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  Abstract:  Exposure to heavy metals is a potential challenge to the conservation of 

wildlife.  One source of heavy metal exposure known to negatively affect avian wildlife 

is ingestion of lead rifle bullet fragments found in discarded hunter-harvested ungulate 

gut piles.  Some large mammalian carnivores, such as grizzly bears (Ursus arctos), are 

also known to target these gut piles as a food source while others, such as cougars (Puma 

concolor), avoid areas with high levels of human hunting pressure.  I investigated 

whether large carnivores in the Greater Yellowstone Ecosystem were exposed to lead, 

and if so, if ammunition ingested from hunter-harvested gut piles was an apparent source 

of exposure.  I tested samples of blood, tissue, and scat for the presence of lead in black 

bears (Ursus americanus), wolves (Canis lupus), coyotes (Canis latrans), grizzly bears 

and cougars.  Grizzly bears show higher blood lead levels (n = 82, median=4.4 μg/dL, 

range 1.1-18.6 μg/dL) than black bears (n = 44, median=1.6, range 0.5-6.9 μg/dL), but 

blood lead levels did not increase during the autumn hunting season when potentially 

lead-tainted gut piles are available.  Wolves (n = 21) and cougars (n = 8) had lead 

concentrations near or below the minimum level of detection in both blood and tissue 

samples.  No lead fragments were detected in the scat of grizzly bears, black bears, 

wolves, and coyotes in samples collected during the summer (n = 209) and fall (n = 214) 

in 2009.  Therefore, unlike avian scavengers, mammalian scavengers do not appear to be 

ingesting lead ammunition fragments.  Grizzly bears do, however, exhibit blood lead 

levels higher than what is considered safe in humans, but the source of this exposure 

remains unknown. 
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INTRODUCTION 

 

Lead toxicity 

Lead has no known essential function in the cellular processes of higher 

vertebrates (White et al. 2007).  On a cellular level, lead inhibits many of the same 

essential physiological processes in birds, humans, and other mammals (Todorovic et al. 

2008), damaging the cognitive and neurological development of exposed individuals 

(Goyer 1993, Burger and Gochfeld 1997, Burger and Gochfeld 2000, Schnaas et al. 2006, 

Todorovic et al. 2008, Wu et al. 2008).  Organisms suffer the greatest consequences of 

lead exposure during development (Gluckman and Hanson 2004, Wu et al. 2008).   

After ingestion and absorption, lead is initially found in the bloodstream, causing 

blood lead levels (BLLs) to rise (Miranda et al. 2006, Navas-Acien et al. 2007).   The 

exact rate of clearance of lead from the blood of an exposed individual varies among 

species and among exposure levels, but follows a generally predictable pattern (Fig.1).  

At lower levels of exposure (2-5 g/dL in blood), lead decreases below detectable levels 

in the blood within roughly a week (Hunt et al. 2009).  After moderate to high levels of 

initial exposure (10-70 g/dL in blood), BLLs decline quickly over the first two weeks to 

one month (Miranda et al. 2006, Craighead and Bedrosian 2008).  This is followed by a 

decrease in the rate of decline as lead deposited in bone and soft tissues begins to leach 

back into the bloodstream (Gwiazda et al. 2005, Miranda et al. 2006).  As BLLs begin to 

decrease after initial exposure, lead begins to seep into soft tissues, particularly the liver 

and kidneys, and is present and detectable at elevated levels for 3-6 months after initial 

exposure (Dinius et al. 1973, Sharma et al. 1982, Todorovic et al. 2008).   
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Lead mimics calcium by bonding with many of the same proteins that calcium 

bonds with, interfering with calcium-regulated cellular functions (Markovac and 

Goldstein 1988).  When bonding to enzymes calcium normally bonds to, lead destroys 

the enzyme rather than bonding and moving on (Hacker et al. 1990).  Bone is the primary 

storage site of calcium in the body and in the event of lead exposure, bone is also the 

primary site of long-term deposition of lead in the body (Barry 1981, Sharma et al. 1982, 

Hamilton and O’Flaherty 1995, Gangoso et al. 2009).  Lead accumulates in bone more 

Figure 1. Time after initial exposure to lead in which lead is still detectable.  Lead potentially present in 

scat samples is found in the form of particles visible on a radiograph.  Lead potentially present in blood is 

detectable at the level of g/dL with the ESA Leadcare® testing system.  Lead potentially present in bone 

and soft tissue is detectable at the level of g/dL with inductively coupled plasma mass spectroscopy.  

(Compiled from data from Dinius et al. 1973, Sharma et al. 1982, Gwiazda et al. 2005, Hunt et al. 2006, 

Miranda et al. 2006, Navas-Acien et al. 2007, Craighead and Bedrosian 2008, Todorovic et al. 2008, Hunt 

et al. 2009).  
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readily during youth, while bones are still growing, than during adulthood (Barry 1981).  

Lead found in bone frequently mobilizes back into the bloodstream, but this process 

happens slowly enough in humans that it does not typically cause BLLs to rise 

dramatically (Gwiazda et al. 2005).  

Menke et al. (2006) suggested that no level of lead exposure is without a toxic 

effect and that BLLs as low as 2 g/dL are associated with increased rates of mortality in 

humans.  Higher BLLs are associated with increased blood pressure and risk of 

cardiovascular disease in adults (Navas-Acien et al. 2007).  Adults with baseline BLLs in 

the range of 20-29 μg/dL have 39% increased mortality from circulatory problems and 

68% increased mortality from cancer when compared with individuals whose baseline 

BLLs are <10 μg/dL (Lustberg and Silbergeld 2002).   

Children are particularly susceptible to negative consequences when exposed to 

lead (Goyer 1993).  Dust from lead paint and consumption of lead paint chips are major 

contributors to lead exposure in children in the United States (Lanphear et al. 1998).  

Chronic lead exposure in children even at levels below 10 g/dL is associated with 

deficits in hearing (Osman et al. 1999) and intelligence (Bellinger et al. 1991), even when 

exposure occurs during pre-natal stages of development (Schnaas et al. 2006).  Lead may 

be passed to offspring through breast milk (Ettinger et al. 2004).  Many adult 

neurological diseases and degenerative disorders arise as a result of fetal and infantile 

exposure to environmental toxins (Gluckman and Hanson 2004).  Therefore, because lead 

most directly affects the developing nervous system for both pre- and post-natal offspring 

(Schnaas et al. 2006), lead exposure during youth has long-term negative consequences.   
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Patterns of behavioral and physiological effects of lead exposure are relatively 

consistent across taxa.  Lead is deposited in the tissues of lab rats following the same 

patterns as humans and many other birds and mammals tested, with higher affinity for 

lead among soft tissues in the liver and kidney, and long-term deposition in calcium rich 

areas such as bones and teeth (Smith et al. 2008, Todorovic et al. 2008).  The level of 

lead deposition in these body parts is dose-dependent and is directly correlated with fecal 

output (Smith et al. 2008).  Herring gulls (Larus argentatus) exposed to moderate levels 

of lead had difficulty with basic tasks of learning and sibling recognition, motor skills, 

and thermoregulation compared to control chicks (Burger 1998, Burger and Gotchfeld 

2005).  Gulls exposed to lead in the very first days after hatching exhibit many problems 

that are not seen in gulls exposed later in development (Burger and Gotchfeld 2000).  

This once again demonstrates the disproportionately strong negative effect that lead has 

on organisms exposed in the early stages of development.  These studies on lab animals 

have given researchers a general understanding of the physiological mechanisms behind 

symptoms found in wild species affected with lead poisoning.    

