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James, Brandon, M.S., July 2009 Chem istry

A ptam er Selection For Oxidative DNA Lesions 

Chairperson: Dr. Chris Palmer

A ptam er science is a growing field o f  both chemistry and biochemistry. Aptam ers bind 
to specific target molecules, potentially allowing for identification and quantification.
The m ethodologies for selection o f  aptamers are growing and ever-changing. There is a 
num ber o f  different selection protocols, some specialized and others more general. All 
have their advantages and limitations. Here I describe a host o f  these protocols and relate 
them towards the selection o f an aptam er for oxidative DNA lesions, specifically the 
oxidation products o f guanine. Guanine has the lowest reduction potential o f  the four 
DNA bases, and as such is the most readily oxidized. The oxidation product 7,8-dihydro- 
8-oxoguanine (8-oxoG) has been studied extensively over the last decade, but the further 
oxidation products Spiroiminohydantoin (Sp), Guanidinodihydantoin (Gh), and 
Im inoallantoin (la) are still largely unresearched. Aptam ers for these products would 
prove to be invaluable diagnostic tools for the m easurement o f  oxidative dam age to 
DNA. Attempts to select aptamers toward these com pounds are described, and 
recom m endations for further attempts at aptam er selection are provided.



1.0 Introduction

An aptam er is a small, usually single-stranded, DNA or RNA oligonucleotide that 

preferentially associates with a given target molecule. This association can be used to develop 

diagnostic tools for these target molecules, including identification and quantification. The term 

aptam er was coined by the Szostak lab in the early 90s, from the Latin ‘ap tus’, m eaning ‘to fit’.1 

Aptam er research is a small, yet growing, field that has strong potential for a num ber o f 

applications. Aptamers are generated from complex synthetic nucleic acid libraries via iterative 

rounds o f  selection, partition, and amplification. W hile the m ajority o f  aptam ers are m an-made 

molecules, recent research has discovered natural RNA aptamers, term ed ‘ribosw itches’, which 

are used to control gene expression.2 Aptamers usually range from  30-70 nucleotides, giving 

them the capacity to form complex three-dimensional structures and the possibility for a variety

o f  binding locations (Figure | Fixed A I Random Reg.on I FixedB~1 

l ) .3 The aptamer-target
RN A o r s s D N A  d e f in e d  a p t a m e r  /  t a r g e t

( < 1 0 0 n t )  th re e -c im e n s io n a !  r \  c o n P ’ex^

.  s t r u c tu r e s

fo ld in g  jQ  m o le c u la r

binding typically displays a

binding constant that is r e c o g n i t i o n -

   brr'ir>Tir

equivalent to m ost receptor- Fjgure 1: (A) D e p i c t i o n  o f  a  typica| ssDNA |ibrary. {B) S c h e m a t i c  d e t a i l i n g  a p t a m e r -

t a r g e t  b i n d i n g '

ligand interactions.4

There is a num ber o f  applications for aptamers in therapeutics, biosensing technology, 

capillary electrochrom atography, affinity chromatography, flow cytom etry, im age analysis, and 

laser-scanning microscopy.5’6’7,8'9,10 One o f  the strengths o f the aptam er approach is the ability to 

select an aptam er for a wide range o f targets, from ATP to transcription factors (N F-kB) to
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horm ones.11,12' 13 A num ber o f  aptamer-based biosensors have been developed to date, as well, 

including biosensors for targets ranging from the nucleoside L-adenosine to cocaine.14,15

The most common and widely used selection method for aptamers to date is in vitro 

selection, also term ed SELEX (Systematic Evolution o f  Ligands by Exponential Enrichment). 

Herein I will discuss the advantages and limitations o f various selection methods, including 

SELEX, CE-SELEX, non-SELEX, Aptam er Selection Express, FluM ag-SELEX, Structure- 

Switching Signaling A ptam er Selection, Tailored-SELEX, and Toggle-SELEX.

1. Randomized nucleic  
acid starting pool

6. Isolation of Wgtvaffinity 
nucleic acid

^  After 
several 
rounds

5. Elution 
and amplification

4. Stringent w ashes

Enriched 
pool for 
target binding

1.1 Initial Selection Protocols: in vitro Selection  

SELEX, also known as in 

vitro selection, has been around 

for alm ost 20 years; in A ugust o f 

1990, the term SELEX was 

coined and it was used for the 

first time to select for an 

aptam er.16 SELEX relies on

variation, selection, and

replication (Figure 2) and is F ig u r e  2 :  S y s t e m a t i c  E v o l u t i o n  o f  L i g a n d s  b y  E x p o n e n t i a l  E n r i c h m e n t  (SELEX)16 

limited only by the com pleteness o f  the initial library. The idea behind SELEX is fairly simple. 

A large random  DNA or RNA oligonucleotide library is introduced to the required target 

molecule, at a given concentration. The portions o f  the library that m ost strongly associate with 

the target are isolated, replicated, and reintroduced to the target, potentially at a lower

2. Selection by 
target binding

3. Partitioning of 
unbound nucleic acid
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concentration. Once the library has been appropriately reduced, the remaining pool contains 

potential aptamers. This pool can then be cloned and sequenced to yield the aptamers.

For the selection step, SELEX typically utilizes either affinity chromatography or a filter 

assay. The filter assay approach is very simple; the target/library solution is passed through a 

nitrocellulose filter that allows for the non-bound library and target to pass through, w hile 

retaining the bound target-library complex, provided that the size difference is sufficient w hen 

bound. For the affinity chromatography method, the target m olecule is immobilized on an 

affinity  column (typically o f sepharose or agarose), the library is passed along this colum n, and 

the portion o f  the library that strongly associates with the target will stick to the column, w hile 

the rest washes away. The bound portions o f the library are then eluted, amplified, and used for 

the next round o f selection. Both o f  these m ethods are fairly simple and easy to design. It 

should be noted that there are other affinity techniques, such as Electrophoretic M obility Shift 

A ssay (EM SA) or gel filtration that can be used, as well.

