
The Mathematics Enthusiast The Mathematics Enthusiast 

Volume 13 
Number 3 Number 3 Article 7 

8-2016 

Aesthetics in School Mathematics: A Potential Model and A Aesthetics in School Mathematics: A Potential Model and A 

Possible Lesson Possible Lesson 

Hartono Tjoe 

Follow this and additional works at: https://scholarworks.umt.edu/tme 

 Part of the Mathematics Commons 

Let us know how access to this document benefits you. 

Recommended Citation Recommended Citation 
Tjoe, Hartono (2016) "Aesthetics in School Mathematics: A Potential Model and A Possible Lesson," The 
Mathematics Enthusiast: Vol. 13 : No. 3 , Article 7. 
DOI: https://doi.org/10.54870/1551-3440.1378 
Available at: https://scholarworks.umt.edu/tme/vol13/iss3/7 

This Article is brought to you for free and open access by ScholarWorks at University of Montana. It has been 
accepted for inclusion in The Mathematics Enthusiast by an authorized editor of ScholarWorks at University of 
Montana. For more information, please contact scholarworks@mso.umt.edu. 

https://scholarworks.umt.edu/tme
https://scholarworks.umt.edu/tme/vol13
https://scholarworks.umt.edu/tme/vol13/iss3
https://scholarworks.umt.edu/tme/vol13/iss3/7
https://scholarworks.umt.edu/tme?utm_source=scholarworks.umt.edu%2Ftme%2Fvol13%2Fiss3%2F7&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/174?utm_source=scholarworks.umt.edu%2Ftme%2Fvol13%2Fiss3%2F7&utm_medium=PDF&utm_campaign=PDFCoverPages
https://goo.gl/forms/s2rGfXOLzz71qgsB2
https://doi.org/10.54870/1551-3440.1378
https://scholarworks.umt.edu/tme/vol13/iss3/7?utm_source=scholarworks.umt.edu%2Ftme%2Fvol13%2Fiss3%2F7&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:scholarworks@mso.umt.edu


	 	 TME,	vol.	13,	no.3,	p.279	
 
 

The	Mathematics	Enthusiast,	ISSN	1551‐3440,	vol.	13,	no.3,	pp.	279	–	302	
2016©	The	Author(s)	&	Dept.	of	Mathematical	Sciences‐The	University	of	Montana	
 

 

Aesthetics in School Mathematics: A Potential Model and A Possible Lesson 

Hartono Tjoe1 

The Pennsylvania State University 

 

Abstract: Earlier studies on improving classroom practice in mathematics have suggested a 
closer attention to nurturing an aesthetic appreciation for mathematics in students’ learning 
experiences. Recent evidence nonetheless reveals little indication of its presence. This article 
offers a potential model of the case for aesthetics in school mathematics. Central to this model is 
the harmonious hierarchy of necessity, existence, and uniqueness without any of which the case 
for aesthetics in student learning might be suboptimal, if not untenable. This article offers an 
example of the proposed model using a possible lesson designed to engage students aesthetically 
in the learning of mathematics. Pedagogical implications are discussed to reflect and revisit an 
interpretation of learning mathematics through problem solving. 
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Introduction 

Earlier studies on improving classroom practice in mathematics have suggested a closer 

attention to nurturing an aesthetic appreciation for mathematics in students’ learning experiences 

(Krutetskii, 1976; Papert, 1980; Silver & Metzger, 1989; Smith, 1927; Sriraman, 2009). Recent 

evidence nonetheless reveals little indication of its presence (Dreyfus & Eisenberg, 1986; Tjoe, 

2015). We discuss in this article how current considerations of aesthetics in school mathematics, 

if any, might have inadvertently emphasized perfunctory precision over creative process. Given 

its current state, we argue how aesthetics can evolve into a compelling case in school 

mathematics. 

We begin with a survey of the notions of mathematical aesthetics and its interpretations. 

We present a typical contemporary classroom episode of a first grade mathematics lesson in one- 

and two-digit addition. We explain how exposing students to such a lesson might overlook the 

opportunity to reveal and foster an aesthetic appreciation for mathematics. We then offer a 

potential model of the case for aesthetics in school mathematics. Central to this model is the 

harmonious hierarchy of necessity, existence, and uniqueness without any of which the case for 

aesthetics in student learning might be suboptimal, if not untenable. We exemplify our model 

with a possible lesson designed to engage students aesthetically in the learning of mathematics. 

Pedagogical implications are discussed to reflect and revisit an interpretation of learning 

mathematics through problem solving. 

Mathematical Aesthetics 

Aesthetics has been one of the driving forces behind the activities that gave life to the 

advancements in mathematics as a discipline (Davis & Hersh, 1981). Its subtlety creates 

guidelines that many research mathematicians follow as one of the foremost principles in their 
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professions. It is in the search of mathematical beauty that research mathematicians often seek 

approvals that lead to the crowning achievement in their mathematical experience (Hardy, 1940). 