 Because two of my study species are wild canids, it is important to note what 

effects lead may have by examining studies done on their domestic counterparts.  Lead 

levels in dogs have been used as a method of determining the degree of lead 

contamination in urban and industrial areas (Koh and Babidge 1986, Ghisleni et al. 2004, 

Balagangatharathilagar et al. 2006).  Like other mammals and birds, lead accumulates at 

greatest levels in the bone followed by the liver and kidneys of dogs (Hamir et al. 1981, 

Lopez-Alonso 2007).  Domestic dogs that were experimentally fed high doses of lead 

compounds exhibited gastrointestinal problems, weight loss, and eventually death (Hamir 
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et al. 1981).  Low-level lead exposure in dogs, as in humans, is associated with 

hypertension (Fine et al. 1988), central nervous system lesions, and axonal degeneration 

(Hamir et al. 1984).  Therefore, wolves (Canis lupus) and coyotes (Canis latrans) may 

likely demonstrate many of the same symptoms of lead exposure as domestic dogs if 

exposed.    

 While no researchers have published findings from experimentally feeding lead to 

bears to determine the physiological and behavioral effects of exposure, there have been 

two studies that investigated lead ingestion in wild grizzly bears (Ursus arctos) in central 

Europe.  Like dogs and other mammals, grizzly bears have higher levels of lead in liver 

and kidney tissue than in muscle or heart tissue (Medvedev 1999, Celechovska et al. 

2006).  Grizzly bears exhibited lower levels of lead than large ungulates such as moose 

(Alces alces) and reindeer (Rangifer tarandus) and higher levels of lead than wild boar 

(Sus scrofa) or squirrels (Sciurus vulgaris) (Medvedev 1999).  While both of these 

studies used different techniques to analyze lead levels and reported their findings in 

units that aren’t directly comparable, neither of these studies concluded that lead 

concentrations found in grizzly bears in their respective study areas were of particular 

note (Medvedev 1999).   

 Several researchers have also documented heavy metal exposure in polar bears 

(Ursus maritimus, Rush et al. 2008).  Lead levels in liver tissue of polar bears were lower 

than other heavy metals such as mercury (Norheim et al. 1992, Woshner et al. 2001, Rush 

et al. 2008).  Lead levels in polar bears vary significantly throughout several study sites 

in the arctic, demonstrating that when different levels of lead exist in the environment, 
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polar bear tissues reflect these differences in the degree of concentration of lead in their 

tissues (Kannan et al. 2007).    

Sources of lead exposure in wildlife   

Two of the current sources of lead exposure in wildlife are mining and industrial 

activity.  The mines in northern Idaho’s panhandle are a major source of lead exposure in 

wildlife (Henny et al. 1991, Sileo et al. 2001, Beyer et al. 2007).  Waterfowl die-offs 

were occurring in the area throughout the early 1900s because waterfowl frequently 

ingest soil and sediment when foraging on the bottom of streams and ponds (Chupp and 

Dalke 1964, Blus et al. 1991, Blus et al. 1999).  Lead levels in osprey (Pandion 

haliaetus) and fish downriver from the mining activity were significantly higher than 

birds and fish at control sites (Henny et al. 1991).  Similarly, lead levels in hawks, 

falcons, and owls were higher downriver from the mines than at control sites (Henny et 

al. 1994).  However, Henny et al. (1991, 1994) believed that lead levels in these raptors 

were not high enough to cause die-offs and may not have been biologically significant.  

This is likely because raptors are exposed less frequently to contaminated soil than 

waterfowl and fish which forage directly in river- and lake-bottom sediments (Henny et 

al. 1991, 1994).  Lead remains relatively inert when deposited in soil and water, and 

plants do not readily take up lead deposited in soils and water within the normal range of 

acidity (Tsuji and Karagatzides1998, Holdner et al. 2004).  Therefore, contaminated soil 

and mine tailings must be ingested directly for lead to have an effect, rather than ingested 

through plants or water sources (Beyer et al. 1997, Tsuji and Karagatzides 1998).  Soil 

contaminated by mine tailings was the cause of death when examining the digesta or 

droppings of trumpeter swans (Cygnus buccinators, Blus et al. 1999), wood ducks (Aix 



 7 

sponsa, Beyer et al. 1997), and mule deer (Odocoileus hemionus) and white-tailed deer 

(Odocoileus virginianus, Beyer et al. 1997) in the Coeur d’Alene watershed, where lead 

contamination continues to be a wildlife conservation issue (Spears et al. 2007).   

Other forms of lead exposure in wildlife include lead paint chips and industrial 

activity.  Seabirds nesting on a decommissioned military base had lead paint chips in 

their nests and the geometric mean BLL of chicks in these nests was over 42 times higher 

than in control chicks (Finkelstein et al. 2003).  In an area polluted with lead from 

industrial kiln dust, domestic goats had average BLL almost 9 times higher than the 

levels in goats from a non-polluted site (Oluokun et al. 2007).  However, in fields 

contaminated with heavy metals from petroleum production, San Joaquin kit foxes 

(Vulpes macrotis mutica) did not show higher lead levels than control populations living 

in uncontaminated sites (Charlton et al. 2001).  The difference between these two species 

may be that kit foxes ingest less soil than goats. 

Leaded gasoline, once ubiquitous, began to be phased out in 1973 in the United 

States and continues to be phased out in countries around the world (Nriagu 1990).  

While in use, leaded gasoline caused BLLs in humans, wildlife, and domestic animals to 

rise, in addition to elevating lead levels in sediments throughout the nation and 

throughout the world (Nriagu 1990, Callender and Van Metre 1997).  Lead levels in 

sediments in the United States follow closely the rise and fall of leaded gasoline, 

demonstrating that leaded gasoline was the major contributor to atmospheric and 

environmental lead in the twentieth century (Callender and Van Metre 1997).  However, 

leaded gasoline has been virtually eliminated in the United States and Canada and is no 
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longer a major source of lead contamination in humans or wildlife.  Atmospheric lead 

levels have mirrored the decline of the use of leaded gasoline (Nriagu 1990).   

Waterfowl may be exposed to lead upon ingesting lead sinkers and lead lures 

(Franson et al. 2003).  Piscivorous birds such as common loons (Gavia immer) and brown 

pelicans (Pelecanus occidentalis) are the most common species found with lead fishing 

tackle in their stomachs (Locke et al. 1982, Franson et al. 2003).  Ingestion of lead 

sinkers and lead shot accounted for 20% of mortality of trumpeter swans in the tri-state 

area of Montana, Idaho, and Wyoming (Blus et al. 1989).  While lead sinkers may be 

present in large quantity in some aquatic ecosystems, there is no relationship between the 

density of lead fishing tackle and local water quality, again demonstrating that lead must 

be ingested directly through soil or through manmade artifacts to have a detrimental 

effect (Jacks et al. 2001).   

Lead exposure from ammunition sources 

 The threat of lead poisoning from ingestion of shotgun pellets in upland game 

birds was first documented 137 years ago by British naturalist J. Hindle Calvert (1873).  

Calvert noticed pheasants were found with lead shot in their gizzards on pheasant 

preserves and were dying with paralyzed limbs.  Since then, a variety of birds have also 

been shown to ingest shotgun pellets when foraging for grit to aid in mechanical 

digestion in their gizzards (Fisher et al. 2006).    

Martinez-Haro et al. (2009) created a simulated gizzard and intestine of upland 

game birds with digestive acids and showed that lead shot dissolution varied depending 

on the types and concentrations of food and grit also in the digestive tract.  Potts (2005) 

found that 4.5 % of over 1,300 adult wild grey partridge (Perdix perdix) found dead on 
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estates in the UK had lead shot pellets in their gizzard, and that 100% of birds found with 

3 or more pellets in their gizzard died of lead poisoning.  Other bird species that have 

shown to be at some risk of toxicity from lead poisoning include ruffed grouse (Bonasa 

umbellus), spruce grouse (Falcipennis canadensis), willow ptarmigan (Lagopus lagopus), 

and rock ptarmigan (Lagopus muta) (Rodrigue 2005).   

