
University of Montana University of Montana

ScholarWorks at University of Montana ScholarWorks at University of Montana

Graduate Student Theses, Dissertations, &
Professional Papers Graduate School

1987

Algorithm for character recognition based on the trie structure Algorithm for character recognition based on the trie structure

Mohammad N. Paryavi
The University of Montana

Follow this and additional works at: https://scholarworks.umt.edu/etd

Let us know how access to this document benefits you.

Recommended Citation Recommended Citation
Paryavi, Mohammad N., "Algorithm for character recognition based on the trie structure" (1987). Graduate
Student Theses, Dissertations, & Professional Papers. 5091.
https://scholarworks.umt.edu/etd/5091

This Thesis is brought to you for free and open access by the Graduate School at ScholarWorks at University of
Montana. It has been accepted for inclusion in Graduate Student Theses, Dissertations, & Professional Papers by an
authorized administrator of ScholarWorks at University of Montana. For more information, please contact
scholarworks@mso.umt.edu.

https://scholarworks.umt.edu/
https://scholarworks.umt.edu/etd
https://scholarworks.umt.edu/etd
https://scholarworks.umt.edu/grad
https://scholarworks.umt.edu/etd?utm_source=scholarworks.umt.edu%2Fetd%2F5091&utm_medium=PDF&utm_campaign=PDFCoverPages
https://goo.gl/forms/s2rGfXOLzz71qgsB2
https://scholarworks.umt.edu/etd/5091?utm_source=scholarworks.umt.edu%2Fetd%2F5091&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:scholarworks@mso.umt.edu

COPYRIGHT ACT OF 1 9 7 6

T h i s i s a n u n p u b l i s h e d m a n u s c r i p t i n w h i c h c o p y r i g h t s u b ­

s i s t s , An y f u r t h e r r e p r i n t i n g o f i t s c o n t e n t s m u s t b e a p p r o v e d

BY THE AUTHOR,

Ma n s f i e l d L i b r a r y

Un i v e r s i t y o f Mo n t a n a

Da t e : 1 987 __

AN ALGORITHM FOR CHARACTER RECOGNITION
BASED ON THE TRIE STRUCTURE

By

Mohammad N. Paryavi

B. A., University of Washington, 1983

Presented in partial fulfillment of the requirements

for the degree of

Master of Science

University of Montana

1987

Approved by

lairman, Board of Examiners

iean, Graduate School

UMI Number: EP40555

All rights re se rv ed

INFORMATION TO ALL U SE R S
T he quality of this reproduction is d e p e n d e n t upon th e quality of th e copy subm itted .

In th e unlikely ev e n t th a t th e a u th o r did not se n d a co m p le te m anuscrip t
an d th e re a re m issing p ag e s , th e s e will b e no ted . Also, if m aterial h ad to be rem oved,

a no te will indicate th e deletion.

Dissertatien

UMI E P 40555

P ublished by P ro Q u es t LLC (2014). C opyright in th e D isserta tion held by th e Author.

Microform Edition © P ro Q u es t LLC.
All rights re se rv ed . This work is p ro tec ted ag a in s t

unau thorized copying u n d e r Title 17, United S ta te s C o d e

P ro Q u es t LLC.
789 E as t E isen h o w er Parkw ay

P .O . Box 1346
Ann Arbor, Ml 4 8 1 0 6 -1 3 4 6

Paryavi, Mohammad N., M.S., Mar. 1987

An Algorithm for Character Recognition Based on The Trie Structure

Director Dr. Alden H. Wrigh

Computer Science

Character recognition is the process of attempting to complete a partially typed string

of characters by comparing it with the list of strings stored within the system. Character

recognition can be used in a user-friendly interface for a computer system.

In this thesis an algorithm for character recognition is developed based on the trie

structure. A trie is an m-ary tree composed of two types of nodes; branch nodes that

contain link fields associated with the elements of an alphabet, and information nodes that

are the leaf nodes. For reasons of manipulation and implementation simplicity a binary

tree representation of the trie structure was chosen. In this representation a trie branch

node is represented by a list of binary tree nodes. This allows us to simulate a branch

node with variable number of link fields.

An algorithm for the character recognition operation on the trie is presented first in a

general form and later in detail. Also, an algorithm is developed for the insertion

operation into a trie structure. These algorithms are analyzed for run time and storage

space efficiency. Finally, an alternative represention and an alternative algorithm are

discussed.

Table of Contents

Abstract ...ii

Table of Contents... iii

List of Figures... v

Acknowledgements.. vi

1. Introduction ...1

1.1. Background... 1

1.2. Statement of The Problem...4

1.3. The Proposed Research...4

2. Related Work and Literature.. 6

3. Algorithm Overview.. 8

3.1. The Data Structure .. 8

3.1.1. The General Tree.. 8

3.1.2. The Trie Structure...9

3.2. The General Algorithm... 15

3.2.1. The Recognition Algorithm...16

3.2.2. The Insertion Algorithm.. 18

4. The Algorithm in Detail... 21

4.1. The Representation.. 21

4.2. Notations, Symbols, and Conventions... 23

4.3. Description of Variables.. 25

4.4. The Algorithm..26

4.4.1. The Recognition Algorithm... ••........... 26

4.4.1.1. The Process_Recog Algorithm.......................................27

4.4.1.2. The Process_Other Algorithm..29
i i i

4.4.1.3. The Process_Rubout Algorithm..................................... 32

4.4.1.4. The ProcessJNewline Algorithm................................... 33

4.4.1.5. The Process_Listop Algorithm.......................................34

4.4.1.6. The Traverse_Trie Algorithm... 35

4.4.2. The Insertion Algorithm.. 36

4.4.2.1. The Add-To-Trie Alg.. 36

4.4.2.2. The Process-Info-Node Alg.. 39

4.4.2.3. The Insert-To-Sibling-List Alg 40

4.4.2.4. The Insert-Short-Strings Alg............... 42

4.4.2.5. The Insert-Long-Strings Alg...43

5. Analysis of the Algorithm ...47

5.1. General Discussion.. 47

5.2. Time Efficiency of the Alg... 47

5.2.1. Analysis of the Recognition Alg.. 48

5.2.2. Analysis of the Insertion Alg..51

5.3. Space Efficiency of the Algorithm...52

5.4. Extensions to the Trie Structure...54

5.5. An Alternative Tree Representation... 55

5.6. An Alternative Algorithm.. .56

6. Summary and Conclusions 59

6.1. Summary..59

6.2. Conclusions..62

BIBLIOGRAPHY ... 64

iv

List of Illustrations

Figure 3 .1 9

Figure 3 .2 ..11

Figure 3 .3 ... 12

Figure 3.4 .. 14

Figure 4 .1 ... 22

Figure 5 .1 50

Figure 5 .2 56

V

Acknowledgments

This research paper is soley dedicated to Dr. Alden Wright without whose

inspirational and technical support it would not have been possible. His expertise was the

technical backbone of this paper and his personality the motivating force behind it.

I would also like to thank Professors William Ballard and Spencer Manlove for

their invaluable guidance.

My colleagues and fellow FIRESYS team members, Greg Hume, Bruce

McTavish, and Jim Mitchell, at the University of Montana - Thanks to all of you.

Special thanks are also due to my good friend Babak Shahpar for being so helpful

in criticizing my work to make it better.

Last but not least, my deepest gratitude and love to my wife Somieh for her

constant patients and understanding. Without her, none of this would have been

possible.

Funding for the FIRESYS project was provided in part through a grant from the

Intermountain Fire Sciences Laboratory, in Missoula, Montana.

Chapter One

Introduction

1.1. Background

Computers are magnificent creations of man. They are capable of storing large

amounts of information and performing otherwise complex and boring tasks with

tremendous speed and accuracy. As more and more complex and exotic machines and the

programs that drive them are developed, it becomes harder for humans to interact with

them without adequate interfaces. 1 For this reason, simple and user-friendly interfaces

are becoming essential parts of computer systems. 2 So much so, that a great amount of

effort in today’s computer science research is spent on user-friendly interfaces. In this

area of research, new tools and techniques are sought to diminish the gap between man

and machine by simplifing the interface to computer systems.

An information system 3 is an example of a computer system that requires a

highly user-friendly interface. The reason is that most users of such systems are

unfamiliar with the technical aspects of computer systems. Typically, these users are

managers, staff members, and customers of an enterprise.

Recently (1985-86), the researcher had a chance to work with such an information

system. The research project was in conjunction with the Intermountain Fire Sciences

Laboratory, in Missoula, Montana, and involved the building of a fire effects information

system using artificial intelligence techniques. The building of this information system

1 These more powerful computers provide more power for developing better user interfaces, and that gives
rise to the need for new ideas and techniques in this area.

computer system usually consists of the hardware and the software that drives the hardware.
3The term information system is often used synonymously with the term database system. However, an
information system differs from a database system, in that, it is capable of storing not only the data, but
also some of die semantics of the data as well.

1

was perceived by the Fire Lab as one of the initial steps towards the ultimate goal of

constructing a fire effects expert system.

The completed fire effects information system consists of four major parts. The

first two parts are the database, where the actual fire effects information is stored, and the

interface to the database. The third part is the database builder, which is an interactive

system for manipulating the information in the database. The last component of the

information system is the query system. The query system is responsible for providing

novice users easy access to the information in the database.

One of the most important requirements of the information system, particularly of

the query component, was user-friendliness. In order to access information on a specific

species of plant or animal, the user most often has to enter the name of the species in

question. 1 This name is usually long, very difficult to remember, and next to impossible

to spell correctly. For this reason a mechanism was needed to simplify the selection of a

species name.

The researcher proposed the utilization of a technique known as character

recognition to solve the aforementioned problem. Character recognition is the process of

attempting to complete a partially typed string of characters by comparing it with the list

of strings stored within the system. This is an extremely useful feature, in that it saves

the user time and effort by providing the ability to enter a very long string by just

supplying the initial few characters of that string. The interface system will perform a

search to find a unique string that begins with the characters that the user entered - the

prefix. If a unique string is not located, the user will be able to view the strings that are

possible with the given prefix and be able to continue the search from this point by

supplementing the prefix with one or more additional characters.

^Currently a menu system allows the user to choose from a list of available species names. This process
could become time consuming and bothersome if the list were to become very large.