There are several limitations to using SELEX as the selection method. The largest 

lim itation is likely the time constraint. To select a functional aptam er, the m inim um  num ber o f  

selection rounds is typically eight to tw elve.17 Specificity can also be an issue; if  appropriate 

steps are not taken to undergo negative rounds o f  selection, the aptam er can be selective for the 

w rong target; negative rounds should involve selecting for and discarding aptam er sequences 

w ith affinity for sim ilar targets to the one desired, the affinity colum n itself, o r the filter.18 These 

portions o f  the library are thus removed from the main pool before subsequent rounds o f 

selection.

There are additional limitations inherent in the SELEX affinity colum n approach. One 

is that the target must be linked to the stationary support. This linkage can block a potential
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binding site for the possible aptamer sequences. Also, the strongest binding sequences can pose 

a problem when it comes to removing them to move on to the next round o f selection, due to the 

strong binding itself. One limitation prevents possible aptamers ffom finding binding locations, 

w hile the other prevents the best aptamers from being selected.

Steps have been taken to overcome the time lim itations o f  traditional SELEX. W hen the 

m ethod was originally introduced, each round o f  selection would take 2-3 days; the entire 

process could take on the order o f  months. The Ellington lab at the University o f  Texas at 

Austin -  one o f  the first labs to deal with aptam ers and SELEX -  has managed to improve their 

protocol with automated steps. They are now able to select an aptam er in a m atter o f  days.19

2. O ther Selection Techniques 

2.1 C apillary  Electrophoresis

One way to overcome 

the time lim itations is to utilize 

different affinity separation 

techniques for the partitioning 

o f  the bound ffom the non­

bound. One such technique is 

CE-SELEX (capillary

electrophoresis SELEX, Figure 3). CE-SELEX is a relatively new method dating back only 

about five years. The library is incubated in ffee solution with the target molecule. A small 

volum e o f  this m ixture is introduced to the capillary and separated w ith an applied potential. 

Ideally, the sequences o f  the library that bind to the target will travel at a different velocity

CK  separation

• * ©

* Target
proteins

w

Unbound
sequences

Bound
com plexes

P C R  am p lifica tio n  ^

S u b seq u en t lib rary  ^  4 ”

C ollec tion

B ound sequences 

F ig u re  3 : CE-SELEX s e le c t i o n  m e th o d ^ 0
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through the capillary than those that are not bound. This separates the bound and non-bound 

quite easily, presuming that there actually is a mobility change for the bound library-target 

com plex. The collected bound sequences are isolated, purified, and PCR am plified before 

moving on to the next round o f  selection.20

The free solution nature o f  CE-SELEX prevents two o f  the previously m entioned 

lim itations o f  SELEX; there is no linkage to hinder binding site possibilities and strong binding 

is not a problem  because there is no wash step. Both the DNA library and the target are in their 

normal solution-state structure. There are additional advantages to CE-SELEX, as well. For 

SELEX, it traditionally takes about six rounds to achieve more than 50%  library binding. It has 

been reported that CE-SELEX can obtain close to 100% library binding within the first two 

rounds o f  selection.21 Rarely is it necessary to perform m ore than two or three rounds o f 

selection, making CE-SELEX significantly quicker than SELEX. The time factor is a major 

strength o f  this method. N egative rounds o f  selection are typically not perform ed for CE- 

SELEX. The negative rounds in traditional SELEX are norm ally perform ed to remove 

sequences that associate with either the stationary support or the filter. This is not typically a 

concern for CE-SELEX, as sequences that may bind to the acrylam ide would not be collected 

with the bound target/library sequences.

The obvious limitation o f  CE-SELEX is that there must be a m obility shift w hen the 

library sequences are bound to the target. I f  there is not, it is not possible to resolve the peaks 

and separate the bound sequences from the nonbinding sequences. The aptamers selected so far 

using CE-SELEX have been those that exhibit a significant m obility shift. To date, this includes 

aptam ers for the histone H4 peptide, neuropeptide Y, IgE, and protein fam esyltransferase, among 

others.22,23 24 These targets range from about 1.5 kDa (a histone H4 peptide) to 200 kD a (IgE).
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Targets that w ould  typically  allow  for an adequate m obility  shift w ou ld  be those that a llow  for a 

bound com plex w ith a d ifferen t net charge than free D N A . F or exam ple, p ro tein  targets w ould  

allow  for a  m obility  shift, w hereas D N A  base targets w ould  not.

2.2 Non-Selex

O ne selection m ethod, that u tilizes 

no am plification  w hatsoever, is referred  to 

as non-SE L E X . N on-S E L E X  selection o f  

ap tam ers has been  around fo r only  a 

handfu l o f  years, as w ell. T he process 

em ploys N E C E E M  (non-equilib rium  

cap illa ry  e lectrophoresis o f  equilibrium  

m ixtures) fo r the partition ing  step. The 

advantage o f  using  N E C E E M , as opposed 

to m ore c lassical a ffin ity  techniques, is the

SELEX

Partitioning

A m p lif ic a tio n
-*(  A nalyaim  |

Non-SELEX

N steps

->j~Anaiy«i«P a r t i t io n in g

-  7
1“  e n r i c h e d  library 
1 p M  h - R a s

P ro te in -D N A  I  F re e
c o m p le x DNA

(/> 5 - 2 ” enriched library
1 p M  h - R a s

3 -

1 -

3W e n n c h e d  lib rary  ♦ 
1 p M  h - R a s JL

4  5 6  7 8 9  10 11
M igration  tim e  to  th e  c a p illa ry  e x it  (m in )

F i g u r e  4 :  (A) S i m p l e  d i a g r a m  o f  SELEX v s .  Non-SELEX. (B) E x a m p l e  

o f  i n c r e a s e d  l i b r a r y  a f f i n i t y  f o r  t h e  t a r g e t  w i t h  s u b s e q u e n t  r o u n d s  

o f  s e l e c t i o n . 25

additional in fo rm ation  p rov ided  as regards to p ro te in -D N A  in teractions. T he non-equ ilib rium  

natu re  o f  the e lectrophoresis prom otes the d issocia tion  o f  the target/lib rary  com plex . O nly  the 

strongest b ind ing  sequences w ith  the low est d issocia tion  co nstan t w ill e lu te  as the bound 

com plexes. W hile low -affm ity  b inding has been show n to be a lim itation  fo r m ore traditional 

