ANTE 408.01: Advanced Anthropological Statistics

Randall R. Skelton
University of Montana - Missoula, randall.skelton@umontana.edu

Follow this and additional works at: https://scholarworks.umt.edu/syllabi
Let us know how access to this document benefits you.

Recommended Citation
https://scholarworks.umt.edu/syllabi/4627

This Syllabus is brought to you for free and open access by the Course Syllabi at ScholarWorks at University of Montana. It has been accepted for inclusion in Syllabi by an authorized administrator of ScholarWorks at University of Montana. For more information, please contact scholarworks@mso.umt.edu.
GOALS AND OBJECTIVES

The goal of this class is to learn several advanced (multivariate) methods of data analysis and to learn the skill of writing a scientific paper. The focus will be on use of statistical software to perform analyses, with interpretation and write-up of the results obtained. Students who pass this class will:

• Learn to use several types of statistical analysis including multiple regression, principal components analysis, cluster analysis, discriminant analysis, and more.
• Explore how these analysis can be applied to novel situations by carrying out a project that involves the use of data analysis.
• Gain facility with a statistical software packages such as SPSS.
• Build the ability to interpret the results of multivariate statistical analyses and express them in a professional manner.
• Become familiar with standard scientific paper style and format.
• Gain experience with finding sources through library databases.
• Come to appreciate the vast array of data that is available on the web.

ADMINITRIVIA

Moodle Supplement
There will be a Moodle supplement for this class, where I will post various types of useful materials and information, including required materials. The people at IT Central in SS120 and Moodle Tech Support (243-4999, umonline-help@umontana.edu) can help you with access and technical issues. As your instructor I can only be responsible for content placed on Moodle – not for its administration or technical issues.

Required Materials
Text: Landau, Sabine and Everitt, Brian S., 2004. A Handbook of Statistical Analyses using SPSS. Chapman & Hall/CRC Press. Hereafter I will refer to this text as “the Handbook”. The Handbook provides a walk-through of many of the methods we will be covering. The Handbook will be most useful to you when you are doing your assignments, and need not be read before coming to class.

Online Resources: For each week I have some required browsing listed. Some of this is for help with your assignment. There are many statistical texts online, some of which I have links to in the “Helpful Materials” section of the class Moodle supplement. The most useful of these materials are made available on the WWW by Statsoft Inc, Karl L. Wuensch (a professor in psychology at East Carolina University), and William K. Trochim (a professor in policy analysis and management at Cornell University).

Statistical Package: We will use SPSS. SPSS is available in the Fred W. Reed Social Sciences Research Lab (SSRL) and other campus computing labs. You may also buy SPSS.
Other Software: I assume that you have, and know how to use, Microsoft Office products, especially Word and Excel. You may also download the free office package OpenOffice and use it instead, though I don’t guarantee that it operates exactly the same as MS Office.

Computer access: You will need access to a computer with SPSS installed. SPSS is installed on computers for student use in the SSRL. We will have an orientation to the use of these labs by the SSRL staff early in the semester. Also, the computers in the UC 225 general student lab are supposed to have SPSS installed. You will need to show your GrizCard for access to the general student labs.

Data Storage: You will need some mechanism for storing the data sets you use and the output from the statistical software. The best option for this is a USB flash drive (also known as a memory stick, pen drive, flash drive, etc.), though UMBox is probably a reasonable alternative.

How will this class work?
1. First 2/3 of the semester. We will explore several methods of advanced statistical analysis. The focus will be on using SPSS to perform the analysis, interpreting the output, and writing up the procedure in standard scientific paper format. We will meet at every normally scheduled class meeting time. Each week there is an assignment due and you will be expected to do the analysis requested, write up your results, and submit them to me by uploading them through Moodle. Moodle doesn’t have a way for me to send materials back to you, so I will do that using email to your official University email address (what I see in Moodle). You will need to either check your University email regularly or forward it to where you normally check your email. Most weeks there will be a lecture on Tuesday, and we will work with data on Thursday.

