POTENTIAL CONTRASTS IN CO2 AND CH4 FLUX RESPONSE UNDER CHANGING CLIMATE CONDITIONS: A SATELLITE REMOTE SENSING DRIVEN ANALYSIS OF THE NET ECOSYSTEM CARBON BUDGET FOR ARCTIC AND BOREAL REGIONS

Jennifer D. Watts

University of Montana - Missoula

Follow this and additional works at: http://scholarworks.umt.edu/etd

Recommended Citation
http://scholarworks.umt.edu/etd/10935

This Dissertation is brought to you for free and open access by the Graduate School at ScholarWorks at University of Montana. It has been accepted for inclusion in Graduate Student Theses, Dissertations, & Professional Papers by an authorized administrator of ScholarWorks at University of Montana. For more information, please contact scholarworks@mail.lib.umt.edu.
POTENTIAL CONTRASTS IN CO₂ AND CH₄ FLUX RESPONSE UNDER
CHANGING CLIMATE CONDITIONS: A SATELLITE REMOTE SENSING
DRIVEN ANALYSIS OF THE NET ECOSYSTEM CARBON BUDGET FOR ARCTIC
AND BOREAL REGIONS

By

JENNIFER DAWN WATTS

M.S. Land Resources and Environmental Sciences (Land Reclamation),
Montana State University, Bozeman, MT, 2008

B.S. Land Resources and Environmental Sciences (Geospatial Analysis),
Montana State University, Bozeman, MT, 2006

Dissertation
presented in partial fulfillment of the requirements
for the degree of

Doctor of Philosophy
in Systems Ecology

The University of Montana
Missoula, MT

May 2017

Approved by:

Scott Whittenburg, Dean of The Graduate School
Graduate School

Dr. John S. Kimball, Chair
Department of Ecosystem and Conservation Sciences

Dr. Steven W. Running
Department of Ecosystem and Conservation Sciences

Dr. Cory S. Cleveland
Department of Ecosystem and Conservation Sciences

Dr. Anna E. Klene
Department of Geography

Dr. Marco P. Maneta
Department of Geosciences
ABSTRACT

Watts, Jennifer, D., Ph.D., January 2017 Systems Ecology

Potential Contrasts in CO2 and CH4 Flux Response under Changing Climate Conditions: A Satellite Remote Sensing Driven Analysis of the Net Ecosystem Carbon Budget for Arctic and Boreal Regions

Chairperson: John S. Kimball

The impact of warming on the net ecosystem carbon budget (NECB) in Arctic-boreal regions remains highly uncertain. Heightened CH4 emissions from Arctic-boreal ecosystems could shift the northern NECB from an annual carbon sink further towards net carbon source. Northern wetland CH4 fluxes may be particularly sensitive to climate warming, increased soil temperatures and duration of the soil non-frozen period. Changes in northern high latitude surface hydrology will also impact the NECB, with surface and soil wetting resulting from thawing permafrost landscapes and shifts in precipitation patterns; summer drought conditions can potentially reduce vegetation productivity and land sink of atmospheric CO2 but also moderate the magnitude of CH4 increase.

The first component of this work develops methods to assess seasonal variability and longer term trends in Arctic-boreal surface water inundation from satellite microwave observations, and quantifies estimate uncertainty. The second component of this work uses this information to improve understanding of impacts associated with changing environmental conditions on high latitude wetland CH4 emissions. The third component focuses on the development of a satellite remote sensing data informed Terrestrial Carbon Flux (TCF) model for northern wetland regions to quantify daily CH4 emissions and the NECB, in addition to vegetation productivity and landscape CO2 respiration loss. Finally, the fourth component of this work features further enhancement of the TCF model by improving representation of diverse tundra and boreal wetland ecosystem land cover types. A comprehensive database for tower eddy covariance CO2 and CH4 flux observations for the Arctic-boreal region was developed to support these efforts, providing an assessment of the TCF model ability to accurately quantify contemporary changes in regional terrestrial carbon sink/source strength.
ACKNOWLEDGMENT

I thank my committee: Dr. John Kimball for the support, computing resources and scientific brainstorming that made this research possible; Dr. Steve Running for the encouragement to think “outside the box” and venture into the realm of science policy and activism; Dr. Cory Cleveland for your dedication to teaching, graduate advising and advancing the state of science in academia; Dr. Marco Maneta for your advice and enthusiasm towards environmental modeling; Dr. Anna Klene for your ongoing mentorship and shared love of the Arctic (“keep CALM and carry on”). I also thank family, friends and the Numerical Terradynamic Simulation Group for continued support and encouragement. Special thanks to Dr. Lucas Jones for sharing your knowledge of microwave remote sensing and the highs/lows of PhD life. Tikanni, my faithful canine companion, thanks for tolerating me over the years. Finally, thanks to John B. for your support and comradery; cheers to the many adventures ahead!
TABLE OF CONTENTS

CHAPTER 1

1. Introduction and overview ... 1
2. Hypotheses and objectives ... 3
3. Summary overview .. 4
4. References .. 6

CHAPTER 2

1. Abstract ... 11
2. Introduction ... 12
3. Methods ... 14
 3.1 AMSR-E Fw estimates ... 14
 3.2 Error sensitivity analysis ... 15
 3.3 Fw verification .. 18
 3.4 Fw trend analysis .. 20
4. Results .. 22
 4.1 Error sensitivity analysis ... 22
 4.2 Fw verification and regional analysis ... 23
 4.3 Fw trends ... 25
5. Discussion ... 27
 5.1 Fw verification and surface water patterns 27
 5.2 Fw trends ... 30
6. Conclusions ... 32
7. References .. 34
8. Tables .. 42
9. Figures .. 46

CHAPTER 3

1. Abstract ... 53
2. Introduction ... 54
3. Methods ... 56
<table>
<thead>
<tr>
<th>Section</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>3.3.1 Study region</td>
<td>56</td>
</tr>
<tr>
<td>3.3.2 Model description and calibration</td>
<td>56</td>
</tr>
<tr>
<td>3.3.3 Regional simulations</td>
<td>58</td>
</tr>
<tr>
<td>3.4 Results and discussion</td>
<td>59</td>
</tr>
<tr>
<td>3.4.1 Model evaluation against in situ methane flux observations</td>
<td>59</td>
</tr>
<tr>
<td>3.4.2 Regulatory effects of surface water & temperature on regional wetland emissions</td>
<td>60</td>
</tr>
<tr>
<td>3.4.2.1 Wetland inundation characteristics</td>
<td>60</td>
</tr>
<tr>
<td>3.4.2.2 Regional summer methane simulations</td>
<td>61</td>
</tr>
<tr>
<td>3.4.3 Fw temporal scaling effects on summer methane budgets</td>
<td>62</td>
</tr>
<tr>
<td>3.4.4 Potential impact of regional wetting and drying trends on methane emission budgets</td>
<td>63</td>
</tr>
<tr>
<td>3.5 Conclusions</td>
<td>64</td>
</tr>
<tr>
<td>3.6 References</td>
<td>64</td>
</tr>
<tr>
<td>Tables</td>
<td>78</td>
</tr>
<tr>
<td>Figures</td>
<td>80</td>
</tr>
<tr>
<td>Supplement</td>
<td>86</td>
</tr>
<tr>
<td>CHAPTER 4</td>
<td>95</td>
</tr>
<tr>
<td>4.1 Abstract</td>
<td>95</td>
</tr>
<tr>
<td>4.2 Introduction</td>
<td>96</td>
</tr>
<tr>
<td>4.3 Methods</td>
<td>99</td>
</tr>
<tr>
<td>4.3.1 TCF model description</td>
<td>99</td>
</tr>
<tr>
<td>4.3.1.1 CO₂ flux component</td>
<td>100</td>
</tr>
<tr>
<td>4.3.1.2 CH₄ flux component</td>
<td>102</td>
</tr>
<tr>
<td>4.3.2 Study sites & in situ data records</td>
<td>106</td>
</tr>
<tr>
<td>4.3.3 Remote sensing & reanalysis inputs</td>
<td>107</td>
</tr>
<tr>
<td>4.3.4 TCF model parameterization</td>
<td>108</td>
</tr>
<tr>
<td>4.3.5 TCF model simulations</td>
<td>109</td>
</tr>
<tr>
<td>4.4 Results</td>
<td>110</td>
</tr>
<tr>
<td>4.4.1 Surface organic carbon pools</td>
<td>110</td>
</tr>
</tbody>
</table>
4.4.2 LUE based GPP .. 111
4.4.3 Reco and NEE .. 112
4.4.4 CH₄ fluxes ... 113
4.4.5 Estimates of annual carbon budgets .. 115
4.5 Discussion & conclusions ... 116
4.6 References .. 120
Tables .. 133
Figures .. 137
Supplement .. 145

Chapter 5 .. 149
5.1 Abstract .. 149
5.2 Introduction ... 150
5.3 Methods ... 152
5.3.1 Flux tower CO₂ & CH₄ sites ... 153
5.3.2 TCF model estimates for tower sites ... 153
5.3.2.1 TCF model description ... 153
5.3.2.2 Updates to the TCF model for Arctic-boreal wetlands 155
5.3.2.3 TCF model meterology and remote sensing inputs 156
5.3.2.4 TCF model simulations .. 156
5.3.2.5 TCF model assessment & site NECB trends ... 157
5.4 Results ... 158
5.4.1 Site eddy covariance flux characteristics ... 158
5.4.2 Comparison of TCF model simulations with flux measurements 159
5.4.3 Annual TCF model flux budgets ... 160
5.4.4 Trends in NECB and component fluxes .. 161
5.5 Discussion & conclusions ... 162
5.6 References ... 165
Tables .. 173
Figures .. 176
Supplement .. 183
CHAPTER 6.. 194

6.1 Fractional water inundation.. 194
6.2 Fractional water inundation & wetland methane budgets 195
6.3 TCF model development for northern wetlands .. 198
6.4 Assessment of longer-term NECB response in TCF model simulations across Arctic-boreal flux tower sites ... 199

References... 201
Figures .. 206
Chapter 1: Introduction and overview

Arctic-boreal ecosystems have been strongly affected by recent climate warming (Kaufman et al. 2009), an intensifying freshwater cycle (Rawlins et al. 2010, Kopec et al. 2015) and shifts in the terrestrial carbon balance (McGuire et al. 2012, Schuur et al. 2015). Over 50% of the global soil organic carbon (SOC) pool remains held within the northern high latitude regions (Hugelius et al. 2012, Olefeldt et al. 2016). Yet soil warming, a deepening permafrost active layer and a lengthening of the annual non-frozen period (Romanovsky et al. 2010, Schuur & Abbott 2011, Kim et al. 2014) could heighten the microbial mineralization of stored SOC and associated greenhouse gas release (Schuur et al. 2009, Sistla et al. 2013). Although warming generally increases SOC decomposition, the magnitude of CO$_2$ production is constrained by wet conditions that favor CH$_4$ emissions and decrease methantrophy (Turetsky et al. 2008, Olivas et al. 2010, Watts et al. 2014b, Treat et al. 2015). Regional wetting has been observed throughout the Arctic and sub-Arctic zones (Mekis & Vincent 2011, Watts et al. 2012, Zhang et al. 2013, Watts et al. 2014a), influenced by permafrost thaw, sub-surface ice melt, and the enhanced transport of atmospheric moisture (Kopec et al. 2015). These changes could increase wetland CH$_4$ emissions (Kirschke et al. 2013, Meng et al. 2016) which have a radiative warming potential at least 25 times more potent than CO$_2$ over a 100 year time period (Boucher et al. 2009).

Ecosystem greening in the Arctic (Zhang et al. 2008, Hudson & Henry 2009, Macias-Fauria et al. 2012, Berner et al. 2013, Myers-Smith et al. 2015) following lessening cold temperature constraints could potentially increase the northern carbon sink. In contrast, boreal regions have suffered severe drought stress and lower annual uptake of CO$_2$ (Zhang et al. 2008, Beck & Goetz 2011, Bond-Lamberty et al. 2012). Vegetation browning is also being observed in tundra, attributed to extreme winter and summer warming events, ground disturbances, and changes in soil hydrology and winter snowpack characteristics (Phoenix & Bjerke 2016).

Recent net CO$_2$ exchange in the northern high latitudes varies from a carbon sink of 291 TgC yr$^{-1}$ to a source of 80 TgC yr$^{-1}$, and largely depends on the balance between carbon uptake by vegetation and losses from soil mineralization and respiration in plants (MacDougall et al. 2012, McGuire et al. 2012). Soil warming accelerates carbon losses due to the exponential effects of temperature on soil respiration (Kutzbach et al. 2007) whereas wet and inundated
Conditions shift microbial activity towards anaerobic consumption pathways that are relatively slow, but can result in substantial CH$_4$ production (Moosavi & Crill 1997, Treat et al. 2015). Northern wetland CH$_4$ fluxes may be particularly sensitive to climate warming, increased soil temperatures and duration of the soil non-frozen period (Olefeldt et al. 2013, Zona et al. 2016). The northern latitudes already contain over 50% of the global wetlands (Matthews & Fung 1987), with an abundance of vegetation communities capable of direct soil-to-atmosphere CH$_4$ transport (Davidson et al. 2016). Even more concerning is that recent increases in atmospheric CH$_4$ concentrations have been attributed to heightened gas emissions in these northern areas during periods of intense summer warming (Dlugokencky et al. 2009).

Satellite and long term flask sampling networks have improved the monitoring of atmospheric CO$_2$ and CH$_4$ concentrations (Butz et al. 2011, Karion et al. 2013). However, it remains difficult to quantify the regional variability in northern carbon fluxes using top-down inversion modeling (McGuire et al. 2012, Bergamaschi et al. 2013) given the geographic sparsity of atmospheric sampling by tall towers, airborne measurements, and the sensitivity of optical/near-infrared carbon observing satellites (e.g. GOSAT) to cloud cover and minimal or absent sunlight during long Arctic winters (Parazoo et al. 2016).

In consequence, regional studies of terrestrial carbon budgets rely heavily on chamber and eddy covariance methods to assess ecosystem fluxes (Baldocchi et al. 2012, Mastepanov et al. 2013). Extrapolating local CH$_4$ fluxes to regional scales has proven difficult and is severely constrained by sparse in-situ monitoring networks and the large spatial heterogeneity in surface vegetation, soil temperatures and wetness across northern ecosystems (Tagesson et al. 2013, Sturtevant & Oechel 2013, Davidson et al. 2016). Terrestrial CH$_4$ studies continue to rely on biogeochemical models to assess the magnitude and spatiotemporal variability of regional carbon emissions. Model based bottom-up emission estimates of CH$_4$ from northern peatland and tundra range between 8 and 79 TgC yr$^{-1}$ (Spahni et al. 2011, McGuire et al. 2012, Watts et al. 2014a, 2014b) and have been difficult to constrain due to uncertainty in model parameterization and the regional characterization of wetland extent and seasonal to daily variability in soil wetness (Petrescu et al. 2010, Riley et al. 2011, Wania et al. 2013). The impact of warming and changing surface and soil wetness on the net ecosystem carbon budget (NECB) in the Arctic-boreal regions remains highly uncertain (McGuire et al. 2012). Heightened CH$_4$ emissions from Arctic-boreal ecosystems could shift the northern NECB closer towards net carbon source.
Hypotheses and objectives

This study considers the following science questions:

(i) How are recent changes in temperature, surface water inundation and soil moisture, and the annual non-frozen period affecting the Arctic-boreal net ecosystem carbon budget (NECB)? (ii) How well can a remote sensing based model approach quantify seasonal and daily terrestrial CO2 and CH4 exchange within the Arctic and boreal regions relative to tower eddy covariance flux observations? (iii) Where are changes in the NECB most pronounced within northern high latitude ecosystems, and to what extent are CH4 fluxes from wetlands driving these changes relative to shifts in GPP and CO2 emissions?

These questions coincide with the following objectives:

(i) Validate the use of satellite passive microwave retrievals of fractional terrestrial surface water inundation to detect seasonal and inter-annual changes in surface hydrology and impacts to wetland CH4 emissions. (ii) Develop a satellite remote sensing informed Terrestrial Carbon Flux (TCF) model with enhanced vegetation functional type characterizations for boreal and tundra communities, improved thermal and moisture regulation of vegetation productivity and soil carbon mineralization in permafrost affected ecosystems, and a new wetland CH4 production and emissions module to provide more complete estimates of NECB. (iii) Use the enhanced TCF model to provide longer-term (yrs. 2003-2015) estimates of daily CO2 and CH4 flux activity for the Arctic-boreal region at a 1-km spatial resolution. Use these model records, in conjunction with a compiled database of tower eddy covariance records, to inform the state of regional terrestrial NECB (carbon sink vs. carbon source).

The above objectives address the overarching goal:

To provide the Arctic-boreal research community with new datasets for surface water inundation and TCF model estimates of daily changes in vegetation primary productivity (atmospheric CO2 assimilation), ecosystem CO2 respiration, wetland CH4 emissions and near surface (≤ 10 cm depth) SOC stocks. This research advances carbon cycle science applications
for clarifying the northern NECB and impacts of changing environmental conditions, including ecosystem moisture and thermal constraints, on terrestrial carbon sink or source activity.

Summary overview

The six chapters of this dissertation address the above objectives and are the subject of several peer-reviewed papers and manuscripts in preparation.

Chapter 1 introduces the research topic and the primary hypotheses and objectives of this work, that are presented in detail in Chapters 2 through 5. An overall summary, conclusions and recommendations for future study is provided in Chapter 6.

In Chapter 2, I introduce the land fractional open water (Fw) database developed using satellite microwave observations from the Advanced Scanning Microwave Radiometer on the NASA Earth Observing System (AMSR-E). This work is described in Watts et al. (2011) and reports on recent (yrs. 2003–2010) surface inundation patterns across the Arctic-boreal region (≥ 50°N). This chapter provides a validation of the 25-km AMSR-E Fw dataset using alternative, higher spatial resolution observations from Landsat, MODIS and SRTM radar data. A regional trend analysis finds widespread surface Fw wetting occurring within continuous and discontinuous permafrost zones, and Fw drying in the more degraded sporadic/isolated permafrost areas.

In Chapter 3, I present a satellite data driven model investigation of the combined effects of surface warming and moisture variability on high northern latitude (≥ 45° N) wetland CH₄ emissions, by considering sub-grid scale changes in Fw and the impact of recent (2003-2011) wetting/drying on northern CH₄ emissions (Watts et al. 2014a). The satellite Fw record reveals continued widespread wetting across the Arctic continuous permafrost zone, contrasting with surface drying in boreal Canada, Alaska and western Eurasia. Arctic wetting and summer warming increased wetland emissions by 0.48 Tg CH₄ yr⁻¹, but this was mainly offset by decreasing emissions (-0.32 Tg CH₄ yr⁻¹) in sub-Arctic areas experiencing surface drying or cooling.

In Chapter 4, I introduce a modified Terrestrial Carbon Flux (TCF) model developed for satellite remote sensing applications to evaluate wetland CO₂ and CH₄ fluxes over six pan-Arctic region eddy covariance flux tower sites (Watts et al. 2014b). The TCF model response is
investigated using in-situ data and coarser 250-m satellite (MODIS) and 0.5° reanalysis (MERRA) records. This investigation find that although the estimated annual CH$_4$ emissions were small (< 18 g C m$^{-2}$ yr$^{-1}$) relative to R_{eco} (> 180 g C m$^{-2}$ yr$^{-1}$) they reduced the across-site NECB by 23% and contributed to a global warming potential of approximately 165 ± 128 g CO$_2$ eq m$^{-2}$ yr$^{-1}$. The model evaluation indicates a strong potential for using the TCF model approach to document landscape scale variability in CO$_2$ and CH$_4$ fluxes for northern peatland and tundra ecosystems.

In Chapter 5, I present an analysis of CO$_2$ and CH$_4$ fluxes across an extended Arctic-boreal flux tower network featuring 36 tower sites. Here I examine recent (yrs. 2003-2015) wetland carbon budgets and corresponding changes in carbon flux components using an enhanced TCF model that represents additional tundra and boreal wetland functional types (Watts et al. In prep). The resulting daily 1-km TCF model simulations indicate a net ecosystem carbon sink in tundra and boreal wetlands with respective average NEE values of -4 and -96 gC m$^{-2}$ yr$^{-1}$. Accounting for NECB (NEE + CH$_4$) reduced the overall boreal wetland carbon sink by 20% and shifted tundra from carbon sink to carbon source (NECB = 1.6 gC m$^{-2}$ yr$^{-1}$). Trend analysis for the 13-yr TCF model flux records did not show significant ($\alpha = 0.05$) change in annual GPP, Reco, NEE and NECB when the tower sites were grouped according to boreal or tunda ecotype. However, boreal wetlands experienced a significant increase in CH$_4$ flux with higher increases occurring in non-forested boreal wetlands.

Chapter 6 summarizes the findings of each chapter in relation to the initial objectives and hypotheses presented in Chapter 1. This chapter includes discussion of research outcomes and recommendations for future research.
REFERENCES

Rawlins, M A, M Steele, M M Holland, J C Adam, J E Cherry, J A Francis, P Y Groisman, L D

Chapter 2: Validation of pan-Arctic surface fractional water inundation database with high temporal frequency using satellite observations from the advanced scanning microwave radiometers (AMSR-E/AMSR-2)

Corresponding publication:

2.1 Abstract

Surface water inundation in the Arctic–boreal region is dynamic and strongly influences land-atmosphere water, energy and carbon (CO$_2$, CH$_4$) fluxes, and potential feedbacks to climate change. Here we report on recent (2003–2010) surface inundation patterns across the Arctic-boreal region (\geq 50°N) and within major permafrost (PF) zones detected using satellite passive microwave remote sensing retrievals of daily fractional open water (Fw) cover from the Advanced Microwave Scanning Radiometer for EOS (AMSR-E). The AMSR-E Fw (25-km resolution) maps reflect strong microwave sensitivity to sub-grid scale open water variability and compare favorably (0.71≤R^2≤0.84) with alternative, static Fw maps derived from finer scale (30-m to 250-m resolution) Landsat, MODIS and SRTM radar (MOD44W) data. The AMSR-E retrievals show dynamic seasonal and annual variability in surface inundation that is unresolved in the static Fw maps. The AMSR-E Fw record also corresponds strongly (0.71≤R≤0.87) with regional wet/dry cycles inferred from basin discharge records. An AMSR-E algorithm sensitivity analysis shows a conservative estimate of Fw retrieval uncertainty (RMSE) within ±4.1% for effective resolution of regional inundation patterns and seasonal to annual variability. A regional trend analysis of the 8-year AMSR-E record shows no significant Arctic–boreal region wide Fw trend for the period, and instead reveals contrasting inundation changes within different PF zones. Widespread Fw wetting is detected within continuous (92% of grid cells with significant trend; p < 0.1) and discontinuous (82%) PF zones, while sporadic/isolated PF areas show widespread (71%) Fw drying trends. These results are consistent with previous studies showing evidence of contrasting regional inundation patterns linked to PF degradation and associated changes to surface hydrology under recent climate warming.
2.2 Introduction

Surface hydrology in the Arctic-boreal region is closely linked to permafrost and the balance between precipitation and evapotranspiration. Permafrost, soil frozen for two or more years, underlays approximately 64\% (19.6×10^6 km^2) of regions above 49°N (Brown et al. 1998). Although permafrost is widespread at high latitudes due to low mean annual temperatures, it also occurs in the sub-Arctic where localized conditions such as poor drainage, dense vegetation and thick organic litter layers reduce surface warming (Shur & Jorgenson 2007). Extensive wetland and lake systems exist throughout the Arctic-boreal region, despite the characteristically arid climate, where permafrost or strata with low permeability impedes vertical soil infiltration and subsurface drainage (van Huissteden et al. 2011, Woo et al. 2006). However, the relative stability of permafrost within the Arctic-boreal is uncertain given continued climate warming (Graversen et al. 2008, Hinzman et al. 2005, Kaufman et al. 2009). Changes in precipitation and evapotranspiration (Rawlins et al. 2010, Zhang et al. 2009) will also affect surface water extent.

Permafrost thaw has been observed throughout the Arctic-boreal region (Camill 2005, Frauenfeld et al. 2004, Payette et al. 2004). Ice melt within the frozen soil layer initially increases inundation, but continued thawing is purported to reduce surface water extent through drainage pathway expansion (Smith et al. 2007, White et al. 2007). A concern in the Arctic-boreal region is the potential for large global methane (CH_4) emissions resulting from regional thaw lake and wetland expansion (Anisimov 2007, Anisimov & Reneva 2006, Avis et al. 2011, Walter et al. 2007) because permafrost affected areas hold a large portion of the global soil organic carbon pool (Tarnocai et al. 2009). Better information regarding permafrost thaw and the spatial extent and duration of surface inundation is needed to improve ecosystem carbon dioxide (CO_2) and CH_4 emission estimates (Avis et al. 2011, O’Connor et al. 2010).

In Siberia, lake area has reportedly increased in continuous permafrost zones (Walter et al. 2006) and has decreased substantially (Smith et al. 2005) where permafrost degradation is more advanced (i.e. discontinuous, sporadic, isolated zones). Similar trends have also been documented in Alaska (Jones et al. 2011a, Yoshikawa & Hinzman 2003). These regional observations provide critical insight regarding the influence of permafrost thaw on surface hydrology, but are specific to point-in-time conditions for a small portion of the Arctic-boreal landscape. Satellite remote sensing-based assessments using optical-infrared (IR) sensors are
regionally extensive but prone to signal degradation from persistent clouds, smoke and other atmosphere aerosol effects, and seasonal decreases in solar illumination at higher latitudes (Fily et al. 2003, Jones et al. 2007).

Alternatively, satellite microwave remote sensing is well-suited to monitor surface inundation owing to its strong sensitivity to surface water presence, reduced sensitivity to solar illumination and atmosphere contamination, and the deployment of microwave sensors on polar orbiting satellites that enable daily observations in northern land areas (Kaheil & Creed 2009). Satellite-based microwave radiometry has been used to analyze global inundation patterns (Papa et al. 2010). Arctic-specific studies have also examined regional inundation (Fily et al. 2003, Mialon et al. 2005) and associations between surface water extent and river discharge (Papa et al. 2008, Schroeder et al. 2010). However, satellite-based microwave remote sensing has yet to be utilized to examine spatiotemporal relationships between surface inundation and permafrost zones across the Arctic-boreal region.

In this study, we examine regional patterns, temporal variability and recent trends in surface inundation across the Arctic-boreal zone and within sub-regions characterized by continuous, discontinuous and sporadic/isolated permafrost. Daily fractional open water cover (F_w) was derived from 18.7 and 23.8 GHz frequency brightness temperature (T_b) series from the Advanced Microwave Scanning Radiometer for EOS (AMSR-E), where the F_w retrievals represent the proportional surface water cover within 25-km equal area grid cells (Jones et al. 2010). Fractional open water is defined as standing surface water and saturated soils that are unmasked by overlying vegetation biomass and moist organic debris, including plant litter and moss layers. Upwelling microwave radiance at 18.7 GHz frequency has a limited ability to penetrate overlying vegetation biomass and moist organic debris, so that most of the F_w signal originates from standing water emissions within open areas and under low density vegetation cover.

This approach differs from previous studies (Fily et al. 2003, Papa et al. 2010) because F_w and associated temperature, atmosphere and vegetation factors are determined synergistically using multi-frequency and polarization T_b records from a single sensor, AMSR-E (Jones et al. 2010, 2011). This approach allows independence from other ancillary data for determining microwave scattering effects from intervening atmosphere and vegetation layers. An algorithm
sensitivity analysis was first performed to estimate AMSR-E F_w retrieval uncertainty. The daily AMSR-E F_w record was then temporally composited to mean monthly and maximum annual values; these data were compared against available static open water maps derived from the UMD Global 250-m Land Water Mask (MOD44W) for the Arctic-boreal domain and regional Landsat-based (30-m res.) land cover classifications. The AMSR-E F_w data were also compared against dynamic river discharge records for major Arctic river basins to evaluate F_w response to climate variability and periodic wet/dry cycles inferred from the basin discharge records. The F_w results were evaluated both regionally and on a per grid-cell basis to document recent (2003–2010) inundation changes across the Arctic-boreal domain and within the major permafrost zones.

2.3 Methods

2.3.1 AMSR-E F_w estimates

The daily F_w retrievals were derived from AMSR-E T_b records using the algorithm described by Jones et al. (2010). The AMSR-E microwave radiometer was launched in December 2002 on the polar orbiting (1:30 AM/PM equatorial crossings) EOS Aqua satellite, which has orbital swath convergence and sub-daily temporal sampling for northern ($\geq 50^\circ$N) regions. The AMSR-E sensor measures horizontal (H) and vertical (V) polarized T_b values at six (6.9, 10.7, 18.7, 23.8, 36.5, 89.0 GHz) frequencies (Kawanishi et al. 2003). The AMSR-E instrument ceased effective operations in October 2011, but a follow-on mission (AMSR-2; Oki et al. 2010) was launched in May 2012 aboard the Global Change Observation Mission-Water (GCOM-W1) satellite. The retrieval algorithm uses AMSR-E 18.7 and 23.8 GHz H- and V polarized T_b values to estimate F_w, which is the effective open water fraction in the sensor field of view, surface (~2 m height) air temperature (T_a), vegetation optical depth (τ), and atmosphere (total column water vapor; V_p) parameters simultaneously (Jones et al. 2010). The nomenclature associated with these algorithms and the corresponding F_w analysis is presented in Table 1.

While the algorithm is applicable for surface inundation it was not designed to detect soil moisture conditions (where surface water is not present) because only higher (18.7 and 23.8 GHz) frequency T_b data are used for the F_w retrieval. Prior to algorithm input, the T_b data are screened for precipitation, radio frequency interference (18.7 GHz only), and frozen or snow-covered conditions (Jones & Kimball 2011, Kim et al. 2011). However, ice and wet snow can
persist well above the freezing point during spring onset and winter warm periods, which sometimes co-occur with the rapid expansion of inundated area from ice and snowmelt. Additionally, lake ice can persist for many days after thaw has occurred in surrounding landscape and lake edges. These mixed-phased situations, where liquid water, ice and wet snow co-occur, tend to be classified as non-frozen conditions by the screening algorithm and result in strong F_w seasonality coinciding with annual freeze-thaw cycles. Grid cells with $\geq 50\%$ (~ 314 km2) permanent ice or open water cover were identified and screened (masked from further analysis) using the 0.25° gridded UMD MODIS land cover product obtained from the Global Land Data Assimilation System (GLDAS; Jones et al. 2010). This screening removes 2% ($\sim 4.2 \times 10^5$ km2) of non-ocean open water cells associated with larger inland water bodies within the Arctic-boreal region and is consistent with the terrestrial focus of the AMSR-E global land parameter database (Jones et al. 2010); the remaining Arctic-boreal domain spans roughly 2.29×10^7 km2, post-screening.

The retrieval algorithm uses a simplified forward radiometric T_b model to estimate F_w, T_a, and τ. The forward model is a set of simultaneous equations expressed in terms of T_b ratios to reduce their dependence on temperature (Jones et al. 2010, Njoku & Li 1999), leaving quantities that are influenced primarily by V_p and emissivity (ε). Surface emissivity (ε_s) in turn depends upon F_w and τ. The resulting system of ratio equations (Jones et al. 2010) is then iteratively solved for V_p, F_w, and τ. Jones et al. (2010) report a 3.5 K root mean square error (RMSE) uncertainty across time and space for the temperature retrievals relative to surface station network air temperature measurements, a statistic which incorporates biases from one station to another. The amount of F_w in the landscape is the primary factor influencing estimated ε_s and T_b sensitivity to V_p, which in turn impact T_a retrieval accuracy. Favorable T_a retrieval accuracies therefore provide indirect verification of F_w retrieval accuracy. The error sensitivity analysis presented in the following section quantifies the relationship between T_a and F_w retrieval accuracy, and examines algorithm sensitivity to surface soil moisture variability on the T_b ratios, which is assumed to have negligible impact on the F_w calculations.

2.3.2 Error sensitivity analysis

An algorithm error sensitivity analysis was conducted to determine F_w retrieval uncertainty by performing F_w retrievals on a simulated T_b dataset. The analysis is based on
forward and inverse models for 18.7 and 23.8 GHz, H and V polarization Tb data (Jones et al. 2010) provides a detailed description of the algorithms). The inverse model summarized below (Eqs. 1–2) uses polarization and frequency (p, f) dependent Tb values received by a space borne sensor to estimate landscape surface characteristics (Section III C in Jones et al. 2010), where \(T_{bu} \) and \(T_{bd} \) are the respective upwelling and downwelling atmospheric brightness temperatures and \(T_{bs} \) is the upwelling surface brightness temperature. Atmospheric attenuation of the microwave signal by \(V_p \) is characterized by its transmissivity (\(t_a \)); \(\Omega \) is a surface roughness parameter that is assumed to be unity at the AMSR-E incidence angle (55° from nadir) and frequencies considered by the algorithm (Matzler 2005).

\[
T_b(p,f) = T_{bu}(f) + t_a(f) \left[T_{bs}(f,p) + \Omega (1 - e_s(f,p)) T_{bd}(f) \right]
\]

Eq. 1

Atmospheric absorption and emission are temperature dependent and primarily occur in the lower atmosphere for the 18.7 and 23.8 GHz channels, allowing the approximation that \(T_{bu}(f) \cong T_{bd}(f) \cong (1 - t_{a(f)}) T_a \) (Weng & Grody 1998). The sensor observed \(T_{bs} \) (Eq. 2) is assumed to represent a mixture of \(T_b \) emissions from land (\(T_{bl} \)) and surface water body (\(T_{bw} \)) components; \(T_{bl} \) from a vegetated surface is described as a layer of semi-transparent vegetation over smooth, bare soil. The calculation of canopy \(\tau \) in terms of vegetation water content is described elsewhere (Jones et al. 2010 Section III; Jones et al. 2011b). The characteristically high dielectric constant of water strongly impacts \(T_{bs} \) and allows for significant microwave sensitivity to even relatively low \(F_w \) levels.

\[
T_{bs}(f,p) = F_w T_{bw}(f,p) + (1 - F_w) T_{bl}(f,p)
\]

Eq. 2

The forward model (Section III A in Jones et al. 2010) simulates the land surface as a mixture of open water and single scattering vegetation overlain by a plane-parallel non-scattering atmosphere. The forward model is summarized below (Eqs. 3–5) and describes \(T_b \) emission by land surface components and its upward propagation and interaction with intervening vegetation canopy and atmosphere layers, whereas the inverse model (Eqs. 1–2) uses \(T_b \) values received by a space borne sensor to estimate landscape surface characteristics (Section III C in Jones et al. 2010). The simplified forward model describes \(T_b \) as a linear function of \(t_a \) and a \(t_c \) parameter that represent the attenuation of upwelling soil emissions by the intervening vegetation canopy and litter layer. This simplified linear function ignores the surface reflection terms included in the inverse model by assuming that reflection is low for land surfaces with relatively
high emissivity and that the sub-grid scale emissions are averaged by antenna gain (Jones et al. 2010).

\[
T_{b(p,f)} = T_s \left[t_a(f) \varepsilon_{p(f)} + (1 - t_a(f)) \delta \right] \frac{T_a}{T_s} \quad \text{Eq. 3}
\]

\[
\varepsilon_{s(p,f)} = F_w \varepsilon_{w(p,f)} + (1 - F_w) \varepsilon_{l(p,f)} \quad \text{Eq. 4}
\]

\[
\varepsilon_{l(p,f)} = \varepsilon_{os(p,f)} t_c + (1 - \omega)(1 - t_c) \quad \text{Eq. 5}
\]

Surface emissivity is a function of both land (\(\varepsilon_l\)) and open water (\(\varepsilon_w\)) components; \(\delta\) is the ratio of \(T_a\) to surface temperature (\(T_s\)), which compensates for a vertical gradient between the two temperature components. Vegetation single scattering albedo (\(\omega\)) and emissivity for open water, bare soil (\(\varepsilon_{os}\)) are parameter constants (Table II in Jones et al. 2010). The \(F_w\), \(t_c\), and \(V_p\) (which influences \(t_a\)) parameters are estimated iteratively using temperature insensitive \(T_b\) ratios and are described elsewhere (Jones et al. 2010; Section III C).

For the Monte-Carlo error analysis, \(T_b\) values were first simulated with the forward model using specified geophysical input parameters. Monte Carlo forward simulations were used to generate the resulting \(T_b\) dataset. Geophysical parameter space was sampled by drawing from uniform distributions of each of the following input parameters over specified ranges: >0–0.5 for volumetric (\(m^3\) \(m^{-3}\)) soil moisture; 273-303 K for \(T_a\); > 0-60 mm for \(V_p\); and vegetation opacity corresponding to canopy water content of 0–10 kg \(m^{-2}\). The impact of cloud liquid water for the considered frequencies is assumed to be small relative to other sources of uncertainty for high-latitude regions and subsequently was not considered. Water \(\epsilon\) is treated as a constant because the algorithm was developed for land-dominated scenes and does not consider in detail the effect of waves, foam and salinity, which can be substantial for large water bodies (Jones et al. 2010, 2011b).

The simulated \(T_b\) data were used as inputs to the inverse algorithm to estimate \(F_w\) and errors were calculated by comparing the intermediate geophysical parameter estimates with those initially specified. The potential error contributions from three primary sources were evaluated including: (1) systematic bias from the simplified emission model, (2) random radiometer noise, assumed to follow a Gaussian distribution with standard deviation of 0.5 K and uncorrelated across \(T_b\) channels, and (3) parameter uncertainty. Parameter uncertainty originates primarily from \(\omega\) and \(\delta\). To represent parameter uncertainty in the forward model, the two parameters are perturbed with Gaussian noise (standard deviation=0.02) about their respective nominal values of
0.05 and 0.95. Additionally, δ is intended as a calibration parameter to adjust the overall temperature retrieval bias of the inverse model relative to the forward model, and was therefore assigned a slightly higher value of 0.96 for the inverse algorithm (Jones et al. 2010).

Simulations were conducted first with all random error sources evaluated separately to examine the effects of each individual source. The individual error sources were then combined to estimate the total overall F_w retrieval error. For each combination of errors, we performed 30 simulation sets each with 1000 realizations of F_w varying from 0 to 0.5 in 0.05 increments for a total of 3.3×10^5 simulations. The accuracy for each F_w increment was determined by averaging across the RMSE differences obtained in each of the 30 sets of realizations. The standard deviation of the RMSE across each set is < 0.0015, indicating that the Monte Carlo sampling density was sufficient to produce stable, repeatable results. To partition the relative contribution of error from each source, four combinations of error sources were considered, including systematic bias from the simplified emission model, random error from radiometer noise (termed “T_b noise”), random error from ω, random error from δ, and total error from all sources. Each random error source term necessarily includes the bias source from the simplified emission model, but the terms are otherwise independent of one another. The surface T_a retrievals serve as an important indirect check on surface emissivity retrievals, and hence F_w accuracy. Therefore, estimated T_a and F_w retrieval uncertainties are reported together (Figure 1).

2.3.3 F_w verification

The daily AMSR-E F_w retrievals from the AM (descending) overpass were used to generate monthly mean ($F_{w_{avg}}$) and maximum ($F_{w_{mx}}$) inundation records for the 2003-2010 period. Image composites were derived from the AMSR-E $F_{w_{avg}}$ and $F_{w_{mx}}$ records by taking the period mean from 2003 to 2010. The $F_{w_{avg}}$ and $F_{w_{mx}}$ composites were verified against alternative static F_w (F_{w_s}) classification maps, including those derived from the 250-m resolution UMD Global Land Water Mask (MOD44W) for the Arctic–boreal domain, and finer (30-m) resolution Landsat-based maps for Alaska, North Central Canada and Northern European sub-regions. The AMSR-E record for 2010 was not included in the comparison against the F_{w_s} maps because it was still being processed. The MOD44W product is derived from a compilation of the Shuttle Radar Topography Mission (SRTM) Water Body dataset for regions < 60°N.
which was created using SRTM radar and digital terrain data with Landsat-based Geocover data. The SRTM data is unavailable for land areas $\geq 60^\circ$N and the MOD44W product was derived solely from the MODIS (MOD44C) Collection 5 (2000-2008) open water classification product in these regions (Carroll et al. 2009). The MOD44W product effectively replaces the Global Lakes and Wetlands Database, which only incorporates data prior to the mid-1990s (Lehner & Doell 2004). Although the MOD44C data were used to gap-fill some regions $< 60^\circ$N in the MOD44W product, the extent of this substitution is minimal.

Finer (30-m) resolution data were obtained from the Landsat-based 2001 National Land Cover Dataset (Homer et al. 2004) for Alaska, which used Landsat Enhanced Thematic Mapper Plus (ETM+) imagery collected during the 2001 growing season. Similar Landsat-based open water data were provided by a subset ($\sim 1 \times 10^6$ km2) of the Circa-2000 Land Cover of Canada Database (Geobase Canada 2009) for the Canada sub-region and a regional land cover classification (Potapov et al. 2011) of the Northern European sub-region. The Geobase land cover map used cloud/snow-free Landsat Thematic Mapper (TM) and ETM+ imagery from 1996 to 2005 (80% of imagery was collected between 1999 and 2001). Land cover data obtained from Potapov et al. (2011) were derived from cloud-free ETM+ imagery collected during the 2003–2007 growing season.

