1961

Tailoring methods preferred and used by college clothing teachers

Marion Louise McMahon
The University of Montana

Follow this and additional works at: https://scholarworks.umt.edu/etd
Let us know how access to this document benefits you.

Recommended Citation
McMahon, Marion Louise, "Tailoring methods preferred and used by college clothing teachers" (1961). Graduate Student Theses, Dissertations, & Professional Papers. 3836.
https://scholarworks.umt.edu/etd/3836

This Thesis is brought to you for free and open access by the Graduate School at ScholarWorks at University of Montana. It has been accepted for inclusion in Graduate Student Theses, Dissertations, & Professional Papers by an authorized administrator of ScholarWorks at University of Montana. For more information, please contact scholarworks@mso.umt.edu.
TAILORING METHODS PREFERRED AND USED BY COLLEGE CLOTHING TEACHERS

by

MARION L. McMAHON

B. S. North Dakota State University, 1930

Presented in partial fulfillment of the requirements for the degree of

Master of Arts

MONTANA STATE UNIVERSITY

1961

Approved by:

[Signatures]

Chairman, Board of Examiners

Dean, Graduate School

AUG 7 1961

Date
ACKNOWLEDGMENTS

The writer wishes to express grateful appreciation to Mrs. Emma Briscoe, chairman of the thesis committee, for her constructive criticism and help in development of the problem. The writer is thankful for the time, effort, and aid which Miss Anne Platt and Dr. Linus J. Carleton, members of the thesis committee, contributed to this effort, and also wishes to express gratitude to Miss Helen M. Michaelsen for her interest and aid in compiling data from the questionnaire.

To the many kind and cooperative home economics teachers in colleges and universities throughout the United States who returned the questionnaire, a grateful thanks is due.

The writer expresses sincere gratitude to her daughter, Mary Susan, for encouragement during the development and completion of the thesis.

M. L. McM.
TABLE OF CONTENTS

<table>
<thead>
<tr>
<th>CHAPTER</th>
<th>PAGE</th>
</tr>
</thead>
<tbody>
<tr>
<td>I. INTRODUCTION</td>
<td>1</td>
</tr>
<tr>
<td>Statement of the Problem</td>
<td>2</td>
</tr>
<tr>
<td>Delimitations</td>
<td>2</td>
</tr>
<tr>
<td>Limitations</td>
<td>3</td>
</tr>
<tr>
<td>Definition of Terms</td>
<td>3</td>
</tr>
<tr>
<td>Methods and Procedure</td>
<td>4</td>
</tr>
<tr>
<td>Organization of Remainder of thesis</td>
<td>5</td>
</tr>
<tr>
<td>II. REVIEW OF LITERATURE</td>
<td>6</td>
</tr>
<tr>
<td>History of Tailoring</td>
<td>6</td>
</tr>
<tr>
<td>Current Developments</td>
<td>14</td>
</tr>
<tr>
<td>Home Economics</td>
<td>14</td>
</tr>
<tr>
<td>Clothing Construction</td>
<td>21</td>
</tr>
<tr>
<td>Tailoring</td>
<td>27</td>
</tr>
<tr>
<td>III. ANALYSIS OF DATA AND DISCUSSION</td>
<td>31</td>
</tr>
<tr>
<td>The Distribution and Return of Questionnaire</td>
<td>31</td>
</tr>
<tr>
<td>Presentation of Data</td>
<td>35</td>
</tr>
<tr>
<td>Division A, Equipment</td>
<td>36</td>
</tr>
<tr>
<td>Division B, Measurements</td>
<td>37</td>
</tr>
<tr>
<td>Division C, Muslin Garment</td>
<td>38</td>
</tr>
<tr>
<td>Division D, Transfer of Markings</td>
<td>39</td>
</tr>
<tr>
<td>Division E, Interfacing</td>
<td>40</td>
</tr>
<tr>
<td>CHAPTER</td>
<td>PAGE</td>
</tr>
<tr>
<td>---------</td>
<td>------</td>
</tr>
<tr>
<td>Division F, Padding</td>
<td>41</td>
</tr>
<tr>
<td>Division G, Padding Stitch</td>
<td>42</td>
</tr>
<tr>
<td>Division H, Felling of Tape</td>
<td>43</td>
</tr>
<tr>
<td>Division I, Dart Construction</td>
<td>44</td>
</tr>
<tr>
<td>Division J, Construction</td>
<td>45</td>
</tr>
<tr>
<td>Division K, Seam Pressing and Finishing</td>
<td>46</td>
</tr>
<tr>
<td>Division L, Zipper</td>
<td>47</td>
</tr>
<tr>
<td>Division M, Linings</td>
<td>48</td>
</tr>
<tr>
<td>Division N, Type of Training Received by Respondents</td>
<td>49</td>
</tr>
<tr>
<td>Division O, Method Used by Respondent to Teach Tailoring</td>
<td>50</td>
</tr>
<tr>
<td>IV. Summary</td>
<td>52</td>
</tr>
<tr>
<td>GLOSSARY</td>
<td>57</td>
</tr>
<tr>
<td>BIBLIOGRAPHY</td>
<td>60</td>
</tr>
<tr>
<td>APPENDIX A</td>
<td>65</td>
</tr>
</tbody>
</table>
LIST OF TABLES

<table>
<thead>
<tr>
<th>TABLE</th>
<th>PAGE</th>
</tr>
</thead>
<tbody>
<tr>
<td>I. Distribution and Return of Questionnaire by States and Region</td>
<td>34</td>
</tr>
<tr>
<td>II. Equipment Used According to Respondents' Training</td>
<td>37</td>
</tr>
<tr>
<td>III. Measurements Used According to Respondents' Training</td>
<td>38</td>
</tr>
<tr>
<td>IV. Use of Muslin Garment According to Respondents' Training</td>
<td>39</td>
</tr>
<tr>
<td>V. Method of Transfer of Markings According to Respondents' Training</td>
<td>40</td>
</tr>
<tr>
<td>VI. Type of Interfacing Used and Grain Direction According to Respondents' Training</td>
<td>41</td>
</tr>
<tr>
<td>VII. Type of Padding According to Respondents' Training</td>
<td>42</td>
</tr>
<tr>
<td>VIII. Location of Padding Stitch and Method Used According to Respondents' Training</td>
<td>43</td>
</tr>
<tr>
<td>IX. Method of Felling Tape According to Respondents' Training</td>
<td>44</td>
</tr>
<tr>
<td>X. Dart Construction According to Respondents' Training</td>
<td>45</td>
</tr>
<tr>
<td>XI. Construction of Garment According to Respondents' Training</td>
<td>46</td>
</tr>
<tr>
<td>XII. Seam Pressing and Finishing According to Respondents' Training</td>
<td>47</td>
</tr>
<tr>
<td>XIII. Zipper Insertion According to Respondents' Training</td>
<td>48</td>
</tr>
<tr>
<td>XIV. Lining Application According to Respondents' Training</td>
<td>49</td>
</tr>
<tr>
<td>TABLE</td>
<td>PAGE</td>
</tr>
<tr>
<td>---</td>
<td>------</td>
</tr>
<tr>
<td>XV. Training of Respondents According to Regions</td>
<td>50</td>
</tr>
<tr>
<td>XVI. The Teaching Methods of Respondents According to Regions</td>
<td>51</td>
</tr>
</tbody>
</table>
LIST OF FIGURES

<table>
<thead>
<tr>
<th>FIGURE</th>
<th>PAGE</th>
</tr>
</thead>
<tbody>
<tr>
<td>1. Regions Used in Survey</td>
<td>32</td>
</tr>
</tbody>
</table>
CHAPTER I

INTRODUCTION

Clothing, food, and shelter are the primary essentials of human living and from the beginning of home economics offerings at each educational level have included work in clothing and textiles. This important area of living has been recognized as essential and has always been a part of the home economics curriculum. As the home economist looks at the past and present she becomes aware of the changing patterns of family life. College teachers have recognized the need to evaluate their teaching in the light of these changes.

Tailoring, one of the clothing construction courses, has met with much debate, not only as to whether it should be taught at the undergraduate level, but also, if it is to be taught, whether the shorter methods or the traditional custom tailoring methods should be emphasized.

College home economics teachers who stress the use of shorter methods reason that their students will do more tailoring if it is possible to cut down on the time spent in constructing a garment.

Those who emphasize the custom method of tailoring feel that their students are more satisfied with the professional appearance of the finished product and find a satisfaction in learning special custom tailoring skills.

It would be valuable to know which methods are used and which methods are preferred by college clothing teachers in all parts of the
country. This information would help to show whether there is a trend toward shorter methods of tailoring or whether the emphasis is on requiring college students to become skilled in custom tailoring methods. If a trend toward shorter methods should be found, other teachers may wish to question their methods of teaching clothing construction.

In the past few years schools at all levels have had to make adjustments in their curricula to meet the changing times. Some of these changes have come about because of the vast number of students entering the field of higher education, an increased amount of research, the opening of many new fields, and the offering of additional courses. Stress on the importance of knowledge in science and mathematics has forced changes in the requirements for higher education. One of the outstanding forces for change in methods and requirements in the college curriculum is the changing values of the present time.

Home economists are aware of these changes and have critically examined their programs in order to meet them.

Statement of the Problem

The purpose of this study was to determine which tailoring methods are preferred and used in college classes throughout the United States in order to show whether there is a trend favoring the teaching of one method of tailoring over another. The kind of training the teachers had had in tailoring was also examined and compared with the methods they employed in teaching.

Delimitations

1. This study was limited to degree-granting colleges and
universities in the United States which offer a major in home economics.

2. As a random sampling method, questionnaires were sent to every other school listed in Bulletin 2557, Home Economics in Degree-Granting Institutions.¹

3. Alaska and Hawaii were added to the list.

Limitations. 1. Only one questionnaire was sent to a school, thus limiting the reply from such a questionnaire to one teacher. In large schools, where tailoring was taught by more than one person, other instructors from that school might have responded somewhat differently.

2. No distinction was made in size of schools.

3. No check was made on the number of times tailoring was offered, the number of students in a class, or whether the school was on a semester or quarter system. The latter might influence the method used due to the amount of time involved.

Definition of terms

Custom tailoring is done by an individual tailor who is a specialist and a highly skilled craftsman in his field. Usually he works in men's wear or in women's wear, not in both. The planning of the design and the selection of the fabric are matters of personalized service by the tailor, though the customer may take design and fabric to him and ask to have a garment made. Individual measurements are taken and fittings given. The product involves much skilled handwork. Findings are selected for the individual garment, and they are of superior quality. Custom tailoring carries a high initial cost, but the customer receives individuality of design and fit and a high degree of durability of shape.²

Custom tailoring as taught in the college classroom aims at teaching the student the techniques of hand work which are used by the skilled tailor and include individual fitting, shaping and selection as explained in the above definition.