Sinclair (2004) analyzes the role of aesthetic values from several conceptual insights. She 

draws examples from existing empirical findings such as those by Dreyfus and Eisenberg (1986) 

and Silver and Metzger (1989). In one of her interpretations of their work, she suggests that 

“mathematicians’ aesthetic choices might be at least partially learned from their community as 

they interact with other mathematicians and seek their approval” (Sinclair, 2004, p. 276). 

Furthermore, she indicates that mathematical beauty is only feasible in the process “when young 

mathematicians are having to join the community of professional mathematicians—and when 

aesthetic considerations are recognized (unlike at high school and undergraduate levels)” (p. 

276). 

Related to Sinclair’s (2004) interpretations of mathematical aesthetics, Karp (2008) 

conducts a comparative study on the aesthetic aspect of mathematical problem solving. Karp’s 

comparative study involved middle and high school mathematics teachers from the U.S. and 

Russia. In his study, teachers are asked to provide examples and explanations of “beautiful” 

mathematics problems and approaches in solving those problems. Karp’s (2008) findings 

confirm that the curricular system of education has a tremendous impact on students’ aesthetic 

preference in mathematics problem solving. Each group of teachers shows different perspectives 

on what count as mathematical “beauty.” In particular, these differences stand out from their 

selections of mathematics topics. American teachers put extra weight on mathematics topics as 

prescribed by the American curriculum, which is typically associated with real-life situations and 

applications. Russian teachers do likewise as recommended by Russian curriculum with its 

traditionally heavy emphasis on algebra, number theory, and geometry. Evidently, these Russian 
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problems tend to require longer approaches and are more algebraically demanding than their 

American counterparts. In their explanations, American teachers describe “usefulness in the 

teaching process,” “useful[ness] in practical life or comes the real world,” “non-standard and 

cannot be solved using ordinary methods that are regularly discussed in school,” 

“unexpectedness of the solution,” “openness of the problem,” and “a combination of methods 

and knowledge from different fields of mathematics” (Karp, 2008, p. 40). Russian teachers 

reveal in their choices of problems and solutions the sense of “overcoming of chaos,” “non-

standard nature,” and “traditional fields” in their origins (p. 40). In his conclusion, Karp indicates 

a relative character of aesthetic preference in mathematics problem solving. 

Apart from the curricular system of education, the context of cultural differences has also 

been observed in understanding mathematical aesthetics through classroom learning or 

professional experiences. Tjoe (2015) examines the hypothesis as to whether there exists a gap 

between different problem solvers in the criteria that might be attributed to the interpretation of 

mathematical “beauty.” Tjoe’s study involves expert mathematicians at the university level and 

mathematically gifted students at the high school level. In his study, research mathematicians 

and mathematically gifted students are asked to choose their most preferred approach as they are 

presented with a collection of many different problem solving approaches. Tjoe’s (2015) 

findings reveal that whereas expert mathematicians associate “beautiful” approaches with their 

simplicity and originality in the search for geometric reasoning or explanation, mathematically 

gifted students strive for the economic attribute of mathematical “beauty” in those approaches 

that involve fewer steps and shorter solving time. When both groups’ divergent choices of 

preferred approaches as well as their dissimilar interpretations of mathematical “beauty” are 

made known to each other, it is evident that these opposing views are not construed from their 
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mathematical content knowledge, but rather from their appeals of “beauty” based on their 

mathematics experiences (Tjoe, 2015). Tjoe suggests that “there appeared to be a profound 

lacuna in the understanding of mathematical aesthetics that might inadvertently subdivide the 

state of mathematically gifted into two groups: one group of professional research 

mathematicians and another group of those whose affects might be waiting to be nurtured” (Tjoe, 

2015, p. 173). Given mathematically aesthetics is not a characteristic that problem solvers are 

born with, it is possible that one must learn to instill such habit in their everyday life as 

professional mathematicians. This possibility might further indicate that mathematical aesthetics 

is a socially constructed concept, or that mathematical aesthetics has found its decline in its 

inclusion in the teaching and learning of mathematics at the elementary and secondary levels. 

A Lesson in One- and Two-digit Addition 

The Common Core State Standards Initiative describes perseverance in problem solving 

as one of the most important standards for mathematical practice. Students are encouraged to 

“check their answers to problems using a different method,” “understand the approaches of 

others,” and “identify correspondences between different approaches” (Common Core State 

Standards Initiative, 2010, p. 6). With this in mind, first grade students are expected to be 

proficient in varieties of ways of solving one- and two-digit addition problems 

(CCSS.MATH.CONTENT.1.OA.C.5-6, 1.NBT.C.4). We include in this section some of the 

ways that one- or two-digit addition problems (e.g., 5 + 6 and 46 + 38) are typically presented in 

the common core aligned mathematics textbooks at the first grade level. 