The F_w_s maps were aggregated to the coarser spatial scale of the AMSR-E F_w record by determining proportional open water cover within overlying 25-km equal area scalable earth grid cells (EASE-grid) consistent with the approximate spatial resolution of the AMSR-E F_w retrievals. The F_w_s map grid cells corresponding to $\geq 50\%$ permanent ice or open water within the GLDAS land cover map were excluded from the analysis for consistency with the AMSR-E F_w retrievals. Vegetated wetland classes in the Alaska and Canada land cover maps were excluded from the F_w_s calculations due to relative greater susceptibility of these areas for open water misclassification (omission and commission) and inconsistencies in wetland class types between different land cover products (Ozesmi & Bauer 2002, Selkowitz & Stehman 2011). The Landsat-based maps also had a “Snow/Ice” class; frozen water bodies within this class were not incorporated into F_w_s calculations due to difficulty separating these areas from other frozen surfaces.
A 3×3 cell (AMSR-E grid) weighted box-car filter was applied for spatial aggregation of the \(F_{w_s} \) data to represent the effective AMSR-E footprint, whereby antenna side lobe gain and variability of the sensor orbital track cause spatial smearing of the AMSR-E ellipsoidal swath \(T_b \) footprints (Amarin et al. 2010). The resulting MOD44W and Landsat-based \(F_{w_s} \) datasets were compared against AMSR-E \(F_{w_{avg}} \) and \(F_{w_{mx}} \) composites over a 7 year (2003–2009) period to determine the correspondence between the AMSR-E results and \(F_{w_s} \) estimates. Metrics included the coefficient of determination (\(R^2 \)) to evaluate the percent of variability in the \(F_{w_s} \) maps explained by the AMSR-E \(F_{w_{avg}} \) and \(F_{w_{mx}} \) composites, and regional wet or dry biases as compared to the \(F_{w_s} \) maps. The \(F_w \) monthly minimums (\(F_{w_{mn}} \)) were also evaluated but are not presented, as they did not show improved correspondence with \(F_{w_s} \) relative to the \(F_{w_{avg}} \) and \(F_{w_{mx}} \) results.

The AMSR-E \(F_w \) data were compared with monthly mean river discharge (\(Q; m^3 s^{-1} \)) measurement records for the major Arctic-boreal basins to evaluate \(F_w \) inundation sensitivity to seasonal and inter-annual climate variability, and periodic wet/dry cycles indicated by the discharge records. Available monthly \(Q \) records from 2003 to 2010 were obtained from downstream stations (indicated in parentheses) for the Yukon (Pilot Station; 61° 55′ N, 162° 52′ W), Mackenzie (Arctic Red River; 67° 27′ N, 133° 44′ W), Ob (Salehard; 66° 37′ N, 66° 35′ E), Yenisei (Igarka; 67° 25′ N, 86° 28′ E) and Lena (Polyarnaya; 72° 24′ N, 126° 20′ E) river basins (http://rims/unh.edu). Correlation between \(Q \) and basin-averaged AMSR-E \(F_{w_{avg}} \) results were examined using bi-monthly non-frozen season anomalies for April–May (AM), June–July (JJ) and August–September (AS) periods. Tri-monthly (MAM, JJA, SON) parameter anomalies were compared for the Ob to account for a longer characteristic lag between basin inundation and river discharge for this region (Schroeder et al. 2010).

2.3.4 \(F_w \) trend analysis

Regional AMSR-E \(F_w \) trends were examined for the Arctic-boreal domain (\(\geq 50^\circ N \)) and within three major permafrost zones defined by the International Permafrost Association (IPA) Circum-Arctic Map of Permafrost and Ground Ice Conditions (Brown et al. 1998). The continuous permafrost zone includes regions where permafrost covers > 90% of the landscape; the discontinuous permafrost zone is characterized by 50-90% permafrost coverage within the landscape; the sporadic/isolated permafrost zone represents areas with high spatial patchiness (<
50% permafrost coverage) and greater seasonal soil thaw depth.

Inundation trends were examined by applying the Mann–Kendall trend test (Kendall rank correlation to the annual scale data; a value of 1 (0) indicates perfect (no) correlation with time) to AMSR-E annual means for $F_{w_{\text{avg}}}$ and $F_{w_{\text{mx}}}$ records from 2003 to 2010. Mann–Kendall (MK) is a non-parametric statistical test that determines trend direction and significance, and is often used for hydrological applications because it does not assume a specific population distribution (Chandler & Scott 2011). Normal approximations are used to determine test significance (p-value) with larger sample sizes, whereas exact tests are used when the sample size is small (Hipel & McLeod 2005, Sheskin 2004). Mann–Kendall analysis can be influenced by serial correlation, unless the magnitude of trend is large (Zhang et al. 2006). As a precaution against serial correlation, the Yue–Pilon method was used prior to applying the trend test (Yue et al. 2002). The Yue–Pilon method first applies the non-parametric Theil–Sen estimator that determines the median slope of all possible paired sample points; the slope and lag-1 autocorrelation are removed if autocorrelation is detected (Yue et al. 2002). The slope and resulting uncorrelated residuals are then merged to create a blended series to which the MK test is applied.

The total AMSR-E F_w inundation extent (km2) was obtained for the Arctic-boreal domain and North American and Eurasian sub-regions (not limited to permafrost regions) daily and aggregated to monthly and annual intervals. We expect these area estimates (km2) to be scale dependent, reflecting observations originally obtained at a 22-km native resolution; consequently, those obtained from finer scale satellite retrievals might differ from these estimates. Annual F_w extent was also determined regionally for continuous, discontinuous, and sporadic/isolated permafrost zones. The annual number of grid cells with F_w present ($F_w > 0$) was obtained for each region, as was the mean annual F_w duration (the number of days per year that F_w was detected). These records were examined for trends using the MK analysis and trend significance was assessed at a minimum 90% ($p < 0.1$) probability level. The F_w trends were evaluated on a per-grid cell basis across the Arctic-boreal domain because of spatial heterogeneity in climate, permafrost condition, and surface characteristics. The relative proportions of significant ($p < 0.1$) cells with positive and negative trends were determined for each permafrost zone. Trends in F_w duration were also examined on a per-grid cell basis to
ascertain the potential influence of changes in non-frozen season length and the corresponding period of F_w retrievals on surface inundation trends. Areas with significant ($p < 0.1$) trends in F_w inundation and F_w duration were also compared against regions identified as having significant changes in non-frozen period length (Kim et al. 2012). Trends in F_w_{mn}, which may reflect relatively stable lake bodies, are not statistically significant and are not presented in the study results.

Evaluating trends on a per grid-cell basis can substantially increase the false discovery rate (Wilks 2006), which is the expected proportion of Type I error (false positives) among all significant hypotheses. For example, $\alpha = 0.1$ indicates that there is a 10% chance that a trend will be falsely detected per test or that 10% of all tests will be false positives. Adjusting p-values for false discovery can substantially reduce the number of expected Type I errors because α will instead correspond to tests showing significant results, rather than the total number of tests considered. In addition to per-cell p-values (indicating local significance) we also estimated q-values (adjusted p-values) for each grid cell using the False Discovery Rate (FDR) approach which evaluates characteristics of the p-value distribution. This conservative approach can be used to address multiple hypothesis testing and is more robust to spatial dependence (Wilks 2006).

2.4 Results

2.4.1 Error sensitivity analysis

The Monte Carlo error sensitivity analysis indicates total F_w uncertainty within ±0.041 (RMSE) with a positive dependence on F_w (Figure 1). The positive dependence between retrieval uncertainty and F_w extent indicates that the simplified emission (forward) model biases become more prevalent as ε_s decreases with higher F_w. As ε_s decreases, the emission model becomes more sensitive to atmospheric factors because the intervening atmosphere contrasts more with a radiometrically dark water background than it does against relatively bright land (Chang & Milan 1982). In addition, the land fraction decreases as F_w increases and the emission model becomes proportionally less sensitive to ε_l factors. Minimal F_w retrieval error at lower inundation levels indicates that surface soil moisture variability does not significantly degrade results relative to other T_b model error sources.
In contrast to F_w, the T_a retrieval is more sensitive to ε_s error, which flattens the T_a retrieval uncertainty response at higher F_w levels. For T_a, the error contributions of ω and δ show opposing trends with F_w, resulting from the previous trade-off between ε_l and atmospheric sensitivities at higher F_w levels. This tradeoff is more evident for the ω and δ components because model bias is relatively low ($b | \pm 1| K$) for T_a as a result of algorithm calibration (discussed in Section 2.2). The overall T_a errors from the sensitivity analysis range from 3.7 to 4.1 K, compared to the observed 3.5 K T_a error relative to Northern Hemisphere weather station records (Jones et al. 2010). This discrepancy indicates that ω and δ are not as variable as specified and that the simplified emission model adequately represents surface T_a and T_b observations; these results also indicate that the reported overall F_w error is a conservative estimate.

2.4.2 F_w verification and regional analysis

The AMSR-E F_w results compare favorably with the MOD44W and Landsat-based F_w maps for the respective Arctic-boreal and regional domains. The F_w map composite (AMSR-E F_w averaged over the 2003-2009 period) accounts for 71-84% (R^2) of variability in the F_w maps, while the F_w composites account for a lower 39-80% (R^2) of F_w variability (Table 1). The mean RMSE difference between the AMSR-E F_w and F_w products, and F_w is $\leq 5\%$. The strongest regional correspondence ($R^2 = 0.84$) is observed between AMSR-E F_w and lower latitude ($< 60^\circ N$) F_w regions where the MOD44W product is partially derived from radar (SRTM) imagery. The lowest correspondence ($R^2 = 0.39$) occurs in western Russia where the F_w retrievals are higher than corresponding Landsat-based F_w levels in the largely agricultural and wetland dominated areas. A small negative (dry) bias (i.e. $- 8.21\% \leq MRE \leq - 0.56\%$) is observed for AMSR-E F_w relative to F_w (Table 2; Figure 2), whereas the F_w results show a small positive (wet) bias ($- 0.96 \leq MRE \leq 5.48\%$) (Table 2; Figure 3). Regionally, F_w and F_w are lower than F_w along major rivers and in glaciated areas characterized by lakes surrounded by shallow, rocky substrate (e.g. portions of the Northwest Territories and North Central Canada). In contrast, F_w and F_w are predominately higher than the F_w results in wetland-dominated regions (e.g. Canadian Shield, Yenisey and Lena river
basins).

The summer Fw_{avg} and Q anomalies for the five Arctic river basins show favorable correlations ($R \geq 0.71$; Figure 4) despite other hydrological influences on Q, including direct runoff contributions from snowmelt and groundwater (Papa et al. 2008, Syed et al. 2007). Relatively strong correlations ($R \geq 0.82$) are observed for basins with lower mean summer Fw_{avg} extent, including the Yukon (Fw_{avg} represents 2.07% of the basin area or 1.72×10^4 km2), Lena (1.77% or 4.44×10^4 km2), and Yenisey (1.85% or 4.51×10^4 km2).

Lower correlations are observed for the Ob and Mackenzie ($R = 0.71$ and 0.76, respectively) basins where the proportional Fw_{avg} extent is relatively larger (3.16% or 7.87×10^4 km2; 11.26% or 1.89×10^5 km2). This lower correspondence is likely due to extensive Q regulation by basin reservoirs along the Ob and Mackenzie rivers (McClelland et al. 2004, Yang et al. 2004). Similarities in relative dry (negative) and wet (positive) year anomalies between Fw_{avg} and Q indicate that the Fw retrievals capture regional wet and dry cycles reflected in the discharge observations (Figure 4). Negative Fw and Q anomalies in 2004 for the Yukon, Mackenzie and Yenisey basins coincide with regional drought (Alkama et al. 2010, Zhang et al. 2009), while strong positive anomalies in 2007 for the Ob and in 2009 for the Yukon, Mackenzie, Lena and Yenisey basins coincide with documented wet periods (Arndt et al. 2010, Rowland et al. 2009).

The Fw inundation extent in the Arctic-boreal region is highest within large wetland complexes of the major watersheds, including the Canadian Shield, Yukon River Delta, the Kolyma, Indigirka, Lena, Ob-Yenisey, Volga lowlands and Scandinavia (Figure 5). Seasonal Fw variability is also greatest within these regions, and in the agricultural areas of southwestern Russia, southern Alberta and Saskatchewan CN relative to other areas in the domain (Figure 5). On a seasonal basis region-wide Fw inundation (Fig. 6) is lowest in January–February (2.9×10^5 km2 Fw_{avg}; 4.16×10^5 km2 Fw_{mx}) and highest in July (2.78×10^6 km2 Fw_{mx}) and August (1.94×10^6 km2 Fw_{avg}).

Maximum inundation extent in Eurasia occurs in June–July and precedes the August maximum in North America (Figure 6). On an annual basis, the largest Fw inundation year
(based on total annual inundation extent) for the Arctic-boreal domain during the 2003-2010 observation period coincides with above-average precipitation in North America and Eurasia in 2005 (Shein et al. 2007), whereas the lowest inundation year (2004) coincides with relatively warm summer conditions in North America and a multi-year (2001-2003) drought in the Arctic-Boreal region (Parker et al. 2006, WMO 2005, Zhang et al. 2008). Similarly, the wettest F_w years for Eurasia (2007) and North America (2010) coincide with relatively warm winters and wet summers (Kennedy et al. 2008, WMO 2011). The lowest F_w years observed for North America (2004) and Eurasia (2010) reflect anomalous dry summer conditions in Alaska and western Canada (Kochtubajda et al. 2011, Wendler et al. 2010) and a severe summer drought in Russia (Wegren 2011, WMO 2011). The comparison between AMSR-E F_w and MOD44W F_w inundation extent for the Arctic-boreal, Eurasia and North America regions indicates that the MOD44W estimates are considerably larger than the F_w_{avg} retrievals and closer to the summer F_w_{mx} retrievals (Figure 6). This difference occurs because F_w seasonal variability is not resolved in the static open water product.

2.4.3 F_w trends

A strong positive (increasing) trend in the annual number of grid cells with F_w present (F_w count) is observed for all permafrost zones (Table 3), at a rate of roughly 140 cells yr$^{-1}$ (~73,910 km2 or roughly 0.67% per year; Table 3) when considering F_w_{mx}. This trend is influenced primarily by F_w changes within Eurasian continuous and sporadic/isolated permafrost zones, and discontinuous permafrost areas in North America as these areas show larger (and significant; p < 0.1) increases in F_w counts relative to other regions. An increase in F_w presence is observed for all three permafrost zones, with the rate of expansion ranging from roughly 33 cells yr$^{-1}$ (discontinuous zone) to 65 cells yr$^{-1}$ (continuous zone) (Table 4). The strong positive trend in F_w duration observed for the Arctic-boreal region is primarily driven by the continuous and discontinuous permafrost zones in North America (Table 3). Changes in F_w duration within these areas (increasing at 0.76 days yr$^{-1}$ for the Arctic-boreal zone; Table 4) may reflect an overall increase in precipitation and lengthening of the non-frozen season (Kim et al. 2012, McClelland et al. 2006). A positive, moderate trend in total F_w inundation (F_w area) is observed only in F_w_{mx} and is primarily influenced by the Eurasian continuous and North American
discontinuous permafrost zones. Although not significant, a weak (p ~ 0.13) positive $F_{w,avg}$ trend is observed for the continuous permafrost zone and for North American discontinuous permafrost areas. Overall, significant regional trends in the F_w count and F_w area metrics are not observed when the Arctic-boreal, North American and Eurasian sub-regions are considered (Table 3). Significant decreasing trends in F_w count, F_w duration and F_w area are not observed in the regional analyses.

Areas of widespread F_w inundation increase are observed throughout the continuous permafrost zone when the MK trend test is applied on a per grid-cell basis (Figure 7). The continuous permafrost zone has the highest proportion (92%; 91-94% is the 95% confidence interval for proportions) of grid cells with locally significant $F_{w,avg}$ wetting trends, followed by 82% (79-86%) of cells in discontinuous permafrost regions. Conversely, sporadic/isolated permafrost regions show widespread F_w inundation decrease (71%; 66-74%). The overall contrast between inundation patterns within the three permafrost zones is similar for $F_{w,mx}$, but the overall trend extent is weaker compared to the $F_{w,avg}$ results, with 63% (61-65%) and 59% (55-63%) of grid cells showing $F_{w,mx}$ wetting trends within respective continuous and discontinuous permafrost zones. In the sporadic/isolated permafrost zone, 48% (44–52%) of $F_{w,mx}$ grid cells having significant trends show drying. Although widespread wetting occurs within the continuous permafrost zone, large regions of drying are also observed in northern Québec and Newfoundland, the Canadian Baffin and Banks islands, north of the Seward Peninsula in Alaska, and the Panteleikha River wetlands in Siberia (Figure 7).

In the discontinuous permafrost zone the largest regions of drying occur directly south of the Alaska Seward Peninsula and in northern Saskatchewan CN. Although 71% of grid cells with significant $F_{w,mx}$ trends within the sporadic/isolated permafrost zone show drying, areas of wetting are observed in northern British Columbia, northern Saskatchewan and Manitoba, east of James Bay in Québec CN, in the Scandinavian Lapland and southern Siberia (Figure 7). These grid cells are not significant (q < 0.1) when controlled for false discovery rate, which is not surprising given the small percentage of grid cells within permafrost zones that show local trend significance (p < 0.1) and the large number of grid cells to which the trend test was applied. Furthermore, the resulting q-values (~0.45–0.58) are relatively lower in areas that are locally significant (p < 0.1) compared to those that are not (~ 0.68–0.90). Given the conservative nature
of the FDR correction, the relatively lower q-values in areas with local significance ($p < 0.1$), and indication of area-wide changes in the regional trend analysis it appears that areas having locally significant MK trend reflect physical changes in surface inundation characteristics.

Only a small portion of grid cells having locally significant wetting trends coincide with an increase in F_{w} duration. Approximately 9% (2,831 grid cells) of the Arctic-boreal permafrost zone shows a significant increase in AMSR-E $F_{w_{avg}}$ over the 8 year period (Figure 7), with a mean inundation increase of 0.16% (0.98 km2) per cell yr$^{-1}$. Approximately 2.6% (74 grid cells) also show a significant ($p < 0.10$) increasing trend in annual F_{w} duration (within the Eurasian continuous permafrost zone). Only 19 of the 74 grid cells with positive F_{w} duration trends correspond with a significant increase in non-frozen season length (Kim et al. 2012) and are located mainly in southeastern Russia. Similarly, 2.2% (712 grid cells) of the Arctic-boreal permafrost zone shows a significant decrease in $F_{w_{avg}}$ inundation (Figure 7) and corresponds to an average F_{w} decline of 0.17% (1.05 km2 per cell yr$^{-1}$); 2.5% of these (18 grid cells, within the sporadic/isolated zone in Québec) are associated with a significant decrease in F_{w} duration but do not correspond to documented trends in non-frozen period length (Kim et al. 2012).

2.5 Discussion

2.5.1 Fw verification and surface water patterns

The regional inundation patterns derived from the AMSR-E F_{w} retrievals are similar to alternative open water maps derived from the finer scale MOD44W and Landsat products despite the inherent coarser spatial resolution of the AMSR-E footprint. The favorable accuracy of AMSR-E F_{w} retrievals is attributed to the strong sensitivity of micro- wave emissivity to landscape variations in surface dielectric constant caused by the presence of even a small fraction of surface water relative to a non-inundated land surface. Differences between the static open water maps (F_{w_s}) and dynamic F_{w} retrievals are primarily due to differences in the seasonal timing and duration of the sensor retrievals. Stronger similarities between AMSR-E $F_{w_{avg}}$ and MOD44W F_{w_s} results occurred at lower (< 60°N) latitudes where the MOD44W results are largely derived from SRTM, which has microwave characteristics like AMSR-E, including relative insensitivity to atmosphere effects (e.g. clouds), enhanced sensitivity to surface water cover and insensitivity to surface water signal contamination by vegetation (Pietroniro &
Leconte 2005). The stronger regional similarity may also be influenced by differences in wetland type and characteristic inundation patterns between lower and higher latitude regions.

The general $F_{w,avg}$ dry bias reflects the tendency for higher $F_{w,s}$ in temporally dynamic inundation regions due to limited (e.g. summer-only) satellite optical-IR image collection periods. The AMSR-E F_w results indicate large seasonal and inter-annual variability in Arctic–Boreal zone inundation, with respective $F_{w,avg}$ variability (SD) on the order of ±60% ($\pm 6.4 \times 10^5$ km2) and ± 3% ($\pm 3.1 \times 10^4$ km2); this dynamic variability is not adequately represented by the static open water maps. The AMSR-E $F_{w,avg}$ retrievals are also lower than the $F_{w,s}$ results in characteristically dynamic inundation areas along major river corridors and in other areas where inundation is largely absent during dry periods but abundant following seasonal snowmelt or rain events (Brown & Young 2006).

Although the AMSR-E F_w dry bias is effectively eliminated or reversed (wet bias) for the $F_{w,mx}$ results, it remains evident along river systems and seasonally varying lakes and wetlands. In contrast, the AMSR-E $F_{w,avg}$ and $F_{w,mx}$ results are predominately wetter than the $F_{w,s}$ results in wetland dominated landscapes (e.g. Canadian Shield, Yenisey and Lena river basins). The lower $F_{w,s}$ inundation levels within these regions may be due to reduced open water detection by optical-IR satellite sensors in areas with higher vegetation density (Kaheil & Creed 2009, Ozesmi & Bauer 2002). Excluding vegetated wetland and frozen lake bodies from the Landsat-based $F_{w,s}$ calculations may have contributed to differences between the AMSR-E F_w and $F_{w,s}$ results in the Alaska and North Central Canada sub-regions. However, similar areas of relatively higher AMSR-E F_w inundation, including the Ob-Yenisey lowlands and Canadian Shield, are evident in the MOD44W comparison where the exclusion of wetland and frozen classes is not an issue.

The AMSR-E F_w sensitivity to seasonal and annual surface water variability is also demonstrated in the comparison against river Q. Severe, multi-year (2001-2003) boreal drought conditions (Alkama et al. 2010, Zhang et al. 2008) are manifested as large negative F_w and Q anomalies for the Yukon, Mackenzie and Yenisey rivers in 2004. Large positive F_w and Q anomalies coincide with major flooding events in 2007 for the Ob (Schroeder et al. 2010), and 2009 for the Yukon, Mackenzie, Lena and Yenisey due to a combination of river ice jams, rapid snowmelt and precipitation (Arndt et al. 2010, Rowland et al. 2009). These findings are like
prior studies reporting strong correlations between satellite microwave Fw retrievals and Q over Arctic river systems (Papa et al. 2010, Schroeder et al. 2010). Linkages between basin Fw and Q response can be complex and do not always show direct correspondence (Papa et al. 2008), as is observed for the Mackenzie basin in 2004 and 2010. These differences are driven by the timing and duration of spring snowmelt and groundwater contributions, river ice jams, precipitation events, reservoir outflow and other changes in hydrological connectivity and Q that may not correspond directly to Fw changes (McClelland et al. 2011). Furthermore, the Fw parameter corresponds directly to surface water area, whereas Q can vary independently in response to additional water storage (e.g. soil, snow, and groundwater) fluctuations (Landerer et al. 2010).

The AMSR-E Fw patterns for the Arctic–boreal ($\geq 50^\circ$N) domain are consistent with previous regional observations (Schroeder et al. 2010, Smith et al. 2007). In North America, the AMSR-E Fw_{avg} results reveal widespread inundation within the Canadian Shield region, a landscape characterized by expansive peatlands, lake systems and large soil organic carbon pools (Tarnocai 2006). In Eurasia, Fw inundation is relatively extensive within the major Arctic river basins (particularly along the Yenisey and in the Okrug-Yugra Ob river region), southern Finland and the Russian Republic of Karelia. More extensive inundation occurs along the Volga river system and in peatlands of the southern West Siberian lowlands (Kremenetski et al. 2003). Inundation extent is lowest in the January-February period when much of the landscape is frozen, and is highest in July (Fw_{mx}) and August (Fw_{avg}) following seasonal thawing and summer precipitation.

The earlier seasonal maximum observed in Fw_{mx} likely reflects extensive overland flow following snowmelt and rain events on still-frozen surfaces (Woo et al. 2006). The seasonal inundation variability observed in the AMSR-E Fw retrievals reflects strong correspondence between surface inundation and regional temperature and precipitation patterns in northern landscapes (Rouse 2000). This is particularly evident in Eurasia where a sharp decline in inundation extent following the summer Fw maximum coincides with characteristic high evaporation rates and low precipitation in late summer and fall (Landerer et al. 2010, Serreze & Etringer 2003). The temporal Fw variability observed in the major wetland and agricultural regions is also consistent with similar seasonal changes in precipitation and evaporation for these areas (Rouse 2000).
2.5.2 Fw trends

The per-grid cell analysis indicates widespread Fw_{avg} increase within continuous permafrost areas and overall decline within the sporadic/isolated permafrost zone. These inundation trends concur with reports from localized field studies throughout the Arctic-boreal region (Jones et al. 2011a, Smith et al. 2005, Walter et al. 2006, Yoshikawa & Hinzman 2003). The high proportion of grid cells showing positive Fw inundation trends in the discontinuous permafrost zone appears to contradict previous reports of declining lake numbers within discontinuous permafrost areas in Siberia and Alaska (Smith et al. 2005, Yoshikawa & Hinzman 2003). A few key differences account for this apparent discrepancy. First, our study evaluated a continuous daily Fw record in permafrost zones across the entire Arctic-boreal domain over an eight-year period, which enabled a relatively precise assessment of dynamic inundation changes, whereas previous studies were constrained by a limited number of observation days and involved relatively small spatial domains.

Additionally, the AMSR-E Fw retrievals provide a measure of the proportional surface water cover within a relatively coarse (25-km) resolution grid cell, rather than specific lake number counts. The Fw retrievals do not resolve individual water bodies, but are insensitive to signal degradation from low solar illumination and atmosphere (clouds, smoke) contamination, and have enhanced microwave sensitivity to surface inundation in vegetated areas. These attributes are particularly relevant in Arctic-boreal landscapes, which have characteristically low solar illumination, short non-frozen seasons and frequent cloud cover, and in the continuous permafrost zone where lateral drainage from primary lakes can increase the number of smaller water bodies without an overall change in surface water extent (Jones et al. 2011a, White et al. 2007).

The re-distribution of surface water through lateral drainage could have contributed to the observed expansion in the annual number of grid cells with Fw present within permafrost regions. Satellite optical-IR remote sensing analyses might detect an overall decrease in total water body area where lateral drainage is occurring if smaller water bodies (e.g. ponds, small streams, wetlands) are obscured by vegetation, or if only primary lakes are examined. This may account for an apparent discrepancy between a recent MODIS-based study indicating an extensive reduction in surface lake area over northern Canada (Carroll et al. 2011), and this
study which shows a general F_w increase in many of the same regions, particularly in the northwestern Canadian Shield. The timing of the MODIS retrievals used by Carroll et al. (2011) may have also influenced the resulting lake trends as bedrock-underlain water bodies within this region depend on precipitation recharge and therefore show strong seasonal and annual variability (Spence & Woo 2008). Because our evaluations incorporate daily AMSR-E F_w observations during the non-frozen period, some of the observed increase in F_w inundation may be artifacts of a lengthening non-frozen season trend (Kim et al. 2012). However, only a small proportion (2.6%) of grid cells with significant F_w inundation increase also show a significant increase in annual F_w duration, and less than 0.7% of these cells coincide with an increase in the non-frozen season. Likewise, only 2.5% of grid cells having a significant decreasing F_w inundation trend also show a significant change in F_w duration, and none of these cells indicate a significant trend in non-frozen season length.

Although the per-grid cell analysis shows areas of significant F_w wetting and drying trends within Arctic-boreal permafrost zones, results from the regional analysis are less clear but indicate that F_w presence and annual duration are increasing. Only the regional F_{wmx} (monthly maximum) results indicate increasing trends in inundation area, although a weak ($p = 0.13$) positive F_{wavg} trend is detected for continuous permafrost areas. The overall lack of significant inundation trends in the regional F_{wavg} results is likely due to the large spatial variability in F_w patterns where areas with positive F_w trends are offset by regions with declining inundation, and the characteristically large temporal variability in inundation and relatively short (8 year) AMSR-E F_w record. The F_{wmx} trend is likely more sensitive to surface inundation extremes following spring thaw, snowmelt and precipitation related wetting events, whereas F_{wavg} is temporally smoothed and provides a better measure of overall mean inundation state. Smaller, palustrine wetlands are especially affected by changes in wetting events. Water bodies are also influenced by changes in precipitation (Rawlins et al. 2010), in addition to recharge from localized ice melt or lateral drainage (Jones et al. 2011a, White et al. 2007), human-related activities and erosional processes (Hinkel et al. 2007), changes in water table position and disturbance from wildfires (Riordan et al. 2006).

The significant increase in regional F_w duration, primarily for the continuous and North American discontinuous permafrost zones, indicates an expanding non-frozen season and
corresponding longer inundation period influenced by rainfall (Woo et al. 2006). Increased evapotranspiration could also affect F_w duration in regions where lakes and wetlands are influenced by the seasonal water balance (Adam & Lettenmaier 2008, Riordan et al. 2006). However, the overall water balance in the Arctic-boreal remains largely positive, as indicated by generally increasing trends in regional river discharge (McClelland et al. 2006, Peterson et al. 2002, Rawlins et al. 2010) and the increase in F_w area reported in this study.

The variability in F_w trends throughout the Arctic-boreal region reflects large spatial heterogeneity in climate, surface conditions and permafrost state. The continuous permafrost zone is particularly susceptible to degradation due to rapid warming following sub-surface ice melt (Romanovsky et al. 2010). Spatial differences in surface temperature and snow thickness also influence variability in permafrost thaw (Rigor et al. 2000, Stieglitz et al. 2003).

Ecosystem characteristics have allowed permafrost to persist under climatic conditions no longer conducive to its formation (Shur & Jorgenson 2007). Plant canopies reduce understory snow accumulation (winter ground insulation) and summer radiative warming; surface organic layers maintain cool, moist conditions that provide additional thermal buffering (Smith & Riseborough 2002). These environmental factors allow relatively less degraded permafrost to persist within discontinuous and sporadic/isolated permafrost zones. Thaw within these regional pockets influences inundation expansion, as was observed in Québec CN near Hudson Bay where an abundance of thaw lakes has been documented (Watanabe et al. 2011). In some areas, climate warming may overwhelm ecosystem buffering, as was observed in Québec and Labrador CN where surface drying has resulted from increased summer warming trends (Mekis & Vincent 2011) in addition to thaw depth and sub-surface drainage expansion. Extensive peat accumulation on thawed surfaces and thermokarst ponds can also decrease open water inundation area and may be responsible for the observed F_w decrease in northeastern Canada (Filion & Begin 1998, Minayeva & Sirin 2010).

2.6 Conclusions

We conducted an analysis of fractional surface water (F_w) inundation for the Arctic-boreal region using daily satellite passive microwave remote sensing retrievals from the AMSR-E sensor record. The daily F_w retrievals were temporally aggregated to monthly mean (F_wavg)
and maximum (Fw_{mx}) temporal intervals and represent the proportion of surface water inundation within an approximate 25-km resolution footprint. Our results indicate large seasonal and inter-annual variability in Arctic-boreal regional inundation, with respective Fw variability (SD) on the order of ± 60% ($\pm 6.4 \times 10^5$ km2) and ± 3% ($\pm 3.1 \times 10^4$ km2). The total annual inundation extent (km2) for the domain was largely stable over the 2003-2010 observation period; this finding concurs with an earlier assessment covering the 1993-2000 period (Papa et al. 2010). However, our results also indicate locally significant, contrasting Fw wetting and drying trends in permafrost affected areas.

Regions of widespread inundation increase are observed throughout the continuous permafrost zone, while Fw drying is predominant within sporadic/isolated permafrost areas. Methane emission levels are strongly influenced by open water extent (Walter et al. 2007). Areas showing increased Fw wetting are of concern as atmospheric CH$_4$ is a potent greenhouse gas and recent increases from Arctic wetlands have been reported (Bloom et al. 2010). In lieu of climatic conditions favorable to permafrost development and continued surface wetting, an overall decline in Fw inundation area appears likely (Avis et al. 2011, van Huissteden et al. 2011). Nevertheless, total Arctic-boreal zone inundation will remain stable if Fw expansion continues to offset regions of inundation decline.

Surface water inundation changes captured by the AMSR-E Fw retrievals provide an indicator of recent climate variability within northern landscapes, though the spatiotemporal distribution and underlying drivers of open water change need to be better understood to adequately separate longer term inundation trends from characteristically large seasonal and inter-annual Fw variability (Prowse & Brown 2010). A forward model sensitivity analysis indicated that the AMSR-E Fw retrievals are relatively accurate (conservative RMSE uncertainty within ± 4.1%), and that the Fw results effectively detect sub-grid surface inundation relative to finer scale (30-m to 250-m resolution) static open water maps. The relative consistency in resolving regional patterns and enhanced microwave sensor capabilities for continuous monitoring provide for improved resolution of characteristic dynamic seasonality and periodic wet/dry cycles in surface inundation across the Arctic-boreal domain.

The combination of frequent Fw monitoring from satellite passive microwave sensor records and finer scale open water maps available from satellite optical-IR and radar sensor
records may enable improved resolution of spatial patterns and seasonal to annual variability in regional water bodies that can be used in context with available climate data to improve understanding of regional climate change impacts to surface hydrology, energy and carbon cycles in Arctic-boreal regions. More detailed information concerning the temporal variability in inundation extent and the separation of F_w into wetland and lake area components will benefit carbon modeling efforts, especially for CH_4 emissions, which are strongly influenced by the extent and duration of surface inundation.

2.7 References

Hinzman, L D, N D Bettez, W R Bolton, F S Chapin, M B Dyurgerov, C L Fastie, et al. (2005) Evidence and implications of recent climate change in northern Alaska and other Arctic...

Kim, Y, J S Kimball, K C McDonald, J Glassy (2011) Developing a global data record of daily landscape freeze/thaw status using satellite passive microwave remote sensing. *IEEE*

Njoku, E G, L Li (1999) Retrieval of land surface parameters using passive microwave

Tables

Table 2.1 Commonly used nomenclature.

<table>
<thead>
<tr>
<th>Nomenclature</th>
<th>Explanation</th>
</tr>
</thead>
<tbody>
<tr>
<td>F_W</td>
<td>Fractional open water cover</td>
</tr>
<tr>
<td>$F_{W_{avg}}$</td>
<td>AMSR-E F_W, monthly mean</td>
</tr>
<tr>
<td>$F_{W_{mx}}$</td>
<td>AMSR-E F_W, monthly maximum</td>
</tr>
<tr>
<td>F_{W_s}</td>
<td>F_W derived from static classification maps</td>
</tr>
<tr>
<td>T_b</td>
<td>AMSR-E brightness temperature, 18.7 and 23.8 GHz</td>
</tr>
<tr>
<td>T_{b_u}</td>
<td>Upwelling atmospheric brightness temperature</td>
</tr>
<tr>
<td>T_{b_d}</td>
<td>Downwelling atmospheric brightness temperature</td>
</tr>
<tr>
<td>T_{b_s}</td>
<td>Upwelling surface brightness temperature</td>
</tr>
<tr>
<td>T_{b_l}</td>
<td>T_b emissions from land components</td>
</tr>
<tr>
<td>T_{b_w}</td>
<td>T_b emissions from water components</td>
</tr>
<tr>
<td>T_a</td>
<td>Air temperature (~ 2 m height)</td>
</tr>
<tr>
<td>T_s</td>
<td>Surface temperature</td>
</tr>
<tr>
<td>δ</td>
<td>Ratio of T_a to T_s</td>
</tr>
<tr>
<td>τ</td>
<td>Vegetation optical depth</td>
</tr>
<tr>
<td>V_p</td>
<td>Total column water vapor in atmosphere</td>
</tr>
<tr>
<td>ϵ</td>
<td>Emissivity</td>
</tr>
<tr>
<td>ϵ_s</td>
<td>Emissivity, surface</td>
</tr>
<tr>
<td>ϵ_l</td>
<td>Emissivity, land surface</td>
</tr>
<tr>
<td>ϵ_{os}</td>
<td>Emissivity, bare soil</td>
</tr>
<tr>
<td>ϵ_w</td>
<td>Emissivity, open water</td>
</tr>
<tr>
<td>t_a</td>
<td>Transmissivity</td>
</tr>
<tr>
<td>t_c</td>
<td>Attenuation of upwelling T_b, by canopy and litter</td>
</tr>
<tr>
<td>Ω</td>
<td>Surface roughness</td>
</tr>
<tr>
<td>ω</td>
<td>Vegetation single scattering albedo</td>
</tr>
</tbody>
</table>
Table 2.2 Summary of statistical comparisons for AMSR-E monthly means ($F_{W_{avg}}$) and maximums ($F_{W_{mx}}$) against the MOD44W static open water ($F_{W_{s}}$) map for the pan-Arctic domain, and regional (Northern Europe, Alaska, North Central CN) $F_{W_{s}}$ maps from Landsat. Measures of similarity include coefficient of determination (R^2), mean residual error (MRE) for AMSR-E F_w - $F_{W_{s}}$, and RMSE. The relationships are significant at a 0.05 probability level.

<table>
<thead>
<tr>
<th>Region</th>
<th>R^2</th>
<th>$%$ MRE</th>
<th>$%$ RMSE</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>$F_{W_{avg}}$</td>
<td>$F_{W_{mx}}$</td>
<td>$F_{W_{avg}}$</td>
</tr>
<tr>
<td>pan-Arctic (all)</td>
<td>0.77</td>
<td>0.72</td>
<td>-0.82</td>
</tr>
<tr>
<td>pan-Arctic (< 60°N)</td>
<td>0.84</td>
<td>0.75</td>
<td>-0.92</td>
</tr>
<tr>
<td>pan-Arctic (≥ 60°N)</td>
<td>0.71</td>
<td>0.69</td>
<td>-0.70</td>
</tr>
<tr>
<td>N. Europe</td>
<td>0.78</td>
<td>0.39</td>
<td>-0.56</td>
</tr>
<tr>
<td>Alaska</td>
<td>0.81</td>
<td>0.80</td>
<td>-1.87</td>
</tr>
<tr>
<td>N. C. Canada</td>
<td>0.75</td>
<td>0.75</td>
<td>-8.21</td>
</tr>
</tbody>
</table>

Table 2.3 Summary of statistical comparisons for AMSR-E monthly means ($F_{W_{avg}}$) and maximums ($F_{W_{mx}}$) against the MOD44W static open water ($F_{W_{s}}$) map for the pan-Arctic domain, and regional (Northern Europe, Alaska, North Central CN) $F_{W_{s}}$ maps from Landsat. Measures of similarity include coefficient of determination (R^2), mean residual error (MRE) for AMSR-E F_w - $F_{W_{s}}$, and RMSE. The relationships are significant at a 0.05 probability level.

<table>
<thead>
<tr>
<th>Region</th>
<th>R^2</th>
<th>$%$ MRE</th>
<th>$%$ RMSE</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>$F_{W_{avg}}$</td>
<td>$F_{W_{mx}}$</td>
<td>$F_{W_{avg}}$</td>
</tr>
<tr>
<td>pan-Arctic (all)</td>
<td>0.77</td>
<td>0.72</td>
<td>-0.82</td>
</tr>
<tr>
<td>pan-Arctic (< 60°N)</td>
<td>0.84</td>
<td>0.75</td>
<td>-0.92</td>
</tr>
<tr>
<td>pan-Arctic (≥ 60°N)</td>
<td>0.71</td>
<td>0.69</td>
<td>-0.70</td>
</tr>
<tr>
<td>N. Europe</td>
<td>0.78</td>
<td>0.39</td>
<td>-0.56</td>
</tr>
<tr>
<td>Alaska</td>
<td>0.81</td>
<td>0.80</td>
<td>-1.87</td>
</tr>
<tr>
<td>N. C. Canada</td>
<td>0.75</td>
<td>0.75</td>
<td>-8.21</td>
</tr>
</tbody>
</table>
Table 2.4 Mann Kendall tau trend strength for AMSR-E F_w in the pan-Arctic domain, individual permafrost (PF) zones and associated sub-regions. Regional trends (yrs. 2003-2010) were evaluated for the total annual number of grid cells with F_w present (F_w Count), the mean annual duration of F_w inundation (F_w Duration), and percent change in mean annual inundation area (F_w Area) derived from F_w monthly means (F_w_{avg}) and maximums (F_w_{mx}). The sub-regions evaluated include North America (NA) and Eurasia (EA), continuous (C), discontinuous (D), and sporadic/isolated (S) PF zones. The possible range for tau is -1 to 1 and the sign indicates trend direction; $|\tau|$ indicates a perfect rank agreement with time. Trend significance (in bold) is denoted by asterisks * and ** for respective 0.1 and 0.05 probability levels.

<table>
<thead>
<tr>
<th>Region</th>
<th>F_w Count</th>
<th>F_w Duration</th>
<th>F_w Area</th>
</tr>
</thead>
<tbody>
<tr>
<td>Pan-Arctic ($\geq 50^\circ$N)</td>
<td>0.34</td>
<td>0.71</td>
<td>0.33</td>
</tr>
<tr>
<td>NA</td>
<td>0.24</td>
<td>0.71</td>
<td>0.14</td>
</tr>
<tr>
<td>EA</td>
<td>0.33</td>
<td>0.52</td>
<td>-0.05</td>
</tr>
<tr>
<td>All PF zones</td>
<td>0.81</td>
<td>0.71</td>
<td>0.43</td>
</tr>
<tr>
<td>C</td>
<td>0.71</td>
<td>0.90</td>
<td>0.53</td>
</tr>
<tr>
<td>D</td>
<td>0.62</td>
<td>0.71</td>
<td>0.24</td>
</tr>
<tr>
<td>S</td>
<td>0.62</td>
<td>0.52</td>
<td>-0.14</td>
</tr>
<tr>
<td>C-NA</td>
<td>0.24</td>
<td>0.90</td>
<td>0.42</td>
</tr>
<tr>
<td>C-EA</td>
<td>0.62</td>
<td>0.90</td>
<td>0.43</td>
</tr>
<tr>
<td>D-NA</td>
<td>0.62</td>
<td>0.71</td>
<td>0.52</td>
</tr>
<tr>
<td>D-EA</td>
<td>0.52</td>
<td>0.52</td>
<td>-0.33</td>
</tr>
<tr>
<td>S-NA</td>
<td>0.05</td>
<td>0.52</td>
<td>-0.05</td>
</tr>
<tr>
<td>S-EA</td>
<td>0.62</td>
<td>0.43</td>
<td>0.33</td>
</tr>
</tbody>
</table>
Table 2.5 Trend slope estimates for AMSR-E F_w in the pan-Arctic domain, individual permafrost (PF) zones and associated sub-regions. The slope estimates (yrs. 2003-2010) were evaluated for the total annual number of grid cells with F_w present (F_w Count), the mean annual duration of F_w inundation (F_w Duration), and percent change in mean annual inundation area (F_w Area) derived from F_w monthly means (F_w_{avg}) and maximums (F_w_{mx}). The sub-regions evaluated include North America (NA) and Eurasia (EA), continuous (C), discontinuous (D), and sporadic/isolated (S) PF zones. Trend significance (in bold) is denoted by asterisks * and ** for respective 0.1 and 0.05 probability levels.

