ̂k . . . ξjξj+1.

Thus we have that

j∑
i=1

i∑
k=1

α0 . . . αi−1ξi+1 . . . ξj+1

ξk
+ α0 . . . αj−1 = 0.

However, this cannot be so because all of the rates are positive. Hence a contradiction and

the conclusion that the linear term cannot be 0 when R0 = 1, and 0 is a simple eigenvalue of

Df(x0). As mentioned at the beginning of the section, this implies that the dynamics near the

DFE are 1-dimensional. We use this fact to investigate the stability of the EE near R0 = 1.

To do this, we insert a parameter µ into the equations, where

µ = 0 ⇐⇒ R0 = 1.

We will do this by defining µ = R0 − 1, and so

f =
µ+ 1√

ccvSv

µ̃S
1

α1+µ1

(
1 + α1

α2+µ2

(
1 + α2

α3+µ3

(
1 + . . .

αj−2

αj−1+µj−1

(
1 +

αj−1

γ+µj

)
. . .
))) .
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All other parameters being constant, we abbreviate this as f =
µ+ 1

ζ
. The Jacobian of the

system at the DFE can be written in block form

F − V 0

−J3 −J4

 .

Let v and w be the left and right eigenvectors corresponding to the eigenvalue 0. Without

loss of generality we can choose these such that vw = 1. In the proof of Lemma 3 in [21] we

see that we can also say that v1, wi ≥ 0 for 1 ≤ i ≤ m. Define

a =
m∑

i,j,k=1

viwjwk

(
1

2

∂2fi
∂xj∂xk

(x0, 0) +
n∑

l=m+1

εlk
∂2fi
∂xj∂xl

(x0, 0)

)
,

b =

n∑
i,j=1

viwj
∂2fi
∂xj∂µ

(x0, 0),

where εlk, l = m+ 1, . . . , n, k = 1, . . . ,m are the (l −m, k) entries of −J−14 J3, when R0 = 1.

The following theorem is found in [21].

Theorem 2.2.1. In a disease transmission model satisfying conditions 1-5, with the parameter

µ as described above, with zero as a simple eigenvalue, and b 6= 0 there is a δ > 0 such that

� if a < 0, then there are locally asymptotically stable endemic equilibria near x0 for

0 < µ < δ;

� if a > 0, then there are unstable endemic equilibria near x0 for −δ < µ < 0.

The proof of this theorem relies on restricting to the center manifold described by the

equation

x(u) = x0 + uw + O(u2).
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The dynamics restricted to this manifold are given by

u̇ = au2 + µbu+ O(u3).

For δ > 0 sufficiently small, the dynamics of this ODE match u̇ = au2 + µbu. It is apparent

that this system has a fixed point u =
−bµ
a

, and by Theorem 1.3.3(a) the stability of this

new fixed point in the original system is determined by the reduced dynamics, and thus, the

conclusion of the theorem. We will prove for (2.3) that a < 0 and b 6= 0.

Lemma 2.2.2. b 6= 0

Proof. First note that the last three components of v are 0. This follows from the fact that

J4 =


µs 0 0

0 µ̃s 0

0 0 µr


is invertible. Because

f =
µ+ 1

ζ
,

the only nonzero derivatives in the expression for b are in the I and Ĩ compartments, since

these are the only ones that involve µ. As the last three components of v are 0, we have

b = v1

(
j∑

k=1

wk
∂f1
∂Ik∂µ

+ wj+1
∂f1

∂Ĩ∂µ
+ wj+1

∂f1
∂S∂µ

+ wj+3
∂f1

∂S̃∂µ
+ wj+4

∂f1
∂R∂µ

)

+vj+1

(
j∑

k=1

wk
∂fj+1

∂Ik∂µ
+ wj+1

∂fj+1

∂Ĩ∂µ
+ wj+2

∂fj+1

∂S∂µ
+ wj+3

∂fj+1

∂S̃∂µ
+ wj+4

∂fj+1

∂R∂µ

)
.

Taking derivatives and evaluating at the DFE gives that

b = v1(0 + wj+1
cv
ζ

+ 0 + 0 + 0) + vj+1

(
j∑

k=1

wk
cSv

Sζ
+ 0 + 0 + 0 + 0

)
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= v1wj+1
cv
ζ

+
vj+1cSv

Sζ

j∑
k=1

wk.

We need to show that this is nonzero. First we claim that at least one of the wi are nonzero.

Suppose not, and that we have w1 = . . . = wj+1 = 0. Then since vj+2 = vj+3 = vj+4 = 0,

vw =

j+4∑
i=1

viwi = 0,

which is a contradiction. Next, we claim that v1 6= 0 or vj+1 6= 0. Suppose to the contrary

that v1 = vj+1 = 0. Then, because

(v1, . . . , vj+1, 0, 0, 0)Df(x0) = 0,

it follows that

(0, v2, . . . , vj , 0, 0, 0, 0)Df(x0) = 0,

which implies

(v2, . . . , vj)



α1 −α2 − µ2 . . . 0 0

...
. . .

. . .
...

...

0 0
... −αj−1 − µj−1 0

0 0
... αj−1 −γ − µj


= 0.

The last column shows that vj = 0, so the expression further reduces to

(v2, . . . , vj−1)


α1 −α2 − µ2 . . . 0

...
. . .

. . .
...

0 0
... −αj−1 − µj−1

 = 0.

Again, the last column implies that vj−1 = 0, and so on. This means v = 0, but vw = 1,

which is a contradiction. Then, because all the terms in b are nonnegative, with some of them

being nonzero, we arrive at b 6= 0.
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Lemma 2.2.3. a < 0.

Proof. First, note that

J3 =


0 . . . 0 fcv

fcSv

S
. . .

fcSv

S
0

0 . . . γ 0

 ,

and

J−14 =


1

µs
0 0

0
1

µ̃s
0

0 0
1

µr

 .

Thus,

−J−14 J3 =


0 . . . 0

fcv
µs

fcSv

µ̃sS
. . .

fcSv

µ̃sS
0

0 . . .
γ

µr
0

 .

We can list the nonzero elements of this matrix : ε1(j+1), ε21, . . . , ε2j , ε3j . The second deriva-

tives of the infected components with respect to an infected variable are all zero, since the

equations are first order in all inected variables. When differentiating with respect to an

infected variable and an uninfected variable, the derivatives of the I2 through Ij components

will be zero as they contain no uninfected variables. The nonzero derivatives are

∂2f1

∂Ĩ∂S
=
fcv

S
,

∂2fj+1

∂Ik∂S̃
=
fc

S
.

So, then

a =

j+1∑
i,j,k=1

viwjwk

(
0− f2c2v

Sµs
−

j∑
l=1

f2c2Sv

S
2
µ̃s

)
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= −
j+1∑

i,j,k=1

viwjwk

(
f2c2v
Sµs

+
f2c2Sv

S
2
µ̃s

]

)
.

As we have already shown, the vi, wi ≥ 0, and since the parameters are positive, a < 0.

We can then apply Theorem 2.2.1 to our system, which states that there are asymptotically

stable equilibria near the DFE when R0 is sufficiently close to, but greater than 1.

2.3 Existence of the Endemic Equilibria

Having established the existence of a branch of stable endemic equilibria (EE) near the bifur-

cation, there is a natural question regarding the behavior of these EE outside of the neigh-

borhood of the bifurcation. We want to discover how the local branch found in the previous

section extends for larger (or smaller) values of R0. The complex form of R0 and the arbitrary

number of equations appear to make this problem quite difficult. But the majority of the

equations have a simple linear form, and from these we can derive a simple recurrence relation

for nontrivial equilibrium values of the I2 through Ij+1 in terms of I1. What remains is a

fixed number of equations to solve. We make the following proposition.