3
Perhaps an example would help in understanding the process of character

recognition. Assume that the following strings are stored in some data structure in the

computer’s memory: ALLOCATE, BEGIN, BOOK, BY, BYE, CHECK, and

CHAULK. Now suppose the user enters an ‘A’ followed by the escape character (to

signal a recognition request) at the prompt:

—» A<esc>

The computer then searches its memory for a unique word that starts with the letter ‘A’,

and then completes the string for the user:

—»ALLOCATE

Now suppose the user enters a ‘B’ followed by the escape character:

—> B<esc>

The computer attempts to complete the string for the user, but it finds that there are more

than one string that begin with the letter ‘B \ Therefore, it simply sounds the bell on the

user's terminal and awaits further input:

->B

At this point the user may decide he/she wants to see what are the possible strings that

start with a B by supplying a special character to signal his/her request (in our case a *?’):

-» B?

The computer detects the request and lists the following string on the users terminal and

then waits for further input:

BEGIN

BOOK

BY

BYE

-» B

4
The user may now supply an ‘O’ and signal for recognition:

—> BO<esc>

And the computer would respond with the completed word:

-* BOOK

1.2. Statement of The Problem

Initially the goal of this research was to study some of the existing algorithms for

character recognition by analyzing, comparing, and contrasting them. Although the

possibilities of introducing a new algorithm were to be considered, the actual

development of such an algorithm was not predicted.

That initial goal, however, was quickly changed in light of the fact that the

researcher was not able to locate any previous formalizations of algorithms for character

recognition. Thus, the initiative was made to work towards the development of an

algorithm.

1.3. The Proposed Research

The process of the development of a formal algorithm consists of a number of

steps. First, a problem gives rise to the basic idea for an algorithm. Next, the

development begins, requiring a tremendous amount of thought. During this phase,

appropriate data structures need to be considered, different parts of the algorithm have to

be characterized, and attempts must be made to discover special cases and conditions.

After the completion of, or in conjunction with the development of the algorithm, an

implementation environment (language and computer) need to be chosen. Implementation

allows the researcher to verify the correctness of the algorithm and gives him/her a chance

to “fine-tune” the algorithm.

The formalization of the algorithm is the next step. The algorithm needs to be

described in some formal notation for clarity and easy understanding of others. As the

last step, the algorithm has to be analyzed mathematically and evaluated to assess

efficiency and complexity. This evaluation is necessary if the algorithm is to be used as

part of a computer system. Before using an algorithm, system designers usually want to

know just how efficient it is, both in terms of memory usage and in terms of speed. The

complexity of the implementation is also a fair consideration. An algorithm that is overly

complex to implement may not be well suited for some applications.

The thesis of this paper is to develop a character recognition algorithm using the

above steps. In addition, the researcher will investigate and present further research ideas

such as alternate data structures, implementation strategies and languages, and possibly

alternative algorithms.

Chapter Two

Related Work and Literature

As mentioned in chapter one, the researcher was unable to locate any previous

formalization of character recognition algorithms. Most computer systems that have

implemented the idea of character recognition have done so in an ad-hoc manner, i.e., the

designers of such systems never described their algorithms in any formal way. Also,

these implementations are application specific and not general algorithms. Two examples

are the TOPS-20 operating system monitor running on DEC-20 computers and the

UNDC Shell.1

Unfortunately the code for the TOPS-20 monitor was restricted and unavailable at

the time of the research; thus investigation of this implementation was impossible.

However, the code for the UNIX Shell was available. The UNIX Shell implementation

of character recognition is indeed very application specific. The algorithm does not call

for a specific data structure; rather, it is implemented on top of the existing hierarchical

UNIX file structure. The recognition is performed on file names at different levels of the

file structure. Each time a string of characters is to be matched, as a prefix, with a partial

file name, the directories are searched in a given sequence and a character-by-character

match is performed on each file name in each directory.

On the surface, this implementation seems to be very inefficient because of the

brute-force matching of each file name in each possible directory in the given path, but

since it blends very nicely with the structure of the file system and the fact that the number

of files in each directory is fairly small, the implemetation actually is very fast. However,

the important observation to be made is that if the same technique were to be used with a

^See sh.file.c, code for Cshell by Ken Greer, version 1.4, Dec. 1981, UC Berkley, California.
6

flat file structured operating system in which the number of files in a single directory is

very large, it would not be nearly as efficient in terms of execution time.

A general algorithm for character recognition would provide a fast execution

speed that would not vary greatly from applications with a few strings to those with a

large number of strings. What will be presented in this paper is such an algorithm (the

evaluation of the algorithm will be discussed in later chapters).

The main sources of inspiration for this algorithm were reference books on data

structures and algorithms. These include [Tremblay & Sorenson 1984], [Baron &

Shapiro 1980], [Knuth 1973], and [Horowitz & Sahni 1983]. In all of these books,

strings and data structures and algorithms dealing with strings are presented in a rigorous

manner. In particular [Horowitz & Sahni 1983] discuss the idea of Trie Indexing, whose

main data structure is the Trie (to be discussed in detail in later chapters). The researcher

was inspired mainly by this discussion and thus chose to develop the character

recognition algorithm upon the trie data structure.

Chapter Three

Algorithm Overview

3.1. The Data Structure

The main data structure used in the character recognition algorithm is the trie.

This data structure is based on the notion of a tree. We start by a discussion about trees

in general and then introduce a special type of tree called the trie.

3.1.1. The General Tree

A tree [Knuth 1973] is a hierarchical structure made up of cells called nodes.

Every node of a tree is the parent of zero or more child nodes which are connected to the

parent. In Figure 3.1, nodes p, 8, and <|) are children of the root node a.

Formally, a tree T is a triple (N, r, x) where

a) N is a finite nonempty set of nodes called the node set of T,

b) r e N is a distinguished node called the root of T, and

c) x = { T j, T2 ,..., Tn } is a collection of trees whose node sets partition

the set N-{ r }. The trees T j, T2 ,..., Tn are called subtrees of the

root.

The children of one parent node form a set of nodes called siblings. In Figure

3.1. P, 5, and <j> are siblings and Y, T, and A are siblings. The level of a child is equal to

the level of the parent plus one. The number of subtrees of a node is called the degree of

that node. A leaf node is one that has a degree of zero and a node that has a degree

greater than zero is called a branch node.

8

9

Figure 3.1
A tree with seven nodes

The above description is that of a general tree or an m -ary tree where m is the

maximum of the degrees of all the nodes. In the following section, we will present a

standard definition of the trie structure and then explain how we need to modify it for the

purposes of the character recognition algorithm.

3.1.2. The Trie Structure

A trie structure [Horowitz & Sahni 1983] is an m -ary tree in which each branch

node consists of m components (m > 2). Typically, these components correspond to

letters and digits. The trie structure is an index structure, often used in information

organization and retrieval, that is particularly useful when key values (the values to be

searched for) are strings of varying size. During a search in a trie, branching at each node

of level i depends on the ith character of a key.

A formal definition would describe a trie T as a 5-tuple (X,I,B,t,t), where

a) X is an alphabet 1, and IXI > 0,

b) I is a finite set of information nodes (nodes that do not have any children),

c) B is a finite set of branch nodes (nodes that have branch and/or information

nodes as their children), b i,...,bn,

d) If (B u I) * 0 , there exists a distinguished node r € (B u i) called the root of

T,

e) If r € B, T = { Ta : o e X } is a collection of tries whose node sets Ba , Ia

partition B-{r},I. Each TCT is called a subtrie of the root, and

f) If r e I, then B = 0 , x = 0 , and 111=1.

' From the above definition it can be inferred that a trie may be empty and that a

branch node is allowed to have no children. If a subtrie contains only a single string,

then it will be replaced by an information node.

Figure 3.2 illustrates a trie structure. As mentioned above, there are two types of

nodes in a trie: branch nodes which contain elements of X called link fields ; and

information nodes which are the leaf nodes of the trie. In Figure 3.2, B={a,J3,Y,S,G,M

and I={a,b,c,d,e,f,g,h,ij,k,l}. The root node r of the trie is a .

Each branch node consists of 27 link fields: 26 fields associated with the letters of

the English alphabet and one field designated for the **’ which is the terminating character

of a string (to be explained later). Thus the alphabet is X={ English alphabet} u {*}.

Each information node is or has a string. A string as usual, is a finite sequence of

elements of X, i.e. a member of X* (in standard notation).

At level i of the trie, strings are partitioned into 27 disjoint classes depending on

their i ^ character. Thus, at level i, the j ^ link of a branch node points to a subtrie

containing all the strings whose i ^ character is equal to the character represented by the

1 An alphabet is a finite set of symbols. In our case, the set of symbols is the set of allowable characters.

11

TRIE

ALLOCA’ RABBIT

• • •

GOODBEGIN BY GUL WILL WON

CALL CLOSE

CHECK Y CHOKE

Figure 3.2
A trie with four levels

j th link of that branch node. For instance, in Figure 3.2 the link representing the

character G in the root node points to the subtrie with root y that contains the two strings

GOOD and GULL. G is the first character of these two strings, thus they are placed in

the subtrie T q beneath the root node. The root node of Tq. namely y, has links to the

two subtries T q (information node labeled e) and T y (information node labeled f).

Furthermore, { : k e (X-{0,U)) } = 0 .

The terminating character **’ is necessary to resolve situations in which one string

ends on a character that was part of the common prefix with another string. To see this

more clearly, we present the example in Figure 3.3. The two strings “DO” and “DOES”

have the same first two characters and “DO” terminates on the second common character,

namely ‘O’.

D

LOSE

<T

E

DO DOES

Figure 3.3
A trie with a string that requires a terminating character

Normally, a trie is searched in the following way: a string to be searched for is

supplied (the keyword), the keyword is broken up into its constituent characters and the

search is performed following the branching patterns determined by these characters. The

important observation here is that the entire keyword is supplied before the search can

begin.

The trie structure that we have assumed in the character recognition algorithm is

different from the above definition in two ways. First, we allow branch nodes to vary in

size. That is, it is not required that every branch have a link field corresponding to every

possible (allowable) character. Instead, the node will have one link field associated with

each subtrie beneath it. This modification to the simple trie results in a more practical

implementation, given a limited amount of memory and a large number of strings to be

stored.

The second modification is that, in our version of the trie, a complete string is not

stored in the corresponding information node unless there is no other string that shares

prefix characters with it. This is possible considering that the letters in a string can be

collected along the path starting from the root of the trie, and the part that cannot be

collected will be stored in the final information node. Figure 3.4 shows the trie of Figure

3.2 with the two modifications that we have discussed.

14

TREE

•CATE ABBIT

ODLL LLOSEGIN

C K H K E

Figure 3.4
A modified trie with four levels

Of course, our modifications to the trie introduce more complications. However,

in the opinion of the researcher, the additional complexity is small enough to make the

storage conservation well worth the effort. This feature would be extremely helpful in a

situation where there are a large number of very long strings that have many characters in

common. The reason is that the final string in the information node to be matched is

much shorter than the entire string. Thus, the storage space needed for the remaining

characters and the time needed to check for a match are greatly reduced.

