Assessing longevity of ponderosa pine (Pinus ponderosa) snags in relation to age, diameter, wood density and pitch content

Helen Y. Smith

The University of Montana

Follow this and additional works at: http://scholarworks.umt.edu/etd

Recommended Citation

The University of MONTANA

Permission is granted by the author to reproduce this material in its entirety, provided that this material is used for scholarly purposes and is properly cited in published works and reports.

** Please check "Yes" or "No" and provide signature **

Yes, I grant permission ☒
No, I do not grant permission

Author's Signature

Date 28 May 1999

Any copying for commercial purposes or financial gain may be undertaken only with the author's explicit consent.
Assessing longevity of ponderosa pine
(*Pinus ponderosa*) snags in relation to age,
diameter, wood density and pitch content

by

Helen Y. Smith

B.S., The University of Montana, 1995

presented in partial fulfillment of the requirements

for the degree of

Master of Science

The University of Montana

1999

Approved by:

Chairperson

Dean, Graduate School

5.28.99

Date
Assessing longevity of ponderosa pine (*Pinus ponderosa*) snags in relation to age, diameter, wood density, and pitch content (46 pp.)

Director: Paul B. Alaback

Little is known about what factors contribute to the persistence of snags (standing dead trees) which are key elements of wildlife habitat in western forests. For this study, I investigated the relationships between tree age, diameter at breast height, wood density, and pitch content of ponderosa pine (*Pinus ponderosa*) snags and their longevity. Longevity was classified by whether the snag was standing or had broken off below 10 feet (3 m). I predicted that older snags and snags with greater pitch content would be more durable. Pitch content was not found to be higher in standing snags versus broken ones, but age was found to be significantly different. Snags standing 10 years after mortality by a wildfire event averaged 228±25 years at one site and 273±19 at another site, while those broken averaged 154±24 years and 182±23, respectively. The age versus longevity information gained from this study will help land managers in making decisions regarding snag habitat for wildlife. The testing for percent pitch content and outer wood density in relation to snag longevity was exploratory in nature and further study in these areas is needed to better understand how these factors relate to snag longevity.
ACKNOWLEDGMENTS

First and foremost, I would like to thank my family and friends for their support and encouragement throughout this process. The many ears that I griped to and the many shoulders that I ‘cried’ on are greatly appreciated. Thanks Mom, Carla, Paul, Mickey, Jenny, Ed, Duncan, Hayley...

Great thanks to Steve Arno, Colin Hardy, and Jim Reardon from the Rocky Mountain Research Station, Fire Sciences Laboratory in Missoula, MT. Their advise and expertise along the way was invaluable.

Thank you to my committee members--Paul Alaback, Les Marcum, and Garon Smith--from The University of Montana. I would like to especially thank Garon for his never-ending patience when it came time for me to try my hand at chemistry.

This study was funded with a Research Joint Venture Agreement (INT-96087-RJVA) between The University of Montana and the Rocky Mountain Research Station (formerly the Intermountain Research Station) in Missoula, MT for which I am grateful.
Table of Contents

<table>
<thead>
<tr>
<th>Section</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>Abstract</td>
<td>ii</td>
</tr>
<tr>
<td>Acknowledgments</td>
<td>iii</td>
</tr>
<tr>
<td>List of Tables</td>
<td>v</td>
</tr>
<tr>
<td>List of Figures</td>
<td>vii</td>
</tr>
<tr>
<td>Introduction</td>
<td>1</td>
</tr>
<tr>
<td>Objectives</td>
<td>5</td>
</tr>
<tr>
<td>Methods</td>
<td>5</td>
</tr>
<tr>
<td>Study sites</td>
<td>5</td>
</tr>
<tr>
<td>Field</td>
<td>9</td>
</tr>
<tr>
<td>Wood density</td>
<td>10</td>
</tr>
<tr>
<td>Pitch content</td>
<td>10</td>
</tr>
<tr>
<td>Laboratory</td>
<td>11</td>
</tr>
<tr>
<td>Age data</td>
<td>11</td>
</tr>
<tr>
<td>Wood density</td>
<td>12</td>
</tr>
<tr>
<td>Chemical analysis for pitch content</td>
<td>12</td>
</tr>
<tr>
<td>Statistical analysis</td>
<td>15</td>
</tr>
<tr>
<td>Results</td>
<td>15</td>
</tr>
<tr>
<td>Petty Creek 1</td>
<td>20</td>
</tr>
<tr>
<td>Petty Creek 2</td>
<td>21</td>
</tr>
<tr>
<td>Niarada</td>
<td>22</td>
</tr>
<tr>
<td>Magruder</td>
<td>23</td>
</tr>
<tr>
<td>Combined sites</td>
<td>23</td>
</tr>
<tr>
<td>1988</td>
<td>26</td>
</tr>
<tr>
<td>1994</td>
<td>27</td>
</tr>
<tr>
<td>Management implications</td>
<td>29</td>
</tr>
<tr>
<td>Literature cited</td>
<td>34</td>
</tr>
<tr>
<td>Appendix I</td>
<td>39</td>
</tr>
<tr>
<td>Appendix II</td>
<td>40</td>
</tr>
<tr>
<td>Appendix III</td>
<td>41</td>
</tr>
</tbody>
</table>
List of Tables

<table>
<thead>
<tr>
<th>Table</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>1. Aspect, slope, elevation, habitat type, fire ecology group, and the year the stand burned for each of the four study sites</td>
<td>8</td>
</tr>
<tr>
<td>2. Number of snags and number of broken snags by age class for each site</td>
<td>8</td>
</tr>
<tr>
<td>3. Mean and standard error of the sampling mean for age (years) at each site for each age class according to snag condition (all, standing, or broken)</td>
<td>16</td>
</tr>
<tr>
<td>4. Mean and standard error of the sampling mean for diameter at breast height (inches) at each site for each age class according to snag condition (all, standing, or broken)</td>
<td>17</td>
</tr>
<tr>
<td>5. Mean and standard error of the sampling mean for average pitch content (% of dry weight) at each site for each age class according to snag condition (all, standing, or broken)</td>
<td>18</td>
</tr>
<tr>
<td>6. Mean and standard error of the sampling mean for average density (g/cm³) at each site for each age class according to snag condition (all, standing, or broken)</td>
<td>19</td>
</tr>
<tr>
<td>7. Summary of correlation analyses for longevity, dbh, age class, average pitch, and average density for Petty Creek 1, n=31</td>
<td>21</td>
</tr>
<tr>
<td>8. Summary of correlation analyses for longevity, dbh, age class, average pitch, and average density for Petty Creek 2, n=22</td>
<td>22</td>
</tr>
<tr>
<td>9. Summary of correlation analyses for longevity, dbh, age class, average pitch, and average density for Niarada, n=23</td>
<td>22</td>
</tr>
<tr>
<td>10. Summary of correlation analyses for longevity, dbh, age class, average pitch, and average density for Magruder, n=27</td>
<td>23</td>
</tr>
<tr>
<td>11. Summary of correlation analyses for longevity, dbh, age class, average pitch, and average density for 1988 sites combined, n=53</td>
<td>27</td>
</tr>
<tr>
<td>12. Summary of correlation analyses for longevity, dbh, age class, average pitch, and average density for 1994 sites combined, n=50</td>
<td>28</td>
</tr>
<tr>
<td>13. Summary table of which sites showed significant results in correlation analyses for longevity, dbh, age class, average pitch, and average density (P<0.05)</td>
<td>28</td>
</tr>
</tbody>
</table>
List of Figures

<table>
<thead>
<tr>
<th>Figure</th>
<th>Description</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>1.</td>
<td>Mean diameters (inches) and standard errors of the sampling means by site</td>
<td>24</td>
</tr>
<tr>
<td>2.</td>
<td>Mean ages (years) and standard errors of the sampling means by site</td>
<td>24</td>
</tr>
<tr>
<td>3.</td>
<td>Mean average pitch (%) and standard errors of the sampling means by site</td>
<td>25</td>
</tr>
<tr>
<td>4.</td>
<td>Mean average density (g/cm3) and standard errors of the sampling means by site</td>
<td>25</td>
</tr>
<tr>
<td>5.</td>
<td>Mean age (years) and standard errors of the sampling mean by fire year</td>
<td>32</td>
</tr>
<tr>
<td>6.</td>
<td>Mean diameter (inches) and standard errors of the sampling mean by fire year</td>
<td>32</td>
</tr>
<tr>
<td>7.</td>
<td>Mean average pitch (%) and standard errors of the sampling mean by fire year</td>
<td>33</td>
</tr>
<tr>
<td>8.</td>
<td>Mean average density (g/cm3) and standard errors of the sampling mean by fire year</td>
<td>33</td>
</tr>
</tbody>
</table>
INTRODUCTION

Wildlife habitat is an important resource on national forest lands. More attention is now being paid to habitat for nongame species, yet little information is available on habitat needs for many of those species. Standing dead trees, or snags, are a key functional component of forests. An example of the significance of snags for wildlife is seen in the Blue Mountains of Oregon and Washington where 39 bird species and 23 mammal species were found to use snags to roost, nest, and/or feed (Thomas and others 1979). Scott and others (1977) noted that 85 species of primary- or secondary-cavity nesters in North America use snags. Harmon and others (1986) synthesized the literature to date on the importance of coarse woody debris, including snags, on forest structure and function. Snags are centers for biodiversity; they provide habitat for forest fungi, insects, insectivorous birds, cavity nesters and other animals (Harmon and others 1986, Patton 1988).

The importance of insectivorous birds on controlling insect epidemics was studied over 30 years ago (Bruns 1960, Franz 1961, Herberg 1965). Much of the early work done in Europe revealed that insectivorous birds do not single-handedly control insect outbreaks, but it was suggested that they may play an important role in helping to prevent outbreaks (Beebe 1974, DeGraaf 1977). In order to maintain high levels of biodiversity and to provide for a natural check on insect populations, large populations of various species of insectivorous birds are needed in our forests. Many species of insectivorous birds are dependent on snags for nesting and foraging sites (Thomas and others 1979). A lack of
suitable snags is a major limiting factor for some bird species (Bruns 1960, Haapanen 1965, Balda 1975).

Ponderosa pine is one of the main snag species used by cavity-nesting birds in western Montana (McClelland and others 1979). Historically, ponderosa pine forests underwent frequent, low-intensity fires that kept the stands more open with larger pines (Arno 1980, Arno 1988, Wickman and Swetnam 1997). There is anecdotal evidence that young ponderosa pine trees fall quickly once they become snags, whereas old-growth ponderosa pine snags remain standing for a much longer time. It is hypothesized that historical fire regimes may have caused pitching of the trees, leading to more stout boles -- a sort of “case-hardening.”