Shorter methods of tailoring involve much less time than custom tailoring and require less skill in manipulation. In this method, little or no hand sewing is used. If padding is necessary it is done by machine with no shaping of the garment. When tape is used it is attached by machine. Basting is seldom used. As the garment is constructed each unit is completed before being attached to the main part. The garment produced by the shorter method is not quite the same in appearance as the one produced by custom tailoring. This method is well suited for making children's garments and summer suits which are not worn long enough to justify the time spent in custom tailoring. A suit of the boxy type, or loosely fitted garments, adapt well to this method of tailoring because intricate shaping is not required.3

Methods and Procedure

The method used in this study was a normative survey. The following procedures were employed:

1. A library search was made of recent textbooks, articles in professional magazines, and unpublished literature by home economists outstanding in the field of clothing construction and home economics curricula. This search yielded information concerning the history of

tailoring and current trends in clothing construction as a part of home economics.

2. A questionnaire was sent out to one teacher in each of 225 degree-granting colleges and universities in the United States which offer majors in home economics. The questionnaire included the tailoring methods used and the methods preferred by college instructors. It also included a check on the type of training the instructor had received, as well as the method used in teaching tailoring.

Organization of Remainder of Thesis

Chapter II, "Review of Literature," reviews the history of tailoring and current trends in home economics and clothing construction.

Chapter III, "Analysis of Data and Discussion," gives the results of these data under the following headings: (1) the distribution and return of the questionnaire; (2) data from the questionnaire; (3) summary of data.

Chapter IV, "Summary."
CHAPTER II

REVIEW OF LITERATURE

History of Tailoring

Tailoring, or the making of outer garments for men, women, and children, is one of the oldest arts. Mankind took the first steps toward civilization when it was realized that furred skins of animals kept the hitherto naked savage warm and not only increased his comfort but his life expectancy. When the use of wool, cotton, linen, and silk clothes became much more than mere protection from cold weather, they were also indicative of the growth of refinement, the social status, and often-times the occupation of the wearer.

English tailoring history dates from the Norman conquest, at which time a more elaborate style of dress was introduced than that to which the simple-living Saxon had been accustomed. In the year 1100, Henry I confirmed the royal rights and privileges to the merchants of Oxford, and by the year 1300 English tailoring had developed to a high degree of craftsmanship. It was in the fourteenth century that the button was devised and this made possible a closer fitting garment. In the same period, dress began to increase in sumptuousness and extravagance, reaching its height in the sixteenth century, then declining until the industrialism of the nineteenth century.

Prior to 1850 all garments were made entirely by hand, but with the introduction of the sewing machine the development of machine-made...
garments became possible. In the early stages ready-made garments were crude and in some cases produced under conditions and at wages which gave tailoring the reputation of a "sweated" industry. Under the Trade Board Act of 1909, legislation was introduced which resulted in progressive improvement in wages, conditions of employment and work.

The first step was for a garment, such as a coat, to be completed by the joint efforts of a family. Then followed the "task system" which, in America, was introduced with the influx of Russian Jews that began about 1875. It was usually made up of three men, with a "presser" and a girl to sew on buttons. The work was divided among them. Payment was made by the "task." The "task" referred to a specified number of garments. Often-times several teams would be run by one contractor, who naturally selected the cheapest work shop he could find and would then pack the workers in as much as possible. The result of the "task" system was the introduction of many of the very worst features of the "sweating" system; the workers having to work excessively long hours in order to finish a "task," which in some cases meant as many as twenty coats a day.2

About this same time the English Jews introduced to New York City what is known as the team grouping of clothing construction. This was much like the "task" system, except that it provided much better working conditions. A team originally consisted of skilled tailors. One did

the machine work and one was known as the operator. Needle work was divided between a baster and a finisher. Operations which could not be placed with a single team, such as pressing, sewing on buttons, and making buttonholes, were performed by other workers. Later, a further subdivision was introduced in which a team was enlarged to include a second, less skilled tailor in each division.

A second method was introduced into the United States by the English tailors who settled in Boston, whence the name "Boston" system, sometimes referred to as the "factory" method. This system consisted of a team, but the subdivision was still more minute. As many as one hundred people might be concerned with the production of a coat. In this system the team did not make the entire coat, but instead would make only one part, such as the collar, lining, pockets, or such. This method began to eliminate the skilled tailor; it also cheapened production in a legitimate way, because it made possible mechanical power for driving sewing machines. This system also introduced inexpensive labor-saving machinery to an extent not practicable in small shops. With lower labor costs came a slightly more elaborate process of manufacture. An example of this was in the trade called the "open work" process, where linings and outside material were built up together, piece by piece, as was done by a custom tailor. In better grade factory clothes the "closed system" was used. This consisted of putting together the entire lining independently of the outer fabric and then uniting the two by a margined seam. This step was almost the final operation in the manufacture of the garment.

Despite the remarkable growth of ready-made tailoring, both in quality and quantity, bespoke (custom) tailoring was favored in Europe. On the American continent, however, ready-made garments were predominant and reached a very high standard of excellence. Ninety-five per cent of the inhabitants of the United States wear ready-made clothes.

Manufacturing processes vary greatly as between bespoke (custom) tailoring and ready-made tailoring. In the former, garments are cut individually to special measurements and requirements of the individual. In the best grade bespoke tailoring, the only mechanical aid provided is a sewing machine for the sewing of long seams. Ready-made garments are cut several at a time to recognized stock sizes. The garments are then made by teams of workers using a variety of machines, each designed for a specific operation in the making of the garments. The conveyor-belt system is frequently used in the manufacture of cheaper types of ready-made garments.

The development of multiple tailoring firms has been very rapid since the end of the first world war. Their organization follows a general pattern. First a central factory is established, with a number of retail establishments for the distribution of its product. Such an organization can operate successfully only by large-scale production. The retail establishments are generally located in densely populated centers. The larger type multiple firm also has controlling interests in woolen and worsted mills.

The tailoring trade of Great Britain and Northern Ireland in 1947 employed 572,000 male and 155,700 female workers. These were divided among many small firms, employing from five to ten workers, and
a few large firms employing several thousands. Wages and conditions of employment in the tailoring trade of Great Britain and Northern Ireland are controlled by seven statutory councils.

The tailoring trade in 1950 in the United States employed 710,000 workers, male and female, representing, in the main, two unions: the Amalgamated Clothing Workers of America, concerned with the men's trade, and the International Ladies' Garment Workers Union for women. Discussion on wages and conditions of employment are self-developed by local organizations of employers and representatives of the unions.4

The word "tailoring" is now generally associated with those who make the outer garments for men, less frequently for women. A phrase such as "shirt tailor" is occasionally encountered. In modern usage, tailoring commonly carries with it the implication that garments are made to order, to the measure of the individual, as opposed to ready-made clothing which means articles of apparel manufactured in large quantities in a series of stock or standard sizes, such that a purchaser may expect to find among them one that will fit with more or less accuracy.5

According to the census in 1860, custom tailored clothing accounted for 80 per cent of the total production, but by 1890 the ready-made type of clothing accounted for only 50 per cent of the total.

A new type of clothing manufacturer began to make his appearance. The original clothing manufacturers were men trained as tailors or contractors. The new ready-to-wear industry attracted many from other

4Chambers's Encyclopaedia, op. cit., p. 436.

5Encyclopaedia Britannica, loc. cit.
professions. At this time Nathan Stein left his retail clothing store, which he had conducted for twenty years; Levi Adler turned over his store to his brothers. This resulted in two great firms, the Stein, Block Company and L. Adler Brothers Company. Bernard Kuppenheimer, who had a clothing store, closed out and became a member of a firm of clothing manufacturers—the forerunner of the great firm of Bernard Kuppenheimer and Company. David Marks, who had been in retailing since 1848, founded the clothing manufacture firm of David Marks and Sons. Julius Hammerslough and his brothers, the uncles of Julius Rosenwald, later head of Sears, Roebuck and Company, turned their retail clothing business over to Rosenwald’s father and founded the manufacturing firm of Hammerslough Brothers. In this group which left the retailing business to join the clothing manufacturing firms were Hart Schaffner and Marx, Ederheim Stern & Company, and Michaels Stern and Company. Other merchants who started in the tailoring manufacturing business were John Wanamaker, David May, and Isaac and Jacob Kaufmann. All of these were famous names in the tailoring business.

These men were not long established before the second great development in merchandising took place. In about the 70’s and 80’s came the invention of improved cutting equipment. A long knife like a machete, which operated through a slot in the cutting table, made it possible to cut a score of garments at one time. The power-driven cutter followed; then the Yost cloth cutting machine. Later, in 1896, a cutting machine was put out that would cut three hundred suits a day. Next came the button hole machine, invented in 1856 and improved in 1862. The tailor’s goose (iron), gas heated, was the best pressing
equipment available in 1890.6

MacCullar, Parker and Company, established in Worcester, Massachusetts, about 1850, were manufacturing retailers and were credited with being the first firm in the United States to use individual patterns for the cutting of each size and shape of suit.

In the 80's and 90's equipment was improved at a much faster rate. Technologically the industry got off to a good start about 1900 when Charles Dearborn, president of the American Blind Stitch Machine Company, invented the first blind stitch machine. By 1902 blind stitch machines had been introduced for padding collars and lapels and edge taping. In 1903 a lock stitch machine was introduced. It was a single thread machine which would ravel if a loose end were exposed or a stitch were broken. About 1905 the first lock blind stitch was invented by John G. Lewis. This machine operated at about six hundred stitches a minute and was used to finish the bottoms of cheap pants and knickers.

Men's clothing resisted machine methods. It was considered rank heresy in early days to make button holes or tacks by machine.

Padding lapels and collars by machine, although this part of the coat would never be seen by the wearer, was also deprecated by manufacturers who considered tailoring an art, and were reluctant to let the machine take over for fear it would lower the standards of tailoring. Shortage of labor finally led to the cheaper grades adopting machine padding of collars. Eventually coat lapels were padded by machine, later the taping of edges, and the hems of trousers were machine felled.

Higher grade tailors, however, still preferred to cling to hand operations.

Although cutting machines were not used by the majority of firms until about 1901, Kuppenheimer, Hart Shaffner & Marx, and Ederheimer Stein & Company had installed them as early as 1893.

Pressing made progress also, from the coal-heated tailor's goose (iron) to gas irons, and before the nineties were over the electric tailor's goose was invented. An electric goose weighing twenty-five pounds cost about fourteen dollars.

An innovation of the early 1900's was the introduction of half sizes. One of the originators was Browning King and Company who worked on this idea a year before putting half-size suits on the market. As early as 1899 a clothier advertised "every size clothes for every man" and went on to explain that he had suits in seven distinct sizes. This idea was scorned as being most impractical. In 1902 Bernard Kuppenheimer mentioned an improvement in sizes of suits and coats for men. Roger Peet advertised five sizes for every chest measurement; longs, shorts, stout-shorts, and regular. The fact was brought out that since a man who required a half-size could buy gloves, shoes, collars, and a hat to fit, why not suits and coats?

