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METHODS 

 

STUDY AREA DESCRIPTION 

Vegetation dynamics were simulated across 376,450 ha of the Little Belt 

Mountain landscape in central Montana (Figure 1). To map current landcover conditions 

scaled, multi-attribute classification (SMAC) logic was applied to the descriptions of 

existing stands that were used to parameterize the SIMPPLE model (Appendix A).  

 

 
 
Figure 1. Geographic extent of vegetation simulations encompassing the Little Belt 
Mountain Range of central Montana, USA, and Tenderfoot Creek research watershed. 
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The Tenderfoot Creek research watershed lies within the Tenderfoot Creek 

Experimental Forest (McCaughey, 1996), on the west slope of the Little Belt Mountains 

in central Montana, USA (Figures 2). This broad basin-like watershed is oriented to the 

northwest, and bisected by a steep canyon along the main channel. An upper reach and 

two major tributaries on each north and south aspects make up the 2,251 ha that 

contribute flow to the main outlet.  

The watershed is underlain by Precambrian age sedimentary rocks of the Belt 

Supergroup (Alt and Hyndman, 1986). Soils are characteristic of cool, moist 

environments, and the most extensive groups are loamy skeletal, mixed Typic 

Cryochrepts and clayey, mixed Aquic Cryoboralfs (Farnes and McCaughey, 1995). 

Several large (800 to 1,500 ha) fires have occurred in the watershed over the past 

four centuries but nearly 120 years have elapsed since the last major stand replacing fire 

(Barrett, 1993). Forest stands of varying developmental stages presently cover 85% of the 

watershed. Approximately 65% of the watershed is composed of lodgepole pine (Pinus 

contorta), which generally represent the most recently initiated stands. Over time, shade 

tolerant subalpine fir (Abies lasiocarpa ) and Englemann spruce (Picea engelmannii) 

emerge underneath decadent pine and now make up about 20% of the landcover. 

Decadent, low density and disturbed stands constitute another 11% of the watershed. The 

remaining 4% of the watershed consists of shrubby meadows and small riparian areas 

along creek bottoms (1%), drier grasses on higher ground (1%) and talus slopes (2%).  

Climate patterns are continental, and almost 70% of the 800mm mean annual 

precipitation is deposited as snow between October and April. The annual peak discharge 

is driven by snowmelt and occurs between mid-May and early June, while the low flow 

period begins in August and persists through April. Annually, the mean water yield from 

the research watershed is approximately 400 mm. 
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Figure 2. Delineation, configuration, and landcover characteristics of the Tenderfoot 
Creek research watershed, located in the Little Belt Mountains of central Montana, USA. 
 

 

LANDCOVER SIMULATION 

The SIMPPLLE model has the capability to simulate both managed and 

unmanaged vegetation dynamics. Since the goal of the study was to determine the range 

of variability in the absence of human disturbance, the model was run forward in time 

once for 300 years at decadal time steps, assuming an unmanaged scenario and starting 

with the current landscape cover characteristics.  

To parameterize SIMPPLLE, forest inventory information, satellite imagery, 

spatial and statistical modeling are used to provide Habitat Type, dominant species, size 

class, and canopy density descriptions for every stand. The model then uses biophysical 

input data, user-specified logic, and conditional probabilities to stochastically advance 

each stand in the landscape through states of succession and disturbance processes at the 
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time-step of the model. Because state advancement is probabilistic, multiple simulations 

can be initiated to capture the potential range of vegetation characteristics over time. 

Zuuring and Sweet (2000) have shown that output from 30 to 100 iterations tends to be 

normally distributed and can be described with parametric methods (Ott, 1993). This 

suggests that a single long-term simulation could produce a similar range of conditions as 

multiple runs over shorted time periods. Running a simulation that produced 30 iterations 

of landcover patterns should therefore produce a set of conditions that approaches their 

probable range.  

The simulation encompassed the entire Little Belt mountain range so that 

disturbance process propagation into the research watershed from the surrounding 

landscape was accounted for. To capture the ecological processes simulated by 

SIMPPLE, and translate them into data that could be mapped, analyzed, and used for 

hydrologic modeling, vegetation characteristics predicted for each stand were reclassified 

with an algorithm that automated the SMAC logic used to describe the current landscape 

condition. The SMAC algorithm produced raster-based maps with 30 m pixel resolution 

that represent vegetation as generalized landcover at every time-step of the model (Figure 

3). The classes produced by the algorithm closely resemble the Level II landcover 

categories developed by the United States Geological Survey (Anderson et al., 1976), but 

have been refined to include more detailed differentiation among forest types.  

After reclassification, data overlaying the research watershed were extracted from 

each of the time-series landcover depictions. The landcover map representing current 

watershed conditions included barren ground, grassland, shrubland, spruce-fir forest, 

lodgepole pine forest, and disturbed forest (Figure 2). Over time, succession process 

modeled by SIMPPLE predicted the emergence of quaking aspen, and Douglas fir stands 

would occupy roughly 3% of the watershed. 
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Figure 3. A diagram of the reclassification algorithm used to convert multi-dimensional 
stand attributes produced by the SIMPPLLE vegetation simulator into generalized 
landcover categories. 
 

Each landcover category was attributed with regionally estimated maximum 

canopy height (HT; m), seasonal effective maximum and minimum leaf area index (LAI; 

m2/m2) derived through remote sensing (Hall et al., 2003), relative annual interception 

capacity based on field measurements (Moore and McCaughey, 1997; McCaughey and 

Farnes, 2001; Woods et al., 2004, 2006), base temperature (°C) for the onset of 

productivity, Manning’s roughness coefficient (OVN) for overland flow (Neitsch et al., 

2002), and SCS curve numbers (CN2B) for soil hydrologic group B with level II 

moisture condition (USDA-SCS, 1972), for use in hydrologic modeling (Table 1). 

 

Table 1. Landcover characteristics of the Tenderfoot Creek research watershed.  
 

Landcover Max HT (m) Max LAI Min LAI Int. (%) Base T °C OVN CN2B 
Barren 0 0 0 0 0 0.10 96 
Grassland 0.75 1.50 0.75 3 10 0.12 70 
Shrubland 3.50 2.00 1.00 5 10 0.13 65 
Aspen 15 2.00 1.00 15 10 0.15 64 
Lodgepole 22 2.80 1.80 25 3 0.16 58 
Douglas fir 35 3.10 2.00 25 3 0.15 58 
Spruce-fir 26 3.0 1.95 28 3 0.17 55 
Disturbed 10 2.0 1.00 10 3 0.14 69 

Habitat Type Group 

Reclassified  
SWAT Landcover 

Dominant Species 

Size Class

Canopy Density 

Multi-Dimensional 
SIMPPLLE Attribute Classes
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EVALUATION OF SIMULATED LANDCOVER 

The categorical relative watershed distribution and spatial pattern of simulated 

landcover was quantified for each of the 30 reclassified time-series maps, and compared 

to that of the current mosaic. These evaluations show how the composition and structure 

of the current landscape compares to the modeled range of natural variability. To assess 

landcover composition, relative areas occurring currently were compared to the central 

tendency, and variation of areas occupied by each category over the course of the long-

term simulation. Over the course of the 300-year simulation, aspen and Douglas fir stands 

emerged, but their relative proportions were insignificant and thus not compared. 

Quantification of patterns can be an important component of landscape evaluation 

and management (Farina, 2000) because landscape configuration can generally be related 

to ecological processes (Forman and Gordon, 1986; Zonneveld and Forman, 1990). Many 

metrics have been developed that describe the proportions and configuration of patches, 

classes of patches, and landscape-level system properties (McGarigal and Marks, 1995). 

Because each metric measures a specific characteristic of heterogeneity, simultaneous 

consideration of several indices is often instructive (Gustafson, 1998). Three landscape-

level indices were used to describe proportions, aggregation, and connectivity of the 

current and simulated vegetation mosaic over time. The Largest Patch Index (LPI) 

measures the percentage of total landscape area comprised by the largest patch. 

Landscape Shape Index (LSI) values can be interpreted as a measure of patch 

aggregation; as LSI increases, patches become increasingly disaggregated. Lastly, the 

Contagion Index (CONTAG) assesses overall landscape clumpiness. When Contagion is 

high, large clumps exist (Turner et al., 1989; McGarigal and Marks, 1995). 

 

 

HYDROLOGIC MODEL CALIBRATION 

 

Model Configuration 

The 2,251 ha drainage was configured with 22 subbasins, and 54 unique 

combinations of subbasin, landcover and soil types, referred to as hydrologic response 
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units (HRUs). SWAT was calibrated for streamflow using spatially explicit current 

landcover characteristics, soil characteristics defined by the Montana STATSGO dataset 

(USDA-NRCS, 1994), and four years of daily temperature, precipitation, and streamflow 

data. Climate data were obtained from the Onion Park snow telemetry site (SNOTEL) 

located within the research watershed. Streamflow data from a flume at the watershed 

outlet were used for calibration and subsequent model validation.  

The configured and initially parameterized SWAT model was used to simulate 

hydrologic processes for the period from January 1, 1993 to December 31, 2002. The first 

two years of the simulation were used to ramp up the model and allow it to equilibrate to 

ambient conditions (White and Chaubey, 2005).Years 1997 through 2000 were used for 

model calibration, and model validation was performed by running the calibrated model 

for the two years prior to (1995-96) and two years beyond (2001-02) the calibration 

period (Table. 2). The time period used for model calibration and validation encompassed 

a wide range of environmental conditions, including wet, dry and average years. Despite 

being a fairly short period of time, research into calibration data requirements has shown 

that information richness of this type is more valuable than lengthy records alone (Gupta 

et al., 1998). 

 

Table 2. Hydrologic simulation timeline, indicating the yeas over which model 
equilibration, calibration and validation took place. 
 

Spin-Up Validation Calibration Validation 

1993 1994 1995 1996 1997 1998 1999 2000 2001 2002 

 

In this study, SWAT2005 was used in conjunction with the AVSWAT interface 

(Di Luzio et al., 2004). This GIS-based graphical user interface facilitated watershed 

delineation, subdivision and initial parameterization. AVSWAT also incorporated 

sensitivity analysis, auto-calibration, and uncertainty assessment procedures (van 

Griensven et al., 2006).  

Initial model simulations were conducted using default values for most of the 

model parameters. Potential evapotranspiration (PET) was modeled with the Penman-

Monteith algorithm because it incorporates, in part, canopy height to estimate PET and 
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this made it possible to impart differential values for locally described landcover types. 

Surface runoff was modeled with the standard SCS Curve Number approach, and the 

variable storage channel routing method (Neitch et al., 2002). 

 

Model Performance Criteria 

Model performance was evaluated through visual interpretation of hydrograph 

scatter plots, and commonly used statistical measures of agreement between measured 

and simulated data pairs (ASCE, 1993; Coffey et al., 2004; White and Chaubey, 2005). 

Criteria for calibration were also applied to the validation periods, spanning annual, 

monthly, and daily time-steps. 

A report issued by the American Society of Civil Engineers (ASCE, 1993) 

recommended using the Nash-Sutcliffe model efficiency (NS), and average runoff 

volume deviation (Dv) metrics for gauging hydrologic model performance. These 

statistics, along with a measure of relative difference (RE) were therefore employed to 

quantitatively evaluate model predictions. 

The Nash-Sutcliffe (NS) measure of model efficiency is among the most 

commonly discussed in the hydrologic literature, and to permit comparison with results 

from other studies, evaluation of model performance was primarily based on this metric. 

With NS, the similarity of measured and simulated hydrograph silhouettes is assessed 

quantitatively. Values of the coefficient can range from negative infinity to a high of 1.0, 

which corresponds to a perfect fit between paired time-series data. When NS values are 0 

or less, model predictions are no better than the mean of the observed data. Coefficients 

greater than 0.75 are said to be “good”, and values between 0.75 and 0.36 are considered 

“satisfactory” (Motovilov et al., 1999; Wang and Melesse, 2006). NS is calculated as: 
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values are ŷ and ŷ , respectively 

 

 



 129

Model Calibration 

Global sensitivity analysis procedures (van Griensven et al., 2006) indicated that 

model predictions were strongly influenced by snowmelt, surface runoff lag coefficient, 

groundwater, soil, and SCS curve number parameter values. Given the sensitivity of 

model output to the flux of their values, parameters within the above functional groups 

were selected for calibration. 

The model was first calibrated by minimizing the relative error (RE) between 

measured and simulated annual precipitation, snowmelt, and water yield. Further model 

refinement focused on matching the simulated timing of streamflow to measured monthly 

and daily values with iterative modifications of the selected calibration parameters that 

optimized model evaluation criteria. After appropriate parameter ranges were defined, 

optimum values were estimated with automated methods based on the Shuffled Complex 

Evolution algorithm (Duan et al., 1992, 1994; van Griensven and Bauwens, 2003). With 

only a single residual sum of squares objective function, results derived from this 

algorithm strongly weighted the snowmelt driven hydrograph peaks and failed to match 

low flow periods. Final parameter estimates were therefore reached by manually refining 

the automated calibration.  

 

Model Validation 

Model performance during the validation period (1995, 1996, 2001, and 2002) 

was compared to that of the calibration phase (1997-2000). When calibration and 

validation performance criteria were reasonably similar the model was considered 

validated by the independent time-series dataset.  

 

 

HYDROLOGIC ASSESSMENT OF LANDCOVER CHANGE 

The calibrated SWAT model was used to simulate streamflow in response to each 

of the 30, 10-year time-step landcover maps. For every 10-year representation of 

landcover, a new SWAT model was established, using the same watershed delineation, 

sub-watershed configuration, soil, and climate forcing data. Unique landcover patterns in 

each map required HRUs to be redefined for each 10-year time-step landcover map. 
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Calibrated parameters were then assigned to all model elements and SWAT was run from 

1993-2002. This is a departure from how long-term simulations are generally handled by 

SWAT, but nonetheless, use of the same physical inputs ensures that streamflow 

variability can be unambiguously attributed to changes in landcover. To further isolate 

hydrologic response due to landcover dynamics, output from a single year that 

represented typical climate and hydrologic patterns (1999) was employed in the 

evaluation procedures. 

Daily hydrographs were constructed for each landcover representation to show the 

range of streamflow responses to varying vegetation patterns. With values from each 

representation, a composite hydrograph of mean daily streamflow was plotted against the 

hydrograph of calibrated conditions to illustrate how current streamflow relates to the 

central tendency of a range of possible patterns. Time-series annual water yield, peak 

discharge rate and flow regime variability were also assessed and compared to current 

conditions. 
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RESULTS 

 

LANDCOVER PATTERNS 

Vegetation dynamics modeled with SIMPPLLE indicated that, under an 

unmanaged scenario, the Tenderfoot Creek research watershed would have considerably 

less mature forest cover, more disturbed forest, and a greater area of shrublands than at 

present (Figure 4). In addition, under the current conditions, many of the dominant 

vegetation cover types within the Tenderfoot Creek research watershed are either at the 

limit or outside of the natural range of variability. Total forest cover, which is presently 

85% of the watershed, is nearly twice as high as the long term mean of 46%. Present day 

values for both lodgepole pine (65%) and spruce fir forest (20%) are more than two 

standard deviations from the simulated long term means of 41% and 5%. Shrublands, 

which presently encompass only 1% of the watershed, would average 19% under natural 

conditions, so that current conditions are more than two standard deviations below the 

mean. The only general landcover category that is similar under both the current and 

simulated unmanaged conditions is grassland, which encompasses only about 1% of the 

watershed. 

The largest patch index (LPI) for the current landscape is more than two standard 

deviations above the mean, indicating that landscape patches are much larger than would 

occur across most of the range of conditions in an unmanaged landscape (Table 3 and 

Figure 5). Similarly, the current landscape shape index (LSI) is more than two standard 

deviations below the mean, and the contagion index is nearly two standard deviations 

above the mean, indicating that under an unmanaged scenario landscape vegetation 

patches would be more disaggregated and less clumpy than they are at present.  
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Figure 4. Comparison of relative watershed area occupied by the current and mean 
times-series landcover categories. Error bars represent ± two standard deviations of the 
mean, capturing the full range of data. 
 