 One of the most well documented species of upland game birds affected by lead 

shot is the mourning dove (Zenaida macroura, Fisher et al. 2006).  In one experiment, 

mourning doves that ingested even just one or two pellets showed an almost immediate 

spike in BLLs and also had higher lead levels in their liver and kidneys post-mortem 

(Schulz et al. 2007).  In another experiment, mourning doves administered even a single 

lead pellet had rapid increases in BLLs within 24-hours, and death occurred in 104 out of 

157 birds (Schulz et al. 2006).  Ingestion of a single pellet by a mourning dove increased 

the rate of mortality by 24% (Buerger et al. 1986).  In addition the chance of death 

increases by 18% for each pellet administered (Schulz et al. 2006).    

The toxic effects of lead shot in waterfowl have been known almost as long as 

they have been recognized for upland game birds.  The well-known naturalist George 

Bird Grinnell (1894) wrote a brief article about lead poisoned ducks he had observed over 

100 years ago.  Grinnell noted that the birds likely picked up the shot while foraging for 

aquatic vegetation on the bottom of ponds heavily hunted with lead shot, and that the shot 

was concentrated in the gizzard of the duck (Grinnell 1894).  

Bellrose (1959) documented symptoms of lead poisoning in waterfowl by 

dissecting birds killed in lead pellet driven die-offs.  Birds that had ingested lead pellets 

were found with food impaction and weakness and fatigue that prevented them from 
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migrating (Bellrose 1959).  He estimated that 4 percent of mallards in the Mississippi 

flyway in the 1950s died of lead poisoning.  Bellrose (1959) noted that birds that ingested 

lead shot either passed it or died within 4 weeks, and birds weakened by lead were more 

likely to be taken by hunters.  After the effects of lead became more widely known over 

the next several decades since Bellrose’s (1959) publication, calls for restrictions against 

the use of lead shot increased.  Restrictions on lead shot for waterfowl were implemented 

in the late 1970s in the US, starting with some Federal lands and increasing as more 

states began to implement their own bans (Scheuhammer and Norris 1996).  However, 

there still are residual effects of hunting with lead shot that took place before bans went 

into effect.  Lead pellet concentrations on heavily hunted wetland bottoms are still as 

dense as 148 pellets per m
2
 in some areas (Mateo et al. 2007a).  Lead pellets remain near 

the surface of wetland bottoms (<10 cm) and may be available for consumption by 

waterfowl for 25 years or more (Flint and Schambler 2010).  Therefore, while lead shot is 

no longer widely used for hunting waterfowl, the effects of its use are still seen today.   

Lead core and solid lead bullets are widely used among hunters for large game 

mammals.  They fragment substantially upon impact, spreading far beyond the site of 

impact (Hunt et al. 2006).  Radiographs confirm that many of these fragments, which 

range in size from dust-sized fragments to several millimeters in diameter, remain in the 

gut pile (offal) left behind after the hunt (Hunt et al. 2006, Craighead and Bedrosian 

2008).  In addition, up to 21% of big game animals shot are killed but not recovered by 

hunters (Smith and Anderson 1998).  These carcasses contain particles of lead throughout 

their body cavity (Hunt et al. 2006) and provide scavenging opportunities.  Carcasses of 

animals shot with lead rifle bullets have been digested in the laboratory to confirm that 
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particles apparent on radiographs are indeed pieces of lead in both prairie dogs (Cynomys 

spp., Pauli and Buskirk 2007) and Richardson’s ground squirrels (Spermophilus 

richardsonii, Knopper et al. 2006).  

In 1982, 11 of the 19 remaining wild California condors (Gymnogyps 

californianus) died and lead poisoning was attributed to the death of 3 out of the 4 

recovered bird carcasses (Jannsen et al. 1986).  California condors scavenging in areas of 

high hunting pressure exhibit high BLLs (Wiemeyer et al. 1988, Wynne and Stringfield 

2007).  Church et al. (2006) found that lead isotope ratios in the blood of condors 

matched lead isotope ratios in ammunition.  Cade (2007) analyzed radiographs of 

condors that died from lead poisoning and saw fragments of lead bullets in the digestive 

tract.  Agencies responsible for condor restoration still capture individuals affected by 

lead ingestion to undergo chelation every year to try to mitigate the toxic effects of lead 

(Green et al. 2008).   

In addition to California condors, other species of scavenging birds such as turkey 

vultures (Cathartes aura) have shown evidence of lead ammunition ingestion and lead 

poisoning (Martin et al. 2003, Martin et al. 2008).  Egyptian vultures (Neophron 

percnopterus) that are exposed to lead over many subsequent hunting seasons exhibit 

heightened levels of lead in their bones as they age (Gangoso et al. 2009).   

In areas of high recreational big game hunting pressure, elevated BLLs in raptors 

have been documented during the hunting season (Fisher et al. 2006), and lead ingestion 

from rifle bullet fragments has been shown to be a cause of direct mortality in many birds 

of prey (Clark and Sheuhammer 2003), particularly in bald eagles (Haliaeetus 

leucocephalus) and golden eagles (Aquila chrysaetos, Wayland and Bollinger 1999, 
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Domenech and Langer 2009, Neumann 2009).  BLLs in over 1,000 common ravens 

(Corvus corvax) examined over several years directly correlated with local levels of elk 

harvest.  These ravens exhibited significantly higher BLLs during the fall hunting season 

than during other times of the year (Craighead and Bedrosian 2008).     

Raptors may also ingest lead when consuming waterfowl or upland game birds 

wounded by lead shot (Scheuhammer et al. 1996, Clark and Scheuhammer 2003), or 

when preying upon birds that have ingested lead shot into their gizzards (Kendall et al. 

1996).  Of 79 eagles investigated through radiography at a raptor rehabilitation and 

research center in Iowa, 4 had lead shot in their stomachs and 5 had fragments of rifle 

bullets in their stomachs (Kay Neumann 2010, unpublished data).  

 Fragments from rifle bullets and pellets from shotgun shells may also contaminate 

meat intended for human consumption.  Lead rifle bullets fragment well past the point of 

entry in a big-game mammal (Hunt et al. 2006).  These fragments are found in both big-

game and small game meat consumed by people (Johansen et al. 2001, Hunt et al. 2009, 

Tsuji et al. 2009).  Deer meat that was harvested with lead rifle bullets, butchered 

professionally, and prepared for human consumption was fed to domestic pigs (Hunt et 

al. 2009).  This meat was contaminated with lead rifle bullet fragments, and pigs fed this 

meat had significantly higher BLLs than control pigs, demonstrating that pigs absorb lead 

from ammunition fragments found in game meat harvested and prepared using the same 

methods used for human consumption (Hunt et al. 2009).  Cooking meat contaminated 

with lead may increase the level of exposure of people that eat it (Mateo et al. 2007b) 

 First nations people in Ontario subsisting largely on hunted game meat show 

elevated lead levels compared to local non-first nation communities that do not subsist on 
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game meat (Tsuji et al. 2008a, Tsuji et al. 2008b).  Lead isotope ratios from blood 

samples of community members most closely resemble lead isotope ratios from 

ammunition sources and do not match lead isotope ratios in local lichens, which are 

frequently used as a measure of environmental contamination for a particular study site 

(Tsuji et al. 2008a, Tsuji et al. 2008b).  Lead in the blood of community members as a 

result of consumption of game meat harvested with lead bullets may be a public health 

issue for these communities (Tsuji et al. 2008c).   