Conclusions drawn from previous studies on different tree species in various areas have indicated that larger snags tend to remain standing longer. Dahms (1949) studied ponderosa pine trees killed in a fire event in Oregon. He noted that the average diameter of the standing snags was 4 inches larger than those that had fallen 10 years post-fire. Keen (1955) studied beetle-killed ponderosa pine in southern Oregon and northern California and found the same relationship between size and longevity. Larger ponderosa pine snags were found to stand longer in Oregon (Bull 1983) and in Arizona (Scott 1978). The suitability of trees as nest sites was found to be related to a tree’s age, and thus size (Conner 1978). Furthermore, Scott (1978) observed that the larger ponderosa pine snags had more woodpecker holes per snag. Cline and others (1980) found that Douglas-fir (Pseudotsuga menziesii) snag longevity was a function of diameter and age of the tree at the time of death. Following lodgepole pine (Pinus contorta) killed in a wildfire event,
Lyon (1977) found that larger diameter snags stayed standing longer. It is postulated that since larger-diameter snags stay standing longer, they will be available for use by more species through time since some animals require hard snags while others need soft snags (Conner 1979, Thomas and others 1979, Mannan and others 1980, Neitro and others 1985).

The many bird species that utilize snags have various preferences such as tree species, minimum diameter, minimum snag height, and state and type of decay of the snag (Thomas and others 1979, Neitro and others 1985). Since the numerous bird species require an array of different snag attributes (size, state of decay, etc.) to meet their habitat needs, managers generally use a ‘coarse scale’ approach to snag management. They try to provide snag habitat for birds requiring the largest diameter and greatest density of snags (Conner 1979, Evans and Conner 1979, Neitro and others 1985) and assume that needs of other birds will be met. Snag management guidelines vary by National Forest in western Montana, but generally they specify preferred species (ponderosa pine and western larch, *Larix occidentalis*) and call for trees ≥20” (50.8 cm) in diameter showing signs of defect or decay (R. Hickle 1996, personal communication; M. Hillis 1996, personal communication; J. Ormiston 1996, personal communication; B. Summerfield 1996, personal communication).

Studies relating to pine extractives and decay resistance were begun early in this century (Humphry 1916, Hawley and others 1924, CSIRO 1958). Extractives, particularly from pines in the Southeast, are used in the naval stores industry and as tall oil precursors (Kurth 1952, Conner and others 1980) while the early work on decay resistance was
important to the timber industry (Scheffer and Cowling 1966, U.S. Forest Products Laboratory 1967). While resistance of dead wood is still important to the timber industry, the benefits of coarse woody debris to the ecosystem are now more readily being recognized (Harmon and others 1986, Maser and Trappe 1984). Heartwood contains a greater amount of extractives than sapwood (Hillis 1977, Zavarin and Cool 1991). Extractives are also found in resin canals of *Pinus* species and in “woundwood” in greater quantities (Zavarin and Cool 1991). This wounding process is referred to as ‘resinosis.’ Toxicity to insects and diseases of some extractives (generally the terpenoids, flavenoids, tropolones, and stilbenes) found in the heartwood lead to increased decay resistance of the heartwood (Kurth 1952, Scheffer and Cowling 1966). Resistance is not consistent throughout the tree, however, with the most resistant region being in the outer heartwood near the base of the bole. Another major factor contributing to increased decay resistance is the higher lignin content formed when sapwood turns to heartwood (Scheffer and Cowling 1966). Regarding the work done on decay resistance and extractives, Harmon and others (1986) wrote, “...most ecological studies have failed to take wood extractives into account when comparing species and often seek to explain differences solely on the basis of Nitrogen content, size, or climate.”

With these facts in mind, this study was initiated by the United States Forest Service, Intermountain Research Station (now Rocky Mountain Research Station) to investigate the relationships between ponderosa pine snags and their longevity in relation to the trees’ fire history as live trees. The term ‘pitch’ used in this paper refers to the “waxes, fats,
OBJECTIVES

The overall purpose of this study was to gain a better understanding of factors affecting snag longevity in order for land managers to make more informed decisions concerning snag habitat. The process of resinosis that a coniferous tree undergoes when it is injured (Raffa and Berryman 1982, Owen and others 1987) is predicted to result in pitching of the bole, leading to a stronger, more persistent snag (Harrington 1996). Historically, such resinosis happened when pine trees were wounded by the naturally-occurring frequent, low intensity fires in Douglas-fir/ponderosa pine forests. Today, forest managers can use prescribed fire as a tool to mimic these historic fires.

The main objectives, then, were to examine the relationships between snag longevity and age, diameter, outer wood density, and pitch content. It was predicted that the snags that stand longer would be older and have a greater pitch content.

METHODS

STUDY SITES

Potential sites were identified according to stand history data obtained from the U.S. Forest Service and the Flathead Indian Reservation, Department of Forestry. The criteria used to select sites were similar habitat types (Pfister and others 1977), fire ecology groups (Fischer and Bradley 1987), aspect, year of stand-replacing fire event, no salvage logging following the fire, and the presence of numerous large-diameter [>15" (38.1 cm)] ponderosa pine snags to sample. Dissimilar site conditions, a lack of sufficient numbers
of large snags, and salvage logging following fires greatly limited available study sites around western Montana and central Idaho.

Since a full-scale fire history study could not be conducted at each site, age of the tree at the time of death was substituted for fire history. The assumption was made that old-growth pines (trees >250 years old) had been exposed to frequent, non-lethal fires in their lifetimes; intermediate-aged pines (trees 100-250 years old) had been exposed to fire as young trees; and bull pines (trees <100 years old) had never survived low-intensity fires.

Due to time constraints, I could not follow individual snags through time so I sampled snags created in two fire event years—1988 and 1994. By selecting snags created in fire events from different years, I could assess longevity over time. The two sites that burned in 1988 were Petty Creek 1 and 2, located on the Lolo National Forest about 30 miles west of Missoula, Montana. The two sites that burned in 1994 were Magruder, located in the Selway-Bitterroot Wilderness in central Idaho; and Niarada, located north of Polson, Montana on the Flathead Indian Reservation. All the sites had some old-growth trees with numerous old fire scars visible indicating that the sites had undergone non-lethal underburns historically.

The fire that burned the Petty Creek area was a human-caused fire in July 1988 and was essentially a stand-replacing burn, meaning that virtually no trees survived the fire. Petty Creek 1 was owned by a private timber company prior to the burn, but has subsequently been acquired by the U.S. Forest Service. Because of this recent change in ownership, no stand history could be obtained; however, there was no evidence of logging prior to or
following the fire. Petty Creek 2, located about one air-mile west of Petty Creek 1, is owned by the U.S. Forest Service and was not harvested prior to or following the fire.

Magruder, located in the Selway-Bitterroot Wilderness area, was not affected by logging prior to or following the 1994 fire. It appeared that the fire at Magruder was more patchy and less intense than the one at Petty Creek, resulting in more trees surviving. I would classify this as a mixed-severity burn.

Niarada is located on the Flathead Indian Reservation and there was no evidence of logging either prior to or following the 1994 burn. Like Magruder, it seemed the fire at Niarada was less intense than at Petty Creek, leaving more surviving trees. There was one Douglas-fir (*Pseudotsuga menziesii*) near the road with old fire scars on it. The tree had been cut and removed by firewood gatherers following the fire so I was able to take a cross-section from the stump. The tree originated in 1861 and had a definite fire scar around 1889 with probable fire scars from 1898 and 1912. The mean fire interval for the period before 1912 was 17 years, with no evidence of a fire since that time. This cross-section is evidence that this area experienced frequent, non-lethal fires prior to the early part of this century.

Table 1 shows a summary of the site characteristics of the four sites sampled, including aspect, slope, elevation, habitat type (Pfister and others 1977), fire ecology group (Fischer and Bradley 1987) and the years in which each stand burned.
Table 1. Aspect, slope, elevation, habitat type, fire ecology group, and the year each stand burned for each of the four study sites.

<table>
<thead>
<tr>
<th>Site</th>
<th>Aspect</th>
<th>Slope (feet/meters)</th>
<th>Elevation</th>
<th>Habitat type¹</th>
<th>Fire ecology group²</th>
<th>Year burned</th>
</tr>
</thead>
<tbody>
<tr>
<td>Petty Creek 1</td>
<td>W</td>
<td>51%</td>
<td>4000 / 1219</td>
<td>PSME/CARU-PIPO</td>
<td>4</td>
<td>1988</td>
</tr>
<tr>
<td>Petty Creek 2</td>
<td>S-SW</td>
<td>42%</td>
<td>4200 / 1280</td>
<td>PSME/FESC</td>
<td>4</td>
<td>1988</td>
</tr>
<tr>
<td>Niarada</td>
<td>W</td>
<td>33%</td>
<td>4700 / 1433</td>
<td>PSME/CARU-PIPO</td>
<td>4</td>
<td>1994</td>
</tr>
<tr>
<td>Magruder</td>
<td>W-NW</td>
<td>63%</td>
<td>4100 / 1250</td>
<td>PSME/SYAL-CARU</td>
<td>6</td>
<td>1994</td>
</tr>
</tbody>
</table>

¹Pfister and others (1977)
²Fischer and Bradley (1987)

The habitat types listed in table 1 did not necessarily coincide with those attained from records of examination taken prior to the fires. At all sites except Niarada, habitat typing in the field was difficult due to an overwhelming invasion of knapweed (*Centaurea maculosa*) at the sites.

Table 2 shows the total number of snags sampled at each site by age class with the number of those that were broken.

Table 2. Total number of snags sampled at each site as well as the number of those that were broken.

<table>
<thead>
<tr>
<th>Site</th>
<th>total # snags sampled by age class (# broken)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Bull</td>
</tr>
<tr>
<td>Petty Creek 1</td>
<td>4 (3)</td>
</tr>
<tr>
<td>Petty Creek 2</td>
<td>1 (1)</td>
</tr>
<tr>
<td>Niarada</td>
<td>1 (0)</td>
</tr>
<tr>
<td>Magruder</td>
<td>7 (0)</td>
</tr>
</tbody>
</table>
FIELD

Initially, I intended to age each snag >15" (38.1 cm) diameter at breast height (dbh) at each site and then sub-sample in order to obtain a good representation of each age class for both standing and broken snags. I quickly found that this was not realistic in terms of time and effectiveness. Generally, there was a lack of bull pines and it became apparent that there was not a good representation across age classes for the standing and broken trees. So, at each location, every snag that was available was sampled. A few snags could not be sampled due to safety concerns, inadequate bore length, I thought the snag died because of factors other than as a direct result of the fire (e.g., insect attack following the fire), or the bole of the tree had burned through and the sampling area was missing from the tree.

At each snag, site characteristics such as habitat type, aspect, slope, and location via global positioning system (GPS) were recorded. Tree data recorded included diameter at breast height, whether the snag was broken off below 10 feet (3 m), and height of the snag. I also noted feeding or nesting cavities of birds, fire scars, and presence of rot in the bole of the tree (Appendix I).