The most elementary way of solving one-digit addition problems is the counting via 

direct modeling of objects or fingers: 1) counting all (e.g., 5 + 6 is solved by counting aloud one, 

two, three, four, five (five), …, six, seven, eight, nine, ten, eleven (six)), 2) counting on from the 
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first addend (e.g., 5 + 6 is solved by counting aloud five (five), …, six, seven, eight, nine, ten, 

eleven (six)), and 3) counting on from the larger addend (e.g., 5 + 6 is solved by counting aloud 

six (six), …, seven, eight, nine, ten, eleven (five)). The next method of solving one-digit addition 

problems after counting via objects or fingers is to count abstractly without objects or fingers. As 

one moves away from relating counting to addition toward the idea of addition through 

reasoning, one learns to derive addition by recalling known addition facts (e.g., 5 + 6 = 11 

because knowing 5 + 5 = 10 and 6 = 5 + 1, one obtains 5 + 6 = 5 + 5 + 1 = 11) or by using 

commutative property of addition (e.g., 5 + 6 = 11 because 6 + 5 = 11 and 5 + 6 = 6 + 5 so 5 + 6 

= 11). Finally, students are to perform mental math addition via retrieval from long-term 

memory so that one can instantly solve 5 + 6 = 11 on the spot. 

One way to solve two-digit addition problems is to add the tens and the ones separately, 

and combine them (e.g., 46 + 38 = 84 because 40 + 30 = 70 and 6 + 8 = 14 so 70 + 14 = 84). 

Another way to solve two-digit addition problems is to add on the tens followed by adding on the 

ones (e.g., 46 + 38 = 84 because 46 + 10 + 10 + 10 = 76 and 76 + 4 + 4 = 84). One can also 

decompose an addend to make the tens (e.g., 46 + 38 = 84 because 46 + 38 = (44 + 2) + 38 = 44 

+ (2 + 38) = 44 + 40 = 84) or compensate another addend to make the tens (e.g., 46 + 38 = 84 

because 46 + 38 = 46 + (40 – 2) = (46 + 40) – 2 = 86 – 2 = 84). A culminating point of addition 

lesson concludes with a traditional vertical algorithm for addition that sometimes commits 

carrying over to rote memorization (e.g., 46 + 38 = 84 because 46 + 38 = (40 + 6) + (30 + 8) = 

(40 + 30) + (6 + 8) = (40 + 30) + 14 = (40 + 30) + (10 + 4) = (40 + 30 + 10) + 4 = 80 + 4 = 84). 

These different ways of solving one- and two-digit addition problems often wear out 

many teachers who eventually overemphasize to their students the memory retrieval for one-digit 

addition problems or the vertical addition algorithm for two-digit addition problems. A popular 
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explanation to the overemphasis of either addition method is its convenience. Indeed, a number 

of studies demonstrate that not all of these addition strategies receive equally extensive 

utilization outside the teaching and learning settings (Geary & Brown, 1991; Geary & Wiley, 

1991; Siegler & Shrager, 1984). Attributing their strategy choice to the most economical way of 

arriving at the answers, more experienced problem solvers, for instance, depend heavily on 

reasoning (e.g., memory retrieval) as opposed to counting to solve addition problems. 

Unfortunately, such a convenient way of teaching the most economical approach is to a 

certain degree one cause of an inconvenient way of learning to appreciate mathematical 

aesthetics. Without communicating to students to help them reveal the power, usefulness, and 

beauty of the addition methods one after and over the other, learning mathematics might become 

a mere tool of pedantic precision, instead of a creative journey of problem solving. In this 

manner, young problem solvers might mistakenly perceive the kind of mathematics activities 

that research mathematicians conduct in their profession life as an impetuous act of conduct, 

instead of an inculcative habit of mind. It is thus essential for teachers to inform their students of 

the fact that the vertical addition algorithm does not simply materialize from the work of 

research mathematicians in the form that may be found in current mathematics textbooks. 

Students should also be acquainted with the aesthetics principle that directly guides the process 

in which research mathematicians compose, frame, and identify the vertical addition algorithm, 

among many other algorithms, to be what may now be considered the standard algorithm for any 

addition problems. 

A Model of Aesthetics in School Mathematics 

One way to help students to understand the real process that transform the vertical 

addition algorithm into the standard algorithm is to engage them in a similar experience that help 
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define and refine the criteria of a standard algorithm from the point of view of mathematical 

aesthetics (Silver & Metzger, 1989). In this section, we propose a possible model of the case for 

aesthetics in school mathematics that integrates necessity, existence, and uniqueness. We 

describe the accounts of this model using backward explanations. 

We maintain that our end goal is to nurture the feelings of mathematical aesthetics among 

our students. In the context of problem solving process, mathematical aesthetics is often 

identified through the uniqueness in which a problem has been approached. At one point in the 

problem solving process, in particular, after a problem has been successfully solved, solvers are 

to be able to recognize that there exists a unique problem solving approach that is preferred using 

a certain criteria. 