2. Last 1/3 of the semester. You will each do a project in which you analyze a data set of interest to you in order to draw some conclusions about some topic of interest to anthropology. Grad students should use the data set they are working with in their thesis or dissertation research, if possible. We will continue to meet for class, and I will use this time to explore and demonstrate additional statistical and analytical methods. I will not allow you to fall behind or put off the steps of the project until the end, and there is an assignment related to your project due every week.

Grading
For undergraduate students, your grade will be based on attendance, preparation, and participation (25%); weekly exercises you complete (30%); and your project (45%). For graduate students, your grade will be based on attendance, preparation, and participation (20%); weekly exercises you complete (30%); and your project (40%). and a short presentation of your project (10%). There are no examinations. Your score in the course will be calculated to yield your grade using this scale: A = 100-90, B = 89-80, C = 79-60, D = 59-50, F = <50. I may modify these basic grades with a + or - in special cases if I believe it is appropriate.

Basic Grading Philosophy for This Class
This class is not required for any students. Therefore, I assume that all students who have enrolled in the class have done so because they want to learn how to do data analysis. Given this, I will have little tolerance for any behavior which suggests that a student is trying to avoid learning the material. On the other hand, I encourage and try to reward behavior
which suggests that a student is attempting to enhance how quickly or thoroughly they learn
the material, how to minimize the effort involved in doing an analysis correctly, and similar
wholesome strategies. I will assess your understanding of the material using assignments,
and each student’s final write-up and presentation of their project. I will not give tests,
because genuine understanding of this material is difficult to assess via a test, and because I
do not want to encourage students to merely memorize material for a test.

Attendance Policy
Attendance is required at every class meeting except in the case of documented
excusable absences (see the University policy on excused absences). Attendance will
constitute 20 to 25% of your grade.

Policy on Collaboration and Use of Outside Resources:
Students are encouraged to work and study together during the first 2/3 of the
semester, including working together on completing the weekly assignments. Additionally,
there are many resources available on the internet and elsewhere, including model answers
to most of the exercises in the textbook (see pp v-vi). I encourage you to use these to the
extent that they enhance your understanding of the analyses being learned. My only
requirement is that in your write-ups you must acknowledge your collaboration with other
students and/or your use of these and other resources. There is never a penalty for working
with other students or using additional resources so long as you acknowledge them.

However, the privilege of collaboration and use of external resources does not extend
to your required individual written solution to each exercise. Each student must write up the
exercises independently using their own words. You should use these write-ups to show me
that you understand the analysis being performed, how to make SPSS perform the analysis,
and how to interpret the output generated by SPSS. In general, the way to do this is to
provide a detailed explanation of why you took the steps you chose and how you drew any
interpretations you made.

Regretfully, I must punish infractions of this policy. If I find that two or more students
have turned in write-ups that are copies, or which I judge to be “too similar”, I will split the
credit for that assignment evenly between the students involved. If I detect an answer that is
too similar to the model answer on the textbook website or to those on other websites that I
know of, I will at most award that student half credit.

During the last 1/3 of the semester each student will be working on their own individual
data analysis project. You are welcome and encouraged to discuss your project with anybody
who will sit still for it. However, you must write it up individually in your own words.
Furthermore, you must acknowledge any help you got from fellow students, or anyone else, in
the acknowledgment section of your final report. This principle also extends to published and
online resources, which must be cited in your report and referenced in the bibliography of
your report. Direct copying of published or online materials, or use of them without citation is
considered plagiarism, a form of academic misconduct, and I am required by University policy
give you zero credit for any assignment for which I detect it.

Weekly Assignments
You will have an assignment to do (almost) every week. The assignment will be posted
on Moodle. Each assignment is explicit in what I want you to do and what I want you to
submit. Most of the assignments will also include practice in writing parts of a scientific
research paper.
Project

Each student will complete a project that involves analysis of a data set of their choice, applied to an anthropological problem they are interested in. Certain milestones in the completion of the project (selection of a data set, analysis results, rough draft, and final draft) will be submitted, with one or another of these due each week. The format of the paper should be scientific research paper format, which you will learn over the course of the semester. Here are some things that I will expect to see in your research paper.