At least one core was taken to determine the age of each tree. If necessary, boring was repeated until an acceptable core was obtained. These cores were taken as close to ground-line as possible and were glued into grooved core boards and marked according to snag number and bore height for laboratory analysis. Cores were also taken to assess fire scar dates, when possible.
Wood density

Three core samples from the outer 10 cm of the snag were taken for wood density measurements. In order to determine where on the tree a sample should be taken, a random number generator was used. The number generated was between 0 and 360 and used as the azimuthal direction from the center of the tree where a core was then taken. Cores were taken at approximately 2.5 (76 cm) feet above ground level so that the density measure was taken at the same general height as the cores for pitch. The increment borer was marked at 10 cm and inserted into the tree to that point, giving consistent sampling volume for density calculations. Each of the three density cores were placed in individual plastic, zip-locked sandwich bags, which were sealed and marked.

Pitch content

Several increment cores were taken at approximately 3 feet (91 cm) above ground level on the two sidehill portions of each tree (not the uphill or downhill sides) to be used for pitch analysis. All the cores from a given tree were placed in one plastic, zip-locked sandwich bag, which was sealed and labeled. The number of cores taken from each snag was determined by estimating when sufficient sample weight (~10 g) had been gathered for the chemical analysis. For consistency, an even number of cores was taken from each tree, with the same number taken from each side. The number of cores taken per tree was usually four, six, or eight. It took two people about six weeks to complete field sampling.
LABORATORY

Age data

The field-mounted cores were sanded using an orbital sander with sandpaper grit up to 120 grains. Fragile cores were sanded by hand. Tree rings were counted under a dissecting scope or with a hand lens. If the pith of the tree was not intersected, a set of concentric circles was positioned over the core to estimate approximately how many rings were missed (Ghent 1955). For instance, if there were 2 rings per mm and it was estimated to be 3 mm to the pith, the correction added would be 6 years. Also added into the ring count was an adjustment for the height at which the core was taken (Arno and others 1985, Fiedler 1984). The total age of the tree was computed according to the following equation:

\[
\text{Total age of tree} = A + P + H
\]

where:

\[A = \text{Actual count},\]

\[P = \text{Estimated years to pith, and}\]

\[H = \text{Estimated years to height of core extraction}.\]

Additional corrections were added to some cores that had substantial rot. First, I assigned each of the cores a rating for quality--either good, minimal rot, or rot. To the ‘good’ cores I added zero years; to the cores with ‘minimal rot’ I added 30 years; and to the cores with ‘rot,’ I added 80 years. I arrived at these corrections by estimating how much of the core was missing and by looking at other cores from the sites to determine the average number of years I lost to rot. I feel that these additions added to the accuracy
of the ages, yet were still conservative. The trees were then assigned to an age class. Bull pine are those <100 years old, intermediate pine are those 100-250 years old, and old-growth pine are those >250 years old.

Wood density

Since many of the density samples were little more than dust, the samples were not removed from the zip-locked sandwich bags. The same brand of bags was used and 25 empty bags were weighed and dried in the same manner as the bags containing wood density samples to determine the average weight of the bags, along with the variability among the bag weight. This was also done in order to ensure that none of the weight loss was from the bag. The zip-locked bags containing the cores for density analysis were weighed and then placed open in a drying oven at 50°C for 24 hours. They were then weighed again to determine the dry mass of each sample. The average weight of the empty bags was subtracted to obtain the dry weight of the sample alone.

The following equations were used:

\[
\text{Volume of core sample} = \pi r^2 h = \pi (0.25 \text{ cm})^2 \times 10 \text{ cm} = 1.96 \text{ cm}^3
\]

\[
\text{Dry weight of sample (g)} = [\text{Dry weight of sample + bag (g)}] - \text{Average dry weight of empty bags (g)}
\]

\[
\text{Density} = \frac{\text{Dry weight of sample (g)}}{1.96 \text{ cm}^3} = \text{g/cm}^3
\]

Chemical analysis for pitch content

Core samples were processed to a granular size dictated by the analytical procedures I followed (ASTM 1984, TAPPI 1988). The core samples were broken into small pieces and then ground in a small Wiley® mill. The ground matter was sifted and the material
that could pass through a number 40 mesh screen, but not through a number 60 mesh screen was set aside. Bits that were still too large were then re-ground and the process was repeated until all the wood was successfully ground.

The standard testing methods (ASTM 1984) call for analyzing and drying two separate wood samples. Since I had a limited amount of material to work with, I lowered the drying temperature, increased the drying time, and used the same sample for both moisture determination and pitch content analysis. Approximately 2 g of ground wood were placed in a tared Alundum thimble, which was then placed in a stoppered glass weighing bottle. The entire assembly was weighed three times and then placed (unstoppered) in a drying oven at 50°C for a 24-hour period. After drying, the stopper was placed on the weighing bottle and the whole assembly was placed in a desiccator to be cooled. Three weighings were then taken to determine the dry weight of the sample.

Moisture content, in percent moisture of dry weight, was determined using the average of the three wet measures and the average of the three dry weights (Appendix III).

The dried and weighed sample was then placed in a Soxhlet extraction apparatus with 150 ml of dichloromethane (also known as methylene chloride or DCM) in the flask. Dichloromethane is used to extract “waxes, fats, resins, phytosterol, and nonvolatile hydrocarbons” (ASTM 1984, TAPPI 1988). The Soxhlet devices were located in a fume hood due to the potentially toxic effects of DCM. The sample was allowed to be extracted for a period of two hours with at least 6 siphonings per hour (ASTM 1984, TAPPI 1988). After the run was completed, the DCM solution with the extractives was transferred to a tared 100 ml beaker. The DCM was evaporated until only 20-25 ml was
remaining. Next, the beaker was placed in an oven at 105°C for a 1-hour period. The beakers were cooled in a desiccator and then re-weighed to determine gain. The pitch content is reported as percent of the dry weight of the sample, before extraction.

The standard methods (ASTM 1984, TAPPI 1988) call for an extraction time of five hours, but after several test runs in a preliminary study, it was determined that there was no difference in percent of extracted amount after two hours versus five hours. Duplicate analysis was conducted for each snag sample in order to get an idea of the reliability of the test and the variability of the pitch content within each ground sample.

After each analysis, the Alundum thimbles were cleaned in a Thermolyne® oven at 500°C for three hours. It took approximately 15 hours for the thimbles to cool back to room temperature before they could be used again.

With 206 analyses to run (103 snags x 2 runs each), this was by far the most time-consuming portion of this study. On average, less than one snag sample was ground in the Wiley® mill per day. In addition to the actual number of days required for the chemical analysis, there were about 1.5 days of ‘down-time’ between runs before the thimbles could be used due to the cleaning time and the drying time for the next samples. Out of a 7-day week, a maximum of five could be chemical analysis days. I had 3 Soxhlet extraction set-ups and chemical analysis took about 8 months to complete.
Statistical Analysis

I conducted goodness-of-fit tests using the G-test (Sokal and Rohl 1981) on the Petty Creek 1 data with the categorical variables 'age class' versus 'broken.' I was unable to conduct this test on the other three sites as there were zeros in one or more of the cells. I also ran the G-test on the combined data for Petty Creek 1 and 2.

Other data analysis was accomplished primarily on the computer using JMP IN® Software (SAS 1996). Two-sample t-test or analysis of variance tests were conducted for categorical measures versus continuous measures (e.g., 'age class' versus 'dbh'), as well as Wilcoxon rank sum test or Kruskal-Wallis tests where there was concern that the data may not behave normally. If a significance was indicated and there were more than two categories, Tukey-Kramer HSD was run to determine where the significance was located. Regression analysis was conducted on continuous versus continuous measures (e.g., 'average density' versus 'average pitch'). All significance tests were conducted at $\alpha = 0.05$.

RESULTS

The sample data distribution were relatively normal for age, dbh, average pitch, and average wood density (see Appendix III for distribution data), especially considering the small sample sizes. Based on the assumption that the population data for these attributes was normally distributed, I accepted the parametric results with one exception. That one exception was because the nonparametric and parametric results differed in their outcome and practical significance was evident only with the nonparametric test results.
Tables 3-6 show the mean and standard error of the sample mean for each of the attributes (age, dbh, average pitch, and average density) at each location by age class and snag status (all, standing, broken). Statistical differences are also indicated and will be discussed on a site by site basis.

<table>
<thead>
<tr>
<th>Age Class</th>
<th>Study Site</th>
<th>Age (years)</th>
<th>Standard Error</th>
<th>Snag Condition</th>
<th>n</th>
<th>Standing</th>
<th>n</th>
<th>Broken</th>
<th>n</th>
</tr>
</thead>
<tbody>
<tr>
<td>Bull pine</td>
<td>Petty Creek 1</td>
<td>83±5</td>
<td>4</td>
<td>74</td>
<td>1</td>
<td>85±6</td>
<td>3</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Petty Creek 2</td>
<td>63</td>
<td>1</td>
<td>--</td>
<td>0</td>
<td>63</td>
<td>1</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Niarada</td>
<td>66</td>
<td>1</td>
<td>66</td>
<td>1</td>
<td>--</td>
<td>0</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Magruder</td>
<td>93±1</td>
<td>7</td>
<td>93±1</td>
<td>7</td>
<td>--</td>
<td>0</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Intermediate pine</td>
<td>Petty Creek 1</td>
<td>156±10</td>
<td>20</td>
<td>171±14</td>
<td>9</td>
<td>143±13</td>
<td>11</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Petty Creek 2</td>
<td>189±15</td>
<td>11</td>
<td>221±11 (a)</td>
<td>5</td>
<td>163±21 (a)</td>
<td>6</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Niarada</td>
<td>192±8</td>
<td>20</td>
<td>194±8</td>
<td>19</td>
<td>168</td>
<td>1</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Magruder</td>
<td>225±9</td>
<td>10</td>
<td>225±9</td>
<td>10</td>
<td>--</td>
<td>0</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Old-growth pine</td>
<td>Petty Creek 1</td>
<td>349±28</td>
<td>7</td>
<td>361±38</td>
<td>5</td>
<td>317±16</td>
<td>2</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Petty Creek 2</td>
<td>305±11</td>
<td>10</td>
<td>306±12</td>
<td>8</td>
<td>299±36</td>
<td>2</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Niarada</td>
<td>341±38</td>
<td>2</td>
<td>341±38</td>
<td>2</td>
<td>--</td>
<td>0</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Magruder</td>
<td>320±18</td>
<td>10</td>
<td>320±18</td>
<td>10</td>
<td>--</td>
<td>0</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

a: t=2.366, P=0.042
Table 4. Mean and standard error of the sample mean for diameter at breast height (inches) at each site (Petty Creek 1, Petty Creek 2, Niarada, and Magruder) for each age class (bull pine, intermediate pine, and old-growth pine) according to snag condition (all, standing, or broken).