On the one hand, such criteria of preference depend greatly on solvers’ mathematical 

experience and knowledge. On the other hand, solvers can only accumulate a series of 

meaningful mathematical experience and knowledge, and therefore prefer a unique problem 

solving approach, when there is more than one problem solving approach to choose from. In 

other words, the existence of many different problem solving approaches is a necessary condition 

for the uniqueness of such problem solving approach, and perhaps more crucially, the uniqueness 

of the criteria which help guide solvers to prefer one problem solving approach to another. If 

there were only one solution method to approach a problem, then there would be no other 

solution method to compare with, and there would not be a need to prefer one solution method to 

the others. In this case, it would be a difficult effort, if not a futile one, to convince students who 

learn only one solution method to solve the problem that such a solution method in fact entails a 

great deal of aesthetics values. 
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Although the existence of many different solution methods can be viewed as a means to 

facilitate aesthetics appreciations toward the most “beautiful” problem solving approach, there 

needs to be a more pragmatic function (in addition to an affective one) that serves to explain why 

students need to learn more than one solution method. It is at this point that different numerical 

characteristics of problems with similar surface structures can be a determining factor. If 

mathematics instructors can demonstrate to their students that a certain solution method would 

work more effectively when applied to solve problems with a particular numerical characteristic, 

while other solution methods for problems with different numerical characteristics, then students 

may be better able to acknowledge that there is a need to study more than one solution method. 

In fact, it would be in the interest of the students to further recognize this utility to the extent that 

it will help them primarily to solve problems more competently and adaptively, and secondarily 

to gain exposure to and to practice satisfying their desire in their quest for the most “beautiful” 

solution methods. 

Nonetheless, the order of presenting a series of different numerical characteristics of 

problems necessitates a careful deliberation of cognitive workload. In order for students to 

discover the power of certain solution methods, numerical characteristics of problems need to be 

reflected upon in a manner that unfolds the necessity of those solution methods. 

Correspondingly, the order of presenting the many different solution methods should be 

connected with the amount of cognitive workload demanded in each numerical characteristic of 

the problems in an increasing manner. As students grow their mathematical confidence in 

solving problems with numerical characteristics of lower cognitive workload, they may be 

introduced to problems with numerical characteristics of higher cognitive workload. With 

constant exposure to having to deal with problems with numerical characteristics of higher 
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cognitive workload, students may come to realize that they need some other solution methods 

that are more effective than the existing solution methods that normally work just fine with 

problems with numerical characteristics of lower cognitive workload. 

In many respects, this model to align itself closely with the kind of preferential 

considerations involved in the problem solving experience that professional mathematicians 

encounter in their research work when deciding which approaches to pursue in solving a 

theorem, which existing theorems to prove, or which new theorems to conjecture. Likewise, such 

considerations can be related in the review process in which mathematics textbook authors 

conduct in determining which proofs, among existing ones, to include for each theorem in the 

textbooks. Indeed, a survey of research in the field of mathematics reveals that there are more 

proofs than there are theorems (Thurston, 1994). This indicates that more and more 

mathematicians are working on to use different approaches and perspectives to revisit and refine 

many theorems that have already been proved. 

At the heart of the present model for aesthetics in school mathematics is the dynamic 

cycle of the need for more effective solution methods through different numerical characteristics 

of problems with similar surface structures, the existence of a collection of different solution 

methods through students’ constructivism or teachers’ presentation, and the uniqueness in the 

selection of preferred solution methods. It is the element of the gradual progression in time and 

difficulty that helps run the engine of this model. Students who respond to the need to learn 

problem solving using many different approaches may grow to become aware of “beautiful” 

solution methods. Students who experience a huge and sudden jump in the level of cognitive 

workload may in turn feel unmotivated to appreciate the “beautiful” solution methods. By 

creating the necessary condition for students to explore multiple solution methods, we facilitate a 
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learning environment where they can engage in classroom discourse to compare and contrast 

those solution methods, and eventually instill the feelings for aesthetics in their mathematics 

learning experience. 

Aesthetics for a Lesson in One- and Two-digit Addition 

This section offers a concrete model of how a lesson in one- and two-digit addition might 

look like. We begin our lesson in addition as a transition from a lesson in counting. As students 

become acquainted with counting from one, two, three, and so on, our first examples in one-digit 

addition involve adding by ones: 0 + 1 = 1, 1 + 1 = 2, 2 + 1 = 3, 3 + 1 = 4, 4 + 1 = 5, 5 + 1 = 6, 6 

+ 1 = 7, 7 + 1 = 8, 8 + 1 = 9, and 9 + 1 = 10 (see Figure 1). This set of problems is introduced 

first because it serves as a reminder to students that adding by ones is tantamount to listing or 

naming numerals sequentially. Different methods such as using manipulatives, counting via 

fingers, or talking aloud can also be utilized. 