Women's tailored clothes fell behind the men's industry in the 90's. For increased revenue a men's firm would occasionally tailor women's suits or bicycle costumes.

Many men's firms specialized only in trousers. Cohen, Goldman & Company was one of the largest trouser manufacturers in 1900. Their success at that time was largely due to a certain style of men's
trousers; this style was the hair-line trouser, worn with a cutaway, or the sports type coat, or with neither. The slacks business of today is somewhat reminiscent of the early trouser industry.

About 1911 the two-trouser-suit came into being. George Bensen was one of the men credited with this idea. He bought one thousand suits with two pairs of trousers and tried to sell them, but no one would buy a suit until he removed the extra pair of trousers. The following year he tried it again and sold out immediately. From then on he could not keep two-trouser-suits in stock. Shortly thereafter all firms adopted them.

As important as improvement of machinery was the introduction of scientific management or industrial engineering, reduction of hours per week, and an altruistic health program that provided health and comfort for workers in the tailoring industry.7

Current Developments

Home economics is the field of knowledge and service primarily concerned with strengthening family life. Ellen H. Richards, the first president of the American Home Economics Association, said, "Home Economics stands for the freedom of the home from dominance of things and their due subordination to ideals. The simplicity in material surroundings which will most free the spirit for the more important and permanent interests of the home and of society.8

Home economics combines knowledge of the physical, biological,

7Ibid., pp. 222-24.
and social sciences, and the arts, with research seeking to improve the lives of families and individuals. Home economics is not the only field that deals with various aspects of living; it is the only field concerned with all of them. Home economics works cooperatively with other fields in education, but takes the responsibility for the attainment of the well-being of individuals and families, the improvement of homes, and the preservation of values significant in home life.9

Home economists have given careful thought and planning to curriculum revisions necessary to meet the changing times. The most far-reaching statement of objectives was given in New Directions. Irma Ayers expressed her belief that if we are to meet the challenge that has been put before home economists, we must pursue excellence, and consider curriculum development and improvement of instruction. Several areas of importance were mentioned, as follows:

1. Reorganization of courses, consolidating when possible; avoiding repetition of subject matter, which would result in giving time for more electives.

2. A thorough check of laboratory time, resulting in a proper balance between time spent on techniques and skills.

3. Experiment with new ideas, methods, and techniques to improve teaching.

4. Recognition of superior students and consideration of their special needs.

5. Continuation of growth within the profession as well as in

9Ibid.
other academic fields.

Dr. Scott brought to the attention of home economists the need for careful thinking and wise planning if we are to meet today's challenge. This is becoming more important with time. Higher education must become more functional in developing our youth for effective citizenship and for satisfying day-by-day living. General education has been one of the major proposals as a means to reach this goal.

There is a broad and varied idea of what general education is. Common knowledge and values important to every individual, some say, is essential learning. On the other hand, some believe that general education is a quality or spirit in education, or, one might say, a way of working with and guiding students' learning, this being important to further growth and development leading to intelligent living in our society.

This brings up the question, what significance do these interpretations of general education have for home economics? It is true that home economics at the college level prepares young women and men for certain vocations, but home economics today makes a much larger contribution to the college program. A large percentage of students have as one of their major goals a successful marriage, a happy home, and parenthood. With the early marriages of today, youth needs education for family life. This need opens up a broad field for the home

economist, an opportunity that should not be overlooked.12

The home economist must sort out her values, and decide what knowledge and experiences should be given to students. A special effort must be made to contribute to the total program of general education.

Edna Amidon stresses that there is no substitute for keeping up to date with accumulating knowledge. Home economists must make a special effort to find new and better ways. They should ask the following questions: Is their instruction designed to build up generalizations about principles? Are students given help in formulating significant concepts? Are students given help in improving their study methods, thinking, and communications? Are teachers recognizing individual differences and doing something about them? If they are to keep up to date with new and better ways of teaching, they must know their students' abilities, their aspirations, interests, and values.13

Paula Nickell offered a statement by a liberal arts educator, Franc McCluer, the president of Lindenwood College, who recognizes the importance of and the need of professional training and who firmly believes that liberal arts must become a part of the framework of modern vocational education. Franc McCluer says:

Education that deals with ideas rather than techniques, with values rather than skills, with eternal rather than temporary, seeks to acquaint the student with the chief areas of human thought and

12\textit{Ibid.}, p. 452.

experiences, to free him of ignorance, superstition and fear, to
develop within him great intellectual curiosity and power of
reflective thought. Perhaps the distinguishing mark of a liber­
ally educated person is the capacity for independent thought.

Home economists feel that their teaching does deal with truths
and ideas, but are they sure that their ideas and truths will prevail
through time? Have they acquainted their students with ideas for their
own sake? What skills and techniques have they emphasized? Are they
guilty of putting too much emphasis on techniques and skills that are of
temporary importance?14

Jean Failing insisted that home economists keep up to date. A
brief few years make unbelievable changes. In the college program alone
the changes have been great. A few years ago courses in the sociological
and economic aspects of housing were not included in the curriculum.
Home economists should know the areas of specialization outside their
own field. They cannot interpret what they do not know themselves.

The responsibility of the home economist is two-fold: meet
your public, be it professional or community, as a home economist;
and when you talk about your field, talk about it as it is today
and the trends that indicate its future.15

Beatrice Paolucci believes there is no one "right way" of teach­
ing that will fit all college students and their present-day needs;
neither is there a "right way" to learn. She believes there are several
ways, each way "right" under certain conditions. The student should be
the determining factor in the type of teaching used.

14Paula Nickell, "Relating Ourselves to Education," \textit{Journal of

15Jean Failing, "Understanding and Appreciation," \textit{Journal of
Students should be taught to take more responsibility for their own education, says Beatrice Paolucci. Her advice is that students should be encouraged to do research on their own and should be expected to evaluate information with a recognized purpose or goal. One primary purpose of education is to guide students to make decisions. Students must learn to weigh one fact or idea against another. The college student should have the opportunity to gain experience in making decisions.

If students are to make decisions they must have practice in making decisions and assume the consequences of the decision they made. If students are to learn to think, we must provide situations that require thinking. If students are to learn to direct intelligently their own affairs, they must have experiences in self direction.16

The college teacher must be one who enlarges, stimulates, and modifies the learning activities of the student. As a teacher, she attempts to change the learner by using the basic principles of learning as guides to her teaching. The following are basic beliefs about learning:

1. Teaching is helping students to recognize and know differences, see alternatives, and anticipate consequences of decisions.

2. Learning is re-shaping facts and ideas so that the details and specifics of an experience make sense in new ways.

3. Learning is continuously organizing and reorganizing courses of action in light of ever-present changes and increased knowledge.

College teaching is concerned primarily with providing students

with the intellectual tools necessary for grasping an opportunity for further development and for perpetual decision-making.17

Jessie Harris feels confident that the home economics program will get better and better because it always has. It is necessary to speed up the necessary changes through more flexibility in attitudes and more rapid adjustment. The home economics program must be of more service to home and families in the future. Jessie Harris urges

...home economists to adjust more rapidly and drop those practices that will not be useful to the present way of living, and the homes of tomorrow. We must also cultivate a desire for giving up the past and accepting the future.18

Sweetman suggests that the home economist ask herself the following questions:

1. Are established objectives clear and pertinent to higher education?

2. Does the course content meet the modern way of living?

3. Does the intellectual quality of the subject matter meet with the capacity of students, with knowledge available in related sciences and applied research?

The goal is not to produce expert homemakers, but to get students to think like home economists. One problem at present is the degree of expertness which is expected. Following closely is the question, should the principle or the application of the principle be emphasized? This brings about the criticism that home economics has received from the

17\textit{Ibid.}

academic field: "Should class time in higher education be spent on skills?" The trend at the present time is to spend less time on laboratory work and to use the available laboratory time for demonstrating principles.

Another problem home economists face, to which a solution should be attempted immediately, is "how can we introduce the principles learned in other areas into our home economics classes?"\(^{19}\)

Marion Sweetman quoted Alfred North Whitehead, often called our greatest philosopher. He maintains that:

There can be no adequate technical education which is not liberal, and no liberal education which is not technical; that is, no education which does not impart both technique and intellectual vision. In simple language, education should turn out the pupil with something he knows well and something he does well.\(^{20}\)

Tailoring classes should be evaluated in the light of these changes taking place in the whole area of home economics.

Clothing construction. The teaching of clothing construction at the college level has been and is being criticized. Clothing construction is considered a skill course and the question has arisen whether or not skill courses should be taught at the college level. Skill is involved in any type of construction, but skill alone is not the only thing learned. Skill must be learned in any field before it can be applied.

Basic principles also exist in clothing construction and the information given to students should be taught from this standpoint. These

same principles are often used in fields other than clothing. To any person planning to teach or to work in the field of clothing, an understanding of the principles of clothing construction and some degree of skill in applying the principles are very important.

Werden states that the problem in clothing construction is not whether clothing construction should be taught, but how much emphasis it should receive in the total program and what changes should be made to assure this emphasis.21

From a work conference of college teachers of textiles and clothing from all regions of the United States held at the University of Maryland in June, 1956, came the statement:

If textiles and clothing education is to continue to be keyed to the needs of our society, it is necessary to take a critical look at what is being taught and what needs to be taught in the clothing and textile area.

From this conference came the advice that all education at the college level should add breadth and depth to experience in independent thinking. Higher education should open new fields and lead to an understanding of principles that help make decisions. The field of clothing and textiles is rich in experiences from which this kind of understanding may be drawn. The area of clothing and textiles is growing constantly through increasing research and technological developments, as well as through the application of principles of economics, sociology, psychology, and art. The physical, chemical, and biological sciences can and should be

Betty Lou Huston explained that women and girls will like to sew if they can sew with ease, not spend too many hours at it, and still produce a garment they will enjoy wearing. Time and ease of sewing are two important phases of clothing construction that must be considered if women and girls continue to be interested in clothing construction courses. Satisfaction with the first garment made encourages the student to want to sew more; this, in turn, gives her practice in developing and improving her techniques. Miss Houston also stated that the teaching of clothing construction can be improved by simplified, modern methods, more skillful teachers, better physical facilities, and a complete awareness of the teacher to introduce new findings and procedures.

The average American woman of today does not have time to spend long hours on sewing. In the past, home sewing took many hours of the homemaker's time. Surveys show that more commercial patterns are sold than ever before. Increased sale of fabrics is also reported. More women are buying material and making their own clothes than in the past. To keep up this interest in sewing, home economists must direct their instruction to new, easy, quick methods of clothing construction. They must also be familiar with new time-saving equipment and must plan efficient work areas.

The teacher herself should be encouraged to do more sewing so

that she can learn new methods and become skilled in new techniques to pass on to her classes. The teacher should not only be trained in construction but be able to give help in the selection of patterns, wise buying of fabrics that will bring satisfaction in the finished garment, and also be able to impart confidence to the student.