<table>
<thead>
<tr>
<th>Site</th>
<th>Age Class</th>
<th>n</th>
<th>Standing</th>
<th>n</th>
<th>Broken</th>
<th>n</th>
</tr>
</thead>
<tbody>
<tr>
<td>Bull pine</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Petty Creek 1</td>
<td>all</td>
<td>4</td>
<td>16.9</td>
<td>1</td>
<td>14.8±0.42</td>
<td>3</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Petty Creek 2</td>
<td></td>
<td>15</td>
<td>0</td>
<td></td>
<td>15</td>
<td>1</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Niarada</td>
<td></td>
<td>1</td>
<td>17.3</td>
<td>1</td>
<td>--</td>
<td>0</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Magruder</td>
<td>18.1±0.6 (c, d)</td>
<td>7</td>
<td>18.1±0.6</td>
<td>7</td>
<td>--</td>
<td>0</td>
</tr>
<tr>
<td>Intermediate pine</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Petty Creek 1</td>
<td>18.5±0.6 (b)</td>
<td>20</td>
<td>18.7±1.1</td>
<td>9</td>
<td>18.3±0.8</td>
<td>11</td>
</tr>
<tr>
<td>Petty Creek 2</td>
<td></td>
<td>11</td>
<td>24.3±1.7</td>
<td>5</td>
<td>20.6±0.9</td>
<td>6</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Niarada</td>
<td></td>
<td>20</td>
<td>20.7±0.8</td>
<td>19</td>
<td>18.4</td>
<td>1</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Magruder</td>
<td>26.5±1.4 (c)</td>
<td>10</td>
<td>26.5±1.4</td>
<td>10</td>
<td>--</td>
<td>0</td>
</tr>
<tr>
<td>Old-growth pine</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Petty Creek 1</td>
<td>22.9±1.4 (a, b)</td>
<td>7</td>
<td>24.1±1.6</td>
<td>5</td>
<td>19.7±0.60</td>
<td>2</td>
</tr>
<tr>
<td>Petty Creek 2</td>
<td></td>
<td>10</td>
<td>19.8±1.3</td>
<td>8</td>
<td>19.7±1.3</td>
<td>2</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Niarada</td>
<td></td>
<td>2</td>
<td>29.7±5.6</td>
<td>2</td>
<td>--</td>
<td>0</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Magruder</td>
<td>28.5±1.7 (d)</td>
<td>10</td>
<td>28.5±1.7</td>
<td>10</td>
<td>--</td>
<td>0</td>
</tr>
</tbody>
</table>

a: t= -3.021, P=0.004
b: t= -3.258, P=0.003
c: t= -4.707, P<0.001
d: t= -5.061, P<0.001
Table 5. Mean and standard error of the sample mean for average pitch (% of dry weight) at each site (Petty Creek 1, Petty Creek 2, Niarada, and Magruder) for each age class (bull pine, intermediate pine, and old-growth pine) according to snag condition (all, standing, or broken).

<table>
<thead>
<tr>
<th>Site</th>
<th>Age Class</th>
<th>all</th>
<th>n</th>
<th>standing</th>
<th>n</th>
<th>broken</th>
<th>n</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Bull pine</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Petty Creek 1</td>
<td>all</td>
<td>6.78±1.36</td>
<td>4</td>
<td>7.82</td>
<td>1</td>
<td>6.44±1.86</td>
<td>3</td>
</tr>
<tr>
<td>Petty Creek 2</td>
<td>standing</td>
<td>16.16</td>
<td>1</td>
<td>--</td>
<td>0</td>
<td>16.16</td>
<td>1</td>
</tr>
<tr>
<td>Niarada</td>
<td>standing</td>
<td>4.80</td>
<td>1</td>
<td>4.80</td>
<td>1</td>
<td>--</td>
<td>0</td>
</tr>
<tr>
<td>Magruder</td>
<td>standing</td>
<td>8.23±2.07</td>
<td>7</td>
<td>8.23±2.07</td>
<td>7</td>
<td>--</td>
<td>0</td>
</tr>
<tr>
<td></td>
<td>intermediate</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Petty Creek 1</td>
<td>all</td>
<td>12.61±1.43</td>
<td>20</td>
<td>12.15±2.02</td>
<td>9</td>
<td>12.98±2.10</td>
<td>11</td>
</tr>
<tr>
<td>Petty Creek 2</td>
<td>all</td>
<td>10.87±1.25</td>
<td>11</td>
<td>8.83±1.96</td>
<td>5</td>
<td>12.57±1.39</td>
<td>6</td>
</tr>
<tr>
<td>Niarada</td>
<td>all</td>
<td>7.14±0.88</td>
<td>20</td>
<td>7.02±0.92</td>
<td>19</td>
<td>9.53</td>
<td>1</td>
</tr>
<tr>
<td>Magruder</td>
<td>all</td>
<td>9.07±1.59</td>
<td>10</td>
<td>9.07±1.59</td>
<td>10</td>
<td>--</td>
<td>0</td>
</tr>
<tr>
<td></td>
<td>old-growth</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Petty Creek 1</td>
<td>all</td>
<td>13.48±2.31</td>
<td>7</td>
<td>13.61±2.12</td>
<td>5</td>
<td>13.15±8.20</td>
<td>2</td>
</tr>
<tr>
<td>Petty Creek 2</td>
<td>all</td>
<td>7.56±1.23</td>
<td>10</td>
<td>7.11±1.24</td>
<td>8</td>
<td>9.33±4.61</td>
<td>2</td>
</tr>
<tr>
<td>Niarada</td>
<td>all</td>
<td>6.56±2.49</td>
<td>2</td>
<td>6.56±2.49</td>
<td>2</td>
<td>--</td>
<td>0</td>
</tr>
<tr>
<td>Magruder</td>
<td>all</td>
<td>5.10±0.68</td>
<td>10</td>
<td>5.10±0.68</td>
<td>10</td>
<td>--</td>
<td>0</td>
</tr>
</tbody>
</table>
Table 6. Mean and standard error of the sample mean for average density (g/cm³) at each site (Petty Creek 1, Petty Creek 2, Niarada, and Magruder) for each age class (bull pine, intermediate pine, and old-growth pine) according to snag condition (all, standing, or broken).

<table>
<thead>
<tr>
<th></th>
<th>all</th>
<th>n</th>
<th>standing</th>
<th>n</th>
<th>broken</th>
<th>n</th>
</tr>
</thead>
<tbody>
<tr>
<td>Bull pine</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Petty Creek 1</td>
<td>0.30±0.10</td>
<td>4</td>
<td>0.51</td>
<td>1</td>
<td>0.23±0.10</td>
<td>3</td>
</tr>
<tr>
<td>Petty Creek 2</td>
<td>0.24</td>
<td>1</td>
<td>--</td>
<td>0</td>
<td>0.24</td>
<td>1</td>
</tr>
<tr>
<td>Niarada</td>
<td>0.54</td>
<td>1</td>
<td>0.54</td>
<td>1</td>
<td>--</td>
<td>0</td>
</tr>
<tr>
<td>Magruder</td>
<td>0.46±0.02</td>
<td>7</td>
<td>0.46±0.02</td>
<td>7</td>
<td>--</td>
<td>0</td>
</tr>
<tr>
<td>Intermediate pine</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Petty Creek 1</td>
<td>0.25±0.03</td>
<td>(a)</td>
<td>0.32±0.05</td>
<td>(b)</td>
<td>0.19±0.03</td>
<td>(b)</td>
</tr>
<tr>
<td>Petty Creek 2</td>
<td>0.18±0.02</td>
<td>(c)</td>
<td>0.18±0.04</td>
<td></td>
<td>0.18±0.02</td>
<td></td>
</tr>
<tr>
<td>Niarada</td>
<td>0.40±0.02</td>
<td></td>
<td>0.40±0.02</td>
<td></td>
<td>0.36</td>
<td>1</td>
</tr>
<tr>
<td>Magruder</td>
<td>0.49±0.02</td>
<td></td>
<td>0.49±0.02</td>
<td></td>
<td>--</td>
<td>0</td>
</tr>
<tr>
<td>Old-growth pine</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Petty Creek 1</td>
<td>0.47±0.03</td>
<td>(a)</td>
<td>0.48±0.04</td>
<td></td>
<td>0.47±0.04</td>
<td></td>
</tr>
<tr>
<td>Petty Creek 2</td>
<td>0.35±0.04</td>
<td>(c)</td>
<td>0.35±0.05</td>
<td></td>
<td>0.35±0.14</td>
<td></td>
</tr>
<tr>
<td>Niarada</td>
<td>0.53±0.04</td>
<td></td>
<td>0.53±0.04</td>
<td></td>
<td>--</td>
<td>0</td>
</tr>
<tr>
<td>Magruder</td>
<td>0.45±0.03</td>
<td></td>
<td>0.45±0.03</td>
<td></td>
<td>--</td>
<td>0</td>
</tr>
</tbody>
</table>

a: t=-4.017, P<0.001
b: t=2.471, P=0.024
c: t= -3.808, P=0.001

In order to succinctly report all relationships for longevity (standing versus broken), diameter distribution, age class, pitch content, and density for each site, the data are presented in separate tables for each study site with statistical values shown (tables 7-10). Also, I show if and how those relationships change when the data from each fire year are grouped together (tables 11-12).

A note of caution is needed regarding the wood density relationships. There were obvious differences in the wood densities for trees that had broken below 10 feet (3 m) versus those still standing, but the broken boles had been exposed to different weathering
than the intact boles at the point where the cores were extracted. The differences in wood
density could be a result of the breaking, not vice versa.

Petty Creek 1 (tables 3-7)

The G-test for goodness-of-fit conducted for Petty Creek 1 (PC1) suggested that age
class and longevity were not related (P > 0.250). A note of caution is required, though, as
some of the cell populations were small.

Petty Creek 1 data revealed there were significant relationships between snag longevity
and age (P = 0.042). The actual ages were used instead of the age classes for this test. It
was found that the mean age of broken snags (n = 16) was 154±24 years while the mean
age of those still standing (n = 15) was 228±25 years.

Without separating the data by age class, the broken snags were significantly less dense
than those standing. Standing snags had a mean density of 0.39±0.04 g/cm³ and broken
ones averaging 0.23±0.03 g/cm³ (P = 0.004). After grouping the data according to age
classes, there were two more significant findings. There was a difference between
average density of intermediate pines (0.25±0.03) and old-growth pines (0.47±0.03)
(P = 0.004). There was also a significant difference between the standing and broken pines
in the intermediate age class (P = 0.024), with the standing being more dense (0.32±0.05)
than the broken (0.19±0.03).

As would be expected, older trees were also larger in diameter. The ANOVA
determined that there were significant differences (P = 0.0007) and Tukey-Kramer HSD
indicated that the only significant difference was that old-growth trees were larger
(22.9±1.1") than both intermediate-aged and bull pines. Although the mean of the
intermediate age class was about three inches greater than that of the bull pine class (18.5±0.7" versus 15.3±1.5"), it was not a significant difference.

Table 7. Summary of correlation analyses for longevity, dbh, age class, average pitch, and average density for Petty Creek 1, n=31. Significant results are in bold (P<0.05).