+ 0 1 2 3 4 5 6 7 8 9 

0 0 1 2 3 4 5 6 7 8 9 

1 1 2 3 4 5 6 7 8 9 10

2 2 3 4 5 6 7 8 9 10 11

3 3 4 5 6 7 8 9 10 11 12

4 4 5 6 7 8 9 10 11 12 13

5 5 6 7 8 9 10 11 12 13 14

6 6 7 8 9 10 11 12 13 14 15

7 7 8 9 10 11 12 13 14 15 16

8 8 9 10 11 12 13 14 15 16 17

9 9 10 11 12 13 14 15 16 17 18

Figure 1. Adding whole numbers by ones. 

Following adding by ones problems is an introduction to commutative property of 

addition. This includes problems such as 1 + 0 = 1, 1 + 1 = 2, 1 + 2 = 3, 1 + 3 = 4, 1 + 4 = 5, 1 + 

5 = 6, 1 + 6 = 7, 1 + 7 = 8, 1 + 8 = 9, and 1 + 9  = 10 (see Figure 2). This set of problems 
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establishes the foundation for future addition problems that students will encounter to the extent 

that it demonstrates the economy aspect of solution methods. Students will recognize that the 

order in which an addition is performed does not matter when adding two whole numbers: 

adding an addend to an augend is equivalent to adding an augend to an addend. 

+ 0 1 2 3 4 5 6 7 8 9 

0 0 1 2 3 4 5 6 7 8 9 

1 1 2 3 4 5 6 7 8 9 10

2 2 3 4 5 6 7 8 9 10 11

3 3 4 5 6 7 8 9 10 11 12

4 4 5 6 7 8 9 10 11 12 13

5 5 6 7 8 9 10 11 12 13 14

6 6 7 8 9 10 11 12 13 14 15

7 7 8 9 10 11 12 13 14 15 16

8 8 9 10 11 12 13 14 15 16 17

9 9 10 11 12 13 14 15 16 17 18

Figure 2. Adding ones to whole numbers. 

Given the first two sets of problems, we can now reintroduce to students that whole 

numbers can be represented through decomposition as (at least) two other (not necessarily 

distinguishable) whole numbers. Students can be engaged to examine the question of which 

whole numbers can make up different whole numbers. For example, the number zero can be 

represented as 0 = 0 + 0; the number one can be represented as 1 = 0 + 1 and 1 = 1 + 0; the 

number two can be represented as 2 = 0 + 2, 2 = 1 + 1, and 2 = 2 + 0; the number three can be 

represented as 3 = 0 + 3, 3 = 1 + 2, 3 = 2 + 1, and 3 = 3 + 0; the number four can be represented 

as 4 = 0 + 4, 4 = 1 + 3, 4 = 2 + 2, 4 = 3 + 1, and 4 = 4 + 0; the number five can be represented as 

5 = 0 + 5, 5 = 1 + 4, 5 = 2 + 3, 5 = 3 + 2, 5 = 4 + 1, and 5 = 5 + 0; the number six can be 

represented as 6 = 0 + 6, 6 = 1 + 5, 6 = 2 + 4, 6 = 3 + 3, 6 = 4 + 2, 6 = 5 + 1, and 6 = 6 + 0; the 

number seven can be represented as 7 = 0 + 7, 7 = 1 + 6, 7 = 2 + 5, 7 = 3 + 4, 7 = 4 + 3, 7 = 5 + 
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2, 7 = 6 + 1, and 7 = 7 + 0; the number eight can be represented as 8 = 0 + 8, 8 = 1 + 7, 8 = 2 + 6, 

8 = 3 + 5, 8 = 4 + 4, 8 = 5 + 3, 8 = 6 + 2, 8 = 7 + 1, and 8 = 8 + 0; and the number nine can be 

represented as 9 = 0 + 9, 9 = 1 + 8, 9 = 2 + 7, 9 = 3 + 6, 9 = 4 + 5, 9 = 5 + 4, 9 = 6 + 3, 9 = 7 + 2, 

9 = 8 + 1, and 9 = 9 + 0 (see Figure 3). 

+ 0 1 2 3 4 5 6 7 8 9 

0 0 1 2 3 4 5 6 7 8 9 

1 1 2 3 4 5 6 7 8 9 10

2 2 3 4 5 6 7 8 9 10 11

3 3 4 5 6 7 8 9 10 11 12

4 4 5 6 7 8 9 10 11 12 13

5 5 6 7 8 9 10 11 12 13 14

6 6 7 8 9 10 11 12 13 14 15

7 7 8 9 10 11 12 13 14 15 16

8 8 9 10 11 12 13 14 15 16 17

9 9 10 11 12 13 14 15 16 17 18

Figure 3. Adding through decomposition. 

When faced with addition problems that result in one-digit whole numbers, students can 

apply their commutative property of addition. After some experience of using the counting on 

technique that starts either from the first addend or from the greater of the two addends, students 

can choose the latter as their preferred method because of its economical consideration. 