If a girl can make a dress in three days, she will want to make another. She is discouraged and tired of the garment before she even has a chance to wear it if it takes a semester to make it. Home economists are forced to change curricula to meet the interests of students and to introduce a variety of courses.

Making available practice rooms with sewing equipment would encourage students to sew more and thus give them the opportunity to improve their skills.24

An article written by Helen Robson compared the cost of coats made in a tailoring class at Washington State University with commercially made coats. The result of this comparative study showed a considerable saving financially for the person who makes her own tailored garments as well as a real source of satisfaction. Today clothing construction is accepted as an art and a practical hobby that brings both pleasure and profit.25

The work conference held in Maryland in June, 1956, attended by home economists from all regions in the United States, discussed some specific contributions which clothing and textiles make to education.

24 Ibid., p. 366.

These contributions were: (1) helping the individual with his social-psychological, managerial, and physical needs; (2) providing opportunity for aesthetic satisfaction and creative expression; (3) furthering the well being of the family; and (4) gaining insight into economic, psychological, and sociological phenomena in a society.26

Doris Johnson mentioned in an article based on her talk on the program of the textile and clothing section of the 1960 annual meeting of the American Home Economics Association in Denver, that there are irresistible changes in American life today that are sweeping away long-established traditions and that home economists cannot hold blindly to these traditions. This advice should be a stern lesson and it is important that we understand these changes and their meaning. These changes can be traced to two basic sources: new technologies and new living requirements. For example, although home sewing has reached an all-time high, new fabrics and mass-produced, ready-made garments have changed the clothing habits of millions of American women of today. Women can buy ready-made garments in a wide variety of fabrics, with style and fit, at a reasonable price.27

New fibers, fabrics, and finishes call for new methods and techniques in clothing construction. We must be able to answer these needs with new ways for handling and sewing the new fabrics. "A recent survey

of home sewers by MacFadden Publications revealed that 33 per cent sewed for economy, whereas 44 per cent sewed for relaxation, and to be creative. 28

Sewing for economy is on its way out, but a great interest is shown in creativeness, in arts and crafts, and in the do-it-yourself use of leisure time. A wide variety of beautiful fabrics, commercial patterns of high style and fashion, simplified and streamlined clothing construction methods, fashion magazines that teach women to plan their clothes to suit their individualities, all these provide the raw material for self expression.

Clothing is no longer just a covering for the body; it expresses style and fashion for most women. The "hand made" garment has become important and of value. Women are proud when they can say, "I made it."

Sewing, far from losing ground, has gained stature. Sewing no longer needs to be difficult, tedious, or laborious. The woman of today can produce attractive, serviceable, individually-styled clothes. 29

If the home economist is to follow the new directions in clothing construction, she must know her subject and be able to put her knowledge to use. Knowing only theory is not enough; she must be able actually to do it herself. The home economist must be able to answer questions from experience.

Doris Johnson reminds home economists to remember the basic approach to new directions in clothing construction: "...face the facts,

28 Ibid., p. 753.

29 Ibid.
analyze them, decide what to do about the situation, organize effective action to reach objectives, and finally--go to it."\(^30\)

In planning methods to be used in tailoring classes these many changes in regard to the clothing and textiles program need to be studied with care.

Tailoring. A tailored garment has a place in every woman's wardrobe. She will always have a tailored coat and very often a suit. The suit can be the basic costume and with proper accessories can be worn for travel, business, shopping, and even after five. The cost of a well tailored garment represents a large item in a woman's clothing budget. Fit is a very important factor in a suit, and since it is not always possible to acquire a good fit in a ready-to-wear suit, many women turn to the custom tailor for a garment of individuality and perfection of fit and workmanship. The specialized service of custom tailoring is costly and may be prohibitive for persons of average means; therefore, the home sewer, or the student who has initiative, patience, and some degree of skill in clothing construction, can learn custom tailoring techniques.

Tailoring one's own garments has great economic value and gives the home sewer or student an opportunity to express her creative ability. There is a feeling of satisfaction and achievement for the maker who constructs a beautifully tailored suit.

The time necessary to construct a custom tailored suit is much greater than that required to make a garment by the short method of

\(^30\)Ibid.
Various short techniques have been devised, but, according to Mary Ellen Carlson's investigation of different methods of tailoring, custom tailoring produces a finished garment, superior in most respects to that produced by other less time-consuming methods. The smooth fit of the jacket and professional appearance are the features which the custom tailored garment produce. Furthermore, when made by the custom method, the original appearance of the garment is maintained after several dry cleanings, whereas in garments made by other short methods seams shift, edges ripple, and these areas become progressively worse with each dry cleaning. In order to produce perfection of fit and durability of shape in a tailored garment, accuracy in construction is important. Much of the construction in a custom tailored garment is not visible, but the inner construction is vitally important to appearance, durability of shape, and general upkeep.

The amount of time required to make a tailored suit is the reason many home sewers and students avoid making a garment by the custom tailoring method. Helen Moseson made a study to determine the average amount of time required to complete a suit by a student experienced in dressmaking but inexperienced in tailoring. It was also hoped that this study would discover the underlying factors which affect the use of time required to complete certain areas of work included in the tailoring course, and some definite trends relating the quality of construction in the finished

32 Ibid., p. 127.
garment to the time element.33

The time required for tailoring a suit by the custom method cannot be determined exactly, since the results are influenced by many variables, including the sewer's skill, knowledge, and experience, pattern design; fabric used; and standards of workmanship.34

As a result of Helen Moseson's study, it was found that the average time required by inexperienced students to make a suit, using custom tailoring methods, was 102.5 hours.35 The control suit made by the instructor took 80.0 hours.

The fundamental difference between the custom tailoring method and the short method is shaping, which is done mainly by hand padding, pressing, and taping. These procedures include:

1. Shaping of the jacket to the interfacing.
2. Shaping of the front edges by hand felling of tape.
3. Shaping of the lapel by hand padding and hand felling the break line.
4. Shaping of the collar by hand padding and pressing.

Because of the time, skill, and training required to achieve good results when the above techniques of custom tailoring are used, these techniques may have to be omitted and the short method of tailoring used. If shaping and padding are eliminated, careful fitting and pressing of

34Ibid., p. 72

35Ibid.
the garment are very important for good appearance.36

A person who desires to make a tailored garment and does not have the time and ability to use custom tailoring methods can construct a satisfactory garment by using both methods of tailoring. In this case, fitting would be especially important, since the garment would not have the benefit of the shaping processes of custom tailoring.

CHAPTER III

ANALYSIS OF DATA AND DISCUSSION

In order to make a comparative study of the methods used and the methods preferred by teachers of tailoring in colleges and universities in the United States, a study of the literature was made. As was mentioned in Chapter I, information was obtained from (1) a review of the literature and (2) from a questionnaire\(^1\) sent to 225 degree-granting colleges and universities in the United States which offer a major in home economics. Results were tabulated according to five regions in the United States, Western, North Central, South Central, Northeast, and Southeast (see Figure 1), and according to respondents' training.

The material in this chapter is presented in the following order: (1) distribution and return on questionnaire; (2) presentation of data; and (3) summary.

The Distribution and Return on Questionnaire

One questionnaire was mailed to the home economics department of each of 225 colleges and universities in the United States. The mailing list was compiled by choosing every other college or university listed in Bulletin 2557, *Home Economics in Degree-Granting*

\(^1\)See Appendix A
Institutions. Accompanying each questionnaire was a letter explaining the purpose of the questionnaire and a stamped self-addressed envelope for reply. One hundred and sixty-four, or 72.8%, of the 225 schools returned the questionnaire.

Table I presents data concerning the distribution and return of the questionnaire by states and regions. Incomplete questionnaires were not included in the tabulation. Some home economics departments do not offer tailoring and in such cases a letter of explanation accompanied the returned, unanswered questionnaire.

Four questionnaires were received too late to be tabulated. The grand total of all returns was 164, or 72.8%. Of these, 152 were complete.

\[\text{See Appendix A.}\]
TABLE I
DISTRIBUTION AND RETURN OF QUESTIONNAIRE BY STATES AND REGIONS

<table>
<thead>
<tr>
<th>Region</th>
<th>Questionnaires Sent Out</th>
<th>Questionnaires Returned</th>
</tr>
</thead>
<tbody>
<tr>
<td>WESTERN</td>
<td></td>
<td></td>
</tr>
<tr>
<td>1. Washington</td>
<td>4</td>
<td>4</td>
</tr>
<tr>
<td>2. Oregon</td>
<td>2</td>
<td>1</td>
</tr>
<tr>
<td>3. Idaho</td>
<td>2</td>
<td>1</td>
</tr>
<tr>
<td>4. Montana</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>5. California</td>
<td>11</td>
<td>9</td>
</tr>
<tr>
<td>6. Utah</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>7. Nevada</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>8. Arizona</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>9. New Mexico</td>
<td>2</td>
<td>2</td>
</tr>
<tr>
<td>10. Colorado</td>
<td>2</td>
<td>0</td>
</tr>
<tr>
<td>11. Alaska</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>12. Hawaii</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>Total</td>
<td>29</td>
<td>23</td>
</tr>
<tr>
<td>NORTH CENTRAL</td>
<td></td>
<td></td>
</tr>
<tr>
<td>1. North Dakota</td>
<td>2</td>
<td>2</td>
</tr>
<tr>
<td>2. Minnesota</td>
<td>5</td>
<td>5</td>
</tr>
<tr>
<td>3. Wisconsin</td>
<td>4</td>
<td>3</td>
</tr>
<tr>
<td>4. Michigan</td>
<td>7</td>
<td>5</td>
</tr>
<tr>
<td>5. South Dakota</td>
<td>1</td>
<td>0</td>
</tr>
<tr>
<td>6. Nebraska</td>
<td>2</td>
<td>2</td>
</tr>
<tr>
<td>7. Iowa</td>
<td>7</td>
<td>6</td>
</tr>
<tr>
<td>8. Illinois</td>
<td>9</td>
<td>6</td>
</tr>
<tr>
<td>9. Indiana</td>
<td>10</td>
<td>5</td>
</tr>
<tr>
<td>10. Ohio</td>
<td>13</td>
<td>8</td>
</tr>
<tr>
<td>11. Kansas</td>
<td>9</td>
<td>9</td>
</tr>
<tr>
<td>12. Missouri</td>
<td>7</td>
<td>6</td>
</tr>
<tr>
<td>Total</td>
<td>76</td>
<td>57</td>
</tr>
<tr>
<td>SOUTH CENTRAL</td>
<td></td>
<td></td>
</tr>
<tr>
<td>1. Oklahoma</td>
<td>6</td>
<td>6</td>
</tr>
<tr>
<td>2. Arkansas</td>
<td>5</td>
<td>3</td>
</tr>
<tr>
<td>3. Texas</td>
<td>15</td>
<td>7</td>
</tr>
<tr>
<td>4. Louisiana</td>
<td>6</td>
<td>1</td>
</tr>
<tr>
<td>5. Mississippi</td>
<td>4</td>
<td>3</td>
</tr>
<tr>
<td>Total</td>
<td>36</td>
<td>20</td>
</tr>
</tbody>
</table>
TABLE I (continued)