Table 3. Summary statistics for largest patch index (LPI), Landscape Shape Index (LSI) 
and Contagion (CONTAG) for the current mosaic and simulated unmanaged conditions 
over 300 years of simulation at decadal time steps.  
 

Landscape Metric Current Mean SD Min Max 

Largest Patch Index (LPI) 62.61 33.77 10.96 21.20 62.61 

Landscape Shape Index (LSI) 7.23 8.88 0.77 6.82 9.69 

Contagion (CONTAG) 62.50 55.17 3.99 49.35 64.33 
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Figure 5. Comparison of the landscape-level Largest Patch Index (LPI) that describes 
the current and simulated landcover configuration in the research watershed. The 
straight line illustrates the metric’s current value while the undulating, line depicts time-
series values. 
 

 

HYDROLOGIC MODEL CALIBRATION AND VALIDATION 

The calibrated SWAT model produced very realistic estimates of annual, 

monthly, and daily hydrologic patterns over individual years, and the overall simulation 

period. During the calibration phase, SWAT predicted 98% of the measured water yield, 

with monthly (NSm) and daily (NSd) model efficiency scores of 0.90 and 0.86, 

respectively. In the subsequent validation, the model simulated monthly and daily 

streamflow with respective overall monthly and daily NS efficiencies of 0.90 and 0.76, 

and produced 96% of the measured water yield (Table 4).  
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Table 4. Performance statistics for calibration and validation simulation time periods.  
 

Simulation Type Year Obs (mm) Sim (mm) RE NSm NSd 
Calibration 1997 564 563 0 0.90 0.88 
 1998 430 375 -13 0.82 0.75 
 1999 336 337 0 0.92 0.92 
 2000 357 374 5 0.92 0.86 
Validation 1995 511 517 1 0.95 0.78 
 1996 495 460 -7 0.83 0.74 
 2001 288 234 -19 0.83 0.70 
 2002 339 354 4 0.97 0.94 
Overall Calibration (1997-2000) 1,688 1,649 -2 0.90 0.86 
Overall Validation (1995-96, 2001-02) 1,632 1,565 -4 0.90 0.76 

 

While the overall hydrograph fit was good for daily estimates, the model tended 

to perform better during the runoff rather than baseflow periods. The rising limb of the 

annual hydrograph peak was generally well matched, although some of the highest runoff 

rates were underestimated. Model performance decreased on the recession limb, and 

baseflow periods of the annual hydrograph, but was still acceptable (Figure 6).  
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Figure 6. Simulated mean daily discharge hydrograph during calibration (1997-2000) and 
validation (1995-96, 2001-02). 
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TIME-SERIES HYDROLOGIC VARIABILITY 

Over the range of simulated landcover scenarios, peak flow rates for the modeled 

water year (1999) varied approximately 12%, from 1.70 to 2.19 m3/s, while variation in 

annual yield varied 4% from 337 to 349 mm. Compared to current conditions, time-series 

models yielded between 1.5% and 4% more water annually, and peak flow rates up to 

22% greater in magnitude (Figure 7).  

0.00

0.25

0.50

0.75

1.00

1.25

1.50

1.75

2.00

2.25

2.50

0 50 100 150 200 250 300 350 400

Simulation Day

M
ea

n 
D

ai
ly

 D
is

ch
ar

ge
 (m

3 /s
)

time-series range current conditions

 
Figure 7. Simulated streamflow range (min and max) associated with the time-series 
landcover, plotted against current streamflow values for representative year 1999. 
 

 

Time-series landcover scenarios were associated with streamflow patterns that 

had, on average, 5% greater discharge rates, and the median flow between the 95-99th 

percentile was about 10% larger (Figure 8).  
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Figure 8. Mean time-series streamflow exceedence probability relative to the current 
streamflow distribution for the representative year, 1999. 
 

 
DISCUSSION 

 

Much of the water that supplies western North America originates as snow that is 

deposited and temporarily stored in forested mountain watersheds. The high value of 

water resources has encouraged nearly a century of research focusing on the relationships 

between conifer forest characteristics and their influence on the magnitude and timing of 

basin-wide runoff. This work has shown that removal of threshold levels of forest cover 

tends to advance the timing of snowmelt runoff, increase the magnitude of peak flows, 

and elevate total annual water yield. Similarly, when undisturbed for long periods of 

time, the process of succession may increase the extent of forest cover, and cause stands 

to become denser. Relative to other types, conifer forests intercept more precipitation and 

transpire more water, and increased relative abundance of this landcover can therefore 

lead to reduced watershed runoff. 
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While the interactions between forest and hydrologic characteristics have been 

well documented, the dynamic range over which this relationship occurs naturally is less 

well known. Fire is the dominant disturbance agent that imparts changes to the mosaic of 

Rocky Mountain forests, but our ability to empirically evaluate the interactions between 

varying vegetation patterns and watershed-level streamflow response is limited by the 

relatively short duration of continuous streamflow measurements in upland watersheds. 

Most gauge records only reflect an 80-year history, but estimated fire cycles range 

between 100 – 400 years. Over the period of measurement relatively few large 

watershed-altering forest fires have been observed. Regardless of whether this is because 

of effective suppression efforts or an intrinsically low probability of occurrence (Strauss, 

1989), there are insufficient data to estimate the natural range of streamflow variability in 

forested mountain watersheds. Using current knowledge of watershed processes and 

available data, a modeling framework has been developed to ascertain a potential range 

of streamflow variability in forested mountain watershed, based on a natural, long-term 

vegetation dynamics scenario.  

 

 

LANDSCAPE VEGETATION DYNAMICS 

Simulations of landcover change using the SIMPPLLE model are based on 

successional pathways and disturbance probabilities related to stand characteristics 

including history, topology, habitat type, composition and structure. The relationships 

embedded in the model have been defined by scientists across the Northern Region of the 

USDA Forest Service, and represent the current state of knowledge (Chew et al. 2004).  

The stochastic structure of the model makes it possible to estimate the range of 

vegetation conditions over time by running multiple simulations of a defined landscape 

over short periods, or individual long-term simulations. To estimate the range of 

landcover patterns, a single simulation was run. It spanned a 300-year time frame, and 

encompassed the probable fire cycle of this region. Using a decadal time step, this 

procedure yielded a set of 30 time-series landcover maps. Given the tendency for 

normally distributed output (Zuuring and Sweet, 2000), 30 time-step landcover maps are 

likely to encompass the range of possible conditions in the research watershed.  
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Recognizing the connection between landscape and watershed processes is 

important in environments where disturbances have the potential to propagate over large 

regions. Without the influence of the surrounding landscape, disturbances such as fires 

that originate outside the boundaries cannot spread into the watershed as they naturally 

would. When forest cover is continuous, a landscape perspective is especially important 

because fire and insects damage can readily spread across connected patches. To 

represent natural landscape function as accurately as possible, vegetation dynamics were 

simulated at the landscape scale, and then analyzed at the watershed level.  

Simulated patterns of watershed level landcover composition and configuration, 

measured by relative abundance and landscape-level spatial pattern metrics, appear to be 

cyclical and punctuated by rare but large fluctuations. Assessment of fire history in the 

research watershed estimated roughly 4 distinct episodes over a period of roughly 400 

years that disturbed more than 25% of the area (Barrett, 1993). Analysis of the predicted 

landcover shows a pattern of disturbance that is quite similar, where large changes in 

forest extent and configuration are evident approximately 3 times over the 300 year 

simulation period. It therefore appears that these landcover simulations portray a level of 

landcover stochasticity that is similar to what has been observed in the fire record, and 

resulting maps span the potential range of conditions likely to occur in the research 

watershed over time. The distribution of values from these maps, thus, provides the 

context in which we assess current watershed landcover patterns and associated 

hydrologic characteristics.  

The existing landcover mosaic in the research watershed has been influenced by 

nearly 120 years of relatively disturbance-free succession. Due to biophysical variables 

and a fairly long time since disturbance almost 85% of this watershed is covered by 

coniferous forest, composed largely of lodgepole pine (Pinus contorta), subalpine fir 

(Abies lasiocarpa ) and Engelman spruce (Picea engelmannii). When compared to future 

simulated distributions of landcover composition and configuration, it is clear that current 

patterns are poised to change dramatically.  

In terms of composition, when the relative abundance of landcover categories was 

averaged over the simulation period, mature forest was reduced by 45%, and generally 

replaced by shrubland and disturbed forest cover types. The current proportions of forest 
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cover types exceed the distribution of their simulated abundance. Conversely, the 

abundance of shrubland, and disturbed forest is currently lower than that predicted over 

time. 

Assessment of landcover configuration also shows that current patterns are at the 

extreme ends of their simulated distributions. Compared to future patterns, the current 

landcover pattern is characterized by larger, more aggregated, and clumpy patches. Of all 

the metrics evaluated, LPI may be the most informative. For maps classified into 

categories of suitable and unsuitable patches (i.e. forest and non-forest) the primary 

determinant of spatial pattern is the proportion of the class of interest (Gustafson, 1998). 

The compositional component determines the probable range of many patch 

configuration characteristics. If the proportion is low, the patches are generally small and 

isolated, and do not have enough area to form convoluted shapes.  

According to percolation theory (Stauffer, 1985), if a suitable habitat patch (i.e. 

forest) occupies 59% of the landscape, then a process such as fire may easily spread 

across the entire landscape (Turner et al., 1989). The largest patch in the existing 

landscape occupies 62% of the watershed, and furthermore, 85% of current landcover is 

composed of mature forest. This combination of composition and configuration creates a 

situation that is highly conducive for propagation of fire across the watershed. If the 

simulated patterns are an indication of this watershed’s landcover trajectory, it is 

plausible that a large stand-replacing disturbance is likely to occur in the future. Major 

changes in landcover composition and structure have the potential to alter the watershed 

hydrologic response  

 

 

WATERSHED RESPONSE TO VEGETATION CHANGE 

Simulated streamflow was calibrated to the current landcover conditions, using 

regionally derived estimates of important hydrologic parameters. The resulting model 

produces outcomes that are well within the range of what other authors have reported. A 

review of contemporary literature by White and Chaubey (2005) lists NS values ranging 

between 0.58 and 0.98 for monthly yield estimates. Eckhardt and Arnold (2001) used 

automated methods and achieved daily values of 0.70 for a small forested watershed in 
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Germany. In our calibration, we obtained monthly and daily NS values of 0.90 and 0.86, 

respectively. Validation of the model, using independent data suggested that the 

calibration was robust. Despite good overall performance statistics, the model seemed to 

most accurately represent the snowmelt runoff portion of the hydrograph, while matching 

low flows was problematic.  

A global sensitivity analysis of the uncalibrated model identified parameters that 

govern snow processes, surface runoff, groundwater, and soil properties as highly 

influential components of the streamflow simulation. Results of a post-calibration 

parameter set decomposition clearly show that in this forested mountain watershed, 

parameters that estimate snow fall accumulation, and melt rates have at least 20% more 

influence on model performance than other evaluated parameter sets (Chapter 2, Table 

13). This may partially explain why model predictions were generally better for runoff 

rather than baseflow periods. Without the recent incorporation of enhanced snow process 

routines, streamflow calibration in a snow-dominated watershed, such as ours, may have 

been less successful (Fontaine et al., 2002). 

Forests are dynamic, and their structure and configuration are a function of 

climate, topography, and disturbance processes. When long-term watershed simulations 

are intended to evaluate the hydrologic response of watersheds to ecological trajectories 

of forested ecosystems, patterns of forest growth, disturbance, and species composition 

must be taken into consideration. Rather than altering landuse characteristics of 

hydrologic response units (HRUs) defined by the initial model set up, the method used in 

this study assumes that HRU management (i.e. natural growth) does not change, but 

instead the processes that govern landcover patterns are simulated separately, and new 

landcover patterns are supplied at regular intervals. In this way, the only model element 

that changes is the extent, composition, and spatial arrangement of landcover. With each 

shift in pattern, HRUs are reconfigured. Although the arrangement of HRUs within sub-

watersheds is not considered, basin-wide hydrologic responses to the changing diversity 

of landcover patterns can be accounted for with this method. With appropriate 

subdivision, the spatial distribution of watershed processes may also be assessed. To 

track the spatial distribution of processes affecting streamflow, considering the 

approximate nature of expected changes in landcover patterns can guide the degree to 
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which a watershed should be subdivided. In the Rocky Mountains for example, roughly 

20% cover must be removed in order to elicit detectable changes in streamflow from 

watersheds with coniferous forest (Stednick, 1996). To account for such changes spatially 

with SWAT, sub-watersheds should be no coarser than 5 times the dimension of the 

smallest change that is expected to have an impact.  

Running the calibrated hydrologic model separately with each of the 30 landcover 

representations produced an envelope of streamflow responses that was used to estimate 

the range of streamflow variability given landcover change over the course of natural 

disturbance cycles in this watershed. Streamflow predictions related to simulations of 

landcover change appear to be similar to those reported by authors conducting catchment 

studies in other parts of the world, and especially in the Rocky Mountain region.  

Matheussen et al. (2000) simulated the change between current and historic 

landcover and hydrologic response and found that forest reduction increased water yield 

1-7% in the Columbia River Basin. Recognizing vast differences in scale, results from 

our simulations are comparable, with annual water yield increases between 1.5 - 4.0%. 

Experimental manipulation in watersheds located in Colorado and Wyoming showed an 

average increase of 23% in peak flow rates as a result of removing 50% of the forest 

(Troendle and King, 1985), and an 8% increase due to 24% forest reduction (Troendle et 

al., 2001), respectively. On average, simulated landcover in our watershed was about 

45% less forest and peak flow rates varied 12%, and increased up to 22% over calibrated 

conditions. Additionally, analysis of daily flows from 28 paired watershed experiments 

showed that the median increase in the 95-99th percentiles of daily flows was about 10-

15% (Austin, 1999). A comparison of current with future flow duration shows a very 

similar trend, where the median difference between the same percentile range is roughly 

10%.  

Given that simulations are reasonable, it appears that current landcover and 

streamflow patterns are at the extreme ends of their probable distributions, and a long-

term perspective that encompasses natural cycles is necessary to capture the range of 

possible conditions likely to occur in the watershed. Currently, forest covers more area 

than is forecast over time and it is anticipated that its extent will inevitably be reduced by 

cyclical disturbances. Hydrologic patterns observed currently resemble annual yield and 
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peak flow rate values at low end of the estimated range of variability. Temporal 

landcover change associated with natural disturbances such as fire, insect and disease 

outbreaks may cause annual water yield and peak discharge rates to fluctuate up to 4% 

and 12%, respectively. Compared to current conditions, forest cover may be reduced by 

up to 45%, and this could increase annual water yield between 1.5 and 4% annually, 

while also increasing peak flow rate by up to 22%. 

 

 

CONCLUSIONS 

Long-term simulations of landcover change indicate that natural disturbances 

create landcover patches that are smaller, less aggregated, and less clumpy than current 

patterns. Over time, forest cover is expected to occupy less area than it does currently. 

These simulations also illustrate that patterns of landcover compositions and 

configuration are cyclical and periodic disturbances, while they are rare, create major 

changes in landscape mosaic. With a low probability of occurrence, a temporal 

perspective that encompasses natural disturbance cycles is necessary to capture the range 

of possible conditions. 

The hydrologic model used to simulate streamflow response to landcover change 

was well calibrated for conditions in this Rocky Mountain watershed. Its performance 

was most strongly influenced by parameters that govern snow accumulation and melt, 

relative to other important parameters that describe surface runoff, groundwater or soil 

characteristics and SCS curve numbers. The incorporation of improved snow process 

algorithms in the recent versions of the model is therefore likely to encourage its use in 

other snow-dominated watersheds.  

To study long-term watershed dynamics in a forested ecosystem, a landscape 

perspective is necessary to estimate the full range of processes that are likely to occur 

over time. Without a connection to the surrounding landscape, disturbances that originate 

outside a watershed cannot spread into it, given the probability of natural percolation. 