<table>
<thead>
<tr>
<th>Region</th>
<th>F_w Count (cells yr$^{-1}$)</th>
<th>F_w Duration (days yr$^{-1}$)</th>
<th>F_w Area (% yr$^{-1}$)</th>
<th>F_w_{avg}</th>
<th>F_w_{mx}</th>
</tr>
</thead>
<tbody>
<tr>
<td>Pan-Arctic ($\geq 50^\circ$N)</td>
<td>218.69</td>
<td>0.76**</td>
<td>25,000</td>
<td>98,293</td>
<td></td>
</tr>
<tr>
<td>NA</td>
<td>10.28</td>
<td>0.80**</td>
<td>4,648</td>
<td>43,787</td>
<td></td>
</tr>
<tr>
<td>EA</td>
<td>186.78</td>
<td>0.61</td>
<td>-2,938</td>
<td>18,047</td>
<td></td>
</tr>
<tr>
<td>All PF zones</td>
<td>140.52**</td>
<td>0.64**</td>
<td>36,929</td>
<td>73,910*</td>
<td></td>
</tr>
<tr>
<td>C</td>
<td>65.34**</td>
<td>0.82**</td>
<td>16,179</td>
<td>16,907**</td>
<td></td>
</tr>
<tr>
<td>D</td>
<td>33.65*</td>
<td>0.26**</td>
<td>4,583</td>
<td>12,493</td>
<td></td>
</tr>
<tr>
<td>S</td>
<td>53.39*</td>
<td>0.78</td>
<td>8,285</td>
<td>31,573</td>
<td></td>
</tr>
<tr>
<td>C-NA</td>
<td>-4.59</td>
<td>0.91**</td>
<td>13,375</td>
<td>966</td>
<td></td>
</tr>
<tr>
<td>C-EA</td>
<td>51.90*</td>
<td>0.76**</td>
<td>-1,127</td>
<td>19,772*</td>
<td></td>
</tr>
<tr>
<td>D-NA</td>
<td>15.97*</td>
<td>0.43**</td>
<td>4,591</td>
<td>10,101*</td>
<td></td>
</tr>
<tr>
<td>D-EA</td>
<td>16.54</td>
<td>0.11</td>
<td>-3,410</td>
<td>494</td>
<td></td>
</tr>
<tr>
<td>S-NA</td>
<td>0.85</td>
<td>0.65</td>
<td>5,438</td>
<td>12,287</td>
<td></td>
</tr>
<tr>
<td>S-EA</td>
<td>38.68*</td>
<td>0.71</td>
<td>7,992</td>
<td>184</td>
<td></td>
</tr>
</tbody>
</table>
Figures

Figure 2.1 Simulated RMSE uncertainty for AMSR-E algorithm retrievals of F_w (a) and surface temperature (T) (b) expressed over a range of F_w variability. All data series contain both random errors from various sources denoted in the legend (See Section 2.2 for explanation) and systematic errors resulting from the simplified emission model (denoted as “Model bias” for the series without random error sources). Symbols represent mean RMSE values calculated across 30 simulation sets (1000 model runs per set) with F_w varying from 0 to 0.5 in 0.05 increments. The RMSE standard deviations for each group of sets are within the symbol bounds (≤ 0.0015 for F_w and ≤ 0.15 K for T).
Figure 2.2 Difference maps between mean annual F_w determined from AMSR-E mean monthly F_w ($F_{w_{avg}}$) values minus corresponding static F_w (F_{w_s}) values from the MOD44W product for the pan-Arctic domain and Landsat based land cover classifications for three sub-regions: Northern Europe (a), Alaska (b) and North Central CN (c). Red hues show regions where MOD44W or Landsat-based F_{w_s} estimates are greater than AMSR-E $F_{w_{avg}}$, while blue hues indicate regions where AMSR-E $F_{w_{avg}}$ values are higher than F_{w_s}.
Figure 2.3 Difference maps between mean annual F_w determined from AMSR-E monthly maximum F_w values ($F_{w_{mx}}$) minus corresponding static F_w (F_{w_s}) values derived from the MOD44W product for the pan-Arctic domain and Landsat based land cover classifications for three sub-regions: Northern Europe (a), Alaska (b) and North Central CN (c). Red hues show regions where MOD44W or Landsat-based F_{w_s} estimates are greater than AMSR-E $F_{w_{mx}}$, while blue hues indicate regions where AMSR-E $F_{w_{mx}}$ values are higher than F_{w_s}.
Figure 2.4 Mean river discharge (Q, m3/s) and corresponding basin-averaged Fw_{avg} (km2) anomalies for the Yukon, Mackenzie, Ob, Lena and Yenisey river basins over the 8 year (2003-2010) AMSR-E record. To minimize temporal lag effects between basin surface water storage and discharge, anomalies were calculated from bi-monthly means during the northern summer months (AM, JJ, AS), except for the Ob basin where the anomalies were derived from tri-monthly (MAM, JJA, SON) means. The temporal Q gaps in the Ob, Lena, and Yenisey records are due to missing station observations. Sample sizes for the correlation coefficients (R) range from 17 to 24 anomaly observations. Basin R values range from 0.71 to 0.87 and are significant at the 0.01 probability level.
Figure 2.5 Study period (2003-2010) F_w means (left) and corresponding standard deviations (right) for the pan-Arctic domain ($\geq 50^\circ$N) as determined from AMSR-E F_w monthly means (F_wavg). The Yukon, Mackenzie, Ob, Lena and Yenisey river basins are outlined in red.
Figure 2.6 Seasonal progressions in AMSR-E F_w area (km2) for selected regions within the pan-Arctic domain (≥ 50 °N) as determined from F_w monthly means ($F_w$$_{avg}$, in gray) and monthly maximums ($F_w$$_{mx}$, in black) for the study period (2003-2010). Static F_w estimates ($F_w$$_s$) from the MOD44W open water map (black, dashed) are presented for the same regions.
Figure 2.7 Significant (p < 0.10) F_w trend areas within permafrost (PF) regions for mean annual F_w ($F_{w_{avg}}$) determined from AMSR-E mean monthly F_w values from 2003-2010. The blue, light blue-gray and light green areas represent continuous (C), discontinuous (D) and sporadic/isolated (S) PF zones, respectively. The blue areas indicate significant positive F_w trends, while red areas indicate significant negative F_w trends. The relative proportion (%) of grid cells having significant positive or negative trends within each PF zone is summarized in the corresponding bar graph; error bars indicate 95% confidence intervals for the PF area proportions.
Chapter 3: Surface water inundation in the Arctic-boreal zone: potential impacts on regional methane emissions

Corresponding publication:

3.1 Abstract

Northern wetlands may be vulnerable to increased carbon losses from methane (CH$_4$), a potent greenhouse gas, under current warming trends. However, the dynamic nature of open water inundation and wetting/drying patterns may constrain regional emissions, offsetting the potential magnitude of methane release. Here we conduct a satellite data driven model investigation of the combined effects of surface warming and moisture variability on high northern latitude (\geq 45° N) wetland CH$_4$ emissions, by considering (1) sub-grid scale changes in fractional water inundation (Fw) at 15-day, monthly and annual intervals using 25-km resolution satellite microwave retrievals, and (2) the impact of recent (2003-2011) wetting/drying on northern CH$_4$ emissions. The model simulations indicate mean summer emissions of 55 Tg CH$_4$ yr$^{-1}$ from Arctic-boreal wetlands. Approximately 12% and 16% of the emissions originate from open water and landscapes with emergent vegetation, respectfully, determined from 15-day Fw means or maximums, and significant increases in regional CH$_4$ emissions were observed when incorporating inundated land fractions into the model simulations at monthly or annual time scales. The satellite Fw record reveals widespread wetting across the Arctic continuous permafrost zone, contrasting with surface drying in boreal Canada, Alaska and western Eurasia. Arctic wetting and summer warming increased wetland emissions by 0.48 Tg CH$_4$ yr$^{-1}$, but this was mainly offset by decreasing emissions (-0.32 Tg CH$_4$ yr$^{-1}$) in sub-Arctic areas experiencing surface drying or cooling. These findings underscore the importance of monitoring changes in surface moisture and temperature when assessing the vulnerability of Arctic-boreal wetlands to enhanced greenhouse gas emissions under a shifting climate.
3.2 Introduction

Wetlands and lakes cover approximately 2-8% of the Arctic-boreal region (Watts et al. 2012), with large fluctuations in surface water extent resulting from seasonal melt cycles, summer precipitation and drought events (Schroeder et al. 2010, Bartsch et al. 2012, Helbig et al. 2013). Wet surface conditions and characteristically colder temperatures greatly reduce the rate of organic carbon decomposition in northern wetland environments (Harden et al. 2012, Elberling et al. 2013). As a result, over 50% of the global soil organic carbon pool is stored in these regions (Turetsky et al. 2007, Hugelius et al. 2013). Landscapes with inundated or moist surfaces are particularly vulnerable to carbon loss as methane (CH$_4$) (Turetsky et al. 2008, Fisher et al. 2011, Olefeldt et al. 2013). Contemporary estimates of methane source contributions from northern wetlands range between 12 and 157 Tg CH$_4$ yr$^{-1}$ (Petrescu et al. 2010, McGuire et al. 2012, Meng et al. 2012, Gao et al. 2013), and may double over the next century if surface temperatures continue to rise (Koven et al. 2011, Schneider von Deimling et al. 2012).

Various wetland maps have been used to define the extent of methane emitting area (Matthews & Fung 1987, Aselmann & Crutzen 1989, Reeburgh et al 1998, Lehner & Döll 2004, Schneider et al. 2009, Glagolev et al. 2011), but their static nature fails to capture dynamic spatiotemporal variations in surface wetness within Arctic-boreal environments. Modeling studies are increasingly using satellite based inundation data to characterize the impact of changing surface water coverage on regional methane emissions (Petrescu et al. 2010, Riley et al. 2011, Zhu et al. 2011, Meng et al. 2012, Bohn et al. 2013, Wania et al. 2013). These datasets include the GIEMS (Global Inundation Extent from Multi-Satellites) record (Prigent et al. 2007, Papa et al. 2010) that estimates monthly inundation within 0.25° resolution grid cells using microwave observations from the Special Sensor Microwave/Imager (SSM/I) and ERS Synthetic Aperture Radar (SAR). However, the GIEMS record only spans from 1993 to 2004 and relies on visible (0.58-0.68 μm) and near-infrared (0.73-1.1 μm) Advanced Very High Resolution Radiometer (AVHRR) data to account for vegetation canopy effects on microwave retrievals (Papa et al. 2010). An alternative method, described by Schroeder et al. (2010) and integrated into methane studies for western Siberia (Bohn et al. 2013, Wania et al. 2013), avoids the use of optical/infrared information by incorporating QuikSCAT scatterometer and 6.9 GHz passive
microwave data from the Advanced Microwave Scanning Radiometer for EOS (AMSR-E) to
determine 25 km grid fractional water coverage at 10 day intervals.

A recent approach introduced by Jones et al. (2010) uses AMSR-E 18.7 and 23.8 GHz,
H- and V- polarized brightness temperatures to retrieve 25-km resolution daily fractional open
water (Fw) inundation, and does not require ancillary information (e.g. AVHRR optical or
QuikSCAT radar) to account for microwave scattering effects from intervening atmosphere and
vegetation. The Jones et al. (2010) AMSR-E Fw data have been used to evaluate recent seasonal
and inter-annual inundation variability across the northern high latitudes and permafrost regions,
with a demonstrated sensitivity to changes in the surface water balance, and a relatively low
observation spatial uncertainty of approximately 4% (Watts et al. 2012). Although satellite
optical and radar remote sensing can characterize wetland and open water distributions at finer (≤
150 m resolution) scales (Bartsch et al. 2012, Rover et al. 2012, Bohn et al. 2013, Muster et al.
2013) this information is often constrained to localized analyses with minimal repeat
observations and is not yet conducive for the pan-Arctic wide monitoring of surface inundation.

This study examines the potential implications of recent (2003 to 2011) variability in
surface wetness on methane efflux from northern high latitude (≥ 45ºN) wetlands, and the
contrasting influence of regional changes in moisture and temperature on summer (May through
September) emission budgets using recent satellite remote sensing and reanalysis information.
We postulate that seasonal and inter-annual fluctuations in surface inundation can greatly limit
the magnitude of methane release from wetland environments, particularly if summer warming
coincides with periods of drought. Conversely, northern wetlands may be more susceptible to
methane emissions when the extent and duration of surface wetness is sustained or increasing.
We conducted a series of carbon and climate sensitivity simulations using the Joint UK Land
Environment Simulator (JULES) methane emissions model (Clark et al. 2011, Bartsch et al.
2012), with input Fw means and maximums at 15-day, monthly, and annual intervals as derived
from an AMSR-E global daily land parameter record (Jones et al. 2010, 2011a). In this study,
Fw is defined as the proportional surface water cover within 25 km equal area AMSR-E grid
cells (Watts et al. 2012), and includes inundated soils, open water (e.g. lake bodies) and areas
with emergent vegetation. We then evaluated the impact of recent temperature variability and wetting/drying on methane emission budgets for the northern wetland regions.

3.3 Methods

3.3.1 Study region

The land area considered in this analysis was determined using Arctic-boreal peatland maps (i.e. Gunnarsson & Löfroth 2009, Yu et al. 2010, Franzén et al. 2012), and the REgional Carbon Cycle and Assessment Processes (RECCAP) tundra domain (McGuire et al. 2012). To coincide with the spatial extent of AMSR-E Fw coverage, we also removed 25-km grid cells having ≥ 50% permanent ice or open water cover using the UMD MODIS land cover product (described in Jones et al. 2010). The resulting study region spans approximately 2 x 10^7 km^2 (Figure 1), and contains 72% of northern continuous and discontinuous permafrost affected landscapes (Brown et al. 1998).

3.3.2 Model description and calibration

The JULES model approach (Clark et al. 2011, Bartsch et al. 2012) accounts for the major factors (i.e. temperature, carbon substrate availability, landscape wetness) that control global methane emissions (Bloom et al. 2010, Olefeldt et al. 2013). Albeit relatively simple and lacking in detailed physical processes, this method is useful for pan-Arctic simulations because it avoids extensive parameterization requirements that can substantially increase estimate uncertainty (Riley et al. 2011). The model regulates methane emissions per available carbon substrate (C, kg m^-2) and an efflux rate constant (k_{CH4}, d^-1) that is modified by a temperature dependent Q_{10} factor (Gedney et al. 2004, Clark et al. 2011). The temperature effects on methane production are controlled using daily input surface soil temperature (T_s, in kelvin) and a thermal reference state (T_0, 273.15 K):

\[F_{CH4} = \alpha \left(C \times k_{CH4} \times Q_{10}^{(T_s - T_0)/10} \times F_{Thw} \right) \]

(1)

For this analysis, we limit our investigation to non-frozen surface conditions defined using daily satellite passive microwave sensor derived binary (0 or 1) freeze/thaw (FThw) constraints (Kim et al. 2013). The resulting daily grid cell fluxes (F_{CH4}, tonne CH_4) were
averaged over a 15-day time step and scaled (α) using AMSR-E Fw information to regulate methane emissions according to volumetric soil moisture (θ) conditions for non-inundated surface fractions. The daily input T_s and θ (≤ 10 cm soil depth) records were obtained from the NASA GEOS-5 MERRA (Modern Era Retrospective-analysis for Research and Applications) Land reanalysis archive with native 0.5° x 0.6° resolution (Reichle et al. 2011) and posted to a 25 km resolution polar equal-area scalable earth (EASE) grid consistent with the AMSR-E Fw data. The MERRA Land parameters have been evaluated for high latitude regions, with favorable correspondence in relation to independent satellite microwave and in-situ observations (Yi et al. 2011).

Soil metabolic carbon (C_{met}) pools obtained from a Terrestrial Carbon Flux (TCF) model (Kimball et al. 2009, Yi et al. 2013) were used as the substrate for methanogenesis. The TCF carbon estimates reflect daily changes in labile plant residues and root exudates, and have been evaluated against existing soil organic carbon inventory records for the high latitude regions (described in Yi et al. 2013). The C_{met} inputs (kg C m$^{-2}$ d$^{-1}$) were generated for the study region by a 1000 year spin-up of the model using a ten year (2000-2009) record of Moderate Resolution Imaging Spectroradiometer (MODIS) 1 km resolution NDVI (Normalized Difference Vegetation Index) and MERRA daily surface meteorology and soil moisture inputs.

The JULES model k_{CH4} and Q_{10} parameters were calibrated using mean monthly eddy covariance methane fluxes (mg CH$_4$ m$^{-1}$ d$^{-1}$) from five northern wetland tower sites (Figure 1) that are described in the published literature (i.e. Rinne et al. 2007, Sachs et al. 2008, Wille et al. 2008, Zona et al. 2009, Long et al. 2010, Parmentier et al. 2011), in conjunction with mean MERRA reanalysis C_{met} and T_s climatology over the 2003-2011 summer (May through September) period. A resulting Q_{10} value of 3.7 and a k_{CH4} rate of 3.7×10^{-5} d$^{-1}$ minimized the root-mean-square-error (RMSE) differences between the model and flux tower observations at 17.62 mg CH$_4$ m$^{-2}$ d$^{-1}$. A Q_{10} of 3.7 was also used by Clark et al. (2010) and is similar to those reported in other studies (Ringeval et al. 2010, Waldrop et al. 2010, Lupascu et al. 2012). Further model verification was also obtained by evaluating summer flux chamber measurements (see Supplementary Table S3.1) from tundra ($n = 15$ site records), boreal wetland ($n = 11$) and lake ($n = 17$) locations.
3.3.3 Regional simulations

Grid-scale (25 km) wetland methane emissions were obtained using dynamic 15-day, monthly and annual summer AMSR-E Fw means or maximums from 2003 to 2011. Methane simulations were also examined using a static mean summer Fw map derived from the 2003-2011 record. The regional simulations were evaluated against NOAA ESRL atmospheric methane flask measurements (Dlugokencky et al. 2013) from Barrow, AK, Lac LaBiche, CAN, and Pallas Sammallunturi, FI, to assess the ability of the model to capture between-year changes in methane concentrations that may correspond with fluctuations in wetland methane emissions (Lelieveld et al. 1998). For Barrow and Sammallunturi, the dry air mole fractions were available from 2003 through 2011; the Lac LaBiche data were available from 2008 onward.

A Hybrid Single Particle Lagrangian Integrated Trajectory (HYSPLIT; Draxler & Rolph 2013, Rolph 2013) model, with a 100 m receptor point altitude and input GDAS-1 meteorology (Rodell et al. 2004), was used to obtain backward (30 day) atmospheric trajectories for each flask site, and showed the dominant source contributions at Barrow to originate primarily from northern Alaska, the Yukon, and eastern Siberia. For the respective Lac LaBiche and Sammallunturi locations, the major source regions were from northern Canada, or extending from Scandinavia eastward into western Russia. To determine the relative correspondence between modeled annual methane emission contributions and observed mean summer dry air mole fractions, Pearson product-moment correlation coefficients (r) were derived using spatial means from a 3 x 3 grid cell window centered on each flask location. Regional point correlation maps (Ding & Wang 2005) were also obtained by evaluating $r(e_j, a_k)$ for each grid cell within the methane source regions, where e_j is the modeled mean summer emissions time series at a given cell location and a_k is the atmospheric methane concentration time series at a flask sampling site.

Regional changes in surface water coverage, soil moisture and temperature were evaluated using a non-parametric Mann-Kendall trend analysis that accounts for serial correlation prior to determining trend significance (Yue et al. 2002, Watts et al. 2012). The Kendall rank correlations were applied to the mean summer AMSR-E Fw, and MERRA T_e and θ records on a per-grid cell basis from 2003 to 2011. Trend significance was determined at a
minimum 95% (p < 0.05) probability level. The Kendall trend analysis was also applied to the modeled cumulative annual methane emissions to identify regions that may be vulnerable to increasing anaerobic carbon losses.

3.4 Results and discussion

3.4.1 Model evaluation against in situ methane flux observations

The model simulations captured overall temporal variability ($r^2 = 0.65$, p < 0.05) observed in the monthly tower eddy covariance records, with a RMSE value of 17.6 mg CH$_4$ m$^{-2}$ d$^{-1}$ that is similar to other regional studies (Meng et al. 2012, Zhu et al. 2013). Significant differences ($\alpha = 0.05$; two-sample t-test with unequal variance) were not observed (figure S1) between the model estimates and mean monthly tower eddy covariance ($t = 1.45$, p = 0.15), boreal chamber ($t = 0.05$, p = 0.96), and northern lake ($t = 0.79$, p = 0.45) fluxes. However, the modeled fluxes were significantly smaller ($t = 3.67$, p < 0.01) than the tundra chamber observations and did not adequately capture larger (> 140 mg CH$_4$ m$^{-2}$ d$^{-1}$) eddy covariance fluxes from a peatland site in northern Sweden (Jackowicz-Korczyński et al. 2010). These discrepancies may reflect the presence of tall sedges (e.g. *E. angustifolium*), which can substantially increase emission rates through aerenchymateous tissue pathways (Joabsson et al. 1999), or the limited representation of landscape scale emissions by chamber measurements given the potentially large contrasts in methane fluxes from dry and wet vegetation communities (Parmentier et al. 2011) and functional groups (Kao-Kniffin et al. 2010).

The modeled methane fluxes were within the 5-140 mg CH$_4$ m$^{-2}$ d$^{-1}$ range observed in the lake measurements (Zimov et al. 1997, Laurion et al. 2010, Desyatkin et al. 2009, Sabrekov et al. 2012), although these observations primarily reflect diffusive gas release and background bubbling instead of episodic ebullition events. As a result, the model simulations may underestimate ebullition release from open water bodies, particularly in carbon-rich thermokarst regions characterized by methane seeps (Walter et al. 2006). However, the fraction of lake bodies exhibiting this seep behavior is not well quantified, and a recent analysis of sub-Arctic
lakes reported that summer ebullition events averaged only 13 mg CH$_4$ m$^{-2}$ d$^{-1}$, with a low probability of bubble fluxes exceeding 200 mg m$^{-2}$ d$^{-1}$ (Wik et al. 2013).

3.4.2 Regulatory effects of surface water and temperature on regional methane emissions

3.4.2.1 Wetland inundation characteristics

Approximately 7% (1.4×10^6 km$^2 \pm 3\%$) of the Arctic-boreal domain was inundated with surface water during the non-frozen summer season, as indicated by the 2003-2011 AMSR-E Fw retrieval means. Over 60% of the wetlands were located in North America, primarily within the Canadian Shield region, and the majority of inundation occurred above 59° N within major wetland complexes, including the Ob-Yenisei and Kolyma Lowlands in Siberia (Figure 2). A strong seasonal pattern in surface water was observed across the high latitudes, with an abrupt increase in May or early June following surface ice and snow melt, and the onset of spring precipitation (Figure 3). In Eurasia, peak inundation occurred in June, followed by a gradual decline with summer drought and increased evaporative demand (Rawlins et al. 2009, Schroeder et al. 2010, Bartsch et al. 2012, Watts et al. 2012). In North America, the seasonal expansion of surface water continued through July, before beginning to subside with the onset of surface freezing.

The influence of wet/dry cycles on surface water extent was evident throughout the Arctic-boreal region. The summer of 2004 was the driest observed over the AMSR-E Fw record, with a 6% decrease in inundation from the long-term mean that coincided with drought conditions across the Arctic Basin and Alaska (Rinsland et al. 2007, Zhang et al. 2008, Jones et al. 2013). In North America, 2005 and 2006 were the wettest summers, with a 7% increase in water coverage. These positive anomalies were also reflected in the high river discharge observed in the Yukon basin (Watts et al. 2012) and Hudson Bay lowlands (Déry et al. 2011) following high spring snow melt and summer precipitation. The wettest summer in Eurasia occurred in 2010, with a 5% increase in surface water that was primarily associated with a strong La Niña event that brought cooler air and precipitation to central Siberia despite an anomalous heat wave and drier conditions in western Russia (Schneidereit et al. 2012, Trenberth & Fasullo 2012).
3.4.2.2 Regional summer methane simulations

Summer methane emissions estimated for non-inundated land fractions averaged $47.9 \pm 1.8 \text{Tg CH}_4 \text{yr}^{-1}$ over the northern wetlands. This increased to $54.6 \pm 1.8 \text{Tg CH}_4 \text{yr}^{-1}$ when also considering contributions from inundated landscapes based on the 15-day AMSR-E Fw means. These results are within the range of emissions (39 to 89 Tg CH$_4$ yr$^{-1}$) reported from previous modeling studies using other satellite-based Fw retrievals (Table 1; Petrescu et al. 2010, Ringeval et al. 2010, Riley et al. 2011, Spahni et al. 2011, Wania et al. 2013), but are higher than those from atmospheric inversion analyses of northern peatlands (approximately 30 Tg CH$_4$ yr$^{-1}$, Spahni et al. 2011). The coarse resolution (0.5° x 0.6°) reanalysis meteorology used in the model simulations do not well represent sub-grid variability in soil wetness and temperature controls (von Fischer et al. 2010, Sachs et al. 2010, Sturtevant & Oechel 2013), which may lead to systematic biases when evaluating methane emissions at larger scales (Bohn & Lettenmaier 2010). However, top-down inversion analyses are also prone to uncertainties from atmospheric transport conditions and the limited number of observation sites within high latitude regions (Berchet et al. 2013, Nisbet et al. 2014).

In northern wetlands, 80-98% of annual methane emissions occur during the summer (Alm et al. 1999, Jackowicz-Korczyński et al. 2010, Song et al. 2012) due to strong thermal controls on methane production, carbon substrate and water availability (Strom et al. 2003, Christensen et al. 2003, Wagner et al. 2009). The influence of summer warming on regional methane emissions was apparent in the model simulations, with peak efflux occurring in June and July (Figure S3.2). This seasonal pattern has been observed in atmospheric methane mixing ratios across the Arctic (Aalto et al. 2007, Pickett-Heaps et al. 2010, Fisher et al. 2011). Also evident was the impact of wet/dry cycles on regional methane contributions, with annual summer emission budgets fluctuating by $\pm 4\%$, relative to the 2003-2011 mean. The modeled emissions were lowest in 2004 despite anomalously high temperatures throughout the Arctic-boreal region (Chapin et al. 2005), due to drought conditions in Alaska and northern Canada. In contrast, higher emissions in 2005 resulted from warm and wet weather in North America.

Surface moisture variability also influenced the correspondence between the modeled emissions and summer atmosphere methane concentrations from the regional flask
measurements. Regions showing a positive correspondence between modeled methane emissions and atmosphere concentrations largely reflected atmospheric transport trajectories indicated in the HYSPLIT simulations (Figure S3.3), with stronger agreement \((r > 0.7, p < 0.05)\) occurring in areas characterized by open water or prone to periodic inundation (Figure 4). Immediate to the flask sites, mean summer inundation varied from 2 to 10\%, with moist soil fractions accounting for > 85\% of simulated emissions. At Lac LaBiche, annual emissions variability corresponding to wet soil fractions agreed well \((r = 0.96, p = 0.02)\) with the flask observations.

In contrast, relatively poor agreement was observed at Barrow and Sammaltunturi where emission patterns for inundated portions of the landscape corresponded more closely with atmospheric methane concentrations (Table 2). At Barrow, the correspondence was similar \((r > 0.43, p < 0.12)\) for model simulations using dynamic 15-day or annual Fw inputs, reflecting methane source contributions from thermokarst lakes and inundated tundra in the surrounding landscape (Dlugokencky et al. 1995). In contrast, the modeled emissions at Sammaltunturi corresponded closely \((r = 0.86, p < 0.01)\) with flask observations when accounting for 15-day variability in Fw extent, but showed minimal agreement when using annual Fw inputs. This discrepancy may be attributed to less open water cover in the surrounding region and a tendency for summer precipitation events to produce intermittent flooding due to shallow soil layers and limited drainage (Aalto et al. 2007). These results differ from the Lac LaBiche site, where nearby peatlands are characterized by deeper layers of surface litter and moss (Dlugokencky et al. 2011) that can substantially reduce surface water coverage.

3.4.3 Fw temporal scaling effects on summer methane budgets

Wetland studies have increasingly used satellite microwave remote sensing to quantify the extent of methane emitting area, given the strong microwave sensitivity to surface moisture and relative insensitivity to solar illumination constraints and atmospheric signal attenuation. Regional inundation information has been incorporated into model simulations using monthly, annual, or static multi-year Fw means (Ringeval et al. 2010, Petrescu et al. 2010, Hodson et al. 2011, Riley et al. 2011, Spahni et al. 2011, Meng et al. 2012, Wania et al. 2013). However, our
simulation results show that temporal Fw scaling can lead to substantial differences in methane emission estimates (Table 1).

In this analysis, inundation extent within the Arctic-boreal wetland regions increased by 4-7% and 20-30% when using respective mean monthly or annual AMSR-E Fw inputs instead of finer (15-day) temporal intervals. The coarser Fw temporal inputs resulted in respective increases in estimated methane emission budgets by 3% (t = 1.6, p = 0.05) and 17% (t = 6.7, p < 0.01) in Eurasia, relative to simulations using finer 15-day Fw temporal inputs. The impacts of Fw temporal scaling in North America were not significant (t < 0.7, p > 0.24), with corresponding increases of 0.5% (Fw monthly) and 2% (Fw annual) in estimated annual methane emissions. The observed emissions sensitivity to Fw scaling in Eurasia primarily results from precipitation and flooding events in early summer, followed by mid-summer drying (Serreze & Etringer 2003). As a result, Fw means considered over longer time intervals in these regions may be biased towards spring inundation conditions, and may not reflect regional decreases in surface wetness occurring during the warmer mid-summer months. Directly incorporating Fw maximums, sometimes used to quantify multi-year surface hydrology trends (Bartsch et al. 2012, Watts et al. 2012), also led to substantial increases (t > 7.5, p < 0.01) in estimated methane emissions by > 40% in North America and 62% in Eurasia relative to simulations using static Fw means.

3.4.4 Potential impact of regional wetting and drying trends on methane emission budgets

Significant (p < 0.05) increases in surface inundation were observed over 5% (1 x 10^6 km^2) of the high latitude wetlands domain from 2003 to 2011, with substantial Fw wetting occurring within northern tundra and permafrost affected landscapes (Figure 5). While the regional wetting patterns may correspond with shifts in northward atmospheric moisture transport (Rawlins et al. 2009, Skific et al. 2009, Dorigo et al. 2012, Screen 2013), trends within the Arctic Rim may be more closely influenced by thermokarst expansion, reductions in seasonal ice cover (Smith et al. 2005, Rowland et al. 2010, Watts et al. 2012), and summer warming (Figure 6a). In portions of western Siberia, localized cooling and residual winter snow melt (Cohen et al. 2012) may also contribute to surface wetting. Regional drying was also observed across 3% (6 x 10^5 km^2) of the northern wetland domain, particularly in northern boreal Alaska,
eastern Canada and Siberia (Figure 5). These declines in surface water extent may result from an increase in summer evaporative demand (Arp et al. 2011) and the terrestrialization of open water environments following lake drainage (Payette et al. 2004, Jones et al. 2011b, Roach et al. 2011, Helbig et al. 2013).

The combined influence of warming and wetting in the AMSR-E Fw and reanalysis surface meteorology records contributed to an increase in methane emissions across 16% of the Arctic-boreal domain (Figure 6b), at a mean rate of 43 tonne CH$_4$ yr$^{-1}$ from 2003 to 2011. These increases occurred primarily in Canada and eastern Siberia, where summer warming has been observed in both in-situ measurements and reanalysis records (Figure S3.4, Screen et al. 2010, Smith et al. 2010, Walsh et al. 2011). This finding agrees with a projected 15% increase in methane emitting area with continued climate change in the northern wetland regions (Gao et al. 2013). A significant ($p < 0.05$) decrease in modeled methane emissions, associated with regional surface drying and cooling patterns, was also observed across 11% of the region (Figure 6b, 40 tonne CH$_4$ yr$^{-1}$) and offset gains in overall methane emissions over the 2003-2011 period.

3.5 Conclusions

Northern Arctic-boreal ecosystems may be especially vulnerable to methane emissions given climate warming, abundant soil carbon stocks, and a predominately wet landscape (Isaksen et al. 2011, van Huissteden et al. 2011, Olefeldt et al. 2013). We found that 7% of northern wetlands were characterized by open water or emergent vegetation, with the majority of inundation occurring in the Canadian Shield lowlands and Ob-Yenisei river basins. Areas of significant ($p < 0.05$) increase in surface water extent were more prevalent within the Arctic Rim and may coincide with heightened summer precipitation (Landerer et al. 2010, Screen 2013) or high latitude permafrost thaw (Rowland et al. 2010, Watts et al. 2012). The combined effect of surface wetting and warming contributed to regional increases of 0.48 Tg CH$_4$ yr$^{-1}$ in estimated methane emissions. Our analysis also revealed surface drying throughout the boreal zones of southern Sweden, western Russia and eastern Canada, as has been anticipated with increasing summer temperatures and drought conditions in the sub-Arctic (Frolking et al. 2006, Tarnocai...
This landscape drying contributed to a 0.32 Tg CH\textsubscript{4} yr-1 decrease in summer emissions, and largely offset any increases in region-wide methane release.

Regional modeling studies should consider the potential impacts of Fw scaling when prescribing the extent of methane emitting area in northern wetland regions, given the dynamic nature of surface water in northern landscapes (Schroeder \textit{et al.} 2010, Bartsch \textit{et al.} 2012, Watts \textit{et al.} 2012). Our model sensitivity analysis shows significant differences in estimated annual emissions determined from coarse monthly or annual Fw relative to finer scale (15-day) inundation inputs. Although the estimated emissions rate of 55 Tg CH\textsubscript{4} yr-1 is similar to the results from previous studies, it may overestimate the magnitude of methane release from pan-boreal and Arctic wetland regions, given difficulties accounting for finer scale soil temperature and moisture heterogeneity (Sachs \textit{et al.} 2008, Parmentier \textit{et al.} 2011, Muster \textit{et al.} 2013) using coarse \textgreater{} 0.5° reanalysis information. The NASA Soil Moisture Active Passive (SMAP) mission (Entekhabi \textit{et al.} 2014) launched early 2015 and provides new global satellite L-band passive microwave observations of the land surface, with regular monitoring of northern soil thermal and moisture dynamics at 1-2 day intervals and moderate (9 km) spatial scales. These new observations may provide for the improved quantification of regional patterns and temporal dynamics in surface environmental conditions, which is needed to reduce uncertainty in regional and global methane emissions.
3.6 References

Draxler, R R, G D Rolph (2013) HYSPLIT (HYbrid Single-Particle Lagrangian Integrated Trajectory) Model access via NOAA ARL READY Website (http://www.arl.noaa.gov/HYSPLIT.php) NOAA Air Resources Laboratory, College Park, MD.

Rodell, M, P R Houser, U Jambor, J Gottschalck, K Mitchell, C J Meng, K Arsenault, B

Rolph, G D (2013) Real-time Environmental Applications and Display sYstem (READY) Website (http://www.ready.noaa.gov) NOAA Air Resources Laboratory, College Park, MD.

Tables

Table 3.1 Wetland methane (CH\textsubscript{4}) emissions and associated surface inundation extent determined by regional modeling studies using satellite microwave based surface water (Fw) retrievals to define the spatial extent of methane producing area. The Fw inputs include those scaled using 15-day, monthly and annual Fw means and maximums, or a static multi-summer Fw mean climatology. The methane emissions determined in this study are reported for inundated and combined inundated/non-inundated wetland landscape fractions.

<table>
<thead>
<tr>
<th>Study</th>
<th>Model</th>
<th>Domain</th>
<th>Fw Source</th>
<th>Fw Period</th>
<th>Fw Scaling</th>
<th>Fw Area (km2)</th>
<th>Simulation Period (CH\textsubscript{4})</th>
<th>Emissions (Tg CH\textsubscript{4} yr-1) + Std. Dev.</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Adjusted Area</td>
<td>4.4 x 106</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Papa et al (2010)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Papa et al (2010)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>This Study (All Areas)</td>
<td>JULES-TCF</td>
<td>45° – 80° N</td>
<td>Jones et al (2010),</td>
<td>2003 – 2011</td>
<td>15-day Avg.</td>
<td>1.4 x 106</td>
<td>2003 – 2011</td>
<td>54.6 ± 1.8</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Watts et al (2012)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>15-day Avg.</td>
<td>1.4 x 106</td>
<td>2003 – 2011</td>
<td>6.6 ± 0.2</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>15-day Max.</td>
<td>1.8 x 106</td>
<td></td>
<td>9 ± 0.3</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Month Avg.</td>
<td>1.5 x 106</td>
<td></td>
<td>6.7 ± 0.2</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Month Max.</td>
<td>2 x 106</td>
<td>2003 – 2011</td>
<td>9.8 ± 0.3</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Annual Avg.</td>
<td>1.7 x 106</td>
<td></td>
<td>7.1 ± 0.3</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Annual Max.</td>
<td>3 x 106</td>
<td></td>
<td>12.6 ± 0.4</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Annual Clim. (Avg.)</td>
<td>1.7 x 106</td>
<td></td>
<td>7.2 ± 0.3</td>
</tr>
</tbody>
</table>

78
Table 3.2 Mean summer fractional water (Fw) inundation and Pearson correspondence (r, with associated significance) between flask station dry air mole fractions (nmol CH$_4$ mol$^{-1}$) and cumulative methane emission estimates (tonne CH$_4$ grid cell$^{-1}$) within a 3 x 3 window centered at Barrow (BRW), Lac LaBiche (LLB) and Pallas Sammaltunturi (PAL). The model simulations incorporate dynamic 15 day or mean annual Fw; non-inundated grid cell fractions are regulated by surface soil moisture content (θ).

<table>
<thead>
<tr>
<th>Location</th>
<th>Fw Inundation (%)</th>
<th>Dynamic Fw</th>
<th>Annual Fw</th>
<th>θ</th>
<th>Fw + θ</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>R</td>
<td></td>
<td>R</td>
<td>R</td>
<td></td>
</tr>
<tr>
<td>BRW</td>
<td>5 – 15%</td>
<td>0.46 (p = 0.11)</td>
<td>0.43 (p = 0.12)</td>
<td>-0.14 (p = 0.36)</td>
<td>0.05 (p = 0.45)</td>
</tr>
<tr>
<td>LLB</td>
<td>3 – 4%</td>
<td>0.65 (p = 0.24)</td>
<td>0.74 (p = 0.18)</td>
<td>0.94 (p = 0.03)</td>
<td>0.96 (p = 0.02)</td>
</tr>
<tr>
<td>PAL</td>
<td>1 – 3%</td>
<td>0.86 (p < 0.01)</td>
<td>0.02 (p = 0.48)</td>
<td>0.10 (p = 0.4)</td>
<td>0.13 (p = 0.37)</td>
</tr>
</tbody>
</table>
Figures

Figure 3. Locations of tower eddy covariance, flux chamber, lake and flask measurement sites used to verify methane emission simulations for the Arctic-boreal (≥ 45°N) peatlands (based on data provided by Gunnarsson & Löfroth 2009, Yu et al. 2010, Franzén et al. 2012) and RECCAP tundra domain.
Figure 3.2 Regional variability in fractional surface water (Fw) within the northern (≥ 45°N) wetland regions by (a) latitudinal and longitudinal distribution and (b) pan-Arctic domain; black lines and grey shading in (a) denote respective Fw spatial means and standard deviations [± SD]. A multi-year (2003-2011) mean of daily summer AMSR-E Fw retrievals was used to derive the spatial extent of inundation.
Figure 3.3 Seasonal (2003-2011) variability in AMSR-E Fw inundation (km2) within the Arctic-boreal wetland domain. The mean monthly Fw climatology is indicated in black, and corresponding \pm 2 SD (Fw minima, maxima) are denoted by dark (light) grey shading.
Figure 3.4 Regional Pearson correlation (r) between mean summer (May through September) dry air mole fractions (nmol CH$_4$ mol$^{-1}$) from NOAA ESRL flask sites in Alaska, Canada, and Finland, and modeled methane emissions (tonne CH$_4$ cell$^{-1}$) for sub-grid inundated (Fw) and non-inundated surface moisture (θ) conditions. Methane emissions from inundated surfaces reflect model simulations using dynamic 15 day Fw inputs, or static Fw climatology for the 2003-2011 summer period. The correlation significance is determined at a minimum 95% probability level.
Figure 3.5 Recent summer AMSR-E Fw wetting and drying trends in the northern (≥ 45°N) wetland regions, indicated by Mann-Kendall tau rank coefficients. Positive (negative) tau represents an increase (decrease) in surface water cover. Black polylines denote areas having significant (p < 0.05, |tau| > 0.6) change in surface water extent over the 2003-2011 satellite observation record.
Figure 3.6 Regional (a) Pearson correlations (r) between summer MERRA reanalysis surface soil temperature (T_s) and AMSR-E Fw inundation extent from 2003 to 2011, and (b) trends (Mann-Kendall tau) in wetland methane (CH_4) emissions for inundated and wet soil landscapes. Areas of significant ($p < 0.05$) correlation or trend are indicated by the black polylines.
Chapter 3 Supplement

Table S3.1 Location and description of tower eddy covariance, chamber and lake flux measurement records used for methane (CH$_4$) model calibration and validation.