Proposition 2.3.1. Given any I1 ≥ 0, there exist unique values S, S̃, R, I2, . . . , Ij , and Ĩ such

that

S′ = S̃′ = R′ = I ′2 = . . . = I ′j = Ĩ ′ = 0.

Proof. Let I1 be fixed. Consulting the equations for I2 through Ij−1 we see that

I ′k = 0 ⇐⇒ Ik =
αk−1Ik−1
αk + µk

= ck−1Ik−1 for 2 ≤ k ≤ j − 1.

For Ij ,

I ′j = 0 ⇐⇒ Ij =
αj−1Ij−1
γ + µj

= cj−1Ij−1,
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and

R′ = 0 ⇐⇒ R =
γIj
µr

= cjIj .

Then for I2, . . . , Ij , R there is a simple multiplicative recurrence relation which is solved easily

for Ik and R, namely

Ik = ck−1 . . . c1I1; R = ck . . . c1I1.

Thus the unique steady states for I2, . . . Ij and R are determined uniquely by I1. Now observe

that at a steady state, inserting c0 = 1,

j∑
k=1

Ik =

j∑
k=1

ck−1 . . . c0I1.

Let ξ =

j∑
k=1

ck−1 . . . c0 and

j∑
k=1

Ik = ξI1. Then we have that

S̃′ = 0 ⇐⇒ µ̃s(Sv − S̃)− fcS̃

S
ξI1 = 0,

and thus,

S̃ =
µ̃sSv

µ̃s + fcI1
S
ξ
.

So, then S̃ is uniquely determined by I1. Now, since Ĩ = Sv − S̃, we should confirm that this

value gives Ĩ ′ = 0 as follows.

Ĩ ′ =
fcS̃I1ξ

S
− µ̃(Sv − S̃) = S̃

(
fcI1ξ

S
+ µ̃

)
− µ̃sSv,

but since µ̃ = µ̃s, and given the equilibrium value for S̃, we have

S̃

(
fcI1ξ

S
+ µ̃s

)
− µ̃sSv = µ̃sSv − µ̃sSv = 0,
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and I1 uniquely determines the equilibrium value for Ĩ. Lastly, we have that

S′ = 0 ⇐⇒ S =
µsS

µs + fcv Ĩ

S

,

and as Ĩ is uniquely determined by I1, then so is S.

The consequence of this proposition is that the number of equilibrium points is determined

by the number of values of I1 such that I ′1 = 0. Furthermore notice that I1 = 0 implies that

S = S̃ = R = I2 = . . . = Ij = Ĩ = 0, and we have generated the DFE. So, we will only be

looking for values such that I1 > 0. We will also want to see how these values depend on R0,

so it will be useful to note the following form:

R0 = f

√
ccvSv

Sµ̃

1

α1 + µ1
ξ.

Now, I ′1 = 0 if and only if

I1(α1 + µ1) =
fcv ĨS

S
.

But since we also have S′ = 0, we get that

fcv ĨS

S
= µs(S − S).

Thus,

I1 =
µs(S − S)

α1 + µ1
=

µsS

α1 + µ1

1− µs

µs + fcv Ĩ

S

 =
µsS

α1 + µ1

(
fcv Ĩ

µsS + fcv Ĩ

)
.

Now, at an equilibria, we can write Ĩ uniquely in terms of I1:

Ĩ = Sv − S̃ = Sv −
µ̃sSv

µ̃s + fcI1
S
ξ

= Sv

(
1− µ̃s

µ̃s + fcI1
S
ξ

)
=

SvfcI1ξ

Sµ̃s + fcI1ξ
.
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Substituting this back into the above expression for I1 we obtain

I1 =
µsS

α1 + µ1

(
Svf

2ccvI1ξ

Sµs(Sµ̃s + fcI1ξ) + Svf2ccvI1ξ

)
.

Because we are interested in solutions where I1 6= 0, we can divide both sides of the equation

by I1 and multiply the denominator over:

S
2
µsµ̃s + fcSµsξI1 + Svf

2ccvξI1 =
µsS Svf

2ccvξ

α1 + µ1
.

Thus,

I1 =
1

fcSµsξ + Svf2ccvξ

(
µsS Svf

2ccvξ

α1 + µ1
− S2

µsµ̃s

)

=
S
2
µsµ̃s

fcSµsξ + Svf2ccvξ

(
Svf

2ccvξ

µ̃sS(α1 + µ1)
− 1

)
,

since µ̃s = µ̃ this can be rewritten as

I1 =
S
2
µsµ̃s(R

2
0 − 1)

fcSµsξ + Svf2ccvξ
.

Thus, we only have a nonzero equilibrium when R0 6= 1, and when R0 < 1 the nonzero

equilibrium is negative, and when R0 > 1 there is one endemic equilibrium. The content of

the above discussion is contained in the following theorem:

Theorem 2.3.2. Given a simple relapsing disease model, for every value of R0 > 1 there is

one nonzero EE that is locally asymptotically stable near R0 = 1.

2.4 Discussion

Using the next generation method and standard matrix computation methods we have found a

form for R0 of vector-borne relapsing diseases with an arbitrary number of relapses. From this

we conclude that R0 increases as the number of relapses of the disease increases. We have also
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taken advantage of results in [21] to show the existence of a branch of endemic equilibria that

are locally asymptotically stable for R0 sufficiently close to 1. A straightforward calculation

also demonstrated that only one such branch of endemic equilibria can exist. Both of these

results are independent of the number of relapses.

The computation of R0 relied on the assumption of a constant population of the hosts. This

assumption was shown to be equivalent to equal death rates in the infected host compartments.

Allowing for variable death rates among the compartments changes the form of the Jacobians

that make up the next generation matrix, though future work may show that the computations

for R0 are similar. However, in the case of equal death rates the constant population is found to

be attracting and thus we need only study the dynamics restricted to this constant population.

2.5 Simulation

Simulations were constructed in MATLAB using estimated parameter values for the spread

of TBRF among pine squirrels found in [14] with two relapses of the disease. With the given

data R0 ≈ .8396. This number can be increased above one by running simulations with more

than two relapses. Graphical results of the simulation can be found in Figure 2.5.1. It is

observed that the dynamics are straightforward in this case. In this particular simulation we

began with no infected hosts and after a peak infection the number of infected hosts decreases

monotonically to 0. When the initial conditions are changed, the dynamics seem to remain

the same. We can begin “far” (50 susceptibles, 400 infected, 200 in the relapses) from the

DFE and still get the monotonic decline of the infections to 0 (Figure 2.5.2), suggesting that

the DFE is globally stable when R0 < 1. There are Lyapunov functions for vector-borne

diseases; see [18], but the fact that the infected compartments in the relapsing model cannot

be collapsed into a single infected variable keeps these forms from working in this case. We

can make R0 > 1 by increasing the biting rate from f = .33 to f = .5 to get R0 ≈ 1.2712. As
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Figure 2.5.1: A simulation of the spread of TBRF with two relapses among pine squirrels on
Wild Horse Island (WHI), Flathead Lake, MT, with R0 < 1

we proved above, there is now an endemic equilibrium that is locally asymptotically stable.

See Figure 2.5.3 for the simulations. Note the presence of oscillations after the fast peak of

the disease. These observations are in line with the results of [18] suggesting future research

along those lines. We showed above that there is only one branch of equilibria and we can plot

the total number of infected hosts at the EE against R0 and see that, with this data, it seems

to level out around 50 and, as f increases, we could find no evidence that there was a change

in the stability of the EE. As before, initial conditions “far” from the DFE are drawn into

the EE, suggesting global stability e.g. Figure 2.5.4. For this figure, recall that the number of

infected in each compartment at the EE is around 5, so even though the graph may appear

to go to 0, that is just a result of the vertical scale of the figure.
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Figure 2.5.2: A simulation of the spread of TBRF with two relapses among pine squirrels on
WHI with initial conditions “far” from the DFE.
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Figure 2.5.3: A simulation of the spread of TBRF with two relapses among pine squirrels on
WHI with R0 > 1.
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Figure 2.5.4: A simulation of the spread of TBRF with two relapses among pine squirrels on
WHI with R0 > 1 and initial conditions “far” from the DFE.