<table>
<thead>
<tr>
<th></th>
<th>dbh</th>
<th>Age class</th>
<th>Average pitch</th>
<th>Average density</th>
</tr>
</thead>
<tbody>
<tr>
<td>Longevity</td>
<td>t-test 2.030, P=0.052</td>
<td>t-test 2.126, P=0.042 (actual ages used)</td>
<td>t-test 0.252, P=0.803</td>
<td>t-test 3.132, P=0.004</td>
</tr>
<tr>
<td>dbh</td>
<td>---</td>
<td>ANOVA F=9.517, P=0.0007</td>
<td>t-test 0.33, P=0.745</td>
<td>t-test 1.15, P=0.261</td>
</tr>
<tr>
<td>Age class</td>
<td>---</td>
<td>---</td>
<td>ANOVA F=1.90, P=0.186</td>
<td>ANOVA F=6.959, P=0.004</td>
</tr>
<tr>
<td>Average pitch</td>
<td>---</td>
<td>---</td>
<td>---</td>
<td>t-test t= -0.76, P=0.455</td>
</tr>
</tbody>
</table>

Petty Creek 2 (tables 3-6, 8)

As with PC1, broken snags at Petty Creek 2 (PC2) were significantly younger (P=0.005). Mean age of standing snags (n=13) was 273±19 years and mean age of broken ones (n=9) was 182±23 years. When grouped into age classes, there was a significance seen in age between standing and broken snags of the intermediate age class (P=0.042) with broken snags averaging 163±21 years and standing snags averaging 221±11 years.

The average pitch for all broken snags (12.25±1.30%) was significantly higher than that for standing snags (7.77±1.08%) (P=0.015). There was a significant negative relationship between dbh and average density (P=0.03). Consistent with PC1, old-growth trees were more dense (0.35±0.04 g/cm³) than intermediate-aged pines (0.18±0.02 g/cm³) (P=0.005).
Table 8. Summary of correlation analyses for longevity, dbh, age class, average pitch, and average density for Petty Creek 2, n=22. Significant results are in bold (P<0.05).

<table>
<thead>
<tr>
<th></th>
<th>dbh</th>
<th>Age class</th>
<th>Average pitch</th>
<th>Average density</th>
</tr>
</thead>
<tbody>
<tr>
<td>Longevity</td>
<td>(t)-test, (t=1.123, P=0.275)</td>
<td>(t)-test, (t=3.119, P=0.005) (actual ages used)</td>
<td>(t)-test, (t=-2.649, P=0.015)</td>
<td>(t)-test, (t=1.080, P=0.293)</td>
</tr>
<tr>
<td>dbh</td>
<td>---</td>
<td>ANOVA, (F=3.022, P=0.073)</td>
<td>(t)-test, (t=-0.66, P=0.514)</td>
<td>(t)-test, (t=-2.34, P=0.03)</td>
</tr>
<tr>
<td>Age class</td>
<td>---</td>
<td>---</td>
<td>ANOVA, (F=3.159, P=0.065)</td>
<td>ANOVA, (F=7.266, P=0.005)</td>
</tr>
<tr>
<td>Average pitch</td>
<td>---</td>
<td>---</td>
<td>---</td>
<td>(t)-test, (t=-1.11, P=0.279)</td>
</tr>
</tbody>
</table>

Niarada (tables 3-6, 9)

Since there was only one broken snag at Niarada, I was unable to study longevity there.

There were no significant relationships found with the Niarada data.

Table 9. Summary of correlation analyses for between longevity, dbh, age class, average pitch, and average density for Niarada, n=23. Significant results are in bold (P<0.05).

<table>
<thead>
<tr>
<th></th>
<th>dbh</th>
<th>Age class</th>
<th>Average pitch</th>
<th>Average density</th>
</tr>
</thead>
<tbody>
<tr>
<td>Longevity (only one broken tree)</td>
<td>ANOVA, (F=0.419, P=0.525)</td>
<td>ANOVA, (F=0.269, P=0.61)</td>
<td>ANOVA, (F=0.465, P=0.503)</td>
<td>ANOVA, (F=0.310, P=0.583)</td>
</tr>
<tr>
<td>dbh</td>
<td>---</td>
<td>Kruskal-Wallis, (\chi^2=3.945, P=0.139)</td>
<td>(t)-test, (t=1.28, P=0.216)</td>
<td>(t)-test, (t=1.43, P=0.166)</td>
</tr>
<tr>
<td>Age class</td>
<td>---</td>
<td>---</td>
<td>ANOVA, (F=0.185, P=0.833)</td>
<td>ANOVA, (F=2.754, P=0.088)</td>
</tr>
<tr>
<td>Average pitch</td>
<td>---</td>
<td>---</td>
<td>---</td>
<td>(t)-test, (t=-0.49, P=0.631)</td>
</tr>
</tbody>
</table>
Magruder (tables 3-6, 10)

As with Niarada, there was no capacity to analyze longevity at Magruder because there were no broken snags sampled at Magruder. The only significance found at Magruder was with age class versus dbh (P<0.001). Intermediate and old-growth pines were each significantly larger than bull pines. The mean diameter for old-growth pines was 28.5±1.4", for intermediate-aged pines it was 26.5±1.4," and for bull pines it was 18.1±1.6."

Table 10. Summary of correlation analyses for longevity, dbh, age class, average pitch, and average density for Magruder, n=27. Significant results are in bold (P<0.05).

<table>
<thead>
<tr>
<th></th>
<th>dbh</th>
<th>Age class</th>
<th>Average pitch</th>
<th>Average density</th>
</tr>
</thead>
<tbody>
<tr>
<td>Longevity</td>
<td>---</td>
<td>---</td>
<td>---</td>
<td>---</td>
</tr>
<tr>
<td>(No broken trees)</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>dbh</td>
<td>---</td>
<td>ANOVA</td>
<td>t-test</td>
<td>t-test</td>
</tr>
<tr>
<td></td>
<td></td>
<td>F=12.962, P<0.001</td>
<td>t=-0.39, P=0.698</td>
<td>t=-1.55, P=0.134</td>
</tr>
<tr>
<td>Age class</td>
<td>---</td>
<td>---</td>
<td>ANOVA</td>
<td>ANOVA</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>F=2.299, P=0.122</td>
<td>F=0.636, P=0.538</td>
</tr>
<tr>
<td>Average pitch</td>
<td>---</td>
<td>---</td>
<td>---</td>
<td>t-test</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>t=-1.39, P=0.176</td>
</tr>
</tbody>
</table>

Combined sites

The distribution of the variables dbh, age, average pitch, and average density was relatively normal for all sites (Appendix III). For PC1 and PC2, there were no significant differences seen in mean dbh, age, average pitch, or average density (figs. 1-4). For Magruder and Niarada, there was only one significant difference—mean dbh (25.1±0.9" versus 21.3±1.0"). Based on these findings, I felt it was appropriate to combine the data
Figure 1. Mean diameters (inches) and standard errors of the sampling means by site. Statistically different means are indicated with different letters (P<0.05).

Figure 2. Mean ages (years) and standard errors of the sampling means by site. Statistically different means are indicated with different letters (P<0.05).
Figure 3. Mean average pitch (%) and standard errors of the sampling means by site. Statistically different means are indicated with different letters (P<0.05).

Figure 4. Mean average density (g/cm³) and standard errors of the sampling means by site. Statistically different means are indicated with different letters (P<0.05).
from the two 1988 sites together and the data from the two 1994 sites together to investigate the influences of larger sample sizes on the relationships.

1988 Sites (table 11)

The G-test for goodness-of-fit was conducted on the combined PC1 and PC2 data for age class versus longevity. The test indicated that age class and longevity were related (P=0.001).

For the other statistical measures on the combined data from PC1 and PC2, five significant relationships were seen. The first, dbh versus longevity, was not detected in either individual site (P=0.019). Broken snags had a significantly smaller diameter than non-broken ones (18.5±0.7" versus 20.9±0.7").

As was seen in both individual sites, broken snags were significantly younger than non-broken snags (P<0.001) with a mean age of 164±17 years. The standing snags averaged 249±16 years old. One more significance was seen with regards to longevity; broken snags were significantly less dense (P=0.0049) than standing snags (0.23±0.03 g/cm³ versus 0.34±0.03 g/cm³).

The diameter distribution for the three age classes showed successively larger means. The ANOVA held significance with P=0.008, but the only significance was that the mean of bull pines was smaller than the mean for either intermediate pines or old-growth pines (according to the Tukey-Kramer HSD). Old-growth pines averaged 21.1±0.8," intermediate pines averaged 19.8±0.6," and bull pines were 15.3±0.8" in diameter.

The final test of significance was that old-growth trees were significantly more dense than the intermediate-aged trees (P=0.0002 and Tukey-Kramer HSD). Average density
for the bull pines was quite variable, leading to a mean of 0.29 ± 0.06 g/cm3, causing it to overlap both intermediate and old-growth pine distributions. Intermediates averaged 0.23 ± 0.02 g/cm3, while old-growth trees averaged 0.40 ± 0.03 g/cm3.

Table 11. Summary of correlation analyses for longevity, dbh, age class, average pitch, and average density for 1988 sites combined, n=53. Significant results are in bold (P<0.05).

<table>
<thead>
<tr>
<th></th>
<th>dbh</th>
<th>Age class</th>
<th>Average pitch</th>
<th>Average density</th>
</tr>
</thead>
<tbody>
<tr>
<td>Longevity</td>
<td>t-test $t=2.433$, P=0.019</td>
<td>t-test $t=3.566$, P<0.001 (actual ages used)</td>
<td>t-test $t=-1.115$, P=0.27</td>
<td>t-test $t=2.943$, P=0.005</td>
</tr>
<tr>
<td>dbh</td>
<td>---</td>
<td>ANOVA $F=5.365$, P=0.008</td>
<td>t-test $t=-0.41$, P=0.681</td>
<td>t-test $t=-0.50$, P=0.621</td>
</tr>
<tr>
<td>Age class</td>
<td>---</td>
<td>---</td>
<td>ANOVA $F=1.922$, P=0.312</td>
<td>ANOVA $F=10.472$, P=0.0002</td>
</tr>
<tr>
<td>Average pitch</td>
<td>---</td>
<td>---</td>
<td>---</td>
<td>t-test $t=-0.93$, P=0.355</td>
</tr>
</tbody>
</table>

1994 Sites (table 12)

Combining Magruder and Niarada did little to increase the number of relationships found to be significant. The one relationship found to be significant was age class versus dbh (P<0.001). In the combined sites, however, all age classes were significantly different from one another. The old-growth trees averaged 28.7±1.3", mean for the intermediate-aged trees was 22.6±0.8," and the average for the bull pines was 18.0±1.6."
Table 12. Summary of correlation analyses for longevity, dbh, age class, average pitch, and average density for 1994 sites combined, n=50. Significant results are in bold (P<0.05).