Failing to account for process propagation across landscapes can lead to an 

underestimation of watershed disturbances over time. A mechanism that captures not 

only the different stages of plant development, but also the spatial dynamics of species 
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composition and arrangement is also needed. SWAT uses an internal simulator to grow 

vegetation in defined HRUs. The standard SWAT method accounts for changes in 

management associated with existing HRUs, but does not consider changing patterns of 

landcover over time. Procedures in this study used an independent vegetation simulator, 

SIMPPPLE to supply a time-series of landcover representations based on a natural 

succession and disturbance processes scenario. Each time a new landcover map was 

introduced, a separate SWAT model was established, using the calibrated parameters and 

all the same configuration, soil, and climate data. The only difference between successive 

SWAT models was the updated landcover and associated HRU definitions. Changes in 

watershed-level hydrologic response could therefore be unambiguously attributed to 

variation in landcover patterns. 

When compared to other published studies of streamflow response to landcover 

change, this integrated modeling approach produced reasonable results. Results suggest 

that when landcover patterns are regulated by natural processes over time, and forest 

cover is reduced, annual water yield may increase by up to 4%, and peak flow rates may 

be up to 22% greater when compared to current watershed conditions. Using the 

approach described here, similar assessments may be conducted in other regions. 
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CHAPTER 4 
Evaluating Long-Term Forest Management  

through Integrated Vegetation and Hydrologic Modeling 
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ABSTRACT 
 

Changes in the frequency and magnitude of natural and human-induced 
disturbance processes can significantly alter water yield from forested watersheds. 
Analytical procedures that integrate vegetation simulation, landscape ecology, and 
hydrologic modeling to quantify changes in basin-scale landcover and water yield 
dynamics, which can be associated with eco-hydrologic processes, are presented in this 
study. Using forest fire management alternatives as an example, the proposed method has 
shown potential as an adaptive management tool, enabling managers to evaluate impacts 
of various forest management proposals on both terrestrial and aquatic resources during 
the planning process. The SIMPPLLE (Simulating Patterns and Processes at Landscape 
Scales) model was used to simulate landcover change 300 years forward from current 
conditions for 1) fire suppression and 2) natural succession management scenarios. 
Spatial pattern analysis was conducted on grid-based maps which were produced for each 
scenario at decadal intervals, and used as input to the SWAT (Soil and Water Assessment 
Tool) hydrologic simulation model. The SWAT model was calibrated using current 
landcover data and five years of daily streamflow records, and a Nash-Sutcliffe model 
efficiency of 0.86 was achieved. The calibrated SWAT model was then used to simulate 
the hydrologic output for each 10-year time step over the 300-year simulation period for 
both management scenarios. Results suggest significant differences in landcover 
composition, spatial configuration, and ultimately water yield when forest fires were 
suppressed. Compared to the unmanaged scenario, reduced levels of disturbance created 
larger stand sizes, greater levels of aggregation, and increased the likelihood of process 
propagation across the landscape when fire suppression was simulated. From a 
hydrologic perspective, fire suppression reduced annual water yield, streamflow 
variability, and the magnitude of annual peak flows. 
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INTRODUCTION 
 

Vegetation characteristics are a primary control on the amount and timing of 

runoff in forested mountain watersheds. Forest vegetation moderates the precipitation-

infiltration-runoff continuum by influencing air turbulence patterns, interception, and 

evapotranspiration, while also providing insulation from incident solar radiation and wind 

scour (Kimmins, 1997). Changes in the extent, composition, and configuration of forest 

cover over time due to succession, natural disturbances caused by fire, insects, and 

disease or forest management activities can result in measurable differences in runoff and 

water yield (Bosch and Hewlett, 1982; Stednick, 1996; Troendle, 1983). Removal of 

forest cover generally increases streamflow due to the effect of reduced canopy 

interception and evapotranspiration on the water budget. In Rocky Mountain watersheds, 

water yield increases and earlier, exaggerated peak discharge are attributed to increased 

snow accumulation in clearings or stands with low density, as compared to undisturbed 

areas, and more rapid snowmelt because of enhanced energy transfer in the openings 

(Golding, and Swanson, 1978; Troendle, 1983; Trondle and King, 1985, 1987). 

Conversely, when stands become denser and relative forest area increases in the absence 

of cyclical disturbances, watershed runoff may be reduced (Farnes et al., 2000). 

Forest fire is the dominant disturbance agent in the Rocky Mountains of North 

America (Arno and Fiedler, 2005), but beginning in the early 1930s, fire suppression 

programs in the United States and Canada have reduced its occurrence in this region. The 

exclusion of fire has increased the extent, continuity, and density of forested stands, while 

concurrently reducing the extent and vigor of fire dependent seral species, and 

encouraging the invasion of shrubs and trees into grasslands (Keane et al., 2002). 

Changes in the frequency and magnitude of disturbance processes due to management 

leads to changes in forest structure, and may result in long term alterations in water yield 

from forested watersheds.  

Adaptive management is an iterative learning process in which feedback from 

attempted management actions yields knowledge that guides subsequent actions to 

produce desired results (McLain and Lee, 1996). The effects of forest management can 

be long lasting, and to avoid the loss or degradation of valuable resources, current and 

planned actions should be based on the best available knowledge. The goal in this chapter 
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is to present methods for evaluating the long-term terrestrial and eco-hydrologic 

consequences of forest management alternatives through an integration of vegetation and 

hydrologic modeling and analysis procedures. 

SIMPPPLLE (Simulating Patterns and Processes at Landscape Scales) is a 

spatially explicit, continuous simulation system that models the long-term impact of 

vegetation management over large areas (Chew et al., 2004). SIMPPLLE integrates data 

from a diversity of sources. Vegetation is defined by stand-level inventory data whenever 

possible, but algorithms have been developed to extract necessary data from classified 

satellite imagery when full coverage is otherwise not available. Management logic, 

environmental conditions, and physiognomic data (Pfister et al., 1977) in combination 

with dominant stand species, size class, and canopy density are used to advance 

vegetation through regionally calibrated pathways and conditional probabilities to 

simulate succession, and natural and planned disturbances over annual or decadal time-

steps (Chew et al., 2002). In the Northern Region of the USDA Forest Service (Region 

1), simulations derived from SIMMPLE are used to assess the range of natural variability 

and forest management alternatives (Barrett, 2001).  

The Soil and Water Assessment Tool (SWAT) is a physically based, distributed, 

continuous, river basin model developed to predict the impact of land management 

practices on hydrologic processes in potentially large, complex watersheds with varying 

soils, landcover and management practices on a daily time step (Arnold et al., 1998). As a 

minimum requirement for model configuration, SWAT, via the associated GIS interface 

(AVSWAT; Di Luzio et al., 2004), imports topographic, soil, landcover and climate data 

that are available from government agencies worldwide. Hydrologic processes are 

represented by interception, evapotranspiration, surface runoff, soil percolation, lateral 

and groundwater flow, and river routing processes. For simulation, a watershed is 

partitioned into subbasins, river reaches and Hydrologic Response Units (HRUs). Sub-

watershed delineation provides the spatial context, while further sub-division into HRUs 

is based on threshold proportions of mapped landcover and soil types in sub-watersheds, 

without regard to their topologic arrangement (Neitsch et al., 2002). 

By combining these powerful tools managers can run simulations of vegetation 

change and use them to assess the impact of those changes on hydrologic processes. In 
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this way, various scenarios can be evaluated before any management takes place to 

ensure that planned actions produce desired outcomes in the future.  

Using forest fire management as an example, this study illustrates how 

SIMPPLLE can produce future landcover scenarios for various management plans. The 

simulated outcomes can help determine if vegetation management goals are met over 

time. Following that, the time-series landcover data produced by SIMPPLLE can be 

incorporated into SWAT to evaluate the long-term hydrologic response of the stated 

forest management plans.  
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METHODS 
 

To evaluate the cascading impact of fire suppression on vegetation and 

corresponding hydrologic dynamics, two alternative planning strategies, consisting of 30 

landcover grids each, were generated to represent 1) unmanaged and 2) fire-suppressed 

landscape management scenarios, at a decadal time-step for a total of 300 years (i.e. 

current, 10, 20, 30…). Patterns of landcover proportions, configuration, and associated 

hydrologic response for the two management scenarios were compared within the 

research watershed.  

 

STUDY AREA DESCRIPTION 

The Tenderfoot Creek research watershed is located on the west slope of the Little 

Belt Mountains in central Montana, USA (Figure 1). It is a broad basin that is oriented to 

the northwest, and bisected by a steep canyon along the main channel. An upper reach 

and two major tributaries on each north and south aspects make up the 2,251 ha area that 

contributes flow to the main outlet. For representation in SWAT, the watershed was 

divided into 22 subbasins, and 54 hydrologic response units (HRUs). 

Geologically, the watershed’s core is basement material set within a mantle of 

Precambrian age sedimentary rock known as the Belt Series formation (Alt and 

Hyndman, 1986). The most extensive soil groups are loamy skeletal, mixed Typic 

Cryochrepts and clayey, mixed Aquic Cryoboralfs (Farnes and McCaughey, 1995). 

Forest fire is the main disturbance agent that shapes the vegetation mosaic of this 

region (Arno and Fiedler 2005). Several large fires between 800 and 1,500 ha in size 

have occurred in the watershed over the past four centuries but nearly 120 years have 

elapsed since the last major outbreak (Barrett, 1993). In the long absence of stand 

replacing disturbances, forest stands of varying developmental stages cover most of the 

watershed (85%). Approximately 65% of the forest is composed of lodgepole pine (Pinus 

contorta), which generally represent the most recently initiated stands. Over time, shade 

tolerant subalpine fir (Abies lasiocarpa ) and Englemann spruce (Picea engelmannii) 

have emerged underneath decadent pine and now make up about 20% of the landcover. 

Disturbed or low density stands constitute another 11% of the area. Shrubby meadows 
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(1%) and small riparian areas surround many of the creek bottoms, while drier grasses 

(1%) occur on higher ground. Talus (2%) frames the main canyon and exposed ridges. 

Climate patterns are continental, and close to 70% of the annual precipitation, 

which averages about 800mm, is deposited in the form of snow between November and 

May. The annual hydrograph of this watershed is strongly influenced by snowmelt 

runoff. Peak discharge occurs in May or early June, while the low flow period begins in 

August and persists through April. 

 

 
 
Figure 1. Delineation, configuration, and landcover characteristics of the Tenderfoot 
Creek research watershed, located in the Little Belt Mountains of central Montana, USA. 
 

 

 

LANDCOVER SIMULATION 

The regionally calibrated SIMPPLLE model (Chew et al., 2004) was used to 

project current vegetation conditions forward for 300 years of landcover change across 
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the entire Little Belt Mountain range. Simulated results spanning the research watershed 

were extracted from the larger spatial extent to account for disturbance process 

propagation from the surrounding landscape. For every stand, SIMPPLLE characterizes 

species composition, size class, and canopy coverage, and uses logic to stochastically 

simulate succession under both natural and planned disturbances. At every time-step, 

multi-dimensional SIMPPLLE output was reclassified into generalized landcover 

categories by a conversion algorithm (Figure 2, Appendix A). The resulting classes 

closely resemble the Level II landcover categories developed by the United States 

Geological Survey (Anderson et al., 1976), but have been refined to include more 

detailed differentiation among forest types. Including standard parameterization, each 

predicted landcover type was attributed with regional estimates of canopy height, 

minimum and maximum annual leaf area index (LAI), overland roughness (OVN), 

canopy interception capacity (CANMX), and SCS curve numbers (USDA-SCS, 1972) for 

use in hydrologic modeling with SWAT (Appendix A). 

 

 
 
Figure 2. A diagram of the reclassification algorithm used to convert multi-dimensional 
stand attributes produced by the SIMPPLLE vegetation simulator into generalized 
landcover categories. 
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COMPARISON OF SIMULATED LANDCOVER SCENARIOS 

Multiple response permutation procedures (MRPP) (Mielke and Berry, 2001), and 

landscape metrics (McGarigal and Marks, 1995) were used to compare the distribution, 

and spatial pattern of simulated landcover trajectories for the two management scenarios. 

The MRPP provided nonparametric tests for assessing differences between landcover 

distributions of scenarios, while variation between landscape-level metrics was quantified 

with paired-sample t-tests. 

 

Landcover Distribution 

The categorical relative watershed area of simulated fire-suppressed and 

unmanaged landcover was quantified for each of the 30 landcover maps of the two 

scenarios. Landcover distributions of the 30 time-series maps, produced for each 

scenario, were compared using 1) MRPP and, 2) comparison of the average watershed 

area occupied by each type of cover. 

Multi-response permutation procedures (MRPP) provide a nonparametric 

multivariate technique for testing the hypothesis of no difference between two or more 

groups of entities. MRPP does not require assumptions of normality or homogeneity of 

variances, making them well suited for analysis of natural resource data (Biondini et al., 

1985; Zimmerman et al., 1985). With MRPP, analyses are based on a distance matrix, 

where treatment alternatives define the groups. Components of this technique yield a test 

statistic, p-value, and associated measure of “effect” size.  

The purpose of MRPP is to detect concentration within a priori groups (like a t- or 

F-test), and the MRPP metric is calculated as: 
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Where:  
δ = linear combination of average within-group distance measures for g groups 
Ci = ni / N 
u = distance measure (value of 2 yields squared Euclidian distance) 
r = number of measurements taken on the Kth object (2 in this case) 
K and L are objects with measurements XK,1, …, XK,r 
ni = number of objects in each group 
N = total number of objects over all groups 
g = number of groups 
 

After δ  is determined, the probability of obtaining a δ  value of this magnitude or 

smaller is approximated (i.e. the expected delta) from a continuous Pearson Type III 

distribution. This permutation distribution accommodates datasets that are asymmetrical, 

and incorporates the mean, standard deviation, and skewness of δ  under the null 

hypothesis (McCuen et al., 2002).  

The test statistic, T, describes the separation between groups. When calculated, T 

is the difference between the observed and expected deltas divided by the standard 

deviation of delta:  
( )

δ

δδ
s

m
T

−
=  (Eqn. 2) 

where δm  and δs  represent the mean and standard deviation of δ  under the null 

hypothesis. In this form, δm  is taken as the expected delta. Increasingly negative values 

of T indicate stronger separation between groups. 

Also based on the Pearson Type III distribution, the p-value associated with T is 

useful for evaluating how likely it is that an observed difference is due to random chance, 

however it is strongly influenced by sample size. To provide a measure of treatment 

effect size that is independent of the sample size, the chance-corrected within-group 

agreement statistic, A, is calculated as: 

δ

δ
m

A −=1  (Eqn. 3) 
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This effect size statistic describes within-group homogeneity. When all items are 

identical within groups, then A = 1, the highest possible value. If heterogeneity within 

groups equals expectation by chance, then A = 0. With less agreement within groups than 

expected, A < 0. Put simply, differences between groups become more evident as A gets 

larger. In community ecology, values for ‘A’ are commonly below 0.1, even when p-

values are significant. Values of A > 0.3 are fairly high, and indicative of detectable 

differences between groups (McCuen et al., 2002). 

In this application of MRPP, groups were defined by the fire suppression and 

unmanaged treatment alternatives, and separation was measured with Euclidian distance. 

Ultimately, watershed proportions of simulated landcover, spanning 7 possible categories 

(columns) over 30 time-steps (rows) were compared between the two treatment groups. 

Principle components analysis (PCA) determined how individual landcover types 

contributed to treatment differences. Computations necessary to perform MRPP and 

associated analyses were coded and executed as a Visual Basic for Applications macro in 

spreadsheet format (King, 2000; Bullen et al., 2003). 

 

Landcover Patterns 

Quantification of patterns can be an important component of landscape evaluation 

and management (Farina, 2000) because landscape configuration can generally be related 

to ecological processes (Forman and Gordon, 1986; Zonneveld and Forman, 1990). Many 

metrics have been developed that describe the proportions and configuration of patches, 

classes of patches, and landscape-level system properties (McGarigal and Marks, 1995). 