Chapter 3

Variations on the Simple Model

3.1 Removal to the Recovered Compartment

In TBRF there is some variation in the number of relapses in infected hosts. We will introduce

this variation into our model by allowing individuals to leave an infected compartment and go

directly to the recovered state. Let θi ≥ 0 be the transfer rate to the recovered compartment

out of the ith infected compartment. The equations change only slightly: the µi get replaced

with µi + θi and the recovered equation changes.

S′ = β(N)− fcv Ĩ
S

N
− µsS,

I ′1 = fcv Ĩ
S

N
− α1I1 − (µ1 + θ1)I1,

I ′2 = α1I1 − α2I2 − (µ2 + θ2)I2,

...

I ′j−1 = αj−2Ij−2 − αj−1Ij−1 − (µj−1 + θj−1)Ij−1,

I ′j = αj−1Ij−1 − γIj − µjIj ,

R′ =

j−1∑
i=1

θiIi + γIj − µrR.

(3.1)

57
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The vector equations remain unchanged:

S̃′ = βv(Ñ ,N)− fcS̃

N

j∑
k=1

Ik − µ̃sS̃,

Ĩ ′ =
fcS̃

N

j∑
k=1

Ik − µ̃Ĩ.
(3.2)

Under the assumption that the population is constant (N = S) we sum these equations to get

0 = N ′ = β(S)−
j−1∑
i=1

µiIi − γIj − µrR,

and following the proof of Proposition 2.0.1 on page 26 we get that all the µi = µr = µs. We

can also see from that proof that if we assume µi = µr = µs, then we have that N = S is

invariant.

Now we want to show that this system satisfies the necessary conditions for the use of the

next generation method.

Proposition 3.1.1. The system (3.1), (3.2) satisfies Conditions 1-5.

Proof. After rearranging the system as in the previous section the first four conditions are

easily checked. Condition 5 follows from the fact that even with the addition of the infected

terms in the recovered equation it contains no other susceptible variables, and thus, the

Jacobian will still be lower triangular with negative values along the diagonal. Hence the fifth

condition is met.

Now we move ahead to compute R0. However, note that this process involves only the

infected equations and not the recovered equation. So the process is exactly the same as in

the last section, but with µi replaced by µi + θi. Thus when we have removal to the recovered
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compartment:

R0 = f

√
ccvSv

µ̃S

1

α1 + µ1 + θ1

(
1 +

α1

α2 + µ2 + θ2

(
1 +

α2

α3 + µ3 + θ3

(
1 + . . .

αj−2
αj−1 + µj−1 + θj−1

(
1 +

αj−1
γ + µj

)
. . .

)))
.

As one might expect, removal to the recovered compartment drives down R0 since the θi ≥ 0

only appear in the denominators. The magnitude of this contribution is determined by the

size of θi compared to αi−1. If the recovery rate from the ith compartment is small compared

to the rate at which individuals are being transferred into that compartment, then it has little

effect on the spread of the disease. Conversely, if the direct recovery from the ith infected

compartment is large compared to the rate at which individuals are transferred in, it will

result in a more significant mitigation of the disease spread.

3.1.1 The Bifurcation at R0 = 1

There are still questions about which results from the previous section are easily extended

to the case with removal to the recovered compartment, e.g., the transcritical bifurcation at

R0 = 1 and the number of EE. As an opening step we consider the Jacobian matrix for this

system: 

α1 + µ1 + θ1 0 0 . . . 0 0 −fcv 0 0 0

−α1 α2 + µ2 + θ2 0 . . . 0 0 0 0 0 0

0 −α2 α3 + µ3 + θ3 . . . 0 0 0 0 0 0

...
...

...
. . .

...
...

...
...

...
...

0 0 0 . . . −αj−1 γ + µj 0 0 0 0

−fcS̄v
S̄

−fcS̄v
S̄

−fcS̄v
S̄

. . . −fcS̄v
S̄

−fcS̄v
S̄

µ̃ 0 0 0

0 0 0 . . . 0 0 fcv µs 0 0

fcS̃

N

fcS̃

N

fcS̃

N
. . .

fcS̃

N

fcS̃

N
0 0 µ̃s 0

−θ1 −θ2 −θ3 . . . −θj−1 −γ 0 0 0 µr


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To apply Theorem 2.2.1 we need to know the multiplicity for the 0 eigenvalue for this matrix.

However, this matrix has the diagonal form that we have seen before:

Df(x0) =

T 0

L D

 ,

and as we have mentioned before the multiplicity of the 0 eigenvalue is the sum of the multi-

plicities of the 0 eigenvalue of the diagonal blocks. D is a lower triangular matrix with nonzero

diagonal entries, and thus does not have 0 as an eigenvalue. So then the multiplicity of the 0

eigenvalue of the Jacobian is determined by the multiplicity of the 0 eigenvalue of T , which

is precisely the matrix that we dealt with in the previous section. Hence, based on previous

calculations we can conclude that when we add in removal to the recovered compartment, the

Jacobian still has a simple 0 eigenvalue.

Note that the proof that b 6= 0 (as defined in the previous sections) is precisely the same

here as in the previous case. While we now have more nonzero elements in −J−14 J3, the

ε3,k, are cancelled out since the associated second derivatives in the equation for a are the

derivative of an infected variable with respect to the recovered variable, and thus are 0. Thus,

the computation for a is exactly the same and gives a < 0. Hence, we have the following

Corollary of our previous computations.

Corollary 3.1.2. The nontrivial DFE of the system (3.1), (3.2) undergoes a transcritical

bifurcation as R0 goes above 1, and has a branch of locally asymptotically stable EE for R0

sufficiently close to 1.

3.2 Relapsing Diseases with Latency

The most common example of a relapsing disease, TBRF, is driven by antigenic variation of

Borellia spirochetes within the host. Preceding this change is the host’s immune response
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Figure 3.2.1: A compartmental model for a vector-borne relapsing disease with latency.

which nearly eradicates the bacteria from the host. However, Borellia can initiate a full

infection with a single spirochete [8]. These factors combine and result in a week of apparent

health between relapses of TBRF. In this stage the lack of spirochetes in the blood of the

host means that any susceptible tick that bites the host will not become infected. Hosts in

this latently infected stage will not drive the infection of susceptible vectors. We now wish to

quantify the effect that this latent stage has on the spread of a relapsing disease.

3.2.1 Equations and Assumptions

The equations which model a vector-borne relapsing disease with latency are very similar to

those which we have seen in the previous chapter. A conceptual model can be seen in Figure

3.2.1. The equations from this model are given as follows. For the hosts:
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S′ = β(N)− fcv Ĩ
S

N
− µsS,

L′1 = fcv Ĩ
S

N
− β1L1 − µsL1,

I ′1 = β1L1 − α1I1 − µ1I1,

L′2 = α1I1 − β2L2 − µsL2,

I ′2 = β2L2 − α2I2 − µ2I2,
...