<table>
<thead>
<tr>
<th>Region</th>
<th>Questionnaires Sent Out</th>
<th>Questionnaires Returned</th>
</tr>
</thead>
<tbody>
<tr>
<td>NORTHEAST</td>
<td></td>
<td></td>
</tr>
<tr>
<td>1. New York</td>
<td>7</td>
<td>4</td>
</tr>
<tr>
<td>2. New Hampshire</td>
<td>2</td>
<td>1</td>
</tr>
<tr>
<td>3. Massachusetts</td>
<td>2</td>
<td>2</td>
</tr>
<tr>
<td>4. Connecticut</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>5. Pennsylvania</td>
<td>9</td>
<td>6</td>
</tr>
<tr>
<td>6. New Jersey</td>
<td>2</td>
<td>2</td>
</tr>
<tr>
<td>7. West Virginia</td>
<td>6</td>
<td>6</td>
</tr>
<tr>
<td>8. Maryland</td>
<td>3</td>
<td>3</td>
</tr>
<tr>
<td>9. Washington, D. C.</td>
<td>2</td>
<td>2</td>
</tr>
<tr>
<td>10. Kentucky</td>
<td>6</td>
<td>6</td>
</tr>
<tr>
<td>11. Virginia</td>
<td>4</td>
<td>2</td>
</tr>
<tr>
<td>12. Vermont</td>
<td>1</td>
<td>0</td>
</tr>
<tr>
<td>13. Maine</td>
<td>1</td>
<td>0</td>
</tr>
<tr>
<td>14. Delaware</td>
<td>1</td>
<td>0</td>
</tr>
<tr>
<td>15. Rhode Island</td>
<td>1</td>
<td>0</td>
</tr>
<tr>
<td>Total</td>
<td>148</td>
<td>35</td>
</tr>
</tbody>
</table>

SOUTHEAST		
1. Tennessee	7	5
2. North Carolina	9	3
3. Alabama	6	3
4. Georgia	6	3
5. South Carolina	4	0
6. Florida	3	3
Total	**35**	**17**

Presentation of Data

Data are presented according to divisions of the questionnaire.

These divisions were further subdivided and the data are presented under the appropriate section within the following outline:

Division A, Equipment

Division B, Measurements

Division C, Muslin Garment
Division D, Transfer of Markings
Division E, Interfacing
Division F, Padding
Division G, Padding Stitch
Division H, Felling of Tape
Division I, Dart Construction
Division J, Construction
Division K, Seam Pressing and Finishing
Division L, Zipper
Division M, Linings
Division N, Type of Training Received by Respondent
Division O, Method Used by Respondent to Teach Tailoring

Division A, Equipment. Of the special tailoring equipment used most frequently in all five regions, the seam board was the most popular. Of the 152 schools reporting, 72.6% indicated that they used it. The cheese block was used by half of the schools reporting.

Regular sewing equipment was used by 77.3% of the schools reporting, and all regions except the Western used it more frequently than special tailoring equipment, regardless of method taught.

As Table II shows, those trained in custom tailoring and in short techniques used a higher percentage of regular sewing equipment than special tailoring equipment. Those trained in both methods used the seam board more frequently than regular sewing equipment. Those trained in both methods also used all special tailoring equipment more frequently than did those trained in custom tailoring or short cut techniques.
TABLE II

EQUIPMENT USED ACCORDING TO RESPONDENTS' TRAINING

<table>
<thead>
<tr>
<th>Equipment</th>
<th>Custom Method (By Percentage)</th>
<th>Short Method (By Percentage)</th>
<th>Both Methods (By Percentage)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Tailor's iron</td>
<td>2.9</td>
<td>13.5</td>
<td>17.6</td>
</tr>
<tr>
<td>Cheese block</td>
<td>37.1</td>
<td>18.1</td>
<td>42.3</td>
</tr>
<tr>
<td>Seam board</td>
<td>71.4</td>
<td>54.5</td>
<td>80.0</td>
</tr>
<tr>
<td>Regular sewing equipment</td>
<td>97.1</td>
<td>81.8</td>
<td>69.4</td>
</tr>
</tbody>
</table>

Comments accompanying this section of the questionnaire varied greatly; eight schools did not own a tailor's iron; three schools would like to have one; three were not familiar with a tailor's iron; and one had a tailor's iron but never used it.

In two schools, the use of regular sewing equipment was emphasized for the reason that such equipment would be found in the home.

Division B, Measurements. Commercial pattern measurements only were used by 47% of the schools reporting; the remainder of the schools used all measurements in detail.

In all regions except the Northeast, all measurements in detail were preferred. As Table III shows, almost twice as many teachers trained in the shorter method of tailoring preferred to use commercial pattern measurements only, while those trained in both methods and those trained in the custom tailoring method preferred that all measurements be taken in detail.
To summarize comments from this section of the questionnaire, four schools did not use all measurements in detail but did use more than commercial pattern measurements; four used both methods, depending on figure, fabric, style of garment, and the student's preference.

Division C, Muslin Garment. A trial muslin garment was made in 57.3% of all schools, while 47.3% of the schools reported that the pattern was cut directly out of wool. Greater use was made of the trial muslin garment in all regions except the Northeast; in this region 55% of the schools indicated that the pattern was cut directly out of wool.

Sixty-eight and five-tenths per cent of those trained in the custom tailoring method made a trial garment out of muslin, while 68.1% of those trained in shorter techniques cut the pattern directly out of wool, as shown in Table IV.
TABLE IV

USE OF MUSLIN GARMENT ACCORDING TO RESPONDENTS' TRAINING

<table>
<thead>
<tr>
<th>Type of Training</th>
<th>Custom Method (By Percentage)</th>
<th>Short Method (By Percentage)</th>
<th>Both Methods (By Percentage)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Trial muslin garment</td>
<td>68.5</td>
<td>40.9</td>
<td>60.0</td>
</tr>
<tr>
<td>Pattern cut directly</td>
<td>34.2</td>
<td>68.1</td>
<td>47.0</td>
</tr>
<tr>
<td>out of wool</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Diverse comments from this section of the questionnaire which do not lend themselves to tabulation may be summarized as follows: in twenty-eight schools figure or style of garment influenced the method used; in six schools a trial garment of inexpensive, wearable fabric was made; one school preferred making a trial garment, but class-time prohibited; and one report stated that the trial garment is a waste of time if the pattern is checked. One school allowed the student to cut directly out of wool when the ability of the student was known.

Division D, Transfer of Markings. Regardless of training, the tailor tack method of marking was used in 80.6% of schools reporting. The chalk and carbon paper methods of marking were used by 47.3% and 53.3% respectively of the schools reporting. Wax was used less often than chalk, carbon paper, or tailor tacks. As is shown in Table V, the only region giving considerable preference to one method of transferring markings was the North Central region, where carbon paper was used 17.5% more frequently than chalk.
TABLE V

METHOD OF TRANSFER OF MARKINGS ACCORDING TO RESPONDENTS' TRAINING

<table>
<thead>
<tr>
<th>Transfer of Markings</th>
<th>Custom Method (By Percentage)</th>
<th>Short Method (By Percentage)</th>
<th>Both Methods (By Percentage)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Tailor tacks</td>
<td>88.5</td>
<td>77.2</td>
<td>70.5</td>
</tr>
<tr>
<td>Chalk</td>
<td>37.1</td>
<td>31.8</td>
<td>57.6</td>
</tr>
<tr>
<td>Wax</td>
<td>11.4</td>
<td>13.5</td>
<td>25.8</td>
</tr>
<tr>
<td>Carbon paper</td>
<td>74.3</td>
<td>54.5</td>
<td>54.1</td>
</tr>
<tr>
<td>Other</td>
<td>5.7</td>
<td>9.0</td>
<td>15.2</td>
</tr>
</tbody>
</table>

A wide variety of other kinds of markings, such as pins, clipping, creasing, matching, basting, machine stitching, colored thread, or pencil, was used. The comment which appeared most frequently in this section was that the type of marking depended on the fabric; many schools used carbon paper when suitable and always used it on interfacing, lining, and muslin.

Division E, Interfacing. Woven interfacing was used by 91% of respondents and of that number almost 58% cut only the collar on the bias. Those trained in the shorter method used non-woven interfacing more often than those trained in the custom tailoring method or in both methods, as shown in Table VI. The use of non-woven interfacing ranked lowest in four regions; the fifth region used non-woven interfacing as frequently as woven interfacing.

The cutting of all interfacings on the bias was used by 13% of respondents that had been trained in shorter methods of tailoring and those trained in both methods; whereas this method of cutting all the
interfacings on the bias was used by 5.7% of those trained in custom tailoring.

<table>
<thead>
<tr>
<th>Interfacing</th>
<th>Custom Method (By Percentage)</th>
<th>Short Method (By Percentage)</th>
<th>Both Methods (By Percentage)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Non-woven</td>
<td>25.7</td>
<td>36.3</td>
<td>16.4</td>
</tr>
<tr>
<td>Woven</td>
<td>91.4</td>
<td>90.9</td>
<td>91.8</td>
</tr>
<tr>
<td>All-cut on bias</td>
<td>5.7</td>
<td>13.5</td>
<td>12.9</td>
</tr>
<tr>
<td>Collar only cut on bias</td>
<td>71.4</td>
<td>63.6</td>
<td>63.8</td>
</tr>
</tbody>
</table>

The following comments were made regarding interfacing: five schools never used a non-woven interfacing; seven schools reported that usage depended on fabric or the garment; and one school reported that choice depended upon the student's efficiency.

Division F, Padding. Hand padding was highly preferred by all respondents regardless of training. More than 82.6% used hand padding. More than twice as many respondents in each region used hand padding in preference to machine padding. As shown in Table VII those using hand padding most frequently were those who were trained in custom tailoring only; 94.3% of these used hand padding.
TABLE VII

TYPE OF PADDING USED ACCORDING TO RESPONDENTS' TRAINING

<table>
<thead>
<tr>
<th>Padding</th>
<th>Type of Training</th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Custom Method (By Percentage)</td>
<td>Short Method (By Percentage)</td>
<td>Both Methods (By Percentage)</td>
<td></td>
</tr>
<tr>
<td>Hand</td>
<td>94.3</td>
<td>81.8</td>
<td>83.5</td>
<td></td>
</tr>
<tr>
<td>Machine</td>
<td>20.0</td>
<td>31.8</td>
<td>71.1</td>
<td></td>
</tr>
</tbody>
</table>

Comments concerning shaping as hand padding is done may be summarized as follows: fourteen respondents indicated that it depends on fabric, style, area, purpose of garment, and ability of the student to hand-pad and shape. Flat stitching of padding could be used on children's coats and this type of padding also depends on fabric and style.