Because each metric measures a specific characteristic of heterogeneity, simultaneous 

consideration of several indices is often instructive (Gustafson, 1998). Three landscape-

level indices were used to describe proportions, aggregation, and connectivity of the 

current and simulated vegetation mosaic over time. The Largest Patch Index (LPI) 

measures the percentage of total landscape area comprised by the largest patch. 

Landscape Shape Index (LSI) values can be interpreted as a measure of patch 

aggregation; as LSI increases, patches become increasingly disaggregated. Lastly, the 

Contagion Index (CONTAG) assesses overall landscape clumpiness. When Contagion is 

high, large clumps exist (Turner et al., 1989; McGarigal and Marks, 1995). 
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HYDROLOGIC CALIBRATION AND VALIDATION 

The Soil and Water Assessment Tool was run from October 1, 1993 to December 

31, 2002 using daily precipitation and temperature obtained from a remote snow 

telemetry station (SNOTEL) located within the watershed. Streamflow data from the 

gauge that marked the watershed outlet was used to calibrate the model for streamflow. 

Topography was represented by a 30-m resolution digital elevation model extracted from 

the National Elevation Dataset (Gesch et al., 2002). Soil characteristics were defined by 

the State Soil Geographic database for Montana (USDA-NRCS, 1994). Reclassified 

output from the vegetation simulator was used to depict current and projected landcover 

within the watershed. The 2,251-ha drainage was configured with 22 subbasins, and 54 

hydrologic response units (HRUs). The first two simulation years were used to 

equilibrate the model, while the years 1997-2000 were used for calibration.  

A global sensitivity analysis indicated that the uncalibrated model was most 

strongly influenced by variation in the snow process, surface runoff lag factor, 

groundwater, soil and curve number parameters. The model was therefore calibrated with 

a blend of automated procedures based on the Shuffled Complex Evolution (SCE) 

algorithm (Duan et al., 1992; van Griensven et al., 2006), and manual refinement that 

focused on adjustments of these influential parameter sets (Chapter 2). 

The calibrated model was validated with two years of data prior and two years 

beyond the calibration period (1995-96, 2001-02). Results were evaluated graphically and 

with commonly used goodness-of-fit and performance statistics (ASCE, 1993). For ready 

comparison to other studies, model performance is described by the Nash-Sutcliffe 

(1970) coefficient (NS). This performance metric quantifies the similarity between 

measured and simulated hydrographs, and its values range from negative infinity to a 

high of 1.0. Coefficients ≤ 0 indicate that simulated output is no better than an average of 

the observed dataset. Value of ≥ 0.75, however indicate good model performance.  

In this study, SWAT2005 was used in conjunction with the AVSWAT interface 

(Di Luzio et al. 2004). This GIS-based graphical user interface facilitated watershed 

delineation, subdivision and initial parameterization. AVSWAT also incorporated 
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sensitivity analysis, auto-calibration, and uncertainty assessment procedures (van 

Griensven et al. 2006).  

Initial model simulations were conducted using default values for most of the 

model parameters. Potential evapotranspiration (PET) was modeled with the Penman-

Monteith algorithm because it uses, in part, canopy height to estimate PET and this made 

it possible to impart differential values for locally described landcover types. Surface 

runoff was modeled with the standard SCS Curve Number approach, and the variable 

storage channel routing method.  

 

 

HYDROLOGIC COMPARISON OF LANDCOVER SCENARIOS 

The calibrated SWAT model was used to simulate streamflow for each of the 30, 

10-year time-step landcover maps of both scenarios. For every 10-year representation of 

landcover, a new SWAT model was established, using the same watershed delineation, 

sub-watershed configuration, soil, and climate forcing data. Unique landcover patterns in 

each map required HRUs to be redefined for each map. Calibrated parameters were then 

assigned to all model elements and SWAT was run from 1993-2002. Use of the same 

physical inputs ensures that streamflow variability can be unambiguously attributed to 

changes in landcover. After conducting climate and streamflow analyses, output from a 

representative year (1999) were used to evaluate differences in timing and magnitude of 

peak discharge and annual water yield due to landcover composition and distribution.  

Hydrographs representing mean daily streamflow of 1999 were constructed for all 

landcover representations to examine the range of responses to varying vegetation 

patterns associated with each scenario. Composite hydrographs, computed from each set 

of 30 10-year time-steps and represented by the mean and standard error of the estimate 

of streamflow, were compared. 

 

 

STATISTICAL SIMPPLLE-SWAT LINKAGE 

To reduce the landcover and annual water yield modeling process, a statistical 

relationship between the dominant landcover components and annual water yield was 
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developed through multiple regression procedures. An established relationship between 

landcover distribution and annual water yield can be useful. SIMPPLLE estimates 

vegetation change stochastically, and multiple simulations can be produced with relative 

efficiency. Output created by SIMPPLLE can be converted into a time-series dataset of 

mapped landcover. Patterns of landcover can be evaluated based on project specific 

criteria. With a relationship developed from calibrated SWAT simulations, annual water 

yield variability can then be inferred, based on estimated landcover patterns. Through 

automation, this process can be readily repeated, and confidence intervals based on the 

result of multiple simulations could define the bounds for a large number of evaluation 

criteria. Multiple, linked simulations thus provide a means for estimating uncertainty. 
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RESULTS 

LANDCOVER DISTRIBUTION 

An MRPP test for differences between the 30 representations of 7 landcover 

classes indicated that the two management scenarios (suppression and unmanaged) 

produced significantly different landcover distributions (p < 0.001, effect size A = 0.55). 

Separation between grouped landcover proportions was distinct, as eigenvalues revealed 

that the first two principal components accounted for 96% of the variability between the 

two scenarios. An ordination plot of principal components 1 and 2 illustrates this 

separation clearly (Figure 3). Positive loadings on principal component 1were driven by 

differences in lodgepole pine cover types, and captured 91% of the total variability 

between groups. Principal component 2 was driven primarily by negative loadings 

associated with shrubland and quaking aspen cover types. Together, proportions of the 

two cover types only accounted for 1.1% of the variation between grouped landcover 

scenarios. 
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Figure 3. Plot of the first two principal components responsible for the separation 
between 30 fire-suppressed and unmanaged landcover simulations scenarios. 
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Averaged over the simulation period, the unmanaged landscape was occupied by 

approximately 50% less total mature forest, 90% more disturbed forest, and 95% more 

shrubland than the fire-suppressed scenario (Figure 4).  
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Figure 4. Mean decadal relative aerial distribution of seven landcover types in the 
watershed, for fire-suppressed and unmanaged simulation scenarios. Scenario means are 
based on 30 landcover maps each, and error bars represent the standard error of 
estimate. 

 

 

LANDCOVER CONFIGURATION 

Evaluation of spatial patterns, represented by patch size (Largest Patch Index, p < 

0.001), aggregation (Landscape Shape Index, p < 0.001), and clumpiness (Contagion 

Index, p < 0.001) indicated highly significant differences between unmanaged and fire-

suppressed landscape scenarios (Table 1).  
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Table 1. Comparison of landscape metrics and paired-sample t-test scores for 
unmanaged and fire-suppressed landcover (n = 30, df = 29, critical t = 2.05). 
 

Landscape Metric Suppression Mean and SD. Unmanaged Mean and SD t statistic 
Largest Patch Index (LPI) 58.9  (9.5) 33.8  (11.0) 9.72 
Landscape Shape Index (LSI) 6.2  (0.4) 8.9  (0.8) -14.23 
Contagion Index (CONTAG) 68.9  (3.1) 55.2  (4.0) 12.25 

 

Compared to patterns occurring when vegetation was left to develop naturally, the 

configuration of fire suppressed landcover was more stable over time, with less cyclical 

variation in measures of patch size (LPI), aggregation (LSI), and overall clumpiness 

(CONTAG). Metrics for the unmanaged scenario show three episodes of disturbance, 

while only one major shift in landcover configuration is evident in the fire suppressed 

landcover over time. Patches of the unmanaged landcover were smaller (Figure 5), less 

aggregated (Figure 6), and not as clumpy (Figure 7) as those of the fire-suppressed 

scenario.  
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Figure 5. The Largest Patch Index (LPI) is a measure of landscape proportion occupied 
by the largest landcover patch (a), where increasing values indicate larger patch sizes. 
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Figure 6. Landscape Shape Index (LSI) quantifies landcover aggregation (b), where 
larger values indicate greater levels of disaggregation. 
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Figure 7. Contagion Index evaluates the potential for process propagation across 
landscapes (c), where higher values suggest increasing contagious potential. 
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HYDROLOGIC CALIBRATION AND VALIDATION 

The calibrated SWAT model produced realistic estimates of annual, monthly, and 

daily hydrologic patterns over individual years, and the total simulation period. During 

calibration, SWAT predicted 98% of the measured water yield, with an overall daily 

Nash-Sutcliffe (1970) model efficiency score (NS) of 0.86. In validation, the model 

simulated streamflow with a daily NS efficiency of 0.76, and produced 96% of the 

measured water yield.  
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Figure 8. Mean daily discharge during calibration and validation time periods. 
 

 

The mean daily discharge patterns were well matched for both the calibration and 

validation period although some of the highest runoff rates were underestimated. 

Specifically, model performance was lower during the recession and baseflow periods of 

the annual hydrograph (Figure 8).  
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HYDROLOGIC COMPARISONS 

When averaged over the 30 landcover representations the fire suppressed scenario 

yielded a discharge of 338 mm annually while the unmanaged landscape produced a total 

annual discharge of 342 mm. While the average difference is only 1%, a paired sample t-

test indicated that individual annual differences between the two scenarios were highly 

significant (t = -6.08, p < 0.001), where the unmanaged scenario yielded up to 3% (11 

mm) more water annually. 

Differences in the timing, magnitude and variability of daily discharge were 

observed between the two scenarios. Runoff generally rose approximately 15% higher 

(Figure 9) and was four times more variable in the unmanaged landscape over the 30 

landcover scenarios than fire suppressed ones (Figure 10). 
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Figure 9. Comparison of 1999 mean daily hydrographs for 30 simulations of fire 
suppressed and unmanaged landcover scenarios. 
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Figure 10. Comparison of 1999 mean daily streamflow variability for 30 simulations of 
fire suppressed and unmanaged landcover, measured by the standard error of estimate.  

 

 

LANDCOVER - WATER YIELD REGRESSION MODEL 

Data from the unmanaged landscape scenario were used to develop a prediction 

equation where annual water yield predicted by SWAT for the representative year (1999) 

is a function of relative watershed area of dominant landcover components in each of the 

30 grids produced by SIMPPLLE. Multiple regression (n =30) revealed a highly 

significant relationship (p < 0.0001) between water yield and three landcover 

components. The regression model, based on proportions of spruce-fir (SFFR), lodgepole 

pine (LPFR), and disturbed forest (TRNS) for every landcover time-step captured 96% of 

the variation in predicted water yield SWAT. Variance inflation factors for SFFR, LPFR, 

and TRNS were all less than 10, indicating no evidence of collinearity (Table 2). 
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Table 2. Regression model (REGMOD) summary, for annual water yield predictions of 
the year 1999 based on landcover proportions, where SFFR, LPFR, and TRNS represent 
relative watershed areas occupied by spruce-fir, lodgepole pine, and disturbed forest.  
 

annual water yield (mm) = 306.939 + 0.222 SFFR + 0.354 LPFR + 0.615 TRNS 
 
Adjusted Pearson R2    0.961 
Standard Error of the Estimate   0.620 
Variance Inflation Factor   SFFR =  1.382 
     LPFR =  2.515 
     TRNS = 2.623 

 

Over the 30 representations of landcover the difference between the total water 

yield predicted by SWAT and the regression model (REGMOD) was less than 1 mm. The 

temporal distribution of SWAT and REGMOD water yield estimates also tracked one 

another very well (Figure 11).  
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Figure 11. Comparison of 1999 water yield predictions from the SWAT and REGMOD 
models for each of 30 landcover representations. 
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DISCUSSION 

 

The extent, composition and configuration of forests within a watershed can exert 

strong controls on terrestrial and hydrologic processes. Because the effects of forest 

management on these resources can be significant and long lasting, modeling procedures 

are necessary to evaluate various alternatives before actions are implemented to ensure 

that societal values are maintained over time. 

Fire is the dominant natural agent of change in western North America’s forests, 

and the long-term effects of fire suppression are of great interests to forest, wildlife, and 

water resource managers. Adaptive management is a process where actions and policies 

are based on the best available knowledge and implemented to produce new information 

that can inform future actions (Stankey et al., 2003). Methods described in this study 

offer a process that integrates existing vegetation and hydrologic models, and allows 

users to evaluate the expected terrestrial and aquatic consequences of proposed forest 

management alternatives before they are initiated, so that costly mistakes can be avoided. 

Although model output should be interpreted in a relative sense, the ability to experiment 

with and assess various strategies before implementing them reduces the likelihood that 

poorly planned actions will have negative, unforeseen impacts on valuable or scarce 

resources. Results of the modeling procedures can be synthesized by landscape ecology, 

hydrology and aquatic biology specialists to form an integrated assessment of proposed 

land management alternatives (Jakeman and Letcher, 2003). 

The central theorem of landscape ecology is that patterns and processes are 

directly related to one another (Forman and Gordon, 1986). Comparison of the landcover 

simulations indicates that the fire-suppressed landscape has landcover patterns that are 

significantly different than those of the unmanaged scenario. Mature forests occupy 

almost twice as much land, and the patches of cover tend to be larger and more 

continuous in the fire suppressed landscape than those of the unmanaged scenario, and 

this is generally supported by contemporary knowledge (Keane et al., 2002). Although 

only three landscape indices that interpret the extent, composition, and configuration of 

landcover were investigated, specialists may analyze patterns that are relevant to specific 

resources given the reclassified output. 
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From a hydrologic perspective, modeling results are encouraging because they are 

within the realm of what other investigations have found through experimental 

manipulation and long-term observation (Trondle and King, 1985, 1987), and modeling 

in other parts of the Rocky Mountain region (Matheussen et al. 2000). In general, results 

show that landcover composition, especially the proportion of disturbed forest strongly 

influenced basin-level hydrologic response. Compared to the fire-suppressed scenario, 

mean annual water yield was up to 3% (11 mm) greater in the unmanaged landcover 

simulations. Annual peaks tended to occur earlier, and were on average 15% greater and 

approximately 4 times more variable in the unmanaged scenario (Figures 6a, b).  

Development of a prediction relationship between the hydrologic response and 

simulated landcover has great potential because, once established, it essentially calibrates 

SWAT to SIMPPLLE for annual output. In doing so, analysts need only run landscape 

scenarios to get estimates of water yield and this reduces the model set up time and 

computational resources required to assess the long term impact of forest management on 

water resources. Furthermore, SIMPPLLE stochastically simulates vegetation processes, 

and to produce estimates of uncertainty, the model can be run multiple times to yield 

ensembles of potential landcover responses to management. With the estimation link, 

corresponding uncertainty in hydrologic response may be assessed as well without the 

need for more detailed hydrologic modeling. 

 

 

CONCLUSIONS 

Integrated assessment recognizes that management of one resource may have 

cascading impacts on associated resources. The effects of forest management on 

ecosystem function can be profound and long lasting. To ensure that societal values are 

maintained over the long-term, various alternatives should be assessed before 

management actions are implemented to avoid degradation of valuable resources.  

The purpose of this study was to illustrate how two distinct but complementary 

modeling systems can be combined to conduct an integrated assessment of land and 

water resource management in a watershed. While comparison of management scenarios 

should be viewed in a relative sense, model results show that after calibration both land 
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and water resource simulations are likely to produce reasonable output. Depending on the 

complexity of desired analyses, the modeling process can be simplified by not only 

calibrating tools to environmental conditions, but also to one another. An established 

linkage between models can reduce the time and resources required to perform 

exhaustive evaluations because output from one model can be used to predict outcomes 

of the other model.  