In summary, while the potential for direct mortality from lead poisoning is a clear 

threat to some species, the sub-lethal effects of lead ingestion is also a concern because 

lead suppresses the nervous and reproductive systems, which has been well documented 

in humans, laboratory animals, and wildlife (Goyer 1993, Burger and Gochfeld 1997, 

Burger and Gochfeld 2000, Menke et al. 2006, Wu et al. 2008).   

Large carnivores 

Samples for this study were collected from five target species (cougars (Puma 

concolor), coyotes, wolves, black bears (Ursus americanus), and grizzly bears) from the 

Northern Rocky Mountain and the GYE populations.  These populations of coyotes, 

cougars, and black bears are not listed under the Endangered Species Act (USFWS 2010) 

and are considered “species of least concern” worldwide by International Union for the 

Conservation of Nature (IUCN 2010).  However, the GYE grizzly bear population and 

the Northern Rocky Mountain wolf population are both considered Distinct Population 

Segments (DPSs), and have each gone through a series of delisting and re-listing over the 

past several years (Rosen 2007, Bergstrom et al. 2009, USFWS 2010).  Wildlife 

managers are undertaking massive recovery efforts to achieve sustainable populations of 
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wolves and grizzly bears in the lower 48 states (Laliberte and Ripple 2004, Schwartz et 

al. 2006, Kasworm et al. 2007).  The public has invested a tremendous amount of time 

and money in the return of wolves to the GYE and in management of threatened grizzly 

bear populations.  Therefore it is imperative that researchers determine any ways in 

which anthropogenic changes to the environment may be negatively affecting the long-

term survival and fitness of these animals.   

Like avian scavengers, mammalian scavengers are also known to consume offal 

piles from hunter-harvested big game animals (gut piles, Wilmers et al. 2003a, 2003b).  

While nearly all vertebrate predators scavenge to some extent (DeVault et al. 2003), 

black bears, grizzly bears, wolves, cougars, and coyotes scavenge to highly varying 

degrees on gut piles and wounded animals (Ruth et al. 2003, Wilmers et al. 2003b, 

Haroldson et al. 2004).   

Grizzly bears are frequent scavengers (Green et al. 1997), and are best known 

among mammalian predators to take advantage of gut piles and wounded elk as a food 

source, changing their movement patterns from areas protected within the boundaries of 

Yellowstone National Park (YNP) to areas of high hunting pressure during the fall 

hunting season (Ruth et al. 2003).  Grizzly bears are also more likely to be in areas of 

high hunting pressure when alternative food sources such as whitebark pine (Pinus 

albicaulis) are less abundant (Haroldson et al. 2004).  They are voracious eaters when 

consuming flesh, ingesting an average of 0.8 kg of food per minute (Wilmers et al. 

2003b).  Grizzly bear mothers with cubs, however, may avoid areas with nutrient rich 

food sources because of the threat of infanticide by adult male grizzly bears (Ben-David 



 15 

et al. 2004).  Therefore, mothers with cubs may be less attracted than adult males to areas 

with concentrated food subsidies provided by hunters.     

Black bears are known to scavenge when presented with the opportunity (Carson 

et al. 2000), although not to the degree of grizzly bears (Wilmers et al. 2003a).  In the 

presence of dense grizzly bear populations, black bears may avoid highly desirable food 

resources to avoid conflicts with grizzly bears, particularly during years when those food 

resources are more limited (Belant et al. 2006).  Therefore, while black bears may 

consume food supplements from hunters, they may not do so to the degree that grizzly 

bears seek out hunter-provided food supplements, and may avoid these supplements in 

the presence of grizzly bears.   

Wolves also scavenge, but they do so to a much lesser extent than grizzly bears 

(Wilmers et al. 2003a, 2003b).  In Alaska, wolves and grizzly bears each scavenged at 

over 50% of experimentally placed mammal carcasses and they consumed all available 

meat of large ungulate carcasses within 2-6 days of finding a carcass (Magoun 1976).  

However, during the fall elk hunting season in the GYE, some wolves and wolf packs 

leave the YNP boundaries possibly to scavenge on gut piles while others follow the 

movement of elk into the park and away from hunters (Ruth et al. 2003).  Therefore, 

while wolves may take advantage of gut piles and wounded animals, they likely do so to 

a much lesser degree than grizzly bears (Ruth et al. 2003, Haroldson et al. 2004).   

Coyotes are well-known scavengers (Wilmers et al. 2003a, 2003b, Jennelle et al. 

2009), and are typically the dominant scavenger at a variety of food sources from bovine 

fetuses (Cook et al. 2004) to wolf kills (Wilmers et al. 2003a).  Conversely, cougars 

avoid hunters completely and follow the movement of elk herds into the protective park 
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boundaries of YNP (Ruth et al. 2003).  Researchers consider scavenging a rare 

occurrence among cougars (Ackerman et al. 1984, Anderson and Lindzey 2003).   

Few researchers have looked at heavy metals in large carnivores using blood or 

tissue samples (Dip et al. 2001, Millan et al. 2008) because of the inherent difficulty in 

sample collection.  Two studies have investigated lead levels in large carnivores 

(Medvedev 1999, Celechovska et al. 2006), neither of which studied carnivores in North 

America, nor used blood samples.  Furthermore, no researchers have investigated 

ammunition as a potential source for lead exposure in this important mammalian guild 

despite the potential opportunity for lead exposure in this group.  Therefore, I 

investigated whether large carnivores in the GYE are being exposed to lead, and if so, if 

ammunition ingested from gut piles and unrecovered carcasses was an apparent source of 

exposure. 

HYPOTHESIS AND PREDICTIONS 

My goal of this research was to investigate two questions: 1) Are large carnivores 

being exposed to lead from their environment? and 2) Is lead from rifle bullet fragments a 

contributing source of lead exposure in large carnivores? 

To test if large carnivores are being exposed to lead from their environment, I did 

a simple quantitative analysis of blood and liver tissue samples.  I hypothesized that 

carnivores are being exposed to lead at detectable levels.  I further hypothesized that lead 

ammunition is one contributing source of lead exposure in carnivores. If carnivores are 

being exposed to lead from lead ammunition from hunter-harvest ungulate gut piles, I 

predicted the following:  



 17 

1. Blood and liver tissue lead levels should be highest among grizzly bears, 

moderate to low among wolves, and lowest among cougars, based on known differences 

in responses to recreational big-game hunting for scavenging opportunities.  Black bears 

should have lower BLLs than grizzly bears because they may avoid gut piles in the 

presence of grizzly bears to avoid conflict.   

2. BLLs should be higher during the fall elk hunting season than during other 

times of the year, similar to other bird species such as common ravens.   

3. Lead fragments should be present in scat piles after the individual has 

consumed lead rifle bullet fragments and it has passed through the gastrointestinal tract 

partially undigested.  

4. BLLs should be higher for grizzly bears during years with lower alternative 

food resources such as whitebark pine seeds because grizzly bears are more likely to be 

in areas with high hunting pressure during these years.   

5. BLLs may be higher during years in which grizzly bears have a higher number 

of aggressive encounters with humans, particularly with hunters.  BLLs may also be 

higher for individuals who are considered problem bears that are more habituated and 

aggressive towards people and may therefore be more likely to take advantage of 

attractants such as scavenging opportunities from hunters.  