<table>
<thead>
<tr>
<th></th>
<th>dbh</th>
<th>Age class</th>
<th>Average pitch</th>
<th>Average density</th>
</tr>
</thead>
<tbody>
<tr>
<td>Longevity</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>(Only one broken</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>snag)</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>t-test</td>
<td>t-test</td>
<td>t-test</td>
<td>t-test</td>
</tr>
<tr>
<td></td>
<td>t=0.887, P=0.38</td>
<td>t=0.553, P=0.583 (actual ages used)</td>
<td>t=-0.562, P=0.577</td>
<td>t=0.950, P=0.347</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>dbh</td>
<td>---</td>
<td>ANOVA</td>
<td>t-test</td>
<td>t-test</td>
</tr>
<tr>
<td></td>
<td></td>
<td>F=14.641, P<0.001</td>
<td>t=0.39, P=0.702</td>
<td>t=0.63, P=0.535</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Age class</td>
<td>---</td>
<td>---</td>
<td>ANOVA</td>
<td>ANOVA</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>F=1.620, P=0.209</td>
<td>F=1.183, P=0.315</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Average pitch</td>
<td>---</td>
<td>---</td>
<td>---</td>
<td>t-test</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>t=-1.11, P=0.274</td>
</tr>
</tbody>
</table>

As a final summary of the results obtained from the individual sites or combined sites, table 12 presents the relationships and which sites had significant results among them.

Table 13. Summary table of which sites showed significant results (P<0.05) in correlation analyses for longevity, dbh, age class, average pitch, and average density.

<table>
<thead>
<tr>
<th></th>
<th>dbh</th>
<th>Age class</th>
<th>Average pitch</th>
<th>Average density</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Longevity</td>
<td></td>
<td>PC1, PC2, 1988</td>
<td>PC2</td>
<td>PC1, 1988</td>
</tr>
<tr>
<td></td>
<td>1988</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>PC1, 1988, Magruder, 1994</td>
<td>---</td>
<td>PC2</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>dbh</td>
<td>---</td>
<td>---</td>
<td>---</td>
<td>---</td>
</tr>
<tr>
<td></td>
<td></td>
<td>PC1, PC2, 1988</td>
<td>---</td>
<td>---</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Age class</td>
<td>---</td>
<td>---</td>
<td>---</td>
<td>PC1, PC2, 1988</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Average pitch</td>
<td>---</td>
<td>---</td>
<td>---</td>
<td>---</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Even though I made no direct comparisons between different years, some interesting differences were seen. There was no difference between mean age of the 1994 sites (214±13 years) and 1988 sites (209±12 years) (fig. 5), but the snags making up the 1994 sites were significantly larger (fig. 6). The mean diameter of snags from the 1994 sites was 23.3±0.7" and the mean from 1988 sites was 19.8±0.7." This difference could be
attributed to different site conditions and thus growing conditions, or it could be due to more bark remaining on the 1994 snags.

Average density was significantly higher for the 1994 sites (fig. 7). The mean was 0.49±0.02 g/cm3 compared to 0.29±0.02 g/cm3 for the 1988 sites (P<0.0001). Counter to this, the average percent pitch was significantly higher for the snags from the 1988 sites (fig. 8). The mean was 11.04±0.68% compared to only 7.20±0.71% for the 1994 sites (P<0.0001).

MANAGEMENT IMPLICATIONS

The pitch extraction methods I used were reliable, showing very little variation between the two separate tests run on each snag sample. The predication that pitch would be higher in the old-growth trees was not born out by this study; however, I do not think the picture is clear. Since I combined sapwood and heartwood together for the chemical analysis, outcomes were likely affected. Heartwood generally has more pitch in it (Conner and others 1980) and, depending on the proportion of heartwood to sapwood, the overall percent pitch will be affected (Scheffer and Cowling 1966). Also at play here is the density of the outer wood. With increasing rot in the outer sapwood area, the percent pitch would presumably increase as the proportion of heartwood in the sample would be much greater. This could explain the general opposition of percent pitch and density measure as seen at PC2, Magruder, and to some degree at Niarada as well as in the combined 1994 and 1988 data. Future studies of this type should separate the heartwood from the sapwood in the field and conduct the chemical analysis on them separately.

The minimum diameter guidelines for ponderosa pine snag recruitment in western
Montana are generally about 20". My data indicates that this should be raised a few inches, providing a more conservative parameter (Conner 1979). The differences in snag diameter between broken and standing snags was not significant at either PC1 or PC2. At PC1, broken snags averaged 17.8" while those still standing averaged 20.4" (P=0.0516). At PC2, the difference was even less with broken snags averaging 19.7" and standing snags averaging 21.5" (P=0.2748).

Age, density, and longevity showed some interesting interactions on the 1988 sites. The old-growth trees were significantly more dense, and snags that had broken off were significantly younger and less dense than those still standing. I think this is where the most crucial management implications lie. According to the data I collected, ponderosa pine snags in western Montana have a greater chance of remaining standing at least 10 years if the trees are >250 years old.

I think that age should be added to the management guidelines as a criterion as it appears that older trees stay standing longer once they die. It is important to keep in mind that the ponderosa pine trees that were >250 years old in 1988 experienced a very different environment than trees currently do. The primary difference is that Douglas-fir/ponderosa pine forests lack the frequent, non-lethal underburns which historically helped to maintain more open sites. That fire regime helped to recycle nutrients and reduced competition stress to the remaining trees, thus presumably increasing tree vigor.

Further studies are needed to provide more precise snag guidelines for managers, both in the Northern Rocky Mountains and elsewhere. Proposals to ‘restore’ ponderosa pine forests to pre-European settlement structure and composition with thinning and
reintroduction of fire will need to carefully consider how these treatments may affect both standing and potential snags. This fact is underscored by this study, in particular, since the most persistent snags appear to be in the relatively rare old-growth snags. There were few old-growth pines at my sites. If this is indicative of the overall age composition of pine forests in the Northern Rocky Mountains, silvicultural tools such as shelterwood harvesting and prescribed fire need to be used wisely in order to retain both potential old-growth snags and a good seed-source for future ponderosa pine forests. Even more noteworthy was the relative lack of bull pines at my study sites, which indicates that recruitment of ponderosa pine in these forests low. An expected benefit to opening the forests with silvicultural techniques is increased establishment of shade-intolerant ponderosa pine seedlings.
Figure 5. Mean age (years) and standard error of the sampling mean by fire year. Statistically different means are indicated with different letters (P<0.05).

Figure 6. Mean diameter (inches) and standard error of the sampling mean by fire year. Statistically different means are indicated with different letters (P<0.05).
Figure 7. Mean average pitch (%) and standard error of the sampling mean by fire year. Statistically different means are indicated with different letters (P<0.05).

Figure 8. Mean average density (g/cm³) and standard errors of the sampling means by site. Statistically different means are indicated with different letters (P<0.05).
LITERATURE CITED

APPENDIX I

Field form used for recording data at each snag sampled

<table>
<thead>
<tr>
<th>Location</th>
<th>Date</th>
</tr>
</thead>
<tbody>
<tr>
<td>Aspect</td>
<td>Slope %</td>
</tr>
<tr>
<td>Tree#</td>
<td>Diameter"</td>
</tr>
<tr>
<td>Broken?</td>
<td>Y N</td>
</tr>
<tr>
<td>Height of break</td>
<td></td>
</tr>
<tr>
<td>Height age core taken at</td>
<td>Side of tree age core taken from</td>
</tr>
<tr>
<td>Pitch cores taken at ~3' on sidehills (L&R)</td>
<td></td>
</tr>
<tr>
<td>Approximate age of tree</td>
<td>years</td>
</tr>
<tr>
<td>Rot present?</td>
<td>How much?</td>
</tr>
<tr>
<td>Fire scars visible?</td>
<td>#</td>
</tr>
<tr>
<td>Comments</td>
<td></td>
</tr>
</tbody>
</table>

GPS File: Time: # Points:

Density cores:
Azimuth

APPENDIX II

Lab form used for chemical analysis measurements

<table>
<thead>
<tr>
<th>DATE:</th>
<th>NOTES</th>
<th>SAMPLE</th>
<th>SAMPLE</th>
<th>SAMPLE</th>
</tr>
</thead>
<tbody>
<tr>
<td>STANDARDS</td>
<td>TIME</td>
<td>FLASK</td>
<td>FLASK</td>
<td>FLASK</td>
</tr>
<tr>
<td>WEIGHTS</td>
<td></td>
<td>THIMBLE</td>
<td>THIMBLE</td>
<td>THIMBLE</td>
</tr>
<tr>
<td>10 MG</td>
<td></td>
<td>WEIGHT1</td>
<td>WEIGHT1</td>
<td>WEIGHT1</td>
</tr>
<tr>
<td>20 MG</td>
<td></td>
<td>WEIGHT2</td>
<td>WEIGHT2</td>
<td>WEIGHT2</td>
</tr>
<tr>
<td>50 MG</td>
<td></td>
<td>WEIGHT3</td>
<td>WEIGHT3</td>
<td>WEIGHT3</td>
</tr>
<tr>
<td>200 MG</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>500 MG</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1 G</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>2 G</td>
<td></td>
<td>SAMPLE WT.</td>
<td></td>
<td></td>
</tr>
<tr>
<td>5 G</td>
<td></td>
<td>SAMPLE WT.</td>
<td></td>
<td></td>
</tr>
<tr>
<td>10 G</td>
<td></td>
<td>SAMPLE WT.</td>
<td></td>
<td></td>
</tr>
<tr>
<td>BEFORE & AFTER DRYING 24 HRS.</td>
<td>BEFORE & AFTER DRYING 24 HRS.</td>
<td>BEFORE & AFTER DRYING 24 HRS.</td>
<td></td>
<td></td>
</tr>
<tr>
<td>((5°C & COOLING IN DESICCATOR FOR 1 HR))</td>
<td>((5°C & COOLING IN DESICCATOR FOR 30 MINUTES))</td>
<td>((5°C & COOLING IN DESICCATOR FOR 30 MINUTES))</td>
<td></td>
<td></td>
</tr>
<tr>
<td>THIMBLE/JAR</td>
<td>BEAKER</td>
<td>THIMBLE/JAR</td>
<td>BEAKER</td>
<td>THIMBLE/JAR</td>
</tr>
</tbody>
</table>
Appendix III

Distribution data for diameter, age, average pitch, and average density for Petty Creek 1.