The next set of problems involves whole numbers up to 18 that are the results of 

additional one-digit addends. For example, the number 10 can be represented as 10 = 1 + 9, 10 = 

2 + 8, 10 = 3 + 7, 10 = 4 + 6, 10 = 5 + 5, 10 = 6 + 4, 10 = 7 + 3, 10 = 8 + 2, and 10 = 9 + 1; the 

number 11 can be represented as 11 = 2 + 9, 11 = 3 + 8, 11 = 4 + 7, 11 = 5 + 6, 11 = 6 + 5, 11 = 

7 + 4, 11 = 8 + 3, and 11 = 9 + 2; the number 12 can be represented as 12 = 3 + 9, 12 = 4 + 8, 12 

= 5 + 7, 12 = 6 + 6, 12 = 7 + 5, 12 = 8 + 4, and 12 = 9 + 3; the number 13 can be represented as 

13 = 4 + 9, 13 = 5 + 8, 13 = 6 + 7, 13 = 7 + 6, 13 = 8 + 5, and 13 = 9 + 4; the number 14 can be 
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represented as 14 = 5 + 9, 14 = 6 + 8, 14 = 7 + 7, 14 = 8 + 6, and 14 = 9 + 5; the number 15 can 

be represented as 15 = 6 + 9, 15 = 7 + 8, 15 = 8 + 7, and 15 = 9 + 6; the number 16 can be 

represented as 16 = 7 + 9, 16 = 8 + 8, and 16 = 9 + 7; the number 17 can be represented as 17 = 8 

+ 9, and 17 = 9 + 8; and the number 18 can be represented as 18 = 9 + 9 (see Figure 4). 

+ 0 1 2 3 4 5 6 7 8 9 

0 0 1 2 3 4 5 6 7 8 9 

1 1 2 3 4 5 6 7 8 9 10

2 2 3 4 5 6 7 8 9 10 11

3 3 4 5 6 7 8 9 10 11 12

4 4 5 6 7 8 9 10 11 12 13

5 5 6 7 8 9 10 11 12 13 14

6 6 7 8 9 10 11 12 13 14 15

7 7 8 9 10 11 12 13 14 15 16

8 8 9 10 11 12 13 14 15 16 17

9 9 10 11 12 13 14 15 16 17 18

Figure 4. Additional additions through decomposition. 

Using the knowledge of commutative property of addition, students need to be prompted 

to realize that from the last two sets of the problems, many decompositions are symmetric to 

each other. Moreover, some students who may recognize that the number of decompositions of a 

whole number is one more than that whole number can be guided to think about whether this 

observation holds for the cases for 10 to 18 shown previously. Students need to see that one-digit 

addition problems will result between zero and 18. More specifically, they should also notice that 

the maximum sum of two one-digit whole numbers is 18, a useful fact that will later be 

employed in the traditional vertical algorithm as the standard algorithm. 

At this point, we expand our addition problems using two-digit whole numbers as 

addends. For example, in addition to the decompositions shown previously, the number 10 can 

be represented as 10 = 0 + 10, and 10 = 10 + 0; the number 11 can be represented as 11 = 0 + 11, 
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11 = 1 + 10, 11 = 10 + 1, and 11 = 11 + 0; the number 12 can be represented as 12 = 0 + 12, 12 = 

1 + 11, 12 = 2 + 10, 12 = 10 + 2, 12 = 11 + 1, and 12 = 12 + 0; the number 13 can be represented 

as 13 = 0 + 13, 13 = 1 + 12, 13 = 2 + 11, 13 = 3 + 10, 13 = 10 + 3, 13 = 11 + 2, 13 = 12 + 1, and 

13 = 13 + 0; the number 14 can be represented as 14 = 0 + 14, 14 = 1 + 13, 14 = 2 + 12, 14 = 3 + 

11, 14 = 4 + 10, 14 = 10 + 4, 14 = 11 + 3, 14 = 12 + 2, 14 = 13 + 1, and 14 = 14 + 0; the number 

15 can be represented as 15 = 0 + 15, 15 = 1 + 14, 15 = 2 + 13, 15 = 3 + 12, 15 = 4 + 11, 15 = 5 

+ 10, 15 = 10 + 5, 15 = 11 + 4, 15 = 12 + 3, 15 = 13 + 2, 15 = 14 + 1, and 15 = 15 + 0; the 

number 16 can be represented as 16 = 0 + 16, 16 = 1 + 15, 16 = 2 + 14, 16 = 3 + 13, 16 = 4 + 12, 

16 = 5 + 11, 16 = 6 + 10, 16 = 10 + 6, 16 = 11 + 5, 16 = 12 + 4, 16 = 13 + 3, 16 = 14 + 2, 16 = 15 

+ 1, and 16 = 16 + 0; the number 17 can be represented as 17 = 0 + 17, 17 = 1 + 16, 17 = 2 + 15, 

17 = 3 + 14, 17 = 4 + 13, 17 = 5 + 12, 17 = 6 + 11, 17 = 7 + 10, 17 = 10 + 7, 17 = 11 + 6, 17 = 12 