6. BLLs may trend lower for grizzly bears captured within areas not open to 

hunting such as within the park borders of YNP.  However, because grizzly bears may 

move vast distances in short periods of time, bears may be exposed to ammunition 

outside the park and then move into the park within a short time after exposure so there 

may be exceptions to this trend.   
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 STUDY AREA 

 I analyzed samples collected in Wyoming, Idaho, and Montana.  The majority of 

samples collected came from the southern GYE in the Jackson Hole valley.  The southern 

GYE includes 2 national parks (YNP and Grand Teton National Park, GTNP), the 

National Elk Refuge, and Bridger-Teton National Forest.  This area provides an ideal 

setting for this study.  It hosts a complete large carnivore guild including grizzly bears, 

black bears, wolves, cougars, and coyotes (Ruth et al. 2003).  There is also one of the 

largest big-game hunts in North America resulting in abundant annual harvests (Wilmers 

et al. 2003b, Haroldson et al. 2004), in addition to roughly concurrent hunting seasons for 

moose, bison, and deer occur.  Rifle hunting season for elk starts on or around 20 

September in Wyoming; most of the blood and scat samples were collected in Wyoming.  

Rifle-hunting season for elk starts in mid-October in both Montana and Idaho.  Elk 

hunting seasons end after most bears have gone into hibernation.  These hunts provide an 

environment rich in food supplements in the form of hunter-wounded animals, skeletal 

frames with meat removed, and gut piles (Haroldson et al. 2004, Craighead and 

Bedrosian 2008).   

 METHODS 

Blood samples 

Blood lead level (BLL) is a standard indicator for acute exposure to lead (Goyer 

1993, Menke et al. 2006).  Blood samples were collected from free-roaming wild wolves, 

cougars, black bears, and grizzly bears by collaborating biologists from the Interagency 

Grizzly Bear Study Team, Grand Teton National Park, the U.S. Fish and Wildlife Service 

Interagency Wolf Recovery Team, the Teton Cougar Project, and Wyoming Game and 
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Fish.  Blood samples were taken from animals that were captured for research and 

management purposes independent of this study.  Animals were handled according to 

Animal Care and Use protocols defined by those individual agencies and approved by the 

Institutional Animal Care and Use Committee at The University of Montana.  Samples 

were collected at the time of capture and were stored refrigerated or frozen in 0.2% 

EDTA blood tubes.  Individuals captured multiple times over the course of the study 

were considered independent samples if they were captured more than 3 months apart 

because any lead present in the blood at the time of initial capture would no longer be in 

the bloodstream by the time of recapture (Miranda et al. 2006, Craighead and Bedrosian 

2008).   

 Blood samples were analyzed using the ESA Leadcare
®

 System (LCS, Craighead 

and Bedrosian 2008), which gives results in units of µg/dL.  In some species, LCS may 

give results that are slightly lower than other methods of lead analysis such as inductively 

coupled plasma mass spectrometry (ICPMS) but is still useful to compare the level of 

exposure of individuals (Bedrosian et al. 2009).  The analyzer was calibrated using 

bovine blood controls provided by ESA before each set of tests and the readings were all 

within the expected range of values.  In addition, a subset of grizzly bear samples were 

rerun one year after initial tests (N=8), several weeks after the initial test (N=6) and 

immediately after the initial test (N=1).  Results trended slightly lower than the original 

test result for samples re-tested one year later, but the difference was not significant and 

the correlation was strong (R
2
 = 0.96, see appendix).  One outlier was recorded that was 

roughly 13 µg/dL lower than the original test result that was attributed to processing 

error.  The lower limit of LCS, below which an individual reading is no longer 
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considered accurate is 3.3 µg/dL.  All results below this number may therefore be 

considered simply “below 3.3 µg/dL.”  For this analysis, the value given by the machine 

was used, because this value may be more accurate than reporting a result of either 3.3 or 

0.0 µg/dL.   

Tissue samples 

Liver samples were collected from individuals killed for management purposes 

independent of this study.  Samples were analyzed using ICPMS at the Michigan State 

University Center for Population and Animal Health.  While blood samples give a 

measure of exposure to lead within the past several weeks, lead levels in liver samples 

indicate level of exposure to lead within the past 3-6 months (Dinius et al. 1973, Sharma 

et al. 1982, Todorovic et al. 2008).   

Scat samples 

Scat samples were collected by walking trails in and around areas open to fall elk 

hunting in Grand Teton National Park and Bridger Teton National Forest.  Each pile of 

scat was counted as one sample.  If two piles were within a few meters of each other, they 

were designated as separate samples if they differed in apparent age or in contents.   

In addition to samples collected in the field, bear scat from individuals captured 

for research and management purposes that was left behind in the trap was also included 

in the analysis.  This allowed me to potentially match high or low lead levels in blood 

samples with the presence or absence of lead particles in scat samples for an individual.    

The date and GPS location was recorded for each sample collected.  Samples 

were designated with a subjective estimate of time since deposition on a scale from more 

recent (1) to less recent (3).  The contents of each scat (meat, nuts, seeds, berries, 
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vegetation, bone, hair, etc.) were recorded.  Scat samples were collected during the 

months of June, July, and August for a summer subset, and during the month of October 

for an autumn subset.   

Samples were identified to genus using visual field identification marks 

(Halfpenny 2001).  Scat samples that were identified as canid and that were ≥ 30 mm in 

diameter were considered wolf samples and samples < 30 mm were considered unknown 

Canis spp. samples (Weaver 1979).  I was unable to assign a species to samples identified 

as bear scat because there is not a defined method for distinguishing these samples with 

certainty in the absence of analyzing DNA (Kendall et al. 1992).   

Each scat sample was autoclaved and dried in a drying oven.  Samples were then 

ground with a coffee grinder and placed in a Petri dish on a labeled 14/17 inch cardboard 

grid.  Petri dishes were radiographed at a local veterinarian’s office and the radiographs 

were digitized.  Small lead particles such as those coming from lead rifle bullet fragments 

or lead shot are visible by radiograph and are discernable from bone or other fragments 

(Hunt et al. 2006, Pauli and Buskirk 2007, Hunt et al. 2009).  Two Petri dishes with 

ground carnivore scat were used as controls.  In one dish, I experimentally placed 

discharged shotgun pellets and in the second I placed lead filings shaved off the 

discharged shotgun pellets.  Lead and lead fragments from both controls were easily 

visible on the radiographs and served as a benchmark with which I was able to compare 

visible, bright white patches on the radiographs of sample Petri dishes.   

Radiographs were digitally enhanced to increase contrast.  Because the Petri 

dishes remained in the cardboard grid, the orientation was unchanged from the time 

radiographs were taken.  Any scat samples containing bright white spots or blotches that 
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looked like potential lead fragments were present were dissected and the particle was 

located.  Dense shards of bone and gravel were disregarded.   

Any particles that looked like potential fragments of lead ammunition were 

analyzed at the University of Montana Electron Microscopy Facility.  Methods for 

electron microscopy were following the instructions from the Quartz Imaging Corp. 

Vancouver, BC, Canada as follows: 

Dry organic samples were placed on a sticky carbon tab on a 12mm aluminum SEM stub. 

The stubs were placed, uncoated, in a Hitachi S-4700 Scanning Electron Microscope and 

imaged at 10kv. EDX analysis was performed on selected regions of the samples at 

magnifications of 250x – 450x with a scanning time of 90 seconds. Data was collected in 

graphic form and as tables indicating weight percent of elements observed in the samples. 