In this study, the relationship between landcover distribution and predicted water 

yield suggests that upon calibration to initial conditions, landcover proportions may be 

used to predict annual water yield for a chosen year. In this way, a predictive equation 

can be applied to simulated landcover patterns and used to derive estimates of annual 

hydrologic output. 
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APPENDIX A 
Scaled Multi-Attribute Classification (SMAC) 

 



 178

SIMPPLLE-SWAT LANDCOVER RECLASSIFICATION 

 
The SIMPPLLE vegetation simulator (Chew et al., 2004) uses detailed landcover 

descriptions derived from a diversity of sources. Vegetation is defined by stand-level 
inventory data whenever possible. When full coverage is not available, remotely derived 
30-meter satellite data are used to supplement missing information. Topographically 
derived (modeled from DEM) Habitat Type groups are used to parameterize broad 
potential vegetation groups. The combination of vegetative and topographic data is used 
to define SIMPPLLE vegetation community habitat type group, species, size-class, and 
canopy density attributes.  

The vegetation dynamics model uses the detailed stand attributes to simulate 
succession and disturbance processes across the landscape. At every time step of the 
model, stand attribute data are written to text files that can be joined to the original 
vegetation data layer. Vegetation change is reported at ten year intervals. Species 
composition, stand size-class, canopy density, and disturbance processes are updated at 
every step of the model.  

There is a considerable difference between the level of description required to 
simulate vegetation change and that needed to model hydrologic processes. In 
comparison to SIMPPLLE, the SWAT model (Arnold et al., 1998) does not need multi-
level stand characterization. Therefore, the detailed information that SIMPPLLE carries 
is reclassified into general landcover categories. In a general sense, the reclassification is 
based on the Anderson Level II Landcover Classification supported by USGS (Anderson 
et al., 1976). The watersheds being simulated in this study have a large proportion of 
forested area, and to refine the modeling of hydrologic response to vegetation change, the 
number of forest categories has been expanded. In addition to increasing the diversity of 
forest types, forest disturbances have also been included in the reclassification. The 
Anderson Level II TRANSITIONAL landcover is passed on to forested vegetation 
communities that are in a state of disturbance that reduced canopy closure and / or 
replaced the stand, as in the event of high-intensity fire or severe insect or disease 
damage. 

The satellite imagery used to supplement inventory data is composed of many 
scenes and was collected to avoid cloud contamination. There are nonetheless, scenes 
with some cloud spottiness and landcover data have not been defined where clouds exit. 
In these cases, No Data values have been assigned. The No Data landcover carries the 
same hydrologic characteristics as the BARREN landcover. This was done to avoid 
assignment of erroneous vegetation characteristics. The down-side of this hydrologic 
characterization is that some overestimation of water and sediment yield may occur if 
large areas are contaminated by clouds. 

The following are lookup tables and logic used to convert SIMPPLLE vegetation 
output to landcover maps used by the SWAT hydrologic model. Resulting, raster-based 
maps can also be analyzed for spatial patterns, and associated with multiple resources 
values, not only hydrologic function.  
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Table 1. Habitat Type reclassification lookup table. 
 
SIMP_HTG HTG_RCLS 
A1 FOREST 
A2 FOREST 
B1 FOREST 
B2 FOREST 
B3 FOREST 
C1 FOREST 
C2 FOREST 
D1 FOREST 
D2 FOREST 
D3 FOREST 
E1 FOREST 
E2 FOREST 
F1 FOREST 
F2 FOREST 
G1 FOREST 
G2 FOREST 
ND ND 
NF NON-FOREST 
NF1 NON-FOREST 
NF2 NON-FOREST 
NF3 NON-FOREST 
NF4 NON-FOREST 
NF5 NON-FOREST 
NF1A NON-FOREST 
NF1B NON-FOREST 
NF1C NON-FOREST 
NF2A NON-FOREST 
NF2B NON-FOREST 
NF2C NON-FOREST 
NF2D NON-FOREST 
NF3C NON-FOREST 
NF3D NON-FOREST 
NF4E NON-FOREST 
NF5A NON-FOREST 
XX1 NON-FOREST 
XX2 NON-FOREST 
XX3 NON-FOREST 
XX4 NON-FOREST 
XX5 NON-FOREST 
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Table 2. SIMPPLLE Species reclassification lookup table. 
 
SIMP_SPP SPP_RCLS  SIMP_SPP SPP_RCLS 
ND ND  AF SFFR 
NF BARREN  AF-ES-LP SFFR 
WATER WATER  ES SFFR 
AGR PASTURE  ES-AF SFFR 
AGSP GRASSLAND  ES-LP SFFR 
ALPINE-GRASSES GRASSLAND  WB SFFR 
ALPINE-HERBS GRASSLAND  WB-AF SFFR 
ALPINE-SHRUBS GRASSLAND  WB-ES SFFR 
ALTERED-GRASSES GRASSLAND  WB-ES-AF SFFR 
ALTERED-NOXIOUS GRASSLAND  WB-ES-LP SFFR 
EARLY-SERAL GRASSLAND  LP LP 
FESCUE GRASSLAND  LP-AF LP 
HERBS GRASSLAND  PF LP 
JUSC-AGSP GRASSLAND  PF-LP LP 
JUSC-ORMI GRASSLAND  DF DF 
LATE-SERAL GRASSLAND  DF-AF DF 
MID-SERAL GRASSLAND  DF-AF-ES DF 
NATIVE-FORBS GRASSLAND  DF-ES DF 
NOXIOUS GRASSLAND  DF-LP DF 
UPLAND-GRASSES GRASSLAND  DF-LP-AF DF 
FS-S-G SHRUBLAND  DF-LP-ES DF 
GA SHRUBLAND  DF-PP-LP DF 
JUSC  SHRUBLAND  DF-PP-PF DF 
MAHOGANY SHRUBLAND  PP PP 
MESIC-SHRUBS SHRUBLAND  PP-DF PP 
MTN-FS-SHRUBS SHRUBLAND    
MTN-MAHOGANY SHRUBLAND    
MTN-SHRUBS SHRUBLAND    
XERIC-FS-SHRUBS SHRUBLAND    
XERIC-SHRUBS SHRUBLAND    
NS OPEN_FOREST    
WOODLAND OPEN_FOREST    
RIPARIAN-GRASSES RIPARIAN_SHRUB    
RIPARIAN-SHRUBS RIPARIAN_SHRUB    
RIP-GRAMS RIPARIAN_SHRUB    
RIP-S-GRAMS RIPARIAN_SHRUB    
RIP-DECID RIPARIAN_FOREST    
RIP-DECID-MC RIPARIAN_FOREST    
CW RIPARIAN_FOREST    
CW-MC RIPARIAN_FOREST    
QA QA    
QA-MC QA    
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Table 3. SIMPPLLE Size-Class reclassification lookup table. 
 
SIMP_SIZE SIZE_RCLS 
NS NON-FOREST 
UNIFORM NON-FOREST 
SCATTERED NON-FOREST 
CLUMPED NON-FOREST 
OPEN-HERB NON-FOREST 
CLOSED-HERB NON-FOREST 
OPEN-LOW-SHRUB NON-FOREST 
CLOSED-LOW-SHRUB NON-FOREST 
OPEN-MID-SHRUB NON-FOREST 
CLOSED-MID-SHRUB NON-FOREST 
OPEN-TALL-SHRUB NON-FOREST 
CLOSED-TALL-SHRUB NON-FOREST 
SS TRANSITIONAL 
POLE FOREST 
PTS FOREST 
PMU FOREST 
MEDIUM FOREST 
MTS FOREST 
MMU FOREST 
LARGE FOREST 
LTS FOREST 
LMU FOREST 
VERY-LARGE FOREST 
VLTS FOREST 
VLMU FOREST 
AGR PASTURE 
NF BARREN 
WATER WATER 
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Table 4. SIMPPLLE Canopy Density reclassification lookup table. 
 
SIMP_DENSITY DENSITY_RCLS 

1 NON-FOREST 
2 FOREST 
3 FOREST 
4 FOREST 

 
 
Table 5. Reclassified Grid reclassification lookup table. 
 

 

 

VALUE LANDUSE 
1 NNDD 
2 BRRN 
3 WATR 
4 PSTR 
5 GLND 
6 SLND 
7 OPFR 
8 RIPS 
9 RIPF 

10 QAFR 
11 SAFR 
12 LPFR 
13 DFFR 
14 PPFR 
15 TRNS 
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RECLASSIFICATION PROCEDURE 
 

Use the original vegetation coverage and update text file to reclassify SIMPPLLE 
attributes to general landcover attributes used by SWAT. For the landscape current 
condition the COVERNAME-0-UPDATE table is used. For all subsequent time steps the 
COVERNAME-1-UPDATE tables are used. The number preceding the update table 
indicates the time step. 
 
An Arc/Info program, called “SMAC.aml” automated this reclassification sequence.  
 
Repeat steps for each time-step, the number symbol (#) refers to time-step 
 
• Copy input vegetation coverage and call it “rclsc-cov#”  
 
• Edit “rclsc-cov#” table and add text field called “SWAT_COVER” for SWAT codes  
 
• Join SIMPPLLE run output “Update#”, use “SLINK” as join field 

(# indicates time step) 
 
• Join “HTG_RCLS.DBF” table, use “SIMP_HTG” as join field  

(the reclassification table is joined to the coverage, where a SIMP_HTG field exists) 
 
• Join “SPP_RCLS.DBF” table, use “SIM_SPECIES” as join field  

(the reclassification table is joined to the already joined UPDATE table, where a 
SIM_SPECIES field exists – notice the difference between SIM and SIMP) 

 
• Join “SIZE_RCLS.DBF” table, use “SIM_SIZE” as join field 

(the reclassification table is joined to the already joined UPDATE table, where a 
SIM_SIZE field exists – notice the difference between SIM and SIMP) 

 
• Join “DENSITY_RCLS.DBF” table, use “SIM_CANOPY as join field 

(the reclassification table is joined to the already joined UPDATE table, where a 
SIM_CANOPY field exists – notice the difference between SIM and SIMP) 

 
• Do manually or use Arc/Info aml, “SMAC”, to apply reclassification logic and 

calculate new attributes to “SWAT_COVER” field (use of aml is recommended) 
 
• After the “SWAT_COVER” field has been populated the coverage is converted to 

grid format, using the “SWAT_COVER” field as attributes. (also automated by aml) 
 
• Optionally, LANDUSE_LUT.DBF table can be then joined to the landcover grid. The 

attributes in the lookup table are descriptions of the landcover codes used by SWAT 
to link to supporting databases. (also automated by aml) 
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LANDCOVER DESCRIPTION AND RECLASSIFICATION LOGIC 
 

NO DATA 
This landcover is the result of clouds in remotely sensed imagery. Clouds block 

the view of surface features and make it impossible to determine accurate landcover 
characteristics.  
 
Reclassification Logic 
NO DATA     
IF SIMP_HTG ND 
 SPP_RCLS ND 
THEN SWAT COVER NNDD 
 VALUE 1 

 
 

BARREN 
The barren landcover represents bare ground, rocky areas, above tree line 

conditions, and any land condition that is not cloud, water or vegetation. 
 
Reclassification Logic 
BARREN     
IF HTG_RCLS NON-FOREST 
 SPP_RCLS BARREN 
 SIZE_RCLS BARREN 
 DENSITY_RCLS NON-FOREST 
THEN SWAT COVER BRRN 
 VALUE 2 

 
 

WATER 
The spectral signature of water is relatively easy to distinguish from bare ground 

or vegetated surfaces. 
 
Reclassification Logic 
WATER     
   
IF HTG_RCLS NON-FOREST 
 SPP_RCLS WATER 
 SIZE_RCLS WATER 
 DENSITY_RCLS NON-FOREST 
THEN SWAT COVER WATR 
 VALUE 3 
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PASTURE 
Agricultural land is broadly reclassified as pasture.  

 
Reclassification Logic 
PASTURE   
IF HTG_RCLS NON-FOREST 
 SPP_RCLS AGR 
THEN SWAT COVER PSTR 
 VALUE 4 

 
 

GRASSLAND 
The grassland cover type designation encompasses all forms of grasses and herbs. 

No distinction is made between mesic and xeric conditions.  
 
Reclassification Logic 
GRASSLAND  
IF SPP_RCLS GRASSLAND 
 SIZE_RCLS NON-FOREST 
THEN SWAT COVER GLND 
 VALUE 5 

 
 

SHRUBLAND 
The shrubland cover type is assigned to stands that are naturally considered shrub 

given their species and size class designations.  
 
Reclassification Logic 
SHRUBLAND (NON-FORESTED) 
IF SPP_RCLS SHRUBLAND 
 SIZE_RCLS NON-FOREST 
THEN SWAT COVER SLND 
 VALUE 6 
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OPEN FOREST 
The ‘Open Forest’ landcover is also assigned to open stands composed of forest 

species, which occur on non-forest habitat type groups, but are not dense enough to be 
considered forest stands. These types of stands tend to occur on the driest upland sites 
that are capable of supporting trees. 
 
Reclassification Logic 
OPEN-FOREST (TREED SHRUBLAND) 
IF HTG_RCLS NON-FOREST 
 SPP_RCLS SAF 
  LP 
  DF 
  PP 
  QA 
 SIZE_RCLS FOREST 
THEN SWAT COVER OPFR 
 VALUE 7 

 
 

RIPARIAN SHRUB 
The USGS Andersen Level II classification differentiates between woody and 

herbaceous riparian areas. Following this logic I separated riparian vegetation into shrub 
and forest communities. The ‘riparian shrub’ landcover is composed of riparian grasses, 
shrubs, and grammanoid species. 
 
Reclassification Logic 
RIPARIAN SHRUB   
IF SPP_RCLS RIPARIAN_SHRUB 
THEN SWAT COVER RIPS 
 VALUE 8 

 
 

RIPARIAN FOREST 
Landcover defined as ‘riparian forest’ consists of cottonwood and cottonwood / 

mixed conifer stands. 
 
Reclassification Logic 
RIPARIAN FOREST   
IF SPP_RCLS RIPARIAN_FOREST 
THEN SWAT COVER RIPF 
 VALUE 9 
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QUAKING ASPEN FOREST 
When stands occur on either forest or non-forest habitat type groups, have stand 

structure indicative of forest communities, and dominated by quaking aspen, or 
combinations thereof, they are reclassified to the ‘quaking aspen forest’ landcover. 
Although dominant in the stand, quaking aspen may occur in combination with mixed 
conifers. 
 
Reclassification Logic 
QUAKING ASPEN FOREST   
IF SPP_RCLS QA 
 SIZE_RCLS FOREST 
 DENSITY_RCLS FOREST 
THEN SWAT COVER QAFR 
 VALUE 10 

 
SPRUCE-FIR FOREST 

The ‘sub-alpine forest’ landcover category encompasses the broadest range of 
forest species assemblages of all the forest landcover types. The relative abundance of 
any one species, or species combinations within this broad category tend to be fairly low 
in a given landscape, occur occupy similar niches, and were therefore collapsed into one 
landcover. Essentially, the ‘spruce-fir forest’ landcover represents, stands composed of 
Englemann spruce, sub-alpine fir, and whitebark pine. 
 
Reclassification Logic 
SPRUCE-FIR FOREST   
IF  HTG_RCLS FOREST 
 SPP_RCLS SFFR 
 SIZE_RCLS FOREST 
 DENSITY_RCLS FOREST 
THEN SWAT COVER SFFR 
 VALUE 11 

 
LODGEPOLE PINE FOREST 

When stands occur on forest habitat type groups, have stand structure indicative 
of forest communities, and dominated by lodgepole pine, or limber pine, they are 
reclassified as ‘lodgepole pine” landcover. Limber pine is included in this designation 
because it can be found in similar locations and is difficult to differentiate the spectral 
signature of these two species, and as a consequence stands are sometimes misclassified.  
 