CE techniques, N E C E E M  overcom es th is due to the non-equ ilib rium  cond itions.25

T hree  repetitive partition ing  steps are all that is needed  fo r non-S E L E X ; in one study  the 

Kd im proved  from  104 pM  to 0.3 pM  after th ree ro u n d s .26 F urtherm ore , the en tire  process takes 

c lose to an hou r to com plete. T h is  m akes the non-S E L E X  approach  far superio r w hen  it com es
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to time constraints. Non-SELEX is not only fast, it is efficient. Accurate abundances o f 

aptam ers can be estimated with this method, as well. However, due to limitations o f  current 

commercial CE instruments, the accuracy o f the aptamers abundance estimation is limited.

W hen com pared to NECEEM , CE-SELEX -  essentially the same as non-SELEX but 

with the am plification step -  non-SELEX compares quite favorably. In one study, the final 

enriched libraries had com parable affinities o f  0.3 and 0.6 pM , the form er produced from the 

non-SELEX m ethod.26 N ot only was the affinity improved with this method, but the m ethod has 

superior speed and is simpler. The final and possibly most im portant advantage o f  non-SELEX 

over traditional SELEX and CE-SELEX, is the potential to select aptam ers for non-am plifiable 

libraries.

2.3 A ptam er Selection Express

Possibly the new est aptamer 

selection m ethod is A ptam er Selection 

Express (ASExp, Figure 5).27 This method 

was developed in 2008 at the A ir Force 

Research Laboratories, in an effort to 

develop a new separation method to 

com bat the cross-reaction (i.e. selectivity) 

difficulties they were experiencing when 

attem pting to m ake new DNA capture 

elem ent (DCE) systems, aka aptamers. 

W ith a new m ethod that is more selective

U b ra iy  o f  ds-DNA 

T arget
(2 )

«!VW W

This p roduct m ay or 
may n o t b e  con ta ined  
in sep ara tio n \

+  1 / V W W '  +  A W A / ,

M agnetic beads 
w ith random  ss-DNA

S epara ted  bv 
magnet

U  o itf e  t n u l l  
u m o m m l IF . h a t t e r

n r
S u p e rn a ta n t con tain ing  
rem ain ing  lib ra ry  o f ds-DNA 
for n e s t ap tam er selection

y v v v v v '

W a s h

w ith  H .O

( M )  K K

C lo n e

S u p e rn a tan t contain ing  sm all 
am ount ds- and ss-DNA

(7 ) |P C R

( X) Kt h a no UN a Ac

(9)

ds-DNA 

 A

Steps 7-9 a r e  not necessary for 
A p tam er the A SE xpP  process.

F ig u r e  5: S e l e c t i o n  s c h e m e  f o r  A p t a m e r  S e l e c t i o n  E x p r e s s /
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and specific, the hope was that these selectivity problems would decrease. The ASExp process 

begins with introducing the target m olecule to a ds-DNA library. The amount o f target needed 

can be in the sub-nanogram range. W hen the target associates with the library, it will form a 

target/ss-DNA complex. This complex is then separated from the rem aining library pool by 

utilizing magnetic beads that are bound with random ss-DNA. A simple m agnet is all that is 

needed to then separate the bound complex from the unbound library, under the assum ption that 

the target/ss-DNA complex will anneal to the random ss-DNA/magnetic bead pool. The selected 

library is then washed and the bound aptamers are amplified, cloned and sequenced.

The major stated advantage o f this approach is that only a single selection step is 

necessary. This can drastically reduce the am ount o f  time it takes to select an aptamer. The 

other m ajor strength o f  this m ethod is that very little target is actually needed. O n the down side, 

it has been shown that the ASExp method still exhibits the same cross-reaction problem  that the 

traditional SELEX method has. ASExp is still considered by some to be the superior method due 

to the greatly decreased cost, resulting from the advantages listed above.

It was not stated in the ASExp literature, but other lim itations could arise from the 

resultant unbound ss-DNA binding with the ss-DNA/magnetic bead com plex. This w ould be 

recognized and am plified along with the ss-DNA/target/m agnetic bead com plex. Some o f  the 

eventual sequenced “aptam ers” may not be functional. This is som ething that should be kept in 

mind w hen considering the A ptam er Selection Express method. There are further issues that this 

author has with this stated approach. The idea that the target will bind strongly enough to the 

initial library to promote dissociation but weakly enough to allow for annealing to the random  ss- 

DNA/m agnetic bead com plex would seem  to be problematic. There is also concern over the



degree o f affinity that would be exhibited by the resultant aptamer, considering that there is only 

a single step to the reaction.

2.4 FluM ag-SELEX

FluM ag-SELEX is 

another modified SELEX 

protocol, named so because o f 

the fluorescent tags and 

m agnetic beads used in the 

m ethod (Figure 6). The

m agnetic beads are used for 

target partitioning. Targets 

are im mobilized on m agnetic 

beads before introduction to
F ig u r e  6: D e t a i l e d  s c h e m e  o f  t h e  F luM ag-SELEX  p r o c e s s ,  s p e c i f i c a l l y  f o r  t h e

the  SSDNA nucle ic  acid  s e , e c t i o n  o f  a n  a p t a m e r  f o r  s t r e p t a v i d i n 28

library. Fluorescent labels are used for DNA quantification and are added with the first 

am plification step w ith fluorescently-labeled primers. These tags allow  for easy determ ination 

o f  the efficiency o f  the process with each round o f  selection. FluM ag-SELEX was specifically 

designed to select DNA aptam ers for a wide range o f  targets with different properties and o f 

different sizes. As with A ptam er Selection Express, the m agnetic beads provide for fast and 

efficient separation o f  bound and non-bound library-target complexes; the placem ent o f  the 

magnetic beads obviously differs between the two methods. Fluorescent labeling is used for

S treptavidin cocfed T arg et Combinatorial Library

Beads' "  a V  Streptovidm » _

f  Fluorescem -  ssD N A  oligonucleo tides

f

  . .  '
e/inched f

f  , •  saONA pool z  . „  SELS jf  r

. SELEX round

P u rifica tio n  Binding

PA&E o f  ssDNM

d s O t J *
FluMag-SELEX

P rocess

y  : y

PCR A m plification 

Primers _  Ehj1l0n Heat

W ashing ^  »

Removal o f unbound 
oligonucleotides
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quantification. This process has been shown to work for a variety o f targets and the easy-

28handling process allows for processing o f multiple targets.