I ′j−1 = βj−2Ij−2 − αj−1Ij−1 − µj−1Ij−1,

L′j = αj−1Ij−1 − βjLj − µsLj ,

I ′j = βjLj − γIj − µjIj ,

R′ = γIj − µrR

(3.3)

And the vector equations are

S̃′ = βv(Ñ ,N)− fcS̃

N

j∑
k=1

Ik − µ̃sS̃,

Ĩ ′ =
fcS̃

N

j∑
k=1

Ik − µ̃Ĩ.
(3.4)

One unique assumption that we are making in this case is that the death rates in the latent

compartments are necessarily equal to the death rate for the susceptible population, i.e., you

are truly healthy in between relapses. Otherwise the rest of the previous assumptions are the

same. β(N) and β̃(Ñ ,N) are the same logistic growth rates as before which means that

(S,L1, I1, . . . , Lj , Ij , R, S̃, Ĩ) = (S, 0, 0, . . . , 0, Sv, 0)

is the DFE. As before, we will make the natural assumptions in this model that µi ≥ µs,

µr ≥ µs, and that µ̃ ≥ µ̃s. This leads to the same result in the case with no latency:

Proposition 3.2.1. For the system (3.3), (3.4) the manifold N = S is invariant if and only

if µs = µi and µs = µr.
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The proof is exactly the same as Proposition 2.0.1.

We will seek to compute the reproductive ratio for the latent system (call it RL0 ) using the

next generation method from the previous chapter. First, we must show that the method is

applicable to this system.

Proposition 3.2.2. The system (3.3), (3.4) satisfies conditions 1-5.

Proof. The first four conditions are easily checked. Condition 5 follows from the fact that

the Jacobian evaluated at the DFE has the same form as in the case with no latency with

the exception that the row corresponding to Ĩ and S̃ have alternating zero-nonzero terms.

Hence it is still lower triangular and has negative eigenvalues, which means that condition 5

is satisfied.

Having confirmed these conditions we have justified the use of the next generation method

to compute RL0 .

3.2.2 Computing RL
0

As in the previous chapter we consider only the infected compartments and split their equa-

tions into new infections and transferred infections, writing the system as ẋ = w(x) − v(x)
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where

x =



L1

I1

L2

I2
...

Ij

Ĩ



, w =



fcv ĨS

S

0

0

0

...

0

fcS̃

,
S

j∑
i=1

Ii



v =



(β1 + µs)L1

(α1 + µ1)I1 − β1L1

(β2 + µs)L2 − α1I1

(α2 + µ2)I2 − β2L2

...

(γ + µj)Ij − βjLj

µ̃Ĩ



.

Computing the Jacobians and evaluating them at the DFE we get a very familiar form

W =



0 0 0 0 . . . 0 fcv

0 0 0 0 . . . 0 0

...
...

...
...

. . .
...

...

0 0 0 0 . . . 0 0

0
fcSv

S
0

fcSv

S
. . . 0

fcSv

S


,

V =



β1 + µs 0 0 0 . . . 0 0 0

−β1 α1 + µ1 0 0 . . . 0 0 0

0 −α1 β2 + µs 0 . . . 0 0 0

0 0 −β2 α2 + µ2 . . . 0 0 0

...
...

...
...

. . .
...

...
...

0 0 0 0 . . . −βj γ + µj 0

0 0 0 0 . . . 0 0 µ̃



.

As we saw from the previous chapters, we need to compute the spectral radius of WV −1.

Notice that V has the same form as for a relapsing disease with 2j relapses and no latency.

We can use the results of the previous chapter to find the general form for the elements of

V −1. Furthermore, we note that the action of W on V will now be to add alternating rows
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together. We can extend the calculations from the previous chapter by letting δk be the sum

of the alternating elements in the kth column of V −1. The construction of the characteristic

polynomial is identical, which means that finding the largest eigenvalue amounts to finding

the last element of the last column of V −1 and the sum of every other element in the first 2j

rows of first column of V −1. But since V has the same form as in Chapter 2, we can use the

general form we computed there. As a result we have that

RL0 = f

√√√√ccvSv

µ̃S

j∑
k=1

k∏
l=1

(
βl

βl + µs

)(
αl−1
αl + µl

)

Note that RL0 is similar to R0 in form, and so the observations that we made previously

regarding R0 also hold for RL0 . The inclusion of the
βl

βl + µs
factors into the sum gives that

RL0 < R0. The addition of latent states has the net effect of decreasing the infectiveness of

the disease. However, in the case of humans this effect is negligible since the rate of transfer

out of the latent compartments is on the order of weeks, while the death rate is on the order

of years. Since µs is small compared to βl we get that

βl
βl + µs

≈ 1,

and thus, in the human case RL0 ≈ R0.

3.3 The Coupled Host-Vector System

On WHI there are two species of animal that contribute to the spread of TBRF on the

island: the pine squirrel and the deer mouse [14]. The presence of ticks in their nests, and

potential interaction through visiting other nests leads to complicated infected interactions

among the members of both species. We want to adjust our previous model to account for

these interactions. We do this by coupling two systems together as in [14].
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. . . I1,j

µ1,j

R1

µ1,r
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Figure 3.3.1: Conceptual diagram for a coupled host-vector system with j − 1 relapses.

We consider two host species N1 and N2. These species can be infected by the vector

species Ñ , but will not spread the disease between their respective populations, nor will the

disease jump host species without first going through the vector species i.e. there is no lateral

transmission of the disease among the hosts. Once a susceptible host (Si, i = 1, 2) is infected

it will go through j− 1, relapses through j infected states Ii,k for 1 ≤ k ≤ j, and then recover

(Ri). We will assume that both the host species go through the same number of relapses.

The transmission of the disease from the vector to the host is controlled by the biting rate

f and the vector competency cv. We will assume that the vector competency is the same

for both species. That is, both species have an equal chance of contracting the disease when

bitten by an infected vector. However, we will not assume in general that the converse is true,

that when a susceptible vector bites an infected host there is an equal chance of contracting

the disease from both host species. We represent the corresponding host competencies by ci.

Figure 3.3.1 gives a conceptual diagram for this model. The equations [14] for the first host
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species are

S′1 = β1(N1)− fcv Ĩ
S1
N1
− µ1,sS1,

I ′1,1 = fcv Ĩ
S1
N1
− α1,1I1,1 − µ1,1I1,1,

I ′1,2 = α1,1I1,1 − α1,2I1,2 − µ1,2I1,2,
...

I ′1,j−1 = α1,j−2I1,j−2 − α1,j−1I1,j−1 − µ1,j−1I1,j−1,

I ′1,j = α1,j−1I1,j−1 − γ1I1,j − µ1,jI1,j ,

R′1 = γ1I1,j − µ1,rR1.

(3.5)

It is a very similar set of equations for the second host species:

S′2 = β2(N2)− fcv Ĩ
S2
N2
− µ2,sS2,

I ′2,1 = fcv Ĩ
S2
N2
− α2,1I2,1 − µ2,1I2,1,

I ′2,2 = α2,1I2,1 − α2,2I2,2 − µ2,2I2,2,
...

I ′2,j−1 = α2,j−2I2,j−2 − α2,j−1I2,j−1 − µ2,j−1I2,j−1,

I ′2,j = α2,j−1I2,j−1 − γ2I2,j − µ2,jI2,j ,

R′2 = γ2I2,j − µ2,rR2.

(3.6)

Finally, the vector equations:

S̃′ = βv(Ñ ,N1, N2)−
fc1S̃

N1

j∑
k=1

I1,k −
fc2S̃

N2

j∑
k=1

I2,k − µ̃sS̃,

Ĩ ′ =
fc1S̃

N1

j∑
k=1

I1,k +
fc2S̃

N2

j∑
k=1

I2,k − µ̃Ĩ
(3.7)

The goal of this section is to explore how the dynamics of this coupled system differ from the

dynamics of the single host vector system presented in the first chapter.
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3.4 R0 for the Coupled System

Recall from the Chapter 2 the computational difficulties we experienced when computing

R0. We shall seek to use our previous calculations as much as possible in order to ease the

computational strain in this current situation. To this end, we alter the system by dividing

the infected vectors into two classes: those whose infection came from an infected member of

the first species Ĩ1, and those who were infected by the second species Ĩ2. This changes the

system into

S′1 = β(N1)− fcv(Ĩ1 + Ĩ2)
S1
N1
− µ1,sS1,

I ′1,1 = fcv(Ĩ1 + Ĩ2)
S1
N1
− α1,1I1,1 − µ1,1I1,1,

I ′1,2 = α1,1I1,1 − α1,2I1,2 − µ1,2I1,2,
...