Reclassification Logic 
LODGEPOLE PINE FOREST   
IF HTG_RCLS FOREST 
 SPP_RCLS LP 
 SIZE_RCLS FOREST 
 DENSITY_RCLS FOREST 
THEN SWAT COVER LPFR 
 VALUE 12 
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DOUGLAS FIR FOREST 
When stands occur on forest habitat type groups, have stand structure indicative 

of forest communities, and dominated by Douglas fir, or combinations thereof, they are 
reclassified to the ‘Douglas fir forest’ landcover. Although dominant in the stand, 
Douglas fir may occur in combination with Englemann spruce, sub-alpine fir, lodgepole 
pine, ponderosa pine, and limber pine  
 
Reclassification Logic 
DOUGLAS FIR FOREST   
IF HTG_RCLS FOREST 
 SPP_RCLS DF 
 SIZE_RCLS FOREST 
 DENSITY_RCLS FOREST 
THEN SWAT COVER DFFR 
 VALUE 13 

 
 

PONDEROSA PINE FOREST 
When stands occur on forest habitat type groups, have stand structure indicative 

of forest communities, and dominated by ponderosa pine, or combinations thereof, they 
are reclassified to the ‘ponderosa pine forest’ landcover. Although dominant in the stand, 
ponderosa pine may occur in combination with Douglas fir. 
 
Reclassification Logic 
PONDEROSA PINE FOREST   
IF HTG_RCLS FOREST 
 SPP_RCLS PP 
 SIZE_RCLS FOREST 
 DENSITY_RCLS FOREST 
THEN SWAT COVER PPFR 
 VALUE 14 
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TRANSITIONAL FOREST 
The USGS Andersen Level II classification defines ‘transitional’ as “Areas of sparse 
vegetative cover (less than 25 percent of cover) that are dynamically changing from one 
land cover to another, often because of land use activities. Examples include forest 
clearcuts, a transition phase between forest and agricultural land, the temporary 
clearing of vegetation, and changes due to natural causes (e.g. fire, flood, etc.)”.  
Within this reclassification framework the ‘transitional forest’ state is applied to 
disturbed forest stands. Only natural disturbance processes, such as insect, disease, and 
fire are considered. When forest stands occur on forest habitat type groups, and have had 
a disturbance that reduced their structure to the seedling-sapling stage, the stand is 
considered to be ‘transitional’. Change from a forested condition to a transitional 
condition is likely to yield hydrologic responses to landcover change. 
 
Reclassification Logic 
TRANSITIONAL OR DISTURBED FOREST 
IF SPP_RCLS SFFR 
  LP 
  DF 
  PP 
  QA 
 SIZE_RCLS TRANSITIONAL 
 DENSITY_RCLS FOREST 
THEN SWAT COVER TRNS 
 VALUE 15 
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CLASSIFIED LANDCOVER CHARACTERISTICS 
 

Physically based attributes that influence hydrologic processes were associated 
with each landcover category produced by the conversion algorithm (Table 6).  
 
Table 6. Hydrologic properties of landcover categories produced by the SMAC 
algorithm. Maximum tree height (HT), minimum (1) and maximum (2) annual leaf area 
index (LAI), proportion of annual precipitation interception (Int%),photosynthetic base 
temperature, Manning’s overland roughness coefficient (OV_N), and SCS curve number 
for antecedent moisture condition II (CN2), and soil hydrologic groups A, B, C, and D. 
 
Description HT (m) 1LAI 2LAI Int% T° OV_N CN2A CN2B CN2C CN2D 
No Data 0 0 0 0 0 0 0 0 0 0 
Barren 0 0 0 0 0 0 0 0 0 0 
Water 0 0 0 0 0 0 0 0 0 0 
Pasture 0.50 0.50 1.00 0.03 10 0.10 50 72 80 85 
Grassland 0.75 0.75 1.50 0.03 10 0.12 49 70 79 85 
Shrubland 3.50 1.00 2.00 0.05 10 0.13 42 65 76 83 
Open Forest 10.00 1.10 2.20 0.15 3 0.14 35 62 76 82 
Riparian Shrub 3.50 1.00 2.00 0.10 10 0.15 47 68 79 84 
Riparian Forest 35.00 1.15 2.30 0.15 10 0.15 46 67 78 84 
Quaking Aspen  15.00 1.00 2.00 0.15 10 0.15 44 65 76 82 
Spruce-Fir  26.00 1.95 3.00 0.28 3 0.17 25 55 70 77 
Lodgepole Pine  22.00 1.80 2.80 0.25 3 0.16 30 56 71 79 
Douglas Fir  35.00 2.00 3.10 0.25 3 0.15 32 58 72 80 
Ponderosa Pine  35.00 1.60 2.50 0.20 3 0.14 33 60 74 81 
Transitional  10.00 1.00 2.00 0.10 3 0.14 48 69 78 84 
 

Tree height was estimated based on regional measurements and literature review 
(1990). Leaf area index (LAI) is an efficient way to describe vegetation canopy coverage, 
density and stratification, and can be measured with a variety of optical and algometric 
techniques (White et al., 1997; Hall et al., 2003). The majority of forest cover in the 
Rocky Mountain region of North America is coniferous, and although needles remain on 
these types of trees yearlong, leaf area index fluctuates seasonally (Waring and 
Running,1998). To establish the range of possible LAI values for landcover categories, 
remotely sensed imagery (Holsinger et al., 2005; USDI-GS, 2005) representing minimum 
LAI in January and maximum LAI in July were analyzed. Annual interception estimates 
were based on field measurements in open and forested sites in central Montana (Woods 
et al., 2006, and published values (Kimmins, 1997; White et al., 1997). Base temperature 
was interpreted from basic physiological characteristics of forest and non-forest 
vegetation (Waring and Running, 1998). Estimates of Manning’s overland roughness 
coefficient are less certain than other landcover characteristics given here. Assignments 
of “OV_N” were made by scaling default grassland, shrubland, riparian, and evergreen 
forest values reported in the SWAT vegetation database. Similarly, default SCS curve 
numbers (USDA-SCS, 1972) for forest and non-forest landcover types were scaled to 
more closely approximate values that are representative of regional conditions.  
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SMAC ALGORITHM CODE 
 

This algorithm is written in Arc Macro Language (AML). It takes a series of 
output data (spatial and tabular) from the SIMPPLE model and converts them to a 
corresponding input data set for the SWAT hydrologic model. Output grids, which 
maintain polygon boundaries throughout the SIMPPLE simulation, are reclassified into a 
coarser categorical representation (many classes into few classes). 
=============================================================== 
 
&severity &error &routine bailout 
&terminal 9999 
&echo &off 
&sv starttime = [date -vfull] 
&if [show program] ne 'ARC' &then q 
 
/*********************************************************************** 
/*     USER DEFINED INPUTS     * 
/*********************************************************************** 
/* set key input variables 
&sv base_dir = C:\AVSWATX\data\simp2swat\wat_only\    /* base, or parent directory 
to simpple simulations  
&sv base_cov = C:\AVSWATX\data\gis\tc_swat                /* common polygon cov to all 
sims listed in simlist           
/* Enter the list of directory basenames here (e.g. ahl\in\tchuc5) 
&sv simlist = tc_unmanaged    /* simulation set subdirectories located in "in" 
&sv ntimesteps = 31                  /* number of 10 year timesteps per simulation                  
/*********************************************************************** 
/* NO NEED TO MESS WITH THINGS BELOW HERE!* 
/*********************************************************************** 
 
 
/*********************************************************************** 
/*    MAIN PROCESS     * 
/*********************************************************************** 
&type RUNNING SIMP2SWAT.AML 
/* set sim counter 
&sv i = 0 
/* outer loop is process for many simulation sets, each organized in their own directory 
&do sim &list %simlist% 
&sv i = %i% + 1 
   &type Currently processing simulation run %i%: %sim% 
   &call directory_structure     /* makes new output directory for SWAT input files 
    
   /* inner loop is process for a single sim  
   &do tstep = 0 &to %ntimesteps% &by 1 
      &sv indir = %base_dir%in\%sim%\ 
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      &sv outdir = %base_dir%out\%sim%\ 
      &type In: %indir% out: %outdir% timestep: %tstep% 
       
      /* routines description 
      /*----------------------------------------------------------------------------------------------------- 
       &call luts                    /* assemble luts  
       &call sim_data_in             /* brings in all the spatial and tabular data from a single 
SIMPPLE simulation set 
       &call convert_data            /* reclasses the input data with appropriate look up tables 
or whatever 
    
   &end 
&end  
 
 
&sv endtime = [date -vfull] 
&messages &popup 
&type Process started at %starttime%. Done at %endtime%. 
&messages &on 
&return 
/*********************************************************************** 
/*************END PROGRAM******************************************* 
/*********************************************************************** 
 
 
/*********************************************************************** 
/*                   bailout routine 
/* 
&routine bailout 
&sv line_no = %aml$errorline% 
&messages &popup 
&type Program crashed on line %line_no% 
&messages &on 
 
&sv curslist = [ show cursors ] 
&sv curscount = [ token %curslist% -count ] 
&do k = 1 &to %curscount% 
  cursor [ extract %k% %curslist% ] close 
  cursor [ extract %k% %curslist% ] remove 
&end  
&return 
/**********************END ROUTINE BAILOUT************************** 
 
 
/*********************************************************************** 
/*     ROUTINE LUTS 
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&routine luts 
&if [show program] ne 'ARC' &then q 
/* check if required luts are present as info files 
/* if they are not, bring them in from directory 
&do lutname &list htg_rcls spp_rcls size_rcls density_rcls landuse 
&if ^ [exists %lutname%.lut -info] &then 
   &do 
      &type Required look up table, %lutname%.lut, not found in INFO dir: bringing in 
from e00 file. 
      import info %base_dir%%lutname%.e00 %lutname%.lut 
   &end  
&end 
&return 
/***********END ROUTINE RMDIRECT************************************ 
 
 
/*********************************************************************** 
/*     ROUTINE RMDIRECT 
&routine rmdirect 
/* goes in and wipes out the whole directory structure 
/* This is a hard wipe out to clean up everything. 
&if [show program] ne 'ARC' &then q 
&sys del /q %base_dir%\out\%sim%\* 
&sys rmdir %base_dir%\out\%sim% 
 
&return 
/***********END ROUTINE RMDIRECT************************************ 
 
 
/*********************************************************************** 
/*     ROUTINE MKDIRECT 
&routine mkdirect 
/* makes directories to store each simulation run 
&if [show program] ne 'ARC' &then q 
&sys mkdir %base_dir%\out\%sim% 
&return 
/***********END ROUTINE MKDIRECT************************************ 
 
 
/*********************************************************************** 
&routine directory_structure 
&if [show program] ne 'ARC' &then q 
&type now in 'Setting up directory structure for output' routine 
&if ^ [exists %base_dir%\in\%sim% -DIRECTORY] &then &return &inform Input 
directory %base_dir%\in\%sim% not found. Ending program. 
&call rmdirect 
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&call mkdirect 
&return 
/*************END ROUTINE ******************************************** 
 
 
/*********************************************************************** 
&routine sim_data_in 
&if [show program] ne 'ARC' &then q 
 
&type Bringing in landscape simulation data from %sim%-%tstep%-UPDATE.txt 
/* temporarily rename file -- arc doesn't like the - "dash" symbol in the file name. 
&sys rename %indir%%sim%-%tstep%-update.txt data.in 
&type temporarily renaming %indir%%sim%-%tstep%-update.txt as "data.in" 
&type Ignore the error message below: it is due to the header line. No big deal. 
&severity &error &ignore 
&if [exists tempin.tab -info] &then &type [delete tempin.tab -info] 
tables 
define tempin.tab 
SLINK                 10    10     I 
SIM_SPECIES          255   255     C 
SIM_SIZE             255   255     C 
SIM_CANOPY            10    10     I 
SIM_PROCESS          255   255     C 
SIM_TREATMENT        255   255     C 
~ 
select tempin.tab 
 
add SLINK  SIM_SPECIES  SIM_SIZE SIM_CANOPY SIM_PROCESS 
SIM_TREATMENT from %indir%data.in  
select tempin.tab 
resel $recno = 1 
purge  
y 
q stop 
 
/* rename file back 
&sys rename %indir%data.in %sim%-%tstep%-update.txt 
&severity &error &routine bailout  /* reset to preferred error handling  
 
&return 
/*************END ROUTINE ******************************************** 
 
 
/*********************************************************************** 
&routine convert_data 
&type now in 'convert data' routine 
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&if [show program] ne 'ARC' &then q 
/* make a temporary coverage to hold various attributes 
&if [exists tempcov -cov] &then kill tempcov all 
copy  %base_cov% tempcov 
build tempcov poly 
/* build connections to look up tables 
additem tempcov.pat tempcov.pat swat_cover 16 16 i # slink 
 
joinitem tempcov.pat tempin.tab tempcov.pat slink 
joinitem tempcov.pat htg_rcls.lut tempcov.pat simp_htg 
joinitem tempcov.pat spp_rcls.lut tempcov.pat sim_species 
joinitem tempcov.pat size_rcls.lut tempcov.pat sim_size 
joinitem tempcov.pat density_rcls.lut tempcov.pat sim_canopy 
/*modify values based on lookup table values 
tables 
 
select tempcov.pat 
 
&type ASSIGNING "NO DATA" VALUES 
res Simp_htg = 'ND' and Spp_rcls = 'ND' 
cal swat_cover = 1 
ase 
 
&type ASSIGNING "BARREN" VALUES 
res Htg_rcls = 'NON-FOREST' and Spp_rcls = 'BARREN' and Size_rcls = 'BARREN' 
and Density_rcls = 'NON-FOREST' 
cal swat_cover = 2 
ase 
 
&type ASSIGNING "WATER" VALUES 
res Htg_rcls = 'NON-FOREST' and Spp_rcls = 'WATER' and Size_rcls = 'WATER' and 
Density_rcls = 'NON-FOREST' 
cal swat_cover = 3 
ase 
 
&type ASSIGNING "PASTURE" VALUES 
res Htg_rcls = 'NON-FOREST' and Spp_rcls = 'AGR' 
cal swat_cover = 4 
ase 
 
&type ASSIGNING "GRASSLAND" VALUES 
res Spp_rcls = 'GRASSLAND' and Size_rcls = 'NON-FOREST' 
cal swat_cover = 5 
ase 
 
&type ASSIGNING "SHRUBLAND" VALUES 
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res Spp_rcls = 'SHRUBLAND' and Size_rcls = 'NON-FOREST' 
cal swat_cover = 6 
ase 
 
&type ASSIGNING "OPEN FOREST" VALUES 
res Htg_rcls = 'NON-FOREST' and ( Spp_rcls = 'sffr' or Spp_rcls = 'LP' or Spp_rcls = 
'DF' or Spp_rcls = 'PP' or Spp_rcls = 'QA' ) 
cal swat_cover = 7 
ase 
 
&type ASSIGNING "RIPARIAN SHRUB" VALUES 
res Spp_rcls = 'RIPARIAN_SHURB' 
cal swat_cover = 8 
ase 
 
&type ASSIGNING "RIPARIAN FOREST" VALUES 
res Spp_rcls = 'RIPARIAN_FOREST' 
cal swat_cover = 9 
ase 
 
&type ASSIGNING "QUAKING ASPEN" VALUES 
res Spp_rcls = 'QA' and Size_rcls = 'FOREST' and Density_rcls = 'FOREST' 
cal swat_cover = 10 
ase 
 
&type ASSIGNING "SPRUCE-FIR FOREST" VALUES 
res Htg_rcls = 'FOREST' and Spp_rcls = 'SFFR' and Size_rcls = 'FOREST' and 
Density_rcls = 'FOREST' 
cal swat_cover = 11 
ase 
 
&type ASSIGNING "LODGEPOLE PINE FOREST" VALUES 
res Htg_rcls = 'FOREST' and Spp_rcls = 'LP' and Size_rcls = 'FOREST' and Density_rcls 
= 'FOREST' 
cal swat_cover = 12 
ase 
 
&type ASSIGNING "DOUGLAS FIR FOREST" VALUES 
res Htg_rcls = 'FOREST' and Spp_rcls = 'DF' and Size_rcls = 'FOREST' and Density_rcls 
= 'FOREST' 
cal swat_cover = 13 
ase 
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&type ASSIGNING "PONDEROSA PINE FOREST" VALUES 
res Htg_rcls = 'FOREST' and Spp_rcls = 'PP' and Size_rcls = 'FOREST' and Density_rcls 
= 'FOREST' 
cal swat_cover = 14 
ase 
 
&type ASSIGNING "TRANSITIONAL FOREST" VALUES 
res Size_rcls = 'TRANSITIONAL' and Density_rcls = 'FOREST' and ( Spp_rcls = 'SFFR' 
or Spp_rcls = 'LP' or Spp_rcls = 'DF' or Spp_rcls = 'PP' or Spp_rcls = 'QA' ) 
cal swat_cover = 15 
ase 
 
q stop 
 
/* take that temporary coverage and convert it into a temporary grid for SWAT 
&if [exists tempgrd -grid] &then kill tempgrd all 
polygrid tempcov %outdir%swat_cover%tstep% swat_cover 
30 
Y 
 
/* convert the temporary grid to an ascii grid 
/* gridascii tempgrd %outdir%swat_cover%tstep%.asc 
/* clean up temporary deals 
&if [exists tempgrd -grid] &then kill tempgrd all 
&if [exists tempcov -cov] &then kill tempcov all 
&if [exists tempin.tab -info] &then &type [delete tempin.tab -info] 
 
&return 
/*************END ROUTINE ******************************************** 
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SMAC ALOGITHM INSTRUCTIONS 
 

The SMAC algorithm is designed to automate the processing of output data from 
the SIMPPLE landscape dynamics model into input data for the spatially explicit 
hydrologic model, SWAT. The process involves association of a series of attributes, 
contained in an ascii text file output from SIMPPLE, to a corresponding polygon 
coverage. This information is then greatly simplified from several hundred classes 
(combinations of habitat type group, cover type, structure and density for the most part) 
to a reduced number of classes for use with SWAT through a series of look up table 
operations. The output data is then converted to a raster-based output with 30 m grid cell 
resolution. 