2.5 Structure-Sw itching Signaling Aptam ers

Signaling aptamers, like the biosensors mentioned previously, are modified aptamers 

w ith the ability to produce a recordable signal. This signal provides information that can be used 

to quantify the amount o f  target present. A fluorophore is typically used as the m odification to 

the aptam er o f  choice. A method for this modification o f  aptamers was introduced by Andrew 

Ellington, et al. in 1999.29 Fluorophores are placed in a position to m onitor conformational 

changes in the aptam er that arise when binding to the target. Typically, residues that do not 

interact w ith the target are replaced by the fluorophore o f  choice.

This method was taken a step 

further w ith the idea o f  using the 

conform ational changes inherent with 

ligand-binding to produce a stronger 

fluorescence response than previously by 

introducing quenchers. This approach is 

applicable to alm ost all DNA aptamers, 

based upon the fact that these aptamers 

share the trait o f forming both a duplex 

structure w ith antisense DNA as well as a complex structure w ith their respective target 

molecule. The key is to design the antisense DNA in such a way that the interaction w ith the 

target m olecule allows for the antisense DNA to dissociate; this can involve altering the num ber

L l  ( D N A  l i b r a r y )

A v id in  b e a d. N a O H
I. D u p le x  \ ^ p i  

a s s e m b l i n g
2. P A G E  /  I V . s s D N A

g e n e r a t i o n

II I .  D NA 
a m p l i f i c a t i o n II .  T a r g e t

e l u t i o n

F ig u r e  7: In  v i t r o  s e l e c t i o n  o f  s t r u c t u r e - s w i t c h i n g  a p t a m e r s
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o f  base-pair matches or introducing mismatch pairs. This class o f designed aptamers is referred 

to as structure-switching signaling aptamers.30

The selection process itself is a bit different from the other selection techniques. The 

initial DNA library is bound to a partially complementary sequence, dubbed the capture 

oligonucleotide. The capture oligonucleotide has a quencher tag adjacent to a fluorophore tag on 

the library strand. W hen the target approaches, the portions o f  the library with the appropriate 

sequence will adopt a three-dimensional conformation, which ideally will cause dissociation o f 

the library from the capture oligonucleotide, yielding an increase in fluorescence signal. The 

unbound sequences are partitioned from the bound sequences by spinning the solution down; 

anything containing a streptavidin bead will sink to the bottom, leaving the bound sequences in 

the supernatant. The bound sequences are cleaned up, am plified, and moved on to the next 

round o f  selection. The structure-switching nature o f the selection process prom otes the 

selection o f  aptam ers with high-affinity for their targets (Figure 7).

As mentioned, „ n
FD N A l S » f  V  QDNA1 5’

GGACGGTGCGAGGCG GTGACTGGACCC M AP
p re v io u s ly  e x is t in g  a p ta m e r s  ^ .c c t g c c a c g c t c c g c t c a c t g a c c t g g g g g a g t a t t g c g g a g g a a g g t

F ig u r e  8 :  S t r u c t u r e - s w i t c h i n g  s i g n a l i n g  a p t m e r  f o r  ATP r e p o r t i n g * 0
can be modified to become

structure-switching signaling aptamers without the loss o f  target recognition. However, i f  the 

desired aptam er has not been previously selected, a method has been designed to select and 

produce an aptam er which needs no further modification to becom e a structure-switching 

signaling aptam er.31 This method allows for production o f  ready-m ade biosensors. This m ethod 

has produced a num ber o f  biosensing aptamers, including one for ATP (Figure 8). The system  is 

designed to place a fluorophore adjacent to the respective quencher. W hen the system  is intact 

(as in figure 8), the fluorescence signal is quenched. As the binding dom ain (underlined)

11



associates with the target, a conformational change will take place leading to the dissociation o f 

the quencher strand. The further the quencher moves ffom the fluorophore, the stronger the 

m easured fluorescence signal. As such, the m easured signal provides a good indication o f  the 

am ount o f  target present in the system.

2.6 Tailored-SELEX

Tailored-SELEX was designed with a specific purpose in mind: to rapidly develop and 

isolate an aptam er sequence with only ten fixed nucleotides in addition to the random  region. 

Typically the required 

prim er sites on either side o f 

the random  region require a 

larger fixed region, usually 

15-25 nucleotides.

Depending on the length o f 

the random  region, the size 

o f  the selected aptam er may 

prove difficult when it 

comes to chemical synthesis 

o f  the developed aptamer.

The fixed regions may not 

be simply om itted because when an aptam er sequence binds to a target it forms a three- 

dim ensional binding structure that m ay involve the fixed regions. Standard chemical synthesis is 

m ost efficient at sizes less than 60 nucleotides. As such, Tailored-SELEX (Figure 9) has

F igure  9: F lo w c h a rt fo r th e  Tailored-SELEX m e th o d

forward ligate RNA library rev. ligate  1 ?  ^

^T 7^roniol^

J
forw. b ridge  g. y re v e rse  b ridge  1 'g ,

F igure  10: L ibrary d e sig n  fo r Tailored-SELEX '
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developed an aptamer selection methodology involving no more than ten fixed nucleotides. 