1. Five part scientific format, including the following sections: introduction, materials & methods, results, discussion, and conclusions.
2. The introduction should include at least a brief literature review of other studies that have been done in the area you are working on. A minimum of 10 sources should be discussed and cited in the text of this section. These sources should be referenced in the bibliography.
3. Your paper should include a bibliography. The citation or bibliography format should be according to one of the major journals in anthropology, such as American Anthropologist, American Journal of Physical Anthropology, etc. Alternatively, you can use CSE/CBE style. Online materials are acceptable if referenced properly, and there is a large amount of advice online about how to reference online or other electronic documents.

Submission Procedures

Weekly assignments and project fragments should be submitted via Moodle. This saves me time, saves you printing costs, saves trees, and (possibly most importantly) helps me avoid losing students' work.

Assignments are due via Moodle before Tuesday at midnight during the week after they are listed in the syllabus. There will be a penalty of 20% of that assignment’s score for each day (or fraction of a day) that an assignment is late.

You can expect me to grade your assignments promptly and give you feedback via a grading form and/or via comments on your assignment returned to you via your official University email address.

Other Statistical Software

As the person who has to grade your assignments, I have to standardize on one statistical software package. For many reasons, I have chosen SPSS for our standard statistical software for ANTH 402. However, there are several other commercial, shareware, and freeware statistical software packages available. In particular, I am impressed with PAST. PAST will do almost everything SPSS does, though the output isn’t as pretty. PAST offers additional useful types of analysis that SPSS doesn’t, such as cladistics, neighbor joining clustering, mixture analysis, and correspondence analysis. It has the best, fastest, and most flexible cluster analysis that I have ever seen. In my own research I use PAST 10 times more often than SPSS.
This schedule is tentative and the topics might change as we go. Topics and readings will always be current on Moodle, so I have put the readings and other materials there. Thus, this schedule is a bare-bones list of topics, readings from the Handbook, and assignments. Required browsings are listed on Moodle. Assignments are due before 12:00 midnight on the Tuesday of the week after the assignment is listed unless otherwise noted on Moodle.