<table>
<thead>
<tr>
<th>Location</th>
<th>Coordinates</th>
<th>Description</th>
<th>Year(s)</th>
<th>Month(s) of Measurement</th>
<th>Method</th>
<th>Average Flux (mg CH$_4$ m$^{-2}$ d$^{-1}$)</th>
<th>Reference</th>
</tr>
</thead>
<tbody>
<tr>
<td>Barrow, Alaska</td>
<td>71°17' N, 156°37' W</td>
<td>wet tundra</td>
<td>2007</td>
<td>July</td>
<td>Flux chamber</td>
<td>50</td>
<td>von Fischer et al (2010)</td>
</tr>
<tr>
<td>Barrow, Alaska</td>
<td>71°17' N, 156°37' W</td>
<td>wet tundra</td>
<td>2007</td>
<td>July</td>
<td>Flux chamber</td>
<td>84</td>
<td>von Fischer et al (2010)</td>
</tr>
<tr>
<td>Location</td>
<td>Latitude/Longitude</td>
<td>Type/Environment</td>
<td>Year(s)</td>
<td>Season(s)</td>
<td>Method</td>
<td>Flux/Conc (g C m⁻² d⁻¹)</td>
<td>Reference</td>
</tr>
<tr>
<td>--------------------------------</td>
<td>--------------------</td>
<td>---------------------------------</td>
<td>-----------</td>
<td>--------------------</td>
<td>----------------------</td>
<td>-------------------------</td>
<td>-------------------------------</td>
</tr>
<tr>
<td>Mukhrino, Siberia</td>
<td>60°53’N, 68°40’E</td>
<td>boreal bog</td>
<td>2008-2010</td>
<td>Summer/Autumn</td>
<td>Flux chamber</td>
<td>7</td>
<td>Sabrekov et al (2012)</td>
</tr>
<tr>
<td>Quebec, Canada</td>
<td>52°12’N, 75°29’W</td>
<td>boreal lake</td>
<td>2006-2008</td>
<td>May, June</td>
<td>Dissolved. gas conc.</td>
<td>0.69</td>
<td>Demarty et al (2011)</td>
</tr>
</tbody>
</table>
Figure S3.1 Modeled methane fluxes (mg CH$_4$ m$^{-2}$ d$^{-1}$) evaluated against mean monthly (a) tower eddy covariance (EC) records from Alaska (US-Brw BE/CB), Canada (CA-WP), Finland (Fi-Sii), Russia (RU-Sam, RU-Cok) and (b) chamber (boreal and tundra wetlands) and lake flux observations. Boxplot notches indicate the 95% confidence interval around the median (black horizontal line); lower and upper box boundaries indicate the first and third quartiles. The methane emission estimates for tundra sites are significantly lower (p < 0.05, n = 10) than the flux chamber observations.
Figure S3.2 Mean summer methane fluxes (mg CH₄ m⁻² d⁻¹) for northern tundra and peatland regions, over the 2003 to 2011 study period. The northward progression of summer emissions reflects soil warming and lessening frozen surface constraints, in addition to increases in labile carbon availability.
Figure S3.3 Regional correlations (r) between mean summer (May through September) dry air mole fractions (nmol CH$_4$ mol$^{-1}$) from NOAA ESRL flask sites in Alaska, Canada, and Finland, and modeled methane emissions (tonne CH$_4$ cell$^{-1}$) for sub-grid inundated (Fw) and non-inundated surface moisture conditions. The emissions from inundated surfaces reflect model simulations using dynamic 15-day Fw inputs, or static Fw climatology for the 2003-2011 summer period.
Figure S3.4 Recent trends in MERRA reanalysis summer surface soil temperature (T_s) for northern wetland regions $\geq 45^\circ$N, as indicated by Mann-Kendall tau rank coefficients. Positive (negative) tau indicates regional warming (cooling); black polylines denote areas with significant ($p < 0.05$) change over the 2003-2011 period.
S3 References

Chapter 4: A satellite data driven biophysical modeling approach for estimating northern wetland peatland and tundra CO$_2$ and CH$_4$ fluxes

Corresponding publication:

4.1 Abstract

The northern terrestrial net ecosystem carbon balance (NECB) is contingent on inputs from vegetation gross primary productivity (GPP) to offset the ecosystem respiration (R_{eco}) of carbon dioxide (CO$_2$) and methane (CH$_4$) emissions, but an effective framework to monitor the regional Arctic NECB is lacking. We modified a Terrestrial Carbon Flux (TCF) model developed for satellite remote sensing applications to evaluate wetland CO$_2$ and CH$_4$ fluxes over pan-Arctic eddy covariance (EC) flux tower sites. The TCF model estimates GPP, CO$_2$ and CH$_4$ emissions using in-situ or remote sensing and reanalysis based climate data as inputs. The TCF model simulations using in-situ data explained > 70% of the r^2 variability in the 8 day cumulative EC measured fluxes. Model simulations using coarser satellite (MODIS) and reanalysis (MERRA) records accounted for approximately 69% and 75% of the respective r^2 variability in the tower CO$_2$ and CH$_4$ records, with corresponding RMSE uncertainties of < 1.3 g C m$^{-2}$ d$^{-1}$ (CO$_2$) and 18.2 mg C m$^{-2}$ d$^{-1}$ (CH$_4$). Although the estimated annual CH$_4$ emissions were small (< 18 g C m$^{-2}$ yr$^{-1}$) relative to R_{eco} (> 180 g C m$^{-2}$ yr$^{-1}$), they reduced the across-site NECB by 23% and contributed to a global warming potential of approximately 165 ± 128 g CO$_2$ eq m$^{-2}$ yr$^{-1}$ when considered over a 100-year time span. This model evaluation indicates a strong potential for using the TCF model approach to document landscape scale variability in CO$_2$ and CH$_4$ fluxes, and to estimate the NECB for northern peatland and tundra ecosystems.
4.2 Introduction

Northern peatland and tundra ecosystems are important components of the terrestrial carbon cycle and store over half of the global soil organic carbon reservoir in seasonally frozen and permafrost soils (Hugelius et al. 2013). However, these systems are becoming increasingly vulnerable to carbon losses as CO$_2$ and CH$_4$ emissions, resulting from climate warming and changes in the terrestrial water balance (Kane et al. 2012, Kim et al. 2012) that can increase soil carbon decomposition. Recent net CO$_2$ exchange in northern tundra and peatland ecosystems varies from a sink of 291 Tg C yr$^{-1}$ to a source of 80 Tg C yr$^{-1}$, when considering the substantial uncertainty in regional estimates using scaled flux observations, atmospheric inversions, and ecosystem process models (McGuire et al. 2012). The magnitude of carbon sink largely depends on the balance between carbon uptake by vegetation productivity and losses from soil mineralization and respiration processes. High latitude warming can increase ecosystem carbon uptake by reducing cold-temperature constraints on plant carbon assimilation and growth (Hudson et al. 2011, Elmendorf et al. 2012). Soil warming also accelerates carbon losses due to the exponential effects of temperature on soil respiration, whereas wet and inundated conditions shift microbial activity towards anaerobic consumption pathways that are relatively slow but can result in substantial CH$_4$ production (Moosavi & Crill, 1997, Merbold et al. 2009).

Regional wetting across the Arctic (Watts et al. 2012, Zhang et al. 2012a) may increase CH$_4$ emissions, which have a radiative warming potential at least 25 times more potent than CO$_2$ per unit mass over a 100-year time horizon (Boucher et al. 2009). The northern latitudes already contain over 50% of global wetlands and recent increases in atmospheric CH$_4$ concentrations have been attributed to heightened gas emissions in these areas during periods of warming (Dlugokencky et al. 2009, Dolman et al. 2010). Northern peatland and tundra ($\geq 50^\circ$N) reportedly contribute between 8-79 Tg C in CH$_4$ emissions each year, but these fluxes have been difficult to constrain due to uncertainty in the parameterization of biogeochemical models, the regional characterization of wetland extent and water table depth, and a scarcity of ecosystem scale CH$_4$ emission observations (Petrescu et al. 2010, Riley et al. 2011, Spahni et al. 2011, McGuire et al. 2012, Meng et al. 2012).
Ecosystem studies using chamber and tower eddy covariance (EC) methods continue to provide direct measurements of CO$_2$ and CH$_4$ fluxes and add valuable insight into the environmental constraints on these processes. However, extrapolating localized carbon fluxes to regional scales has proven difficult and is severely constrained by the limited number of in-situ observations and the large spatial extent and heterogeneity of peatland and tundra ecosystems. Recent approaches have used satellite-based land cover classifications, photosynthetic leaf area maps, or wetness indices to “up-scale” CO$_2$ (Forbrich et al. 2011, Maruschak et al. 2013) and CH$_4$ (Tagesson et al. 2013, Sturtevant & Oechel 2013) flux measurements. Remote sensing inputs have also been used in conjunction with biophysical process modeling to estimate landscape-level changes in plant carbon assimilation and soil CO$_2$ emissions (Yuan et al. 2011, Tagesson et al. 2012a, Yi et al. 2013). Previous analyses of regional CH$_4$ contributions have ranged from the relatively simple modification of CH$_4$ emission rate estimates for wetland fractions per temperature and carbon substrate constraints (Potter et al. 2006, Clark et al. 2011) to the use of more complex multi-layer wetland CH$_4$ models with integrated hydrological components (McGuire et al. 2012, Wania et al. 2013). Yet, most investigations have not examined the potential for simultaneously assessing CO$_2$ and CH$_4$ fluxes, and the corresponding net ecosystem carbon balance (Sitch et al. 2007, Olefeldt et al. 2012, McGuire et al. 2012) for peatland and tundra using a satellite remote sensing based model approach.

It is well recognized that sub-surface conditions influence the land-atmosphere exchange of CO$_2$ and CH$_4$ production. However, near-surface soil temperature, moisture and carbon substrate availability play a crucial role in regulating ecosystem carbon emissions. Strong associations between surface soil temperature (\leq 10 cm depth) and CO$_2$ respiration have been observed in Arctic peatland and tundra permafrost systems (Kutzbach et al. 2007). Significant relationships between CH$_4$ emissions and temperature have also been reported (Hargreaves et al. 2001, Zona et al. 2009, Sachs et al. 2010). Although warming generally increases the decomposition of organic carbon, the magnitude of CO$_2$ production is constrained by wet soil conditions (Olivas et al. 2010) which instead favor CH$_4$ emissions and decrease methanotrophy in soil and litter layers (Turetsky et al. 2008, Olefeldt et al. 2012). Oxidation by methanotrophic communities in surface soils can reduce CH$_4$ emissions by over 90% when gas transport occurs
through diffusion (Preuss et al. 2013), but this constraint is often minimized when pore water content rises above 55-65% (von Fischer & Hedin, 2007, Sjögersten & Wookey 2009).

Despite increases in the availability of organic carbon and accelerated CO$_2$ release due to soil warming and thickening of the active layer in permafrost soils (Dorrepaal et al. 2009), anaerobic communities have shown a preference for light-carbon fractions (e.g. amines, carbonic acids) that are more abundant in the upper soil horizons (Wagner et al. 2009). Similarly, labile carbon substrates from recent photosynthates and root exudates have been observed to increase CH$_4$ production relative to heavier organic carbon fractions (Ström et al. 2003, Dijkstra et al. 2012, Olefeldt et al. 2013) that require longer decomposition pathways to break down complex molecules into the simple compounds (i.e. acetate, H$_2$ + CO$_2$) used in methanogenesis (Le Mer & Roger 2001).

The objective of this study was to evaluate the feasibility of using a satellite remote sensing data driven modeling approach to assess the daily and seasonal variability in CO$_2$ and CH$_4$ fluxes from northern peatland and tundra ecosystems, according to near-surface environmental controls including soil temperature, moisture and available soil organic carbon. In this paper, we incorporate a newly developed CH$_4$ emissions algorithm within an existing Terrestrial Carbon Flux (TCF) CO$_2$ model framework (Kimball et al. 2012; Yi et al. 2013). The CH$_4$ emissions algorithm simulates gas production using near-surface temperature, anaerobic soil fractions and labile organic carbon as inputs. Plant CH$_4$ transport is determined by vegetation growth characteristics derived from gross primary production (GPP), plant functional traits and canopy/surface turbulence. Methane diffusion is determined based on temperature and moisture constraints to gas movement through the soil column, and oxidation potential. Ebullition of CH$_4$ is assessed using a simple gradient method (van Huissteden et al. 2006).

The integrated TCF model allows for satellite remote sensing information to be used as primary inputs, requires minimal parameterization relative to more complex ecosystem process models, and provides a framework to monitor the terrestrial net ecosystem carbon balance (NECB). Although the NECB also encompasses other mechanisms of carbon transport, including dissolved and volatile organic carbon emissions and fire-based particulates, the NECB
is limited in this study to CO₂ and CH₄ fluxes, which often are primary contributors in high latitude tundra and peatland ecosystems (McGuire et al. 2010).

To evaluate the combined CO₂ and CH₄ algorithm approach, we compared TCF model simulations to tower EC records from six northern peatland and tundra sites within North America and Eurasia. For this study, baseline simulations driven with tower EC based GPP and in-situ meteorology data were first used to assess the capability of the TCF model approach to quantify temporal changes in landscape scale carbon (CH₄ and CO₂) fluxes. Secondly, CO₂ and CH₄ simulations using internal TCF model GPP estimates (Yi et al. 2013) and inputs from satellite and global model reanalysis records were used to evaluate the relative uncertainty introduced when using coarser scale information in place of in-situ data. These satellite and reanalysis driven simulations were then used to determine the annual CO₂ and CH₄ fluxes at the six tower sites, and the relative impact of CH₄ emissions on the NECB.

4.3 Methods

4.3.1 TCF model description

The combined TCF model CO₂ and CH₄ framework regulates carbon gas exchange using soil surface temperature, moisture and soil organic carbon availability as inputs, and has the flexibility to run simulations at local and regional scales. TCF model estimates of ecosystem respiration (Rₑₑₑ) and net ecosystem CO₂ exchange (NEE) have been evaluated against tower EC datasets from boreal and tundra systems using GPP, surface (≤ 10 cm depth) soil temperature (Tₛ) and volumetric moisture content (θ) inputs available from global model reanalysis and satellite remote sensing records (Kimball et al. 2009, McGuire et al. 2012). A recent adjustment to the TCF model (Kimball et al. 2012, Yi et al. 2013) incorporates a light-use efficiency (LUE) algorithm that provides internally derived GPP calculations to determine Rₑₑₑ and NEE fluxes at a daily time step. The adjusted TCF CO₂ model also allows for better user control over parameter settings and surface meteorological inputs (Kimbball et al. 2012). The CO₂ and newly added CH₄ flux model components are described in the following sections. A summary of the
TCF model inputs, parameters, and the associated parameter values used in this study are provided in the Supplement (Tables S4.1 and S4.2; Figure S4.1).

4.3.1.1 CO$_2$ flux component

The internal TCF model GPP algorithm estimates daily fluxes based on a biome-dependent vegetation maximum LUE coefficient (ε_{max}; mg C MJ$^{-1}$) which represents the optimal conversion of absorbed solar energy and CO$_2$ to plant organic carbon through photosynthesis (Kimball et al. 2012). To account for daily minimum air temperature (T_{min}) and atmospheric vapor pressure deficit (VPD) constraints on photosynthesis (Running et al. 2004), ε_{max} is reduced (ε) using dimensionless linear rate scalars ranging from 0 (total inhibition) to 1 (no inhibition) that are described elsewhere (i.e. Kimball et al. 2012, Yi et al. 2013). In this study, we also account for the sensitivity of shallow rooted vegetation and bryophytes, which lack vascular tissues for water transport, to changes in surface volumetric soil water (Wu et al. 2013), where θ_{min} and θ_{max} are the specified minimum and maximum parameter values:

$$\varepsilon = \varepsilon_{\text{max}} \times f(\text{VPD}) \times f(T_{\text{min}}) \times f(\theta)$$

where $f(\theta) = (\theta - \theta_{\text{min}})/(\theta_{\text{max}} - \theta_{\text{min}})$.

Simulated GPP (g C m$^{-2}$ d$^{-1}$) is obtained as:

$$GPP = \varepsilon \times 0.45 \text{ SW}_\text{rad} \times \text{FPAR}$$

where SW$_{\text{rad}}$ (W m$^{-2}$) is incoming shortwave radiation and FPAR is the fraction of daily photosynthetically active solar radiation (PAR; MJ m$^{-2}$) absorbed by plants during photosynthesis. For this approach, PAR is assumed to be 45% of SW$_{\text{rad}}$ (Zhao et al. 2005). Remotely sensed normalized difference vegetation index (NDVI) records have been used to estimate vegetation productivity (Schubert et al. 2010a, Parmentier et al. 2013) and changes in growing season length (Beck & Goetz 2011) across northern peatland and tundra environments. Daily FPAR is derived using the approach of Badawy et al. (2013) to mitigate potential biases in low biomass landscapes (Peng et al. 2012):

$$\text{FPAR} = \frac{0.94(\text{Index} - \text{Index}_{\text{min}})}{\text{Index}_{\text{range}}}$$

(3)
This approach uses NDVI or simple ratio (SR; i.e. \((1+\text{NDVI})/(1-\text{NDVI})\)) indices as input \textit{Index} values. The results are then averaged to obtain FPAR. \textit{Index}\textsubscript{range} corresponds to the difference between the 2nd and 98th percentiles in the NDVI and SR distributions (Badawry \textit{et al.} 2012).

Biome-specific autotrophic respiration \((R_a)\) is estimated using a carbon use efficiency (CUE) approach that considers the ratio of net primary production (NPP) to GPP (Choudhury 2000). Carbon loss from heterotrophic respiration \((R_h)\) is determined using a 3-pool soil litter decomposition scheme consisting of metabolic \((C_{\text{met}})\), structural \((C_{\text{str}})\) and recalcitrant \((C_{\text{rec}})\) organic carbon pools with variable decomposition rates. The \(C_{\text{met}}\) pool represents easily decomposable plant residue and root exudates including amino acids, sugars and simple polysaccharides, whereas the \(C_{\text{str}}\) pool consists of litter residues such as hemi-cellulose and lignin (Ise \textit{et al.} 2008, Porter \textit{et al.} 2010). The \(C_{\text{rec}}\) pool includes physically and chemically stabilized carbon derived from the \(C_{\text{met}}\) and \(C_{\text{str}}\) pools and corresponds to humified peat. A fraction of daily NPP \((F_{\text{met}})\) is first allocated as readily decomposable litterfall to \(C_{\text{met}}\) and the remaining portion \((1-F_{\text{met}})\) is transferred to \(C_{\text{str}}\) (Ise & Moorcroft 2006, Kimball \textit{et al.} 2009). To account for reduced mineralization in tundra and peatland environments, approximately 70 \% of \(C_{\text{str}}\) \((F_{\text{str}})\) is reallocated to \(C_{\text{rec}}\) (Ise & Moorcroft 2006, Ise \textit{et al.} 2008):

\[
dC_{\text{met}} / dt = \text{NPP} \times F_{\text{met}} - R_{h,\text{met}} \tag{4}
\]
\[
dC_{\text{str}} / dt = \text{NPP} \times (1-F_{\text{met}}) - (F_{\text{str}} \times C_{\text{str}}) - R_{h,\text{str}} \tag{5}
\]
\[
dC_{\text{rec}} / dt = (F_{\text{str}} \times C_{\text{str}}) - R_{h,\text{rec}} \tag{6}
\]

Daily CO\textsubscript{2} loss from the \(C_{\text{met}}\) pool (i.e. \(R_{h,\text{met}}\)) is determined as the product of \(C_{\text{met}}\) and an optimal decomposition rate parameter \((K_p)\). The realized decomposition rate \((K_{\text{met}})\) results from the attenuation of \(K_p\) by dimensionless \(T_s\) and \(\theta\) multipliers \((T_{\text{mult}}\text{ and } W_{\text{mult}}\text{, respectively})\), that vary between 0 (fully constrained) and 1 (no constraint):

\[
K_{\text{met}} = K_p \times T_{\text{mult}} \times W_{\text{mult}} \tag{7}
\]
\[
T_{\text{mult}} = \exp\left\{ 308.56 \left(66.02^{-1} - \left(T_s + T_{\text{ref}} - 66.17 \right)^{-1} \right) \right\} \tag{8}
\]
\[
W_{\text{mult}} = 1 - 2.2 \left(\theta - \theta_{\text{opt}} \right)^2 \tag{9}
\]
The temperature constraints are imposed using an Arrhenius-type function (Lloyd & Taylor, 1994, Kimball et al. 2009) where decomposition is no longer limited when average daily T_s exceeds a user-specified reference temperature (T_{ref}, in K) which can vary with carbon substrate complexity, physical protection, oxygen availability and water stress (Davidson & Janssens 2006). The W_{multi} modifier accounts for the inhibitory effect of dry and near-saturated soil moisture conditions on heterotrophic decomposition (Oberbauer et al. 1996). For this study, θ_{opt} is set to 80% of pore saturation to account for ecosystem adaptations to wet soil conditions (Ise et al. 2008, Zona et al. 2012) and near-surface oxygen availability provided by plant root transport (Elberling et al. 2011). Decomposition rates for C_{str} and C_{rec} (K_{str}, K_{rec}) are determined as 40% and 1% of K_{met}, respectively (Kimball et al. 2009), and R_a is the total CO$_2$ loss from the three soil organic carbon pools:

$$R_a = K_{met} \times C_{met} + K_{str} \times C_{str} + K_{rec} \times C_{rec}$$ \hspace{1cm} (10)

Finally, the TCF model estimates NEE (g C m$^{-2}$ d$^{-1}$) as the residual difference between R_{eco}, which includes R_a and R_h respiration components, and GPP. Negative (-) and positive (+) NEE fluxes denote respective terrestrial CO$_2$ sink and source activity:

$$NEE = (R_a + R_h) - GPP$$ \hspace{1cm} (11)

4.3.1.2 CH$_4$ flux component

A CH$_4$ emissions algorithm was incorporated within the TCF model to estimate CH$_4$ fluxes for peatland and tundra landscapes. The model estimates CH$_4$ production according to T_s, θ, and labile carbon availability. Plant CH$_4$ transport is modified by vegetation growth and production, plant functional traits, and canopy aerodynamic conductance which takes into account the influence of wind turbulence on moisture/gas flux between vegetation and the atmosphere. The CH$_4$ module is similar to other process models (e.g. Walter & Heimann 2000, van Huissteden et al. 2006) but reduces to a one-dimensional near-surface soil profile following Tian et al. (2010) to simplify model parameterization amenable to remote sensing applications. For the purposes of this study, the soil profile is defined for near-surface soil layers as most temperature and moisture retrievals from satellite remote sensing do not characterize deeper soil conditions. Although this approach may not account for variability in carbon fluxes associated...
with deeper soil constraints, field studies from high latitude ecosystems have reported strong associations between CH$_4$ emissions and near-surface conditions including T_s and soil moisture (Hargreaves et al. 2001, Sachs et al. 2010, von Fischer et al. 2010, Sturtevant et al. 2012, Tagesson et al. 2012b).

Soil moisture in the upper rhizosphere is a fundamental control on CH$_4$ production and emissions to the atmosphere. Methanogenesis (R_{CH4}) within the saturated soil pore volume (φ_s; m$^{-3}$; the aerated pore volume is denoted as φ_a) is determined according to an optimal CH$_4$ production rate (R_o; µM CH$_4$ d$^{-1}$) and labile photosynthates:

$$R_{CH4} = (R_o \times \varphi_s) \times C_{met} \times Q_{10p}^{(T_s - T_{ref})/10} \tag{12}$$

For this study, CH$_4$ production was driven using the soil C_{met} pool to reflect contributions by lower weight carbon substrates (Reiche et al. 2010, Corbett et al. 2012) in labile organic carbon-rich environments. Carbon from the C_{str} pathway may also be allocated for CH$_4$ production in ecosystems with lower labile organic carbon inputs and higher contributions by hydrogenotrophic methanogenesis (Alstad & Whiticar 2011). The Q_{10p} temperature modifier is used as an approximation to the Arrhenius equation and describes the temperature dependence of biological processes (Gedney & Cox 2003, van Huissteden et al. 2006). The reference temperature (T_p) typically reflects mean annual or non-frozen season climatology. Both Q_{10p} and T_p can be adjusted, in addition to R_o, to accommodate varying temperature sensitivities in response to ecosystem differences in substrate quality and other environmental conditions (van Hulzen et al. 1999, Inglett et al. 2012). Methane additions from R_{CH4} are first allocated to a temporary soil storage pool (C_{CH4}) prior to determining the CH$_4$ emissions for each 24-h time step; C_{met} is also updated to account for carbon losses due to CH$_4$ production.

The magnitude of daily CH$_4$ emissions (F_{CH4}) from the soil profile is determined through plant transport (F_{plant}), soil diffusion (F_{diff}) and ebullition (F_{ebull}) pathways:

$$F_{CH4} = F_{plant} + F_{diff} + F_{ebull} \tag{13}$$

Vegetation plays an important role in terrestrial CH$_4$ emissions by allowing for gas transport through the plant structure, avoiding slower diffusion through the soil column and often reducing the degree of CH$_4$ oxidation (Joabsson et al. 1999). Daily F_{plant} is determined using a rate
constant \((C_p)\) modified by vegetation growth and production \((f_{grow})\), an aerodynamic term \((\lambda)\) and a rate scalar \((P_{trans})\) that account for differences in CH\(_4\) transport ability according to plant functional type:

\[
F_{plant} = (C_{CH4} \times C_p \times f_{grow} \times \lambda \times P_{trans}) (1 - P_{ox})
\]

A fraction of \(F_{plant}\) is oxidized \((P_{ox})\) prior to reaching the atmosphere and can be modified according to plant functional characteristics (Frenzel & Rudolph 1998; Ström et al. 2005, Kip et al. 2010). Plant transport is further reduced under frozen surface conditions to account for pathway obstruction by ice and snow or bending of the plant stem following senescence (Hargreaves et al. 2001, Sun et al. 2012). The magnitude of \(f_{grow}\) is determined as the ratio of daily GPP to its annual maximum and is used to account for seasonal differences in root and above-ground biomass (Chanton 2005).

Aerodynamic conductance \((g_a)\) represents the influence of near-surface turbulence on energy/moisture fluxes between vegetation and the atmosphere (Roberts 2000, Yan et al. 2012) and gas transport within the plant body (Sachs et al. 2008, Wegner et al. 2010, Sturtevant et al. 2012):

\[
g_a = k^2 \mu_m \frac{\ln[(z_m - d)/z_{om}]}{\ln[(z_m - d)/z_{ov}]} \]

Values for \(z_m\) and \(d\) are the respective anemometer and zero plane displacement heights (m); \(z_{om}\) and \(z_{ov}\) are the corresponding roughness lengths (m) for momentum, heat and vapor transfer. The von Karman constant \((k; 0.40)\) is a dimensionless constant in the logarithmic wind velocity profile (Högström 1988), \(\mu_m\) is average daily wind velocity (m s\(^{-1}\)), \(d\) is calculated as 2/3 of the vegetation canopy height, \(z_{om}\) is roughly 1/8th of canopy height (Yang & Friedl 2002), and \(z_{ov}\) is 0.1\(z_{om}\) (Yan et al. 2012). The estimated \(g_a\) is then scaled between 0 and 1 to obtain \(\lambda\) using a linear function for sites with a lower observed sensitivity to surface turbulence; for environments with a higher sensitivity to surface turbulence, a quadratic approach is used when \(\mu_m\) exceeds 4 m s\(^{-1}\):

\[
\lambda = 0.0246 + 0.5091g_a, \quad \mu_m \leq 4 \text{ m s}^{-1} \\
\lambda = 0.0885 - (3.28g_a) + (44.51g_a^2), \quad \mu_m > 4 \text{ m s}^{-1}
\]
Although this approach focuses on the influence of wind turbulence on plant gas transport within vegetated wetlands, it is also applicable for inundated microsites where increases in surface water mixing can stimulate CH₄ degassing (Sachs et al. 2010). In addition, Eq. 15 reflects near-neutral atmospheric stability and adjustments may be necessary to accommodate unstable or stable atmospheric conditions (Raupach 1998).

The upward diffusion of CH₄ within the soil profile is determined using a one-layer approach similar to Tian et al. (2010). The rate of CH₄ transport (D_e; m² d⁻¹) is considered for both saturated (D_{water}; 1.73×10^{-4} µM CH₄ d⁻¹) and aerated (D_{air}; 1.73 µM CH₄ d⁻¹) soil fractions:

$$D_e = (D_{water} \times \varphi_s) (D_{air} \times \varphi_a)$$ \hspace{1cm} (17)

Potential daily transport through diffusion (P_{diff}) is estimated as the product of D_e and the gradient between C_{CH4} and the concentration of CH₄ in the atmosphere (Air_{CH4}). This is further modified by soil tortuosity ($\tau; 0.66$), which increases exponentially for $T_s < 274$ K to account for slower gas movement at colder temperatures and barriers to diffusion resulting from near-surface ice formation (Walter & Heimann 2000, Zhuang et al. 2004) and pathway constraints within the saturated pore fraction $(1 - \theta)$:

$$P_{diff} = \tau \times D_e \left(C_{CH4} - Air_{CH4} \right) (1 - \theta)$$

$$T_s \geq 274, \hspace{0.5cm} \tau = 0.66$$

$$T_s < 274, \hspace{0.5cm} \tau = 0.05 + 10^{-238} \times T_s^{97.2}$$ \hspace{1cm} (18)

A portion of diffused CH₄ is oxidized (R_{oa}) before reaching the soil surface, using a Michaelis-Menten kinetics approach that is scaled by φ_{ac}:

$$R_{oa} = \frac{(V_{max} \times \varphi_a) P_{diff} \times Q_{10d}^{(Ts-Td)/10}}{(K_m + \varphi_a) P_{diff}}$$ \hspace{1cm} (19)

where V_{max} is the maximum reaction rate and K_m is the substrate concentration at 0.5V_{max} (van Huissteden et al. 2006). Oxidation during soil diffusion is modified by soil temperature Q_{10} constraints (Q_{10d}); T_d is the reference temperature and can be defined using site-specific mean annual T_s (Le Mer & Roger 2001). Total daily CH₄ emission (F_{diff}) from the soil diffusion pathway is determined by subtracting R_{oa} from P_{diff}.

105
The CH\textsubscript{4} algorithm uses a gradient-based approach to account for slow or “steady-rate” ebullition from inundated micro-sites in the landscape (Rosenberry et al. 2006, Wania et al. 2010), whereas episodic events originating deeper within the soil require more complex modeling techniques and input data requirements (Kettridge et al. 2011) that are beyond the scope of this study. Emission contributions due to ebullition occur when \(C_{CH4} \) exceeds a threshold value \((\nu_e) \) of 500 μM (van Huissteden et al. 2006). The magnitude of gas release is determined by steady-rate bubbling \((C_e) \) applied within the saturated soil pore space \((\phi_s) \):

\[
F_{ebull} = (C_e \times \phi_s)(C_{CH4} - \nu_e), \quad C_{CH4} > \nu_e
\]

(20)

4.3.2 Study sites and in situ data records

Tower EC records from six pan-Arctic peatland and tundra sites in Finland, Sweden, Russia, Greenland and Alaska were used to assess the integrated TCF model CO\textsubscript{2} and CH\textsubscript{4} simulations (Figure 1; Table 1). The Scandinavian tower sites include Siikaneva (SK) in southern Finland and Stordalen Mire (SM) in northern Sweden near the Abisko Scientific Research Station. The Lena River Delta (LR) site is located on Samoylov Island in northern Siberia and EC measurements from the Kytalyk (KY) flux tower were collected near Chokurdakh in northeastern Siberia. The Zackenberg (ZK) flux tower is located within Northeast Greenland National Park, and tower data records for Alaska were obtained from a water table manipulation experiment (Zona et al. 2009; 2012, Sturtevant et al. 2012) approximately 6 km east of Barrow (BA). With exception of Siikaneva, the EC tower footprints represent wet permafrost ecosystems with complex, heterogeneous terrain that includes moist depressions, drier, elevated hummocks and inundated microsites. Vegetation within the tower footprints (Rinne et al. 2007; Riutta et al. 2007, Sachs et al. 2008, Jackowicz-Korczyński et al. 2010, Parmentier et al. 2011a, Zona et al. 2011, Tagesson et al. 2012b) consists of Carex and other sedges, dwarf shrubs (e.g. Dryas and Salix), grasses (e.g. Arctagrostis) and Sphagnum moss (with exception of Zackenberg).

Mean daily \(T_s \) and \(\theta \) site measurements corresponding to near-surface \((\leq 10 \text{ cm}) \) soil depths were selected when possible (Table 1), to better coincide with the soil penetration depths anticipated for upcoming satellite-based microwave remote sensing missions (Kimball et al.
For Siikaneva, reanalysis θ was used in place of in-situ measurements as only water table depth information was available to describe soil wetness (Rinne et al. 2007). At the Lena River site T_s and θ (≤ 12 cm) observations were obtained from the nearby Samoylov meteorological station and represent tundra polygon wet center, dry rim and slope conditions (Boike et al. 2008; Sachs et al. 2008). Although θ was also measured during summer 2006, the in-situ records are limited to the wet polygon center location (Boike, personal communication, 2012) and were not used in this study due to the potential for overestimating saturated site conditions. For Zackenberg, site T_s measurements were obtained at a 2 cm depth (Tagesson et al. 2012a, b) within the tower footprint, while near-surface θ (< 20 cm) and ≥ 5 cm T_s measurements were collected adjacent to the site (Sigsgaard et al. 2011). At Stordalen, site θ measurements were not available at the time of this study (Jackowicz-Korczyński et al. 2010). Barrow (Zona et al. 2009, Sturtevant et al. 2012) includes southern (S), central (C) and northern (N) tower locations; in 2007 only CO$_2$ and CH$_4$ EC measurements from the northern tower were used in the analysis, due to minimal EC data availability for the other tower sites following data processing (Zona et al. 2009). Many of the Barrow CO$_2$ measurements were also rejected for the 2009 period; as a result NEE was not partitioned into R_{eco} and GPP (Sturtevant et al. 2012).

4.3.3 Remote sensing and reanalysis inputs

Daily input meteorology was obtained from the Goddard Earth Observing System Data Assimilation Version 5 (GEOS-5) MERRA archive (Rienecker et al. 2011) with $1/2 \times 2/3^\circ$ spatial resolution. The MERRA records were recently verified for terrestrial CO$_2$ applications in high latitude systems (Yi et al. 2011; 2013, Yuan et al. 2011), and provide model enhanced T_s and surface θ information similar to the products planned for the NASA Soil Moisture Active Passive (SMAP) mission (Kimball et al. 2012). In addition to near surface (≤ 10 cm) T_s and θ information from the MERRA-Land reanalysis (Reichle et al. 2011) required for the R_{eco} and CH$_4$ simulations, daily MERRA SW$_{rad}$, T_{min} and VPD records were used to drive the internal GPP calculations. The MERRA near-surface (2 m) wind parameters were also used to obtain mean daily μ_m for the CH$_4$ simulations. The MERRA-Land records for Greenland are spatially limited due to land cover/ice masking inherent in the reanalysis product, and MERRA T_s and θ were not available for the Zackenberg tower site. As a proxy, T_s was derived from reanalysis
surface skin temperatures by applying a simple Crank-Nicholson heat diffusion scheme which accounts for energy attenuation with increasing soil depth (Wania et al. 2010); for θ, records from a nearby grid cell were used to represent moisture conditions at Zackenberg.

For the daily LUE-based GPP simulations, quality screened cloud-filtered 16-day 250 m NDVI values from MODIS Terra (MOD13A1) and Aqua (MYD13Q1) data records (Solano et al. 2010) were used as model inputs. Differences between the MOD13A1 and MYD13Q1 retrievals were minimal at the tower locations, and the combination of Terra and Aqua MODIS records reduced the retrieval gaps to approximate 8 day intervals. The NDVI retrievals correspond to the center coordinate locations for each flux tower site, and temporal linear interpolation was used to scale the 8-day NDVI records to daily inputs. Coarser (500-1000 m resolution) NDVI records were not used in this study due to the close proximity of water bodies at the tower sites, which can substantially reduce associated FPAR retrievals. In addition, 250 m MODIS vegetation indices have been reported to better capture the overall seasonal variability in tower EC flux records (Schubert et al. 2012).

4.3.4 TCF model parameterization

A summary of the site specific TCF model parameters is provided in the Supplement (Table S4.2). Parameter values associated with grassland biomes were selected for the LUE model VPD and T_{min} modifiers used to estimate GPP (Yi et al. 2013), as more specific values for tundra and moss-dominated wetlands were not available. Parameter values for θ_{max} were obtained using growing-season maximum θ measurements for each site and θ_{min} was set to 0.15 for scaling purposes. Model ε_{max} was specified as 0.82 mg C MJ^{-1} for the duration of the growing season, although actual LUE can vary throughout the summer due to differences in vegetation growth phenology and nutrient availability (Connolly et al. 2009, King et al. 2011). The tundra CUE ranged from 0.45 to 0.55 (Choudhury 2000); a lower CUE value of 0.35 was used for the moss-dominated Siikaneva site due to a more moderate degree of carbon assimilation occurring in bryophytes that has been observed in other sub-Arctic communities (Street et al. 2012). For the TCF model F_{net} parameter, the percentage of NPP allocated to C_{net} varied between 70 % and 72 % for tower tundra sites (Kimball et al. 2009) compared to 50 % and 65 % for Siikaneva and Stordalen where moss cover is more abundant. The TCF model R_{o} parameter ranged from 4.5
and 22.4 μM CH₄ d⁻¹ (Walter & Heimann 2000, van Huissteden et al. 2006). Values for Q₁₀ₚ varied between 3.5 and 4 due to an enhanced microbial response to temperature variability under colder climate conditions (Gedney & Cox 2003, Inglett et al. 2012). A Q₁₀ᴰ of 2 was assigned for CH₄ oxidation (Zhuang et al. 2004, van Huissteden et al. 2006). Parameter values for Ptrans, which indicates relative plant transport ability, ranged from 7 to 9 (dimensionless); lower values were assigned to tower locations with a higher proportion of shrub and moss cover, whereas higher Ptrans corresponds to sites where sedges are more prevalent (Ström et al. 2005, Rinne et al. 2007). For λ, the scaled conductance for lower site wind sensitivity was used in the CH₄ model simulations, except for Lena River which showed higher sensitivity to surface turbulence. Values for Pox ranged from 0.7 in tundra to 0.8 in Sphagnum-dominated systems to account for higher CH₄ oxidation by peat mosses (Parmentier et al. 2011c). Due to a lack of detailed soil profile descriptions and heterogeneous tower footprints, soil porosity was assigned at 75 % for sites with more abundant fibrous surface layer peat (i.e. Siikaneva and Stordalen) and 70 % elsewhere to reflect more humified or mixed organic and mineral surface soils (Elberling et al. 2008, Verry et al. 2011).

4.3.5 TCF model simulations

The TCF model was first evaluated against tower EC records using simulations driven with in-situ environmental data including EC based GPP, Tₛ, θ and μm. This step allowed for baseline TCF model Rₑₒ and CH₄ flux estimates to be assessed without introducing additional uncertainties from input reanalysis meteorology and LUE model derived GPP calculations. Four additional TCF model simulations were conducted using reanalysis θ, Tₛ, μm (in the CH₄ module), or internal model GPP in place of the in-situ data. A final TCF model run included only satellite and reanalysis based data, and was used to establish annual GPP, Rₑₒ and CH₄ carbon budgets for each site. Baseline carbon pools were initialized by continuously cycling (“spinning-up”) the model for the tower years of record (described in Table 1) to reach a dynamic steady-state between estimated NPP and surface soil organic carbon stocks (Kimball et al. 2009). In-situ data records were used during the model spin-up to establish baseline organic carbon conditions for the first five TCF model simulations, although it was often necessary to
supplement these data with reanalysis information to obtain a continuous annual time series. The final model simulation did not include in-situ data in the spin-up process.

The temporal agreement between the tower EC records and TCF model simulations was assessed using Pearson correlation coefficients \((r; ±\text{ one standard deviation})\) for the daily, 8 day, and total-period (EC length of record) cumulative carbon fluxes and corresponding tests of significance at a 0.05 probability level. The 8 day and total-period cumulative fluxes were evaluated, in addition to the daily fluxes, to account for differences between the model estimates and tower EC records stemming from temporal lags between changing environmental conditions and resulting carbon (CO\(_2\), CH\(_4\)) emissions (Lund \textit{et al}. 2010, Levy \textit{et al}. 2012). The mean residual error (MRE) between the tower EC records and TCF modeled CO\(_2\) and CH\(_4\) fluxes was used to identify potential positive (underestimation) and negative (overestimation) biases in the simulations; root-mean-square-error (RMSE) differences were used as a measure of model estimate uncertainty in relation to the tower EC records.

4.4 Results

4.4.1 Surface organic carbon pools

The TCF model generated surface soil organic carbon pools represent steady-state conditions obtained through the continuous cycling of in-situ or satellite and reanalysis environmental data for the years of record associated with each tower site (described in Table 1). Approximately 600 and 1000 years of model spin-up were required for \(C_{\text{rec}}\) to reach dynamic steady state conditions. Over 95 \% of the resulting total carbon pool was allocated to \(C_{\text{rec}}\) by the TCF model, with 2-3 \% stored as \(C_{\text{met}}\) and the remainder partitioned to \(C_{\text{str}}\). The estimated carbon pools from the in-situ (reanalysis-based) model spin-up ranged from approximately 3.3 kg C m\(^{-2}\) (2.3 kg C m\(^{-2}\)) for Zackenberg and Stordalen to 1.3 kg C m\(^{-2}\) (2.1 kg C m\(^{-2}\)) for the other tower sites.