I ′1,j−1 = α1,j−2I1,j−2 − α1,j−1I1,j−1 − µ1,j−1I1,j−1,

I ′1,j = α1,j−1I1,j−1 − γ1I1,j − µ1,jI1,j ,

R′1 = γ1I1,j − µ1,rR1.

(3.8)

S′2 = β(N2)− fcv(Ĩ1 + Ĩ2)
S2
N2
− µ2,sS2,

I ′2,1 = fcv(Ĩ1 + Ĩ2)
S2
N2
− α2,1I2,1 − µ2,1I2,1,

I ′2,2 = α2,1I2,1 − α2,2I2,2 − µ2,2I2,2,
...

I ′2,j−1 = α2,j−2I2,j−2 − α2,j−1I2,j−1 − µ2,j−1I2,j−1,

I ′2,j = α2,j−1I2,j−1 − γ2I2,j − µ2,jI2,j ,

R′2 = γ2I2,j − µ2,rR2

(3.9)

S̃′ = βv(Ñ ,N1, N2)−
fc1S̃

N1

j∑
k=1

I1,k −
fc2S̃

N2

j∑
k=1

I2,k − µ̃sS̃,

Ĩ ′1 =
fc1S̃

N1

j∑
k=1

I1,k − µ̃Ĩ1,

Ĩ ′2 =
fc2S̃

N2

j∑
k=1

I2,k − µ̃Ĩ2.

(3.10)
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The equivalence of the systems is apparent in the equation Ĩ = Ĩ1 + Ĩ2. This splitting will

make it much more straightforward to apply our previous results in the computation of R0

since the system associated with one of the two species only differs from the single host case

by a single term.

Before proceeding as in Chapter 2 we note analogous preliminary results for the coupled

system. The following results are trivial to show, given our previous work.

Proposition 3.4.1. The manifolds N1 = S1, N2 = S2 are invariant if and only if µ1,s = µ1,k,

µ2,s = µ2,k.

Proposition 3.4.2. The system (3.8), (3.9), (3.10) satisfies conditions 1-5 of Chapter 2.

We will use the now familiar next generation method to compute R0 for the coupled sys-

tem. Reduction to the infected equations is done precisely as before, and the Jacobians are

computed to construct the next generation matrix. Note that if Fi is the Jacobian of new

infections for species i, when considered as a single system, we get that

F =

F1 M

M F2

 ,

where M is the (j + 1)× (j + 1) matrix



0 . . . 0 fcv

0 . . . 0 0

...
. . .

...
...

0 . . . 0 0


.

The transfer functions are the same as in the single host case, and thus, if we say they have

Jacobians Vi, then

V =

V1 0

0 V2

 .
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These imply that

FV −1 =

F1V
−1
1 MV −12

MV −11 F2V
−1
2

 .

It is apparent that the bottom row of V −1i is

(
0, . . . , 0,

1

µ̃

)
, and so,

MV −1i =



0 . . . 0
fcv
µ̃

0 . . . 0 0

...
. . .

...
...

0 . . . 0 0


.

As we have seen previously, Fi has a sparse form

Fi =



0 0 . . . 0 fcv

0 0 . . . 0 0

...
...

. . .
...

...

0 0 . . . 0 0

f1c1Sv
N1

f1c1Sv
N1

. . .
f1c1Sv
N1

0


.

Using the same notation as before, letting δ
(i)
k be the sum of the first j elements in the

kth column of V −1i , and by previous arguments (Chapter 2, Section 2.1) we have seen that

δ
(i)
j+1 = 0, so that

FiV
−1
i =



0 0 . . . 0
fc1
µ̃

0 0 . . . 0 0

...
...

. . .
...

...

0 0 . . . 0 0

fciSv

Si
δ
(i)
1

fciSv

Si
δ
(i)
2 . . .

fciSv

Si
δ
(i)
j 0


.
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Given our previous calculations, we can refine this further:

FiV
−1
i =



0 0 . . . 0
fc1
µ̃

0 0 . . . 0 0

...
...

. . .
...

...

0 0 . . . 0 0

µ̃

fcv
R2

0,i Ki,2 . . . Ki,j 0


,

where R0,i is the reproductive ratio of the corresponding single species system. The Ki,k are

introduced to reduce notational complexity. We have already computed the characteristic

polynomial of this matrix:

det(FiV
−1
i − λI) = (−λ)j−1(λ2 −R2

0,i).

We can now proceed with the calculation:

D = det



−λ 0 . . . 0
fcv
µ̃

0 0 . . . 0
fcv
µ̃

0 −λ . . . 0 0 0 0 . . . 0 0

...
...

. . .
...

...
...

...
. . .

...
...

0 0 . . . −λ 0 0 0 . . . 0 0

µ̃

fcv
R2

0,1 K1,2 . . . K1,j −λ 0 0 . . . 0 0

0 0 . . . 0
fcv
µ̃

−λ 0 . . . 0
fcv
µ̃

0 0 . . . 0 0 0 −λ . . . 0 0

...
...

. . .
...

...
...

...
. . .

...
...

0 0 . . . 0 0 0 0 . . . −λ 0

0 0 . . . 0 0
µ̃

fcv
R2

0,2 K2,2 . . . K2,j −λ



.

We expand the determinant along the first column
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D = (−λ)j+1 det(F2V
−1
2 − λI)+

(−1)j+2 µ̃

fcv
R2

0,1 det



0 . . . 0
fcv
µ̃

0 0 . . . 0
fcv
µ̃

−λ . . . 0 0 0 0 . . . 0 0

...
. . .

...
...

...
...

. . .
...

...

0 . . . −λ 0 0 0 . . . 0 0

0 . . . 0
fcv
µ̃

−λ 0 . . . 0
fcv
µ̃

0 . . . 0 0 0 −λ . . . 0 0

...
. . .

...
...

...
...

. . .
...

...

0 . . . 0 0 0 0 . . . −λ 0

0 . . . 0 0
µ̃

fcv
R2

0,2 K2,2 . . . K2,j −λ



.

Expand along the first j − 1 columns:

D = (−λ)j+1 det(F2V
−1
2 − λI)+

(−1)j+2 µ̃

fcv
R2

0,1λ
j−1 det



fcv
µ̃

0 0 . . . 0
fcv
µ̃

fcv
µ̃

−λ 0 . . . 0
fcv
µ̃

0 0 −λ . . . 0 0

...
...

...
. . .

...
...

0 0 0 . . . −λ 0

0
µ̃

fcv
R2

0,2 K2,2 . . . K2,j −λ


.

Expand along the first column

D = (−λ)j+1 det(F2V
−1
2 − λI)+
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(−1)j+2 µ̃

fcv
R2

0,1λ
j−1


fcv
µ̃

det(F2V
−1
2 − λI)− fcv

µ̃
det



0 0 . . . 0
fcv
µ̃

0 −λ . . . 0 0

...
...

. . .
...

...

0 0 . . . −λ 0

µ̃

fcv
R2

0,2 K2,2 . . . K2,j −λ





= (−λ)j+1 det(F2V
−1
2 − λI)+

(−1)j+2 µ̃

fcv
R2

0,1λ
j−1


fcv
µ̃

det(F2V
−1
2 − λI)− (−1)j+2R2

0,2 det



0 . . . 0
fcv
µ̃

−λ . . . 0 0

...
. . .

...
...