<table>
<thead>
<tr>
<th>dbh (inches)</th>
<th>Age (years)</th>
<th>Average pitch (%)</th>
<th>Average density (g/cm²)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Maximum</td>
<td>Maximum</td>
<td>Maximum</td>
<td>Maximum</td>
</tr>
<tr>
<td>100.0%</td>
<td>100.0%</td>
<td>100.0%</td>
<td>100.0%</td>
</tr>
<tr>
<td>99.5%</td>
<td>99.5%</td>
<td>99.5%</td>
<td>99.5%</td>
</tr>
<tr>
<td>97.5%</td>
<td>97.5%</td>
<td>97.5%</td>
<td>97.5%</td>
</tr>
<tr>
<td>90.0%</td>
<td>90.0%</td>
<td>90.0%</td>
<td>90.0%</td>
</tr>
<tr>
<td>75.0%</td>
<td>75.0%</td>
<td>75.0%</td>
<td>75.0%</td>
</tr>
<tr>
<td>50.0%</td>
<td>50.0%</td>
<td>50.0%</td>
<td>50.0%</td>
</tr>
<tr>
<td>25.0%</td>
<td>25.0%</td>
<td>25.0%</td>
<td>25.0%</td>
</tr>
<tr>
<td>10.0%</td>
<td>10.0%</td>
<td>10.0%</td>
<td>10.0%</td>
</tr>
<tr>
<td>2.5%</td>
<td>2.5%</td>
<td>2.5%</td>
<td>2.5%</td>
</tr>
<tr>
<td>0.5%</td>
<td>0.5%</td>
<td>0.5%</td>
<td>0.5%</td>
</tr>
<tr>
<td>Minimum</td>
<td>Minimum</td>
<td>Minimum</td>
<td>Minimum</td>
</tr>
<tr>
<td>0.0%</td>
<td>0.0%</td>
<td>0.0%</td>
<td>0.0%</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Statistics</th>
<th>dbh (inches)</th>
<th>Age (years)</th>
<th>Average pitch (%)</th>
<th>Average density (g/cm²)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Mean</td>
<td>19.04194</td>
<td>6.21800</td>
<td>12.05360</td>
<td>0.30591</td>
</tr>
<tr>
<td>Std Dev</td>
<td>3.67721</td>
<td>102.9100</td>
<td>3.67721</td>
<td>0.30591</td>
</tr>
<tr>
<td>Std Error Mean</td>
<td>0.66045</td>
<td>18.4832</td>
<td>1.16178</td>
<td>0.30591</td>
</tr>
<tr>
<td>Lower 95% Mean</td>
<td>20.39074</td>
<td>14.33436</td>
<td>0.24774</td>
<td>0.30591</td>
</tr>
<tr>
<td>N</td>
<td>19.04194</td>
<td>6.21800</td>
<td>12.05360</td>
<td>0.30591</td>
</tr>
<tr>
<td>Sum Weights</td>
<td>31.00000</td>
<td>31.00000</td>
<td>31.00000</td>
<td>31.00000</td>
</tr>
<tr>
<td>Sum</td>
<td>590.30000</td>
<td>5882.0000</td>
<td>373.66148</td>
<td>373.66148</td>
</tr>
<tr>
<td>Variance</td>
<td>13.52185</td>
<td>10590.465</td>
<td>38.66347</td>
<td>38.66347</td>
</tr>
<tr>
<td>Skewness</td>
<td>0.87378</td>
<td>1.1944</td>
<td>0.48778</td>
<td>0.48778</td>
</tr>
<tr>
<td>Kurtosis</td>
<td>0.36043</td>
<td>0.9795</td>
<td>-0.44212</td>
<td>-0.44212</td>
</tr>
<tr>
<td>CV</td>
<td>19.31100</td>
<td>54.2366</td>
<td>51.54623</td>
<td>51.54623</td>
</tr>
</tbody>
</table>

Shapiro-Wilk W Test
- dbh (inches): W = 0.897560, p = 0.0021
- Age (years): W = 0.954843, p = 0.2504
- Average pitch (%): W = 0.906556, p = 0.0113
- Average density (g/cm²): W = 0.906556, p = 0.0113

Not normal

Not normal

Normal

Not normal
Appendix III (continued)

Distribution data for diameter, age, average pitch, and average density for Petty Creek 2.

<table>
<thead>
<tr>
<th>dbh (inches)</th>
<th>Age (years)</th>
<th>Average Pitch (%)</th>
<th>Average Density (g/cm²)</th>
</tr>
</thead>
<tbody>
<tr>
<td>30.00</td>
<td>30.300</td>
<td>0.52420</td>
<td>0.91408</td>
</tr>
<tr>
<td>25.00</td>
<td>30.300</td>
<td>0.52420</td>
<td>0.91408</td>
</tr>
<tr>
<td>20.00</td>
<td>25.280</td>
<td>0.52420</td>
<td>0.91408</td>
</tr>
<tr>
<td>15.00</td>
<td>18.394</td>
<td>0.52420</td>
<td>0.91408</td>
</tr>
</tbody>
</table>

Moments:
- Mean: 20.78182
- Std Dev: 3.66679
- Median: 20.300
- Minimum: 15.000

Normality Test:
- Shapiro-Wilk W-Test: 0.960018, 0.4843

Moments:
- Mean: 236.0000
- Std Dev: 80.5647
- Median: 243.50
- Minimum: 18.150

Normality Test:
- Shapiro-Wilk W-Test: 0.954826, 0.3891

Moments:
- Mean: 9.6019
- Std Dev: 4.42250
- Median: 9.751
- Minimum: 63.00

Normality Test:
- Shapiro-Wilk W-Test: 0.914088, 0.0550

Moments:
- Mean: 0.26073
- Std Dev: 0.12967
- Median: 0.22436
- Minimum: 0.09899

Normality Test:
- Shapiro-Wilk W-Test: 0.878862, 0.0099
Appendix III (continued)

Distribution data for diameter, age, average pitch, and average density for 1988 sites combined.

<table>
<thead>
<tr>
<th>dbh (inches)</th>
<th>Age (yr)</th>
<th>Average pitch (%)</th>
<th>Average density (g/cm³)</th>
</tr>
</thead>
<tbody>
<tr>
<td>30</td>
<td>500</td>
<td>100.0%</td>
<td>100.0%</td>
</tr>
<tr>
<td>25</td>
<td>450</td>
<td>99.5%</td>
<td>99.5%</td>
</tr>
<tr>
<td>20</td>
<td>400</td>
<td>97.5%</td>
<td>97.5%</td>
</tr>
<tr>
<td>15</td>
<td>350</td>
<td>90.0%</td>
<td>90.0%</td>
</tr>
<tr>
<td>10</td>
<td>300</td>
<td>75.0%</td>
<td>75.0%</td>
</tr>
<tr>
<td>5</td>
<td>250</td>
<td>50.0%</td>
<td>50.0%</td>
</tr>
<tr>
<td>2.5</td>
<td>200</td>
<td>25.0%</td>
<td>25.0%</td>
</tr>
<tr>
<td>0.5</td>
<td>150</td>
<td>10.0%</td>
<td>10.0%</td>
</tr>
<tr>
<td>minimum</td>
<td>100</td>
<td>0.0%</td>
<td>0.0%</td>
</tr>
</tbody>
</table>

Moments:
- Mean: 19.76413
- Std Dev: 3.73899
- Std Error Mean: 0.51359
- Upper 95% Mean: 20.79474
- Lower 95% Mean: 18.73356
- N: 53.00000
- Sum Weights: 53.00000
- Sum: 1047.5
- Variance: 13.98004
- Skewness: 0.71403
- CV: 18.91803

Shapiro-Wilk Test:
- W: 0.948478
- Prob: <0.0001

Not normal

<table>
<thead>
<tr>
<th>Age (yr)</th>
<th>Average pitch (%)</th>
<th>Average density (g/cm³)</th>
</tr>
</thead>
<tbody>
<tr>
<td>500</td>
<td>100.0%</td>
<td>100.0%</td>
</tr>
<tr>
<td>450</td>
<td>99.5%</td>
<td>99.5%</td>
</tr>
<tr>
<td>400</td>
<td>97.5%</td>
<td>97.5%</td>
</tr>
<tr>
<td>350</td>
<td>90.0%</td>
<td>90.0%</td>
</tr>
<tr>
<td>300</td>
<td>75.0%</td>
<td>75.0%</td>
</tr>
<tr>
<td>250</td>
<td>50.0%</td>
<td>50.0%</td>
</tr>
<tr>
<td>200</td>
<td>25.0%</td>
<td>25.0%</td>
</tr>
<tr>
<td>150</td>
<td>10.0%</td>
<td>10.0%</td>
</tr>
<tr>
<td>maximum</td>
<td>0.0%</td>
<td>0.0%</td>
</tr>
</tbody>
</table>

Moments:
- Mean: 208.9434
- Std Dev: 96.2322
- Std Error Mean: 13.2185
- Upper 95% Mean: 235.4682
- Lower 95% Mean: 182.4186
- N: 53.00000
- Sum Weights: 53.00000
- Sum: 11074
- Variance: 9260.6313
- Skewness: 0.5516
- Kurtosis: 0.19525
- CV: 46.0566

Shapiro-Wilk Test:
- W: 0.953422
- Prob: <0.0001

Not normal

Moments:
- Mean: 11.03645
- Std Dev: 5.62942
- Std Error Mean: 0.77326
- Upper 95% Mean: 12.58810
- Lower 95% Mean: 9.48479
- N: 53.00000
- Sum Weights: 53.00000
- Sum: 584.93172
- Variance: 31.69034
- Skewness: 0.61408
- Kurtosis: -0.2042
- CV: 51.00751

Shapiro-Wilk Test:
- W: 0.901542
- Prob: <0.0001

Not normal

Moments:
- Mean: 0.28715
- Std Dev: 0.14766
- Std Error Mean: 0.02028
- Upper 95% Mean: 0.32753
- Lower 95% Mean: 0.24645
- N: 53.00000
- Sum Weights: 53.00000
- Sum: 15.21909
- Variance: 0.09514
- Skewness: 0.65981
- Kurtosis: -1.03434
- CV: 51.42347

Shapiro-Wilk Test:
- W: 0.890151
- Prob: <0.0001

Not normal
Appendix III (continued)

Distribution data for diameter, age, average pitch, and average density for Niarada.