3.2. The General Algorithm

The main data structure for the character recognition algorithm was chosen to be

the trie structure. The primary reason behind this decision was the easy and natural

adaptability of the trie to the problem. If one were given a list of strings and asked to

perform character recognition by hand, with a keyword that would be supplied one

character at a time, one would probably proceed by applying the process of elimination.

Each time the / ^ character was supplied, the strings that did not match in their i ^

character to this new character would be crossed out from the list of possible strings.

The same process of elimination applies to the character recognition on a trie

structure. Each time the i ^ character in the keyword is read, a branch corresponding to

that character is followed down to the next subtrie and the other subtries at the previous

level are ignored. Therefore, it seems very natural to employ the trie structure to perform

character recognition.

It must be mentioned that the character recognition algorithm was developed based

on the assumption that modifications such as addition and deletion of strings to and from

the trie would be rare. Furthermore it is assumed that the main operations on the trie are

search and traversal of the trie. Based on this assumption, the emphasis was placed on

the efficiency of the more important operations, namely, the search and traversal of the

trie.

The algorithm can be viewed as a multi-operation algorithm. That is, a number of

recognition operations and update operations on the trie are possible (other operations

may be possible but are not represented by our algorithm). The recognition operations

usually requested by the user are processing of a recognition character or request,

processing of a rubout character, processing of a newline (end of keyword) character,

and processing of requests to list possible options (strings). These operations are

activated by detecting a special pre-determined character corresponding to each operation

request. If the character entered by the user is not one of the special ones, then the

character is taken as the next character of the keyword string being entered. The update

operations consist of adding a new string to the trie and deleting a string from the trie.

The latter operation will not be discussed in this paper.

3.2.1 The Recognition Algorithm

The character recognition algorithm differs from the general trie search (described

in section 3.1.2), mainly in that the general trie search requires the entire keyword to be

supplied before the search can begin, whereas in the recognition algorithm characters are

processed as they are entered interactively by the user. The following is a general

algorithm for character recognition on a trie.

1. - Position a search pointer to the root of the trie

2. - Repeat the following for every input character

17
2.1. - If the character is a recognition request then

2.1.1. - If there has been any mismatch so far, output a bell and go to step
2 .

2.1.2. - If the search pointer is pointing to a branch node with only one
subtrie, then output the characters in each node, each time moving
the search pointer down a node until one of the following has been
reached: an information node, a branch node with more than one
subtrie, or a branch node that contains a terminating character
C*’). Then go to step 2.

2.1.3. - If the search pointer points to an information node then output the
string in that node starting with the character after the last matched
character, then go to step 2.

2.1.4. - If the search pointer points to a branch node that contains a
terminating character, then go to step 2.

2.1.5. - If the search pointer points to a branch node that has more than
one child output a bell and go to step 2.

2.2. - If the character is a rubout then
2.2.1. - If there has been any mismatch so far, decrease the number of

mismatches by one and go to step 2.
2.2.2. - If the search pointer is pointing to a branch node, then move the

pointer up one level to the parent of the branch node and go to step
2.

2.2.3. - If the search pointer points to an information node then unmatch
one character from the string in that node and go to step 2.

2.2.1;.- If the search pointer points to an information node and none of the
characters of the string have been matched yet, move the pointer
up to the parent of that information node and go to step 2.

2.3. - If the character is a newline then
2.3.1. - If there has been any mismatch so far or if the string is not fully

matched with a string in the trie then a match was not possible —
flag error and exit

2.3.2. - If the keyword string matches completely with a string in the trie,
return the keyword string.

2.4. - If the character is a list-option (i.e., one that indicates the user wants a list
of strings available at some point in the trie) then

2.4.1. - If there has been any mismatch so far then flag error and exit
2.4.2. - If the search pointer points to a branch node, then traverse the trie

starting from the head node each time printing the strings found on
the way, and go to step 2 when done.

2.4.3. - If the search pointer points to an information node, output the
string in that node starting with the character after the last matched
character, then go to step 2.

18
2.5. - If the character is not special

2.5.1. - If there has been any mismatch so far then output bell, increase
the number of mismatches by one, then go to step 2.

2.5.2. - If the search pointer points to a branch node, then if there is a
subtrie corresponding to the input character, move the pointer
down to the next subtrie and go to step 2, otherwise output bell
and increase the number of mismatches by one and then go to step
2.

2.5.3. - If the search pointer points to an information node, match the next
unmatched character in the string with the incoming character and
go to step 2 - if no match is possible, output bell and increase the
number of mismatches by one, then go to step 2.

In this algorithm, a variable keeps track of the number of characters that the user

has entered but have not matched any character. This number is increased each time a

new mismatch is encountered and decreased each time a character is taken back by the

user using the rubout operation. The detailed algorithm to be presented in the next

chapter will clear up many of the ambiguities that may exist in this general form of the

algorithm.

3.2.2. The Insertion Algorithm

Basically, insertion into a trie is made by first perfoming a search on the keyword

to be added to the trie. If the string does not already exist in the trie, the search ends,

with the detection of a mismatch, either at a branch node or at an information node. In

either case appropriate steps need to be taken to insert the new string at this location.

The following is a general algorithm for insertion into the trie used for character

recognition:

1. - Position a search pointer to the root of the trie

2. - If the trie is empty, insert an information node and place the new string in it, and exit.

3. - Find the position of the new string in the trie by taking each character of the new
string and w alking down the trie while there is a match. This is continued until the
end of a branch (an information node) is reached, a mismatch has occurred, or no
more characters are left in the new string.

19
4. - If the end of a branch has been reached, then insert the new string at this point in the

trie by breaking it up into appropriate branch and information nodes and then exit.

5. - If the search pointer points to a branch node, then
5.1. - If the node has a terminating character then the string already exists - signal

an error and exit.
5.2. - If the node does not contain a terminating character, then make a branch

node with a terminating character and insert it at this point in the trie, and
then exit.

6. - If the search pointer points to an information node, then
6.1. - If the unmatched part of the new string is equal to the string in this node,

then the string already exists - signal an error and exit.
6.2. - Match the unmatched characters of the new string with the characters of the

string in the information node until the end of one or both of the strings is
reached or a mismatch occurs. Every time a match is seen, a new branch
node needs to be constructed to hold the character that was matched.

6.3. - If the end of the new string is reached first, then
6.3.1. - Construct two branch nodes and link them together as'siblings.
6.3.2. - Place the next character of the string in the information node into

the first branch node and a terminating character in the second one.
6.3.3. - If the end of the string in the information node has been reached,

then
6.3.3.1. - Make a branch node with a terminating character and

connect it to the first branch node above as its child, then
go to 6.3.5.

6.3.4. - Place the remaining part of the string in the information node back
into the information node and connect the information node to the
first branch node of 6.3.1.

6.3.5. - Connect the second branch node of 6.3.1 to the trie and exit.

6.4. - If the end of the string in the information node is reached first, then
6.4.1. - Construct two branch nodes and link them together as siblings.
6.4.2. - Place the next character of the new string into the first branch

node and a terminating character in the second one.
6.4.3. - If the end of the new string has been reached, then

6.4.3.1. - Make a .branch node with a terminating character and
connect it to the first branch node above as its child, then
go to 6.4.5.

6.4.4. - Place the remaining part of the new string into the information
node and connect the information node to the first branch node of
6.4.1.

6.4.5. - Connect the second branch node of 6.4.1 to the trie and exit.

6.5. - If the end of neither of the strings is reached, then
6.5.1. - Construct two branch nodes and link them together as siblings.
6.5.2. - Place the next character of the new string into the first branch

node and the next character of the string in the information node
into the second one.

2 0
6.5.3. - If the end of the new string is reached, then

6.5.3.1. - Make a new branch node with a terminating character
and connect it to the first branch node above, as its
child. Go to 6.5.4.

6.5.3.2. - Make an information node and place the remaining part
of the new string in it. Connect this node to the first
branch node of 6.5.1.

6.5.4. - If the end of the string in the information node is reached, then
6.5.4.1. - Make a new branch node with a terminating character

and connect it to the first branch node of 6.5.1, as its
child. Go to 6.5.5.

6.5.4.2. - Make an information node and place the remaining part
of the string in the original information node in it.
Connect this node to the second branch node of 6.5.1.

6.5.5. - Connect the two branch nodes of 6.5.1 to the trie in such a way
that the alphabetical ordering of the characters is preserved.

Chapter Four

The Algorithm in Detail

4.1. The Representation

In order to be able to describe an algorithm in detail, in a manner that is easy to

communicate to others, one should represent the main data structure assumed in terms of

an already known and simple data structure. In our case, the primary data structure is the

trie. We chose to use a binary tree [Baron & Shapiro 1980] representation of our trie.

The reason is the manipulation and implementation simplicity of the binary tree. A binary

tree is a tree in which each node has a degree of two. In other words, each node of a

binary tree has two subtrees, the left subtree and the right subtree.

The trick to the binary representation of the trie is that a trie branch node may

correspond to several binary tree nodes. Essentially, each trie branch node is represented

as a linked list of binary tree nodes. This allows us to explicitly represent only those

fields of the trie branch node that have nonempty children. Each binary tree branch node

has two link fields: the child field and the next-sib ling field. The child field of a branch

node points to its first (leftmost) child. The next-sibling field of a branch node points to

its next sibling node. Thus the next-sibling field of each of the children of one parent

points to the next child of the same parent, and the next-sibling field of the last child is

null. Figure 4.1 shows the trie of Figure 3.4 (excluding the subtries corresponding to the

letters ‘R’ and ‘W’) in binary tree representation.

As mentioned previously, there are two different types of nodes in the trie: branch

nodes and information nodes. Each branch node is represented, in the algorithm, by a

node with four fields: two link fields as described above, one field that determines the

type of the node (BRANCH or INFO), and one field that holds the character associated

21

TRIE

\
BRANCH

‘A ’
BRANCH

‘B’
BRANCH

INFO BRANCH ••

LLOCATE" •E’

1
INFO

“GIN"

•--► branch

-1X1 i
BRANCH

» * » /

BRANCH
■A'

INFO
“LL"

i

3RAK|pJ-l ✓

■G’

i

•BRANCH • BRANCH / 3RANCH
■H' • *L’ •O’

\

i t 4
INFO INFO

“O S E ” “OD"

BRANCH • --► BRANCH /
‘E ’ •O’

I
INFO INFO

“CK" “K E \ „ . _

3RANCH /
•U’

INFO

Figure 4.1

rv>
ro

with the subtrie beneath the branch node. The information nodes are represented by

nodes with two fields. The first field holds the type of the node (BRANCH or INFO)

and the second field holds the remaining characters of a string in the trie. A null link in a

branch node is represented by a line through the link field.