0 . . . −λ 0





= (−λ)j+1 det(F2V
−1
2 − λI)+

(−1)j+2 µ̃

fcv
R2

0,1λ
j−1
(
fcv
µ̃

det(F2V
−1
2 − λI)− (−1)j+2R2

0,2(−1)j+1 fcv
µ̃

(−λ)j−1
)

= (−λ)j+1 det(F2V
−1
2 − λI) + (−1)jR2

0,1λ
j−1(det(F2V

−1
2 − λI) + (−λ)j−1R2

0,2)

= (−λ)j+1(−λ)j−1(λ2 −R2
0,2) + (−1)jR2

0,1λ
j−1((−λ)j−1(λ2 −R2

0,2) + (−λ)j−1R2
0,2)

= (λ)2j(λ2 −R2
0,2) + (−1)jR2

0,1λ
j+1((−λ)j−1

= (λ)2j(λ2 −R2
0,2) = λ2jR2

0,1 = λ2j(λ2 −R2
0,2 −R2

0,1).

The largest root, in absolute value, of this polynomial is easily found. This gives the repro-

ductive ratio for the coupled host system:

Rc0 =
√
R2

0,1 +R2
0,2.
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3.5 Discussion

In this chapter we have addressed some immediate variations of the simple model given in the

previous chapter. First, the case where we allow some individuals to abandon the relapsing

process earlier than others, which was motivated by the variation in the number of relapses

in TBRF. We found that this decreases the value of R0, but the bifurcation at R0 = 1 will

remain transcritical.

We also considered how the addition of latent stages have a decreasing effect on R0, but

if the rate at which the infected hosts transfer out of the latent stages is much faster than

their death rate, the inhibiting effect on R0 is negligible. Lastly, we considered the case of

coupled hosts, and we found that the Rc0 for the coupled system is the root of the sum of

squares of the reproductive ratios for the uncoupled systems. In the latent and coupled cases

it is possible that one could repeat the calculations to determine whether the bifurcation at

R0 = 1 remains transcritical, which we leave for future work.



Chapter 4

Continuity of R0 in Vector-Borne

Relapsing Disease Models.

Having computed R0 for several types of systems, it is natural to investigate the relationship

between the reproductive ratios for these systems. Similar work is done in [22], where the

reproductive ratio of an ODE model for cholera is related to the reproductive ratio of the

reaction-diffusion PDE model in the limit as the diffusion coefficient tends to 0. The goal

of this chapter is to establish a similar result for reproductive ratios between models with

differing numbers and types of compartments.

4.1 Motivation

Recall the simple model for vector-borne relapsing diseases. In the final compartment, the

average amount of time spent by an individual in that compartment before moving into the

recovered class or dying is
1

µj + γ
. As γ becomes very large, this quantity becomes small. Since

γ is the parameter that we are increasing, as the hosts enter the final infected compartment

75
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they are instantly transferred directly to the recovered class. More simply, we are removing

the final infected compartment and γj−1 becomes the new rate of transfer from the Ij−1

infected compartment to the recovered class. We can then use the form that we found for R0

in Chapter 2 to get the reproductive ratio for the model with the removed compartment:

Rr0 = f

√√√√ccvSv

µ̃S

j−1∑
k=1

k∏
l=1

αl−1
αl + µl

,

where α0 = 1. Compare this to the form with last compartment included:

R0 = f

√√√√ccvSv

µ̃S

j∑
k=1

k∏
l=1

αl−1
αl + µl

,

where α0 = 1 and αj = γ. Recall, though, that we formed the removed compartment model

by sending αj = γ →∞. Notice then that

lim
γ→∞

R0 = Rr0

since the last term of the sum in R0 has a γ in the denominator, and thus goes to 0. This

example suggests a form of continuity in the reproductive ratio when compartments are re-

moved. The goal of this chapter will be to enumerate the cases in which this continuity occurs

and examine cases where it does not exist.

4.2 Some Linear Algebra

We begin by investigating the determinant of a matrix A as a diagonal element in the matrix

tends to ∞. Note that A[i,j] represents the matrix formed by removing the ith row and jth

column.

Lemma 4.2.1. Let A be an n × n matrix and suppose that A[i:i] is nonsingular. Then
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lim
aii→∞

detA = ±∞.

Proof. By Proposition 2.7.5 of [5]:

detA =
n∑
k=1

(−1)i+kaik det(A[i,k]) = aii detA[i,i] +
∑
k 6=i

(−1)i+kaik det(A[i,k])

The last sum does not involve aii and thus has a fixed value as aii → ∞. Since A[i,i] is

nonsingular it has a nonzero determinant, and thus, the leading term of the previous sum

goes to ±∞ depending on the sign of detA[i,i].

As a result of this lemma we can see that there is a sufficiently large value of aii that makes

A invertible, and the matrix remains invertible for all greater values. This is why we do not

need the hypothesis of A being invertible in the next result, which tells us how to construct

the inverse of A[i,i] from A−1.

Lemma 4.2.2. If A[i,i] is nonsingular then

(A[i,i])
−1 = lim

aii→∞
(A−1)[i,i].

Furthermore,

lim
aii→∞

(A−1)ik = lim
aii→∞

(A−1)ki = 0.

Proof. We will need to consider this proof in four cases. The proof technique in each case is

the same, though the indexing in each is different. Throughout let Bjk = (bpq) = A[j,k] for

1 ≤ p, q ≤ n − 1. We will repeatedly use Corollary 2.7.6 of [5] which is a formula for the ij

element of the inverse of a matrix. Also, the “. . .” denotes terms of a sum that do not involve

aii.
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Case 1. Assume that 1 ≤ j, k < i. Then, on the one hand,

lim
aii→∞

(A−1)kj = lim
aii→∞

(−1)k+j detBjk

detA

= lim
aii→∞

(−1)k+j
∑n−1

l=1 (−1)i−1+lbi−1,l detBjk
[i−1,l]

aii detA[i,i] + . . .

after expanding detBjk along its i− 1 row. Now we want to identify the term that has aii in

it. Note that, since j, k < i, we have that aii = bi−1,i−1. So we let l = i− 1 and we have

lim
aii→∞

(A−1)kj = lim
aii→∞

(−1)k+j(−1)2i−2aii detBjk
[i−1,i−1] + . . .

aii detA[i,i] + . . .
.

Since bi−1,i−1 = aii, we get

=
(−1)k+j detBjk

[i−1,i−1]

detA[i,i]
.

On the other hand,

((A[i,i])
−1)kj =

(−1)k+j det(A[i,i])[j,k]

detA[i,i]
.

Since j, k < i we have that (A[i,i])[j,k] = (A[j,k])[i−1,i−1] = Bjk
[i−1,i−1], so that

((A[i,i])
−1)kj =

(−1)k+j detBjk
[i−1,i−1]

detA[i,i]
.

Thus, when j, k < i, we have

((A[i,i])
−1)kj = lim

aii→∞
(A−1)kj .

Case 2. n− 1 ≥ k, j ≥ i. On the one hand,

lim
aii→∞

(A−1)k+1,j+1 = lim
aii→∞

(−1)k+j+2 detBj+1,k+1

detA
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= lim
aii→∞

(−1)k+j
∑n−1

l=1 (−1)i+lbi,l detBj+1,k+1
[i,l]

aii detA[i,i] + . . .

after expanding detBj+1,k+1 along its ith row. We have that aii = bii. So, then, we let l = i,

and we have

lim
aii→∞

(A−1)kj = lim
aii→∞

(−1)k+j(−1)2iaii detBj+1,k+1
[i,i] + . . .

aii detA[i,i] + . . .

=
(−1)k+j detBj+1,k+1

[i,i]

detA[i,i]
.

On the other hand,

((A[i,i])
−1)kj =

(−1)k+j det(A[i,i])[j,k]

detA[i,i]
.