The underlying process and associated reclassification was developed by Robert 
Ahl, and the program to automate the inherent logic was coded by Russ Parsons, GIS 
Specialist, of U.S. Department of Agriculture, Forest Service, Fire Sciences Lab. The 
SMAC routine encapsulates that process in a series of simple routines and nests it in two 
loop structures. The outer loop structure is for a simulation set, and the inner loop is for 
each individual time step in a given simulation set.  
 
 

DIRECTORY STRUCTURE 
In general, the more complex an automated process is, the more important it is to 

have a consistent directory structure and set of naming conventions. The directory 
structure for this automated process is as follows: 

 
 
Figure 1. SMAC algorithm directory structure schematic. 
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The “base_dir” 
The “base_dir” is the directory which contains the lookup tables (as info tables) and the 
aml, simp2swat.aml.Inside this main directory is an “in” directory and an “out” directory.  
 
The “IN” directory 
The “in” directory is the place to put each simulation set directory, for example, tchuc5 
and lb_nat are simulation set directories. These directories contain all the output files 
from SIMPPLE for a given simulation. For example, in the tchuc5 directory shown 
above, there are 11 output files, labeled “tchuc5-0-update.txt” through “tchuc5-10-
output.txt”. The aml will read as many of these time steps from that directory, from zero 
to ntimesteps, which is an input parameter in the “user inputs” part of the aml. For 
example, using a value of 10 for the variable ntimesteps will have the aml process all 
timesteps 0 to 10. 
 
The “OUT” directory 
You never have to make an output subdirectory. It will be automatically made each time 
you run the aml. For example, the tchuc5 directory in the “out” directory was created by 
the aml. It contains the ascii grids of the reclassified cover maps to use in running SWAT. 
Note that these output directories will be deleted and overwritten if you run the aml twice 
with the same input subdirectory name. So be sure to rename these or save them to 
somewhere else. Since these output subdirectories are created when you run the aml, they 
do not exist on this CD ROM. But they will exist after you run the aml. 
 
Running the AML 
There are a few input parameters at the top of the aml. These are the only parts of the aml 
you should mess with to make it run. Of course the rest of the aml may be useful to copy 
and modify for your other purposes. Feel free to do so as you please. 
Here is the input part: 
 
/********************************** 
/*    USER DEFINED INPUTS         * 
/********************************** 
/* set key input variables 
&sv base_dir = c:\russ\gis\ahl\       /* base, or parent directory to simpple simulations  
&sv base_cov = basecov                /* common polygon cov to all sims listed in simlist           
/* Enter the list of directory basenames here (e.g. ahl\in\tchuc5) 
&sv simlist = tchuc5  lb_nat      /* simulation set subdirectories located in “in” 
&sv ntimesteps = 10                   /* number of 10 year timesteps per simulation                  
/****************************************** 
/* NO NEED TO MESS WITH THINGS BELOW HERE!* 
/****************************************** 
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USAGE NOTES 
 
1. Set your base dir variable appropriately. It doesn’t matter where your base dir is 

but you still need to maintain the in and out directory structure discussed above. 
 
2. The basecov is the path to the polygon that you want to link the simple files to. 

ALL subdirectories listed in the variable “simlist” will use that same base 
coverage. So if you have a bunch of different landscapes you should just have one 
subdirectory in there. You can of course list as many subdirectories as you want 
in there provided they all use that same base coverage (for example, a bunch of 
simulations with different simulations all for the same landscape). 

 
3. For each simulation set that you want to run the process on, you will have to copy 

a directory into the “in” directory. The name of the directory must correspond to 
the first part of the name of the files inside it. For example, in the tchuc5 directory 
shown above, there are 11 output files, labeled “tchuc5-0-update.txt” through 
“tchuc5-10-output.txt”. If the directory name does not correspond to the first part 
of the file name (underlined above for clarity), the aml won’t know where to look 
and will shut down the program. Similarly, the aml reads the timestep (0 ... n), 
where n is specified in the “user inputs” section of the aml as “ntimesteps”. The 
aml is looking for files with the naming convention <simsetdirectoryname>-
<timestep>-output.txt, like these ones. Since this is apparently an output file name 
convention for SIMPPLE, this shouldn’t be any kind of problem, but just be 
aware of it. 

 



 201

LITERATURE CITED 
 
Anderson, J. R., E.E. Hardy, J.T. Roach, and R.E. Witmer. 1976. A land use and land 

cover classification system for use with remote sensor data. Geological Survey 
Professional Paper 964. Washington, D.C., U.S. Government Printing Office.  

 
Arnold, J.G., R. Srinivasan, R.S. Muttiah, and J.R. Williams. 1998. Large area hydrologic 

modeling and assessment part I: model development. Journal of the American 
Water Resources Association 34 (1), 73-89. 

 
Burns, R.M. and B.H. Honkala. 1990. Silvics of North America, Volume 1, Conifers. 

United States Department of Agriculture, Forest Service, Washington, DC. 

 
Chew, J.D., C. Stalling, and K. Moeller. 2004. Integrating knowledge for simulating 

vegetation change at landscape scales. Western Journal of Applied Forestry 19(2): 
102-108. 

 
Hall, R.J., D.P. Davidson, and D.R. Peddle. 2003. Ground and remote estimation of leaf 

area index in Rocky Mountain forest stands, Kananaskis, Alberta. Canadian 
Journal of Remote Sensing 29 (3), 411-427. 

 
Holsinger, L., R.E. Keane, R. Parsons, and E. Karau. 2005. Development of Biophysical 

Gradient layers. In: Rollins, M.G.; Frame, C.K., tech. eds. 2006. The LANDFIRE 
Prototype Project: nationally consistent and locally relevant geospatial data for 
wildland fire management. Gen. Tech. Rep. RMRS-GTR-175 U.S. Department of 
Agriculture, Forest Service, Rocky Mountain Research Station. Fort Collins, CO. 

 
Kimmins, J.P., 1997. Forest Ecology: A foundation for sustainable management. 

Prentice-Hall, Inc., Upper Saddle River, New Jersey 07458.  

 
USDA-SCS (U.S. Department of Agriculture, Soil Conservation Service), 1972. SCS 

National Engineering Handbook, Section 4, Hydrology. Chapter 10, Estimation of 
Direct Runoff from Storm Rainfall. U.S. Department of Agriculture, Soil 
Conservation Service, Washington D.C., pp. 10.1-10.24. 

 
USDI-GS, (U.S. Department of the Interior, Geological Survey) 2005. MODIS/Terra 

Leaf Area Index/FPAR 8-day L4 Global 1km ISIN Grid. United States Geological 
Survey, Center for Earth Observation and Science (EROS), 47914 252nd Street, 
Sioux Falls, SD 57198-0001. Available for download at: http://LPDACC.usgs.gov 

 
Waring R.H. and Running, S.W. 1998. Forest Ecosystems: Analysis at Multiple Scales. 

Academic Press, San Diego. 
 



 202

White J.D., S.W. Running, R. Nemani, R.E. Keane, and K.C. Ryan, 1997. Measurement 
and remote sensing of LAI in Rocky Mountain montane ecosystems. Canadian 
Journal of Forest Research 27: 1714-1727. 

Woods S.W., R. Ahl, J. Sappington, W. McCaughey, 2006. Snow Accumulation in 
thinned lodgepole pine stands, Montana, USA. Forest ecology and Management 
235: 202-211. 

 



 203

 

 

 

 

 

 

 

 

 

 

 

 

 

APPENDIX B 
TCSWAT Parameterization and Calibration 

 



 204

INTRODUCTION 
 

Detailed parameterization and calibration of SWAT in the Tenderfoot Creek 
watershed (TCSWAT) focused on five major input types representing, snow processes, 
surface runoff attenuation (SURLAG), groundwater processes, soil processes, and SCS 
curve numbers associated with rainfall runoff relationships. Mathematical formulae, 
taken from the SWAT theoretical documentation (Neitsch et al., 2002), used to represent 
biophysical interactions, and descriptions of how relevant parameter ranges were 
established are presented below.  
 
 

SNOW PROCESSES 
 
Snow Accumulation and Snowmelt 

Snow accumulation and melt processes within SWAT are calculated individually 
for each HRU. SWAT classifies precipitation as rain or snow based on whether the mean 
daily air temperature is greater or less than a predefined snowfall temperature parameter 
(SFTMP). If the mean daily air temperature is less than SFTMP then all of the 
precipitation falling within the HRU on that day is classified as snow and the snow water 
equivalent (SWE) of the precipitation is added to the snow pack. The snowpack increases 
with each additional snowfall or decreases with sublimation according to a mass balance 
of the form:  

 
mltsubday SNOERSNOSNO −−+=   (Eqn. 1) 

 
where SNO is the water content of the snow pack on a given day (mm), dayR  is the 
amount of precipitation on a given day (mm), subE  is the amount of sublimation on a 
given day (mm), and mltSNO  is the amount of snow melt on a give day (mm).  

Computation of snowmelt within a sub-basin requires information on the spatial 
distribution of snow cover. The factors that contribute to variable snow coverage are 
often consistent from year to year, making it possible to correlate the aerial coverage of 
snow with the amount of snow present in the subbasin at a given time. This correlation is 
expressed as an aerial depletion curve, which is used to describe the seasonal growth and 
recession of the snow pack as a function of the amount of snow present in the subbasin 
(Anderson, 1976; Neitsch et al., 2002). The depletion curve is based on a natural 
logarithm and calculated as: 

 
1

21cov SNOCOVMX
SNO*bbexp

SNOCOVMX
SNO*

SNOCOVMX
SNO

−

⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
⎟
⎠
⎞

⎜
⎝
⎛ −+=sno     (Eqn. 2) 

 
 

where covsno  is the fraction of the HRU area covered by snow, SNO is the SWE of the 
snow pack (mm), SNOCOVMX is the SWE (mm) threshold depth above which there is 
100% coverage (a function of topographic irregularities, aspect, wind scour, and canopy 
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interception that are unique to a specific watershed), and b1 and b2 are coefficients that 
define the shape of the curve. The values used for the coefficients are determined by two 
known points at 95% and 50% coverage at a user specified fraction of SNOCOVMX. 
The parameter that specifies the fraction of SNOCOVMX that provides 50% cover is 
referred to as SNO50COV, and its value can be approximated by interpreting the shape 
of the various depletion curves provided in the SWAT theoretical documentation manual 
(Neitsch et al., 2002). In the Tenderfoot Creek research watershed, it was assumed that 
10% of SNOCOVMX would provide 50% snow coverage. The aerial depletion curve 
affects snow melt only when the snow pack water content is between 0.0 and 
SNOCOVMX. Therefore, as the value of SNOCOVMX increases, influence of the 
depletion curve also increases (Neitsch et al., 2002; Wang, 2005). 

Snowmelt in SWAT is calculated as a linear function of the difference between 
the average snow pack-maximum air temperature and a threshold snow melt temperature 
parameter, SMTMP. Daily snowmelt ( mltSNO ) is calculated from: 
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where mltb  is the melt factor for the day, snocov is the fraction of the HRU area covered by 
snow, snowT  is the snow pack temperature for the day, mxT  is the maximum air 
temperature on a given day, and SMTMP is the snow melt temperature threshold. The 
value bmlt varies seasonally, with maximum and minimum melt rates theoretically 
occurring on summer and winter solstices. The snow melt rate factor is calculated as: 
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where mltb  is the melt factor for the day, SMFMX is the maximum melt factor for June 
21, SMFMN is the minimum melt factor for December 21, and nd  is the day number of 
the year. Because the snow is unlikely to melt in mid-winter the minimum melt rate 
should theoretically be 0.  

The snow pack temperature is a function of the mean daily temperature during the 
preceding days and varies as a dampened function of air temperature (Anderson, 1976; 
Neitsch et al., 2002). The influence of the previous day’s snow pack temperature is 
controlled by a lagging factor, TIMP. The lagging factor inherently accounts for snow 
pack density, snow pack depth, exposure and other factors affecting snow pack 
temperature. Snow pack temperature is calculated as:  

 
( ) TIMPTTIMPTT avdnsnowdnsnow *1*)1()( +−= −   (Eqn. 5) 

 
where )(dnsnowT  is the snow pack temperature on a given day, )1( −dnsnowT  is the snow pack 

temperature on the previous day, TIMP is the snow pack temperature lag factor, and avT  
is the mean air temperature on the current day. As TIMP approaches 1.0, the mean air 
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temperature on the current day exerts an increasing influence on the snow pack 
temperature. Smaller values of TIMP mean that the model places more weight on the 
previous day’s temperature when calculating snowpack temperature.  
 

 
SURFACE RUNOFF LAG 

 
In large sub-watersheds with a time of concentration greater than 1 day, only a 

portion of the surface runoff will reach the main channel on the day it is generated. 
SWAT incorporates a storage feature to lag a portion of the surface runoff release to the 
main channel. Once calculated, the amount of surface runoff released to the main channel 
is calculated: 
 

 
 (Eqn. 6) 
 

 
where surfQ  is the amount of surface runoff discharged to the main channel on a given 

day (mm), '
surfQ  is the amount of surface runoff generated in the subbasin on a given day 

(mm), 1, −istorQ  is the surface runoff stored or lagged from the previous day (mm), 
SURLAG is the surface runoff lag coefficient, and tcons is the time of concentration for the 
subbasin. The expression in the large parentheses represents the fraction of the total 
available water that will be allowed to enter the reach on any one day. For a given time of 
concentration, as SURLAG decreases in value more water is held in storage. The delay in 
release of surface runoff will smooth the streamflow hydrograph simulated in the reach 
(Neitsch et al., 2002).  

Lowering SURLAG from 4.0 to 0.05 increased model efficiency by nearly 80%. 
The default value made the hydrograph too flashy during runoff. Discharge needs to be 
lagged and that is why the calibrated SURLAG is such a small number. The calibrated 
value for this watershed is much smaller than what is reported by others. Most studies 
have been in watersheds with less topography than TCEF, and also do not have snowmelt 
hydrology. The combination of steep slopes and rapid water inputs due to snowmelt 
create a situation where too much runoff can be predicted unless corrective adjustments 
are made. In the Tenderfoot Creek watershed, SURLAG may have to be adjusted beyond 
physical limits because the model was designed for this type of system. 
 