4.2. Notations, Symbols, and Conventions

The algorithm to be presented has a Pascal-like structure. Anyone familiar with

Pascal or most other Algol-like structured languages should be able to follow the line of

the algorithm easily. Comments are placed inside square brackets. Keywords are shown

in bold letters.

If a pointer p is pointing to a branch node, then pA.type accesses the type field of

that node (which would have a value of BRANCH), pA.child accesses the child pointer of

that node, pA.letter accesses the character that is represented by this node, and

pA.next-sibling accesses the next sibling of the first (leftmost) child. If p is pointing to

an information node, then pA.type accesses the type field of that node (which would have

the value of INFO) and pA. string accesses the field in which the string is stored. In either

case, pA refers to the node that p is pointing to.

An assignment operator is represented by an arrow (<—), as in X<— 5. The

concatenation of two strings is performed by the concat function. For example,

concat("abcd","efgh”) would give the result of "abcdefgh". In order to extract part of a

string, the substring function will be employed. Substring will take a string and an

index value (the first character of the string is assumed to be in position zero) as

arguments and will return the part of the string starting from the character at the position

indicated by the given index value to the end of the string. For instance,

substring("abcdefg",3) will give the resulting string "defg". Relational operators are

used as in most programming languages. However, for the sake of simplicity, an

24
important assumption has been made throughout the algorithm; namely that the boolean

operators and and or operate as their corresponding conditional boolean operators cand

and cor. The following example shows how the conditionals cand and cor work:

if e l cand e2 cand e3 then

si;

s2;

else if e4 cor eS then

s3;

else

s4;

endif;

In this example, the expressions e l, e2, and e3 are evaluated in order from left to right

unless one of them evaluates to false - as soon as en expression evaluates to false,

evaluation of the remaining expressions is suspended and statements s i and s2 will not be

executed. In the second conditional statement, e4 is evaluated first; if it results in a true

value, then e5 will not be evaluated and statement s3 will be executed.

The beauty of conditional boolean operators is that if the evaluation of an

expression depends on the truth or falsity of another expression, then nested if statements

do not have to be used. Instead, the two expressions may be checked in one conditional

statement by placing the dependent expression to the right of the other expression and an

operator in between them.

A number of symbols have been used in the algorithm to represent special

characters. These are:

BELL : a bell character,

/endstr/: a string termination character (**’),

/recog/: a recognition request character,

25
/rubout/ : a rubout request character,

/listop/ : a listing of options request character,

/newline/ : a newline (end of keyword) character, and

/quit/ : a termination request character.

4.3. Description of Variables

Even though the algorithm is broken up into separate modules, there are a number

of variables used in most modules that have the same type and meaning. Thus, it is

convenient to describe them only once. The following is a list of the variables with some

explanation for each:

• mismatch

This variable is an integer that keeps track of the number of mismatches

that have occurred between characters. The variable is incremented by one

every time a new mismatched character is encountered or when a character

is entered and the number of previous mismatches was not zero.

Mismatch is decremented by one (if it is not zero) every time a rubout

request is processed.

• search

This variable is used to walk down the trie. It acts as a pointer to the

nodes in the trie. In actuality, search is a record with two fieids; the first

is a link pointer field that points to the nodes of the trie (search.ptr), and

the second field is a counter used to keep track of the number of characters

in an information field that have been matched (search.index).

• p tr-stack & str-s tack

These are two stack abstract data structures. The operations

allowed on these structures are:

2 6
Clearstack (stack)

— clears the stack of any items,

Emptystack (stack)
— returns true if the stack is empty, and false otherwise

Push (stack, item(s))
' — pushes either a single item or, in the case the stack is a

str-stack, a number of items (characters) onto the stack,

Pop (stack, item)
-- pops a single item off of the stack and returns it in the

variable item

As our search pointer moves down the trie to a subtrie of a

branch node, the pointer to the parent branch node is pushed onto the

ptr-stack. This pointer can later be used for walking back up the trie.

The str-stack is used to collect individual characters either from

the input or by walking down the trie. The characters gathered in this

stack constitute the string that the user is entering.

4.4. The Algorithm

The algorithm has been developed in parts for the reason of clarity, readability,

and most importantly, for modularity. The modules communicate using parameters, as in

the Pascal programing language. In the next few sections, each module is presented with

a description and appropriate explanations.

4.4.1. The Recognition Algorithm

This module is the top level in the character recognition algorithm. It is basically

in charge of reading characters from the input stream and calling the appropriate modules

depending on what the characters are. It will terminate either by detecting a /quit/

character or after a Newline request has been completed.

2 7
For this algorithm to work, a trie containing the predetermined strings will have to

be built ahead of time. Then, the algorithm uses a pointer, pointed at the root of the trie,

to perform the recognition. The original pointer (at the root of the trie) is not modified;

instead a search.ptr (see section 4.3) is used to traverse the trie. This pointer is initially

pointed at the root of the trie.

Recognition Algorithm:
Inputs: trie [a pointer to the root of the trie]
Outputs: str-stack [the recognized string]

1. [Initialize variables]
done <— false [Local boolean loop variable]
mismatch «- 0
search.ptr <— trie
search.index <- 0
Clearstack (ptr-stack)
Clearstack (str-stack)

2. [Process every character as it is read in]
while not done do

read(cur-char)
case cur-char of

/recog/ : Process_Recog(mismatch, search, str-stack, ptr-stack)
/rubout/: Process_Rubout(mismatch, search, str-stack, ptr-stack)
/listop/ : Process_Listop(mismatch, search, str-stack)
/newline/ : done <— true

Process_Newline(mismatch, search, str-stack)
return(str-stack)

/quit/ : done <— true
others : Process_Other(mismatch, search, str-stack,

ptr-stack, cur-char)
end case

end while

End of Recognition Algorithm.

4.4.1.1. The Process_Recog Algorithm

The following algorithm is the procedure called upon when the recognition

algorithm deteas a recognition request character in the input stream.

2 8

Algorithm for Process_Recog:
Inputs: mismatch, search, str-stack, ptr-stack
Outputs: search, str-stack, ptr-stack

1. [Check for mismatch]
if mismatch > 0 then

output(BELL)
return

end if

2. [Output the unique part of the string]
while (search.ptT.type = BRANCH) and

(search.ptT.next-sibling = nil) and
(search.ptr\letter <> /endstr/) do
output(search.ptrA.letter)
Push(str-stack, search.ptrA.letter)
Push(ptr-stack, search.ptr)
search.ptr <— search.ptrA.child

end while

3. [Search pointer is pointing to a INFO node — output that string]
if (search.ptrA.type = INFO) then

output(Substring(search.ptrA.str, search.index+1))
Push(str-stack, Substring(search.ptrA.str, search.index+1))
search.index <— Length(Substring(search.ptrA.str, search.index+1))

4. [Search pointer is at the end of a string that ends at /endstr/]
else if (search.ptr.type = BRANCH) and

(search.ptrA.letter = /endstr/) then
[do nothing]

5. [No part of the string is unique]
else

output(BELL)
end if

End of Process_Recog Algorithm.

In step 1, the procedure checks to see if there have been any mismatches so far; if

so, then it outputs a bell and returns. Step 2 determines if the search pointer is pointing to

a BRANCH node that does not have any siblings. If true, it repeatedly outputs the

characters found in each BRANCH node, saves the character on the str-stack, saves the

pointer to the BRANCH node on the ptr-stack, and moves the pointer down to the next

subtrie. This process continues until an INFO node is reached, or a BRANCH node is

29

reached that has a next-sibling or it has a string termination character in its string field.

Step 3 determines if the search pointer is pointing to an INFO node, if so, the procedure

outputs the string in that node, saves the string on the str-stack , and increments the

index field of the search variable by the length of the string that was output. If the

search pointer points to a BRANCH node that has a terminating character, then the

condition of step 4 holds true and thus no operations are needed. If none of the

conditions of steps 1, 2, 3, and 4 hold true, then the pointer must be pointing to a

BRANCH node that has next siblings and therefore no part of the string is unique in the

trie. In this case the procedure outputs a bell and returns (step 5).

4.4.1.2. The Process_Other Algorithm

The following algorithm processes characters that are not among the special

request characters. These characters are assumed to be a part of the keyword that the user

is entering.

Algorithm for Process-O ther:
Inputs: mismatch, search, str-stack, ptr-stack, cur-char
Outputs: mismatch, search, str-stack, ptr-stack

1. [Echo the entered character on the user's monitor]
output(cur-char)

2. [Check for mismatch]
if mismatch > 0 then

output(BELL)
mismatch <— mismatch + 1
return

end if

30
3. [Check to see if we have a list of BRANCH nodes to choose from]

if (search.ptrA.type = BRANCH) then
prev *- search.ptr
Get-Next-Node(search.ptr, parent, cur-char)
if search.ptr <> nil then

Push(str-stack, cur-char)
Push(ptr-stack, prev)

else
output(BELL)
mismatch «— mismatch + 1
search.ptr <— prev

end if

4. [Search pointer is pointing to a INFO node — walk down that string]
else if (search.index < length(search.ptrA.str)) and

(cur-char = Getchar(search.ptrA.str, search.index + 1)) then
search.index <— search.index + 1
Push (str-stack, cur-char)

5. [Character does not match anything]
else

output(BELL)
mismatch <— mismatch + 1

end if

End of Process_Other Algorithm.

Here is how the Process_Other algorithm works: First the entered character is

echoed to the user's monitor, then a check is made in step 2 to see if there have been any

mismatches so far, if so, a bell is outputted and the number of mismatches is incremented

by one. The procedure is then exited. Step 3 determines if the search pointer is at a

BRANCH node. If this is true, then a search is performed to find a node that contains the

character just read in, among the siblings of this BRANCH node. This search is

performed by a module called Get-Next-Node. An algorithm of this module will follow

shortly. If a node is located, then the current character is saved on the str-stack, the

pointer to the original BRANCH node is saved on the ptr-stack, and the search pointer

is advanced to the child of the newly found BRANCH node. If a node was not found,

then a mismatch has occurred -- ouput a bell and increase the number of mismatched

31
characters by one. At step 4 it is certain that the search pointer points to an INFO node.