Since j, k ≥ i, we have that (A[i,i])[j,k] = (A[j+1,k+1])[i,i] = Bj+1,k+1
[i,i] , so that

((A[i,i])
−1)kj =

(−1)k+j detBj+1,k+1
[i,i]

detA[i,i]
.

Thus, when j, k ≥ i, we have

((A[i,i])
−1)kj = lim

aii→∞
(A−1)k+1,j+1.

Case 3. k = i, j < i. On the one hand,

lim
aii→∞

(A−1)i+1,j = lim
aii→∞

(−1)i+j+1 detBj,i+1

detA

= lim
aii→∞

(−1)i+j+1
∑n−1

l=1 (−1)i−1+lbi−1,l detBj,i+1
[i−1,l]

aii detA[i,i] + . . .

after expanding detBj,i+1 along its i− 1th row. Since j < i, we have that aii = bi−1,i. So we

let l = i, and we have

lim
aii→∞

(A−1)i+1,j = lim
aii→∞

(−1)i+j+1(−1)2i−1aii detBj,i+1
[i−1,i] + . . .

aii detA[i,i] + . . .
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=
(−1)i+j detBj,i+1

[i−1,i]

detA[i,i]
.

On the other hand,

((A[i,i])
−1)ij =

(−1)i+j det(A[i,i])[j,i]

detA[i,i]
.

Since j < i, we have that (A[i,i])[j,i] = (A[j,i+1])[i−1,i] = Bj,i+1
[i−1,i], so that

((A[i,i])
−1)ij =

(−1)i+j detBj,i+1
[i−1,i]

detA[i,i]
.

Thus, when j < i, we have

((A[i,i])
−1)ij = lim

aii→∞
(A−1)i+1,j .

Case 4. k < i, j = i. On the one hand,

lim
aii→∞

(A−1)k,i+1 = lim
aii→∞

(−1)i+k+1 detBi+1,k

detA

= lim
aii→∞

(−1)i+j+1
∑n−1

l=1 (−1)i+lbi,l detBi+1,k
[i,l]

aii detA[i,i] + . . .

after expanding detBi+1,k along its ith row. Since k < i, we have that aii = bi,i−1. So we let

l = i− 1 and we have

lim
aii→∞

(A−1)k,i+1 = lim
aii→∞

(−1)i+k+1(−1)2i−1aii detBi+1,k
[i,i−1] + . . .

aii detA[i,i] + . . .

=
(−1)i+k detBi+1,k

[i,i−1]

detA[i,i]
.

On the other hand,

((A[i,i])
−1)ki =

(−1)i+k det(A[i,i])[i,k]

detA[i,i]
.



4.2. SOME LINEAR ALGEBRA 81

Since k < i, we have that (A[i,i])[i,k] = (A[i+1,k])[i,i−1] = Bi+1,k
[i,i−1], so that

((A[i,i])
−1)ki =

(−1)i+k detBi+1,k
[i,i−1]

detA[i,i]
.

Thus, when k < i, we have

((A[i,i])
−1)ki = lim

aii→∞
(A−1)k,i+1.

The combination of these four cases gives the first result.

For the second result, we again use Corollary 2.7.6 of [5] to get that

lim
aii→∞

(A−1)ik = lim
aii→∞

(−1)k+i detBki

detA
.

Bki does not contain aii, and thus detBik remains constant for all values of aii, and by 4.2.1

we have that detA→ ±∞. As a result

lim
aii→∞

(−1)k+i detBki

detA
= 0

The result for (A−1)ki is obtained in exactly the same way.

Before discussing how this result relates to our previous work, it should be noted that

the process of computing the inverse of a matrix after altering it is known in the literature

as updating the inverse of a matrix [12]. The most famous example of this process are the

Sherman-Morrison-Woodbury formulas which give a closed form expression for the inverse of a

perturbation of a matrix in terms of its original inverse. While such methods have numerical

applications [12], our method, since it contains a limit, is going to have a more analytical

usage.

Lemmas 4.2.1 and 4.2.2 will allow us to prove a result about the spectral radius of the next
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generation matrix:

Theorem 4.2.3. Suppose that V[i,i] is nonsingular. Then

lim
aii→∞

ρ(FV −1) = ρ(F[i,i](V[i,i])
−1).

Proof. Since eigenvalues are continuous with respect to the entries of a matrix, and the abso-

lute value and maximum of a set of continuous functions is continuous, we have that

lim
aii→∞

ρ(FV −1) = ρ(F lim
aii→∞

V −1).

Let

(V[i,i])
−1 =

V1 V2

V3 V4

 ,

where V1 ∈ R(i−1)×(i−1), V2 ∈ R(i−1)×(n−i), V3 ∈ R(n−i)×(i−1) and V4 ∈ R(n−i)×(n−i). Then

Lemma 4.2.2 says that

lim
aii→∞

V −1 =


V1 0(i−1)×1 V2

01×(i−1) 0 01×(n−i)

V3 0(n−i)×1 V4

 .

Let

F =


F1 f

(1)
(i−1)×1 F2

f
(2)
1×(i−1) fii f

(3)
1×(n−i)

F3 f
(4)
(n−i)×1 F4

 ,

where F1 ∈ R(i−1)×(i−1), F2 ∈ R(i−1)×(n−i), F3 ∈ R(n−i)×(i−1), and F4 ∈ R(n−i)×(n−i). This
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gives that

F lim
aii→∞

V −1 =


F1V1 + F2V3 0(i−1)×1 F1V2 + F2V4

f
(2)
1×(i−1)V1 + f

(3)
1×(n−1)V3 0 f

(2)
1×(i−1)V2 + f

(3)
1×(n−1)V4

F3V1 + F4V3 0(n−i)×1 F3V2 + F4V4

 .

We wish to compute the spectral radius of this matrix, so we set up the eigenvalue problem

det(F lim
aii→∞

V −1−λIn) = det


F1V1 + F2V3 − λIi−1 0(i−1)×1 F1V2 + F2V4

f
(2)
1×(i−1)V1 + f

(3)
1×(n−1)V3 −λ f

(2)
1×(i−1)V2 + f

(3)
1×(n−1)V4

F3V1 + F4V3 0(n−i)×1 F3V2 + F4V4 − λIn−i



= −λ det

F1V1 + F2V3 − λIi−1 F1V2 + F2V4

F3V1 + F4V3 F3V2 + F4V4 − λIn−i

 = −λ det(F[i,i](V[i,i])
−1 − λIn−1).

So, the matrix F lim
aii→∞

V −1 has the same eigenvalues as F[i,i](V[i,i])
−1 with an additional 0

eigenvalue. Since the spectral radius is the maximum of the absolute value of the eigenvalues,

the spectral radius of F lim
aii→∞

V −1 is the maximum of the eigenvalues of F[i,i](V[i,i])
−1. That

is ,

ρ(F lim
aii→∞

V −1) = ρ(F[i,i](V[i,i])
−1),

which gives the result.

4.3 Continuity of R0 in Vector-Borne Relapsing Disease mod-

els.

The result of the previous section allows us to compute R0 for reduced compartmental models.

In particular, we consider a model in which we wish to remove the ith compartment and have

that the original Jacobians of the new infections F , and the transferred infections V , are
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related to the corresponding Jacobians in the reduced model by F r = F[i,i] and V r = V[i,i].

Making a parameter choice α such that Vii →∞ as α→∞ we have, using Theorem 4.2.3:

Rr0 = ρ(F[i,i](V[i,i])
−1) = ρ(F lim

α→∞
V −1) = lim

α→∞
ρ(FV −1) = lim

α→∞
R0.

Note the similarity to the continuity results of [22] where the reproductive ratio of the ODE

model is the limit of the reproductive ratio of the PDE as the diffusion coefficient tends to

0. We shall see now that this process is applicable to the multistage models we have been

working on.