 

GROUNDWATER PROCESSES 
 
Base flow Fraction  

Base flow is that component of the runoff that is supplied to the channel by 
groundwater discharge from the surrounding upland. In forested watersheds, base flow 
dominates the runoff because the porous nature and roughness of forest floors encourages 
infiltration. Surface flow only happens in periods when the soil water capacity is 
exceeded and infiltration is no longer possible. In SWAT, the landcover SCS Curve 
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Number (CN2) estimates are adjusted so that water yield fractions resemble the values of 
the base flow separation. Reducing the Curve Number increases base flow contribution 
(Mangurerra and Engel, 1998). As such, forested landcover should have lower CN2 
values than shrub or grass cover types. No data regarding the proportions of ground and 
surface water contribution from runoff events was available for the Tenderfoot Creek 
watershed. Therefore the digital base flow filter program introduced by Arnold and Allen 
(1999) was used to process observed mean daily discharge data from 1995-2002 and 
provide estimates of base and surface flow proportions (Table 1). This is one of several 
methods for estimating base flow contributions that have been developed (Arnold et al., 
1995; Arnold and Allen, 1999; Sloto and Crouse, 1996).  
 
Table 1. Baseflow filter analysis for observed daily streamflow TCSWAT, 1995 – 2002, 
showing the estimated contribution of baseflow for runoff events for each pass of the 
filter. Averages of the first and second pass, along with an average of the second and 
third pass are shown at the bottom of the table.  
 

Filter Cycle Estimated Baseflow Fraction (%) 
Pass 1 76 
Pass 2 61 
Pass 3 51 
Mean Pass 1, 2 69 
Mean Pass 2, 3 56 

 
 

The base flow fraction for our watershed may be lower than the 70% indicated by 
the filter program. Steep hillsides and a large influx of water in a short period of time 
may produce more ‘runoff’ than predicted by the filter. Therefore, it may be reasonable to 
compare SWAT water yield fraction output to the mean of the second and third pass, 
rather than the average of the first and second pass. Also, CN were developed for slope 
conditions of roughly 5%. As slopes in mountainous environments are generally greater 
than that, smaller baseflow fractions, or slightly higher curve numbers may again be 
appropriate. 
 
Groundwater Recharge and Discharge 

SWAT simulates two aquifers in each subbasin. The shallow aquifer is 
unconfined and contributes to flow in the main channel of the subbasin. The deep aquifer 
is confined. Water that enters the deep aquifer is assumed to contribute to streamflow 
somewhere outside of the watershed (Arnold et al., 1993; Neitsch et al., 2002). 
Calibration of groundwater processes focuses on adjustment of the GW_DELAY, 
GWQMN, ALPHA_BF, and RCHRG_DP parameters, which control the recharge, 
contribution and recession of baseflow due to shallow aquifer processes, and loss of 
groundwater to the deep aquifer. 

Water that moves past the lowest depth of the soil profile by percolation or bypass 
flow enters and flows through the vadose zone before becoming shallow aquifer 
recharge. The lag between the time that water exits the soil profile and enters the shallow 
aquifer will depend on the depth to the water table and the hydraulic properties of the 
geologic formations in the vadose and groundwater zones. The GW_DELAY parameter 
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controls this through an exponential decay function for situation where the recharge from 
the soil zone to the aquifer is not instantaneous, i.e. 1 day or less (Neitsch et al., 2002).  

The shallow aquifer contributes baseflow to the main channel within the subbasin. 
Baseflow is allowed to enter the channel only if the amount of water stored in the shallow 
aquifer exceeds a threshold value specified by the user, with the GWQMN parameter. 
Estimating an appropriate amount of baseflow was one of the most problematic aspects 
of streamflow calibration in this system. To ensure that sufficient quantities of water were 
available for this hydrograph component, the GWQMN parameter was set to 0. This 
enabled the model to allow baseflow contribution whenever any quantity of water was 
present in the shallow aquifer. No calibration was attempted beyond this setting. 
Recession of baseflow is controlled by the ALPHA_BF, and this has been consistently 
shown to be an important groundwater calibration parameter. It is a direct index of 
groundwater flow response to changes in recharge. The digital filter used to estimate the 
baseflow fraction was also used to estimate the base flow recession constant, which is 
referred to in SWAT as the base flow alpha factor (ALPHA_BF). ALPHA_BF is a direct 
index of groundwater flow response to changes in recharge. In forested watersheds, 
where base flow is important, the alpha factor can be an influential calibration parameter 
(Mangurerra and Engel, 1998). The range for this index is from 0 to 1, where 
groundwater flow response to recharge increases as the values approach 1 (Neitsch et al., 
2002). ALPHA_BF cannot be directly measured, so the value estimated from the filter 
program was used as a starting point for groundwater parameter calibration. Using 
observed daily streamflow spanning 1995-2002, the filter suggested an ALPHA_BF 
value of 0.03 for the Tenderfoot Creek watershed, indicating slow recession. This seems 
appropriate because after the snowmelt period and spring rainy season, streamflow 
persists throughout the year, despite the fact that groundwater recharge is negligible.  

A fraction of the total daily recharge can be routed to the deep aquifer. 
Percolation to the deep aquifer is allowed to occur only if the amount of water stored in 
the shallow aquifer exceeds a threshold value specified by the user with the RCHRG_DP 
parameter. This parameter controls the fraction of percolation from the root zone which is 
diverted to the deep aquifer and lost to the system. No adjustment was attempted after 
setting this parameter to 0.15 in calibration of Tenderfoot Creek. 
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MODEL PERFORMANCE DECOMPOSITION 
 
Calibration of the snow parameter set had the greatest effect on model 

performance in the Tenderfoot Creek research watershed. In decreasing order of 
influence, snow parameters were followed by the surface lag coefficient (SURLAG), and 
the groundwater, soil, and curve number parameter sets (Table 2).  
 
Table 2. Relative influence of factors affecting model calibration. Model performance 
was evaluated for daily streamflow in representative year, 1999 through analysis of the 
model efficiency statistic (NSd).Changes in performance due to parameter set 
decomposition are described in relative terms. Results of simulations where all 
parameters in a group have been decomposed are shown in bold face. Results from 
variation of individual parameters within a composite are italicized. Only values for the 
primary layer are given for the groundwater and soil parameter sets. 
 

   NSd NSd Change (%) 

CALIBRATED MODEL PERFORMANCE 0.92   
Composite Snow Default Value Calibrated Value -0.06 106 
Timp 1.0 0.06 0.52 43 
Smtmp 0.5 1 0.71 23 
Snocov50 0.5 0.1 0.73 20 
Smfmx 4.5 3 0.89 3 
Snocovmx 1.0 200 0.93 -2 
Smfmn 4.5 2.9 0.91 1 
Composite SURLAG 4.0 0.05 0.19 79 
Composite Groundwater  0.80 13 
Alpha_BF 0.05 0.01 0.81 12 
GW_Delay 31 1 0.85 7 
Composite Soil   0.88 4 
Sol_K 23 75 0.88 4 
Sol_awc 0.09 0.18 0.91 1 
Composite CN2   0.89 3 
Lodgepole pine 55 58 0.90 2 
Disturbed forest 55 69 0.91 1 
Shrubland 61 65 0.92 0 
Grassland 69 70 0.92 0 
Spruce-fir 55 55 0.92 0 
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COMPOSITE SNOW PARAMETERS 
Setting the snow parameters to their default values reduced the NS efficiency 

from 0.92 to -0.06. With the default snow values the snowmelt driven runoff peak 
occurred 75-80 days earlier than the calibrated and observed peaks, and the recession 
limb was extended by a similar number of days longer (Figure 9). The snow parameter 
with the greatest impact on model calibration was the snow pack temperature lag factor 
(TIMP), followed by the snow melt temperature (SMTMP), and the snow cover depletion 
curve (SNCOV50). Use of the default values for the maximum and minimum snowmelt 
rate factors (SMFMX and SMFMN) had only a minimal effect on model performance, 
while setting the snow covered area parameter back to the default value of 1 improved 
the model efficiency by 1%.  
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Figure 1. Impact of the snow parameter set decomposition on the calibrated daily 
streamflow hydrograph simulated in 1999. 
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Individual Snow Parameters 
 
SMTMP - snowmelt temperature 

 
Adjustment of the maximum snowmelt temperature is parameter affects the 

timing and magnitude of spring runoff, particularly the rising limb of the annual peak. If 
snowmelt temperature is too low then snowmelt will occur too soon. When snow is 
melted prematurely, not enough snow is available later on and there will be insufficient 
melt water to match the actual spring runoff. 
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Figure 2. Impact of snowmelt temperature (SMTMP) adjustment on the calibrated daily 
streamflow hydrograph simulated in 1999. 
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SMFMX – maximum snowmelt rate 
 
If maximum (MX) and minimum (MN) snowmelt rates are set to the same value 

(i.e. 3°C) then the melt rate for any given day is calculated as that single value. Similarly, 
is MX=3 and MN=0, then the melt rate will be that of MX, moderated by the day of year. 
That is, as the year progresses toward June 21 the melt rate increases from 0 to 3°C. With 
the current calibration, SMFMX was decreased from 4.5 to 3.0°C, causing a 3% 
improvement in NSd. To match the largest annual peaks more closely, a value closer to 
5.0°C may be a better choice, but this will also increase early runoff peaks. 
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Figure 3. Impact of the maximum snowmelt rate (SMFMX) adjustment on the calibrated 
daily streamflow hydrograph simulated in 1999. 
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SMFMN – minimum snowmelt rate 
  

Adjustment of the minimum snowmelt rate had little impact on the calibration. 
The only observable changes imparted to the hydrograph shape affected the magnitude of 
early snowmelt events. 
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Figure 4. Impact of minimum snowmelt rate (SMFMN) adjustment on the calibrated 
daily streamflow hydrograph simulated in 1999. 
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TIMP – snowpack temperature lag factor 
 
High snowpack temperature lag factor (TIMP) values cause current day 

temperature to melt snow. Therefore, when a single warm winter day occurs, the model 
melts snow and creates runoff. This does not actually happen. The snow has to ripen 
before it melts, and this takes many days of mean daily temperatures that are above the 
snowmelt temperature threshold. For this reason, it makes sense that TIMP has to be a 
small number; forcing the model to weight the temperature of pervious days more 
strongly. That is why snow does not melt early in the year even when single days can be 
above the snowmelt temperature threshold.  
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Figure 5. Impact of snowpack temperature lag factor (TIMP) adjustment on the 
calibrated daily streamflow hydrograph simulated in 1999. 
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SNOCOVMX – minimum snow water content that corresponds to 100% snow cover 
 
Threshold depth of snow above which there is 100% snow coverage is defined by 

the SNOCOVMX parameter. The actual depth of snow that entirely blankets TCEF is 
unknown because of high spatial variability within forested mountain watersheds, but to 
be safe SNOCOVMX was set to 200 mm in the current TCSWAT calibration. This may 
have been too high, but the true value is essentially immeasurable. The default for this 
parameter is 1.0 mm, suggesting that very little snow is required to create full coverage. 
More importantly, though, is the notion that by lowering the threshold depth of snow, the 
influence of the depletion curve (SNOCOV50) is reduced. This is because once the snow 
depth exceeds the threshold depth, snow cover is assumed to be uniform.  
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Figure 6. Impact of the threshold depth of snow above which there is 100% snow 
coverage snowmelt temperature (SNOCOVMX) adjustment on the calibrated daily 
streamflow hydrograph simulated in 1999. 
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SNOCOV50 – fraction of snow volume (SNOCOVMX) that corresponds to 50% cover 
 
The snowmelt depletion curve affects snowmelt when the snow depth is between 

0 and the threshold. If the threshold parameter (SNOCOV50) is low the depletion curve 
only takes affect when depth goes below the threshold. As threshold increases, the 
influence of the depletion curve will assume more importance in snowmelt processes. In 
the current calibration, threshold depth for full snow coverage in the watershed was set to 
a relatively large value of 200 mm to account for spatial variability across the watersheds. 
With a large value like this, the depletion curve had a large influence, affected snowmelt 
whenever the snowpack SNOCOV50 is set to 0.1, and the calibration may benefit from 
making this value even smaller – i.e. < 0.1. Also, the threshold may be too high, so 
changing it to 175 mm maybe worth attempting.  
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Figure 7. Impact of snowmelt depletion curve (SNOCOV50) adjustment on the calibrated 
daily streamflow hydrograph simulated in 1999. 
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SURFACE RUNOFF LAG  
 

Re-setting the surface runoff lag factor coefficient (SURLAG) from the calibrated 
value of 0.05 to the default value of 4.0 reduced the model efficiency from 0.92 to 0.19, 
nearly 80%. The default value made the hydrograph too flashy during runoff. Discharge 
needs to be lagged and that is why the calibrated SURLAG is such a small number. In 
fact, this number is much smaller than what is reported by most calibration studies. It 
makes sense though. Most studies have been in watersheds with less topography than 
TCEF, and also do not have snowmelt hydrology. The combination of steep slopes, 
frozen soil, and rapid water inputs due to snowmelt and lack of infiltration create a 
situation where too much runoff can be predicted unless corrective adjustments are made. 
In the case here, parameters may have to be adjusted beyond physically based limits 
because the model was designed for this type of system. 
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Figure 8. Impact of surface runoff lag coefficient (SURLAG) adjustment on the 
calibrated daily streamflow hydrograph simulated in 1999. 
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COMPOSITE GROUNDWATER PARAMETERS 
 
When compared with snow and surface runoff parameters, re-setting the 

groundwater parameters to their default values had relatively little effect on model 
performance. The model efficiency with the default parameters was only 12% lower than 
with the calibrated parameter set (Table 2). However, calibration of the groundwater 
parameter set improved the model fit during the streamflow recession period, and made 
more water available for baseflow (Figure 9).  

 
Individual Groundwater Parameters 

Of the calibrated groundwater parameters, adjustment of the ALPHA_BF 
parameter yielded the greatest improvement in model performance. Reducing 
ALPHA_BF from the default value of 0.048 to 0.01 slowed the shallow aquifer response 
to recharge, causing a reduction in the annual runoff peak during snowmelt and making 
more water available for streamflow later in the year. Reducing the value of 
GW_DELAY from the default of 31 days to 1 day affected both the width of the peak 
discharge and the quantity of water available for baseflow. To improve the current 
calibration slight increases in both ALPHA_BF and GW_DELAY parameters may make 
the runoff peak narrower and taller, while maintaining baseflow late in the year.  
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Figure 9. Impact of the groundwater parameter set decomposition on the calibrated daily 
streamflow hydrograph simulated in 1999. 
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Figure 10. Impact of ALPPH_BF adjustment on the calibrated 1999 daily hydrograph. 
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Figure 11. Impact of GW_DELAY adjustment on the calibrated 1999 daily hydrograph. 
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Regression statistics were then generated:  
 
Table 1. Regression summary. 
 

R R2 Adjusted R2 Std. Error Durbin Watson 
0.95 0.91 0.91 16.97 1.34 

 
 
Table 2. Regression ANOVA. 
 
 Sum of Squares DF Mean Square F Sig. 
Regression 130,875 1 130,875 454 0.0001 
Residual   13,254 46 288   
Total 144,129 47    
 
 
Table 3. Regression coefficients. 
 
 Unstandardized Coefficients   
 b Std. Error t Sig. 
Y-intercept (b0) -1.76 2.97 -0.59 0.56 

Slope (b1)  1.10 0.05 21.31 0.0001 
 
 

Computing the test statistic, Q, according to equation 1 and using matrix algebra yields: 
 

Q = [ ][ ] [ ]
⎥
⎦

⎤
⎢
⎣

⎡
⎥
⎦

⎤
⎢
⎣

⎡
−−

10) 1. -(1
)1.76--(0

 
159,831   1,564
1,564     48  

 1.10)-(1   )76.10(  = 1,119 

 
Lastly, F = Q / pS2 = 1,119 / 288 = 3.88 with DF = 1, 46. Based on the distribution 

of the F statistic, a value of 3.88 is associated with a P-value of 0.06. At the 0.05 
significance level, the joint null hypothesis cannot be rejected. Monthly predictions by 
the SWAT model, therefore, cannot be invalidated. 
 