Differences in carbon stocks, resulting from the use of satellite remote sensing and reanalysis information in the TCF model, reflect warm or cold biases in the input \(T_s\) records relative to the in-situ data that modified the rate of CO\(_2\) loss during model initialization. The
larger carbon stocks at Zackenberg, compared to the other tundra sites, resulted from higher
tower EC based GPP inputs that often exceeded 5 g C m\(^{-2}\) d\(^{-1}\) in mid-summer, and a short (< 50
day) peak growing season (Tagesson et al. 2012a) that minimized TCF modeled \(R_h\) losses.
Although it was necessary to use internal LUE based GPP calculations for Stordalen in the
absence of available CO\(_2\) records, the resulting \(C_{net}\) and \(C_{rec}\) carbon stocks were similar in
magnitude to surface litter measurements at this site (Olsrud & Christensen 2011). The TCF
model simulated carbon stock for Lena River was less than a 2.9 kg C m\(^{-2}\) average determined
from in-situ (≤ 10 cm depth) measurements of nearby river terrace soils (Zubrzycki et al. 2013),
but this could have resulted from site spatial heterogeneity and the use of recent climate records
in the model spin-up that may not reflect past conditions.

4.4.2 LUE based GPP

The GPP simulations using reanalysis and satellite based inputs captured the overall
seasonality observed in the tower records (Figure 2; Table 2) and explained 76% \((r^2; p < 0.05, N
= 7)\) of variability in the total EC period-of-record fluxes (Figure 3). The across-site RMSE and
MRE were 1.3 ± 0.51 and -0.1 ± 0.7 g C m\(^{-2}\) d\(^{-1}\), respectfully. Although the 8 day cumulative
flux correspondence between the tower EC and TCF model GPP estimates was strong \((r^2 = 75 ±
16 \%)\), the model-tower agreement decreased considerably for daily GPP \((r^2 = 57 ± 22\%)\). These
differences may reflect a delayed response in vegetation productivity following changes in
atmospheric and soil conditions (Lund et al. 2010), and short term fluctuations in the reanalysis
SW\(_{rad}\) inputs. For Kytalyk, the large RMSE (2.2 g C m\(^{-2}\) d\(^{-1}\)) observed for the TCF model GPP
simulations resulted from warm spring air temperatures that reduced \(T_{min}\) constraints on carbon
assimilation, although a similar increase in GPP did not occur in the EC based records. This lack
of response likely resulted from a shallow (< 14 cm) early season thaw depth at this site, that
limited bud break activity in deeper rooted shrubs (e.g. Betula nana and Salix pulchra). To
address this, an additional simulation was conducted using a temperature driven phenology
model described in Parmentier et al. (2011a) to better inform the start of growing season in the
TCF model. This step reduced the corresponding RMSE difference for Kytalyk by 56% (to 1 g
C m\(^{-2}\) d\(^{-1}\)) with an associated \(r^2\) of 67%.
Although previous LUE models (e.g. Running et al. 2004, Yi et al. 2013) have relied solely on VPD to represent water related constraints to GPP, our approach also considers soil moisture to better account for the sensitivity of bryophytes and shallow rooted vegetation to surface drying (Wu et al. 2013). Including this additional moisture constraint reduced the overall TCF model and tower GPP RMSE and MRE differences by approximately 14% and 92%. However, the model simulations continued to overestimate GPP fluxes for Siikaneva, Lena River (2003), and Kytalyk (MRE = -0.6 ± 0.8 g C m⁻² d⁻¹). This residual GPP bias could be influenced by inconsistencies between the coarse scale MERRA reanalysis inputs and local tower meteorology, as reported elsewhere (e.g. Yi et al. 2013), although systematic biases for the high latitude regions have not been identified. For instance, periods of warmer (3 to 4 °C) reanalysis T_{min} inputs relative to in-situ measurements at Lena River in 2003 led to seasonally higher TCF modeled GPP fluxes. In contrast, the reanalysis T_{min} at Barrow was 2 to 7 °C cooler in mid-summer than the local meteorology; this resulted in significantly lower (p < 0.05) TCF model GPP estimates relative to the tower EC records (Table 2). It is also possible that differences in the light response curve and respiration models, used when partitioning the site EC NEE fluxes into GPP and R_{eco} (i.e. Aurela et al. 2007, Kutzbach et al. 2007; Parmentier et al. 2011a, Tagesson et al. 2012, Zona et al. 2012), may have contributed to differences between the TCF model simulations and tower CO₂ records. However, further investigation is needed to determine the expected range of GPP and R_{eco} that might result from variability in the flux partitioning routines.

4.4.3 R_{eco} and NEE

The in-situ TCF model R_{eco} simulations accounted for 59 ± 28% and 76 ± 24% (r^2) of the observed variability in the respective daily and 8 day cumulative tower EC fluxes (Figure 4; Table 2). As with GPP, the r^2 agreement increased to 89% (p < 0.05, N = 6) when considering the total-period cumulative fluxes (Figure 3). The overall RMSE difference for the in-situ based TCF model R_{eco} and NEE simulations was 0.74 ± 0.45 g C m⁻² d⁻¹ when using 5 cm depth T_s inputs. A corresponding across-site MRE of -2.1 ± 5.7 g C m⁻² d⁻¹ indicated that the TCF model simulations overestimated R_{eco} relative to the tower records, and slightly underestimated NEE (MRE = 0.1 ± 0.4 g C m⁻² d⁻¹). We also conducted TCF model simulations using 8-10 cm depth
in-situ \(T_s \) inputs, instead of those from \(\leq 5 \) cm (as reported in Table 2), to investigate the influence of deeper soil thermal controls on site \(R_{eco} \) response; this step reduced the overall RMSE by approximately 12%.

Incorporating the TCF internal LUE model GPP estimates increased the overall RMSE for \(R_{eco} \) and NEE by 23% relative to the in-situ based simulations, compared to a respective 3% and 14% increase when using reanalysis \(\theta \) or \(T_s \) inputs (Figure 5). The model-tower daily and 8 day cumulative correspondence was also lower \((r^2 = 32 \text{ and } 56\% \text{, respectively}) \) for CO \(_2\) simulations driven using internally derived GPP, relative to those using reanalysis \(\theta \) or \(T_s \) inputs \((r^2 = 57 \text{ and } 72\%) \) in place of the in-situ records. Without the in-situ inputs, the respective RMSE and MRE difference between the reanalysis based \(R_{eco} \) (NEE) simulations and the tower EC records averaged \(0.9 \pm 0.4 \) and \(-0.2 \pm 0.9 \) g C m\(^{-2}\) d\(^{-1}\) (\(1 \pm 0.5 \) and 0.3 \(\pm \) 0.05 g C m\(^{-2}\) d\(^{-1}\)).

The reanalysis and remote sensing based TCF model \(R_{eco} \) (NEE) simulations accounted for 51 \(\pm \) 29 (45 \(\pm \) 34) % and 71 \(\pm \) 17 (62 \(\pm \) 34) % of the observed \(r^2 \) variability in the respective daily and 8 day tower EC records. The mean \(r^2 \) values exclude TCF model results for Barrow and Kytalyk, which did not show significant \((r \leq 0.20; \ p \geq 0.16) \) agreement with the site EC records (Table 2). For Barrow, it is likely that the water table manipulations at this site led to local temperature and moisture variability that was not reflected in the coarse reanalysis and remote sensing inputs. The minimal agreement at Kytalyk is attributed to higher \(R_h \) losses driven by warmer reanalysis \(T_s \) inputs, and increased \(R_a \) contributions due to the overestimation of GPP relative to the tower EC records.

\textbf{4.4.4 CH\(_4\) fluxes}

The in-situ TCF model CH\(_4\) simulations explained 64 \(\pm \) 11 % and 80 \(\pm \) 12 % \((r^2) \) of the respective daily and 8 day cumulative variability observed in the tower EC records (Figure 6; Table 3), when excluding Kytalyk \((p = 0.1) \). The \(r^2 \) correspondence increased to 98 % when considering the total period-of-record emissions across the six sites \((p < 0.05, N = 9) \). At Kytalyk, Parmentier \textit{et al.} (2011b) reported large differences in measured half-hourly CH\(_4\) fluxes following shifts in wind direction, and larger emissions from portions of the tower footprint containing \textit{Carex} sp., \textit{E. angustifolium} and inundated microsites. Although this may have
contributed to the observed discrepancy between the TCF model estimates and tower EC record, attempts to systematically screen the CH$_4$ observations based on wind direction, or to use daily EC medians instead of mean values, did not substantially improve the model results.

On average, the in-situ TCF model simulations overestimated CH$_4$ fluxes relative to the tower EC records (MRE = -2.2 mg C m$^{-2}$ d$^{-1}$), with RMSE differences varying from 6.7 to 42.5 mg C m$^{-2}$ d$^{-1}$. Without including μ_m in the TCF model, the resulting RMSE increased by $> 10\%$ and the mean daily correspondence decreased to $r^2 < 40\%$. The most substantial difference was observed for Lena River, where excluding μ_m reduced the daily and 8 day emission correspondence by over 60\%. Unlike the TCF model R_{eco} results, deeper (10 cm depth) T_s measurement inputs did not improve the RMSE values, except for Barrow (2007N) where the RMSE decreased by 35\%. This sensitivity to deeper T_s conditions may reflect changes in active layer depth following water table manipulations at this site (Zona et al. 2009, 2012), and associated changes in carbon substrate availability. In contrast, the RMSE for Lena River was 15\% higher when using in-situ 10 cm T_s records in the TCF model simulations instead of 5 cm depth measurements. A 6\% decrease in the RMSE occurred for Zackenberg (2008) when using the warmer (3 to 5 °C) 2 cm depth T_s records, relative to model simulations using 5 cm T_s inputs. Contrary to expectations, the 2 cm depth T_s inputs did not improve RMSE differences for Zackenberg in 2009 when site moisture conditions were drier (Tagesson et al. 2012a).

The reanalysis driven TCF model CH$_4$ simulations (Figure 6; Table 3) accounted for 48 ± 16\% and 79 ± 8\% (r^2) of the respective daily and 8 day variability in the tower EC records when excluding the less favorable results for Kytalyk ($r^2 = 8$ and 44\%, respectively). Although slightly lower than the in-situ TCF model CH$_4$ estimates, the coarser reanalysis and remote sensing driven simulations explained 96\% (r^2) of the total period-of-record emissions at these sites (Figure 3). The corresponding model RMSE was 18.2 ± 13.6 mg C m$^{-2}$ d$^{-1}$, with an associated MRE difference of 1.8 ± 7.3 mg C m$^{-2}$ d$^{-1}$ that indicated the slight model underestimation of daily CH$_4$ emissions. The model RMSE differences increased by approximately 15\% when using reanalysis μ_m records or internal GPP estimates in place of the in-situ inputs, and by 10\% when incorporating reanalysis T_s and θ inputs (Figure 7).
4.4.5 Estimates of annual carbon budgets

The reanalysis and remote sensing driven TCF model simulations indicated a net CO₂ sink (NEE = -34.5 ± 18.5 g C m⁻² yr⁻¹) for the tower sites, excluding Barrow in 2009 (NEE = 7.3 g C m⁻² yr⁻¹) where the estimated R_{eco} emissions exceeded annual GPP (Figure 8). Other studies near Barrow have also reported NEE losses from wet tundra communities, resulting from drier micro-scale surface conditions and warming within the hummocky landscape (Huemmrich et al. 2010b, Sturtevant & Oechel 2013) which can strongly influence R_{eco}. The corresponding TCF model R_{eco} estimates ranged from 133 (Zackenberg in 2009) to 494 g C m⁻² yr⁻¹ (Stordalen in 2006) with lower CO₂ emissions occurring in the colder, more northern tundra sites. The strongest NEE carbon sink indicated by the model simulations was observed for the peat-rich Siikaneva site (-70.3 g C m⁻² yr⁻¹) due to high annual GPP (462.5 g C m⁻² yr⁻¹) relative to the other tower locations. Although tower EC CO₂ records were not available for Stordalen to verify the TCF model NEE results (-50.8 and -65.8 g C m⁻² yr⁻¹ respectively), the estimates are slightly smaller (~ 30 g C m⁻² d⁻¹) than other NEE approximations over the same time period (Christensen et al. 2012) but are similar to observations reported for other years at this site (Olefeldt et al. 2012; Marushchak et al. 2013).

The annual TCF model CH₄ estimates determined using the reanalysis inputs averaged 6.9 (± 5.5) g C m⁻² yr⁻¹ for the six tower sites. The highest CH₄ emissions were observed for Stordalen and Siikaneva (≥ 11.8 g C m⁻² yr⁻¹) due to higher model-defined CH₄ production rates and summer reanalysis T_s records that were often 5 °C warmer than the other sites. In contrast, model CH₄ emissions were lowest for Barrow (1.8 g C m⁻² yr⁻¹) due to smaller GPP estimates and colder summer reanalysis T_s records that did not reflect the unusually warm site conditions in 2007 (Shiklomanov et al. 2010). The annual TCF model CH₄ emissions for Lena River were relatively small (2.3 g C m⁻² yr⁻¹, on average), but are similar in magnitude to site CH₄ estimates determined using more complex coupled biogeochemical and permafrost models (i.e. Zhang et al. 2012b). Although the TCF modeled CH₄ fluxes contributed only 1-5% of annual carbon emissions ($R_{eco} + CH₄$) at the tower sites, which is similar to previous reports (Schneider von Deimling et al. 2012), these CH₄ emissions reduced the NECB (-23.3 ± 19.6 g C m⁻² yr⁻¹) by approximately 23 % relative to NEE. The annual model estimates indicated that the site CO₂ and
CH$_4$ fluxes, excluding Barrow and Lena River, contributed to a net global warming potential (GWP) of 188 ± 68 g CO$_2$eq m$^{-2}$ yr$^{-1}$ over a 100 year time horizon (Boucher et al. 2009) with total GWP influences by CH$_4$ at approximately 9% to 44% that of R_{eco}. Similarly the Lena River and Barrow sites mitigated GWP at a mean rate of -40 g CO$_2$eq m$^{-2}$ yr$^{-1}$ in 2006 and 2007, but were net GWP contributors in 2003 and 2009 (25 and 160 g CO$_2$eq m$^{-2}$ yr$^{-1}$, respectfully). Although site CO$_2$ contributions from methanotrophy during plant transport and soil diffusion were estimated to range from 3.8 to 58.3 g C m$^{-2}$ yr$^{-1}$, these contributions represented $< 14\%$ of total TCF model derived R_{eco}.

4.5 Discussion and conclusions

The level of complexity in biophysical process models has increased considerably in recent years but there remain large differences in carbon flux estimates for northern high latitude ecosystems (McGuire et al. 2012, Wania et al. 2013). An integrated TCF model CO$_2$ and CH$_4$ framework was developed to improve carbon model compatibility with remote sensing retrievals that can be used to inform changes in surface conditions across northern peatland and tundra regions. Although the TCF model lacks the biophysical and hydrologic complexity found in more sophisticated process models (e.g. Zhuang et al. 2004, Wania et al. 2010), it avoids the need for extensive parameterization by instead employing generalized surface vegetation growth, temperature, and moisture constraints on ecosystem CO$_2$ and CH$_4$ fluxes.

Despite the relatively simple model approach and landscape heterogeneity at the tower sites, the TCF model simulations derived from local tower inputs captured the overall seasonality and magnitude of R_{eco} and CH$_4$ fluxes observed in the tower EC records. Overall the R_{eco}, NEE and CH$_4$ emission simulations determined using local site inputs showed strong mean correspondence (8 day $r > 0.80$; $p < 0.05$) with tower EC records, but the strength of agreement varied considerably for the daily fluxes due to temporal lags between changing environmental conditions and carbon emissions (Zhang et al. 2012b), and larger EC measurement uncertainty at the daily time step (Baldocchi et al. 2008, Yi et al. 2013). The respective RMSE differences from the in-situ TCF model CO$_2$ and CH$_4$ simulations averaged 0.7 ± 0.4 g C m$^{-2}$ d$^{-1}$ and $17.9 \pm$
11.5 mg C m\(^{-2}\) d\(^{-1}\) which is comparable to other site based model results (e.g. Marushchak et al. 2013, Sturtevant & Oechel 2013).

In this study, we used near-surface \(T_s\) records in the model simulations to better coincide with the soil depths represented by upcoming satellite remote sensing missions, but acknowledge that deeper \(T_s\) controls are also important for regulating high latitude carbon emissions. This was evident in TCF model \(R_{eco}\) results where RMSE differences between the in-situ based simulations and tower EC fluxes generally improved when using deeper 10 cm \(T_s\) inputs instead of those from shallower (\(<5\) cm) soil depths. However, the TCF model \(\text{CH}_4\) simulations were more favorable when using near-surface (2 to 5 cm) \(T_s\) inputs. The observed \(\text{CH}_4\) emission sensitivity to surface soil warming may be influenced by cold temperature constraints on \(\text{CH}_4\) production in the carbon-rich root zone where organic acids are more abundant (Turetsky et al. 2008, Olefeldt et al. 2013). Light-weight carbon fractions have been shown to be more susceptible to mineralization following soil thaw and temperature changes than heavier, more recalcitrant soil organic carbon pools in high latitude environments (Glanville et al. 2012). However, the depletion of older organic carbon stocks may also become more prevalent in permafrost soils subject to thawing and physiochemical destabilization (Schuur et al. 2009, Hicks Pries et al. 2013a) in the absence of wet, anoxic conditions (Hugelius et al. 2012, Hicks Pries et al. 2013b). Seasonal changes in \(T_s\) constraints were also evident in this study, especially in the Zackenberg records where the TCF model underestimated tower \(R_{eco}\) and \(\text{CH}_4\) emissions in autumn by not accounting for warmer temperatures deeper in the active layer that can sustain microbial activity following surface freezing (Aurela et al. 2002).

Allowing the TCF model vegetation CUE parameter to change over the growing season instead of allocating \(R_a\) as a static fraction of GPP may also improve model and tower \(R_{eco}\) agreement. In Arctic tundra, \(R_a\) can contribute anywhere from 40% to 70% of \(R_{eco}\), with higher maintenance and growth respiration occurring later in the growing season when root systems expand deeper into the soil active layer (Hicks Pries et al. 2013a). Representing \(R_a\) as a fixed proportion of daily GPP in the TCF model, and not accounting for the use of stored plant carbon reserves, may also have contributed to the lower \(R_{eco}\) estimates during spring and autumn transitional periods when photosynthesis is reduced.
Our estimates of peatland and tundra CO$_2$ fluxes using TCF model simulations driven by MERRA reanalysis and satellite (MODIS) remote sensing inputs showed favorable agreement relative to the tower EC observations, with relatively moderate RMSE uncertainties of 1.3 ± 0.5 (GPP), 0.9 ± 0.4 (R$_{eco}$) and 1 ± 0.5 (NEE) g C m$^{-2}$ d$^{-1}$. These model accuracies are similar to those reported in a previous TCF model analysis for the northern regions (Yi et al. 2013), and other Arctic LUE based GPP studies (Tagesson et al. 2012a, McCallum et al. 2013). The associated model-tower RMSE for CH$_4$ was 18.2 ± 13.6 mg C m$^{-2}$ d$^{-1}$, and is comparable to results from previous remote sensing driven CH$_4$ analyses (Meng et al. 2012, Tagesson et al. 2013). The larger observed differences between TCF model and tower EC based GPP results may reflect seasonal changes in nutrient availability (Lund et al. 2010), although one peatland study reported that nutrient limitations to plant productivity could be detected indirectly by MODIS NDVI retrievals (Schubert et al. 2010b). It is more likely that this reduced correspondence resulted from fluctuations in the reanalysis SW$_{rad}$ inputs (Yi et al. 2011) and uncertainty associated with satellite NDVI and resulting FPAR inputs stemming from residual snow cover and surface water effects on optical-IR reflectance (Delbert et al. 2005).

High latitude studies have reported difficulty in using satellite NDVI to determine the start of spring bud burst and seasonal variability in leaf development (Huemmrich et al. 2010a). Evaluating other portions of the visible spectrum, including blue and green reflectances, in addition to NDVI has helped to alleviate this problem in remote sensing applications (Marushchak et al. 2013) and should be considered in subsequent studies. Incorporating phenological constraints into the TCF LUE model may also better characterize early season GPP, especially for plant communities such as E. vaginatum that are sensitive to changes in active layer depth (Parmentier et al. 2011a, Natali et al. 2012). Considering T_s as an additional constraint in the TCF LUE model may also better account for autumn GPP activity under frozen air temperatures if plant-available moisture is still available within the root zone (Christiansen et al. 2012). Yi et al. (2013) attempted to address this condition by incorporating satellite passive microwave-based freeze/thaw records (37 GHz) to constrain GPP according to frozen, transitional, or non-frozen surface moisture states but did not report a significant improvement, likely due to the coarse (25 km) resolution freeze/thaw retrievals.
The TCF model assessment of annual NECB for the six northern tower EC sites indicate that CH$_4$ emissions reduced the terrestrial net carbon sink by 23% relative to NEE. Although GPP at the Lena River and Barrow sites mitigated GWP additions from R_{eco} and CH$_4$ in two of the years examined, in most years the tower sites were GWP contributors by approximately 165 ± 128 g CO$_2$eq m$^{-2}$ yr$^{-1}$ when considering the impact of CH$_4$ on atmospheric forcing over a 100-year time span. These results are consistent with other model based analyses of Arctic carbon fluxes (McGuire et al. 2010) and emphasize the importance of evaluating CO$_2$ and CH$_4$ emissions simultaneously when quantifying the terrestrial carbon balance and GWP for northern peatland and tundra ecosystems (Christensen et al. 2012, Olefeldt et al. 2012). However, ongoing efforts are needed to better inform landscape scale spatial/temporal variability in soil moisture, temperature and vegetation controls on CO$_2$ and CH$_4$ fluxes for future model assessments using a combined network of in-situ soil measurements and strategically placed EC tower sites (Sturtevant & Oechel 2013), and regional airborne surveys. The new SMAP mission (launched early 2015) may also help to determine landscape soil moisture and thermal constraints on northern carbon fluxes through relatively fine scale (9 km resolution) and lower frequency (≤ 1.4 GHz) microwave retrievals with enhanced soil sensitivity (Entekhabi et al. 2010, Kimball et al. 2012), complimented by recent improvements in Arctic-specific reanalysis data (Bromwich et al. 2010, Henderson et al. 2015). These advances, in conjunction with a suitable model framework to quantify ecosystem NEE and CH$_4$ emissions, provide the means for regional carbon assessments and monitoring of the net ecosystem carbon budget and underlying environmental constraints.
4.6 References

121

Sitch, S, A D McGuire, J S Kimball, N Gedney, J Gamon, R Engstrom, A Wolf, Q Zhuang, J

Tagesson, T, M Mölder, M Mastepanov, C Sigsgaard, M P Tamstorf, M Lund, J M Falk, A

Table 4.1 Description of flux tower locations and site characteristics including permafrost (PF) cover and climate. The length (days) of each tower site CO$_2$ and CH$_4$ record is provided in addition to the observation year.

<table>
<thead>
<tr>
<th>Site Name</th>
<th>Location (Lat. Llon.)</th>
<th>Climate</th>
<th>Land Cover</th>
<th>Observation Period</th>
<th>In-Situ Data</th>
<th>Data Source</th>
</tr>
</thead>
<tbody>
<tr>
<td>Siikaneva, Finland</td>
<td>61°50’ N, 24°12’ E</td>
<td>PF: N/A</td>
<td>homogenous boreal</td>
<td>8 Mar - 14 Nov 2005</td>
<td>CO$_2$, CH$_4$</td>
<td>Aurela et al. (2007)</td>
</tr>
<tr>
<td></td>
<td></td>
<td>MAT 3.3°C</td>
<td>oligotrophic fen with peat, sedges, graminoids</td>
<td>(273 days) CO$_2$</td>
<td></td>
<td>Rinne et al. (2007)</td>
</tr>
<tr>
<td></td>
<td></td>
<td>MAP 713 mm</td>
<td></td>
<td>(165 days) CH$_4$</td>
<td></td>
<td>Riutta et al. (2007)</td>
</tr>
<tr>
<td>Lena River, Russia</td>
<td>72°22’ N, 126°30’ E</td>
<td>PF: Continuous</td>
<td>wet polygonal tundra with sedges, forbes, moss</td>
<td>19 Jul - 21 Oct 2003</td>
<td>CO$_2$, CH$_4$</td>
<td>Boike et al. (2008)</td>
</tr>
<tr>
<td>(LR)</td>
<td></td>
<td>MAT -14.7°C</td>
<td></td>
<td>(95 days) CO$_2$, CH$_4$</td>
<td></td>
<td>Kutzbach et al. (2007)</td>
</tr>
<tr>
<td></td>
<td></td>
<td>MSP 72-208 mm</td>
<td></td>
<td>9 Jun - 17 Sep 2006</td>
<td></td>
<td>Sachs et al. (2008)</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>(101 days) CO$_2$, CH$_4$</td>
<td></td>
<td>Wille et al. (2008)</td>
</tr>
<tr>
<td>Zackenberg, Greenland</td>
<td>74°28’ N, 20°34’ W</td>
<td>PF: Continuous</td>
<td>heterogeneous wetland fen tundra with graminoids, health, moss</td>
<td>24 Jun - 31 Oct 2008</td>
<td>CO$_2$, CH$_4$</td>
<td>Sigsgaard (2011)</td>
</tr>
<tr>
<td>(ZK)</td>
<td></td>
<td>MAT -9°C</td>
<td></td>
<td>(130 days) CO$_2$, CH$_4$</td>
<td></td>
<td>Tagesson et al. (2012)</td>
</tr>
<tr>
<td></td>
<td></td>
<td>MAP 200 mm</td>
<td></td>
<td>16 May - 25 Oct 2009</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>(163 days) CO$_2$, CH$_4$</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Stordalen, Sweden</td>
<td>68°20’ N, 19°03’ E</td>
<td>PF: Discontinuous</td>
<td>palsa mire with graminoids, dwarf shrubs, birch, moss, lichen</td>
<td>1 Jan - 31 Dec 2006</td>
<td>CH$_4$</td>
<td>Jackowicz-Korczyński et al. (2010)</td>
</tr>
<tr>
<td>(SM)</td>
<td></td>
<td>MAT -0.9°C</td>
<td></td>
<td>(365 days) CH$_4$</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>MAP 305 mm</td>
<td></td>
<td>1 Jan - 31 Dec 2007</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>(365 days) CH$_4$</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Kytalyk, Russia</td>
<td>70°49’ N, 147°29’ E</td>
<td>PF: Continuous</td>
<td>polygonal tundra with mixed shrub, sedge, moss</td>
<td>8 Jun - 10 Aug 2009</td>
<td>CO$_2$, CH$_4$</td>
<td>Parmentier et al. (2011a, b)</td>
</tr>
<tr>
<td>(KY)</td>
<td></td>
<td>MAT -10.5°C</td>
<td></td>
<td>(64 days) CO$_2$</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>MAP 220 mm</td>
<td></td>
<td>5 Jul - 3 Aug 2009</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>(30 days) CH$_4$</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Location</td>
<td>Coordinates</td>
<td>PF:</td>
<td>Land Cover</td>
<td>Dates</td>
<td>Sample</td>
<td>Notes</td>
</tr>
<tr>
<td>----------</td>
<td>-------------</td>
<td>-----</td>
<td>------------</td>
<td>-------</td>
<td>--------</td>
<td>-------</td>
</tr>
<tr>
<td>Barrow, Alaska (BA)</td>
<td>71°17’ N, 156°35’ W</td>
<td>Continuous</td>
<td>thaw lake basin with moss and sedge</td>
<td>12 Jun - 31 Aug 2007</td>
<td>CO₂, CH₄</td>
<td>Zona et al. (2009, 2012)</td>
</tr>
<tr>
<td></td>
<td></td>
<td>MAT -12°C</td>
<td>MAP 106 mm</td>
<td>North: (81 days) CO₂</td>
<td>5, 10 cm Tₛ, ≤ 10 cm θ</td>
<td>Sturtevant et al. (2012)</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>North: (46 days) CH₄</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>20 Aug - 21 Oct 2009</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>North: (30, 11 days) CO₂, CH₄</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Central: (12, 23 days) CO₂, CH₄</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>South: (2, 10 days) CO₂, CH₄</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Table 4.2 Tower EC CO₂ records and TCF modeled gross primary production (GPP), ecosystem respiration (R_{eco}) and net ecosystem exchange (NEE) derived using in-situ information (in parentheses) or satellite remote sensing and reanalysis inputs. The Pearson correlation coefficients (r) are significant at a 0.05 probability level, excluding Kytalyk 2009 NEE (r ≤ 0.11, p ≥ 0.17) and Barrow 2007N GPP and NEE (r < 0.1, p ≥ 0.16).

<table>
<thead>
<tr>
<th>Site</th>
<th>Year</th>
<th>Flux</th>
<th>r</th>
<th>8 day r</th>
<th>RMSE</th>
<th>MRE</th>
<th>Site EC</th>
<th>TCF Model Cumulative (g C m^{-2})</th>
</tr>
</thead>
<tbody>
<tr>
<td>Siikaneva</td>
<td>2005</td>
<td>GPP</td>
<td>0.84</td>
<td>0.94</td>
<td>0.8</td>
<td>-0.2</td>
<td>361.1</td>
<td>409.4</td>
</tr>
<tr>
<td></td>
<td></td>
<td>R_{eco}</td>
<td>0.96 (0.96)</td>
<td>0.96 (0.98)</td>
<td>0.4 (0.3)</td>
<td>-0.3 (0.1)</td>
<td>289.9</td>
<td>365.6 (274.9)</td>
</tr>
<tr>
<td></td>
<td></td>
<td>NEE</td>
<td>0.49 (0.91)</td>
<td>0.92 (0.92)</td>
<td>0.5 (0.3)</td>
<td>0.3 (-0.1)</td>
<td>-71.2</td>
<td>-43.8 (-86.2)</td>
</tr>
<tr>
<td>Lena River</td>
<td>2003</td>
<td>GPP</td>
<td>0.74</td>
<td>0.91</td>
<td>0.7</td>
<td>-0.1</td>
<td>72.3</td>
<td>131.5</td>
</tr>
<tr>
<td></td>
<td></td>
<td>R_{eco}</td>
<td>0.77 (0.87)</td>
<td>0.83 (0.91)</td>
<td>1.0 (0.3)</td>
<td>-0.5 (-0.1)</td>
<td>56.3</td>
<td>103.3 (62.4)</td>
</tr>
<tr>
<td></td>
<td></td>
<td>NEE</td>
<td>0.90 (0.94)</td>
<td>0.93 (0.97)</td>
<td>0.3 (0.3)</td>
<td>-0.1 (0.1)</td>
<td>-16.0</td>
<td>-28.2 (-9.9)</td>
</tr>
<tr>
<td></td>
<td>2006</td>
<td>GPP</td>
<td>0.78</td>
<td>0.86</td>
<td>1.1</td>
<td>0.5</td>
<td>247.4</td>
<td>199.3</td>
</tr>
<tr>
<td></td>
<td></td>
<td>R_{eco}</td>
<td>0.76 (0.84)</td>
<td>0.91 (0.91)</td>
<td>0.7 (0.6)</td>
<td>0.3 (0.2)</td>
<td>193.0</td>
<td>160 (176.4)</td>
</tr>
<tr>
<td></td>
<td></td>
<td>NEE</td>
<td>0.57 (0.76)</td>
<td>0.62 (0.89)</td>
<td>0.7 (0.6)</td>
<td>0.2 (-0.2)</td>
<td>-54.4</td>
<td>-39.3 (-71.0)</td>
</tr>
<tr>
<td>Zackenberg</td>
<td>2008</td>
<td>GPP</td>
<td>0.75</td>
<td>0.76</td>
<td>1.8</td>
<td>< 0.1</td>
<td>218.2</td>
<td>215.4</td>
</tr>
<tr>
<td></td>
<td></td>
<td>R_{eco}</td>
<td>0.67 (0.44)</td>
<td>0.80 (0.50)</td>
<td>1.1 (1.3)</td>
<td>0.3 (0.3)</td>
<td>215.9</td>
<td>175.5 (182.6)</td>
</tr>
<tr>
<td></td>
<td></td>
<td>NEE</td>
<td>0.31 (0.83)</td>
<td>0.37 (0.85)</td>
<td>1.7 (1.3)</td>
<td>-0.3 (-0.3)</td>
<td>-2.3</td>
<td>-39.9 (-35.6)</td>
</tr>
<tr>
<td></td>
<td>2009</td>
<td>GPP</td>
<td>0.91</td>
<td>0.96</td>
<td>1.3</td>
<td>0.6</td>
<td>305.0</td>
<td>234.6</td>
</tr>
<tr>
<td></td>
<td></td>
<td>R_{eco}</td>
<td>0.86 (0.90)</td>
<td>0.93 (0.96)</td>
<td>0.8 (1)</td>
<td>0.4 (0.1)</td>
<td>250.3</td>
<td>183.7 (238.6)</td>
</tr>
<tr>
<td></td>
<td></td>
<td>NEE</td>
<td>0.89 (0.89)</td>
<td>0.92 (0.92)</td>
<td>1.2 (1)</td>
<td>0.2 (-0.1)</td>
<td>-54.7</td>
<td>-50.9 (-66.4)</td>
</tr>
<tr>
<td>Kytalyk</td>
<td>2009</td>
<td>GPP</td>
<td>0.41</td>
<td>0.73</td>
<td>2.2</td>
<td>-1.5</td>
<td>143.2</td>
<td>224.9</td>
</tr>
<tr>
<td></td>
<td></td>
<td>R_{eco}</td>
<td>0.49 (0.60)</td>
<td>0.80 (0.94)</td>
<td>1.6 (1.3)</td>
<td>-2.2 (-1.5)</td>
<td>60.8</td>
<td>200.2 (126.9)</td>
</tr>
<tr>
<td></td>
<td></td>
<td>NEE</td>
<td>0.11 (0.92)</td>
<td>0.01 (0.95)</td>
<td>1.6 (1.3)</td>
<td>0.9 (1.5)</td>
<td>-82.4</td>
<td>-24.7 (-16.3)</td>
</tr>
<tr>
<td>Barrow</td>
<td>2007N</td>
<td>GPP</td>
<td>0.12</td>
<td>0.32</td>
<td>1.1</td>
<td>0.2</td>
<td>152.0</td>
<td>137.0</td>
</tr>
<tr>
<td></td>
<td></td>
<td>R_{eco}</td>
<td>0.23 (0.61)</td>
<td>0.64 (0.82)</td>
<td>0.5 (0.4)</td>
<td>0.4 (-0.1)</td>
<td>117.4</td>
<td>104.3 (121.6)</td>
</tr>
<tr>
<td></td>
<td></td>
<td>NEE</td>
<td>0.10 (0.79)</td>
<td>0.20 (0.79)</td>
<td>0.8 (0.4)</td>
<td>< 0.1 (0.1)</td>
<td>-34.6</td>
<td>-32.7 (-30.4)</td>
</tr>
<tr>
<td></td>
<td>2009N</td>
<td>NEE</td>
<td>-</td>
<td>-</td>
<td>1.6</td>
<td>1.4</td>
<td>-62.1</td>
<td>-15.6</td>
</tr>
<tr>
<td></td>
<td>2009C</td>
<td>NEE</td>
<td>-</td>
<td>-</td>
<td>0.5</td>
<td>0.4</td>
<td>-8.3</td>
<td>-3.6</td>
</tr>
</tbody>
</table>
Table 4.3: Tower EC CH₄ records and TCF model results using in-situ information (in parentheses) or satellite remote sensing and reanalysis inputs. The Pearson correlation coefficients \(r \) are significant at a 0.05 probability level, excluding Kytalyk 2009 \((r \leq 0.28, p \geq 0.07) \).

<table>
<thead>
<tr>
<th>Site</th>
<th>Year</th>
<th>(r)</th>
<th>8 day (r)</th>
<th>RMSE</th>
<th>MRE</th>
<th>Site EC Cumulative (g C m(^{-2}))</th>
</tr>
</thead>
<tbody>
<tr>
<td>Siikaneva</td>
<td>2005</td>
<td>0.72 (0.75)</td>
<td>0.90 (0.90)</td>
<td>21.8</td>
<td>-9.6</td>
<td>7.6 (6.3)</td>
</tr>
<tr>
<td>Lena River</td>
<td>2003</td>
<td>0.59 (0.87)</td>
<td>0.88 (0.97)</td>
<td>9.1</td>
<td>4.7</td>
<td>0.9 (1.2)</td>
</tr>
<tr>
<td></td>
<td>2006</td>
<td>0.53 (0.69)</td>
<td>0.81 (0.78)</td>
<td>6.9</td>
<td>-1.3</td>
<td>1.4 (1.9)</td>
</tr>
<tr>
<td>Zackenberg</td>
<td>2008</td>
<td>0.78 (0.84)</td>
<td>0.91 (0.95)</td>
<td>35.7</td>
<td>11.6</td>
<td>7.6 (7.3)</td>
</tr>
<tr>
<td></td>
<td>2009</td>
<td>0.75 (0.88)</td>
<td>0.84 (0.95)</td>
<td>28.7</td>
<td>-1.1</td>
<td>6.3 (7.4)</td>
</tr>
<tr>
<td>Stordalen</td>
<td>2006</td>
<td>0.80 (0.80)</td>
<td>0.88 (0.89)</td>
<td>35</td>
<td>13.3</td>
<td>18.3 (12.6)</td>
</tr>
<tr>
<td></td>
<td>2007</td>
<td>0.80 (0.79)</td>
<td>0.94 (0.89)</td>
<td>39.4</td>
<td>12.6</td>
<td>22.1 (17.5)</td>
</tr>
<tr>
<td>Kytalyk</td>
<td>2009</td>
<td>0.28 (0.24)</td>
<td>0.66 (0.41)</td>
<td>20.1</td>
<td>-6.4</td>
<td>0.9 (1.1)</td>
</tr>
<tr>
<td>Barrow</td>
<td>2007N</td>
<td>0.51 (0.78)</td>
<td>0.94 (0.80)</td>
<td>5.8</td>
<td>-1.5</td>
<td>0.7 (0.9)</td>
</tr>
<tr>
<td></td>
<td>2009N</td>
<td>-</td>
<td>-</td>
<td>4.5</td>
<td>-0.5</td>
<td>0.1 (0.2)</td>
</tr>
<tr>
<td></td>
<td>2009C</td>
<td>-</td>
<td>-</td>
<td>4.2</td>
<td>0.4</td>
<td>0.2 (0.3)</td>
</tr>
<tr>
<td></td>
<td>2009S</td>
<td>-</td>
<td>-</td>
<td>7.2</td>
<td>-0.2</td>
<td>0.2 (0.2)</td>
</tr>
</tbody>
</table>
Figures

Figure 4.1 Locations of the flux tower sites (circles) used in this study, including Barrow (BA), Kytalyk (KY), Lena River (LR), Siikaneva (SK), Stordalen Mire (SM) and Zackenberg (ZK). The Arctic Circle is indicated by the dashed line.
Figure 4.2 TCF model simulations for GPP (lines) using input remote sensing and reanalysis information as compared with flux tower EC records (circles). Site GPP records were not available for SM and BA 2009.
Figure 4.3 Correspondence between TCF model and tower EC records for cumulative (g C m\(^{-2}\)) GPP, \(R_{ecore}\), NEE, and CH\(_4\) fluxes from six pan-Arctic tower locations. The TCF model simulations include those derived from in-situ measurements (open circles) or MODIS remote sensing and MERRA reanalysis inputs (MDMR; in black). A 1:1 relationship is indicated by the dashed line. The \(r^2\) agreement is significant at a 0.05 probability level, except for MDMR based \(R_{ecore}\) and NEE (\(p = 0.16\) and 0.27), and excludes NEE fluxes for KY (circled) due to large differences in the CO\(_2\) response relative to the other sites.
Figure 4.4 TCF model CO$_2$ simulations driven using in situ (solid lines) or remote sensing and reanalysis inputs (MDMR; dashed lines), as compared with tower EC records (circles) for R_{eco} and NEE. For BA 2009, in-situ R_{eco} was not available and NEE measurements from the northern (central) tower are shown in black (grey). The TCF model R_{eco} results for SM 2006 (2007) are displayed in light (dark) red and NEE is indicated in light (dark) blue.
Figure 4.5 TCF model accuracy for R_{eco} relative to CO_2 records from five tower EC sites. The TCF model simulations include those determined from in-situ measurement inputs; reanalysis soil moisture (θ), soil temperature (T_s) or TCF LUE model simulated GPP inputs; TCF simulations derived entirely from remote sensing and reanalysis (MDMR) inputs. Measures of comparison include RMSE, MRE, r-values for daily and 8 day cumulative fluxes. The BA 2009 results represent the local spatial mean determined from north, central and southern Barrow tower locations.
Figure 4.6 TCF model CH$_4$ simulations driven using in situ (solid lines) or input remote sensing and reanalysis (dashed lines) inputs, as compared with tower EC records (circles). For BA 2009, the TCF model results are simulation means for the three Barrow tower sites; diamond shapes indicate CH$_4$ flux observations from the northern (in dark gray) and central (in light gray) towers whereas grey circles indicate observations from the southern tower.
Figure 4.7 TCF model accuracy relative to CH₄ records from six tower EC sites. Model simulations include those derived from: in-situ measurements; reanalysis soil moisture (θ), soil temperature (T_s), surface wind velocity (μ_m) or TCF LUE model simulated GPP inputs; TCF simulations derived solely from remote sensing and reanalysis (MDMR) inputs. Measures of comparison include RMSE, MRE, r-values for daily and 8 day cumulative fluxes. Results for BA 2009 are means for north, central and southern Barrow tower locations.
Figure 4.8 The TCF model simulation results for cumulative annual GPP, R_{eco}, NEE and CH$_4$ fluxes determined using satellite remote sensing and reanalysis inputs. For NEE, all sites are net CO$_2$ sinks except for BA 2009 which is a carbon source (in black).
Chapter 4 Supplement

Table S4.1 Definitions for the symbols and abbreviations used to describe the TCF model components and required input information.