Comments made about padding included the following: hand padding is used only on lapel and collar, or students are allowed to make the decision. Eleven respondents stated that design and fabric determine the technique and three respondents felt that machine padding could be used on lovely tailored garments because the appearance is satisfactory.

Division G, Padding Stitch. Regardless of training, padding stitch was used more frequently on the collar than on lapels. Of those trained in custom tailoring, 74.3% shaped as they hand padded and 70% of those trained in both methods used this technique. As shown in Table VIII, approximately half as many respondents who were trained in custom tailoring flat-stitched padding as respondents trained in shorter techniques or in both methods.
TABLE VIII

LOCATING OF PADDING STITCH AND METHOD USED ACCORDING TO RESPONDENTS' TRAINING

<table>
<thead>
<tr>
<th>Padding Stitch</th>
<th>Type of Training</th>
<th>Custom Method (By Percentage)</th>
<th>Short Method (By Percentage)</th>
<th>Both Methods (By Percentage)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Shape as you hand pad</td>
<td></td>
<td>74.3</td>
<td>45.1</td>
<td>69.4</td>
</tr>
<tr>
<td>Flat stitching of padding</td>
<td></td>
<td>11.1</td>
<td>22.7</td>
<td>24.7</td>
</tr>
<tr>
<td>Padding stitch on collar</td>
<td></td>
<td>91.1</td>
<td>77.2</td>
<td>80.0</td>
</tr>
<tr>
<td>Padding stitch on lapels</td>
<td></td>
<td>82.8</td>
<td>72.7</td>
<td>71.7</td>
</tr>
</tbody>
</table>

The comments concerning shaping as hand padding is done include: fourteen respondents indicated that it depended on fabric, style of garment, area, purpose of garment, and student's ability to hand pad and shape. Flat stitching of padding could be used on children's coats and this type of padding depended on fabric and style also.

Division H, Felling of Tape. Hand felling of tape was used in 67.3% of all schools reporting, and this method was in far greater use than other methods in all regions except the Southeast, where the use of hand felling over machine taping was only slight. The method least used in all regions was no taping and the number of schools reporting use of this method was 16.6%. While only 2.9% of those trained in custom tailoring did not use it, 21% of those trained in both methods did not use tape, and 27.2% of those trained in shorter tailoring methods did not use tape, as shown in Table IX.
TABLE IX

METHOD OF FELLING TAPE ACCORDING TO RESPONDENTS' TRAINING

<table>
<thead>
<tr>
<th>Felling of Tape</th>
<th>Type of Training</th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Custom Method</td>
<td>Short Method</td>
<td>Both Methods</td>
<td></td>
</tr>
<tr>
<td>Hand</td>
<td>77.1</td>
<td>45.4</td>
<td>71.7</td>
<td></td>
</tr>
<tr>
<td>Machine</td>
<td>31.4</td>
<td>45.4</td>
<td>37.6</td>
<td></td>
</tr>
<tr>
<td>No Tape</td>
<td>2.9</td>
<td>27.2</td>
<td>21.1</td>
<td></td>
</tr>
</tbody>
</table>

Comments accompanying the questionnaire varied as to the method of felling tape and its importance; twenty-five respondents indicated that the method by which tape is applied is influenced by style and fabric; one school reported that if speed is important felling of tape is done by machine; and three schools reported that use of felling depends on students' skill and efficiency. Two respondents suggested omitting the tape and adding two rows of stitching, or a strip of muslin.

Division I, Dart Construction. The most commonly used method of dart construction was tying of threads to finish; of total returns from the questionnaire, 55.3% of the schools reporting used this method. Forty-two per cent of all schools reporting used the reverse stitch to finish dart construction. These two methods were also used most frequently in the North Central, South Central, and Northeast regions, as shown in Table X. Lacing threads back to finish a dart was used in only 23.3% of all schools reporting.
TABLE X
DART CONSTRUCTION ACCORDING TO RESPONDENTS' TRAINING

<table>
<thead>
<tr>
<th>Dart Construction</th>
<th>Custom Method (By Percentage)</th>
<th>Short Method (By Percentage)</th>
<th>Both Methods (By Percentage)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Reverse stitch</td>
<td>71.4</td>
<td>59.1</td>
<td>31.7</td>
</tr>
<tr>
<td>Tie threads</td>
<td>54.2</td>
<td>63.6</td>
<td>60.0</td>
</tr>
<tr>
<td>Lace back threads</td>
<td>25.7</td>
<td>13.5</td>
<td>23.5</td>
</tr>
</tbody>
</table>

The following comments were made concerning dart construction:
"Lacing back of threads is too time-consuming, but is sometimes used for a very smooth finish"; "reverse stitch is never used because it causes bulges." Many respondents stated that finish depends on fabric and the placement of dart on the garment.

Division J, Construction. Of all schools reporting, thread basting and pin basting were used in 74.1% and 71.3%, respectively. In every region these two types of basting were also preferred over no basting. The Western and the Southeastern regions preferred thread basting to pin basting and either of these two methods was greatly preferred over no basting. Of all schools reporting, only 9.3% taught tailoring with no basting. As shown in Table XI, pin basting was used most often by those trained in shorter methods of tailoring, and 91% of such respondents used it; of those trained in both methods of tailoring, 74.1% used pin basting. Of respondents who had received training in custom tailoring only, 54.2% used pin basting.
TABLE XI

CONSTRUCTION OF GARMENT ACCORDING TO RESPONDENTS' TRAINING

<table>
<thead>
<tr>
<th>Construction</th>
<th>Type of Training</th>
<th>Custom Method</th>
<th>Short Method</th>
<th>Both Methods</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>(By Percentage)</td>
<td>(By Percentage)</td>
<td>(By Percentage)</td>
<td></td>
</tr>
<tr>
<td>Pin baste</td>
<td>54.2</td>
<td>90.9</td>
<td>74.1</td>
<td></td>
</tr>
<tr>
<td>Thread baste</td>
<td>77.1</td>
<td>68.1</td>
<td>78.8</td>
<td></td>
</tr>
<tr>
<td>No basting</td>
<td>8.5</td>
<td>9.0</td>
<td>8.2</td>
<td></td>
</tr>
</tbody>
</table>

Comments on the questionnaire showed a variety of attitudes about kinds of basting used in teaching tailoring. Such comments were: "thread basting is important for quality tailoring"; "thread basting is the quickest and most accurate kind of basting"; "depends on fabric, design, and ability of student."

Division K, Seam Pressing and Finishing. Beating of seams is used in 64% of the schools reporting, and it is used most frequently in all regions except the South Central, where steam pressing of seam is favored. Fewer schools used the technique of killing enclosed seam edges than any other method; 22.6% of those reporting favored this method. Approximately one-fifth of all schools used the method of killing enclosed seams. In the Western Region, 59.1% of the schools reporting used this method. Steam pressing the seam open was used by 52.6% of all schools reporting. As shown in Table XII, beating and killing of seams were used most frequently by those trained in both methods of tailoring.
TABLE XII

SEAM PRESSING AND FINISHING ACCORDING TO RESPONDENTS' TRAINING

<table>
<thead>
<tr>
<th>Seam Pressing and Finishing</th>
<th>Type of Training</th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Custom Method</td>
<td>Short Method</td>
<td>Both Methods</td>
<td></td>
</tr>
<tr>
<td></td>
<td>(By Percentage)</td>
<td>(By Percentage)</td>
<td>(By Percentage)</td>
<td></td>
</tr>
<tr>
<td>Killing enclosed seam edges</td>
<td>11.4</td>
<td>13.5</td>
<td>30.5</td>
<td></td>
</tr>
<tr>
<td>Beating seams</td>
<td>57.1</td>
<td>59.1</td>
<td>70.5</td>
<td></td>
</tr>
<tr>
<td>Steam press seam open</td>
<td>68.5</td>
<td>63.6</td>
<td>43.5</td>
<td></td>
</tr>
</tbody>
</table>

Comments summarized from this section of the questionnaire showed that many respondents were not familiar with the terms 'beating' and 'killing' of enclosed seams. Other comments were, "no equipment"; "depends on fabric and style"; and "students make own decision."

Division L, Zipper. The complete insertion of zipper by machine was the method used by 75.3% of all schools reporting. All regions used this method most frequently, but in the North Central Region this method was used by 93% of respondents. In all regions, the blind stitch machine was used less frequently than any other method. The completion of sewing by hand in the last step of zipper insertion was used by 56.6% of schools reporting, but the Northeast and Southeast Regions used it less often than any other region. As Table XIII shows, complete machine stitching of zipper insertion was more often used than any other method regardless of training. Blind stitching of the last step of zipper insertion was seldom used by those respondents trained in custom tailoring. Of the respondents who had been trained in custom tailoring, 71.4% reported they preferred to complete the last step of zipper insertion by hand. Of the
respondents who had been trained in shorter tailoring methods, 18.1% completed the last step of zipper insertion by hand.

TABLE XIII
ZIPPER INSERTION ACCORDING TO RESPONDENTS' TRAINING

<table>
<thead>
<tr>
<th>Zipper</th>
<th>Type of Training</th>
<th>Custom Method (By Percentage)</th>
<th>Short Method (By Percentage)</th>
<th>Both Methods (By Percentage)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Complete by regular machine stitch</td>
<td>80.0</td>
<td>86.3</td>
<td>70.5</td>
<td></td>
</tr>
<tr>
<td>Last step by machine, blind stitch</td>
<td>2.9</td>
<td>13.5</td>
<td>12.9</td>
<td></td>
</tr>
<tr>
<td>Last step by hand</td>
<td>71.1</td>
<td>18.1</td>
<td>51.7</td>
<td></td>
</tr>
</tbody>
</table>

Comments in regard to zipper construction were: "depends on fabric and style"; "students' choice and ability"; "the last step always by hand"; "for best appearance always put zipper in by hand." One respondent did not know what the last step by blind stitch meant.

Division M, Linings. The combination method of putting in a lining was favored by 82.5% of all schools reporting; 85.7% of those trained in custom tailoring used the combination method; and 81.1% of those trained in both methods of tailoring also used the combination method. In each of the five regions, the combination method of putting in a lining was used more than any other two methods combined. Those trained in custom tailoring only used hand-sewn linings more frequently than did those with training in both methods or the shorter method, as shown in Table XIV. All-machine-sewn linings were used approximately
three times more frequently by those trained in custom tailoring and in both methods than by those trained in shorter tailoring methods. Of all schools reporting, 14% used the machine method to attach the lining to the garment and 24.6% put linings in entirely by hand.