Customized primers are designed for Tailored-SELEX that can be added via ligation before 

am plification and removed during the am plification process.32

The fixed regions are used for the ligation o f the prim er binding sites. This ligation is 

carried out with the assistance o f the ‘bridge’ oligonucleotides (Figure 10). The bridges contain 

complem entary sequences to both the fixed regions and the prim er binding sites. Once ligation 

has taken place, amplification can proceed. Reverse transcription takes place under high 

tem peratures to ease the removal o f  the forward bridge and alkaline fission allows for removal o f 

the reverse bridge. Thus, the length o f  the library is not increased during the amplification 

process.

Tailored-SELEX was designed to allow for introduction o f  aptam ers into biological 

living systems, e.g. cell cultures and animals. Post-SELEX m odifications are necessary to 

increase the stability o f  the aptamers to an appropriate degree. However, the chemical 

modifications necessary are not as feasible at the increased size o f  some aptam er libraries -  the 

cost increases substantially while the yield decreases. Tailored-SELEX is designed to produce 

aptam ers under 60 nucleotides, into the desired range allowing for increased yields and 

decreased cost. Furtherm ore, this process can be developed into an autom ated aptam er selection 

protocol.

2.7 Toggle-SELEX

The Toggle selection method, developed by the Sullenger Lab at Duke University, is a 

novel method designed to prom ote cross-reactivity among species. For example, they developed 

a family o f aptamers that all recognized and bound to both the hum an and porcine versions o f

13



thrombin. These aptamers with cross-reactivity have a strong potential for gene therapy and 

other therapeutic applications, due to their ability to recognize variability in targets (e.g., 

epitopes, homologs, etc). Cross-reactivity is typically desirable when dealing with pre-clinical 

studies in animal models. To achieve this, specificity o f the aptamers must be adequately 

reduced to allow for the cross-reactivity.33 

The Toggle-SELEX process is
T O G O I .K  S E 1 .E X

carried about by alternating the target r , C w
i Round 1 I •  ^  •  0  C

^  f  1  •  <
S urllB t Library

*< • t •
Enriched l.lb ran

+  p o rc ine  +  hum an 
:n rom bin  ih re m b r)

Ckiac and
JC(|BCIICC

Odd
Rounds

V
I H t f i r d  a a n - b i a d m

hum an

th rom bin

porcine
(hrumbm

Discard non-binder* 

*  <

Even
Rounds

during the selection process (Figure 11).

In the aforem entioned example o f the 

human-porcine thrombin toggle-aptamer, 

human thrombin was used to select for 

the odd rounds and porcine thrombin was 

used to select for the even rounds. Both 

human thrombin and porcine thrombin Fic 

were used as targets in the initial round o f

selection. By alternating between human and porcine proteins, the aptamer selection tends 

toward selecting for evolutionarily conserved regions. As with traditional SELEX, once the 

library was reduced to a significant degree, the remaining pool is cloned and sequenced.

F ig u r e  11 :  Toggle-SELEX f o r  t h e  h u m a n / p o r c i n e  t h r o m b i n  
a p t a m e r . 3*

3.0 Com peting Technologies

Antibodies, aka im munoglobulins (Ig), are proteins found in the body that are utilized by 

the immune system  to find and neutralize foreign agents.34 The general structure o f  all

14



antibodies is quite similar. The difference lies in the hypervariable region, which is a small area 

on the tip o f the protein. It is this region that differentiates antibodies and allows for the binding 

o f  an antibody to an antigen.35 An antigen is a substance that stimulates antibody gene ration. 

Once an antibody recognizes and binds to an antigen, it is tagged for response and attack by the 

immune system. Antibodies are also capable o f neutralizing targets. Similar to aptamers, 

antibodies can be used to recognize and possibly quantify specific target molecules. Utilizing 

antibodies to detect molecules dates back to the 1950s and became widespread as early as the 

1970s.36

In comparison to aptamers, antibodies can be considered inferior. Antibody production 

can take up to 6 months, while aptamers can be produced in far less time (ffom a single day to 8 

weeks). Unlike antibodies, aptamers are stable under more varied conditions, ffom increased 

temperature to harsh buffer conditions, without suffering from loss o f activity. Aptamers are 

smaller. They are easier to engineer. There is high reproducibility with aptamers, while 

antibodies can suffer ffom batch-to-batch variation in performance. Aptamers are easier to 

develop into a drug screening program. Aptamers can be chemically synthesized; antibodies 

require the use o f  animals. Antibodies have a limited shelf-life and may undergo denaturation.

It has been a slow process, as aptamer science is still in development, but aptamers may

replace antibodies in diagnostic applications, identification and quantification.37 Aptamers have

been shown to function more efficiently than antibodies; however, to date, antibodies have been

shown to be more versatile for selection. It is uncertain how many different molecules aptamers

can be selected for. Furthermore, there is certainly no guarantee that aptamers will always work

better than antibodies. Antibodies have been shown to work as well, or better, than aptamers in 

•  38certain cases. Antibodies are good at what they do, but they can be difficult to work with.
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4.0 Selection o f Aptamers for Oxidative Lesions 

O f the four DNA bases, guanine has the 

lowest reduction potential. As such, it is the 

m ost likely to be oxidized when DNA is 

subjected to oxidizing agents. Upon oxidation 

o f  guanine, 7,8-dihydro-8-oxoguanine 

henceforth referred to as 8-oxoG -  is formed. 8- 

oxoG has an even lower reduction potential than 

guanine. Upon oxidation o f  8-oxoG, a number 

o f  products are formed, including 

Spiroiminohydantoin (Sp),

Guanidinodihydantoin (Gh), and Iminoallantoin 

(la), the latter two being isomers (Figure 12)39.