Consider the simple vector borne relapsing disease model from Chapter 2. Suppose we want

to remove the ith relapsing state. Then the equation for Ii+1 becomes

I ′i+1 = αi−1Ii−1 − (αi+1 + µi+1)Ii−1.

It is then easy to see that the components of the next generation matrix are the original

matrices F and V with the ith row and column removed. We can then make the obvious

parameter choice in the original model and have αi →∞. Thus,

Rr0 = lim
αi→∞

R0 = f

√
ccvSv

µ̃S

1

α1 + µ1

(
1 +

α1

α2 + µ2

(
1 +

α2

α3 + µ3

(
1 + . . .

αj−2
αj−1 + µj−1

(
1 +

αj−1
γ + µj

)
. . .

)))

= lim
αi→∞

f

√
ccvSv

µ̃S

1

α1 + µ1

(
1 +

α1

α2 + µ2

(
1 +

α2

α3 + µ3

(
1 + . . .

αi−1
αi + µi

(
1 +

αi
αi+1 + µi+1

(
1 + . . .

αj−2
αj−1 + µj−1

(
1 +

αj−1
γ + µj

)
. . .

)))))

= lim
αi→∞

f

√
ccvSv

µ̃S

1

α1 + µ1

(
1 +

α1

α2 + µ2

(
1 +

α2

α3 + µ3

(
1 + . . .

(
αi−1
αi + µi

+
αi−1
αi + µi

αi
αi+1 + µi+1

(
1 + . . .

αj−2
αj−1 + µj−1

(
1 +

αj−1
γ + µj

)
. . .

)))))

= f

√
ccvSv

µ̃S

1

α1 + µ1

(
1 +

α1

α2 + µ2

(
1 +

α2

α3 + µ3

(
1 + . . .

(
0 +

αi−1
αi+1 + µi+1

(
1 + . . .

αj−2
αj−1 + µj−1

(
1 +

αj−1
γ + µj

)
. . .

)))))
.

We note here then that this is, with a relabeling of the parameters, precisely R0 for the model

with j − 2 relapses, as computed in Chapter 2.

We can also consider how the removal of a latent stage in (3.3), (3.4) changes RL0 . Again,
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noting that when the ith latent stage is removed the reduced system’s new infection Jacobian

is F[i,1], and the Jacobian for its transfers is V[i,i], we can then make the parameter choice

βi → ∞. Then the reproductive ratio for this reduced system is lim
βi→∞

RL0 , i.e., it’s RL0

with
βi

βi + µs
replaced by 1. Repeating this process we can compute the reproductive ratio

for any arrangement of latent and infectious compartments. Doing this with all the latent

compartments confirms the easily observable result,

R0 = lim
βk→∞,1≤k≤j

RL0 .

Another application of this continuity is with the coupled host system described at the end of

Chapter 3. We computed Rc0 under the assumption that the two host species would go through

the same number of relapses. For notation, let R0,i,j , i = 1, 2, be the reproductive ratio for

the species i with j relapses, and let Fj,k and Vj,k be the Jacobians for the system when the

first host species undergoes j relapses and the second undergoes k relapses. Lastly, let Rl,k0 be

the reproductive ratio for the coupled system where the first species undergoes l relapses and

the second species undergoes k relapses. It can easily be observed that Fj−1,j = (Fj,j)[j−1,j−1]

and Vj−1,j = (Vj,j)[j−1,j−1]. Combining the results from the previous chapters and sections,

we have

Rj−1,j0 = lim
α1,j→∞

Rj,j0 =
√

lim
α1,j→∞

(R0,1,j)2 + (R0,2,j)2 =
√
R2

0,1,j−1 +R2
0,2,j .

Repeating this procedure we can then say

Rl,k0 =
√
R2

0,1,l +R2
0,2,k.

Hence, our continuity result has given us a simple way of computing the reproductive ratio for

a coupled host-vector system where the host species undergo a different number of relapses.
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4.4 Discussion

In this chapter we developed an analytical method for updating the inverse of a matrix when

we remove a row and a column. This method is immediately applied to compute the spectral

radius of the next generation matrix when rows and columns are removed. This result is then

applied to the computation of R0 when compartments are removed. We showed that, under

certain conditions, the reproductive ratio of the reduced system is the limit of the original

reproductive ratio as some parameters tend to infinity. This continuity result was used to

compute R0 for systems with different arrangements of latent and infectious states, and was

also used to compute the reproductive ratio of the coupled host system when the hosts undergo

a different number of relapses.



Chapter 5

Conclusions and Future Directions

5.1 Conclusions

Computing the reproductive ratio of an infectious disease is an important first step in de-

scribing the spread of the disease. We have computed R0 for a vector-borne relapsing disease

model and several simple variations of this model. Of note was the dependence of these ratios

on the number of relapses. This was accomplished through careful calculation on arbitrarily

sized matrices, and computing R0 for the variations relied heavily on our computations for

the simple model.

In the case of the simple model, we were also able to use results that take advantage of center

manifold theory to describe the bifurcation at R0 = 1. In particular, we discovered that it

is always a transcritical bifurcation, where the stable DFE exchanges stability with an EE.

While we cannot, due to the existence of the recovered compartment, combine the infected

compartments into a single infected variable, our results show that the bifurcation does not

change from transcritical even with the addition of the relapse states. We only established the

stability of these equilibria in a neighborhood of R0 = 1 and the size of the system limited us

87
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from being able to do further analysis of the branch of EE. Furthermore we established that

there is only one branch of EE with respect to R0. Future work may repeat the calculations

done on the simple model to extend these bifurcation results to the variations we explored in

Chapter 3.

We also established a continuity result between the reproductive ratios and the number of

compartments in a relapsing model. In particular, through a limit we were able to relate the

reproductive ratios when compartments were removed. This also allowed us to easily compute

R0 for a coupled host-vector system when the host species undergo a different number of

relapses.

5.2 Future Work

There are many directions that future work can take. Variations on this model could include

lateral transmission among the hosts, infected hosts giving birth to infected individuals, and

temporary infection of vectors. Such variations are motivated by Equine Infectious Anemia

Virus (EIAV), a virus which is spread among horses by horse-flies [7]. The horse’s immune

system is able to control the spread of the virus, though there are periods of increased viral

load in the horse’s system which leads to a “relapse” of the disease [19]. However, a particular

feature of EIAV is that infected hosts never recover from the disease. This allows us to collapse

the infected host equations into a single infected variable. Thus, we remove the issue of the

system’s size at the cost of additional complexity.

Spatial considerations can be implemented analogous to [23] and a relationship between R0

and the number of relapses may exist, similar to the results of Chapter 2. Also, as in [23], the

existence of traveling wave solutions can also be studied. How the reproductive ratio changes

as the diffusion coefficient goes to 0 can be examined to possibly yield convergence to the

non-spatial R0 computed in Chapter 2, as in [22].
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As we have mentioned, the relapses in TBRF are driven by the antigenic variation of Borellia

spirochetes in the body [8]. The relapses could be a potential sign of some rich dynamics in an

in-host model. In-host models for the spread of viruses and their interaction with the immune

system have been studied [19], and could potentially be modified for TBRF. Such a model

for the growth of Borellia in the body could give some explanation for the variation in the

number of relapses from case to case. A side effect to the treatment of TBRF is the Jarisch-

Herxheimer Reaction (JHR), which is a reaction to antibacterial treatment of various diseases.

Though its mechanisms are poorly understood the reaction is characterized by fever, chills,

and worsening of cutaneous lesions about 24 hours after treatment [4]. Though it is usually

associated with syphilis, JHR has occurred in significant association with the treatment of

TBRF [10]. A target for future research would be to study JHR as an emergent behavior of

an in-host model.
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