TABLE XIV

<table>
<thead>
<tr>
<th>Linings</th>
<th>Type of Training</th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Custom Method</td>
<td>Short Method</td>
<td>Both Methods</td>
</tr>
<tr>
<td></td>
<td>(By Percentage)</td>
<td>(By Percentage)</td>
<td>(By Percentage)</td>
</tr>
<tr>
<td>All hand sewn</td>
<td>28.5</td>
<td>18.1</td>
<td>24.7</td>
</tr>
<tr>
<td>All machine sewn</td>
<td>14.2</td>
<td>4.5</td>
<td>16.4</td>
</tr>
<tr>
<td>Combination method</td>
<td>85.7</td>
<td>100.0</td>
<td>81.1</td>
</tr>
</tbody>
</table>

Comments taken from the returned questionnaire in regard to lining were: "depends on fabric and style"; "faster and more durable"; and "let students choose method."

Division N, Type of Training Received by Respondents. The percentage of teachers in the five regions who had received training in both custom and short methods of tailoring varied from 27.7\% in the Southeast Region to 77.2\% in the Western Region. In four of the five regions more than half of the teachers in each region had received training in both custom tailoring and the short method of tailoring.

The range by regions for training in custom tailoring only varied from 10.5\% in the South Central Region to 44.1\% in the Southeast Region. In each of the other three regions (Western, North Central, and Northeast),
approximately one-fifth of the teachers had had training in custom tailoring only.

Regional variations for those trained in the short method of tailoring only ranged from 4.5% in the West to 31.6% in the South Central. Other regions varied from 11.1% to 15.8%, as shown in Table XV.

TABLE XV

<table>
<thead>
<tr>
<th>Type of Training (By Percentage)</th>
<th>Western</th>
<th>North Central</th>
<th>South Central</th>
<th>North-east</th>
<th>South-east</th>
</tr>
</thead>
<tbody>
<tr>
<td>Both methods</td>
<td>77.27</td>
<td>56.10</td>
<td>52.60</td>
<td>61.7</td>
<td>27.7</td>
</tr>
<tr>
<td>Custom method</td>
<td>18.18</td>
<td>22.80</td>
<td>10.50</td>
<td>23.20</td>
<td>14.4</td>
</tr>
<tr>
<td>Short method</td>
<td>4.50</td>
<td>15.80</td>
<td>31.60</td>
<td>11.70</td>
<td>11.1</td>
</tr>
</tbody>
</table>

Division O, Method Used by Respondents to Teach Tailoring. Respondents in four of the five regions taught both methods of tailoring more frequently than either the custom or short method alone. Use of both methods ranged from 31.5% in the South Central Region to 63.8% in the Western Region. In the Southeast region, 27.7% of the schools taught custom tailoring only, whereas the percentages for the other four regions were fairly close; namely, 14.7%, 15.7%, 15.7%, and 18.1%. In the South Central Region a higher percentage of teachers used the short method of tailoring. In the Western Region the lowest percentage of respondents taught the short method of tailoring only; the Southeast Region reported the second lowest percentage. Teaching methods used by respondents according to regions are shown in Table XVI.
<table>
<thead>
<tr>
<th>Teaching Method (By Percentage)</th>
<th>Western</th>
<th>North Central</th>
<th>South Central</th>
<th>North-east</th>
<th>South-east</th>
</tr>
</thead>
<tbody>
<tr>
<td>Both methods</td>
<td>63.6</td>
<td>45.6</td>
<td>31.5</td>
<td>55.8</td>
<td>33.3</td>
</tr>
<tr>
<td>Custom method</td>
<td>18.1</td>
<td>15.7</td>
<td>15.7</td>
<td>11.7</td>
<td>27.7</td>
</tr>
<tr>
<td>Short method</td>
<td>13.6</td>
<td>33.3</td>
<td>17.3</td>
<td>23.2</td>
<td>16.6</td>
</tr>
</tbody>
</table>
CHAPTER IV

SUMMARY

In order to evaluate the importance of teaching the custom method versus the short method of tailoring, a survey was made of the teaching of home economics in degree-granting colleges and universities.

A questionnaire was sent to every other school listed in Bulletin 2557, Home Economics in Degree-Granting Institutions, and to a university in Alaska and in Hawaii. Results were tabulated as a whole and according to regions on the map in Figure 1 (see page 32).

Tabulation of data from the 152 usable questionnaires returned showed that of the special equipment the seam board was used most frequently by all respondents and in all five regions.

Next in use of special equipment was the cheese block, which was used on an average by half as many as those using the seam board. Regular sewing equipment was used by about three-fourths of all respondents and it was used more frequently in all regions except the Western Region.

Twice as many teachers trained in the short method of tailoring preferred the use of commercial pattern measurements only, while those trained in both methods and those trained in the custom method only preferred to check all measurements in detail.

The muslin trial garment was definitely preferred by teachers who had had training in custom tailoring.

A preference for cutting the pattern directly out of the wool
fabric was shown by twice as many respondents who had had training in both methods of tailoring. A higher percentage of those trained in the shorter method of tailoring preferred to cut the pattern directly out of wool fabric rather than to make a trial muslin garment.

Use of the tailor tack was the method of marking preferred by those trained in both methods of tailoring.

Woven interfacing was highly preferred by all respondents.

Hand padding was preferred by all, regardless of training.

The padding stitch on the collar only was preferred most frequently by those having training in the short method and in both methods of tailoring. Those who were trained in the custom method only preferred shaping while hand-padding, and none indicated a preference for flat stitching of padding.

Hand felling of tape was preferred regardless of training, and especially by those who were trained in the custom method or in both methods. Taping was always preferred by those who were trained in custom tailoring.

The most popular method of finishing darts was to tie threads. Those trained in the short method only used reverse stitching most frequently.

Pin-basting was highly preferred by those trained in the short method of tailoring only. Thread basting was always preferred by those trained in custom tailoring only.

Regardless of training, beating of seams was preferred more frequently than any other method.

The insertion of the zipper by regular machine stitching in all
steps of the process was preferred more than any other method. The method least preferred was to blind stitch the last step when inserting the zipper.

The combination method for putting the lining in a garment was preferred, but those trained in custom tailoring never used the all-machine method.

Following are data from the questionnaire in regard to training and teaching methods of the respondents:

The Western Region reported the highest percentage of respondents who were trained in and are now teaching both custom tailoring and the short method of tailoring. The Western Region reported the lowest percentage who were trained in and taught the shorter method only.

The South Central Region reported the lowest percentage with training in custom tailoring only and the highest percentage of respondents using the short method only.

The Southeast Region reported the highest percentage of teachers who had been trained in the custom method of tailoring and the highest percentage teaching the custom method of tailoring.

The North Central and Northeast Regions were more nearly comparable than other regions with regard to training and methods of teaching.

Replies from the questionnaire show that there is need to learn and to teach both the custom and the short methods of tailoring. The method of tailoring taught depends on:

1. **Style of garment to be tailored.** If the garment is a loosely fitting suit or coat, or a child's garment, the finished product will be satisfactory if the short method of tailoring is used throughout. A
small part of the construction, such as the collar or hand-padding and shaping of lapels, might require custom tailoring; in such a case both methods are used.

2. The fabric. The type of fabric determines whether the garment shall be custom-tailored or made by the short method of tailoring. Some fabrics require custom tailoring to give the finished garment the quality-look desirable, whereas other materials give the desired appearance if the short method of tailoring is used.

3. The amount of previous training, experience, and the ability of the student. These factors determine whether or not the student is ready for custom tailoring methods.

4. Expected life of the garment. The custom-tailored garment insures fit and durability. If the student does not expect to wear the suit or coat long enough to justify the time spent on custom tailoring, or if an extreme fashion has been chosen, the time required for custom tailoring will not be justified.

5. Course-time allowed for clothing construction by the college curriculum. If time is limited, it may be necessary to offer custom tailoring only at the graduate level.

Tailoring classes must be evaluated in the light of new trends in the entire home economics program. If the home economist is aware of these trends there will be opportunity for decision-making, for the use of principles from other courses, and for judgment of students' abilities.
GLOSSARY
GLOSSARY

Beater. A shaped block made of heavy hardwood, about one foot long, four-and-one-half inches wide at one end and three-and-one-half inches at the other end, and about two inches thick. The beater is grooved lengthwise for convenient handling. The beater is also called a pounding block, a clapper, or spanker. The beater is used whenever an especially sharp crease or flat press is wanted.

Bias. A true bias is the exact 45-degree diagonal of the material; at this point the fabric has the most 'give.'

Cheese block. A wooden block in the shape of a half circle, two to three inches thick. It is made of hardwood and is used uncovered. Pressing wool seam edges on the cheese block with the tailor's iron kills the edge and makes the wool edge extremely thin.

Custom look. An expression used with reference to a garment that has the appearance of being hand-tailored.

Edge presser. A narrow, unfinished wooden piece, mounted on a base, pointed at one or both ends. It is used to press open seams and difficult points on such parts of a garment as collar, lapel, or facing seams, before turning. This piece of equipment is sometimes called a point presser.

Felling. A tailor's version of slant hemming or sewing toward oneself with fine, shallow, even stitches. Felling is used to attach the tape to areas of the garment as needed.

Goose. A tailor's iron, usually weighing from eight to eighteen pounds.

Killing. The flattening of edges of wool, which is made permanent by constant pressing with the tailor's iron on the cheese block by means of heat and steam when the wool is moist. This can be accomplished with a regular steam iron but it takes longer and pressure must be applied.

Lacing-back threads. This involves taking one thread that is hanging from the point of a dart, threading it in a needle, and looping it through the machine stitches on the opposite side of the dart for a distance of about one inch. This same operation is repeated with the loose thread on the opposite side of the dart.

Machine padding. This resembles machine quilting and can follow various patterns provided the machine stitching lines are on crosswise and lengthwise threads of the interfacing.
Padding stitch. This stitch is utilized in fastening canvas to the facing of the revers, collar canvas to the under-collar, or hair-cloth to the canvas interlining. On the inside of the garment, padding shows as vertical rows of small, diagonal stitches; from the right side of the garment it resembles a series of very faint pricks.

Seam roll. A pressing pad with a decided curved surface used for pressing seams. This can also be a padded roll, or a half-round piece of wood about four inches in diameter which is used uncovered.

Tailor tacks. These are markings made on material with thread in such a way that little tufts of thread appear on two thicknesses of fabric.

Trial muslin garment. This garment is made of muslin or inexpensive material, using the same pattern that will later be cut from the wool fabric. The trial garment is made so that students may check fit and design, whether the style looks well on them, and to provide opportunity to practice difficult construction details before the wool fabric is used.
BIBLIOGRAPHY

A. BOOKS

B. PERIODICALS

"Clothing and Textiles Move Forward," Results of a work conference of college teachers of textiles and clothing from all regions of the United States at the University of Maryland, June 18-23, 1956, Journal of Home Economics, October, 1956.

C. ENCYCLOPEDIA ARTICLES

D. UNPUBLISHED MATERIALS

April 28, 1961

Dear Clothing Instructor:

A comparative study of short-cut tailoring methods versus custom tailoring methods used and preferred by college and university teachers would appear to be timely.