<table>
<thead>
<tr>
<th>WEEK OF</th>
<th>TOPIC</th>
<th>HANDBOOK</th>
<th>ASSIGNMENT</th>
</tr>
</thead>
<tbody>
<tr>
<td>1/25</td>
<td>Getting Started Intro to SPSS and the Labs</td>
<td>Chapter 1</td>
<td>Understand how the class will work Find some place to use SPSS</td>
</tr>
<tr>
<td></td>
<td>LECTURES (Notes on Moodle) Lecture 1: Intro to the Class Lecture 2: Types of Data and Sampling</td>
<td></td>
<td></td>
</tr>
<tr>
<td>2/1</td>
<td>Basics Statistics Descriptive & Inferential Stats</td>
<td>Chapter 2 Chapter 3</td>
<td>Assig 1: Descriptive & Inferential Stats</td>
</tr>
<tr>
<td></td>
<td>LECTURES (Notes on Moodle) Lecture 3: Descriptive Statistics Lecture 4: Inferential Statistics Lecture 5: Frequencies, Data Transformation, and Capturing Output</td>
<td></td>
<td></td>
</tr>
<tr>
<td>2/8</td>
<td>Multiple Regression</td>
<td>Chapter 4</td>
<td>Assig 2: Multiple Regression</td>
</tr>
<tr>
<td></td>
<td>LECTURES (Notes on Moodle) Lecture 6: Regression & Correlation Lecture 7: Working with Non-Linear Data in Regression</td>
<td></td>
<td></td>
</tr>
<tr>
<td>2/15</td>
<td>Principle Component Analysis</td>
<td>Chapter 11</td>
<td>Assig 3: PCA and FA</td>
</tr>
<tr>
<td></td>
<td>LECTURES (Notes on Moodle) Lecture 8: Principal Components Lecture 9: The Search for Significant Relationships</td>
<td></td>
<td></td>
</tr>
<tr>
<td>2/22</td>
<td>Discriminant Analysis</td>
<td>Chapter 12</td>
<td>Assig 4: Discriminant Analysis</td>
</tr>
<tr>
<td></td>
<td>LECTURES (Notes on Moodle) Lecture 10: Discriminant Analysis Lecture 11: Decisions, Decisions</td>
<td></td>
<td></td>
</tr>
<tr>
<td>2/29</td>
<td>Cluster Analysis</td>
<td></td>
<td>Assig 5: Cluster Analysis</td>
</tr>
<tr>
<td></td>
<td>LECTURES (Notes on Moodle) Lecture 12: Cluster Analysis Lecture 13: Constructing & Reading Dendrograms</td>
<td></td>
<td></td>
</tr>
<tr>
<td>3/7</td>
<td>Clustering PC’s and DF’s</td>
<td>Chapter 5 & 6</td>
<td>Assig 6: Clustering PC & DF</td>
</tr>
<tr>
<td></td>
<td>LECTURES (Notes on Moodle) Lecture 14: Clustering PC’s and DF’s Lecture 15: Causes of Similarity Between Things Lecture 16: Logistic Regression</td>
<td></td>
<td></td>
</tr>
<tr>
<td>3/14</td>
<td>ANOVA</td>
<td></td>
<td>Assig 7: ANOVA</td>
</tr>
<tr>
<td></td>
<td>LECTURES (Notes on Moodle) Lecture 17: ANOVA Lecture 18: Character Coding and Missing Data</td>
<td></td>
<td></td>
</tr>
<tr>
<td>WEEK OF</td>
<td>TOPIC</td>
<td>HANDBOOK</td>
<td>ASSIGNMENT</td>
</tr>
<tr>
<td>---------</td>
<td>-------</td>
<td>----------</td>
<td>------------</td>
</tr>
<tr>
<td>3/21</td>
<td>Beginning Your Project</td>
<td>LECTURES (Notes on Moodle)</td>
<td>Assig 8: Find a Data Set</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Lecture 19: Finding a Data Set</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Lecture 20: Scientific Paper Format</td>
<td></td>
</tr>
<tr>
<td>3/28</td>
<td>Project week 1</td>
<td>LECTURES (Notes on Moodle)</td>
<td>Assig 9: Make a Research Plan</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Lecture 21: Advanced Nominal Data Methods: Multidimensional scaling, classification trees, and correspondence analysis</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Lecture 22: How to Treat Males and Females in an Analysis</td>
<td></td>
</tr>
<tr>
<td>4/4</td>
<td>SPRING BREAK</td>
<td></td>
<td></td>
</tr>
<tr>
<td>4/11</td>
<td>Project week 2</td>
<td>LECTURES (Notes on Moodle)</td>
<td>Assig 10: Data Analysis Results</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Lecture 23: Multivariate Statistics in Forensic Anthro</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Lecture 24: The effect of Admixture on DF for Ancestry</td>
<td></td>
</tr>
<tr>
<td>4/18</td>
<td>Project week 3</td>
<td>LECTURES (Notes on Moodle)</td>
<td>Assig 11: Preliminary Draft</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Lecture 25: Models of Genetic Similarity</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Lecture 26: Intro to Some Other Statistical Software</td>
<td></td>
</tr>
<tr>
<td>4/25</td>
<td>Project week 4</td>
<td>LECTURES (Notes on Moodle)</td>
<td>Assig 12: Revise Paper, Turn In final draft Due by midnight Sunday May 12</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Lecture 27: Cladistics</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Lecture 28: Data Mining</td>
<td></td>
</tr>
<tr>
<td>5/2</td>
<td>Project Completion: Discussion of Projects in Class</td>
<td></td>
<td>Finals Week Tuesday May 10, 8:00am to 10:00am. Meet for project presentations by grad students</td>
</tr>
</tbody>
</table>