Apr 28th, 11:00 AM - 12:00 PM

Investigation of Membrane Curvature Dependency on Cytochrome c Binding to Cardiolipin

Ziqing Xie
University of Montana, Missoula, zqingxie@gmail.com

Follow this and additional works at: http://scholarworks.umt.edu/umcur

Xie, Ziqing, "Investigation of Membrane Curvature Dependency on Cytochrome c Binding to Cardiolipin" (2017). *University of Montana Conference on Undergraduate Research (UMCUR)*. 23.
http://scholarworks.umt.edu/umcur/2017/amposters/23

This Poster is brought to you for free and open access by ScholarWorks at University of Montana. It has been accepted for inclusion in University of Montana Conference on Undergraduate Research (UMCUR) by an authorized administrator of ScholarWorks at University of Montana. For more information, please contact scholarworks@mail.lib.umt.edu.
Investigation of Membrane Curvature Dependency on Cytochrome c Binding to Cardiolipin

Ziqing Xie, Margaret Elmer-Dixon, Bruce E. Bowler
Department of Chemistry & Biochemistry
The University of Montana, Missoula MT

Abstract
Cytochrome c (Cyt c), an efficient electron transport protein in cellular respiration that makes biochemical energy ATP, is recently found to take part in initiating apoptosis (programmed cell death) through first existing a lipid called cardiolipin, and then dissociating from the inner membrane of mitochondria to trigger the apoptosis cascade. If cell apoptosis is inhibited, it can cause cancer. Regulation of Cyt c in cardiolipin binding on the mitochondrial membranes potentially enables regulation of the intrinsic pathway of apoptosis. Cardiolipin has four hydrocarbon chains and a negatively charged head group which can interact with anionic site A on Cyt c. It is believed that the electrostatic interactions between anionic site A and Cyt c on the inner membrane of a mitochondria lead to protein binding and partial unfolding. In this charged lysine amino acids. It is believed that the electrostatic interactions between anionic site A and trapped Cyt c mitochondrial inner membrane. Circular dichroism spectroscopy is used to monitor the amount of negatively charged head group which can interact with anionic site A on Cyt c. The regulation of Cyt c in mitochondria to trigger the apoptosis cascade. If cell apoptosis is inhibited, it can cause cancer.

Experimental Design

Protein preparation
- Separate proteins with High-performance liquid chromatography (HPLC).
- Measure protein concentration with UV-Vis spectroscopy.
- Protein oxidation with Ferriyanide.
- Gel filter chromatography separation (Fig 3).
- High protein concentration 100 mg/ml.
- Prepare varying concentrations of high salt and high protein concentration.

Lipid & Vesicles Preparation
- Prepare Non-Actin-CL solution.
- Dry CL w/nonactin using nitrogen gas.
- Mix dried lipid containing nonactin with proteins.
- Freeze- warm water bath-mix cycle.
- Standardize vesicle size to 100 nm with extrusion.
- Exchange high salt buffer to no salt buffer to allow binding.
- Concentrate protein filled vesicles.

Nonactin (Ionomophore)
- No UV-Vis signals.
- No CD signals.
- Open pores on the lipid membrane.
- Allow salt in and out of vesicles.
- Used to remove high salt and permit protein binding.

Protein & Lipid Concentration Determination
- Ultraviolet-Visible spectroscopy (UV-Vis) protein and vesicles scattering.
- Calculate vesicle/lipid concentration and protein concentration.

Using Conformational Change to Detect Lipid Binding Events

Figure 3: G-25 gel chromatography separation

Figure 4: Nonactin opens pores on vesicles membrane to allow salt ion exchange.

Figure 5: Nonactin structure

Figure 7 Left panel: Exposed Cyt-CL binding ratio on the inside of vesicles. The arrow points in the direction of Trp-59 fluorescent signal increase corresponding to increase in lipid concentration. 0 U M lipid corresponds to the black spectrum and the red spectrum is the max lipid concentration. Right panel: Soret region circular dichroism spectra for each Cyt c for 100 nm CL lipid vesicle titrations. Black arrow indicates direction of signal shift during titrations. 0 M exposed lipid concentration corresponds to black spectrum and the red spectrum is the max lipid concentration.

Figure 8 Left panel: Cyt c Trp-59 fluorescent amplitude as a function of exposed Lipid/Protein Ratio. Right panel: Cyt c Soret CD signal as a function of exposed Lipid/Protein Ratio. All titrations were carried out at pH 8 and 25 °C using 100 nm lipid vesicles with no salt buffer as determined with a conductivity meter.

Summary
- Able to load protein into vesicles.
- Able to induce binding (figure 7).
- Initial results show that titration of protein into vesicles using this technique are possible (figure 8).
- Rough titration curves reveal shift from unbound to bound protein.