+ 5, 17 = 13 + 4, 17 = 14 + 3, 17 = 15 + 2, 17 = 16 + 1, and 17 = 17 + 0; and the number 18 can 

be represented as 18 = 0 + 18, 18 = 1 + 17, 18 = 2 + 16, 18 = 3 + 15, 18 = 4 + 14, 18 = 5 + 13, 18 

= 6 + 12, 18 = 7 + 11, 18 = 8 + 10, 18 = 10 + 8, 18 = 11 + 7, 18 = 12 + 6, 18 = 13 + 5, 18 = 14 + 

4, 18 = 15 + 3, 18 = 16 + 2, 18 = 17 + 1, and 18 = 18 + 0 (see Figure 5). 
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+ 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18

0 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18

1 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19

2 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20

3 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21

4 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22

5 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23

6 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24

7 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25

8 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26

9 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27

10 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28

11 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29

12 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30

13 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31

14 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32

15 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33

16 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34

17 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35

18 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36

Figure 5. Additional additions through decomposition of two-digit whole numbers. 

After a systematic introduction to addition problems involving whole numbers between 

zero and 18, students can be further exposed to more complex two-digit whole numbers. For 

problems involving two-digit whole numbers with zero in their ones place values, we begin with 

the strategy of counting on by tens. For example, 10 + 10 = 20, 20 + 10 = 30, 30 + 10 = 40, 40 + 

10 = 50, 50 + 10 = 60, 60 + 10 = 70, 70 + 10 = 80, 80 + 10 = 90, and 90 + 10 = 100. This set of 

problems should remind students of that involving counting on by ones technique. Students can 
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further extrapolate adding two-digit whole numbers with zero in their ones place values has a 

similar pattern that one can find when adding one-digit whole numbers. 

Moreover, combining the two techniques will enable students to further generalize the 

pattern in adding any two-digit whole numbers: when adding two-digit whole numbers, one can 

add the digits in the tens place values, add the digits in the ones place values, and combine the 

two summands. For example, 34 + 52 = (30 + 4) + (50 + 2) = (30 + 50) + (4 + 2) = 80 + 6 = 86, 

and 46 + 38 = (40 + 6) + (30 +8) = (40 + 30) + (6 + 8) = 70 + 14 = 70 + (10 + 4) = (70 + 10) + 4 

= 80 + 4 = 84. Students need to notice that the latter example involves a higher level of cognitive 

workload than the former one because of the resulting two-digit summand from adding the digits 

in the ones place values. As such, we need to be more cognizant of presenting addition problems 

of two-digit whole numbers so that they will progress from those involving a one-digit summand 

to those involving a two-digit summand as a result of adding the digits in the ones place values. 

We make a note at this point that although the previous technique of adding any two-digit 

whole numbers involves associative property of addition, the introduction to this property is 

rather informal to our first grade students. In fact, students may choose not to write formal 

number sentences to express any of the solution methods that are described above. Formality or 

standardization will nevertheless become necessary for students to adapt to as they are posed 

with more complex addition problems such as those involving more than two two-digit whole 

numbers (or even those involving two more-than-two-digit whole numbers as they will perform 

in later grade levels). 

Consequently, students can be introduced to the traditional vertical algorithm, which 

essentially reverse the order of the previous technique in a vertical form. For example, 46 + 38 = 

(40 + 6) + (30 + 8) = (40 + 30) + (6 + 8) = (40 + 30) + (14) = (40 + 30) + (10 + 4) = (40 + 30 + 
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10) + 4 = 80 + 4 = 84. We point out to students that the step that involves adding 10 to 40 + 30 is 

referred to as carrying over, and that 10 is the only possible value to carry over because of the 

observation made earlier that the maximum sum of two one-digit whole numbers is 18. With this 

traditional vertical algorithm in their tool bag, students are hoped to recognize its advantage over 

other solution methods in terms of generalizability: this algorithm, unlike the others, will work 

for addition problems involving not only two one- or two-digit whole numbers, but also more 

than two one- or two-digit whole numbers and two more-than-two-digit whole numbers. 

Some other students might call attention to its advantage in terms of efficiency in the 

time that it takes to solve the addition problems. To these students, we propose a situation for 

addition problems: Is there a more efficient way of solving the addition problem such as 46 + 99 

than using the traditional vertical algorithm? Students might realize that decomposing 46 into 45 

and that 1 will make up 100 from 1 and 99, which is quicker to solve than the decomposition 

method: 46 + 99 = (45 + 1) + 99 = 45 + (1 + 99) = 45 + 100 = 145. Alternatively, students might 

recognize that compensating 99 into 100 and that 1 will need to be taken away from 46 and 100, 

which is again quicker to solve than the decomposition method: 46 + 99 = 46 + (100 – 1) = (46 + 

100) – 1 = 146 – 1 = 145 Clearly, there exists a situation where the traditional vertical algorithm 

may not always offer a faster solution than the decomposition method or the compensation 

method. And for students to understand the need for flexibility in applying more effective 

solution methods to appropriate addition problems, extraordinary situations as described earlier 

may be indispensible. 