These oxidation products are good indicators o f
F ig u r e  12 :  (A) O x i d a t i o n  o f  G u a n i n e .  ( 3 )  O x i d a t i o n  o f  8-

39

oxidative dam age to DNA. A biosensor that can oxoG'

detect and quantify these m olecules -  possibly in real time and at room  tem perature -  would be 

an invaluable diagnostic tool. Both Gh and la have proven to be rather difficult to recognize and 

quantify via traditional detection methods. A new detection method, utilizing aptam ers was 

explored. To date, no aptam er for Sp, Gh, or la  has been selected. However, an RNA aptam er 

for 8-oxoG was selected by Loeb, et al., at the University o f  W ashington School o f  M edicine a 

num ber o f  years ago.40

crfvi) + 
rcductant

Kh jx o CJ
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4.1 A rg in in a m id e  A p ta m e r

Argininamide (R-amide) bears a structural similarity to Gh, in that

both contain the guanidinium functional group (Figure 13). An aptam er h2n ch— c nh2

was selected for R-amide a num ber o f  years ago.41 The guanidinium 

functional group is the prim ary target o f  the R-amide aptamer. As such, 

this aptam er might also select for Gh. A biosensor was designed with 

this aptam er and tested against Gh. The biosensor was based on a

tripartite system  that had previously been shown to work for an ATP

aptam er.42

The tripartite system  is com posed o f three oligonucleotides: the 

aptam er strand, the fluorophore strand, and the quencher strand (Figure

14). W hen the system is properly annealed together, the fluorophore is Figure 13. (A)
A r g i n i n a m i d e  a n d  (B)

quenched and no fluorescence (or very little) is measured. As the target G u a n i d i n o d i h Yd a n t o i n
( G h) .  G u a n d i d i n i u m

approaches the aptam er strand and associates with it, the fluorophore groups circled- 

strand and the quencher strand

dissociate from the aptam er A p taa e r

5* -  CCT GGC ACC CTC GGC TAC CTA TCG CCT T -  3 ’
strand. T he increased  d istance  3 » -  CCA AGG ICC GAG GCG TC CAT .ACC CCA A -  5 ’

/F  / B l k
between the fluorophore and the Fluorophore A F Quencher

H/ 0/
quencher leads to an increase in ... T . ... , . .

1 F ig u r e  14 :  T r i p a r t i t e  a p t a m e r  d e s i g n

the fluorescence signal, which 

can be m easured and possibly quantified.

The designed system  was tested against prepared Gh, as well as various concentrations o f 

R-amide, as a control. Three different tests were performed to test the viability o f  the system  for
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both Gh and R-amide. A thermal denaturation profile (from 90-20° C, at 1 °/min) was measured 

to determine at what tem perature the system anneals together. This was carried out with both the 

entire system and without the quencher strand; this information indicates the fluorescence 

difference maximum, yielding a high end expected signal should the target denature the system  

at these given temperatures. The second test involves introducing analyte to the system  at a 

specified holding temperature and measuring the change in fluorescence. The fluorescence 

increase should be roughly equivalent to what is predicted from the thermal denaturation profile. 

The final test is a tem perature jum p. The system begins at a low tem perature (15-20° C) with 

analyte present. As quickly as the instrument allows, the tem perature is increased to an elevated 

temperature (45-50° C, typically) and held there for an extended period (usually 30-45 min), 

after which the temperature is lowered to room temperature. This test provides useful 

information on how well the target is denaturing the system by increasing the tem perature past 

the annealing point. It is possible that the aptam er strand will not associate strongly enough with 

the target to induce denaturation and will need assistance.

Ultimately, the system  failed to yield positive results for either Gh or R-amide. The 

acquired thermal denaturation profiles (with and without quencher) behaved as they should, but 

the analyte testing did not indicate appropriate separation o f  the tripartite system with analyte 

present. The aptam er selected for R-amide is not able to be repurposed to develop a biosensor by 

using this approach. A new approach will be necessary if  a biosensor is to be designed for Gh.
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, f  -  931 W  93 JL39V 931x

★
S ’ -  GTC ACT GTC TTC CAA GCT TQC ATG THM 

3 ’ -  / B i o t i n / T  CAG TGA CAG AAG -  5 ’
NNH

4.2 Selection o f an 8-oxoG Aptamer 

A  modification o f  the 

structure-switching signaling 

aptam er selection approach 

was used to attempt to select 

an aptam er for 8-oxoG. As 

m entioned, an aptam er for 8-

OXoG has been previously  f i g u r e  1 5 :  L i b r a r y  o l i g o n u c l e o t i d e  a n d  c a p t u r e  o l i g o n u c l e o t i d e  f o r  t h e  s e l e c t i o n  o f

a n  a p t a m e r  f o r  8 - o x o G .

selected by another lab; the

ultim ate goal here was to select a biosensor for Gh and possibly Sp. It was determ ined that the 

method would be used to select an aptam er for 8-oxoG first, as 8-oxoG is more stable than the 

further oxidation products. Following that, a sim ilar approach would be used to select an 

aptam er for G h/Ia and/or Sp.

The aptam er selection 

system  was designed using two 

separate oligonucleotides. The first 

oligonucleotide, designated as the 

library oligonucleotide, contained a 

24 nucleotide random sequence 

flanked by prim er regions, and a 

short sequence complementary to 

the second oligonucleotide. The 

second oligonucleotide is designated

Round % Eluted w/ % Eluted w/ 8oxoG
100 pM G 8oxoG Cone (pM )

1 30 100
2 34 100
3 38 100
4 35 100
5 47 100
6 60 100
7 75 100
8 30 10
9 35 10
10 49 10
11 60 10
12 83 10

Negative 27 37 10
14 43 10

F i g u r e  1 6 :  L i b r a r y  a f f i n i t y  f o r  8 - o x o G  w i t h  i n c r e a s i n g  r o u n d s  o f  s e l e c t i o n .

19



the capture oligonucleotide (Figure 15). A biotin tag was placed 3 ’ on the capture 

oligonucleotide. The biotin will bind to streptavidin beads with a IQ o f 10'15 mol/L, which 

approaches the strength o f a covalent bond. This binding provides the separation step. A 

quencher is placed 5’, adjacent to a fluorophore on the library oligonucleotide; when the strands 

are appropriately annealed, the fluorescence signal will be quenched. With target present, those 

sequences in the library that associate the strongest with the target dissociate from the capture 

oligonucleotide. The solution is spun down in a table-top centrifuge, separating the target-1 ibrary 

complex (which remains in the supernatant) from the unbound library-capture complex (which 

settles at the bottom, along with the unbound capture oligonucleotide). The beads are washed 

with buffer until the fluorescence o f the supernatant reaches background levels. After washing, 

the remaining library bound to the capture oligonucleotide is eluted with 0.1% NaOH. The 

fluorescence o f this is measured to ascertain the amount o f library that did not associate with the 

target. This provides a useful comparison to the fluorescence measurements o f the bound 

library-target complex.