If the length of the string stored in the INFO node is greater than the value of the index

field of the search variable, and the next character in the INFO node is the same as the

current character, then a match is possible - the index field of the search variable is

incremented by one and the current character is saved on the str-stack. Otherwise, a

mismatch occurs - output a bell and increment the number of mismatches by one.

The following is the algorithm for the Get-Next-Node process. The algorithm

basically searches the linked list of next-siblings starting from the BRANCH node that ptr

points to. If it finds a node that has a character equal to ch , then it returns a pointer to

this node and a pointer to the child of this node, otherwise it returns a nil pointer.

Algorithm for Get-Next-Node:
Inputs: ptr [Pointer to the first BRANCH node],

ch [The character to be searched for in the siblings of the first
BRANCH node]

Outputs: ptr [Pointer to the child of the BRANCH node located]
parent [Pointer to the parent of node pointed to by ptr]

1. [Search the next-siblings for a node that contains ch]
while (ptr <> nil) and (ptrA.letter < ch) do

ptr i - ptr\next-sibling
end while

2. [Nothing found, return nil in ptr - value of parent is not significant]
if (ptr = nil) or (ptr*.letter > ch) then

ptr nil
return

end if

3. [A node was found, return a pointer to it and a pointer to its parent]
parent«— ptr
ptr <— ptrA.child

End of Get-N ext-Node Algorithm.

32
4.4.1.3. The Process JRubout Algorithm

The processing of a rubout request is performed by the following algorithm. The

last character that was entered by the user is erased from the input device.

Algorithm for Process-Rubout:
Inputs: mismatch, search, str-stack, ptr-stack
Outputs: mismatch, search, str-stack, ptr-stack

1. [Remove the last character entered from the user's monitor]
delchar;

2. [Check for mismatch]
if mismatch > 0 then

mismatch <- mismatch - 1
return

end if

3. [Remove the last character from str-stack]
if Emptystack(str-stack) then

return
else

Pop (str-stack)
end if

4. [Search pointer is pointing to a BRANCH node — move the search pointer up to the
parent of that node]

if (search.ptrA.type = BRANCH) and (not Emptystack(ptr-stack)) then
search.ptr «— Pop(ptr-stack)
search.index «— 0
return

5. [Search pointer is pointing to a INFO node and some of the characters of the string in
that node have already been matched — unmatch one character]

else if search.index > 0 then
search.index «- search.index - 1
return

6. [Search pointer is pointing to a INFO node and none of the characters of he string in
that node have been matched yet — move the search pointer up to the parent of that
node]

search.ptr Pop(ptr-stack)
search.index «- 0

End of Process_Rubout Algorithm.

The first operation in this module is to erase the last character entered from the

user's monitor. Again, as in the other modules, a check is performed for previous

mismatches. In this case however, if there have been any mismatches, the number is

decreased by one since the user has decided to take back the last character that was

entered. After that, no further processing is needed since mismatched characters are not

saved on the stack. Step 3 pops one character from the str-stack. The search pointer is

then adjusted accordingly. Step 4 moves the search pointer up to the parent of the node it

is pointing to, if this node is a BRANCH node. If the node is an INFO node and at least

one of the characters in that node have been matched, then step 5 simply decrements the

index field of the search variable by one. Otherwise, step 6 just moves the search pointer

up to the parent node.

4.4.1.4. The Process_Newline Algorithm

In case a newline character is detected by the recognition process, the following

procedure is activated. A newline character actually means that the user has completed

entering the keyword. The algorithm should check to make sure that the completed

keyword is one that exists in the trie.

Algorithm for Process-Newline:
Inputs: mismatch, search, str-stack
Outputs: str-stack

1. [If the string in str-stack does not match a string in the trie, output error message]
if (mismatch > 0) or

((search.ptr. type = BRANCH) and
(search.ptT.letter <> /endstr/)) or
((search .ptrA. type = INFO) and
(length(search.ptrA.str) <> search.index)) then

Recog-Error

3 4
2. [Return the matched string]

else
retum(str-stack)

end if

End of Process_Newline Algorithm.

If there have been any mismatches at all, then the keyword is not valid, thus step

1 makes a call to some error routine. Step 1 further checks to see if the search pointer

points to a BRANCH node that does not have a terminating character in it or it points to

an INFO node that has not matched all of the characters in its string field. If either of the

two conditions is true, then the keyword is not found in the trie — the error routine needs

to be called. Otherwise, the keyword does exist in the trie. Thus, in step 2 the string

accumulated in the str-stack is returned.

4.4.1.5. The ProcessJListop Algorithm

This procedure displays the strings found in the subtrie pointed to by the search

pointer. It makes use of the Traverse-Trie algorithm to be presented in the next section.

A local variable, prefix-str-stack, is used to collect characters from the nodes, as the trie

is traversed. This variable is of the same type as str-stack discussed in section 4.3.

Algorithm for Process-Listop:
Inputs: mismatch, search, str-stack
Outputs: none

1. [Place the input string into the prefix stack]
prefix-str-stack <— str-stack

2. [Check for mismatch]
if mismatch > 0 then

Recog-Error

3. [traverse the subtrie starting from a BRANCH node]
else if search.ptrA.type = BRANCH then

Traverse-Trie (search.ptr, prefix-str-stack)
output(str-stack)

35
4. [search pointer is pointing to an INFO node — output that string]

else
output(concat(str-stack, search.ptrA.str))

end if

End of ProcessJListop Algorithm.

If there have been any mismatches thus far, it is not possible to list any options.

In this case an error routine is called at step 2. Step 3 determines if the search pointer is

pointing to a BRANCH node, if so, the subtrie beneath this node is traversed and the

strings displayed. The traversal is performed by the Traverse-Trie module which will be

presented in the next section. If the search pointer is pointing to an INFO node, then all

that needs to be done is to output the string in that node.

4.4.1.6. The Traverse_Trie Algorithm

Traverse-Trie is presented in a recursive fashion in order to simplify the

algorithm. A depth first traversal approach is followed so that the strings are displayed in

alphabetical order.

Algorithm for Traverse-Trie (p, prefix-str-stack):
Inputs: p [Pointer used to move through the trie],

prefix-str-stack
Outputs:

1. [Return if at the end of a branch]
if p = nil then

return
end if

2. [Search pointer is pointing to a INFO node — output that string]
else if pA.type = INFO then

output(concat(prefix-str-stack, pA.str))
return

3. [String terminates with a /endstr/ marker — output that string]
else if pA.letter = /endstr/ then

output(prefix-str-stack)

36
4. [String does not terminate — traverse the child of the current node]

else
Push (prefix-str-stack, pMetter)
Traverse-Trie (pA.child, prefix-str-stack)
Pop (prefix-str-stack)

end if

5. [Traverse the next-sibling of the current node]
Traverse-Trie (pA .next-sibling, prefix-str-stack)

End of Traverse-Trie Algorithm.

The algorithm works in the following general way: Characters of the BRANCH

nodes are pushed onto the prefix-str-stack and the children of the BRANCH nodes are

followed recursively down the trie (step 4) until either an INFO node or a BRANCH

node with a terminating character is reached. At this point (step 2 or 3), the contents of

the prefix-str-stack are output. In case the terminating node were an INFO node, the

string of the INFO node would be concatenated to the contents of the prefix-str-stack

before it is output (step 2). Once the end of one branch has been reached, the

next-siblings of the branch nodes are processed recursively (step 5).

4.4.2. The Insertion Algorithm

As with the character recognition algorithm, the insertion algorithm is broken up

into modules. The next section presents the top level or the main driver module for the

insertion algorithm and the other sections following the next one describe the lower level

modules of the algorithm. In the algorithms, two operations are used in order to create

new nodes. Make-Branch-Node creates a branch node and Make-Info-Node creates a

branch node. Both of these operations return a pointer to the node that they create.

4.4.2.1. The Add-To-Trie Algorithm

The main driver for the insertion of a new string into a trie requires that two

parameters be passed to it. The first is a pointer trie , to the root of the trie structure and

3 7
the second is the new string str , to be inserted into the trie. The modified trie is then

returned.

The algorithm uses an index variable to keep track of which character of the new

string is currently being processed. As in the recognition algorithm, a search (see

section 4.3) variable is used to move through the trie. The pointer field of this variable,

search.ptr is initially set to the root of the trie. Two pointers are employed to make the

actual insertions of new nodes into the trie. These are prev and parent. Parent is set by

the Get-Next-Node (see section 4.4.1.2) module used in this algorithm. Prev is used to

keep track of the previous position of the search pointer after it has been moved.

Algorithm for Add-To-Trie:
Inputs: tr ie , str
Outputs: trie

1. [Initialize variables]
in d e x <— 1

search .p tr <— trie

se a r c h .in d e x 4 - 0

p rev 4 - trie

p aren t 4 - nil

2. [If the trie is empty then insert an information node]
if trie = nil then

trie = Make-Info-Node
trieA.str 4 - str
return

end if

3. [Locate the insertion point in the trie]
while search.ptr <> nil and

search.ptrA.type = BRANCH and
index <=: Length(str) do
prev <— search.ptr
Get-Next-Node(search.ptr,parent,Getchar(str, index))
index 4 - index + 1

end while

3 8
4. [End of a branch has been reached]

if search.ptr = nil then
Insert-To-Sibling-List(trie, prev, parent, Substring(str,index-1))

5. [The new string ended at a branch node - insert a termin-ating node]
else if search.ptrA,type = BRANCH then

if search.ptrA.letter <> /endstr/ then
new-node <— Make-Branch-Node
new-nodeA. letter <— /endstr/
new-nodeA.next-sibling «- search.ptr
new-nodeA.child <— nil
prevA.child <— new-node

else
output("string already exists")
exit

end if

6. [Search pointer points to an information node - break up the information node and
insert the new string]

else if search.ptrA.str = Substring(str,index) then
output("string already exists")
exit

else
Process-Info-Node(trie,str,index,search,parent)

end if

End of Add-To-Trie Algorithm.

If the trie is initially empty, the algorithm simply builds a new information node

and places str in it. It then sets the trie to point to this new node and exists (step 1). If

the trie already has some nodes in it, then in step 2 a search is performed on the characters

of str until either the search pointer becomes nil, the search pointer reaches an

information node, or index becomes bigger than the length of s tr . Step 4 determines if

the search pointer is nil (i.e., it has reached the end of a branch), if so then the Insert-To-

Sibling-List module is activated (see section 4.4.2.3). If the search pointer points to a

branch node, then step 5 determines if str already exists in the trie or not. If it exists, a

message is displayed and the module is exited. Otherwise, a new branch node is

constructed with a terminating character in it. This branch node is then inserted at the

location where search pointer is. Step 6 determines if the search pointer points to an

39
information node. It further checks to see if the string in this information node matches

the unmatched part of s tr . If so, then the string already exists - display a message and

exit. Othewise, the Process-Info-Node routine is activated to handle the breaking up of

this information node and inserting of the new string (see next section).