STATISTICS 

I performed a Shapiro-Wilk test to determine that the data were right skewed for 

both black bears (W = 0.84, P < 0.01), and grizzly bears (W = 0.81, P < 0.01).  I did a log 

transformation which normalized the distribution for both black bears (W = 0.98, P = 

0.73) and grizzly bears (W = 0.98, P = 0.18).  I then performed all parametric tests to 

analyze the data.  Because there was a general trend of increasing BLLs in grizzly bears 

sampled later in the year regardless of whether they were sampled before or during the 

hunting season (R 
2
 = 0.026, P = 0.04, Fig. 2), I tested these data using a segmented 

regression model to determine if the slope changes from before hunting season to during 

hunting season.  The segmented regression determined the slope before the hunting 

season started and after the hunting season started and compared the two to see if the 

onset of hunting season changes the slope of the line in any meaningful way.  I also ran a 

segmented regression in both the populations inside and outside YNP to test for a 
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Figure 2. Blood lead level (BLL, µg/dL) for grizzly bears captured from 2007-2009.  There was slight 

general trend (R2 = 0.0263) of increasing blood lead levels during the year (P = 0.04).  Many of the highest 

BLLs recorded were taken from bears captured during July and August before the fall hunting season.   

difference in hunting and non-hunting season blood lead levels in both populations 

independently.   
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Comparisons to determine possible difference based on sex, reason for capture, or 

problem bears were performed using independent t-tests of BLL.  To determine if age 

was correlated with BLL, I performed a simple linear regression of age versus BLL.  To 

compare BLL of black bears and grizzly bears captured in YNP, GTNP, and outside 

either park, I performed an ANCOVA using a general linear model.  Because blood 

samples collected outside either GTNP or YNP tended to have more days between 

collection and analysis for grizzly bears (Pearson correlation 0.46, P <0.01) and black 

bears (Pearson correlation 0.38, P = 0.03), I included this as a random variable in the 
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Figure 3. Mean blood lead level (BLL) in µg/dL for grizzly bears, black bears, wolves and cougars, 

captured from 2007-2009 in the greater Yellowstone ecosystem with standard error bars and sample sizes.  

Species that are not statistically different (P ≤ 0.05) are labeled with the same letter above the sample size   

ANCOVA to control for this effect.  Pair-wise comparisons were made using a 

Bonferroni post hoc test.  To do a very basic spatial analysis to determine if bears 

captured in one part of the study area had different BLLs than those captured in another 

part, I performed a linear regression of BLLs against latitude and BLL against longitude.   

To compare BLL among the 4 test species, I performed a one-way ANOVA.  No 

statistical tests were performed on liver tissue samples because there was not a large or 

complete enough sample size to make meaningful comparisons. 

RESULTS   

I tested blood samples from four carnivore species: grizzly bears (n = 82), black 

bears (n = 35), wolves (n = 12) and cougars (n = 6).  In addition, I tested liver tissue 

samples from wolves (n = 9) and cougars (n = 2). BLLs in grizzly bears were 

significantly higher than all other species tested (P < 0.01, Fig.3).   
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Figure 4. Blood lead level of grizzly bears (n = 82), black bears (n = 35), wolves (n = 12) and cougars (n = 

6) captured from 2007-2009 in the greater Yellowstone ecosystem.     

Black bears had lower BLLs than grizzly bears (P < 0.01) and higher BLLs than wolves 

(P < 0.01).  I did not collect a large enough sample size of cougar blood samples to make 

a meaningful statistical comparison between cougar and black bear and between cougar 

and wolf BLLs.   

Grizzly bears 

I tested blood samples from 82 grizzly bears captured during 2007 (n = 15), 2008 

(n = 38), and 2009 (n = 29).  There was no difference in BLLs in grizzly bears across the 

three years of the study, so data from the three years were pooled (F = 0.207, P = 0.81).  

The median grizzly bear BLL was 4.4 μg/dL and results ranged from 1.1 to 18.6 μg/dL.  

The highest BLL tested in grizzly bears was from a bear captured before the start of the 

hunting season, as were 7 out of the 11 bears with BLLs above 10 μg/dL (Fig. 4).   
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Grizzly bears captured after the Sept 20 start of hunting had higher mean BLLs than 

grizzly bears captured before this date (z = -2.137, P = 0.02).  However, in a segmented 

regression model, there was no difference in slope of BLLs in grizzly bears captured 

before (n = 59) and after the Sept 20 start of hunting season (n = 23) (β < 0.001, P = 

0.95).   Therefore, after controlling for the trend of an increase in BLLs later in the year, 

BLLs before and during the hunting season in grizzly bears were similar.  When the 

populations inside and outside YNP were analyzed separately there was still no 

difference between BLL before and after the Sept 20 start of hunting season (β < 0.01, P 

= 0.34 inside YNP, β < -0.01, P = 0.73 outside YNP).   

I found no significant difference in BLLs in independent t-tests between male (n = 

54) and female grizzly bears (n = 28, t = 1.26, P = 0.21), nor between bears captured for 

research (n = 55) or management purposes (n = 27, t = 0.04, P = 0.97).  I found no 

correlation between age and BLLs (F = 0.123, P = 0.77). Problem bears were defined as 

individuals removed or euthanized because they showed aggressive behavior towards 

people or property.  I found no significant difference between problem bears (n = 24) and 

non-problem bears (n = 58, t = 0.03, P = 0.74).   

Grizzly bears did not trend higher BLLs in the North-South (F = 0.097, P = 0.76) 

or the East-West (F = 0.915, P = 0.34) directions.  Similarly, there did not appear to be 

geographic clusters of higher or lower BLLs (Fig. 5).  Bears captured outside YNP and 

GTNP had higher BLL than bears captured within YNP (95% CI (0.05, 0.24), P < 0.01, 

Fig. 6). 
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Figure 5. Distribution of grizzly bear captures from individuals tested for blood lead from 2007-2009 in 

the greater Yellowstone ecosystem.  Individuals marked with a black circle had blood levels ≥ 8 µg/dL; 

those marked with a white square were below this level.  There does not appear to be any cluster of higher 

blood lead levels.  The shovel and pickaxe symbols indicate locations of current and historical lead mines 

throughout the greater Yellowstone ecosystem.  Lead mines are concentrated along the northern border of 

Yellowstone National Park and have no correlation with blood lead levels of grizzly bears (Data from 

United States Geological Survey, Washington, D.C., 2010).    
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Figure 6. Mean blood lead level (BLLs) in µg/dL (± SE) for grizzly bears and black bears captured in 

Yellowstone National Park (YNP), Grand Teton National Park (GTNP), and outside either national park 

(Non-Park).  Sample sizes are listed above each bar, and groups with statistically similar BLLs are 

grouped according to the letters above.  YNP is completely closed to hunting while GTNP is open to elk 

hunting in some parts of the eastern side of the park.  The surrounding lands, including private lands, 

national forest lands, and the National Elk Refuge are mostly open to big game hunting with varying 

restrictions placed on each.  BLLs were similar among YNP, GTNP, and Non-Park black bears (P = 

0.69).  BLLs were higher for bears captured outside either park than BLLs in grizzly bears captured inside 

YNP (P < 0.01).   
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Black bears  

I tested BLLs in black bears (Fig. 4) captured in 2007 (n = 15), 2008 (n = 14), and 

2009 (n = 6).  There were no significant differences among the three years sampled in a 

one-way ANOVA (F = 1.117, P = 0.21), so data from all three years were pooled.  Black 

bears had a median BLL of 1.6 μg/dL and results ranged from 0.5 to 6.9 μg/dL.  There 

was no difference in BLLs of black bears captured before (n = 31) or during (n = 4) the 

elk hunting season (F = 0.957, P = 0.39), although the sample size of 4 black bears 
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captured during the hunting season may not have been large enough for meaningful 

statistical comparison.   

There was no significant difference in BLLs of male (n = 12) and female (n = 23) 

black bears (F = 0.437, P = 0.67).  There was no increase in BLLs with increased age (F 

= 0.538, P = 0.47).  BLLs in YNP, GTNP, and outside the parks were similar (P = 0.69) 

Fig. 6).   