Fourteen rounds of
• ACCCGGACCACAGGCCAACCCCGC  

selection proceeded before the • AGGCGGGGGGACAGAAAGAGGGGG
• ACAGGGGGGAGACTTGTCGCAGGC  

library pool was sufficiently • GGAGGCGGCCGGTGACCTCTGCGG

reduced and the affinity for the Figure 17: S e le c ted  A p t a m e r  S e q u e n c e s  fo r  8 -oxoG 

target was sufficiently high at a a 

concentration o f 10 pM  8-oxoG \
(Figure 16). One round o f  negative 

selection with 100 pM Guanine is ]
Figure  18: Fold ing P a t t e r n  fo r  S e le c ted  'A p t a m e r '  S e q u e n c e

included in the fourteen rounds.
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The reduced library pool was cloned with P-GemT-Easy (a TA-based cloning kit) and grown on 

carbenicillin LB plates. The recovered clones were sequenced to yield potential aptamers. Four 

different sequences were obtained (Figure 17). Theoretical folding structures were obtained for 

the four sequences using M fold (http://mfold.bioinfo.rpi.edu/) and it was determined that the 

sequence AC CCG GAC CAC AGG CCA ACC CCG C was the m ost likely aptam er sequence 

(Figure 18).

A new oligonucleotide was ordered from IDTDNA sim ilar to the original library, with 

the “aptam er” sequence replacing the random region. This aptam er oligonucleotide was tested 

against 8-oxoG in a manner sim ilar to the selection. The selection had been designed in such a 

way that it could easily be turned into a biosensor. The aptam er oligonucleotide was annealed to 

the capture oligonucleotide and introduced to 8-oxoG. The original library was tested in a 

sim ilar manner, as a control. The testing did not indicate a strong preference for the 8-oxoG in 

either the aptam er oligonucleotide or the original library, despite the marked increase in 8-oxoG

concentration (>5 mM ) (Figure Fluorescence M easurem ents

_  Final A ptam er Library
19). The aptam er |goxoG]

oligonucleotide behaved near

identically to the original

library; a greater affinity was

w/ 8-oxoG w/o w / 8-oxoG w/o
1011 1100 814.1 605.5

5 mM 934.1 1082 679.5 757.5
7 mM 983.1 1128 705 769.4
8 mM 892.5 1104

- r u  •  A -  • F igure  19: 8 -oxoG  aff in i ty  c o m p a r i s o n s  b e t w e e n  th e  s e l e c t e d ‘a p t a m e r ’ a n d  th enot evident. The indication is initiai library.

that an aptam er was not yielded from the selection.

A second attem pt at selecting an aptam er for 8-oxoG proved equally fruitless. The

approach was modified slightly in a couple o f  ways. The complem entary bases between the

library and the oligonucleotide were adjusted to allow for easier dissociation. The PCR
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amplifications were ethanol precipitated to remove the enzymes and purified to remove the 

primers, to provide for the cleanest possible strands. The amplifications were also run out on a 

0.8%  agarose gel to ascertain their purity. This attem pt was abandoned after the initial rounds 

indicated neither increased affinity nor much affinity at all.

It is uncertain whether or not it is possible to select an aptam er for 8-oxoG with the 

m ethod designed in this manner. Furthermore, there has been no evidence to indicate that all 

m olecules are capable o f  forming aptameric relationships. It is the author’s opinion that a 

different selection method may prove to have more success in the developm ent o f  an aptam er for 

this molecule.

4.3 A ptam er Selection Difficulties

The designed method for the selection o f the 8-oxoG aptam er as described in section 4.2 

w as not a strict SELEX-based protocol. Elements from different selection techniques were used 

to develop a protocol that would potentially yield a ready-to-be-used biosensor. Unlike SELEX, 

neither an affinity column nor a filter assay was used for the selection step. The selection 

involved and required the denaturation o f  a library/capture oligonucleotide complex. This 

assures that a selected aptam er would have a very high affinity for the target. However, the high 

affinity that is required is also a deterrent in the selection process itself. The conform ational 

changes that occur in the random region o f  the library oligonucleotide when bound to target may 

not be sufficient to dissociate the library from the capture oligonucleotide, despite the relatively 

small num ber o f complem entary base pairs. Possible aptam er sequences can be easily lost in this 

situation. An aptam er for 8-oxoG may not bind 8-oxoG in the necessary m anner for this 

selection technique to properly work.
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The streptavidin bead separation step also yielded a num ber o f problems. The biotin- 

streptavidin bond never formed as it should. Far too many appropriately-labeled capture 

oligonucleotide strands either did not attach to the streptavidin beads or the bond broke far too 

easily -  which is highly unlikely, as the streptavidin-biotin bond is among the strongest for any 

known non-covalent bond.43 Regardless o f  the reason why, this step proved to be very limiting; 

far too much o f  the library-capture complex was found in the supernatant during the initial wash 

cycles prior to target introduction. The loss o f so much material limits the sequences that are 

available for aptam er selection.

A different method is necessary for the selection o f  an aptam er for 8-oxoG. Too many 

difficulties were found with this method. There are other selection m ethods that may prove to be 

more advantageous. A com pletely different approach would yield additional information as to 

whether or not an aptam er can actually be selected for this molecule.

4.4 Future Selection Considerations

These initial experim ents failed to select o r identify a useful aptam er for 8-oxo-G, Sp, 

Gh, or la. However, due to their biological significance and the current analytical difficulties in 

determ ining these com pounds, they remain im portant targets for aptam er selection and biosensor 

development. The question remains, however, what approach is likely to generate a useful 

aptamer.