I am making such a survey and am wondering if you would be willing to check the questionnaire attached and return it immediately.

A copy of the summary of these findings will be sent to you if you place your name and address on the reverse side of the questionnaire.

Your prompt reply will be greatly appreciated.

Gratefully,

Marion McMahon
Home Economics Division
TAILORING CHECK LIST

WHICH OF THE FOLLOWING DO YOU USE IN TAILORING CLASSES AND WHICH DO YOU PREFER?

Place a check mark after each item, in column 1, or 2, or both. Make further comments, if desired, on the line provided at the right.

<table>
<thead>
<tr>
<th>Method Used</th>
<th>Method Preferred</th>
<th>Further Comments, if Desired</th>
</tr>
</thead>
</table>

EQUIPMENT:
Special Tailoring Equipment:
- Tailor's Iron
- Cheese Block
- Seam Board
- Regular Sewing Equipment

MEASUREMENTS:
- Only commercial pattern measurements
- All measurements in detail

MUSLIN GARMENT:
- Trial muslin garment made
- Pattern cut directly out of wool

TRANSFER OF MARKINGS:
- Tailor Tacks
- Chalk
- Wax
- Carbon Paper
- Other Kind of Markings

INTERFACING:
- Non-woven
- Woven
- All cut on bias
- Collar only cut on bias

PADDING:
- Hand
- Machine

PADDING STITCH:
- Shape as you hand pad
- Flat stitching of padding
- Padding stitch on collar
- Padding stitch on lapels

FELLING OF TAPE:
- Hand
- Machine
- No taping
<table>
<thead>
<tr>
<th>Method Used</th>
<th>Method Preferred</th>
<th>Further Comments, if Desired</th>
</tr>
</thead>
</table>

DART CONSTRUCTION:
- Reverse stitch to finish
- Tie threads to finish
- Lace back threads to finish

CONSTRUCTION:
- Pin baste
- Thread baste
- No basting

SEAM PRESSING AND FINISHING:
- Killing of enclosed seam edges
- Beating of seams
- Only steam press seam open

ZIPPER:
- Complete by regular machine stitch
- Last step by machine, blind stitch
- Last step by hand

LININGS:
- All hand sewn
- All machine sewn
- Combination method

PLEASE CHECK THE FOLLOWING ALSO:
- Have you been trained in custom tailoring? Yes__ No__
- Have you been trained in shorter tailoring techniques than custom tailoring? Yes__ No__
- Do you teach custom tailoring? Yes__ No__
- Do you teach shorter tailoring techniques than custom tailoring? Yes__ No__
MAILING LIST FOR QUESTIONNAIRE

ALABAMA
Alabama A. & M. College, Normal
Alabama Polytechnical Institute, Auburn
Howard College, Birmingham
Jacksonville State College, Jacksonville
Miles College, Birmingham
University of Alabama, University

ALASKA
University of Alaska, College

ARIZONA
Arizona State College, Tempe

ARKANSAS
A. M. & N. College, Pine Bluff
Arkansas State Teachers College, Conway
Hendrix College, Conway
Ouachita Baptist College, Arkadelphia
University of Arkansas, Fayetteville

CALIFORNIA
Chapman College, Orange
College of the Pacific, Stockton
George Pepperdine College, Los Angeles
Immaculate Heart College, Los Angeles
LaVerne College, LaVerne
Los Angeles City College, Los Angeles
Pacific Union College, Angwin
San Diego State College, San Diego
San Jose State College, San Jose
University of California, Davis
Santa Barbara College, Santa Barbara

COLORADO
Colorado State University, Fort Collins
Loretto Heights College, Loretto

CONNECTICUT
St. Joseph College, West Hartford

DELAWARE
Delaware State College, Dover
DISTRICT OF COLUMBIA
Gallaudet College, Washington
Howard University, Washington

FLORIDA
Barry College, Miami
Florida A. & M. University, Tallahassee
Florida State University, Tallahassee

GEORGIA
Berry College, Mt. Berry
Ft. Valley State College, Fort Valley
Georgia Teachers College, Collegeboro
North Georgia College, Dahlonega
Spelman College, Atlanta
University of Georgia, Athens

HAWAI'I
University of Hawaii, Honolulu

IDAHO
Idaho State College, Pocatello
University of Idaho, Moscow

ILLINOIS
Bradley University, Peoria
Eastern Illinois State College, Charleston
Illinois State Normal University, Normal
MacMurray College, Jacksonville
Mundelein College, Mundelein
Northern Illinois University, Dekalb
Olivet Nazarene College, Kankakee
Southern Illinois University, Carbondale
Western Illinois University, Macomb

INDIANA
*Ball State Teachers College, Muncie
DePauw University, Greencastle
Evansville College, Evansville
Indiana Central College, Indianapolis
Indiana University, Bloomington
Marion College, Indianapolis
St. Francis College, Fort Wayne
St. Mary's College, Notre Dame
Valparaiso University, Valparaiso
Purdue University, Lafayette
ICWA
Central College, Pella
Cornell College, Mt. Vernon
Iowa State Teachers College, Cedar Falls
Marycrest College, Davenport
Simpson College, Indianola
University of Dubuque, Dubuque
Westmar College, LeMars

KANSAS
Baker University, Baldwin City
Fort Hays Kansas State College, Hays
Kansas State College, Manhattan
Kansas State College, Pittsburg
McPherson College, McPherson
Ottawa University, Ottawa
Sterling College, Sterling
University of Kansas, Lawrence
Washington University of Topeka, Topeka

KENTUCKY
Center College, Danville
Georgetown College, Georgetown
Morehead State College, Morehead
Nazareth College, Nazareth
University of Kentucky, Lexington
Western Kentucky State College, Bowling Green

LOUISIANA
Louisiana College, Pineville
Louisiana State University, Baton Rouge
Northeast Louisiana State College, Monroe
St. Mary's Dominican College, New Orleans

MAINE
*Nasson College, Springvale

MARYLAND
Hood College, Frederick
Morgan State College, Baltimore
University of Maryland, College Park

MASSACHUSETTS
Regis College, Weston
State Teachers College, Framingham
-71-

MICHIcGAN
Albion College, Albion
Eastern Michigan College, Ypsilanti
Madonna College, Livonia
Mercy College, Detroit
Nazareth College, Nazareth
Sienna Heights College, Adrian
Western Michigan University, Kalamazoo

MINNESOTA
College of St. Benedict, St. Joseph
College of St. Scholastica, Duluth
Concordia College, Moorhead
Mankato State College, Mankato
University of Minnesota, Duluth

MISSISSIPPI
Alcorn A. & M. College, Lorman
Delta State Teachers College, Cleveland
Mississippi Southern College, Hattiesburg
University of Mississippi, University

MISSOURI
College of St. Teresa, Kansas City
Fontbonne College, St. Louis
Lindenwood College for Women, St. Charles
Northwest Missouri State College, Maryville
Southeast Missouri State College, Cape Girardeau
University of Kansas City, Kansas City
Webster College, Webster Groves

MONTANA
Montana State University, Missoula

NEBRASKA
Nebraska State Teachers College, Kearney
Union College, Lincoln

NEVADA
University of Nevada, Reno

NEW HAMPSHIRE
Mt. St. Mary College, Hocksett
University of New Hampshire, Durham

NEW JERSEY
Douglass College of Rutgers, West Brunswick
New Jersey State Teachers College, Upper Montclair
NEW MEXICO
New Mexico College of A. & M., State College
New Mexico Western College, Silver City

NEW YORK
Adelphi College, Garden City
Cornell University, Ithaca
New York University, New York
Queens College, Flushing, Long Island
Skidmore College, Saratoga Springs
State Teachers College, Oneonta
Syracuse University, Syracuse

NORTH CAROLINA
A. & T. College, Greensboro
Barber-Scotia College, Concord
Catawba College, Salisbury
Flora McDonald College, Red Springs
High Point College, High Point
North Carolina College at Durham, Durham
Queens College, Charlotte
Shaw University, Raleigh
Western Carolina College, Cullowhee

NORTH DAKOTA
University of North Dakota, Grand Forks
North Dakota State University, Fargo

OHIO
Baldwin-Wallace College, Berea
Bowling Green State University, Bowling Green
College of St. Mary of Springs, Columbus
Hiram College, Hiram
Lake Erie College, Painesville
Miami University, Oxford
Notre Dame College, Cleveland
Ohio State University, Columbus
Otterbein College, Westerville
University of Cincinnati, Cincinnati
University of Toledo, Toledo
Western College for Women, Oxford
Wilmington College, Wilmington

OKLAHOMA
Bethany Nazarene College, Bethany
+Langston University, Langston
Northwestern State College, Alva
Oklahoma Baptist University, Shawnee
Phillips University, Enid
University of Oklahoma, Norman
OREGON
- Linfield College, McMinnville
- Oregon State College, Corvallis

PENNSYLVANIA
- Albright College, Reading
- Carnegie Institute of Technology, Pittsburgh
- College Misericordia, Dallas
- Immaculate College, Immaculata
- Marywood College, Scranton
- Mt. Mercy College, Pittsburgh
- Seton Hill College, Greensburg
- State Teachers College, Indiana
- Temple University, Philadelphia

RHODE ISLAND
- Salve Regina College, Newport

SOUTH CAROLINA
- Mt. Marty College, Yankton

TENNESSEE
- Austin Peay State College, Clarksville
- David Lipscomb College, Nashville
- Madison College, Madison College
- Memphis State University, Memphis
- Southern Missionary College, Collegedale
- Tennessee Polytechnic Institute, Cookeville
- University of Tennessee, Knoxville

TEXAS
- Austin College, Sherman
- Bishop College, Marshall
- Huston-Tillotson College, Austin
- Lamar State College of Technology, Beaumont
- Midwestern University, Wichita Falls
- Our Lady of the Lake College, San Antonio
- Pan American College, Edinburg
- Southern Methodist University, Dallas
- Southwestern University, Georgetown
- Sul Ross State College, Alpine
- Texas College, Tyler
- Texas Southern University, Houston
- West Texas State College, Canyon

UTAH
- University of Utah, Salt Lake City

VERMONT
- Middlebury College, Middlebury
VIRGINIA
Bridgewater College, Bridgewater
Longwood College, Garmville
Mary Washington College, Fredericksburg
Virginia Polytech Institute, Blacksburg

WASHINGTON
State College of Washington, Pullman
Seattle University, Seattle
Walla Walla College, College Place
Whitworth College, Spokane

WEST VIRGINIA
Concord College, Athens
Glenville State College, Glenville
Salem College, Salem
West Liberty State College, West Liberty
West Virginia State College, Institute
West Virginia Wesleyan College, Bushkannon

WISCONSIN
Cardinal Stritch College, Milwaukee
Mt. Mary College, Milwaukee
University of Wisconsin, Madison
Wisconsin State College, Stevens Point

Questionnaire returned too late to be included in tabulation.