4.4.2.2. The Process-Info-Node Algorithm

Algorithm for Process-Info-Node:
Inputs: trie,str,index,search,parent
Outputs: trie

1. [Match the characters of the string in the information node with the unmatched
characters of str]
while Substring(str,index) <> "empty string" and

Substring(search.ptrA.str,search.index+1) <> "empty string" and
Getchar(str,index) = Getchar(search.ptr\str, search.index+1) do
nodel <— Make-Branch-Node
nodelA.next-sibling +- nil
nodelA.letter 4- Getchar(str,index)
if parent = nil then

trie <— nodel
else

p arentA.c h ild <— n o d e l
end if
p aren t 4 - n o d e l

index 4- index + 1
search.index 4- search.index + 1

end while

2. [Either end of str or end of the string in the information node has been reached]
if Substring(str,index) = "empty string" or

SubstringCsearch.ptr^.str,search.index + 1) = "empty string" then
Insert-Short-Strings(trie,str,index,search,parent)

3. [Neither end of str or end of the string in the information node has been reached]
else

Insert-Long-Strings(trie,str,index,search,parent)
end if

End of Process-Info-Node Algorithm.

Step 1 of the algorithm builds a branch node for each character matched between

str and the string in the information node. This process is continued until the end of one

or both of the strings is reached or a mismatched character is detected. Step 2 determines

if the end of either of the two strings has been reached. If so, it activates the Insert-Short-

Strings routine. If not, it activates the Insert-Long-Strings process.

4.4.23. The Insert-To-Sibling-List Algorithm

Algorithm for Insert*To>Sibling-List:
Inputs: trie, ptr, parent, str
Outputs: trie

prev <— ptr

1. [Locate the insertion position in the siblings]
while (ptr <> nil) and (ptrA.letter < Getchar(str,l)) do

p rev 4 - ptr

ptr 4- ptr^.next-sibling
end while

2. [Create a branch node with the first character of str]
nodel 4— Make-Branch-Node
nodelA.letter 4— Getchar(str,l)
nodelA.next-sibling 4- ptr

3. [Insert the new node as the first node in list of siblings]
if ptr = prev then

if parent = nil then
trie 4- nodel

else
p arentA.c h ild 4 - n o d e l

end if

4. [Insert the new node in the middle of list of siblings]
else

p rev A.n e x t - s ib lin g 4 - n o d e l
end if

41
5. [The end of str has been reached]

if Substring(str,2) = "empty string" then
node2 4- Make-Branch-Node
node2A .letter 4- /endstr/
node2A.chiId 4- nil
node2A.next-sibling 4- nil

6. [The end of str has not been reached]
else

node2 4- Make-Info-Node
node2A.str 4- Substring(str,2)

end if

7. [Connect the node with remaining part of str to the node inserted in step 3 or 4]
nodelA.child 4 - node2

End of Insert*To-Sibling-List Algorithm.

This module first locates the insertion position of the new string among the

siblings of the node pointed to by ptr. Prev is kept at the node before the node pointed to

by p tr . Step 2 creates a new branch node and places the first character of str in i t Then

it connects the next-sibling link of this node to the node pointed to by ptr . Step 3

determines if the node found in step 1 is the first node in the list of siblings, if so, and if

the node is the root node, then the pointer to the root needs to be moved to point to this

new node. If ptr was not pointing to the root node, then the parent of the node pointed

to by ptr is connected to this new node as its child. In step 4, the new node is inserted in

the middle of a list of siblings. Now we need to store the remaining part of str . Step 5

determines if there is only one character left in s tr . If so, then that character is placed

inside a new branch node and, in step 7, the branch node is made the child of the node

created in step 1. If more than one character is left in s tr , then the remaining part of the

string is placed in an information node and then, in step 7, it is made the child of the node

created in step 1.

4 2
4.4.2.4. The Insert-Short-Strings Algorithm

Algorithm for Insert-Short-Strings:
Inputs: trie,str,index,search,parent
Outputs: trie

1. [The end of str has been reached]
i f Substring(str,index) = "empty string" th e n

lo n g _ s tr 4 - search .p trA.str

lo n g _ in d e x <— sea rch .in d ex + 1

2. [The end of the string in the information node pointed to by the search pointer has
been reached]
else

long_str <— str
long_index 4— index

end if

3. [Make two branch nodes, one for the next unmmatched character of long str and one
for the terminating character]

nodel 4— Make-Branch-Node
node2 4— Make-Branch-Node
node2A.next-sibling 4- nodel
nodelA.letter 4— Getchar(long_str,long_index)
node2A.letter 4- /endstr/
nodelA.next-sibling 4 - n il

4. [Only one character left in the string, place it in a branch node]
i f Substring(long_str,long_index+1) = "empty string" th e n

node3 4- Make-Branch-Node
node3A .letter 4— /endstr/
node3A.child 4 - n il

node3A.next-sibling 4 - n i l

nodelA.child 4- node3

5. [More than one character is left in the string, place the remaining characters back into
the information node]

else
search.ptrA.str 4- Substring(long_str, long_index+l)
nodelA.child 4 - search.ptr

end if

6. [Connect the new nodes to the trie via the parent of the information node]
parentA.child <— node2

End of Insert-Short-Strings Algorithm.

Step 1 of this algorithm determines if the end of str has been reached. If so, the

string in the information node is assigned to a temporary variable called long str and the

value of the index field of the search variable is assigned to the variable long index . If

the end of str has not been reached, then the end of the string in the information node

must have been reached. In this case, in step 2, the value of str and index are assigned

to lo n g s tr and long index respectively. In step 3, two branch nodes, no del and

node2 are created. The next unmatched character of long str is placed in nodel and a

terminating character is placed in node2 . Node2 is then connected to nodel via its

next-sibling link and the next-sibling link of nodel is set to nil. This assures that the

node with the terminating character is always the first node in a list of siblings. At this

point a check is made in step 4 to see if the end of long str has been reached. If it has

not, then the string in the information node is replaced with the remaining part of long str

and the node is connected to nodel as its child, otherwise, a branch node is created with

a terminating character and is connected to nodel as its child. At the end, in step 6, the

new nodes are connected to trie by linking the node pointed to by the parent of the

original information node to node2 .

4.4.2.5. The Insert-Long-Strings Algorithm

Algorithm for Insert-Long-Strings:
Inputs: trie,str,index,search,parent
Outputs: trie

4 4
1. [Make two branch nodes, one for the next unmatched character of str and one for the

next unmatched character of the string in the information node pointed to by the
search pointer]

nodel 4— Make-Branch-Node
node2 4— Make-Branch-Node
nodelA.letter 4— Getchar(str,index)
node2A.letter 4— Getchar(search.ptrA str, search.index+1)
index 4— index + 1
search.index 4— search.index + 1

2. [The end of str has been reached]
i f Substring(str,index) = "empty string" t h e n

node3 4- Make-Branch-Node
node3A.letter<— /endstr/
node3A next-sibling 4- n il

iiode3A.ehild 4— n il

nodelA.child 4— node3

3. [The end of str has not been reached]
e l s e

node3 4- Make-Info-Node
node3A.str 4- Substring(str,index)
nodelA.child 4- node3

e n d i f

4. [The end of the string in the information node pointed to by the search pointer is
reached]

i f Substring(search.ptrA.str,search.index+1) = "empty string" th e n

node3 4- Make-Branch-Node
node3A.letter 4- /endstr/
node3A next-sibling 4- n il

node3A.child 4- n il

node2A. child 4- node3

5. [The end of the string in the information node pointed to by the search pointer has not
been reached]

e l s e

node3 4— Make-Info-Node
node3A.str 4 - Substring(search.ptrA.str, search.index + 1)
node2A.child 4- node3

end if

4 5
6. [Arrange the two branch nodes so that the alphabetical ordering of their characters is

preserved]
if nodelA.letter > node2A.letter then

node2A.next-sibling <— nodel
nodelA.next-sibling <— nil
connect 4 - node2

else
nodelA.next-sibling <— node2
node2A next-sibling 4- nil
connect 4- nodel

end if

7. [trie points to an information node - connect trie to the new nodes]
if (parent = nil) or (parentA.type = nil) then

trie <— connect

8. [Connect the new nodes to the node pointed to by the parent of the original
information node]
else

parentA. child 4- connect
end if

End of Insert-Long-Strings Algorithm.

In step 1 two branch nodes are created. Nodel holds the next unmatched

character of str and node2 holds the next unmatched character of the string in the

information node pointed to by the search pointer. If the end of str has been reached,

step 2 makes a branch node with a terminating string and makes it the child of nodel,

otherwise, in step 3, an information node is built and the remaining part of str is placed in

it. This node is then made the child of nodel. Step 4 determines if the end of the string

in the information node has been reached. If true, a branch node with a terminating

character is constructed and is connected to node2 as its child, otherwise, an information

node is built and the remaining part of the string is placed in it. This node is then linked

to node2 as its child. Nodes nodel and node2 are connected as siblings in such a way

as to maintain the alphabetical ordering of the characters (step 6). If the trie has only an

information node in it, then the pointer to the trie needs to be connected to the new nodes

4 6
(step 7), otherwise, the new nodes are linked to the node pointed to by the parent of the

original information node via its child link.

Chapter Five

Analysis of the Algorithm

5.1. General Discussion

The purpose of analysing the character recognition algorithm is to predict how

much time or space is required by a computer to execute an implementation of the

algorithm. Our analysis will be broken up into two types of efficiency considerations;

that of time, and that of space (storage). The discussion on time efficiency will be

broken up into separate analyses of the algorithms presented in chapter 4.

5.2. Time Efficiency of the Algorithm

The running time of a program is usually a function of the input or the length of

the input, the time complexity of the algorithm underlying the program, the quality of

code generated by the compiler, and the nature and speed of machine instructions. We

can express an approximation of the relationship between the length of the input and the

running time of an algorithm using a mathematical notation called order o f magnitude or

Big-0 notation [Aho & Others 1983]. We say the run time complexity of some

algorithm is 0(f(n)) = g(n). This means, if the actual ran time of an algorithm is g(n)

where n is a measure of the size of the input, we say the run time complexity is 0(f(n)) if

there exist positive constants c and np, such that

g(n) < c f(n), n > np.