<table>
<thead>
<tr>
<th>Model Component</th>
<th>Symbols</th>
<th>Definition</th>
<th>Units</th>
</tr>
</thead>
<tbody>
<tr>
<td>General</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>T_s</td>
<td>Soil temperature</td>
<td></td>
<td>K</td>
</tr>
<tr>
<td>T_{min}</td>
<td>Daily minimum air temperature</td>
<td></td>
<td>K</td>
</tr>
<tr>
<td>SW_{rad}</td>
<td>Incident shortwave radiation</td>
<td></td>
<td>W/m²</td>
</tr>
<tr>
<td>VPD</td>
<td>Vapor pressure deficit</td>
<td></td>
<td>Pa</td>
</tr>
<tr>
<td>$APAR$</td>
<td>Absorbed photosynthetically active radiation</td>
<td></td>
<td>MJ m⁻²</td>
</tr>
<tr>
<td>$FPAR$</td>
<td>Fraction photosynthetically active radiation</td>
<td></td>
<td>[]</td>
</tr>
<tr>
<td>ε_{max}</td>
<td>Maximum plant light use efficiency</td>
<td></td>
<td>mg C MJ⁻¹</td>
</tr>
<tr>
<td>ε</td>
<td>Light use efficiency with environ. constraints</td>
<td></td>
<td>mg C MJ⁻¹</td>
</tr>
<tr>
<td>θ</td>
<td>Volumetric water content</td>
<td></td>
<td>d⁻¹</td>
</tr>
<tr>
<td>θ_{opt}</td>
<td>Soil moisture optimum</td>
<td></td>
<td>[]</td>
</tr>
<tr>
<td>ϕ_s</td>
<td>Saturated pore volume</td>
<td></td>
<td>m³ d⁻¹</td>
</tr>
<tr>
<td>ϕ_a</td>
<td>Aerated pore volume</td>
<td></td>
<td>m³ d⁻¹</td>
</tr>
<tr>
<td>CUE</td>
<td>Plant carbon use efficiency (NPP/GPP)</td>
<td></td>
<td>[]</td>
</tr>
<tr>
<td>C_{net}</td>
<td>Metabolic carbon pool</td>
<td></td>
<td>g C m⁻²</td>
</tr>
<tr>
<td>C_{str}</td>
<td>Structural carbon pool</td>
<td></td>
<td>g C m⁻²</td>
</tr>
<tr>
<td>C_{rec}</td>
<td>Recalcitrant carbon pool</td>
<td></td>
<td>g C m⁻²</td>
</tr>
<tr>
<td>F_{net}</td>
<td>Fraction of NPP into C_{net}</td>
<td></td>
<td>[]</td>
</tr>
<tr>
<td>F_{str}</td>
<td>Fraction of C_{net} allocated to C_{str}</td>
<td></td>
<td>[]</td>
</tr>
<tr>
<td>F_{rec}</td>
<td>Fraction of C_{str} allocated to C_{rec}</td>
<td></td>
<td>[]</td>
</tr>
<tr>
<td>CO₂ Model</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>R_a</td>
<td>Autotrophic respiration</td>
<td></td>
<td>g C m⁻² d⁻¹</td>
</tr>
<tr>
<td>R_b</td>
<td>Heterotrophic respiration</td>
<td></td>
<td>g C m⁻² d⁻¹</td>
</tr>
<tr>
<td>R_{eco}</td>
<td>Ecosystem respiration</td>
<td></td>
<td>g C m⁻² d⁻¹</td>
</tr>
<tr>
<td>K_p</td>
<td>Potential soil decomposition rate</td>
<td></td>
<td>d⁻¹</td>
</tr>
<tr>
<td>K_{net}</td>
<td>Modified soil decomposition rate</td>
<td></td>
<td>d⁻¹</td>
</tr>
<tr>
<td>T_{multi}</td>
<td>Temperature multiplier for K_p</td>
<td></td>
<td>[]</td>
</tr>
<tr>
<td>T_{ref}</td>
<td>Reference temperature for T_{multi}</td>
<td></td>
<td>K</td>
</tr>
<tr>
<td>W_{multi}</td>
<td>Soil moisture multiplier for K_p</td>
<td></td>
<td>[]</td>
</tr>
<tr>
<td>Model Component</td>
<td>Symbols</td>
<td>Definition</td>
<td>Units</td>
</tr>
<tr>
<td>-----------------</td>
<td>---------</td>
<td>------------</td>
<td>-------</td>
</tr>
<tr>
<td>Soil CH₄ Production</td>
<td>R_{CH4}</td>
<td>Daily CH₄ production</td>
<td>mg C m⁻² d⁻¹</td>
</tr>
<tr>
<td></td>
<td>C_{CH4}</td>
<td>Total CH₄ storage</td>
<td>mg C m⁻²</td>
</tr>
<tr>
<td></td>
<td>R_0</td>
<td>CH₄ production rate</td>
<td>μM CH₄ d⁻¹</td>
</tr>
<tr>
<td></td>
<td>Q_{p0}</td>
<td>Q_{p0} temperature modifier, CH₄ production</td>
<td>K</td>
</tr>
<tr>
<td></td>
<td>T_0</td>
<td>Reference temperature, CH₄ production</td>
<td>K</td>
</tr>
<tr>
<td></td>
<td>F_{CH4}</td>
<td>Total CH₄ emission</td>
<td>mg C m⁻² d⁻¹</td>
</tr>
<tr>
<td></td>
<td>F_{plant}</td>
<td>Plant CH₄ transport</td>
<td>mg C m⁻² d⁻²</td>
</tr>
<tr>
<td></td>
<td>F_{diff}</td>
<td>Diffusion CH₄ transport</td>
<td>mg C m⁻² d⁻³</td>
</tr>
<tr>
<td></td>
<td>F_{ebull}</td>
<td>Ebullition CH₄ transport</td>
<td>mg C m⁻² d⁻⁴</td>
</tr>
<tr>
<td>Plant Transport</td>
<td>C_p</td>
<td>Plant CH₄ transport rate</td>
<td>d⁻¹</td>
</tr>
<tr>
<td></td>
<td>P_{trans}</td>
<td>Transport modifier for C_p</td>
<td>[]</td>
</tr>
<tr>
<td></td>
<td>f_{grow}</td>
<td>Plant growth scalar, based on GPP</td>
<td>d⁻¹</td>
</tr>
<tr>
<td></td>
<td>μ_w</td>
<td>Mean daily wind velocity</td>
<td>m s⁻¹</td>
</tr>
<tr>
<td></td>
<td>g_a</td>
<td>Aerodynamic conductance</td>
<td>m s⁻¹</td>
</tr>
<tr>
<td></td>
<td>λ</td>
<td>Aerodynamic modifier</td>
<td>d⁻¹</td>
</tr>
<tr>
<td></td>
<td>k</td>
<td>von Karman constant (for g_a)</td>
<td>[]</td>
</tr>
<tr>
<td></td>
<td>z_m</td>
<td>Anemometer height</td>
<td>m</td>
</tr>
<tr>
<td></td>
<td>d</td>
<td>Zero-plane displacement height (for g_a)</td>
<td>m</td>
</tr>
<tr>
<td></td>
<td>z_{ou}</td>
<td>Roughness length, momentum (for g_a)</td>
<td>m</td>
</tr>
<tr>
<td></td>
<td>z_{ov}</td>
<td>Roughness length, heat/vapor transfer (for g_a)</td>
<td>m</td>
</tr>
<tr>
<td></td>
<td>P_{ox}</td>
<td>Fraction oxidized during plant transport</td>
<td>[]</td>
</tr>
<tr>
<td>Diffusion And Ebullition</td>
<td>P_{diff}</td>
<td>Potential CH₄ diffusion</td>
<td>mg C m⁻² d⁻¹</td>
</tr>
<tr>
<td></td>
<td>R_{ox}</td>
<td>CH₄ oxidation</td>
<td>mg C m⁻² d⁻¹</td>
</tr>
<tr>
<td></td>
<td>A_{CH4}</td>
<td>Atmospheric CH₄</td>
<td>μM CH₄</td>
</tr>
<tr>
<td></td>
<td>D_e</td>
<td>Effective soil diffusion rate</td>
<td>μM CH₄ d⁻¹</td>
</tr>
<tr>
<td></td>
<td>D_{air}</td>
<td>CH₄ diffusion rate, aerated fraction</td>
<td>μM CH₄ d⁻¹</td>
</tr>
<tr>
<td></td>
<td>D_{water}</td>
<td>CH₄ diffusion rate, saturated fraction</td>
<td>μM CH₄ d⁻¹</td>
</tr>
<tr>
<td></td>
<td>τ</td>
<td>Soil tortuosity coefficient</td>
<td>[]</td>
</tr>
<tr>
<td></td>
<td>L_s</td>
<td>Length of soil profile</td>
<td>m</td>
</tr>
<tr>
<td></td>
<td>V_{max}</td>
<td>Maximum reaction rate,</td>
<td>μM CH₄ d⁻¹</td>
</tr>
<tr>
<td></td>
<td>K_m</td>
<td>Substrate conc. at 1/2 V_{max}</td>
<td>μM CH₄</td>
</tr>
<tr>
<td></td>
<td>Q_{10d}</td>
<td>Q_{10} temperature modifier, CH₄ diffusion</td>
<td>[]</td>
</tr>
<tr>
<td></td>
<td>T_d</td>
<td>Reference temperature, CH₄ oxidation</td>
<td>K</td>
</tr>
<tr>
<td></td>
<td>v_e</td>
<td>CH₄ threshold for ebullition</td>
<td>μM</td>
</tr>
<tr>
<td></td>
<td>C_e</td>
<td>CH₄ ebullition transport rate</td>
<td>μM d⁻¹</td>
</tr>
</tbody>
</table>
Table S4.2 Parameter values used for site-specific peatland (Biome 1) and wet tundra (Biome 2) TCF model CO₂ and CH₄ flux simulations.

<table>
<thead>
<tr>
<th>TCF Component</th>
<th>Parameter</th>
<th>Tower Site:</th>
<th>Biome:</th>
<th>SM</th>
<th>SK</th>
<th>LR</th>
<th>KY</th>
<th>ZK</th>
<th>BA</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
</tr>
<tr>
<td>GPP</td>
<td>e_{max}</td>
<td>mg C MJ⁻¹</td>
<td></td>
<td>0.82</td>
<td>0.82</td>
<td>0.82</td>
<td>0.82</td>
<td>0.82</td>
<td>0.82</td>
</tr>
<tr>
<td></td>
<td>θ_{min}</td>
<td>Fract.</td>
<td></td>
<td>0.15</td>
<td>0.15</td>
<td>0.15</td>
<td>0.15</td>
<td>0.15</td>
<td>0.15</td>
</tr>
<tr>
<td></td>
<td>θ_{max}</td>
<td>Fract.</td>
<td></td>
<td>0.75</td>
<td>0.72</td>
<td>0.75</td>
<td>0.70</td>
<td>0.75</td>
<td>0.75</td>
</tr>
<tr>
<td>R_{eco}</td>
<td>CUE Fract.</td>
<td></td>
<td></td>
<td>0.45</td>
<td>0.35</td>
<td>0.55</td>
<td>0.55</td>
<td>0.5</td>
<td>0.5</td>
</tr>
<tr>
<td></td>
<td>K_p d⁻¹</td>
<td></td>
<td></td>
<td>0.03</td>
<td>0.03</td>
<td>0.03</td>
<td>0.03</td>
<td>0.03</td>
<td>0.03</td>
</tr>
<tr>
<td></td>
<td>F_{met}</td>
<td>Fract.</td>
<td></td>
<td>0.65</td>
<td>0.52</td>
<td>0.72</td>
<td>0.72</td>
<td>0.72</td>
<td>0.72</td>
</tr>
<tr>
<td></td>
<td>T_{ref}</td>
<td>K</td>
<td></td>
<td>293</td>
<td>293</td>
<td>297</td>
<td>293</td>
<td>297</td>
<td>297</td>
</tr>
<tr>
<td></td>
<td>ϕ Fract.</td>
<td></td>
<td></td>
<td>0.75</td>
<td>0.75</td>
<td>0.70</td>
<td>0.70</td>
<td>0.70</td>
<td>0.70</td>
</tr>
<tr>
<td></td>
<td>R_o μM CH₄ d⁻¹</td>
<td></td>
<td></td>
<td>22.4</td>
<td>15.4</td>
<td>9.2</td>
<td>10.8</td>
<td>10.8</td>
<td>10.8*</td>
</tr>
<tr>
<td></td>
<td>T_p K</td>
<td></td>
<td></td>
<td>287</td>
<td>288</td>
<td>289</td>
<td>287</td>
<td>287</td>
<td>287</td>
</tr>
<tr>
<td></td>
<td>Q_{10p} []</td>
<td></td>
<td></td>
<td>3.5</td>
<td>3.5</td>
<td>4.0</td>
<td>3.9</td>
<td>3.5</td>
<td>3.8</td>
</tr>
<tr>
<td></td>
<td>P_{trans} []</td>
<td></td>
<td></td>
<td>8.0</td>
<td>9.0</td>
<td>7.0</td>
<td>7.0</td>
<td>7.0</td>
<td>7.0</td>
</tr>
<tr>
<td></td>
<td>P_{ox} Fract.</td>
<td></td>
<td></td>
<td>0.8</td>
<td>0.8</td>
<td>0.7</td>
<td>0.7</td>
<td>0.7</td>
<td>0.7</td>
</tr>
<tr>
<td>CH₄</td>
<td>A_{CH_4} μM CH₄</td>
<td></td>
<td></td>
<td>0.11</td>
<td>0.11</td>
<td>0.11</td>
<td>0.11</td>
<td>0.11</td>
<td>0.11</td>
</tr>
<tr>
<td></td>
<td>V_{max} μM CH₄ d⁻¹</td>
<td></td>
<td></td>
<td>120</td>
<td>120</td>
<td>120</td>
<td>120</td>
<td>120</td>
<td>120</td>
</tr>
<tr>
<td></td>
<td>K_m μM CH₄</td>
<td></td>
<td></td>
<td>1.0</td>
<td>1.0</td>
<td>1.0</td>
<td>1.0</td>
<td>1.0</td>
<td>1.0</td>
</tr>
<tr>
<td></td>
<td>Q_{10d} []</td>
<td></td>
<td></td>
<td>2.0</td>
<td>2.0</td>
<td>2.0</td>
<td>2.0</td>
<td>2.0</td>
<td>2.0</td>
</tr>
<tr>
<td></td>
<td>ν_e μM</td>
<td></td>
<td></td>
<td>500</td>
<td>500</td>
<td>500</td>
<td>500</td>
<td>500</td>
<td>500</td>
</tr>
<tr>
<td></td>
<td>C_e μM d⁻¹</td>
<td></td>
<td></td>
<td>3.0</td>
<td>3.0</td>
<td>3.0</td>
<td>3.0</td>
<td>3.0</td>
<td>3.0</td>
</tr>
</tbody>
</table>

*A R_o value of 4.5 was used for BA 2007 to account for flooding disturbance impacts on substrate availability and methanogenesis.
Figure S4.1 TCF model flow diagram for GPP (in green), \(R_{\text{eco}} \) (in red) and \(\text{CH}_4 \) (in blue) modules. Rectangular boxes denote primary environmental inputs (single border) or model derived stored carbon pools (double border) including \(C_{\text{met}}, C_{\text{str}}, C_{\text{rec}} \) and \(C_{\text{CH}_4} \). Rounded rectangles indicate major process calculations, and arrows show the direction of data flow. The dashed lines specify where pool updates occur at daily time steps to account for carbon losses.
Chapter 5: Regional and longer-term variability in northern high latitude wetland ecosystem carbon budgets

Corresponding publication:

5.1 Abstract

High latitude warming and changes in wetland hydrology is expected to substantially impact the northern terrestrial net ecosystem carbon balance, particularly in thawing permafrost affected landscapes. Changing environmental conditions may result in divergent responses observed in gross primary productivity (GPP), ecosystem respiration (Reco) of carbon dioxide (CO₂), net ecosystem CO₂ exchange (NEE; GPP – Reco) and methane (CH₄) emissions. Seasonal CH₄ losses are also expected to drastically shift net ecosystem carbon budgets (NECB) from net carbon sink to carbon source, unless terrestrial warming is mitigated by a coinciding decrease in landscape wetness. Here we examine recent (yrs. 2003-2015) wetland carbon budgets and corresponding changes in carbon flux components for the Arctic-boreal region. To do this, we compiled eddy covariance flux records from 36 high latitude tower sites. We also use an enhanced Terrestrial Carbon Flux (TCF) model developed for satellite remote sensing applications, with input MODIS remote sensing and reanalysis data. The resulting daily 1-km TCF model simulations had low RMSE uncertainties of 0.97 gC m⁻² d⁻¹ (NEE) and 21 mgC m⁻² d⁻¹ (CH₄) relative to the tower records. Model results indicate a net ecosystem carbon sink in tundra and boreal wetlands with respective average NEE values of -4 and -96 gC m⁻² yr⁻¹. Accounting for NECB (NEE + CH₄) reduced the overall boreal wetland carbon sink by 20% and shifted tundra from carbon sink to carbon source (NECB = 1.6 gC m⁻² yr⁻¹). Although the 13-yr TCF model flux records did not show significant (α = 0.05) change in annual GPP, Reco, NEE and NECB across the tower sites, boreal wetlands experienced a significant increase in CH₄ flux (1.9 gC m⁻² yr⁻¹; p < 0.0001) with higher increases occurring in non-forested boreal wetlands. This
study suggests that the continued monitoring of NECB in Arctic-boreal ecosystems through the integration of tower flux measurements, ecosystem models and satellite remote sensing is critical to determining the vulnerability of high latitude ecosystems to climate change.

5.2 Introduction

Northern permafrost landscapes store approximately 1 billion tonnes of carbon in the upper (1-3 m depth) soil layers, representing over a third of the global soil carbon pool (Schuur et al. 2015). Under a high warming scenario, soil thaw and subsequent decomposition of these stored organic materials could release carbon to the atmosphere at a magnitude comparable to current global deforestation rates (> 200 billion tonnes C-CO$_2$-eq by 2100), with a 2.5 times greater overall effect on climate if substantial methane (CH$_4$) release coincides with CO$_2$ (Zimov et al. 2006, Schuur & Abbott 2011). Warmer summers (Christensen et al. 2004, Åkerman et al. 2008) and a decreasing winter frozen period (Webb et al. 2016, Zona et al. 2016) in northern high latitudes will continue to increase the vulnerability of boreal and tundra ecosystems to changes in climate. However, these changes will likely vary geographically with divergent community response characteristics (Hinzman et al. 2005, Ernakovich et al. 2014, Bahn et al. 2015) influenced by plant species composition (Parmentier et al. 2011, Bjorkman et al. 2015, Davidson et al. 2016), local hydrology, snowpack and snowmelt (Bintanja & Selten 2014, Karlsson et al. 2015, Liljedahl et al. 2016, Wrona et al. 2016), fires and pest outbreaks (Helbig et al. 2016a, Loranty et al. 2016, Young et al. 2016), regional differences in warming patterns (Screen & Simmonds 2010, Serreze & Barry 2011, Walsh 2014) and active layer thaw depth (Pastick et al. 2015, Atchley et al. 2016).

High latitude warming might increase ecosystem carbon uptake by reducing cold-temperature constraints on plant carbon assimilation and growth (Elmendorf et al. 2012, Cahoon et al. 2016), yet recent studies show that earlier snowmelt and longer surface non-frozen seasons do not necessarily result in higher net plant productivity and carbon gain (Parmentier et al. 2011, Bjorkman et al. 2015) due to phenological constraints and frozen soil conditions that limit root growth. Plant response to warming is also species specific and can be influenced by environmental changes (e.g. wetting or drying, nutrient availability, species competition) that co-
occur with warming (Kremers et al. 2015). Boreal forest communities, carbon sinks in past decades, are increasingly shifting towards net carbon sources for atmospheric CO₂ following increases in autotrophic respiration under warmer summer temperatures (Hadden & Grelle 2016) and drought stress (Bond-Lamberty et al. 2013, Reichstein et al. 2013). Although regional wetting may increase boreal plant productivity, carbon uptake through photosynthesis may also decrease in regions experiencing increasing cloud cover and more limited light availability (Öquist et al. 2014). Boreal forest conversion to wetlands following permafrost thaw, and landscape waterlogging, can further increase ecosystem carbon (CO₂ + CH₄) source activity due to heightened CH₄ emissions (Helbig et al. 2016b, 2016c).

Soil respiration, and release of CO₂ to the atmosphere, in high latitude environments is regulated by the availability of carbon substrates from recent plant litter and organic materials stored in soil (Wagner et al. 2009, Olefeldt et al. 2013), soil temperature and frozen water conditions (Davidson & Janssens 2006, Zona et al. 2016), and shifts in soil wetness (Watts et al. 2014, Schuur et al. 2015). Warmer and wetter soil environments generally favor production of CH₄ (Turetsky et al. 2008, Treat et al. 2015), a greenhouse gas with an atmospheric warming potential 25 times more potent than CO₂ over a 100-yr time scale (Boucher et al. 2009). However, a recent synthesis of soil carbon incubation studies suggests that the form of carbon emitted from warming northern soils will be dominated by CO₂, resulting from more rapid soil decomposition under aerobic conditions (Schädel et al. 2016). Nonetheless, CH₄ emissions from northern wetlands are expected to significantly impact high latitude ecosystem carbon budgets, amplifying greenhouse gas contributions to atmospheric warming and shifting landscapes closer to net carbon source (Chang et al. 2014, Schuur et al. 2015, Natali et al. 2015).

Improvements in near surface trace gas sampling through portable and automatic flux chambers (Christensen et al. 2000, Elberling & Brandt 2003, Mastepanov et al. 2008), and eddy covariance flux towers (Baldocchi et al. 2001, Zona et al. 2016) provide systems capable of measuring landscape CO₂ and CH₄ exchange in often remote and rugged high latitude environments. Flux operations in northern Arctic and boreal environments remain challenged by harsh working conditions, high expenses for power supplies and transportation, and a lack of physical support needed for equipment maintenance (Baldocchi & Koteen 2012, Zona et al. 2016).
Hence, chamber and flux measurements collected from remote environments often span only a summer season, and rarely extend through the winter (Zona et al. 2016); funding limitations often make it difficult to sample gas fluxes at a site for longer than a 2 to 3-year period. In consequence, the combined use of ecosystem models and eddy covariance observations is necessary to obtain more robust NECB estimates spanning larger regions and multi-year periods, and to improve understanding of the ecosystem controls that regulate vegetation and carbon cycling in vulnerable northern environments (Abbott et al. 2016).

Here we use a satellite data driven terrestrial carbon flux (TCF) model developed for northern wetland regions (Watts et al. 2014a), updated to include additional parametrizations of ecosystem functional type, and eddy covariance data collected from 36 towers across the northern high latitude (> 45 °N) region. Tower eddy covariance records are used in this study as the data represent a larger (>300-500 m²) footprint relative to flux chambers (~1-m²) (Davidson et al. 2016). We use the combined observations and TCF model outputs at a 1-km spatial resolution to assess carbon (CO₂ and CH₄) fluxes, underlying environmental controls, and recent changes in the net ecosystem carbon budget (CO₂ + CH₄; NECB) over a 13-yr period from 2003 to 2015. The NECB components include vegetation gross primary productivity (GPP), autotrophic respiration (Ra), soil heterotrophic respiration (Rh), and associated impacts on CO₂ and CH₄ emissions.

5.3 Methods
5.3.1 Flux tower CO₂ and CH₄ sites

Eddy covariance flux tower data were obtained for 36 tundra and boreal wetland sites (Figure 1) across the northern Arctic-boreal region, including Alaska, Canada, Greenland, Scandinavia and Russia. These data represent 52 individual flux records collected over years 2003-2015 (Table S5.1, Supplement) and regional gradients in permafrost conditions across the Arctic-boreal landscape. The records characterize the terrestrial carbon cycle for ecosystems having underlying continuous (14 sites), discontinuous (6 sites) and sporadic/isolated (2 sites) permafrost and seasonal surface active layer thaw depths varying from -20 cm below the surface (e.g. Greenland, Russia and North Slope Alaska) to > -70 cm (e.g. Scandinavia and boreal Alaska).
The remaining 14 tower sites are located outside the permafrost zone but experience seasonal freezing of the surface and root zone soil profile. Vegetation communities at the Arctic tundra tower sites include wet sedge, tussock, shrub-encroached tussock and dry heath. Vegetation at the non-tundra sites includes forested and non-forested boreal peatland and fen sites. Forest sites include black spruce (*Picea mariana*), larch (*e.g.* *Larix sibirica*), birch and pine with a mixed understory that often includes moss. The dominant vegetation communities at the tower sites are listed in the Supplement (Tables S5.1, S5.2), along with corresponding publications that more fully describe site characteristics.

The eddy covariance flux records include $\frac{1}{2}$ hourly NEE measurements partitioned into GPP and Reco components using methods deemed appropriate (e.g. Stoy *et al.* 2006, Lasslop *et al.* 2010, Reichstein *et al.* 2012) by the tower principal investigators. In addition to CO$_2$ flux, 15 of the sites also included $\frac{1}{2}$ hourly CH$_4$ flux measurements. To correspond temporally with the mean daily TCF model estimates, the $\frac{1}{2}$ hr fluxes were averaged per 24-hr period time step across the data records.

5.3.2 TCF model estimates for tower sites

5.3.2.1 TCF model description

The TCF model was developed as a precursor to the NASA Soil Moisture Active Passive (SMAP) mission Level 4 Carbon (L4$_\text{-C}$) algorithms used to diagnose and reduce uncertainty in global terrestrial carbon budgets (Kimball *et al.* 2009, Kimball *et al.* 2016). The TCF model utilizes inputs from satellite optical-IR remote sensing (e.g. MODIS) to infer changes in surface vegetation cover and the fraction of photosynthetic active radiation (FPAR) absorbed during photosynthesis. The TCF model also readily incorporates microwave sensor data on surface soil thermal and moisture conditions, including water inundation, that affect carbon cycle processes. Ancillary meteorology inputs are used in the model to define daily incoming shortwave solar radiation (SW$_\text{rad}$; W/m2), atmosphere vapor pressure deficit (VPD; Pa), near-surface (2 m) wind velocity (m/s; μ_m), air and soil temperature (°C), and root zone (up to 1m depth) soil moisture (m3/m3).
The TCF model is summarized here; a detailed description can be found in Watts et al. (2014a). Vegetation GPP is estimated in the model as the product of canopy absorbed photosynthetically active radiation (APAR, MJ m\(^{-2}\) d\(^{-1}\)) and a light use efficiency term (\(\epsilon\), g C MJ\(^{-1}\)) describing the conversion of APAR to vegetation biomass. Canopy FPAR is provided from MODIS (MOD15A2) inputs and can also be derived from lower-order vegetation indices (e.g. NDVI; Watts et al. 2014a). Photosynthetically Active Radiation (PAR) is defined as a fixed proportion of SW\(_{\text{rad}}\), and multiplied by FPAR to derive APAR. Light use efficiency is determined from optimum \(\epsilon\) rates specific to model plant functional types (PFT); these are reduced under sub-optimal environmental, thermal and moisture conditions. Controls on \(\epsilon\) are defined using remote sensing and meteorology inputs, and include microwave derived landscape freeze-thaw status (FT; Kim et al. 2014), surface to root zone soil moisture (SM\(_{\text{RZ}}\)), soil or air temperature (T\(_{\text{s}}\), T\(_{\text{a}}\)) and VPD (Watts et al. 2014a, Kimball et al. 2016). The start and end of the season for active vegetation growth (GPP) in the TCF model is constrained by microwave FT fields describing binary surface frozen (0) or non-frozen (1) states, in addition to inputs from T\(_{\text{a}}\) and T\(_{\text{s}}\). For non-coniferous vegetation, the TCF model GPP remains inactive until at least six consecutive days of FT (1) is achieved; this step is taken to help reduce premature growing season onset in the modeled GPP fluxes (Watts et al. 2014a).

TCF daily CO\(_{2}\) loss from R\(_{\text{eco}}\) under aerobic conditions is determined as the sum of autotrophic (R\(_{\text{a}}\)) and heterotrophic (R\(_{\text{h}}\)) respiration in near-surface litter and soil layers. A portion of daily net primary production (NPP; GPP-R\(_{\text{a}}\)) is allocated to metabolic (C\(_{\text{met}}\)), structural (C\(_{\text{str}}\)) and recalcitrant (C\(_{\text{rec}}\)) soil organic carbon (SOC) pools using a dynamic litterfall turnover scheme (Kimball et al. 2009, Watts et al. 2014a). The C\(_{\text{met}}\) pool represents easily decomposable plant residue and root exudates; C\(_{\text{str}}\) includes litter residues including hemi-cellulose and lignin; C\(_{\text{rec}}\) accounts for more slowly decomposing physically and chemically stabilized carbon and humified peat. Ecosystem R\(_{\text{h}}\) losses from soil decomposition of C\(_{\text{met}}\), C\(_{\text{str}}\) and C\(_{\text{rec}}\) are regulated using dimensionless temperature and moisture multipliers (Watts et al. 2014a) that vary between 0 (fully constrained) and 1 (no constraint) as informed by daily input T\(_{\text{s}}\) and SM\(_{\text{RZ}}\). Net ecosystem CO\(_{2}\) exchange (NEE; gC m\(^{-2}\) d\(^{-1}\)) is determined as the residual difference between R\(_{\text{eco}}\) and GPP.
A CH$_4$ emissions algorithm was added to the TCF model to account for anaerobic carbon loss in northern wetland environments (Watts et al. 2014a, Zona et al. 2016). The model estimates daily CH$_4$ production according to T_s, SM$_{RZ}$ and substrate availability from SOC pools within a one-dimensional soil profile for more direct implementation of remote sensing inputs and to simplify model parameterization for regional simulations (Watts et al. 2014a). Transfer of CH$_4$ from the soil to the atmosphere occurs through vegetation, soil diffusion and water ebullition pathways. Methanogenesis occurs within the saturated soil pore volume per a biome specific optimal production CH$_4$ rate, the availability of labile photosynthates (Ström et al. 2003, Olefeldt et al. 2013) and a soil Q$_{10}$ modifier used to describe the temperature dependence of biological processes. Oxidation (conversion of CH$_4$ to CO$_2$) is accounted for during plant transport using a PFT specific scalar; for the soil diffusion pathway a Michaelis-Menten kinetics approach scaled by aerated pore space is used to regulate methanotrophy (Watts et al. 2014a).

5.3.2.2 Updates to the TCF model for Arctic-boreal wetlands

The original TCF model (Kimball et al. 2009) and SMAP L4_C model parameter Look-Up-Table (LUT) logic (Kimball et al. 2016) is based on global MODIS Land Cover (MCD12Q1 Type 5) vegetation classes (e.g. Friedl et al. 2010). These LUT classes represent up to eight global plant functional type (PFT) classes, including evergreen and deciduous forests, shrubland, grassland, and cereal/broadleaf cropland. The adjusted TCF wetlands model expands the PFT parameter table to better represent northern vegetation and wetland types. The initial LUT enhancement described in Watts et al. (2014a) included the addition of two general wetland classes: tundra and peatland. A new expanded TCF model LUT for the northern latitudes includes classes for shrub peatlands, forested peatlands, non-peatland permanent wetlands, barren tundra, shrub tundra, wet sedge tundra, and tussock tundra. The vegetation community types used to guide development of the updated TCF model LUT classes (Table S5.2) are derived from an expanded northern vegetation map (Figure 1) obtained from merged classifications using the 300-m resolution ESA CCI-LC 2010 Epoch land cover product (Kirches et al. 2014), the Circumpolar Arctic Vegetation Map (CAVM; Walker et al. 2005) and a high latitude peatland vegetation map (Watts et al. 2014b). The merged land cover map was re-
projected to a 1-km Equal Area Scalable Earth Grid Version 2 (EASE2) format with the WGS 84 ellipsoid (Brodzik et al. 2012). The land cover classes were assigned to each flux tower site based on the 1-km resolution grid cell overlying the central tower locations. An additional modification to the TCF model was the use of T_s to regulate carbon assimilation activity in the GPP module instead of T_a as had been used in prior TCF model simulations (Watts et al. 2014a). This step was taken as the high latitude GPP start-of-season is affected by the onset of spring thaw in frozen soil layers, which is correlated with bud break activity (Van Wijk et al. 2003, Euskirchen et al. 2006, Parmentier et al. 2011).

5.3.2.3 TCF model meteorology and remote sensing inputs

Daily input meteorology was obtained from the Goddard Earth Observing System Data Assimilation Version 5 (GEOS-5) MERRA archive (Rienecker et al. 2011) with 1/2 x 2/3° spatial resolution. In addition to near surface (≤ 10 cm) T_s and root zone θ information from the MERRA-Land reanalysis (Reichle et al. 2011) required for the R_{eco} and CH$_4$ simulations, daily MERRA SW$_{rad}$, T_{min} and VPD records were used to drive the internal GPP calculations. The MERRA near-surface (2 m) wind parameters were also used to obtain mean daily μ_m for the CH$_4$ simulations. The GEOS-5 data were re-projected from geographic lat./lon. to a 1-km EASE2 grid for input into the TCF model.

For the daily LUE-based GPP simulations, quality screened cloud-filtered 4-day 1-km FPAR values from MODIS MCD15A3 combined Terra and Aqua data records (Knyazikhin et al. 1999) were used as model inputs. The 4-day FPAR product is especially useful for monitoring high latitude environments due to rapid changes in vegetation growth occurring during the relatively short Arctic-boreal non-frozen season. The MCD15A3 records were converted from Sinusoidal grid to a 1-km EASE2 grid using Geospatial Data Abstraction Library for Python (GDAL 2.1.0). The resulting MCD15A3 data were gap-filled using a simple linear interpretation method. The spatially coarse 1-km FPAR values are used in this study rather than the 250-m FPAR derived from vegetation indices as described in Watts et al. (2014a) to more readily facilitate TCF model extrapolation from tower locations to the greater Arctic-boreal domain.
5.3.2.4 TCF model simulations

TCF model simulations were conducted for each tower site using reanalysis \(SW_{rad}, T_{\text{min}}, \) VPD, \(SM_{RZ}, T_s, \mu_m \) and input satellite FT (Kim et al. 2014) over the 2003-2015 period. The parameter values associated with TCF model GPP, Reco and \(CH_4 \) simulations are provided in the Supplement (Tables S5.3-5.5). Baseline carbon pools were initialized by continuously cycling (“spinning-up”) the model using reanalysis inputs over a 14-yr period (1989 to 2002) to reach a dynamic steady-state between estimated NPP and surface SOC stocks (Kimball et al. 2009, Watts et al. 2014a). The resulting baseline SOC stocks were used as inputs in the 2003-2015 forward model simulations. The TCF model is designed to use reanalysis and satellite remote sensing input data representing the near-surface soil profile (> 30 cm) and more recent SOC accumulation in surface layers (~10 cm depth). This assumption is adequate for investigations of contemporary ecosystem flux variability, but may not be appropriate for multi-decadal analyses and studies of carbon loss from highly disturbed landscapes where deeper soils become exposed to near-surface processes.

5.3.2.5 TCF model assessment & site NECB trends

The temporal agreement between the tower EC records and TCF model simulations was assessed using mean residual error (MRE) between the tower eddy covariance records and TCF modeled \(CO_2 \) and \(CH_4 \) fluxes to identify potential positive (underestimation) and negative (overestimation) biases in the simulations; root-mean-square-error (RMSE) differences were used as a measure of model estimate uncertainty in relation to the tower EC records. Regression analysis was also used to ascertain which environmental predictor variables (e.g. land cover, mean annual precipitation and \(T_a \), mean daily \(T_a \) and \(T_s \), soil thaw depth) were significantly associated (\(\alpha = 0.05 \)) with changes in mean daily tower eddy covariance flux estimates for NEE, Reco, GPP and \(CH_4 \) emissions. In situ soil moisture was not available for all tower sites and was not included in the multiple regression analysis. Finally, a Mann–Kendall trend test (Watts et al. 2012) was applied to the TCF model estimated annual totals for GPP, Reco, NEE, \(CH_4 \) emissions, and the NECB (NEE + \(CH_4 \)) to determine trend direction and significance (here we use \(\alpha = 0.1 \)) for ecosystem carbon fluxes over the 13-yr time period. The trend tests were applied
for the individual tower sites and TCF model records aggregated across tundra and boreal wetland vegetation communities.

5.4 Results

5.4.1 Site eddy covariance flux characteristics

Linear regression analysis indicates that thaw depth (cm), mean annual T_a ($^\circ$C) and mean daily T_a and T_s ($^\circ$C) contribute significantly ($p < 0.05$) to the regulation of mean daily NEE (gC m$^{-2}$) fluxes in Arctic-boreal environments (Table 5.1; Figure 5.2). Land cover, though not significant ($p = 0.09$), was also an important predictor in the model. Mean annual precipitation was not a significant predictor ($p = 0.7$) of daily NEE flux. All input environmental explanatory variables were significant for GPP when considering an α level of 0.1 (all variables sans thaw depth had p-values < 0.05). All explanatory variables were significant ($p < 0.01$) in explaining mean daily Reco. For model CH$_4$ emissions, land class, thaw depth, mean annual precipitation, mean annual T_a and mean daily T_s were significant at $p < 0.05$; daily T_a was not a significant predictor. For the GPP, Reco and CH$_4$ models, the predictor variables explained 50% ($R^2 = 0.5$) of the variability in carbon flux; however, for NEE the R^2 was substantially lower at 28%.

In general, the monthly summer (June-August) tower based GPP flux sums were larger (by a factor of 2.5) for boreal wetland landscapes (-143.6 \pm 57 gC m$^{-2}$ mon$^{-1}$; Figure 5.2) relative to the tundra land cover types included in this study (-57.7 \pm 33 gC m$^{-2}$ mon$^{-1}$), resulting from longer growing season length, warmer T_s and an absence of permafrost. Boreal GPP was larger in needleleaf/peatland and mixed forest/peatland (land classes 45, 47, 49) with monthly fluxes exceeding 300 gC m$^{-2}$. Monthly summer Reco flux sums for boreal wetlands (98 \pm 35 vs. 41\pm 21 gC m$^{-2}$ mon$^{-1}$) were more than twice as large relative to tundra. Reco was largest for the evergreen needleleaf forest/peatland and mixed needle/broadleaf/peatland landscapes (respective land classes = 45 & 49; Table S5.2).

Mean monthly NEE sink strength, however, was only slightly larger (by a factor of 1.4; -37 \pm 12 gC m$^{-2}$ mon$^{-1}$) for boreal wetland systems relative to tundra (-25 \pm 20 gC m$^{-2}$ mon$^{-1}$). Monthly CH$_4$ fluxes were also larger for boreal wetlands (1.8 \pm 0.69 gC m$^{-2}$ mon$^{-1}$) compared to
tundra (0.8 ± 0.41 gC m$^{-2}$ mon$^{-1}$). The CH$_4$ emission magnitudes were highest for the Scandinavian shrub/herbaceous non-tundra wetlands (land class = 19) characterized by discontinuous or an absence of permafrost, and minimal forest cover in the flux tower footprint. Higher CH$_4$ fluxes were also observed for dwarf shrub/tussock tundra (land class = 28) found at Ivotuk, Alaska and Zackenberg, Greenland, although the temporal period of release at these sites was limited over a short time span (weeks to ~2 months) due to extended frozen soil conditions.

5.4.2 Comparison of TCF model simulations with flux measurements

The resulting TCF model simulations agree well with the tower observed GPP, Reco, NEE and CH$_4$ eddy covariance fluxes (Figures 5.3, 5.4). The TCF daily fluxes replicate the carbon sink/source patterns observed over Arctic-boreal wetland tower sites (Figure 5.5), with peak CO$_2$ and CH$_4$ emissions occurring in July and August and persisting throughout the winter at trace levels (~ 0.02-0.4 gC for Reco and 10-20 mgC for CH$_4$). The TCF model estimates, however, do not capture occasional episodic CO$_2$ and CH$_4$ loss from soils to the atmosphere that can occur following spring ice-off and autumn re-freeze events (e.g. Ivotuk tundra and Tanana Flats Bog, Alaska; Figure 5.2). The TCF model also estimates a GPP start-of-season occurring 3 to 6 days prior to GPP records obtained from tower eddy covariance data (e.g. Figure 5.2) even with the input satellite FT surface observations, and could reflect the coarse 4-day MODIS FPAR compositing. The premature GPP estimates are more prevalent for colder boreal and tundra ecosystems where cold surface soil conditions and residual snow cover constrain the timing of annual vegetation leaf-out activity.

A TCF algorithm error (RMSE) analysis for the Arctic-boreal flux tower sites, relative to the eddy covariance record observations, demonstrates carbon flux retrieval accuracy within targets specified by global satellite based carbon model guidelines (Kimball et al. 2016) and prior Arctic model investigations (Watts et al. 2014a). The RMSE uncertainty (Table 5.2) for NEE at the flux tower sites are 0.97 ± 0.46 gC m$^{-2}$ d$^{-1}$, and is similar to that reported in Watts et al. (2014a) for model simulations using MERRA reanalysis and 250-m MODIS vegetation index inputs. The corresponding RMSE values for GPP and Reco are 1.08 ± 0.44 and 0.85 ± 0.49 gC m$^{-2}$ d$^{-1}$, respectively. For CH$_4$, TCF model RMSE uncertainty values of 21 ± 12 mgC m$^{-2}$ d$^{-1}$ are also similar to those reported in prior studies (Watts et al. 2014a, 2014b). Corresponding MRE values
for the tower sites are 0.04 ± 0.43, 0.01 ± 0.27 and 0.13 ± 0.39 gC m⁻² d⁻¹ for respective NEE, GPP and Reco fluxes indicating that, on average, the model is slightly underestimating CO₂ fluxes relative to the eddy covariance data. For CH₄ the MRE is -0.65 ± 5.93 mgC m⁻² d⁻¹.