Perhaps even generalizing the decomposition and compensation methods a little further 

to addition problems involving more than two two-digit whole numbers, students can recognize 

that some digits (whole numbers) are more compatible to other digits (whole numbers) by taking 
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advantage of the simplicity of multiple of tens. For example, as students recognize that the digits 

6 and 4 make up 10, they can associate the corresponding addends using the commutative and 

associative properties of addition: 46 + 38 + 54 = 46 + (38 + 54) = 46 + (54 + 38) = (46 + 54) + 

38 = 100 + 38 = 138. 

Although first graders are only expected to perform addition to problems involving two 

whole numbers up to 100 (Common Core State Standards Initiative, 2010), it is perhaps worth 

contemplating to what extent the power and beauty of the traditional vertical algorithm as the 

standard algorithm, as well as some other solution methods such as decomposition or 

compensation method, may become unnoticed, if not optimally appreciated, in the absence of 

problems requiring a higher level cognitive workload. It is through this continuous process of 

experiencing such problems with a variety of numerical characteristics that students can become 

aware of the need for more effective solution methods. And it is through this need for additional 

solution methods that student can not only engage in the creative praxis of constructing and 

inventing their own solution methods, but also learn to acknowledge the simultaneous existence 

of multiple solution methods. It is then through this existence of many different solution methods 

that students can grow to analyze those solution methods more critically toward the aesthetic 

goals of learning in mathematics. 

Conclusion and Discussion 

This article presents a case of aesthetics for school mathematics. In an expository 

approach, it aims to illustrate the possibility that aesthetics may find its presence in school 

mathematics through problem solving. We recognize that mathematical aesthetics may not be 

necessarily interpreted by the sole means of the process in which mathematicians go through in 

their professional career (Poincare, 1946; Hadamard, 1945). Our approach to interpret 
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mathematical aesthetics through problem solving is mostly influenced by the eminent call to 

teach mathematics through problem solving (NCTM, 2000). Using the model proposed, we 

consider the necessity, existence, and uniqueness of mathematically “beautiful” solution methods 

in student learning. It is hoped that this proposed model might create discussions in advancing 

research in teaching and learning mathematics. 

On the one hand, the proposed model approximates the role of generating mathematical 

understanding from the point of view of many of the existing teaching and learning theories in 

mathematics education (Cobb, 2007; Hiebert & Carpenter, 1992; Lampert, 1990; Silver & 

Herbst, 2007; Simon, 1995). On the other hand, the proposed model operates mathematical 

aesthetics around the classroom settings where mathematics is conducted in the lens of abstract 

problem solving process as observed in the studies by Hadamard (1945) and Poincare (1946), 

instead of through the concrete and static appearance of problem solving solutions as observed in 

the studies by Krutetskii (1976) and Sinclair (2001). At the same time, our approach might be 

likened to constructivism to the extent that our aesthetic engagement process promotes creativity 

and analytical thinking through a series of solution methods and their corresponding numerical 

characteristics of problems with a similar surface structure. In contrast to the current curriculum, 

not only does this model support students’ accumulation of a generally more substantial problem 

solving experience, but it also incorporates acquisition of new knowledge through the creation, 

presence, and evaluation of many different strategies. 

The present article also demonstrates one possibility of engaging first grade students 

aesthetically in mathematics learning of the one- and two-digit addition. A lesson specifically 

considers a greater amount of depth and breath of the treatment of numerical characteristics of 

the addends involved in the addition problems in manner that incorporates systematically and 
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progressively increasing cognitive workload. Accordingly, this model has a number of 

implications that are worth of some reflections. First, the exposition of a substantially greater 

series of addition problems, although valuable in creating the need for searching different 

problem solving approaches, should be ensured not to exhaust the mathematical excitement of 

the students. Teachers should be cognizant of how much exertion in the planning of a series of 

problems in the addition lesson may be sufficient over a given period of time. This circumstance 

may also create a glimpse of constriction among other topics that can be taken account of under a 

particular grade level. It is conceivable that certain methods of algebra are capable of solving 

typical calculus problems (Tjoe, 2015). Teachers need to strike a balance in maintaining how far 

students can or should invoke some of the most powerful approaches in algebra class to solve 

problems involving a lower level of cognitive workload such as those that one can find in an 

elementary class, or involving a higher level of cognitive workload such as those that one can 

find in an AP Calculus or an advanced geometry class. Finally, future studies are called for to 

attend to empirical findings that support the proposed model of aesthetics engagement in school 

mathematics (Tjoe, 2014). Such studies may particularly relate to an experiment that compares 

and contrasts the efficacy of such variables as numerical characteristics of problems and order of 

presentation of different solution methods. 
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