For instance, if

g(n) = 2n^ + 6n + 19,

then for c = 3 and np = 25, g(n) < c n^, n > np holds. Thus, f(n) = n^ (or in Big-0

notation, 0 (n2)). In other words, for large values of n, the term 2n^, or more
47

specifically n^, will dominate the function g(n). Since this notation ignores constant

factors in the run time, it is independent of such things as the speed of the hardware and

the quality of the compiler.

A constant or bounded running time or complexity is referred to as 0(1). This is

the best complexity that an algorithm can have. A complexity of 0(log2N) is slightly

worse than 0(1). A running time of 0(log2N) is better than 0(N) (linear time), which in

turn is better than 0 (N logN). A complexity of 0 (N logN) is better than O(N^)

(quadratic time). O(N^) (cubic time) is worse than O(N^), and 0 (2 ^) (exponential) is

worse than 0(N m) for every positive m (actually unacceptable for most applications).

In the following subsections we shall discuss the complexities of the recognition

and the trie insertion algorithms using the B ig-0 notation described above.

5.2.1. Analysis of the Recognition Algorithm

In our recognition algorithm there are actually two types of input. The first is the

trie containing the predetermined strings, and the second is the keyword that will be

received, from the user, one character at a time. Thus, one would presume that the

efficiency of the character recognition algorithm depends on these two types of input.

The complexity of our algorithm is not that of a search through a trie.* The major

difference is that in the case of a search through a trie, a keyword to be searched for is

supplied and then the trie is searched for that keyword. In our case, however, the search

is broken up into small pieces corresponding to the individual characters of the keyword.

The character recognition search pointer moves through the trie each time a new character

is entered or each time an old character is erased (taken back) by the user. Therefore, the

efficiency that we need to concern ourselves with is that of processing individual

fin [Horowitz & Sahni 1983], complexity of the search algorithm for tries is given as 0(k), where k is
the number of levels in the trie.

characters instead of an entire keyword. However, the overall time complexity of the

algorithm is actually the sum of the time complexities associated with processing each

character of a keyword.

The modules, P ro cess_ R u b o u t (section 4.4.4) and P rocess_N ew line

(section 4.4.5) are of constant complexity. These modules have a linear structure and

contain no loops.

The most important part of the algorithm is Process_Recog (section 4.4.2).

The major complexity or processing in this module is hidden in the while loop. This loop

is executed in the case that the search pointer points to a BRANCH node that has no

siblings and has a subtrie with one or more BRANCH nodes with no siblings. The loop

is executed once for each of these BRANCH nodes in the subtrie. Figure 5.1 shows

such a situation. In this trie the two words ALLOCATES and ALLOCATED are

represented. The first eight characters of these two are equivalent and thus if our search

pointer is initially pointing to the root of the trie and we signal a recognition request, the

first eight characters, ALLOCATE, have to be displayed. This requires that the loop be

executed eight times. The worst case complexity of this module is therefore proportional

to the number of levels in the trie minus one, or 0(k), where k is the number of levels in

the trie. Of course, k is bounded by the length of the longest string stored in the trie.

The complexity of the Process_Other (section 4.4.3) module is really in the

sub-module that it activates, namely G et-N ex t-N ode (section 4.4.3). This

sub—module searches the siblings of a given BRANCH node for a node containing a

specific character. Therefore, the time complexity is proportional to the number of

siblings that a BRANCH node could have. In other words, Get-Next-Node is of

0 (1 1 1) complexity, where I L I is the magnitude or cardinality of the alphabet (see

section 3.1.2). Since we consider I to be fixed, this algorithm is of constant complexity.

50

search TRIE

Figure 5.1
A nine level trie with ALLOCATED & ALLOCATES

T r a v e r s e - T r i e (section 4.4.7) is the recursive module activated by

ProcessJListop (section 4.4.6) and is the main contributor to the overall complexity of

these two modules. Basically, Traverse-Trie visits every node contained in the subtrie

beneath the BRANCH node that search pointer is pointing to. In the worst case, the

search pointer is initially pointing to the root of the trie. The complexity of the algorithm

is therefore O(m), where m is bounded by the number of nodes in the trie to be traversed

(see section 5.3).

The overall complexity of the character recognition algorithm can be 0(n m) if

during an interactive session the user chooses to perform Process JListop after entering

each character, where n is the total number of characters entered by the user. In the case

that the user performs recognition on each character the overall complexity would be

0 (n k), and if the user simply types in all the characters without choosing any other

operations, the overall complexity is O(n).

5.2.2. Analysis of the Insertion Algorithm

Since the insertion of a new string into the trie structure is a single operation, it is

possible to calculate a running time or complexity for the entire algorithm. There are

basically three areas where a significant complexity may reside. These three areas of

complexity are characterized by three types of loops in the insertion algorithm. The first

type of loop (step 3 of Add-To-Trie) searches down the trie in order to locate the insertion

position for the new string. The complexity of this loop is on the order of the number of

levels in the trie, or O(k), because in the worst case, the trie needs to be followed from

the root down to the lowest leaf node. As before, k is the number of levels in the trie and

is bounded by the length of the logest string stored in the trie.

The second type of loop in the insertion algorithm is one that searches a list of

sibling nodes for a given branch node. These loops appear in Get-Next-Node, that is

called from Add-To-Trie and in step 1 of Insert-To-Sibling-List. As discussed earlier in

section 5.2.1, this part of the algorithm is of constant complexity since it does not depend

on the size of the input

The third type of loop, namely the loop in step 1 of Process-Info-Node, is

responsible for breaking up a string in an information node and constructing a branch

node corresponding to each character in the new string that matches a character in the

string in the information node. The maximum number of branch nodes constructed by

this loop is of course equivalent to the maximum allowable size of a string in the trie

52
(more specifically in an information node). Therefore, the worst case complexity of this

type of loop is O(s), where sis bounded by the maximum size of the string to be

inserted.

The overall worst case complexity of the insertion algorithm can be described as

the Max(O(s), 0 (k)). In either case, the complexity is linear.

5.3. Space Efficiency of the Algorithm

The representation of the data structure for our character recognition algorithm is

the binary form of a trie. The trie (section 3.1.2) supports variable size nodes and

requires the linking of two different types of nodes; branch nodes and information nodes.

It would be extremely difficult to figure out an exact upper bound for the amount

of storage space needed for a trie. In this paper, however, an attempt is made to find a

very rough estimate of the number of binary tree nodes needed for a trie.

Let S = { Sj: Si is a string in the trie },

That means a trie would contain at most one branch node for every character in each

string and at most one information node corresponding to each string stored in the trie.

The total number of nodes N in a trie is therefore

B = { b j : bi is a binary tree branch node }, and

I = { i j : ij is a binary tree information node }

for 0 < j < I S I, then from a simplistic point of view, in the worst case,

(5.1)
1 <j< I S I

and

III < I SI. (5.2)

53

N = 111 + IB I £ IS 1 + (5.3)
1 <j< I S I

We then notice that a branch node exists only when there are at least two strings

that share the character in that branch node. We can further realize that an information

node exists only if a string does not terminate at a branch node. Considering these two

facts, it can be seen that the actual number of nodes contained within a trie is usually

much less than the number we arrived at from the simplistic point of view (equation 5.3),

or

In our representation of the trie a branch node is composed of four fields; one for

the type of the node, two for child and next-sibling pointers, and one for the character

that the branch node represents. If an implementation language is capable of

distinguishing nodes of different types then we might not have any need for the type field

of the branch node. The amount of storage needed by the individual fields of a branch

node depends on the implementation environment.

As with a branch node, the amount of storage needed by an information node

greatly depends on the implementation environment of the trie structure. If the

implementation language allocates storage space for strings dynamically, then there is no

waste of space. If a language does not have this feature, then storage space has to be

allocated ahead of time to accommodate the largest possible string. This usually leads to

great amounts of waste. Of course, in many programming languages, one is able to

simulate dynamically allocated string storage space by constructing a string space that

IB I < 1/2 2 2 1 Sj
l <j< IS I

(5.4)

and

III < I SI. (5.5)

would hold all the strings in one linear structure. This technique does solve the storage

problem to some extent, but it does so at the cost of a much more complex program.

The other data structures that are worth analyzing are the three stacks used in the

character recognition algorithm (see section 4.3). These are the str-stack (see section

4.3) and the prefix-str-stack (see section 4.4.1.5) which are used to collect individual

characters of a string, and the p tr-stack (see section 4.3) which is used to stack the

pointers that are used to walk back through the trie. The sizes of s tr -s ta c k and

prefix-str-stack are directly proportional to the size of the input string. Thus their

maximum size is the maximum allowable size of a string in the trie. The p tr-stack

collects pointers to the nodes previously pointed to by the search pointer as the search

pointer moves down a branch of the trie. The farthest that the search pointer could go is

to the end of the longest branch in the trie. Therefore, the maximum size of p tr-stack is

equivalent to the number of levels of the trie.

5.4, Extensions to the Trie Structure

The trie structure that we have discussed thus far is capable of storing strings of

characters in an efficient manner. Most often however, a string of characters is not the

only information one is after. Strings in a computer system usually have associated with

them a command, a value, or an index of some sort to some memory or disk location.

Ideally, one would like to be able to access such information using the algorithm of this

paper.

In order to accomodate this capability, we can suggest at least two possible

extensions to the trie structure. The first is to allow more than one field in an information

node. The extra fields would serve as a holding place for the needed additional

information. Of course, one would have to make certain that each string in the trie has an

information node associated with it. This would require minor modifications to the

algorithms that were developed in this research. Currently, strings whose characters

terminate at a branch node are ended with a branch node which contains a terminating

symbol. The change would dictate that every string would terminate at an information

node.

Another possible extension to our trie structure would be to provide pointers to

the additional information for each information node. In other words, some or all of the

actual data which was stored in an information node, in the above extension, could be

stored outside of the trie in some other data structure. What would be stored in the

information nodes would be pointers or indexes to this data structure. Again, this

extension would require that there is one information node associated with each string in

the trie.

The first extension described above, provides a more practical (more usable) data

structure for storing a large number of keywords. With the second extension to the trie

structure, a programmer has more flexibility to implement the storage of the information

associated with each character string.

5.5. An Alternative Tree Representation

From the beginning of the development of the character recognition algorithm, we

have assumed a binary tree representation of the trie structure (see section 4.1). That

representation was convenient and allowed us to describe the algorithm in much detail.

Also, the binary tree representation gives us the advantage of directly implementing the

algorithm in most programming languages. However, there is at least one other possible

representation.

The alternative is to use a general tree (m-ary tree) with variable length nodes^.