Wolves and cougars 

The wolves tested (n = 12) all had BLLs near the bottom of detectible limits 

(median = 0.5 μg/dL, range = 0.0 -1.4 μg/dL).  No blood samples were collected from 

wolves during the fall elk hunting season.  In addition, I tested 9 liver samples from 

wolves collected between May and August and all were below the limits of detection for 

lead.    

Cougars tested (n = 6) also all had BLLs near the bottom of detectible limits 

(median = 1.2 μg/dL, range = 0.0 -1.4 μg/dL).  Of the six tested, two were taken from 

cougars during or immediately following elk hunting season.  In addition, I tested 2 liver 

samples from cougars collected during the hunting season and both were below the limits 

of detection for lead.   

Scat samples 

 Scat of grizzly bears, black bears, wolves, and coyotes was collected during the 

summer (n = 209) and fall (n = 214) of 2009.  Of the summer subset, 12 were identified 

as bear scat, 19 as wolf scat, and 149 were below 30 mm in diameter and were identified 

as unknown canid scat samples, although it is likely that many of these were coyote scat.  

Of the fall subset, 8 were identified as bear scat, 33 as wolf scat, and 168 as unknown 
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canid scat samples.  I also tested 13 non-hunting season coyote scat samples collected by 

a collaborating group at the University of Wyoming in 2006.   

Additionally, I tested 14 scat samples from grizzly bears captured during the 

summer, 1 scat sample from a black bear captured during the summer, and 4 grizzly bears 

captured during the fall hunting season.  This scat was collected from the traps when 

bears were captured for research and management purposes by government agencies.   

 When digital radiographs of the ground scat samples were analyzed, fragments 

and shavings of lead ammunition in the control samples were clearly visible.  None of the 

particles in test samples that resembled the clarity and brightness of particles in control 

samples contained any lead signature upon electron microscopic analysis.  Therefore, no 

lead ammunition fragments were detected in the scat of these large carnivores.   

DISCUSSION 

I found that lead levels were highest for grizzly bears, intermediate for black 

bears, and lowest for cougars and wolves.  This supported one of my predictions for 

patterns I expected to see if animals were ingesting lead ammunition from gut piles based 

on known differences in carnivore response to big-game hunting (Ruth et al. 2003, 

Wilmers et al. 2003b, Haroldson et al. 2004) and interspecific interactions between bear 

species (Belant et al. 2006).  In addition, lead levels were higher in grizzly bears and 

black bears for individuals captured outside YNP as was predicted if ammunition was a 

source of lead exposure.   

However, I did not see a significant increase in BLLs in any species during the 

fall hunting season after controlling for the trend of increasing lead levels through the 

whole year.  Nor did I see the spike in lead levels in some individuals during the fall 
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hunting season characteristic of a population affected by lead ammunition ingestion 

(Craighead and Bedrosian 2008).  In addition, there were no particles of lead ammunition 

found in the scat, nor were there differences in lead levels for problem grizzly bears and 

non-problem grizzly bears.  There was also no difference in lead levels among the three 

years sampled despite differences in availability of food sources during these years 

(Haroldson and Podruzny 2010).  In the absence of these trends, I am unable to confirm 

the hypothesis that grizzly bears or black bears are ingesting lead ammunition.  I am 

unable to determine if wolves or cougars are ingesting lead ammunition due to the 

scarcity of samples taken from these species during the fall hunting season.  However, it 

is clear that baseline BLLs in wolves and cougars are lower than in grizzly bears in this 

study area.   

In the absence of data describing physiological or behavioral effects of exposure 

to lead in grizzly bears, it is difficult to assign a specific toxic level of exposure for this 

species.  However, the median BLL in grizzly bears was more than twice as high as 

levels suggested by Menke et al. (2006) to be safe in humans (2 μg/dL) and some grizzly 

bears had BLLs that were more than 9 times this benchmark.  Lead levels in grizzly bears 

are also many times higher than the level found in preindustrial humans of 0.016 μg/dL 

(Flegal and Smith 1992).   While it is not currently known what levels of exposure may 

have detrimental physiological or behavioral effects in grizzly bears, it may be worth 

further investigation to determine possible point sources of lead exposure for grizzly 

bears.   

Although one single point source of lead exposure is not clear from the patterns in 

the data, there are a few factors that could potentially be contributing to lead exposure in 
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bears.  Soil and sediment contaminated with mine tailings have previously contributed to 

lead exposure in species that directly or indirectly consume soil (Beyer et al. 1997, Blus 

et al. 1999, Beyer et al. 2007).  The GYE contains many current or historical lead mines, 

particularly in the northeastern and northwestern corners of YNP (Fig. 5). Unlike wolves, 

coyotes, and cougars which are almost exclusively carnivorous, black bears and grizzly 

bears are omnivorous, with the majority of their diet consisting of plant matter in the 

GYE (Robbins et al. 2004).  There are several types of food consumed by grizzly bears 

that may cause them to ingest some soil indirectly when foraging.  Yellowstone grizzly 

bears are known to feed on earthworms (Mattson et al. 2002a), roots (Mattson 1997), 

mushrooms and truffles (Mattson et al. 2002b).  They may also dig up pocket gopher 

dens and eat both the gopher and its food cache (Mattson 2004).  If mine tailings do in 

fact contribute at least partially to levels of lead exposure seen in bears, this could explain 

some of the differences in lead exposure between omnivorous bears and the more strictly 

carnivorous wolves and cougars.  Unlike bears, wolves and cougars do not forage for 

roots and truffles and would therefore not have the potential to be exposed through 

indirect consumption of soil.  However, this would not explain differences observed in 

BLLs between grizzly bears and black bears.   

There are limits to what can be determined about the home range of an individual 

grizzly bear based on where it was captured because home range sizes for grizzly bears in 

the GYE average 884km
2
 for females and 3757 km

2
 for males (Blanchard and Knight 

1991).  Capture location may, however, give a reasonable idea of the general area the 

bear was located for several days prior to capture because grizzly bears move an average 

of only 7-8 km per day (Ballard et al. 1982) and often as little as 1-2 km per day 



 33 

(Blanchard and Knight 1991).  Capture location may therefore be a useful index of areas 

with higher potential for lead exposure throughout the ecosystem.  Lead levels in grizzly 

bears and black bears are lower inside YNP where there are no mines than outside the 

park where current and historical lead mines exist.  However, there do not appear to be 

specific clusters of higher lead levels in grizzly bears, while lead mines are clustered in 

specific areas of the ecosystem (Fig. 5).  Therefore, if lead mines are a source of lead 

exposure in bears, they are likely not the only source.  In addition, while there is a 

statistical difference in levels of exposure to lead in bears captured inside and outside 

YNP that may give an indication of potential sources of exposure, this difference is not 

large.   

 Another potential source of lead exposure may be garbage or paint chips.  Lead 

exposure was higher for black bears and grizzly bears outside of the National Parks 

where access to garbage for bears might not be as strictly controlled as areas within the 

parks.  BLLs are higher for black bears that were captured for management purposes, 

which may have been individuals that were removed because they were getting into 

garbage or coming too close to residential areas.  Lead tastes sweet (children purposely 

ingest lead paint chips because of its taste, Lanphear 1996), so bears may select lead 

garbage in dumpsters or lead paint chips from old barns or abandoned buildings because 

of the sweet taste.   

