GEO 433.01: Global Tectonics

Rebecca O. Bendick Kier

University of Montana - Missoula, r.bendick@umontana.edu

Follow this and additional works at: http://scholarworks.umt.edu/syllabi

Recommended Citation

http://scholarworks.umt.edu/syllabi/1434

This Syllabus is brought to you for free and open access by the Course Syllabi at ScholarWorks. It has been accepted for inclusion in Syllabi by an authorized administrator of ScholarWorks. For more information, please contact scholarworks@mail.lib.umt.edu.
Geology 433: Global Tectonics
MWF 2:10-3:00
CHCB 304

Instructor
Rebecca Bendick, CHCB 331
Office hours, MWF 10-12, or by appointment
bendick@mso.umt.edu

Prerequisites
GEOS315 (Structure), M172 (Calculus I)

Summary
This course investigates the dynamics of the earth at the largest scale, with emphasis on
tectonic processes and their expression in the crust.

Texts
4051-0777-8

Schedule
25-29 August: Introduction; Overview of basic tectonics
READ: Chapters 3 & 4.1
1-5 September: Montana tectonics: a case study of expression and implications
READ: handouts from the regional literature
8-12 September: Earth's condensation and differentiation: mechanical variation with
depth (rigid plate approximation)
READ: Chapter 2.3-2.13
13-14 September: field trip option 1
15-19 September: stress and strain in elastic media
READ: Supplemental readings
22-26 September: no class
29 September-3 October: seismology
READ: Chapter 2.1-2.2 and supplemental readings
4-5 October: field trip option 2
6-10 October: gravity and flexure
READ: Chapter 2.11 and supplemental readings
13-17 October: mantle convection and tectonic driving forces
READ: Chapter 12
20 October: review session
22 October: EXAM 1-individual
24 October: EXAM 1-group exercise
27-31 October: oceanic convergent boundaries
READ: Chapter 9
3-7 November: continental convergent boundaries
READ: Chapter 10
10-14 November: oceanic divergent boundaries
READ: Chapter 6
17-21 November: continental divergent boundaries
READ: Chapter 7
24-26 November: transform boundaries
READ: Chapters 4.2 and 8
1 December: review session
3 December: EXAM 2-individual
5 December: EXAM 2-group exercise

Grading and Requirements
Problem sets: Problem sets will be assigned each week, but for the most part, we will work on them together during Friday class meetings. Participation in these group efforts will be 33% of the problem set grade, the rest will be your final grade on turned-in work. The total problem set grade will constitute 25% of your final grade.

Classroom exams: Two exams will be administered during the semester. The first will test you on physical processes underlying tectonics; the second will test you on the characteristics of standard plate boundaries. Exams will always consist of short answer essay questions, sometimes with a mathematical component. I will always provide mathematical formulae with the exams. The mean of the classroom exams will constitute 25% of your grade.

Field trip and report: We will go on a two day field trip. We will set the dates and location for the field trip based on student schedules and your particular interests, but it will be in September or early October. You are responsible for a field report after the field trip, which will contain data collected by you in the field, along with analysis of those data, interpretation of their meaning, and other supplemental information from the course material. Graduate students enrolled in the course are expected to include primary research in support of their interpretation in addition to the basic report requirements. This report will constitute 25% of your grade.

Final exam: The final exam will be administered at the standard final time. It will include short questions including all of the class content, with an emphasis on practical problems and case studies. The final will constitute 25% of your grade.

Graduate vs. undergraduate students
Because this is an UG class, the members of the class have different academic backgrounds and levels of prior training. Graduate and undergraduate work will be graded and scaled separately. I expect more thorough and advanced work from graduate students, although students of any level may work together on collaborative assignments.

All students must practice academic honesty. Academic misconduct is subject to an academic penalty by the course instructor and/or a disciplinary sanction by the University.

All students need to be familiar with the Student Conduct Code. The Code is available for review online at http://www.umt.edu/SA/VPSA/index.cfm/page/1321.