30-year Northern Hemisphere freeze/thaw seasonal trends and associated impacts to vegetation growing seasons and carbon exchange

Youngwook Kim
John S. Kimball
University of Montana - Missoula
K. Zhang
Kyle C. McDonald
City College of New York

Follow this and additional works at: http://scholarworks.umt.edu/ntsg_pubs

Recommended Citation
http://scholarworks.umt.edu/ntsg_pubs/377

This Poster is brought to you for free and open access by the Numerical Terradynamic Simulation Group at ScholarWorks at University of Montana. It has been accepted for inclusion in Numerical Terradynamic Simulation Group Publications by an authorized administrator of ScholarWorks at University of Montana. For more information, please contact scholarworks@mail.lib.umt.edu.
30-year Northern Hemisphere Freeze/Thaw seasonal trends and associated impacts to vegetation growing seasons and Carbon Exchange

Youngwook Kim1,2, J. S. Kimball1,2, K. Zhang3, and K. C. McDonald4,5
1Flathead Lake Biological Station, The University of Montana 32125 Bistock Lane, Polson, MT, 59860-9569; 2Corresponding author: youngwook.kim@ntsg.umt.edu
2Numerical Terradynamic Simulation Group, The University of Montana, Missoula, MT, 59812
3Department of Organismic and Evolutionary Biology, Harvard University, Cambridge, MA 02138
4Jet Propulsion Laboratory, California Institute of Technology, Pasadena, CA 91109-8099; 5Department of Earth and Atmospheric Sciences, The City College of New York, New York, NY 10031

Abstract: Landscape freeze-thaw (F/T) status is closely linked to vegetation phenology and land-atmosphere trace gas exchange where seasonal frozen temperatures are a major constraint to plant growth. We applied a temporal classification of 37 GHz brightness temperature (Tb) series from the Scanning Multichannel Microwave Radiometer (SSMR) and Special Sensor Microwave Imager (SSMI) to classify daily Tb values over global land areas where seasonal frozen temperatures influence ecosystem processes. A temporally consistent, long-term (>30 year) F/T record was created ensuring cross-sensor consistency through pixel-wise adjustment of the SSMR Tb record based on empirical analyses of overlapping SSMR and SSM/I measurements. The resulting F/T record showed mean annual spatial classification accuracies of 91 (±8.6) percent for PM and 84 (±9.3) percent for AM overpass retrievals relative to in situ air temperature measurements from the global weather station network. The F/T results were also compared against other measures of biospheric activity including satellite (MODIS) vegetation greenness (NDVI) and tower CO2 flux measurement based GPP & NEE records at selected FLUXNET sites within the Northern Hemisphere domain. The landscape F/T status was classified from daily (AM & PM) Tb retrievals from SSMR and SSM/I time series using a seasonal threshold approach (STA). The STA was a dynamic threshold defined annually on a grid cell-wise basis from empirical relations established between Tb retrievals and global model reanalysis (NCEP) based air temperature (°C above or below freezing). The STA based F/T classifications are comprised of daily Tb series to define Frozen (AM & PM), Non-frozen (AM & PM), Transitional (AM frozen; PM thawed) and Inverse-Transitional (AM thawed; PM frozen) conditions.

The landscape F/T status was classified from daily (AM & PM) Tb retrievals from SSMR and SSM/I time series using a seasonal threshold approach (STA). The STA was a dynamic threshold defined annually on a grid cell-wise basis from empirical relations established between Tb retrievals and global model reanalysis (NCEP) based air temperature (°C above or below freezing). The STA based F/T classifications are comprised of daily Tb series to define Frozen (AM & PM), Non-frozen (AM & PM), Transitional (AM frozen; PM thawed) and Inverse-Transitional (AM thawed; PM frozen) conditions.

F/T linkages to C-flux and NDVI patterns at FLUXNET sites: The latitudinal variation in mean r values (0.59-0.72) between summer NDVI and non-frozen period is associated with increasing greenness (NDVI) and active CO2 uptake; whereas shorter non-frozen seasons promote the opposite response. In other areas a lengthening non-frozen season coincides with increased CO2 uptake (NEE) and vegetation productivity (NDVI), and decreased water stress (Tb). The northern non-frozen period (0.189 days yr-1), largely driven by earlier onset of thawing and associated delay in freeze-up, and consistent with global warming. The number of transitional F/T days is generally increasing with warming, but decreasing at lower latitudes and elevations.

Conclusions: The merged (SSMR/SSMI) 30-yr F/T record shows mean annual classification accuracies of 91 (±1.0) and 84 (±0.9) percent for PM and AM overpass retrievals relative to in situ weather station records; the record significantly responds to pre-1980s climate warming trends. The F/T record shows significant (P<0.001) long-term trends in non-frozen period (0.189 days yr-1), largely driven by earlier onset of thawing and associated delay in freeze-up, and consistent with global warming. The number of transitional F/T days is generally increasing with warming, but decreasing at lower latitudes and elevations.

Acknowledgements: Portions of this work were conducted at the University Corporation for Atmospheric Research, Laboratory of Atmospheric Chemistry under contract to NASA. This work was supported under the NASA Making Earth System Data Records for Use in Research Environments (MEDUR) program (NNH10ZDB001X-NNH10ZDB001X).