 While the data I collected do not point to lead ammunition as a point source of 

lead, they do not strictly exclude this possibility.  Wildlife may be exposed to lead from 

ammunition at times of the year other than hunting season.  Non-game animals such as 

ground squirrels, prairie dogs, and coyotes that are shot with lead ammunition and left in 
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the field during times of the year outside of hunting season (Berger 2006) have been 

proposed as a potential source of lead exposure in scavenging hawks and eagles 

(Knopper et al. 2006, Pauli and Buskirk 2007, Stephens et al. 2007).  If bears are in fact 

ingesting lead ammunition from these sources, they may not be showing the 

characteristic spikes in BLLs because they are proportionally so much larger than the size 

of an ammunition fragment than birds are (a 200 kg mammal rather than a 1 kg bird).  If 

ammunition was a major source of exposure, I would likely have detected lead fragments 

in the scat of these carnivores.  However, the lack of detection does not confirm the 

absence of ammunition fragments in scat.   

 There is also the potential that grizzly bears and black bears are not being exposed 

to lead through any particular point source, but are instead exhibiting intrinsically 

different rates of lead absorption and deposition in the blood than birds and mammals 

previously tested.  While lead exposure for black bears and grizzly bears may be similar 

to other species tested in this study, they may be exhibiting higher levels of blood lead 

because of physiological differences in their response to lead exposure.  For example, 

grizzly bears have higher concentrations of persistent organic pollutants in their fat 

following hibernation compared with before hibernation (Christensen et al. 2007).  While 

lead is not concentrated in fat (Medvedev et al. 1999), hibernation may change other 

physiological aspects of lead absorption and distribution in the body of bears in other 

ways.  Bears overcome bone loss during disuse while hibernating by maintaining bone 

formation and resorption during this time (McGee-Lawrence 2009), which would likely 

mobilize lead stored in bones back into the bloodstream (Gwiazda et al. 2005).  While 

rates of bone turnover during the time period of activity for a bear would be similar to the 
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other mammals I’ve examined, perhaps this process for mitigating bone loss contributes 

in some way to higher mobilization of lead stores in the bones of bears than in non-

hibernating cougars and wolves.   

CONCLUSION  

Grizzly bears and black bears show higher BLLs than sympatric carnivores such 

as wolves and cougars.  Grizzly bears and black bears do not exhibit increased BLLs 

during the fall hunting season, nor do they show spikes in lead levels characteristic of 

other species known to ingest lead ammunition fragments, and there were no ammunition 

fragments detected in scat of any of these species.  Therefore lead ammunition is likely 

not the primary source of lead exposure in bears.  Other potential point sources may 

include lead mine tailings, lead-tainted garbage, or possibly lead ammunition fragments 

from game and non-game species killed with lead ammunition.  Lead exposure in bears is 

higher in less protected areas outside Yellowstone National Park, which may indicate that 

sources of exposure are more prevalent in these areas.  The potential also exists that there 

are no particular point sources of exposure and environmental lead is simply metabolized 

differently in bears than other mammals species due to strategies bears employ to 

mitigate bone loss from disuse during hibernation.   

MANAGEMENT IMPLICATIONS 

While it is difficult to establish a specific toxic level of exposure to lead in grizzly 

bears, BLLs are substantially higher than levels considered safe for humans.  It may be in 

the interest of grizzly bear conservation to mitigate lead exposure because lead negatively 

affects reproductive rates and intelligence in other species.  Grizzly bears reproduce 

slowly and rely heavily on their intelligence as opportunistic omnivores.  If lead toxicity 



 36 

affects grizzly bears in ways similar to birds and mammals previously tested, decreased 

reproduction rates and levels of intelligence due to lead exposure may be hindering 

grizzly bear recovery.   
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APPENDIX 

In a simple linear regression, there was no correlation between time after 

collection until analysis and BLL (F = 1.16, P = 0.285, R
2
 = 0.01).  Therefore, time after 

analysis does not appear to have an effect on the result.   

In order to confirm the accuracy of analysis using the ESA Leadcare
®

 system 

(LCS) for samples run up to a year after collection, I took 15 grizzly bear blood samples 

previously run on LCS and reran them at different time intervals.  This retest included 

samples that originally had readings that were relatively low, medium, and high BLL 

measured for grizzly bears.  These samples were rerun one year after the initial run date 

(n = 8), 1-3 weeks after the initial run date (n = 6), or immediately after the initial run (n 

= 1).   

There was one extreme outlier (13.3 μg/dL lower than the original), which I reran 

immediately and came out with the exact same answer again (13.3 μg/dL lower).  This 

could have been a result of human error or of process error during the initial test, which 

does happen rarely in many different forms of testing blood lead levels (Bedrosian et al. 

2009).  The mean difference between the values during the initial test and the values 

measured during the retest including the outlier was -1.8 μg/dL (P < 0.01).  However, 

because this was an extreme outlier (Fig. 7), I chose to remove it from further analysis 

because I believed this was the best way to determine the true trend of the difference 

between initial values and retest values. 

Across all samples, fourteen out of the 15 values were very close to the original 

value during the retest, although they were generally slightly lower (mean = -0.9 μg/dL, 
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95% CI (-1.5, -0.4) μg/dL, P = 0.01).  The formula for this trend between the first and 

second runs was y = 0.9005x - 0.165 and the correlation was strong (R
2
 = 0.98, Fig. 8).   

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Among samples run one year later (n = 7), however, the mean difference was -1.0 μg/dL 

(P = 0.18) and the 95% confidence interval was (-2.0, 0.0) μg/dL, so this difference was 

not significant.  The formula for this trend between the values measured initially and the 

values measured one year later was y = 0.8372x - 0.0188 and the correlation was again 

Figure 7.  Boxplot of the difference between values tested initially using the LCS and values measured 

during the retest.  Values during the retest were generally slightly lower (-1.8 μg/dL, P < 0.01) with one 

extreme outlier 13.3 μg/dL below the original measurement.   
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strong (R
2
 = 0.96, Fig. 9).  Therefore, time between the collection and analysis of samples 

may not strongly affect the result.   

 

 

Therefore, we can conclude that like other forms of sampling, there are occasional 

errors in values given.  While there may be a slight decrease in lead levels for samples 

tested after a year of storage, this difference was not statistically significant, nor would it 

greatly change the trend in the data.  This may also explain the slight increase in lead 

levels throughout the year, as samples taken early in the year might be very slightly 

higher than actual values measured.  All samples are tested at the end of the year, 

y = 0.9005x - 0.165
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Figure 8.  Difference between the value measured during the initial test and the value measured during 

the retest using LCS.  The values measured during the retest were slightly lower than values measured 

during the initial test (P = 0.01).  This difference was -0.9 μg/dL and was within normal range of 

variation defined by ESA for the control blood samples.   
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whereas samples taken later in the year would be tested closer to the time they were 

extracted from the bear.  However, I controlled for this trend of slightly rising lead levels 

throughout the year when testing for a difference between before hunting season and 

during hunting season lead levels by doing a segmented regression.  Time between 

collection and analysis was included as a co-variable in when comparing populations 

from GTNP, YNP, and outside the park.  Therefore, if there is an effect of time until 

analysis on results, this effect was controlled for.   

In addition, with the exception of the one extreme outlier, all of the samples were 

within the values expected when running the control samples of bovine blood with 

y = 0.8372x - 0.0188

R
2
 = 0.9648

P  = 0.18
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Figure 9.  Difference between the value measured during the initial test and the value measured one year later 

during using LCS.  The values measured one year later were lower than the original test (-1.0 μg/dL), but this 

difference was not significant (P = 0.18), and these values were also within normal range of variation defined by 

ESA for the control blood samples.   
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known amounts of lead provided by ESA, Inc. for the use in testing the validity of the 

LCS.  While the control BLLs vary slightly from batch to batch, they are generally very 

close to 7 μg/dL for the “low” BLL control and 27 μg/dL for the “high” BLL control 

sample, and the expected variation is ± 3 μg/dL and ± 4 μg/dL for “low” and “high” 

respectively.  The non-outlying retest samples were within this range of variation.   
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