Development of a potter

James Edward Stephenson

The University of Montana

Follow this and additional works at: https://scholarworks.umt.edu/etd
Let us know how access to this document benefits you.

Recommended Citation
https://scholarworks.umt.edu/etd/2047

This Thesis is brought to you for free and open access by the Graduate School at ScholarWorks at University of Montana. It has been accepted for inclusion in Graduate Student Theses, Dissertations, & Professional Papers by an authorized administrator of ScholarWorks at University of Montana. For more information, please contact scholarworks@mso.umt.edu.
THE DEVELOPMENT OF A POTTER

by

JAMES STEPHENSON, JR.

B. A. Montana State University, 1961

Presented in partial fulfillment of the requirements for the degree of

Master of Arts

UNIVERSITY OF MONTANA

1965

Approved by:

[Signature]
Chairman, Board of Examiners

[Signature]
Dean, Graduate School

AUG 10 1965
Date
TABLE OF CONTENTS

<table>
<thead>
<tr>
<th>Section</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>INTRODUCTION</td>
<td>1</td>
</tr>
<tr>
<td>A THREE STAGE PROCESS</td>
<td>3</td>
</tr>
<tr>
<td>1. STONEWARE.</td>
<td>4</td>
</tr>
<tr>
<td>2. INTERMEDIATE FIRING.</td>
<td>9</td>
</tr>
<tr>
<td>3. RAKU</td>
<td>14</td>
</tr>
<tr>
<td>BIBLIOGRAPHY</td>
<td>21</td>
</tr>
</tbody>
</table>
INTRODUCTION

The following account describes the experiences of an art student and his involvement and development as a potter. This paper relates the experimentation and experience of the potter in various aspects of ceramics. In this case the artist was concerned with gaining experience in traditional techniques such as throwing, coil building, slab building, and the combination of these means. With this, one is readily introduced to other processes of ceramics including bisque firing, glazing, drying, shrinkage, dunting, and the other problems that lend to the fatality rate of the ware associated with the production of a ceramic art form. Granted, these problems are those that will confront any beginning student of pottery; but, over a period of years, a certain uniqueness hopefully begins to appear.

Although the restrictions of the media and the influence of various instructors and movements greatly affect any student in a studio-class situation, the artist must strive for an original statement of his own. Gradually he becomes more independent and more capable in his approach to the material, ultimately
contributing something that reflects his own esthetic.

With regard to describing this esthetic a problem arises -- that of relating verbally the separation of modern trends from previous influences. Over a period of years historians arrived at labels and definitions of various trends and movements in art. For instance the scholars have specifically dated the red-figure and the black-figure in the decoration of Greek pottery.

Something unique has happened in the past decade in relation to the "pot form." One is hesitant to label it even a "pot form" because a vocabulary has not progressed to adequately describe the phenomena which has developed with the combining of pottery and sculpture.

The "Montana Style", introduced by Peter Voulkos and Rudy Autio, is an important part of this phenomena. Artists and collectors have been perplexed by the labeling of the works falling under this style. For a potter working in the specific locality of Montana during this period, it was inevitable that a certain amount of the influence be felt.

The noted British ceramist Bernard Leach stated, "Pottery has its own language and inherent laws, and words have theirs, and neither can be bound by the other."¹ It is with this in mind that the following illustrations are presented as evidence of the artist's success in making a unique statement. Included with the illustrations are explanations of the three processes considered for this project.

A THREE STAGE PROCESS

The majority of the work for this project was achieved at three temperatures: stoneware at 2400° F., intermediate firing at 2000° to 2200 ° F., and raku at 1750° F.

1. STONEWARE

Stoneware is defined by Daniel Rhodes as a "Vitreous grey buff, or brown ware, fired in the range of cone 6 to cone 14."¹ The advantage of working with stoneware is that in its working state it is plastic and responds well to various pottery techniques. When fired it becomes vitrified, quite durable, and has an appealing range of body and glaze coloration. Another unique quality is the intimate fusion of the glaze to the body not found at lower temperatures.

The illustrations (Figures 1 - 5) are examples of the variety of possibilities in construction and decoration which are consistent with the esthetic purposes of the artist.

STONEWARE FIGURE 1
STONEWARE FIGURE 3
2. **STONEWARE FIGURE 4**

The work at case 2 was considered for the advantage of the glazes made over bodies in the stone front and which acted in the same way as the glass over a number of stoneware and similar slips. These glazes were not affected as a binder to the body as the oxide prevented any such action, while an oxide on the lower temperature was as possible.

The glass was made to melt at a lower temperature and a mixture of equal parts of 7/3 clay and calquesite. This is a transparent glass which was applied over engobes, stains, and oxides and which was flexible enough to fit on the ware and endure the shrinkage occurring in the one fire process. Firing at this lower temperature enabled the use of a wider range of color since various colorants could be used which would become fugitive at higher temperatures.
2. **INTERMEDIATE FIRING**

The work at cone 5 was considered for the advantages of a clay body that could be fired more quickly and which would allow the elimination of the bisque fire. To arrive at a body with these qualities large quantities of local earthenware clay were mixed with stoneware clay and straw. The addition of straw does not affect the clay body in firing but rather acts as a binder and gives the green ware dry strength which prevents breakage in handling. The addition of earthenware clay permits the body to become vitrified at a lower temperature; consequently a shorter firing time is possible.

The glaze used at this intermediate temperature was a mixture of equal parts of P V clay and colemenite. This is a transparent glaze which was applied over engobes, stains, and oxides and which was flexible enough to fit on the ware and endure the shrinkage occurring in the one fire process. Firing at this lower temperature enabled the use of a wider range of color since various colorants could be used which would become fugitive at higher temperatures.
INTERMEDIATE FIGURE 5
INTERMEDIATE FIGURE 6
The technique of making raku pottery is quite
and now.

Old kilns originated a way for the people to drink the hot
tea from the still hot mug. This quick removal was used for
this project to allow the hot piece to be placed on
organic material such as cut straw or wood to reduce
the body and glaze. This reduction occurs when the hot
ware ignites the organic material and the smoke is driven
into the ware by covering the quarters in which the
reduction process is taking place. The reduction techni-
cally is the removal of oxygen from the metallic oxides.

 intermediary figure 8

Paul Soldner, Raku Pottery (New York: American
3. **Raku**

"The technique of making raku pottery is both old and new. Old because of its origin, in Japan, years ago. New because American potters have only recently revived it for its creative and aesthetic possibilities."¹

Compared to stoneware and earthenware, raku offered this potter more latitude in color and a much shorter firing time. The ideal raku body is composed of clay and talc with varying quantities of grog. This enables the ware to withstand the shock of placing the bisqued ware into a hot kiln and extracting it after a short period (ten to twenty minutes) returning it again to the cool outside air. This immediate removal from the hot kiln originated as part of the Japanese tea ceremony so that people involved could drink the hot ceremonial tea from the still hot cup. The quick removal was used for this project to allow the hot piece to be placed in organic material such as wet straw or sawdust to reduce the body and glaze. This reduction occurs when the hot ware ignites the organic material and the smoke is driven into the ware by covering the container in which the reduction process is taking place. The reduction technically is the removal of oxygen from the metallic oxides.

in the ware, thus changing the quality of the body and glaze. The body turns black and the oxides in the glaze take on unusual shimmers and metallic lusters offering the widest possible color range.
HAKU FIGURE 11
(Detail of Figure 10)
RAKU KILN FIGURE 12

(Designed and constructed by the artist)
BIBLIOGRAPHY