This is a natural representation for the trie structure. Of course, the disadvantage of this

^The length of a node is the number of fields in that node.

56
alternative is that most languages do not support variable length nodes, thus the

implementation is bound to be either inefficient or not close to the original representation.

The advantage of the m-ary tree representation is that it simplifies the algorithm and leaves

more implementation flexibility to the programmer.

5.6. An Alternative Algorithm

The character recognition algorithm presented in this paper utilizes the trie

structure. The researcher proposes an alternative algorithm based on a sequential

structure. This algorithm would require that the strings be stored in a sequential and

sorted form. Figure 5.2 illustrates such a structure. The algorithm is briefly outlined

below.

String
ALLOCATE
“BEGIN
BY
CALL
CHECK
CHOKE
CLOSE
GOOD
GULL

Figure 5.2
A sequential structure for storing strings.

To perform character recognition on this sequential structure, one would

performed a search on each character entered by the user. To be more precise, as

characters are entered, a search would try to locate the first string in the sequential

structure whose i^1 character is equal to the i^1 character entered. If the search locates the

same string that the search pointer was pointing to previously, then a character pointer is

merely moved down that string by one character position. Otherwise, a string pointer is

pointed at the new string location and a character pointer is pointed at the matched

character within that string.

At least on the surface, it seems that a binary search algorithm could be employed

for this purpose, since the strings are stored in a sorted order. For the ith character

entered, the binary search would only be performed in the range of the strings that have

their first i-1 characters equal to the first i-1 characters entered by the user. Of course,

one would have to find some method of determining the bounds of the search at each

level.

If the user signals a recognition request and the character after the one pointed at

by the character pointer is equal to the corresponding character of the string following the

string pointed at by the string pointer, the request for recognition cannot be granted,

otherwise, the remaining characters of the string pointed at by the string pointer would be

displayed (from the character after the one pointed at by character pointer to the end of the

string). The other character recognition operations discussed in the previous chapters

could be performed just as easily.

If we let n be the maximum number of strings and m be the size of the largest

string in the sequential structure, we can guess at this time that the overall complexity of

the character recognition algorithm may be 0(m log n), considering the fact that a binary

search algorithm is usually 0(log n).3 That means, in the worst case, all of the n strings

3An analysis of the binary search algorithm is given in [Purdom & Brown 19885], pages 19-20.

in the structure have to be binary searched for every one of their m characters. The

detailed algorithm and analysis for this sequential structure would be the scope of

additional research and will not be presented in this paper.

Chapter Six

Summary and Conclusions

6.1. Summary

The scope of this research has been the development of an algorithm for character

recognition. The idea for the algorithm developed out of a research project that the

researcher was involved in. The project was sponsored by the Intermountain Fire

Sciences Laboratory and involved the building of an information system. The

information system called for a user-friendly interface. In order to access information in

the system, one would most often have to enter a keyword that is usually long and very

difficult to remember or spell correctly. To alleviate this problem, the researcher

proposed the utilization of the character recognition technique for entry of keywords.

Character recognition provides the user with the ability to enter a very long string

by supplying just the initial few characters of that string. The character recognition

system would perform a search through a given data structure that houses the available

strings to find a unique string that begins with the characters that the user has entered.

Because of its natural adaptability to the problem, the trie structure was chosen as

the main data structure used in the character recognition algorithm. A trie structure is an

m -ary tree composed of two types of nodes; branch nodes and information nodes. A

formal definition of the trie structure was presented in section 3.1.2. Each branch node

of a trie consists of m 2:2 components corresponding to the elements of the alphabet set.

For the purpose of our application, two modifications were made to the general

trie. First, branch nodes were allowed to vary in size; and second, the decision was made

not to store a complete string in the corresponding information node unless there is no

other string that shares prefix characters with it. This decision results in conservation of

5 9

storage space that is well worth the additional complexity it introduces. For reasons of

manipulation and implementation simplicity, a binary tree representation of the trie

structure was chosen. This means that each branch node is represented as a linked list of

binary tree branch nodes where the next sibling is the next binary tree branch node in the

list that represents the trie branch node. In this representation, each branch node has two

link fields: a child field that points to its child, and a next-sibling field that points to its

next sibling node.

The character recognition algorithm was developed based on the assumption that

the operations performed on a trie mainly consist of search and traversal of the trie.

Thus, the emphasis was placed on the efficiency of these types of operations as opposed

to operations that modify the trie.

The algorithm was presented in a modular fashion, with each module representing

an operation that the user might request. The recognition operations for which algorithms

were developed are processing of a recognition request, a rubout request, a newline

request, and processing of a request to list possible options. The only update

(modification) operation presented in this paper is the insertion of a new string into the

trie structure. A general algorithm and then a detailed algorithm were presented for each

of the above operations on a trie.

The algorithm modules were analyzed for time and space efficiency. The results

of the time efficiency analysis were shown in the Big-0 notation. In analyzing the

character recognition algorithm it was discovered that the time efficiency depends only on

the trie structure and is independent of the keyword string entered by the user. The only

nonconstant complexity in the character recognition algorithm was found to be in

processing of a recognition request and processing of a request to list possible options.

In the former case, the worst case complexity is 0(k), where k is the number of levels in

the trie; and in the latter case, the worst case complexity is O(m), where m is the number

of nodes in the trie to be traversed.

The insertion algorithm was discovered to have an overall worst case complexity

of Max(0(k), O (s)), where k is the number of levels in the trie, and s is the size of the

string to be inserted into the trie. In either case the complexity is linear with respect to the

input.

As for space efficiency of the algorithm, some approxi-mations of measurements

were presented in the paper. An upper bound for the maximum storage requirements for

the trie structure is one branch node for every character in each string, and one

information node for each string stored in the trie. An important point to consider is that

the storage efficiency of information nodes that contain strings depends greatly on the

implementation environment.

The only other structures that needed to be analyzed for space efficiency were the

three stacks s tr -s ta c k , p re fix -s tack , and p tr-s ta c k , used to perform character

recognition. The maximum needed size of the first two was discovered to be equal to the

maximum allowable size of a string in the trie, and for the p tr-stack it was equal to the

number of levels in the trie.

Two extensions to the trie structure have been proposed to facilitate storage of

other relevant information along with a string. The first is to allow more than one field in

an information node and the second extension is to provide pointers to information spaces

in or in place of each information node. These extensions would require modifications to

the algorithm to make sure that each string has an information node associated with it.

As mentioned before, we have used a binary tree representation of the trie

structure for the purpose of our algorithm. There is however at least one other possible

representation. The alternative is to use a general tree (m-ary tree) with variable length

nodes. This representation results in a less detailed algorithm than the binary tree

representation.

As a final note, we presented an idea for a different algorithm for character

recognition. This idea is based on a sequential structure for storing strings. The

development and analysis of a detailed algorithm on this structure would probably

constitute another research project

6.2. Conclusions

As it was mentioned early in this paper, the main goal of this research was to

develop an algorithm for character recognition that would be efficient for search and

traversal operations but not necessarily for modification operations. This goal has been

achieved to a great extent. The recognition algorithm developed has a time efficiency of

0(number of levels in trie) for handling recognition requests, Ofnumber of nodes in the

trie) for processing of requests for listing possible options, and a constant running time

for all other recognition operations. In the case of the first two operations, the complexity

is linear or O(N). Of course this is the worst case complexity, which means if we have a

large number of long strings that have many common characters, then the search for

recognition will be close to 0(N), otherwise it will be better than O(N).

As far as storage efficiency of the algorithm is concerned, the trie representation

used for the puipose of our character recognition algorithm promotes the conservation of

much storage space depending on the implementation environment. If the algorithm is

implemented in a language that dynamically allocates storage space for strings, then the

fact that the complete strings need not be stored in their corresponding information fields

will save storage space; otherwise if the implementation language pre-allocates space for

strings, then our modification to the trie saves no space whatever.

The correctness of the algorithm was tested by applying it to many different

examples covering all known cases. This was done both by hand and through

implementation of the algorithm on the computer. The implementation further showed the

practicality of the algorithm, in that the processing of a recognition request was almost

instantly performed even with a large number of strings.

The algorithms developed in this research provide an efficient and practical means

of performing character recognition that is suitable for applications that do not have a very

dynamic set of strings or keywords. That is to say, the best area of application for our

algorithm is in an environment that requires frequent entry of predetermined keywords.

As a final note, it should be mentioned that a comparison between the character

recognition algorithm developed in this research and other previous algorithms would

have been desirable. But unfortunately, no other algorithms were available at the time of

the research. However, we have proposed a character recognition algorithm based on a

sequential structure. The complexity of that algorithm was estimated to be

0(m log n). It can be seen that the advantage of the trie character recognition algorithm

over the sequential algorithm is that the trie algorithm is independent of the number of

strings stored in the data structure, whereas, in the sequential case the complexity is

directly influenced by the number of the strings stored in the structure. That is of course

if we do not count the traversal of the trie as a part of the recognition process.

6 4

BIBLIOGRAPHY

Abelson, H., Sussman, G. J., and Sussman, J. Structure and Interpretation o f Computer
Programs. The MIT Press, Cambridge, Mass., 1985.

Aho, A. V., Hopcroft, J. E., and Ullman, J. D. Data Structures and Algorithms.
Addison-Wesley Pub. Co., Reading, Mass., 1983.

Baron, R. J., Shapiro, L. G. Data Structures and Their Implementation. Van Nostrand
Reinhold, New York, NY, 1980.

Cooper, D. Standard Pascal User Reference Manual. W.W.Norton & Co., New York,
NY, 1983.

Gries, David. The Science o f Programming. Springer-Verlag, New York, NY, 1981.

Horowitz, E., Sahni, S. Fundamentals o f Data Structures. Computer Science Press,
Rockville, MD, 1983.

Knuth, D. E. The Art o f Computer Programming, 2nd ed. Addison-Wesley Pub. Co.
Reading, Mass., 1973.

Lewis, H. R., and Papadimitriou, C. H. Elements o f The Theory o f Computation.
Printice-Hall, Inc., Englewood Cliffs, NJ, 1981.

Manna, Z., Waldinger, R. The Logical Basis for Computer Programming. Addison-
Wesley Pub. Com., Reading, Mass., 1985.

Purdom, P. W. Jr., Brown, C. A. The Analysis o f Algorithms. Holt, Rinehart and
Winston, New York, NY, 1985.

Tremblay, J., Sorenson, P. An Introduction to Data Structures With Applications.
McGraw-Hill, Inc., New York, NY, 1984.

	Algorithm for character recognition based on the trie structure
	Let us know how access to this document benefits you.
	Recommended Citation

	00001.tif