A m ethod utilizing CE-SELEX can be a good place to start for the selection o f  a typical 

aptamer. It is a fairly straightforward method and results can be seen in a fairly short am ount o f 

time. However, in the case o f  8-oxoG, this m ay prove to be difficult. CE-SELEX  is known to 

work for larger m olecules and, as yet, is unproven when it comes to m olecules the size o f  8-
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oxoG. It is very likely that no m obility shift will be seen when the library is bound to target. As 

such, CE-based SELEX would not be a recommended starting place for the selection o f  this 

aptamer.

The Aptam er Selection Express method is a protocol that has possibilities for the 

selection o f  an 8-oxoG aptamer. Again, the method is fairly straightforward, other than the 

designing o f  the random ss-DNA/magnetic bead complex and the random ds-DNA library pool. 

Ideally, the size o f the 8-oxoG target would work well for this method. Hopefully, the 8-oxoG 

target would associate strongly enough with the appropriate aptameric sequences to allow for the 

dissociation o f  that oligonucleotide from its complementary strand, yet weakly enough that the 

oligonucleotide/target/m agnetic bead complex can form. This selection method has been shown 

to work, but only a handful o f  times. It is uncertain whether or not this m ethod would work for 

8-oxoG. This author has reservations about this method and its design and believes that it bears 

further investigation.

The Tailored-SELEX approach, while possibly an approach that may work for 8-oxoG, is 

not a method that this author would recom m end for this selection. The m ethod is rather 

com plicated and quite specialized. The considerations that are em ployed are not a large concern 

for this selection. Likewise, the Toggle-SELEX method would not be a good m ethod for 8- 

oxoG. The m ethod is novel and yields highly useful aptamers, but is not applicable to this 

problem.

The structure-switching signaling aptam er approach is a good approach to take for the 

selection o f  this aptamer. The structure-switching signaling approach is valued because o f  the 

innate ability to produce ready-made biosensors. As a biosensing 8-oxoG aptam er is the desired 

product, this would seem to be the natural method to utilize. However, the slightly altered

24



structure-switching signaling approach used for the attem pted selection described in section 4.2 

proved unsuccessful. That method em ployed a target library whose folding structure would alter 

in the presence o f  target and produce a signal. M agnetic beads were used for the partitioning 

step.

Given the lack o f success with the attempted selection approach, it m ay be advisable to 

apply the structure-switching signaling approach to an aptam er selected by a previous method. 

A  selected aptam er can be m odified with fluorophores and quenchers to create a structure- 

switching signaling aptam er (section 2.5). As m entioned earlier, an RNA aptam er for 8-oxoG 

was selected a num ber o f  years ago.39 I f  desired, this sequence could potentially be developed 

into a biosensing aptamer. Barring that, the approach used to select for this RNA aptam er could 

be duplicated to select a new aptam er for 8-oxoG or even aptam ers for the further oxidation 

products Sp and Gh.

The FluM ag-SELEX approach may prove to be the recom m ended m ethod for the 

selection o f  an aptam er for 8-oxoG, Gh, or Sp. W hile utilizing streptavidin beads as the 

partitioning step, this approach removes the biotin-streptavidin binding difficulties. I f  the target 

can be directly bound to m agnetic streptavidin beads, the partitioning 

step would be quite simple. FluM ag-SELEX has been shown to work

~ .  F ig u r e  2 0 :  S t r u c t u r e  o f
for the selection o f  an aptam er for ethanolam ine (Figure 2 0 ) ,  which is ethanoiamine44

to date possibly the sm allest successful m olecular aptam er target.44 This author feels

com fortable in recom m ending this as the preferred approach.
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5.0 Concluding Remarks

A ptam er selection is a growing field o f  chemistry and biochemistry. In the alm ost twenty 

years since the beginning o f aptam er science and the SELEX selection method, a large number 

o f  aptam ers have been selected for a wide variety o f m olecules and numerous selection m ethods 

have been developed. As an em erging field, aptamers stand poised to replace antibodies in many 

identification and diagnostic procedures. They offer many advantages over antibodies, while 

having alm ost none o f  the same limitations. The only setback for aptam ers in this regard at the 

m om ent is the increased num ber o f  antibodies that have been found versus the num ber o f 

aptam ers that have been selected.

The SELEX methods that utilize capillary electrophoresis (CE-SELEX and non-SELEX) 

are am ong the superior selection methods to date. The time necessary is greatly reduced from 

traditional SELEX and far fewer selection rounds are needed. The nonspecific binding limitation 

is also overcom e by utilizing capillary electrophoresis. CE-SELEX would be the first step in 

designing a system  to select a new aptamer. However, for 8-oxoG and the further oxidation 

products, it is m ore than possible that this approach will not work. A m obility shift will not 

likely be seen for the bound library-target complex. A different m ethod should be explored.

Had it not already been attempted, the structure-switching signaling aptam er approach 

m ight be the recom m ended m ethod for the selection o f  aptamers toward oxidative DNA lesions. 

A nother recom m ended method could be to take a step back and use a sim pler SELEX approach, 

perhaps sim ilar to that w hich was already used to select the RNA 8-oxoG aptam er to select for 

Sp and Gh aptamers. The specific attachm ent o f  the 8-oxoG to the affinity matrix can not be 

duplicated for Sp o r Gh, but a slightly modified coupling has possibilities. Ideally, an aptam er 

selected using that method could later be altered and developed into a biosensor. Furtherm ore,
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the previously selected 8-oxoG aptam er can possibly be modified to create a new structure- 

switching signaling aptamer. There are problem s with this method, m ainly the time constraints 

and the need for further modification.

The recommended approach is to use the FluM ag-SELEX method. This method has been 

shown to work for molecules sm aller than 8-oxoG, Gh, or Sp. The m ethod is fast and efficient. 

The previously seen difficulties with streptavidin beads are removed with this method as no 

biotin-streptavidin binding is necessary. The selected aptam er could later be developed into a 

biosensor.
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