Diameter (dbh) (inches)

<table>
<thead>
<tr>
<th>dbh (inches)</th>
<th>35</th>
<th>30-25</th>
<th>20-15</th>
<th>15-10</th>
<th>10-5</th>
<th>5-0</th>
</tr>
</thead>
<tbody>
<tr>
<td>Quantiles</td>
<td>maximum</td>
<td>100.0%</td>
<td>35.200</td>
<td>35.200</td>
<td>35.200</td>
<td>35.200</td>
</tr>
<tr>
<td></td>
<td>quartile</td>
<td>25.0%</td>
<td>17.300</td>
<td>15.300</td>
<td>15.300</td>
<td>15.300</td>
</tr>
<tr>
<td></td>
<td>median</td>
<td>10.0%</td>
<td>10.0%</td>
<td>10.0%</td>
<td>10.0%</td>
<td>10.0%</td>
</tr>
<tr>
<td></td>
<td>minimum</td>
<td>0.5%</td>
<td>0.5%</td>
<td>0.5%</td>
<td>0.5%</td>
<td>0.5%</td>
</tr>
<tr>
<td>iQuantifies</td>
<td>maximum</td>
<td>100.0%</td>
<td>99.5%</td>
<td>97.5%</td>
<td>90.0%</td>
<td>75.0%</td>
</tr>
<tr>
<td></td>
<td>quartile</td>
<td>25.0%</td>
<td>25.0%</td>
<td>25.0%</td>
<td>25.0%</td>
<td>25.0%</td>
</tr>
<tr>
<td></td>
<td>median</td>
<td>10.0%</td>
<td>10.0%</td>
<td>10.0%</td>
<td>10.0%</td>
<td>10.0%</td>
</tr>
<tr>
<td></td>
<td>minimum</td>
<td>0.5%</td>
<td>0.5%</td>
<td>0.5%</td>
<td>0.5%</td>
<td>0.5%</td>
</tr>
<tr>
<td>Moments</td>
<td>Mean</td>
<td>21.26957</td>
<td>Std Dev</td>
<td>4.47492</td>
<td>Std Error Mean</td>
<td>0.93309</td>
</tr>
<tr>
<td></td>
<td>Mean</td>
<td>5.98985</td>
<td>Std Dev</td>
<td>3.76448</td>
<td>Std Error Mean</td>
<td>0.78495</td>
</tr>
<tr>
<td></td>
<td>Mean</td>
<td>0.41633</td>
<td>Std Dev</td>
<td>0.10084</td>
<td>Std Error Mean</td>
<td>0.02103</td>
</tr>
</tbody>
</table>

Age (years)

<table>
<thead>
<tr>
<th>Age (years)</th>
<th>400</th>
<th>350</th>
<th>300</th>
<th>250</th>
<th>200</th>
<th>150</th>
<th>100</th>
<th>50</th>
</tr>
</thead>
<tbody>
<tr>
<td>Quantiles</td>
<td>maximum</td>
<td>100.0%</td>
<td>15.790</td>
<td>15.790</td>
<td>15.790</td>
<td>15.790</td>
<td>15.790</td>
<td>15.790</td>
</tr>
<tr>
<td></td>
<td>median</td>
<td>10.0%</td>
<td>10.0%</td>
<td>10.0%</td>
<td>10.0%</td>
<td>10.0%</td>
<td>10.0%</td>
<td>10.0%</td>
</tr>
<tr>
<td></td>
<td>minimum</td>
<td>0.5%</td>
<td>0.5%</td>
<td>0.5%</td>
<td>0.5%</td>
<td>0.5%</td>
<td>0.5%</td>
<td>0.5%</td>
</tr>
</tbody>
</table>

Average Pitch (%)

<table>
<thead>
<tr>
<th>Average pitch (%)</th>
<th>15-10</th>
<th>10-5</th>
<th>5-0</th>
</tr>
</thead>
<tbody>
<tr>
<td>Quantiles</td>
<td>maximum</td>
<td>100.0%</td>
<td>99.5%</td>
</tr>
<tr>
<td></td>
<td>quartile</td>
<td>25.0%</td>
<td>25.0%</td>
</tr>
<tr>
<td></td>
<td>median</td>
<td>10.0%</td>
<td>10.0%</td>
</tr>
<tr>
<td></td>
<td>minimum</td>
<td>0.5%</td>
<td>0.5%</td>
</tr>
</tbody>
</table>

Average Density (g/an)

<table>
<thead>
<tr>
<th>Average density (g/an)</th>
<th>0.60</th>
<th>0.55</th>
<th>0.50</th>
<th>0.45</th>
<th>0.40</th>
<th>0.35</th>
<th>0.30</th>
<th>0.25</th>
<th>0.20</th>
<th>0.15</th>
</tr>
</thead>
<tbody>
<tr>
<td>Quantiles</td>
<td>maximum</td>
<td>100.0%</td>
<td>0.57109</td>
<td>0.57109</td>
<td>0.57109</td>
<td>0.57109</td>
<td>0.57109</td>
<td>0.57109</td>
<td>0.57109</td>
<td>0.57109</td>
</tr>
<tr>
<td></td>
<td>quartile</td>
<td>25.0%</td>
<td>0.36051</td>
<td>0.36051</td>
<td>0.36051</td>
<td>0.36051</td>
<td>0.36051</td>
<td>0.36051</td>
<td>0.36051</td>
<td>0.36051</td>
</tr>
<tr>
<td></td>
<td>median</td>
<td>10.0%</td>
<td>0.25646</td>
<td>0.25646</td>
<td>0.25646</td>
<td>0.25646</td>
<td>0.25646</td>
<td>0.25646</td>
<td>0.25646</td>
<td>0.25646</td>
</tr>
<tr>
<td></td>
<td>minimum</td>
<td>0.5%</td>
<td>0.19442</td>
<td>0.19442</td>
<td>0.19442</td>
<td>0.19442</td>
<td>0.19442</td>
<td>0.19442</td>
<td>0.19442</td>
<td>0.19442</td>
</tr>
</tbody>
</table>

Not normal

Normal

Normal

Normal

Shapiro-Wilk Test

<table>
<thead>
<tr>
<th>W Prob<W</th>
<th>0.884026</th>
<th>0.927938</th>
<th>0.933831</th>
<th>0.962111</th>
</tr>
</thead>
<tbody>
<tr>
<td>Normal</td>
<td>0.01017</td>
<td>0.0969</td>
<td>0.1329</td>
<td>0.5066</td>
</tr>
</tbody>
</table>
Appendix III (continued)

Distribution data for diameter, age, average pitch, and average density for Magruder.

dbh (inches)

<table>
<thead>
<tr>
<th>Quantiles</th>
<th>maximum</th>
<th>99.5%</th>
<th>97.5%</th>
<th>95.0%</th>
<th>90.0%</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>36.000</td>
<td>36.000</td>
<td>36.000</td>
<td>34.000</td>
<td>32.000</td>
</tr>
<tr>
<td></td>
<td>27.000</td>
<td>27.000</td>
<td>27.000</td>
<td>25.000</td>
<td>23.000</td>
</tr>
<tr>
<td></td>
<td>20.000</td>
<td>20.000</td>
<td>20.000</td>
<td>18.000</td>
<td>16.000</td>
</tr>
<tr>
<td></td>
<td>15.000</td>
<td>15.000</td>
<td>15.000</td>
<td>14.000</td>
<td>13.000</td>
</tr>
<tr>
<td></td>
<td>10.000</td>
<td>10.000</td>
<td>10.000</td>
<td>9.000</td>
<td>8.000</td>
</tr>
<tr>
<td></td>
<td>5.000</td>
<td>5.000</td>
<td>5.000</td>
<td>4.000</td>
<td>3.000</td>
</tr>
<tr>
<td></td>
<td>2.500</td>
<td>2.500</td>
<td>2.500</td>
<td>2.000</td>
<td>1.500</td>
</tr>
<tr>
<td></td>
<td>1.000</td>
<td>1.000</td>
<td>1.000</td>
<td>0.500</td>
<td>0.000</td>
</tr>
</tbody>
</table>

Age (years)

<table>
<thead>
<tr>
<th>Quantiles</th>
<th>maximum</th>
<th>99.5%</th>
<th>97.5%</th>
<th>95.0%</th>
<th>90.0%</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>278.00</td>
<td>278.00</td>
<td>278.00</td>
<td>270.80</td>
<td>260.00</td>
</tr>
<tr>
<td></td>
<td>235.00</td>
<td>235.00</td>
<td>235.00</td>
<td>225.00</td>
<td>215.00</td>
</tr>
<tr>
<td></td>
<td>97.00</td>
<td>97.00</td>
<td>97.00</td>
<td>91.00</td>
<td>87.00</td>
</tr>
<tr>
<td></td>
<td>87.00</td>
<td>87.00</td>
<td>87.00</td>
<td>82.00</td>
<td>78.00</td>
</tr>
</tbody>
</table>

Average pitch (%)

<table>
<thead>
<tr>
<th>Quantiles</th>
<th>maximum</th>
<th>99.5%</th>
<th>97.5%</th>
<th>95.0%</th>
<th>90.0%</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>2.162</td>
<td>2.162</td>
<td>2.162</td>
<td>1.537</td>
<td>0.840</td>
</tr>
</tbody>
</table>

Average density (g/cm²)

<table>
<thead>
<tr>
<th>Quantiles</th>
<th>maximum</th>
<th>99.5%</th>
<th>97.5%</th>
<th>95.0%</th>
<th>90.0%</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>0.59547</td>
<td>0.59547</td>
<td>0.59547</td>
<td>0.56032</td>
<td>0.50702</td>
</tr>
<tr>
<td></td>
<td>0.50702</td>
<td>0.50702</td>
<td>0.50702</td>
<td>0.42525</td>
<td>0.36985</td>
</tr>
<tr>
<td></td>
<td>0.29244</td>
<td>0.29244</td>
<td>0.29244</td>
<td>0.29244</td>
<td>0.29244</td>
</tr>
</tbody>
</table>

Test for Normality

- **Shapiro-Wilk Test**
 - dbh (inches): W = 0.945476, p = 0.1771
 - Age (years): W = 0.883727, p = 0.0054
 - Average pitch (%): W = 0.859890, p = 0.0015
 - Average density (g/cm²): W = 0.977215, p = 0.8037

- All tests indicate **Normal** distribution except for Age (years) which is **Not normal**.
Appendix III (continued)

Distribution data for diameter, age, average pitch, and average density for 1994 sites combined.

<table>
<thead>
<tr>
<th>DBH (inches)</th>
<th>Age (years)</th>
<th>Average pitch (%)</th>
<th>Average density (g/m³)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Quartiles</td>
<td>Moments</td>
<td>Quartiles</td>
<td>Moments</td>
</tr>
<tr>
<td>maximum 35.00</td>
<td>36.000</td>
<td>100.0%</td>
<td>0.5947</td>
</tr>
<tr>
<td>95.0% 35.00</td>
<td>36.000</td>
<td>99.5%</td>
<td>0.59547</td>
</tr>
<tr>
<td>90.0% 35.00</td>
<td>35.945</td>
<td>97.5%</td>
<td>0.58876</td>
</tr>
<tr>
<td>25.0% 18.30</td>
<td>23.250</td>
<td>90.0%</td>
<td>0.55694</td>
</tr>
<tr>
<td>10.0% 17.10</td>
<td>22.100</td>
<td>90.0%</td>
<td>0.56499</td>
</tr>
<tr>
<td>5.0% 15.46</td>
<td>20.696</td>
<td>90.0%</td>
<td>0.38476</td>
</tr>
<tr>
<td>minimum 15.30</td>
<td>15.300</td>
<td>0.0%</td>
<td>0.19442</td>
</tr>
</tbody>
</table>

Mean	23.31600	7.20199	0.44329
Std Dev	5.58852	4.15688	0.08793
Skewness	0.71885	2.5%	0.07773
Kurtosis	-0.74253	1.87604	0.50118
cv	23.96861	5.92155	19.83482

Shapiro-Wilk W Test: Not normal Not normal Not normal Normal

Mean	214.0600	7.20199	0.44329
Std Dev	83.4957	4.15688	0.08793
Skewness	0.29670	2.5%	0.07773
Kurtosis	-0.33715	1.87604	0.50118
cv	39.00570	5.92155	19.83482

Shapiro-Wilk W Test: Not normal Not normal Not normal Normal