5.4.3 Annual TCF model flux budgets

The 13-yr (2003-2015) TCF model flux record indicates that boreal wetlands had the largest total annual NEE (-96 ± 86 gC m⁻² yr⁻¹) which results from a longer non-frozen period, increasing the GPP CO₂ sink (-618 ± 246 gC m⁻² yr⁻¹). Forested wetlands, on average, had larger NEE sink strength (-122 ± 99 gC m⁻² yr⁻¹) relative to non-forested boreal wetlands (-72 ± 65 gC m⁻² yr⁻¹), attributed to the longer growing season for conifers (boreal wetland GPP = -493 ± 194 vs. 757 ± 222 gC m⁻² yr⁻¹ for forested wetlands). Boreal Reco averaged 554 ± 245 gC m⁻² yr⁻¹, with 435 ± 202 gC m⁻² yr⁻¹ for non-forested wetlands and 690 ± 223 gC m⁻² yr⁻¹ for forested wetlands.

The tundra sites experienced a small annual NEE sink (-4 ± 37 gC m⁻² yr⁻¹). Although the extended frozen season and relatively short (2-4 month) summer period at the tundra sites limited soil decomposition (Reco = 222 ± 92 gC m⁻² yr⁻¹), the cold climate also greatly constrained vegetation GPP (-226 ± 96 gC m⁻² yr⁻¹), thereby reducing the annual CO₂ sink.

Annual release of CH₄ from the boreal sites averaged 23 ± 26 gC m⁻² yr⁻¹. The CH₄ emissions from non-forested wetlands were 25 ± 32 gC m⁻² yr⁻¹, slightly higher than the forested wetland sites (18 ± 13 gC m⁻² yr⁻¹). Tundra CH₄ emissions were substantially less, at 7 ± 4 gC m⁻² yr⁻¹. When considering NEE + CH₄ loss, boreal wetland NECB was -79 ± 90 gC m⁻² yr⁻¹; this reduced net ecosystem carbon sink strength by 19% relative to NEE. Partitioning boreal non-forest wetlands and forested wetlands, NECB values were -51 ± 68 gC m⁻² yr⁻¹ and -105 ± 101 gC m⁻² yr⁻¹, respectively. The tundra NECB was 1.6 ± 31 gC m⁻² yr⁻¹, resulting in net ecosystem carbon loss as opposed to being a small carbon sink when considering only NEE. Factoring in an enhanced atmospheric forcing potential for CH₄, at least 25 times that of CO₂ over a 100-year time period, the boreal wetlands had an average global warming potential (GWP) of 472 ± 640 g CO₂eq m⁻² yr⁻¹ (607 ± 815 g CO₂eq m⁻² yr⁻¹ for non-forested and 336 ± 348 CO₂eq m⁻² yr⁻¹ for forested wetlands). For tundra the GWP was 156 ± 93 g CO₂eq m⁻² yr⁻¹.

160
5.4.4 Trends in NECB and component fluxes

A generalized grouping of ecosystem types (e.g. boreal wetland; boreal forested wetland; boreal non-forest wetland; tundra) shows a slight decline in boreal GPP from 2005-2013, followed by an increase in yrs. 2014-2015 (Figure 5.6). Boreal Reco was relatively stable during this period, but increased considerably in 2014-2015 (~ 100 gC m\(^{-2}\)) in the forested wetlands following a short decline in 2013. The tundra wetlands had substantial year-to-year variability in GPP and Reco, with a decrease in GPP occurring from 2008-2009 and 2010-2014, followed by an increase in 2015. The combined GPP and Reco response over the 13-yr period in boreal wetlands shows a decrease in NEE (less carbon sink) from 2003-2009, followed by a stabilization in 2010-2013, and then an increase in NEE from 2014-2015. The tundra wetlands show something similar, with NEE decreasing from 2003-2013, followed by an increase from 2014-2015. Wetland CH\(_4\) emissions from boreal sites increased steadily over yrs. 2003-2015. In tundra, CH\(_4\) was relatively stable with a small increase in 2007.

The Mann Kendall trend results for TCF model annual flux sums, averaged according to general ecosystem type, indicate a lack of trend significance (\(\alpha = 0.1\)) for NEE and Reco when considering the 36 Arctic-boreal sites (Table 5.3). However, the boreal wetlands did show a significant increase in CH\(_4\) flux during the 13-yr period with higher increases and greater trend significance occurring for the non-forested boreal wetland sites (1.9 gC m\(^{-2}\) yr\(^{-1}\); \(p < 0.0001\)). The boreal forested wetlands also showed a significant decrease in GPP flux (9.9 gC m\(^{-2}\) yr\(^{-1}\); \(p = 0.08\)). Increasing annual CH\(_4\) emissions in the non-forested boreal wetlands decreased the NECB (7.1 gC m\(^{-2}\) yr\(^{-1}\); \(p = 0.08\)) during the observation period.

Mann Kendall trend tests for the individual tower sites reveal contrasting flux response over the 13-yr period based on geographic location and land cover type (Figure 5.7). Ten of the 36 tower sites had a significant (\(p < 0.1\)) increase in annual Reco from 2003-2015 (i.e. site numbers 1, 2, 8, 9, 13, 20, 28, 30, 31, 32; see Table S5.1). Five towers had significant increases in annual GPP (site numbers 17, 28, 29, 33, 34) whereas two sites showed a decrease in GPP (3, 18). Only four sites revealed an overall decrease in annual NEE CO\(_2\) sink (i.e. sites 6, 10, 19, 36) and included two Alaska North Slope tussock and sedge sites, a sedge fen in Finland, and a boreal peat site in
Manitoba, Canada. For CH$_4$, eight sites showed an increase in annual emissions (i.e. 13, 18, 20, 21, 23, 25, 28, 32); one site showed a decrease (i.e. 9).

5.5 Discussion & conclusion

This study investigates recent (yrs. 2003-2015) changes in Arctic-boreal carbon fluxes and NECB using flux observations obtained from 36 high latitude eddy covariance tower sites and 13-yr records of daily 1-km resolution NEE, GPP, Reco, CH$_4$ and NECB simulations from an enhanced satellite data driven TCF model developed for northern wetland regions.

The TCF model estimates are in close agreement with the tower observed NEE and CH$_4$ eddy covariance fluxes, and replicate the carbon sink/source patterns observed over Arctic-boreal wetland tower sites. The RMSE uncertainty for NEE at the flux tower sites (0.97 ± 0.46 gC m$^{-2}$ d$^{-1}$) is comparable to other model simulations using MERRA reanalysis and MODIS inputs (Watts et al. (2014a). The RMSE uncertainty for CH$_4$ (21 ± 12 mgC m$^{-2}$ d$^{-1}$) is also similar to those reported in prior studies (Watts et al. 2014a, 2014b). The higher RMSE values for NEE (> 1.2 gC m$^{-2}$ d$^{-1}$) observed for some Arctic sites result from a seasonal mismatch between reanalysis and site T_s (e.g. Innnavait hillslope tussock in Alaska and Zackenberg wet fen tundra in Greenland). High RMSE values for NEE also occur for a NOAA North Slope (Deadhorse area) tower site in Alaska, resulting from recent large, localized increases in active layer depth (and T_s) that are not reflected in the coarse 0.5° resolution MERRA reanalysis records. Similar temperature mismatch may also contribute to the higher RMSE values observed at the Scotty Creek boreal bog in the Canadian NWT where permafrost thaw and thermokarst activity has resulted in warmer soil conditions and waterlogging relative to adjacent landscapes (Helbig et al. 2016b). However, the higher model estimate uncertainty for these ecosystems is still within the range of acceptable error for northern high latitude systems (Marushchak et al. 2013, Kimball et al. 2016).

Although the TCF model performs well in simulating the seasonal NEE patterns at these sites, the model does not capture episodic CO$_2$ emission events occurring during spring thaw when CO$_2$ trapped in frozen soils is released following surface ice and snow melt (e.g. as observed at Tanana Flats). This episodic release can also occur during the autumn freeze, when contracting soils push CO$_2$ (and CH$_4$) stored at depth towards the surface (Mastepanov et al.)
Representing these episodic processes would require an increase in model complexity and the addition of multiple soil layers and a heat transfer model, and is beyond the intended scope of the satellite data driven TCF model framework.

The regulating effect of environmental conditions on carbon flux is evident in the Arctic-boreal tower site records and the TCF model simulations. Higher monthly NEE loss occurred at permafrost sites where thaw depths ranged between -40 and -50 cm below the surface, reflecting a priming effect on respiration as deeper stored SOC became available for microbial activity, offsetting vegetation GPP (Schuur et al. 2015, Schädel et al. 2016). Continuing permafrost thaw also facilitates sub-surface drainage and drying of the surface soil layers. The drier surface soils support warmer, aerobic conditions which accelerate microbial decomposition rates and CO₂ loss (Watts et al. 2014a). This priming effect at summer thaw depths near -40 cm was also observed in the tower records for CH₄ but began to decrease with further active layer deepening if soil drainage occurred. Overall, a decrease in CO₂ sink (more positive NEE) resulted when cooler Tₛ and Tₐ temperatures limited GPP and the offset of CO₂ loss from Reco, or warmer conditions (monthly average air temperatures > 17°C) resulted in drier soil conditions which heightened Reco and reduced GPP. These response characteristics have been reported elsewhere (Parmentier et al. 2011, Sturtevant & Oechel 2013). Ecosystem CH₄ emissions from the observed Arctic-boreal landscapes were relatively minimal at temperatures below 0°C but increased substantially at or above 0°C, reflecting the strong temperature sensitivity of methanogens (Watts et al. 2014a, 2014b; Zona et al. 2016).

This investigation indicates that tundra landscapes are particularly vulnerable to shifts from classification as net carbon (NECB) sink to net carbon source when accounting for annual CH₄ emissions in addition to NEE. Tundra NEE showed a very minimal average carbon sink (-4 ± 37 gC m⁻² yr⁻¹) during yrs. 2003-2015. The corresponding NECB was 1.6 ± 31 gC m⁻² yr⁻¹, shifting tundra to a net carbon source. At some tundra tower sites, CH₄ emissions in the wet and warm years of 2008 and 2012 offset the already minimal NEE sink by 200-500%. With continued climate warming the relatively low annual CO₂ uptake through GPP in tundra environments is less likely to offset microbial decomposition of SOC, especially given the lessening cold temperature protection of stored labile carbon substrates (Watts et al. 2014a,
2014b, Zona et al. 2016). In contrast, the boreal wetland sites have much higher magnitudes of annual GPP and stronger (more negative) NEE sink (-96 ± 86 gC m⁻² yr⁻¹). Yet, a 20% reduction in carbon sink (NECB -76 ± 90 gC m⁻² yr⁻¹) was evident at the boreal sites when accounting for carbon loss as CH₄. When considering the 25-times higher atmospheric warming potential for CH₄ (Boucher et al. 2009), all ecosystems showed an average positive GWP (472 ± 640 g CO₂eq m⁻² yr⁻¹ for boreal forests and 156 ± 93 g CO₂eq m⁻² yr⁻¹ for tundra).

Change in NEE sink activity for the Arctic-boreal tundra was not significant (p > 0.19) during the 2003-2015 yr. period, nor were the observed changes in Reco (p > 0.45), GPP (p > 0.08) and the NECB (p > 0.08). However, boreal wetlands did show significant increase in CH₄ (p < 0.05) resulting from warming Tₛ and CH₄ sensitivity to changing thermal conditions, an increasing annual non-frozen season, and sufficient soil wetness and landscape inundation to support anaerobic conditions. These results indicate that a lengthening of the surface non-frozen season in Arctic-boreal communities does not necessarily lead to higher net annual CO₂ sink activity due to moisture and vegetation phenology controls on GPP and carbon loss contribution from Reco and CH₄ (Watts et al. 2014a). Other studies have reported a similar lack of overall change in ecosystem carbon balance (Marchand et al. 2004, Sistla et al. 2013) and tundra CH₄ emissions (Miller et al. 2016, Sweeney et al. 2016) despite northern high latitude warming. Although the trends in regional Reco were not significant, the TCF modeled CO₂ emissions show a steep rise in yrs. 2014 and 2015 that reflect warmer summer temperatures. This reveals a need for further long-term monitoring of these ecosystems to ascertain changes in longer-term soil respiration rates (Watts et al. 2014a), especially considering ecosystem surface drying trends that have been observed in localized Arctic-boreal systems (Watts et al. 2014b). The indication of trend in CO₂ and CH₄ exchange at individual tower sites, but not in the regional grouping of tundra and boreal wetlands, shows a need for more localized landscape monitoring, in compliment to regional analyses, to understand contrasting ecosystem response to shifting climate and interannual wetting/drying effects.

On-going efforts are needed to better quantify the NECB in Arctic-boreal ecosystems, and to detect contrasting patterns and regional trends in carbon uptake through GPP and carbon loss through CO₂ respiration and wetland CH₄ emissions. Given the limited network of eddy
covariance flux towers in northern high latitude environments, and lack of temporal permanence in flux tower observations, the on-going integration of in situ gas sampling with satellite and airborne remote sensing and ecosystem flux models will be crucial to track changes in carbon balance (Fisher et al. 2014, Miller et al. 2016, Parazoo et al. 2016) and shifts from ecosystem carbon sink to carbon source in tundra and boreal wetlands.

5.6 References

Friedl M A, D Sulla-Menashe, B Tan, A Schneider, N Ramankutty, A Sibley, X Huang (2010) MODIS Collection 5 global land cover: Algorithm refinements and characterization of new datasets, 2001-2012, Collection 5.1 IGBP Land Cover, Boston University, Boston, MA, USA.

Tables

Table 5.1: Multiple linear regression results for flux tower NEE, GPP, Reco (gC m\(^{-2}\) d\(^{-1}\)) and CH\(_4\) records (mgC m\(^{-2}\) d\(^{-1}\)) from the 35 Arctic-boreal wetland sites. Explanatory variables include land cover class, permafrost thaw depth, mean annual precipitation (MAP; mm), mean annual air temperature (\(^{\circ}\)C), mean daily air and soil temperature (Ta, Ts; \(^{\circ}\)C). The parameter estimates are shown, along with model standard error, t-values, p-values, root square error (RSE), F-statistic, the degrees of freedom, and the coefficient of determination (R\(^2\)). Parameter significance is denoted as * where p < 0.1, ** where p < 0.05, and *** where p < 0.01.

<table>
<thead>
<tr>
<th>NEE</th>
<th>Estimate</th>
<th>Std.Error</th>
<th>t-value</th>
<th>p-value</th>
<th>Significance</th>
<th>Reo</th>
<th>Estimate</th>
<th>Std.Error</th>
<th>t-value</th>
<th>p-value</th>
<th>Significance</th>
</tr>
</thead>
<tbody>
<tr>
<td>Intercept</td>
<td>5.24</td>
<td>6.24</td>
<td>0.84</td>
<td>4.00E-01</td>
<td></td>
<td>Intercept</td>
<td>35.77</td>
<td>10.28</td>
<td>3.48</td>
<td>5.30E-04</td>
<td>***</td>
</tr>
<tr>
<td>Land Class</td>
<td>-0.18</td>
<td>0.11</td>
<td>-1.72</td>
<td>9.00E-02</td>
<td>*</td>
<td>Land Class</td>
<td>0.66</td>
<td>0.17</td>
<td>3.77</td>
<td>1.78E-04</td>
<td>***</td>
</tr>
<tr>
<td>ThawDepth</td>
<td>-0.14</td>
<td>0.06</td>
<td>-2.18</td>
<td>3.00E-02</td>
<td>**</td>
<td>ThawDepth</td>
<td>-0.27</td>
<td>0.11</td>
<td>-2.59</td>
<td>9.92E-03</td>
<td>***</td>
</tr>
<tr>
<td>MAP</td>
<td>0.002</td>
<td>0.01</td>
<td>0.38</td>
<td>7.10E-01</td>
<td></td>
<td>MAP</td>
<td>-0.03</td>
<td>0.01</td>
<td>-2.59</td>
<td>3.14E-03</td>
<td>***</td>
</tr>
<tr>
<td>MAT</td>
<td>1.61</td>
<td>0.33</td>
<td>4.83</td>
<td>1.64E-06</td>
<td>***</td>
<td>MAT</td>
<td>4.03</td>
<td>0.55</td>
<td>7.29</td>
<td>8.52E-13</td>
<td>***</td>
</tr>
<tr>
<td>Ta</td>
<td>-0.61</td>
<td>0.13</td>
<td>-4.76</td>
<td>2.33E-06</td>
<td>***</td>
<td>Ta</td>
<td>1.29</td>
<td>0.22</td>
<td>5.95</td>
<td>4.27E-09</td>
<td>***</td>
</tr>
<tr>
<td>Ts</td>
<td>-1.26</td>
<td>0.23</td>
<td>-5.54</td>
<td>4.23E-08</td>
<td>***</td>
<td>Ts</td>
<td>3.59</td>
<td>0.4</td>
<td>9.08</td>
<td>2.00E-16</td>
<td>***</td>
</tr>
<tr>
<td>RSE</td>
<td>26</td>
<td>Deg. Freedom</td>
<td>722</td>
<td>46</td>
<td>R(^2)</td>
<td>0.28</td>
<td>p-value</td>
<td>< 2.2e-16</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>F-stat</td>
<td>46</td>
<td>R(^2)</td>
<td>0.28</td>
<td>p-value</td>
<td>< 2.2e-16</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>GPP</th>
<th>Estimate</th>
<th>Std.Error</th>
<th>t-value</th>
<th>p-value</th>
<th>Significance</th>
<th>CH(_4) Estimate</th>
<th>Std.Error</th>
<th>t-value</th>
<th>p-value</th>
<th>Significance</th>
</tr>
</thead>
<tbody>
<tr>
<td>Intercept</td>
<td>-25.27</td>
<td>12.25</td>
<td>-2.06</td>
<td>4.00E-02</td>
<td>**</td>
<td>Intercept</td>
<td>4792</td>
<td>679</td>
<td>7.06</td>
<td>4.09E-11</td>
</tr>
<tr>
<td>Land Class</td>
<td>-0.91</td>
<td>0.21</td>
<td>-4.38</td>
<td>1.39E-05</td>
<td>***</td>
<td>Land Class</td>
<td>-50.55</td>
<td>10.51</td>
<td>-4.81</td>
<td>3.32E-06</td>
</tr>
<tr>
<td>ThawDepth</td>
<td>0.22</td>
<td>0.12</td>
<td>1.74</td>
<td>8.00E-02</td>
<td>*</td>
<td>ThawDepth</td>
<td>13.3</td>
<td>6.73</td>
<td>1.98</td>
<td>4.00E-02</td>
</tr>
<tr>
<td>MAP</td>
<td>0.03</td>
<td>0.01</td>
<td>2.31</td>
<td>2.00E-02</td>
<td>**</td>
<td>MAP</td>
<td>-5.59</td>
<td>1.32</td>
<td>-4.23</td>
<td>3.75E-05</td>
</tr>
<tr>
<td>MAT</td>
<td>-2.57</td>
<td>0.66</td>
<td>-3.89</td>
<td>1.09E-04</td>
<td>***</td>
<td>MAT</td>
<td>80.96</td>
<td>39.82</td>
<td>2.03</td>
<td>4.00E-02</td>
</tr>
<tr>
<td>Ta</td>
<td>-1.64</td>
<td>0.26</td>
<td>-6.32</td>
<td>4.80E-10</td>
<td>***</td>
<td>Ta</td>
<td>-22.37</td>
<td>17.05</td>
<td>-1.31</td>
<td>1.90E-01</td>
</tr>
<tr>
<td>Ts</td>
<td>-4.55</td>
<td>0.47</td>
<td>-9.63</td>
<td>2.00E-16</td>
<td>***</td>
<td>Ts</td>
<td>209.47</td>
<td>25.34</td>
<td>8.27</td>
<td>3.71E-14</td>
</tr>
<tr>
<td>RSE</td>
<td>50</td>
<td>Deg. Freedom</td>
<td>682</td>
<td>114</td>
<td>R(^2)</td>
<td>0.5</td>
<td>p-value</td>
<td>< 2.2e-16</td>
<td></td>
<td></td>
</tr>
<tr>
<td>F-stat</td>
<td>114</td>
<td>R(^2)</td>
<td>0.5</td>
<td>p-value</td>
<td>< 2.2e-16</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Table 5.2 TCF model results for tower sites relative to fluxes derived from eddy covariance methods. Measures of model estimate disagreement include the root mean square error (RMSE) and mean residual error (MRE). RMSE and MSE are provided for NEE, GPP, Reco (units are gC m\(^{-2}\) d\(^{-1}\)) and CH\(_4\) (mgC m\(^{-2}\) d\(^{-1}\)) flux estimates.

<table>
<thead>
<tr>
<th>SITE</th>
<th>RMSE.NEE</th>
<th>MRE.NEE</th>
<th>RMSE.GPP</th>
<th>MRE.GPP</th>
<th>RMSE.Reco</th>
<th>MRE.Reco</th>
<th>RMSE.CH4</th>
<th>MRE.CH4</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>gC m(^{-2}) d(^{-1})</td>
<td></td>
<td></td>
<td>mgC m(^{-2}) d(^{-1})</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1</td>
<td>0.69</td>
<td>-0.03</td>
<td>0.84</td>
<td>-0.04</td>
<td>0.85</td>
<td>0.09</td>
<td>14</td>
<td>-6.01</td>
</tr>
<tr>
<td>2</td>
<td>0.86</td>
<td>-0.05</td>
<td>0.98</td>
<td>-0.11</td>
<td>0.91</td>
<td>0.27</td>
<td></td>
<td></td>
</tr>
<tr>
<td>3</td>
<td>1.21</td>
<td>0.26</td>
<td>0.97</td>
<td>-0.11</td>
<td>1.01</td>
<td>-0.13</td>
<td></td>
<td></td>
</tr>
<tr>
<td>4</td>
<td>0.96</td>
<td>-0.1</td>
<td>1.66</td>
<td>0</td>
<td>0.77</td>
<td>0.26</td>
<td></td>
<td></td>
</tr>
<tr>
<td>5</td>
<td>0.73</td>
<td>0.09</td>
<td>0.89</td>
<td>0.01</td>
<td>0.81</td>
<td>-0.08</td>
<td>4.94</td>
<td>-0.44</td>
</tr>
<tr>
<td>6</td>
<td>1.3</td>
<td>-0.22</td>
<td>1.15</td>
<td>0.42</td>
<td>3.19</td>
<td>2.02</td>
<td></td>
<td></td>
</tr>
<tr>
<td>7</td>
<td>0.6</td>
<td>0.12</td>
<td>0.63</td>
<td>-0.02</td>
<td>0.66</td>
<td>0.24</td>
<td></td>
<td></td>
</tr>
<tr>
<td>8</td>
<td>0.34</td>
<td>0.06</td>
<td>0.28</td>
<td>-0.1</td>
<td>0.43</td>
<td>-0.11</td>
<td>14.35</td>
<td>-0.78</td>
</tr>
<tr>
<td>9</td>
<td>0.84</td>
<td>-0.21</td>
<td>0.99</td>
<td>-0.12</td>
<td>1.22</td>
<td>-0.03</td>
<td>22.42</td>
<td>2.5</td>
</tr>
<tr>
<td>10</td>
<td>0.63</td>
<td>0.05</td>
<td>0.92</td>
<td>-0.44</td>
<td>0.5</td>
<td>0.36</td>
<td>4.52</td>
<td>0.04</td>
</tr>
<tr>
<td>11</td>
<td>0.48</td>
<td>-0.12</td>
<td>0.54</td>
<td>-0.11</td>
<td>0.45</td>
<td>-0.13</td>
<td>10.86</td>
<td>-6.12</td>
</tr>
<tr>
<td>12</td>
<td>0.33</td>
<td>0.05</td>
<td>0.34</td>
<td>-0.04</td>
<td>0.36</td>
<td>0.04</td>
<td>9.06</td>
<td>6.48</td>
</tr>
<tr>
<td>13</td>
<td>1.27</td>
<td>-0.94</td>
<td>1.29</td>
<td>-0.75</td>
<td>0.63</td>
<td>0.09</td>
<td>23.34</td>
<td>11.37</td>
</tr>
<tr>
<td>14</td>
<td>0.79</td>
<td>-0.07</td>
<td>1.05</td>
<td>0.13</td>
<td>0.78</td>
<td>-0.21</td>
<td>12.8</td>
<td>-1.09</td>
</tr>
<tr>
<td>15</td>
<td>0.84</td>
<td>0.2</td>
<td>0.98</td>
<td>-0.03</td>
<td>0.81</td>
<td>0.17</td>
<td>25.38</td>
<td>-1.72</td>
</tr>
<tr>
<td>16</td>
<td>1.29</td>
<td>-0.23</td>
<td>1.22</td>
<td>0.29</td>
<td>0.86</td>
<td>-0.14</td>
<td>19.63</td>
<td>0.87</td>
</tr>
<tr>
<td>17</td>
<td>0.53</td>
<td>0.12</td>
<td>0.67</td>
<td>0.13</td>
<td>0.35</td>
<td>0.1</td>
<td>31.35</td>
<td>4.1</td>
</tr>
<tr>
<td>18</td>
<td>0.95</td>
<td>0.07</td>
<td>1.17</td>
<td>0.01</td>
<td>0.76</td>
<td>-0.04</td>
<td></td>
<td></td>
</tr>
<tr>
<td>19</td>
<td>0.84</td>
<td>0.23</td>
<td>0.99</td>
<td>-0.03</td>
<td>0.8</td>
<td>0.03</td>
<td></td>
<td></td>
</tr>
<tr>
<td>20</td>
<td>0.77</td>
<td>0.12</td>
<td>1.17</td>
<td>0.31</td>
<td>0.73</td>
<td>-0.23</td>
<td></td>
<td></td>
</tr>
<tr>
<td>21</td>
<td>0.8</td>
<td>0.36</td>
<td>1.08</td>
<td>0.51</td>
<td>0.62</td>
<td>-0.26</td>
<td></td>
<td></td>
</tr>
<tr>
<td>22</td>
<td>1.84</td>
<td>0.9</td>
<td>1.84</td>
<td>0.17</td>
<td>1.26</td>
<td>0.47</td>
<td></td>
<td></td>
</tr>
<tr>
<td>23</td>
<td>2.02</td>
<td>0.71</td>
<td>2.38</td>
<td>0.07</td>
<td>1.29</td>
<td>0.57</td>
<td></td>
<td></td>
</tr>
<tr>
<td>24</td>
<td>0.76</td>
<td>0.36</td>
<td>0.9</td>
<td>0</td>
<td>0.88</td>
<td>0.21</td>
<td></td>
<td></td>
</tr>
<tr>
<td>25</td>
<td>0.81</td>
<td>0.24</td>
<td>0.99</td>
<td>0</td>
<td>0.95</td>
<td>0.22</td>
<td></td>
<td></td>
</tr>
<tr>
<td>26</td>
<td>0.51</td>
<td>0.05</td>
<td>0.67</td>
<td>-0.06</td>
<td>0.64</td>
<td>0.23</td>
<td></td>
<td></td>
</tr>
<tr>
<td>27</td>
<td>1.42</td>
<td>0.59</td>
<td>1.52</td>
<td>0.44</td>
<td>0.87</td>
<td>0.13</td>
<td>35.6</td>
<td>4.42</td>
</tr>
<tr>
<td>28</td>
<td>1.42</td>
<td>0.59</td>
<td>1.52</td>
<td>0.44</td>
<td>0.87</td>
<td>0.13</td>
<td>35.6</td>
<td>4.42</td>
</tr>
<tr>
<td>29</td>
<td>1.15</td>
<td>0.16</td>
<td>1.42</td>
<td>-0.18</td>
<td>1.33</td>
<td>0.05</td>
<td>35.43</td>
<td>-15.2</td>
</tr>
<tr>
<td>30</td>
<td>1.22</td>
<td>-0.73</td>
<td>0.96</td>
<td>-0.07</td>
<td>0.62</td>
<td>0.14</td>
<td>12.06</td>
<td>1.75</td>
</tr>
<tr>
<td>31</td>
<td>1.9</td>
<td></td>
<td>1.9</td>
<td>-0.72</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>32</td>
<td>2.31</td>
<td>-1.33</td>
<td>1.38</td>
<td>0.02</td>
<td>1.01</td>
<td>-0.14</td>
<td></td>
<td></td>
</tr>
<tr>
<td>33</td>
<td>0.54</td>
<td>-0.13</td>
<td>0.64</td>
<td>-0.03</td>
<td>0.42</td>
<td>-0.12</td>
<td>24</td>
<td>-6.28</td>
</tr>
<tr>
<td>34</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>46.98</td>
<td>-5.47</td>
<td></td>
<td></td>
</tr>
<tr>
<td>35</td>
<td>0.85</td>
<td>-0.01</td>
<td>0.81</td>
<td>-0.04</td>
<td>0.45</td>
<td>0</td>
<td>34.09</td>
<td>-5.1</td>
</tr>
<tr>
<td>Mean</td>
<td>0.96</td>
<td>0.01</td>
<td>1.07</td>
<td>-0.01</td>
<td>0.85</td>
<td>0.13</td>
<td>21.16</td>
<td>-0.93</td>
</tr>
<tr>
<td>Stdev</td>
<td>0.47</td>
<td>0.43</td>
<td>0.45</td>
<td>0.27</td>
<td>0.51</td>
<td>0.41</td>
<td>11.95</td>
<td>5.98</td>
</tr>
</tbody>
</table>
Table 5.3 Mann Kendall trend results for TCF model simulated annual NEE, GPP, Reco, CH₄ and NECB (gC m⁻² yr⁻¹) for years 2003-2015. The intercept and trend indicate the linear model component. Tau indicates the rank correlation between the carbon fluxes and time. The * denotes trend significance at $\alpha = 0.05$.

<table>
<thead>
<tr>
<th></th>
<th>Intercept</th>
<th>Trend</th>
<th>Tau</th>
<th>P-value</th>
</tr>
</thead>
<tbody>
<tr>
<td>NEE</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Boreal Wetland</td>
<td>-141.7</td>
<td>8.17</td>
<td>0.12</td>
<td>0.63</td>
</tr>
<tr>
<td>Boreal Forested Wetland</td>
<td>-183.2</td>
<td>11.59</td>
<td>0.18</td>
<td>0.45</td>
</tr>
<tr>
<td>Boreal Non-forested Wetland</td>
<td>-94.7</td>
<td>4.44</td>
<td>0.21</td>
<td>0.37</td>
</tr>
<tr>
<td>Tundra</td>
<td>-15.7</td>
<td>1.51</td>
<td>0.3</td>
<td>0.19</td>
</tr>
<tr>
<td>GPP</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Boreal Wetland</td>
<td>635.5</td>
<td>-7.22</td>
<td>-0.33</td>
<td>0.15</td>
</tr>
<tr>
<td>Boreal Forested Wetland</td>
<td>788</td>
<td>-9.89</td>
<td>-0.39</td>
<td>0.08</td>
</tr>
<tr>
<td>Boreal Non-forested Wetland</td>
<td>556.9</td>
<td>-7.71</td>
<td>-0.18</td>
<td>0.45</td>
</tr>
<tr>
<td>Tundra</td>
<td>225.76</td>
<td>-0.33</td>
<td>-0.15</td>
<td>0.54</td>
</tr>
<tr>
<td>Reco</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Boreal Wetland</td>
<td>525.7</td>
<td>3.5</td>
<td>0.09</td>
<td>0.74</td>
</tr>
<tr>
<td>Boreal Forested Wetland</td>
<td>650.3</td>
<td>4.24</td>
<td>0.09</td>
<td>0.73</td>
</tr>
<tr>
<td>Boreal Non-forested Wetland</td>
<td>394.4</td>
<td>3.4</td>
<td>0.15</td>
<td>0.53</td>
</tr>
<tr>
<td>Tundra</td>
<td>209.9</td>
<td>1.23</td>
<td>0.18</td>
<td>0.45</td>
</tr>
<tr>
<td>CH₄</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Boreal Wetland</td>
<td>11.76</td>
<td>1.6</td>
<td>0.73</td>
<td>0.001*</td>
</tr>
<tr>
<td>Boreal Forested Wetland</td>
<td>11.16</td>
<td>1.1</td>
<td>0.45</td>
<td>0.05*</td>
</tr>
<tr>
<td>Boreal Non-forested Wetland</td>
<td>13.9</td>
<td>1.99</td>
<td>0.82</td>
<td><0.0001*</td>
</tr>
<tr>
<td>Tundra</td>
<td>6.3</td>
<td>0.01</td>
<td>0.12</td>
<td>0.63</td>
</tr>
<tr>
<td>NECB</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Boreal Wetland</td>
<td>-142.2</td>
<td>10.11</td>
<td>0.33</td>
<td>0.15</td>
</tr>
<tr>
<td>Boreal Forested Wetland</td>
<td>-185.9</td>
<td>13.39</td>
<td>0.3</td>
<td>0.19</td>
</tr>
<tr>
<td>Boreal Non-forested Wetland</td>
<td>-96.6</td>
<td>7.13</td>
<td>0.39</td>
<td>0.08</td>
</tr>
<tr>
<td>Tundra</td>
<td>6.3</td>
<td>0.01</td>
<td>0.12</td>
<td>0.63</td>
</tr>
</tbody>
</table>
Figure 5.1 Land cover for high latitude regions > 45°N as derived from merged ESA CCI-LC 2010 (Kirches et al. 2014), Circumpolar Arctic Vegetation Map (CAVM; Walker et al. 2005) and peatland (Watts et al. 2014b) classification fields. Filled red circles denote flux tower validation sites. Land cover classes include Evergreen Needleleaf and Broadleaf Forest (ENF/EBF), Deciduous Needleleaf and Broadleaf Forest (DNF/DBL), Mixed Forest (MF), Tussock (T) and Non-Tussock (NT) sedge/shrub tundra and other tundra, peatland, and wetland shrub and grassland vegetation.
Figure 5.2 Ecosystem characteristics observed in eddy covariance tower records for net ecosystem CO$_2$ exchange (NEE) and CH$_4$ emissions (gC/m2/month) from northern high latitude wetland sites. Key environmental regulators influencing seasonal flux magnitudes include vegetation community type (e.g. boreal or tundra wetlands), the thaw depth (cm) of soils overlaying permafrost, and air/soil temperature (°C). Landscape wetness (not shown) is also a key factor, with carbon emissions shifting towards anaerobic CH$_4$ pathways under very wet or saturated soil conditions. Thaw depths of ‘0’ indicate an absence of permafrost in the landscape immediate to the tower sites.
Figure 5.3 Example TCF model simulation results shown for four of the 36 Arctic-boreal flux tower sites, using 1-km MODIS FPAR (MCD15A3) and 0.5° NASA GMAO MERRA reanalysis inputs. Model estimated gross primary productivity (GPP; gC m\(^{-2}\) d\(^{-1}\)) is indicated by the green lines, whereas model estimated ecosystem CO\(_2\) respiration (Reco; gC m\(^{-2}\) d\(^{-1}\)) is shown in green. The open circles denote daily flux averages obtained through tower eddy covariance observations. The four ecosystems included here represent two boreal sites (Mer Bleu and Tanana Flats) and two tundra sites (Ivotuk and Atqasuk).
Figure 5.4 Example TCF model simulation results shown for four of the 36 Arctic-boreal flux tower sites, using 1-km MODIS FPAR (MCD15A3) and 0.5° NASA GMAO MERRA reanalysis inputs. Model estimated CH$_4$ emissions (mgC m$^{-2}$ d$^{-1}$) are indicated by the blue lines, whereas model estimated net ecosystem CO$_2$ exchange (NEE; gC m$^{-2}$ d$^{-1}$) is shown in green. The open circles denote daily flux averages obtained through tower eddy covariance observations. The four ecosystems included here represent two boreal sites and two tundra sites. The boreal sites are: (1) a Canadian non-permafrost boreal peat and fen wetland (Mer Bleu; site number 14); and (2) a boreal bog in Alaska with discontinuous permafrost (Tanana Flats; site number 1). The tundra sites are: (1) upland mixed tussock and shrub tundra in Alaska having underlying continuous permafrost (Ivotuk; site number 9); and (2) lowland moist tussock tundra having underlying continuous permafrost (Atqasuk; site number 8).
Figure 5.5 Distributions of daily mean fluxes for NEE, GPP, Reco (gC m$^{-2}$ d$^{-1}$) and CH$_4$ (mgC m$^{-2}$ d$^{-1}$) obtained from the 1-km res. TCF model simulations (in blue) and tower eddy covariance datasets (in grey) by land cover class. The boxplot median values are indicated by black horizontal lines; vertical tails indicate the flux range.
Figure 5.6: Annual variability in NEE, GPP, Reco, CH₄ and NECB (gC m⁻² yr⁻¹) for Arctic-boreal flux tower locations according to aggregated ecosystem type (i.e. Boreal wetland; Boreal forested wetland; Boreal non-forested wetland; Tundra). The solid lines indicate across-site flux means and the shaded regions denote +/- 1 standard deviation around the mean.
Figure 5.7 Site trends in NEE and CH$_4$ (gC m$^{-2}$ yr$^{-1}$) for Arctic-boreal flux tower locations, from 2003 through 2015. Locations of the 36 towers are shown by the white circles. Red circles denote sites having significant trends (p < 0.1) in annual net CO$_2$ or CH$_4$ flux. The blue circle indicates a significant decrease in annual site CH$_4$ emissions over the 13-yr period.
Chapter 5 Supplement

Table S5.1 Flux tower site information, including associated 1-km land cover class type, permafrost (PF) class, active layer thaw depth, elevation, mean annual precipitation and temperature (MAP, MAT), the measured gas species, years of available flux record, and associated publications.

<table>
<thead>
<tr>
<th>Site Number</th>
<th>Region</th>
<th>Tower Coordinates</th>
<th>Site Location</th>
<th>Site Description</th>
<th>Land Class</th>
<th>PF</th>
<th>Thaw Depth (cm)</th>
<th>Elev (m)</th>
<th>MAP (mm)</th>
<th>MAT (°C)</th>
<th>Species</th>
<th>Year(s) of Record</th>
<th>Publications or Contact Info</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>AK</td>
<td>64.696°N, 148.320°W</td>
<td>Tanana Flats (TF BB)</td>
<td>Boreal Thermokarst Collapse Scar Bog</td>
<td>Discont.</td>
<td>0.62</td>
<td>100</td>
<td>287</td>
<td>-3.1</td>
<td>CH4, CO2</td>
<td>2013-2011</td>
<td>Euskirchen et al. 2014</td>
<td></td>
</tr>
<tr>
<td>2</td>
<td>AK</td>
<td>64.696°N, 148.323°W</td>
<td>Tanana Flats (TF Bs)</td>
<td>Sparsely Treed Black Spruce</td>
<td>Discont.</td>
<td>0.53</td>
<td>100</td>
<td>287</td>
<td>-3.1</td>
<td>CO2</td>
<td>2011-2013</td>
<td>Euskirchen et al. 2014</td>
<td></td>
</tr>
<tr>
<td>3</td>
<td>AK</td>
<td>64.704°N, 148.313°W</td>
<td>Tanana Flats (TF Rf)</td>
<td>Rich Fen (No Trees)</td>
<td>Discont.</td>
<td>> 2.5 m</td>
<td>100</td>
<td>287</td>
<td>-3.1</td>
<td>CO2</td>
<td>2011-2013</td>
<td>Euskirchen et al. 2014</td>
<td></td>
</tr>
<tr>
<td>5</td>
<td>AK</td>
<td>68.606°N, 149.311°W</td>
<td>Innuvait</td>
<td>Wet Sedge Fen (Riparian)</td>
<td>Cont.</td>
<td>60</td>
<td>930</td>
<td>318</td>
<td>-7.4</td>
<td>CH4, CO2</td>
<td>2012-2013</td>
<td>Euskirchen et al. 2012</td>
<td></td>
</tr>
<tr>
<td>6</td>
<td>AK</td>
<td>68.608°N, 149.304°W</td>
<td>Innuvait</td>
<td>Tussock (Hillslope)</td>
<td>Cont.</td>
<td>70</td>
<td>930</td>
<td>318</td>
<td>-7.4</td>
<td>CO2</td>
<td>2008-2010</td>
<td>Euskirchen et al. 2012</td>
<td></td>
</tr>
<tr>
<td>8</td>
<td>AK</td>
<td>70.469°N, 157.408°W</td>
<td>Atqasuk</td>
<td>Moist Tussock</td>
<td>Cont.</td>
<td>-50</td>
<td>15</td>
<td>102.7</td>
<td>-9.7</td>
<td>CH4, CO2</td>
<td>2013-2014</td>
<td>Donatella Zona d.zona@sheffield.ac.uk</td>
<td></td>
</tr>
<tr>
<td>9</td>
<td>AK</td>
<td>68.486°N, 155.750°W</td>
<td>Ivotuk</td>
<td>Moist Tussock & Shrub/Moss/Lichen</td>
<td>Cont.</td>
<td>-60</td>
<td>568</td>
<td>MSP: 210</td>
<td>-7.9</td>
<td>CH4, CO2</td>
<td>2013-2014</td>
<td>Donatella Zona d.zona@sheffield.ac.uk</td>
<td></td>
</tr>
<tr>
<td>10</td>
<td>AK</td>
<td>71.323°N, 156.609°W</td>
<td>Barrow; CMDL</td>
<td>Wet Sedge & Grass Tundra</td>
<td>Cont.</td>
<td>-32</td>
<td>6</td>
<td>MAP 110</td>
<td>-12.6</td>
<td>CH4, CO2</td>
<td>2014</td>
<td>Donatella Zona d.zona@sheffield.ac.uk</td>
<td></td>
</tr>
<tr>
<td>11</td>
<td>AK</td>
<td>71.280°N, 156.596°W</td>
<td>Barrow; BES</td>
<td>Wet Inundated Sedge/Grass/Moss</td>
<td>Cont.</td>
<td>-36</td>
<td>6</td>
<td>MSP: 72</td>
<td>-12.6</td>
<td>CH4, CO2</td>
<td>2013-2014</td>
<td>Donatella Zona d.zona@sheffield.ac.uk</td>
<td></td>
</tr>
<tr>
<td>Site Number</td>
<td>Region</td>
<td>Tower Coordinates</td>
<td>Site Location</td>
<td>Site Description</td>
<td>Land Class</td>
<td>PF</td>
<td>Thaw Depth (cm)</td>
<td>Elev (m)</td>
<td>MAP (mm)</td>
<td>MAT (°C)</td>
<td>Species</td>
<td>Year(s) of Record</td>
<td>Publications or Contact Info</td>
</tr>
<tr>
<td>-------------</td>
<td>--------</td>
<td>-------------------</td>
<td>---------------</td>
<td>-----------------</td>
<td>------------</td>
<td>----</td>
<td>----------------</td>
<td>---------</td>
<td>----------</td>
<td>----------</td>
<td>---------</td>
<td>-----------------</td>
<td>----------------------------</td>
</tr>
<tr>
<td>12</td>
<td>AK</td>
<td>71.281°N, 156.612°W</td>
<td>Barrow; BEO</td>
<td>Med Dry Poly, Tundra; (Grass/Sedge/Moss/ Dwarf Shrub)</td>
<td>37</td>
<td>Cont.</td>
<td>-35</td>
<td>7</td>
<td>MSP: 72</td>
<td>-12.6</td>
<td>CH4 CO2</td>
<td>2013-2014</td>
<td>2013-2014</td>
</tr>
<tr>
<td>13</td>
<td>AK</td>
<td>70.1°N, 148.6°W</td>
<td>Prudhoe Bay; NOAA/AT DD</td>
<td>Wet Sedge</td>
<td>37</td>
<td>Cont.</td>
<td>-71</td>
<td>30</td>
<td>103</td>
<td>-11.8</td>
<td>CH4 CO2</td>
<td>2013-2014</td>
<td>2013-2014</td>
</tr>
<tr>
<td>15</td>
<td>CA</td>
<td>53.674°N, 78.170°W</td>
<td>Quebec; St. James Bay Lowlands</td>
<td>Boreal Sphagnum Bog</td>
<td>11</td>
<td>None</td>
<td>NA</td>
<td>71</td>
<td>697</td>
<td>-2.4</td>
<td>CH4</td>
<td>2012</td>
<td></td>
</tr>
<tr>
<td>16</td>
<td>CA</td>
<td>61.18°N, 121.3°W</td>
<td>Scotty Creek, NWT</td>
<td>Boreal Forest; 3-4 m peat</td>
<td>11</td>
<td>Spor.</td>
<td>1000</td>
<td>283</td>
<td>369</td>
<td>-3.2</td>
<td>CO2</td>
<td>2015-2016</td>
<td></td>
</tr>
<tr>
<td>17</td>
<td>CA</td>
<td>61.18°N, 121.3°W</td>
<td>Scotty Creek, NWT</td>
<td>Boreal Forest + Thermokarst Bog; 3-4 m peat</td>
<td>11</td>
<td>Spor.</td>
<td>1000</td>
<td>283</td>
<td>369</td>
<td>-3.2</td>
<td>CO2</td>
<td>2015-2016</td>
<td></td>
</tr>
<tr>
<td>18</td>
<td>CA</td>
<td>54.953°N, 112.467°W</td>
<td>Western Peatland Lac LaBiche</td>
<td>Peatland; stunted trees, shrubs, herbs, moss</td>
<td>49</td>
<td>None</td>
<td>NA</td>
<td>540</td>
<td>324</td>
<td>-1.84</td>
<td>CO2</td>
<td>2003-2005; 2008-2009</td>
<td></td>
</tr>
<tr>
<td>19</td>
<td>CA</td>
<td>55.88°N, 98.48°W</td>
<td>Manitoba; BOREAS NSA- Old Black Spruce</td>
<td>Boreal Black Spruce; moss understory</td>
<td>45</td>
<td>None</td>
<td>NA</td>
<td>253</td>
<td>509</td>
<td>-2.9</td>
<td>CO2</td>
<td>2003; 2007-2008</td>
<td></td>
</tr>
<tr>
<td>20</td>
<td>CA</td>
<td>55.537°N, 112.335°W</td>
<td>Alberta Western Peatland</td>
<td>Poor Fen (No Trees)</td>
<td>49</td>
<td>None</td>
<td>NA</td>
<td>732</td>
<td>504</td>
<td>2.1</td>
<td>CO2</td>
<td>2004</td>
<td></td>
</tr>
<tr>
<td>21</td>
<td>CA</td>
<td>55.537°N, 112.335°W</td>
<td>Alberta Western Peatland</td>
<td>Rich Fen (No Trees)</td>
<td>49</td>
<td>None</td>
<td>NA</td>
<td>732</td>
<td>504</td>
<td>2.1</td>
<td>CO2</td>
<td>2004</td>
<td></td>
</tr>
<tr>
<td>22</td>
<td>CA</td>
<td>48.217°N, 82.155°W</td>
<td>Ontario, Groundhog River</td>
<td>Old (70+ years) Mixed Forest; aspen, birch, spruce, moss</td>
<td>49</td>
<td>None</td>
<td>NA</td>
<td>355</td>
<td>835</td>
<td>1.3</td>
<td>CO2</td>
<td>2003-2005</td>
<td></td>
</tr>
<tr>
<td>Site Number</td>
<td>Region</td>
<td>Tower Coordinates</td>
<td>Site Location</td>
<td>Site Description</td>
<td>Land Class</td>
<td>PF</td>
<td>Thaw Depth (cm)</td>
<td>Elev (m)</td>
<td>MAP (mm)</td>
<td>MAT (°C)</td>
<td>Species</td>
<td>Year(s) of Record</td>
<td>Publications or Contact Info</td>
</tr>
<tr>
<td>------------</td>
<td>--------</td>
<td>-------------------</td>
<td>--------------------</td>
<td>---------------------------------------</td>
<td>------------</td>
<td>----</td>
<td>----------------</td>
<td>----------</td>
<td>----------</td>
<td>----------</td>
<td>---------</td>
<td>-----------------</td>
<td>-----------------------------</td>
</tr>
<tr>
<td>23</td>
<td>CA</td>
<td>53.6289°N, 106.198°W</td>
<td>Saskatchewan; Old Aspen</td>
<td>Old (70+ years) Aspen; + 10% balsam poplar, moss</td>
<td>45</td>
<td>None</td>
<td>NA</td>
<td>580</td>
<td>406</td>
<td>0.5</td>
<td>CO2</td>
<td>2003-2010</td>
<td>Andy Black; (andrew.black@ubc.ca)</td>
</tr>
<tr>
<td>24</td>
<td>CA</td>
<td>49.6925°N, 74.342°W</td>
<td>Quebec; Eastern Old Black Spruce (EOBS)</td>
<td>90-100 yr old Black Spruce and Jack Pine; moss</td>
<td>45</td>
<td>None</td>
<td>NA</td>
<td>390</td>
<td>962</td>
<td>-0.36</td>
<td>CO2</td>
<td>2003-2006</td>
<td>Bergeron et al. 2006</td>
</tr>
<tr>
<td>25</td>
<td>CA</td>
<td>53.916°N, 104.692°W</td>
<td>Saskatchewan; Old Jack Pine (SOJP)</td>
<td>Jackpine and lichen</td>
<td>45</td>
<td>None</td>
<td>NA</td>
<td>518</td>
<td>390-542</td>
<td>0.1</td>
<td>CO2</td>
<td>2003-2005</td>
<td>Warren Helgason; warren.helgason@usask.ca</td>
</tr>
<tr>
<td>26</td>
<td>GL</td>
<td>74.4732°N, 20.5503°W</td>
<td>Zackenberg</td>
<td>Well Drained Cassiope Heath</td>
<td>28</td>
<td>Cont.</td>
<td>-46</td>
<td>40</td>
<td>200</td>
<td>-9</td>
<td>CO2</td>
<td>2004-2014</td>
<td>Magnus Lund ml@bios.au.dk</td>
</tr>
<tr>
<td>27</td>
<td>GL</td>
<td>74.4791°N, 20.5557°W</td>
<td>Zackenberg</td>
<td>Wet Fen</td>
<td>28</td>
<td>Cont.</td>
<td>-40</td>
<td>40</td>
<td>200</td>
<td>-9</td>
<td>CO2</td>
<td>2007-2014</td>
<td>Magnus Lund ml@bios.au.dk</td>
</tr>
<tr>
<td>29</td>
<td>RU</td>
<td>70.829°N, 147.494°E</td>
<td>Chokurdakh/Kytalyk</td>
<td>Moist Tussock; wedge polygon</td>
<td>34</td>
<td>Cont.</td>
<td>-35</td>
<td>48</td>
<td>220</td>
<td>-10.5</td>
<td>CH4</td>
<td>2008-2009</td>
<td>Parmentier et al. 2011a Parmentier et al. 2011b</td>
</tr>
<tr>
<td>31</td>
<td>RU</td>
<td>56.4615°N, 32.9221°E</td>
<td>Fedorovskoje, near Nedlyovo.</td>
<td>Old Drained Spruce</td>
<td>45</td>
<td>None</td>
<td>NA</td>
<td>265</td>
<td>584</td>
<td>3.73</td>
<td>CO2</td>
<td>2003-2006</td>
<td>McCallum et al. 2013</td>
</tr>
<tr>
<td>32</td>
<td>RU</td>
<td>60.8001°N, 89.3508°E</td>
<td>Zotino; West side of Yenisei River</td>
<td>Old Pine Forest; surrounded by sphagnum peat bogs</td>
<td>45</td>
<td>None</td>
<td>NA</td>
<td>90</td>
<td>943</td>
<td>-3.27</td>
<td>CO2</td>
<td>2003-2004</td>
<td>Corinna Rebmann corinna.rebmann@ufz.de</td>
</tr>
<tr>
<td>Site Number</td>
<td>Region</td>
<td>Tower Coordinates</td>
<td>Site Location</td>
<td>Site description</td>
<td>Land Class</td>
<td>PF</td>
<td>Thaw Depth (cm)</td>
<td>Elev (m)</td>
<td>MAP (mm)</td>
<td>MAT (°C)</td>
<td>Species</td>
<td>Year(s) of Record</td>
<td>Publications or Contact Info</td>
</tr>
<tr>
<td>-------------</td>
<td>--------</td>
<td>-------------------</td>
<td>---------------</td>
<td>------------------</td>
<td>------------</td>
<td>----</td>
<td>----------------</td>
<td>---------</td>
<td>----------</td>
<td>----------</td>
<td>---------</td>
<td>----------------</td>
<td>----------------------------</td>
</tr>
<tr>
<td>34</td>
<td>FI</td>
<td>61.8327°N, 24.1928°E</td>
<td>Siikaneva</td>
<td>Boreal Open Fen Wetland; moss & sedge dominated</td>
<td>55</td>
<td>None</td>
<td>NA</td>
<td>170</td>
<td>713</td>
<td>3.3</td>
<td>CH4</td>
<td>2005</td>
<td>Aurela et al. 2007; Rinne et al. 2007</td>
</tr>
<tr>
<td>35</td>
<td>SE</td>
<td>68.3542°N, 19.0471°E</td>
<td>Stordalen</td>
<td>Boreal Birch; wet & tall graminoid wetland & open water</td>
<td>19</td>
<td>Discont.</td>
<td>NA</td>
<td>347</td>
<td>364.5</td>
<td>-0.21</td>
<td>CH4</td>
<td>2006-2007</td>
<td>Jackowicz-Korczynski et al. 2010</td>
</tr>
<tr>
<td>36</td>
<td>FI</td>
<td>67.9972°N, 24.2092°E</td>
<td>Lompolojänkkä</td>
<td>Sedge Fen; with deep peat</td>
<td>19</td>
<td>None</td>
<td>NA</td>
<td>274</td>
<td>484</td>
<td>-1.4</td>
<td>CO2</td>
<td>2006-2010</td>
<td>Aurela et al. 2009</td>
</tr>
</tbody>
</table>

186
Table S5.2 Vegetation land cover classes from a merged 1-km resolution land cover map (See section 5.3.2.2) as represented by the flux tower sites used in this study. The land cover classification number (Land Class) is provided, along with a description of the associated general vegetation community types.

<table>
<thead>
<tr>
<th>Land Class</th>
<th>Vegetation Community Type</th>
</tr>
</thead>
<tbody>
<tr>
<td>11</td>
<td>Permanent wetland</td>
</tr>
<tr>
<td>16</td>
<td>Barren or sparsely vegetated</td>
</tr>
<tr>
<td>19</td>
<td>Shrub and herbaceous non-tundra wetland</td>
</tr>
<tr>
<td>28</td>
<td>Dwarf-shrub tundra</td>
</tr>
<tr>
<td>33</td>
<td>Non-tussock sedge-shrub-moss tundra</td>
</tr>
<tr>
<td>34</td>
<td>Tussock sedge-shrub-moss tundra (shrub land characteristics)</td>
</tr>
<tr>
<td>36</td>
<td>Tussock sedge-shrub-moss tundra (savanna characteristics)</td>
</tr>
<tr>
<td>37</td>
<td>Wet sedge-moss tundra</td>
</tr>
<tr>
<td>45</td>
<td>Evergreen needle leaf forest + peatland</td>
</tr>
<tr>
<td>47</td>
<td>Deciduous needle leaf forest + peatland</td>
</tr>
<tr>
<td>49</td>
<td>Mixed forest (evergreen, deciduous) needle and broad leaf forest + peatland</td>
</tr>
<tr>
<td>55</td>
<td>Shrub wetland + peatland</td>
</tr>
</tbody>
</table>
Table S5.3 TCF model parameter values for GPP specific to tundra and forested wetland land class types. Parameters include maximum light use efficiency (LUE_max), soil temperature minimum and maximum (Ts_max, Ts_min), vapor pressure deficit minimum and maximums (VPD_min, VPD_max) and root zone soil moisture minimum and maximum (SM_min, SM_max). Further description of these parameters can be found in Watts *et al.* (2014a).

<table>
<thead>
<tr>
<th>Sites</th>
<th>Land Class</th>
<th>LUE_max</th>
<th>Ts_max</th>
<th>Ts_min</th>
<th>VPD_min</th>
<th>VPD_max</th>
<th>SM_min</th>
<th>SM_max</th>
</tr>
</thead>
<tbody>
<tr>
<td>14, 15, 16, 17</td>
<td>11</td>
<td>1.01</td>
<td>8.75</td>
<td>-0.25</td>
<td>600</td>
<td>4250</td>
<td>0.14</td>
<td>0.55</td>
</tr>
<tr>
<td>5</td>
<td>16</td>
<td>0.97</td>
<td>8.00</td>
<td>0.50</td>
<td>300</td>
<td>2500</td>
<td>0.45</td>
<td>0.85</td>
</tr>
<tr>
<td>35, 36</td>
<td>19</td>
<td>0.87</td>
<td>12.50</td>
<td>-0.25</td>
<td>450</td>
<td>2500</td>
<td>0.15</td>
<td>0.55</td>
</tr>
<tr>
<td>9, 25, 26, 27, 28</td>
<td>28</td>
<td>1.67</td>
<td>6.00</td>
<td>-4.70</td>
<td>600</td>
<td>3900</td>
<td>0.15</td>
<td>0.49</td>
</tr>
<tr>
<td>7</td>
<td>33</td>
<td>0.96</td>
<td>10.50</td>
<td>-2.00</td>
<td>300</td>
<td>3000</td>
<td>0.35</td>
<td>0.90</td>
</tr>
<tr>
<td>29, 30</td>
<td>34</td>
<td>0.98</td>
<td>5.00</td>
<td>-2.00</td>
<td>600</td>
<td>3500</td>
<td>0.15</td>
<td>0.45</td>
</tr>
<tr>
<td>8</td>
<td>36</td>
<td>1.30</td>
<td>6.00</td>
<td>-3.50</td>
<td>500</td>
<td>4500</td>
<td>0.15</td>
<td>0.45</td>
</tr>
<tr>
<td>10, 11, 12, 13</td>
<td>37</td>
<td>1.15</td>
<td>4.75</td>
<td>-4.25</td>
<td>575</td>
<td>3500</td>
<td>0.15</td>
<td>0.50</td>
</tr>
<tr>
<td>2, 3, 4, 19, 23, 24, 31, 32</td>
<td>45</td>
<td>1.19</td>
<td>9.88</td>
<td>-9.38</td>
<td>625</td>
<td>4100</td>
<td>0.13</td>
<td>0.46</td>
</tr>
<tr>
<td>33</td>
<td>47</td>
<td>1.35</td>
<td>8.00</td>
<td>-15.00</td>
<td>600</td>
<td>5500</td>
<td>0.10</td>
<td>0.35</td>
</tr>
<tr>
<td>18, 20, 21, 22</td>
<td>49</td>
<td>0.90</td>
<td>11.75</td>
<td>0.88</td>
<td>600</td>
<td>3750</td>
<td>0.15</td>
<td>0.50</td>
</tr>
<tr>
<td>1, 6, 34</td>
<td>55</td>
<td>1.05</td>
<td>9.00</td>
<td>-3.50</td>
<td>500</td>
<td>3333</td>
<td>0.25</td>
<td>0.62</td>
</tr>
</tbody>
</table>
Table S5.4 TCF model parameter values for Reco specific to tundra and forested wetland land class types. These include Rhet scaling parameters for the soil moisture curve (SM1, SM2), the soil temperature curve (PTM1-PTM3), the metabolic fraction of NPP (FMET), the proportional rate allocation for respective structural and slow soil organic carbon pool decomposition (KSTR; KSLW). KOPT is the proportion of GPP lost through Ra. Further description of these parameters can be found in Watts et al. (2014a).

<table>
<thead>
<tr>
<th>Sites</th>
<th>Land Class</th>
<th>SM1</th>
<th>SM2</th>
<th>PTM1</th>
<th>PTM2</th>
<th>PTM3</th>
<th>FMET</th>
<th>FSTR</th>
<th>KSTR</th>
<th>KSLW</th>
<th>FRAUT</th>
<th>KOPT</th>
</tr>
</thead>
<tbody>
<tr>
<td>14, 15, 16, 17</td>
<td>11</td>
<td>2.1</td>
<td>1</td>
<td>244.81</td>
<td>0.017</td>
<td>240.63</td>
<td>0.71</td>
<td>0.7</td>
<td>0.4</td>
<td>0.009</td>
<td>0.40</td>
<td>0.03</td>
</tr>
<tr>
<td>5</td>
<td>16</td>
<td>2.1</td>
<td>1</td>
<td>249.56</td>
<td>0.017</td>
<td>240.13</td>
<td>0.71</td>
<td>0.7</td>
<td>0.4</td>
<td>0.009</td>
<td>0.40</td>
<td>0.03</td>
</tr>
<tr>
<td>35, 36</td>
<td>19</td>
<td>2.1</td>
<td>1</td>
<td>250.56</td>
<td>0.016</td>
<td>240.13</td>
<td>0.71</td>
<td>0.7</td>
<td>0.4</td>
<td>0.009</td>
<td>0.47</td>
<td>0.02</td>
</tr>
<tr>
<td>9, 25, 26, 27, 28</td>
<td>28</td>
<td>2.1</td>
<td>1</td>
<td>249.31</td>
<td>0.061</td>
<td>236.88</td>
<td>0.71</td>
<td>0.7</td>
<td>0.4</td>
<td>0.009</td>
<td>0.43</td>
<td>0.03</td>
</tr>
<tr>
<td>7</td>
<td>33</td>
<td>2.2</td>
<td>1</td>
<td>240.56</td>
<td>0.016</td>
<td>240.13</td>
<td>0.70</td>
<td>0.7</td>
<td>0.4</td>
<td>0.009</td>
<td>0.36</td>
<td>0.03</td>
</tr>
<tr>
<td>29, 30</td>
<td>34</td>
<td>2.1</td>
<td>1</td>
<td>249.56</td>
<td>0.017</td>
<td>240.13</td>
<td>0.71</td>
<td>0.7</td>
<td>0.4</td>
<td>0.009</td>
<td>0.46</td>
<td>0.03</td>
</tr>
<tr>
<td>8</td>
<td>36</td>
<td>2.2</td>
<td>1</td>
<td>251.56</td>
<td>0.191</td>
<td>235.13</td>
<td>0.71</td>
<td>0.7</td>
<td>0.4</td>
<td>0.009</td>
<td>0.35</td>
<td>0.03</td>
</tr>
<tr>
<td>10, 11, 12, 13</td>
<td>37</td>
<td>2.1</td>
<td>1</td>
<td>247.81</td>
<td>0.145</td>
<td>237.38</td>
<td>0.71</td>
<td>0.7</td>
<td>0.4</td>
<td>0.009</td>
<td>0.46</td>
<td>0.03</td>
</tr>
<tr>
<td>2, 3, 4, 19, 23, 24, 31, 32</td>
<td>45</td>
<td>2.1</td>
<td>1</td>
<td>248.31</td>
<td>0.032</td>
<td>235.13</td>
<td>0.71</td>
<td>0.7</td>
<td>0.4</td>
<td>0.009</td>
<td>0.48</td>
<td>0.03</td>
</tr>
<tr>
<td>33</td>
<td>47</td>
<td>2.1</td>
<td>1</td>
<td>249.56</td>
<td>0.005</td>
<td>235.13</td>
<td>0.71</td>
<td>0.7</td>
<td>0.4</td>
<td>0.009</td>
<td>0.55</td>
<td>0.03</td>
</tr>
<tr>
<td>18, 20, 21, 22</td>
<td>49</td>
<td>2.1</td>
<td>1</td>
<td>244.96</td>
<td>0.009</td>
<td>240.73</td>
<td>0.71</td>
<td>0.7</td>
<td>0.4</td>
<td>0.009</td>
<td>0.50</td>
<td>0.02</td>
</tr>
<tr>
<td>1, 6, 34</td>
<td>55</td>
<td>2.1</td>
<td>1</td>
<td>247.56</td>
<td>0.074</td>
<td>241.46</td>
<td>0.71</td>
<td>0.7</td>
<td>0.4</td>
<td>0.009</td>
<td>0.41</td>
<td>0.02</td>
</tr>
</tbody>
</table>
Table S5.5 TCF model parameter values for CH$_4$ production and emission through vegetation, soil diffusion and ebullition pathways specific to tundra and forested wetland land class types. These include a volumetric scalar for CH$_4$ storage (LT), CH$_4$ production rate (g C per liter H$_2$O/day), reference soil temperature for the Q10 CH$_4$ production curve (QTREF), the Q10 coefficient for CH$_4$ production, a baseline constant for plant CH$_4$ transport (Cp), the fraction of CH$_4$ oxidized during plant transport (Pox), and an annual maximum GPP value used in the vegetation transport functions to indicate peak biomass potential (Fgrow_max). Further description of these parameters can be found in Watts et al. (2014a).

<table>
<thead>
<tr>
<th>Sites</th>
<th>Land Class</th>
<th>LT</th>
<th>Ro</th>
<th>QTREF</th>
<th>Q10p</th>
<th>Cp</th>
<th>Pox</th>
<th>Fgrow_max</th>
</tr>
</thead>
<tbody>
<tr>
<td>14,15,17</td>
<td>11</td>
<td>13.0</td>
<td>1.25E-05</td>
<td>288</td>
<td>3.7</td>
<td>0.18</td>
<td>0.62</td>
<td>6.67</td>
</tr>
<tr>
<td>35,36</td>
<td>19</td>
<td>15.5</td>
<td>3.40E-05</td>
<td>287</td>
<td>3.0</td>
<td>0.19</td>
<td>0.60</td>
<td>5.50</td>
</tr>
<tr>
<td>9,25,26,27</td>
<td>28</td>
<td>12.8</td>
<td>3.17E-05</td>
<td>289</td>
<td>3.8</td>
<td>0.18</td>
<td>0.64</td>
<td>7.13</td>
</tr>
<tr>
<td>29,30</td>
<td>34</td>
<td>15.0</td>
<td>2.50E-05</td>
<td>287</td>
<td>2.5</td>
<td>0.19</td>
<td>0.55</td>
<td>6.50</td>
</tr>
<tr>
<td>10,11,12,13</td>
<td>37</td>
<td>15.8</td>
<td>7.63E-05</td>
<td>287</td>
<td>3.3</td>
<td>0.20</td>
<td>0.63</td>
<td>4.00</td>
</tr>
<tr>
<td>19,23,24,31,32,46,47</td>
<td>45</td>
<td>11.0</td>
<td>2.00E-05</td>
<td>287</td>
<td>2.8</td>
<td>0.31</td>
<td>0.60</td>
<td>6.79</td>
</tr>
<tr>
<td>18,20,21,22</td>
<td>49</td>
<td>10.0</td>
<td>6.80E-06</td>
<td>287</td>
<td>3.3</td>
<td>0.19</td>
<td>0.54</td>
<td>7.50</td>
</tr>
<tr>
<td>1,34</td>
<td>55</td>
<td>13.5</td>
<td>3.00E-05</td>
<td>287</td>
<td>2.9</td>
<td>0.40</td>
<td>0.65</td>
<td>5.75</td>
</tr>
</tbody>
</table>
S5 References

Chapter 6: Chapter summaries and recommendations for future research

This chapter summarizes the research presented in Chapters 2-5, identifies information gaps and high-priority data needs, and provides recommendations for future investigations.

6.1 Fractional water inundation

A global land fractional open water (Fw) database using AMSR-E satellite passive microwave remote sensing 18.7 and 23.3 observations (Chapter 2) was assessed to determine the sensitivity of daily 25-km Fw retrievals to changes in northern high latitude surface hydrology, and the ability of the Fw retrievals to detect regional wetting and drying trends occurring in warming permafrost landscapes (Watts et al. 2012). Validation of this product was accomplished using finer resolution (30-m to 250-m resolution) static Fw maps derived from Landsat, MODIS and SRTM radar (MOD44W) data. Additional validation was achieved for major Arctic river basins (i.e. Yukon, Mackenzie, Ob, Yenisei, Lena) by comparing basin averaged Fw with monthly mean river discharge (m3s$^{-1}$). The Fw comparison results showed favorable agreement ($R^2 = 71$-84%) with the static surface water maps, with an improved ability to account for standing water in vegetated wetland areas that are not characterized by dense overlaying canopy cover (Watts et al. 2012). The Fw analysis for the five Arctic river basins also showed relatively strong retrieval correlations ($R > 0.70$) with the discharge records, despite other hydrological influences on river drainage, including contributions from snowmelt and groundwater, and a local decoupling of lakes and wetlands from whole basin water flow (Vörösmarty et al. 2001, Syed et al. 2007).

The AMSR-E record indicates that approximately 7% of the Arctic-boreal domain (1.4 x 106 km2) is inundated with surface water during the non-frozen summer months (Watts et al. 2014a). Results from an initial Arctic-boreal Fw trend analyses (yrs. 2001-2010 and 2001-2011) indicated that 9% of the permafrost affected region experienced a significant increase ($p < 0.1$) in surface water inundation (Watts et al. 2011, Watts et al. 2014a) in recent years, whereas 2.2% of the region experienced significant surface water...
drying. Wetting was widespread in the continuous permafrost zone, where soils remain frozen for much of the year with only a shallow (~ 30-70 cm depth) seasonal non-frozen active layer. Drying was more prevalent in southern discontinuous and sporadic/isolated permafrost zones having a much deeper active layer (70 to > 100 cm depth) and increased sub-surface soil water drainage.

Wetting and drying patterns in permafrost affected landscapes have also been documented in studies using higher resolution (< 60 m) optical-IR satellite remote sensing data (e.g. Smith et al. 2005, Walter et al. 2006, Carroll et al. 2011, Andresen & Lougheed 2015), yet Watts et al. (2012, 2014a) is the first to demonstrate that these changes can be assessed for the larger Arctic-boreal region using a continuous (daily) AMSR-E microwave data record having minimal temporal gaps due to insensitivity to cloud cover and changing solar illumination effects that often limit data quality in optical records. This record has now been extended through 2015 by integrating the AMSR-E record with similar observations from the Advanced Microwave Scanning Radiometer 2 (AMSR2) sensor on the JAXA GCOM-W1 satellite (Du et al. 2014). The AMSR-E/2 record provides for continued Fw monitoring over the Arctic-boreal zone and 13+ year period.

6.2 Fractional water inundation and wetland methane budgets

The impact of applying satellite microwave Fw inundation records for Arctic-boreal wetland CH₄ monitoring applications was assessed in Chapter 3. This study used a JULES based satellite data driven model to investigate the combined effect of surface warming and moisture variability on high northern latitude (> 45° N) wetland CH₄ emissions, by considering sub-grid scale changes in Fw at 15-day, monthly and annual intervals, and the potential influence of recent (2003-2011) wetting/drying trends on northern CH₄ emissions (Watts et al. 2014a). The JULES model is relatively simple and estimates per 25-km grid cell wetland CH₄ emissions through a production rate constant modified by a soil temperature (Q10) factor, input soil carbon quantity (kg C), satellite microwave surface freeze/thaw indices (0 = frozen surface, 1 = thawed surface), surface Fw inundation and volumetric soil moisture for non-inundated surface areas.
The modeled CH$_4$ fluxes were within the 5-180 mg CH$_4$ m$^{-2}$ d$^{-1}$ range observed in the lake and wetland measurements (see the Chapter 3 Supplement, Table S3.1) and estimate mean summer emissions of 55 Tg CH$_4$ yr$^{-1}$ from Arctic-boreal wetlands. Arctic wetting and summer warming in the 9-yr. (2003-2011) record increased wetland emissions by 0.48 Tg CH$_4$ yr$^{-1}$, but this was mainly offset by decreasing emissions (-0.32 Tg CH$_4$ yr$^{-1}$) in sub-Arctic areas experiencing surface drying or cooling. The combined influence of warming and wetting in the Fw and reanalysis surface meteorology records contributed to an increase in methane emissions across 16% of the Arctic-boreal domain at a mean rate of 43 tonne CH$_4$ yr$^{-1}$ from 2003 to 2011. These increases occurred primarily in Canada and eastern Siberia, where summer warming has been observed in both in-situ measurements and reanalysis records. These findings agree with a projected 15% increase in CH$_4$ emitting area that might occur with continued climate change in the northern wetland regions (Gao et al. 2013).

In global and regional wetland CH$_4$ studies, the largest budget uncertainties continue to result from a lack of information to adequately define wetland area extent (Melton et al. 2013, Kirschke et al. 2013, Watts et al. 2014a). Furthermore, CH$_4$ transport from soil-to-atmosphere is strongly regulated by vegetation community types and species (Davidson et al. 2016). Ongoing improvements to vegetation maps suitable for Arctic-boreal CH$_4$ emission budget mapping are still required (Davidson et al. 2016, Watts et al. In Prep), although regional efforts using satellite radar data have made considerable progress in mapping vegetated wetlands in Alaska (Whitcomb et al. 2014). Additional efforts have used radar remote sensing to delineate peatlands in permafrost regions using time series of soil moisture and inundation dynamics (Bartsch et al. 2009). Methods developed for downscaling high temporal but coarser (e.g. 25-km) spatial resolution passive microwave Fw data to the landscape level show additional promise for informing regional CH$_4$ models (Fluet-Chouinard et al. 2015). New 5-km passive microwave Fw datasets with 10-day sampling intervals are also now available for the Arctic-boreal region from yrs. 2003-2015 (Du et al. 2016). The 5-km Fw records incorporate information from higher frequency (89 GHz) AMSR brightness temperature
retrievals and show greater sensitivity to surface water changes from open water lake and pond bodies, relative to vegetated wetlands (Figure 1; Du et al. 2016).

Combined information from 25-km and 5-km AMSR-E/AMSR2 records, in conjunction with available radar-based static lake maps for the pan-Arctic region, new soil moisture data records (e.g. from SMAP; Kimball et al. 2012), radar derived soil organic carbon records (Bartsch et al. 2016a) and spatial downscaling (Fluet-Chouinard et al. 2015), could provide enough information to spatially partition seasonal changes in lake area extent, expansion and contraction of high \(\text{CH}_4 \) emitting littoral zones (Juutinen et al. 2003) and wetting/drying in vegetated wetlands. These efforts, and the development of a new high resolution (30 m) Arctic-boreal wetland vegetation map using input data from Landsat, MODIS, and Sentinel (Bartsch et al. 2016b) will be necessary to reduce uncertainty in northern \(\text{CH}_4 \) wetland budgets.

An improved understanding of lateral transport of terrestrial-originating \(\text{CH}_4 \) by stream and river channels (Benoy et al. 2007, van Huissteden et al. 2009) and \(\text{CH}_4 \) emission response in wetlands under water inundated conditions is also necessary. For example, regional modeling studies (Watts et al. 2014a) show temporal agreement with changes in atmospheric \(\text{CH}_4 \) concentrations and \(\text{CH}_4 \) emission estimates resulting from expansion or contraction of regional inundation area. However, field studies show a substantial decrease in landscape \(\text{CH}_4 \) emissions when water begins to submerge venting structures in wetland vegetation (Juutinen et al. 2003, Zona et al. 2009) suggesting the need to monitor vegetation and water level height in addition to landscape inundation. Perhaps more effective than inundation monitoring would be improvement of surface and rootzone volumetric soil moisture records for organic and mineral soils in the Arctic-boreal region, especially since a recent regional analysis reveals higher \(\text{CH}_4 \) emissions occurring in upland tussock tundra communities having wet soils but minimal surface inundation (Zona et al. 2016).
6.3 TCF model development for northern wetlands

The enhancement of a Terrestrial Carbon Flux (TCF) model (Kimball et al. 2009; 2016) to include tundra and peatland land cover functional types and a wetland CH$_4$ emission module (Watts et al. 2014b) was presented in Chapter 4. The TCF model allows for in situ, satellite remote sensing and reanalysis information to be used as primary environmental inputs and provides a framework to monitor the terrestrial net ecosystem carbon budget (NECB; CO$_2$ + CH$_4$). The TCF model estimates mean daily fluxes (gC m$^{-2}$) of vegetation gross primary productivity (GPP), ecosystem CO$_2$ respiration (Reco; with autotrophic and heterotrophic components), and net ecosystem exchange (NEE; GPP – Reco). The TCF model CH$_4$ emissions algorithm simulates gas production using near-surface soil temperature, soil volumetric water content and labile organic carbon as inputs. Plant CH$_4$ transport (mgC m$^{-2}$ d$^{-1}$) is determined by vegetation growth characteristics derived from GPP, plant functional traits and canopy/surface turbulence. Methane diffusion is determined based on temperature and soil moisture constraints to gas movement through the soil column, and column oxidation potential. Ebullition (bubble transport) of CH$_4$ is assessed using a simple gradient method.

The TCF model simulations using in-situ data from six Arctic-boreal flux tower sites (see Section 4.3.2) explained $> 70\%$ of the R^2 variability in the 8 day cumulative eddy covariance measured fluxes. Model simulations using coarser satellite (250-m MODIS) and reanalysis (0.5° MERRA) records accounted for approximately 69% and 75% of the respective r^2 variability in the tower CO$_2$ and CH$_4$ records, with RMSE uncertainties of < 1.3 gC m$^{-2}$ d$^{-1}$ (CO$_2$) and 18.2 mgC m$^{-2}$ d$^{-1}$ (CH$_4$). This study found the estimated annual wetland CH$_4$ emissions to be relatively small (< 18 g C m$^{-2}$ yr$^{-1}$) compared to R_{eco} (> 180 g C m$^{-2}$ yr$^{-1}$). However, CH$_4$ fluxes reduced the across-site NECB by 23% and contributed to a global warming potential of approximately 165 \pm 128 g CO$_2$ eq m$^{-2}$ yr$^{-1}$ when considered over a 100-year time span.

This initial TCF model evaluation indicated a strong potential for using the model to document landscape scale variability in CO$_2$ and CH$_4$ fluxes, and to estimate the NECB for northern peatland and tundra ecosystems. However, opportunities remain for
model improvement. For example, in some cases the TCF model GPP (informed using air temperature constraints and microwave based surface freeze/thaw indices) start-of-season was premature relative to GPP estimates obtained from site tower eddy covariance records. The delayed site GPP response likely resulted from a shallow (< 14 cm) early season thaw depth that limited bud break activity in deeper rooted shrubs (e.g. *Betula nana* and *Salix pulchra*). Experimental TCF model simulations using a temperature driven phenology model (Parmentier *et al.* 2011) reduced the corresponding RMSE difference for Kytalyk by 56% (to 1 g C m\(^{-2}\) d\(^{-1}\)).

Alternatives to using a temperature driven phenology model may include coupling the TCF model to a multi-layer permafrost and hydrology soil model for finer temperature regulation of carbon dynamics by depth (Yi *et al.* 2015). A coupled TCF-permafrost model would also be able to regulate soil metabolic activities and carbon loss from deeper soil layers following seasonal and annual changes in the active layer, making the model more compatible with field study warming experiments. It may also be possible to regulate TCF model GPP start-of-season through seasonal input estimates of permafrost active layer depth obtained using combined satellite microwave remote sensing and process model simulations (Park *et al.* 2016). Further improvements to the TCF GPP model could include the experimental use of solar-induced chlorophyll fluorescence (Zhang *et al.* 2016) in addition to input MODIS FPAR (fraction of daily photosynthetically active solar radiation) products or FPAR derived from MODIS optical-IR vegetation indices.

6.4 Assessment of longer-term NECB response in TCF model simulations across Arctic-boreal flux tower sites

Recent (yrs. 2003–2015) wetland carbon budgets and corresponding changes in carbon flux components for the Arctic-boreal region were investigated in Chapter 5 (Watts *et al.* In Prep.). The TCF model presented in Chapter 4 (Watts *et al.* 2014b) was further developed to include 12 wetland functional types representative of Arctic-boreal tundra and boreal vegetation (Table S5.2). The GPP module was also modified to use
input near-surface (> 20 cm) soil temperatures for tundra landscapes, instead of air temperature. This step was taken to mitigate issues with premature GPP start-of-season (see Section 6.4; Chapter 4).

The original eddy covariance database (presented in Watts et al. 2014b) was expanded from six tower sites to include data from 36 tower locations (Table S5.1). This enhanced tower eddy covariance database was essential to further evaluate the ability of the TCF model to accurately estimate CO_2 and CH_4 fluxes from Arctic-boreal environments prior to using the model to generate 1-km res. carbon flux estimates for high latitude (> 45°N) wetland regions (an example is provided in Figure 2). This investigation also resulted in 1-km res. northern wetland vegetation map resulting from the merging of the 300-m resolution ESA CCI-LC 2010 Epoch land cover product (Kirches et al. 2014), the Circumpolar Arctic Vegetation Map (Walker et al. 2005) and a peatland vegetation map (Watts et al. 2014a). This step was necessary to remedy the lack of an Arctic-boreal wetland vegetation map suitable for CH_4 mapping purposes (see the discussion in Section 6.3).

The resulting daily 1-km TCF model simulations had low RMSE uncertainties of 0.97 gC m^2 d^-1 (NEE) and 21 mgC m^2 d^-1 (CH_4) relative to the tower records, and are similar to those reported elsewhere (Watts et al. 2014b). The model results indicated a net ecosystem carbon sink for the 36 tower tundra and boreal wetland sites with respective average NEE values of -4 and -96 gC m^-2 yr^-1. Accounting for NECB (NEE + CH_4) reduced the overall boreal wetland carbon sink by 20% and shifted tundra from carbon sink to carbon source (NECB = 1.6 gC m^-2 yr^-1). Significant (α = 0.1) change in annual Reco and NEE were not observed in the 13-yr TCF model records for boreal and tundra wetland groups. However, this analysis indicated a significant increase in CH_4 flux (1.9 gC m^-2 yr^-1) from boreal wetlands (forested and non-forested) and a significant decrease (9.9 gC m^-2 yr^-1) in GPP in boreal forested wetlands.

The TCF model simulations also show contrasts in carbon flux response relative to geographic location and land cover type, with mixed trends observed at individual flux
sites. The 13-yr trend analysis showed that 28% of the tower sites had an increase in annual CO$_2$ loss through Reco, distributed across boreal and tundra wetlands. For GPP flux, 14% of the tower sites showed an increase in annual CO$_2$ assimilation and 5% of the sites showed a decrease (both were boreal wetlands). Only 11% of the sites (two tundra and two boreal) showed a decrease in annual NEE. However, 22% of the sites had increasing annual CH$_4$ emissions (three tundra, five boreal), further decreasing NECB.

The results from this study emphasize the need for continued NECB monitoring in Arctic-boreal ecosystems through the integration of tower flux measurements, ecosystem models and satellite remote sensing. Next steps for this analysis will be the expansion of TCF model simulations to include all 1-km wetland grid cells for the Arctic-boreal region (Figure 2) and an assessment of NECB change from 2003-2015 according to the 12 functional land cover types presented in this study (Watts et al. In Prep). Modification of wetland area in the tundra and boreal zones using AMSR-E/2 derived 5-25 km resolution Fw inputs, and associated impacts on seasonal CH$_4$ emission totals, will also be assessed. Finally, the ability of TCF model simulated fluxes to account for recent variability and trends in northern high atmospheric CO$_2$ and CH$_4$ fluxes will be investigated using inverse modeling (e.g. Alexe et al. 2014, Bruhwiler et al. 2014).

References

The AMSR 18.7 and 23.8 GHz Fw retrievals capture dynamic wetland inundation and seasonal variability in surface water area (black lines) for Alaska ecosystems, in contrast to static surface water products (e.g. 30-m optical-IR). The 25-km Fw observations (Watts et al. 2012) are complemented by finer (5-km) resolution Fw retrievals from the AMSR 89 GHz record (Du et al. 2016) with less sensitivity to flooded vegetation relative to lake bodies (blue circles). The upper left plot shows inundation response in open (flooded) tundra wetlands relative to tundra wetlands having lower water tables and less landscape standing water (upper right). The bottom plots show inundation response in boreal wetlands prone to summer flooding (left) and those characterized by spring flooding transitioning to saturated soils in summer (right).
Figure 2 Example TCF wetland model estimates for average August vegetation gross primary productivity (GPP; gC m$^{-2}$ d$^{-1}$), ecosystem CO$_2$ respiration (Reco; gC m$^{-2}$ d$^{-1}$), net ecosystem CO$_2$ exchange (NEE) and CH$_4$ emissions over the 13-yr (2003-2015) study period. Model simulations are daily at a 1-km spatial resolution using MODIS (MCD15A3) and MERRA reanalysis inputs, in addition to landscape freeze/thaw records and inundation area extent provided through AMSR-E/2 fractional water records (Watts et al. 2012, 2014b; Watts et al. In Prep).