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INTRODUCTICN

The motivation for this paper is twofold. rfirst,
many authors in applied mathematics, thysics, astronony,
probability and svatistics, engineering, etc., use the
concepts of asymptotic series freely and presuppose some
familiarity with the subject of the part of their readers.
Second, asymptotic exvansions are currently gaining wider
use as an effective means of evaluating difficult func~
tions in routines for autcomatic digital computers. Their
use in such routines alleviates the necessity of storing
large arrays of tabled function values and also obviates
the need for having a routine in a program to intervolate
for an intermediate value of an argument.

Altnough asynptotic aprproximations are not universally
apzlicable to the problem of evaluating a complicated:
function, the frequent cases in which asymptotic methods
‘do work, and the ease with which they can be applied, both

recommend them.



CHAPTER I

HISTORICAL SKETCH AKD EXANFLES OF
EARLY USES OF ASYMFPTOTIC SERIES

Euler's constant, ?V

Prior to the theory of convergence of Abel and of
Cauchy, mathematiciesns used many series in their work
which were divergent. Some of those winich were used for
nunmerical computation belong to a class which are now
known as asynptotic series. Before going to a more
technical discussion, consider the following strixing
example of an asymptotic series used tc comrute the value
of Euler's constant, 7V s, which is defined by

(1.1) 7 = n}_is_zgc@.+%+%+%+...+%—lnn]= n}_irrgo [ él - lnn].

k=i

‘This is an interesting limit. It is not at all obvious
that it exists, nor does the definition give any hint as
to how 1ts value should be computed, since about 106
terms would be needed to comzute 7/ to six digits using
this definition. Even with a fast electronic computer
this would not be a good way to calculate the value of ;Vo

About 1755 Leonhard Euler, by applying the device

now often called the Euler-Maclaurin sum formula, derived
2



the equation (see Bromwich, pages 324-325)

B B
1 1 1 1 2 4

(1.2) 1 +5+5+5 +teeet <= 1lnn- = + + o o o
e 3 4 n ;Y an un®

where the ng are Bernoulli numbers. The series on the
right is not convergent; but Euler established that the
error incurred in approximating 7/ with the abtove equa-
tion by truncating the series at any particular term is
less in absolute value than the next term of the series
and that it is of the same sign. All of the terms in
(1.2) excect ‘?/ and lnn are rational and can be calculated
easily to any desired degree of precision. We can also
determine lnn as accurately as we vlease. Thereiore we
can truncate the series, thereby removing any difficulties
due to divergence, and then can determine ;V to within a
tolerance represented by the first term omitted in the
truncation. If none of the terms B2k/(2k ngk) is small
in absolute value, then the fact that the error in ;V

is less than the first term omitted is not computation-
ally helpful. However, if the terms do become small in
absqlute value at some point in the series, then we czn
truncate the series, stopping Jjust before the term least
in absolute value. In this way, by Euler's result con-
cerning the size of the error, we can be sure that the
error is less than this least term. This is also the
best approximation that can be obteined from this series,

for this value of n.



TABLE 1.0

SYMBOLS NEEDING CLARIFICATION

Symbol Meaning, or how to be read
A~ "is asymptotic to"
6D The fractional part of a number

is given to six decimal places.

85 This designates a number which
is expressed to eight significant
digits.

«OBLUCE~1L This is a common computer language

symbolism for 0.9846 x 1017,

X(X) In computer usage, this is
equivalent to the ordinsry

subscripted variable, Xy o

ph Z The phase, or argument, of the complex
number, Z.

inx The naturel logerithm of x.
logx The logarithm to the base 10 of x.
x = 1(.05)2.5 This designates the values of x from

1l to 2.5, in steps of .05, there

being here thirty-one such values.



It will be noted that in Euler's eguation (1.2)
n is a constant, and the various apsroximations that may
be had for 7/ by truncating the series at different
places devend on the subscripts of the Bernoulli numbers.
Therefore, if the precision guaranteed by the minimum
term is not small enough, then one could choose a larger
value of n, giving a larger number of terms to sum on the
left- and right-hand sides of equation (1.2), but also
holding the possibility that the least term of the series
will be sumeller than in the previous case.

By putting n = 10 in equation (1.2), Euler was able
to compute the value of ';V to fifteen significant digits.
Euler's computations have been rejeated on an IBM 1620

comcuter, and are given in Table 1l.1.

Stirling's Approximation to ln(n!)

A second exanple that is probably more familiar to
the reader is Stirling's approximation to the logarithm
of the factorial function. In 1730 Stirling published in

his Methodus Differentizlis an infinite series for 1n(n!)

which is equivalent to the more modern notation

(1.3) = B (%)
-t 2k
ln(n!)=(n+%)ln(n+%)-n—%+%ln(2J(){EE: T
(2k-1)(2k)(n+¥)

=1

where Bq(x) is the g-th Bernoulli polynomial. A lucid

introduction to these numbers and polynomials is to be



TABLE 1.1 EULER'S CONSTANT), jy

1/ 1= 1000000000 E+01
17 2= ,5000000000 E+00
1/ 3= .,3333333333333333333333333333E+00
1/ 4= 250000000000 O E+00
1/ 5= .2000000000 0 E+00
17 6= ,16666666666606666666666666666E+00
1/ 7= o1428571428571428571428571428E+00
1/ 8= ,1250000000000 O E+00
1/ 9= 1111111111111111111111111111E+00
1710= 1000000000 Q E+00
1/72N= 5000000000 0 F-01

LOGN= ,2302585092994045684017991454E+01

1 + 1/2 + 1/3 +eeet+t 1/N = 1/2N - LOGN =
e5763831609742082842359767980E+00

THE BERNOULLI TERMSs B{2K)/2KN*%2K

K B(2K) /2KN*%2K
1 ©83333333333333333333333333306-03

2 ~+8333333333333333332333233332E-06

3 «3968253968253968253968253966E~08

4 -4 166666666666666666666666666E~10

5 e 75757575757575757575757575T5E~12

6 ~e2109279609279609279609279609E-13

7 +8333333333333333333333333326E-15

8 o 4432598039215686274509803921E~16

9 ¢3053954330270119743803954330E~17 The last two
10 ~e2645621212121212121212121212E~18 digits of

11 e2814601449275362318840579710F-19 are in error
12 —.3607510546398046398046398046E~20 due to a

13 »5482758333333333333333333330E-21 conbination

14 ~9749368238505747126436781607E-22 op aomitotic
15 02005269579668807894614346227€~22 . ° ="
16 ~e4723848677216299019607643134E-23 .

17 c1263572679591666666666666666E-23

18 —.3808793112524536881155302205E-24 STTOT:

19 «12850850499230508333333333333E~24
20 ~e4824144835485017037158167035E~25 Buler calculated
21 «2004031065651625273810842166F-25 those digits
22 -+9167743603195330775699275361F-26 singly under-
23 e 4597988834365650249043794326E~26 lined and Gauss
24 ~e2518047192145109569708902331E~26 those waich are
25 e1500173349215392873371144015E-26doubly under-
26 -+9689957887463594065649794288E~27 1ined.

27 6764588237929282099094524227E~27
28 ~e5089065946866228968976633291FE-27

THE APPROXTIMATION TO EULER'S CONSTANTs GAMMAs IS
o5772156649015328606065120ﬂ90k+00
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TABLE 1.2

THE BERNOULLI NUMBERS, B(N)

. L00UCC0OUC00000CCOO0000CLO000CE+0L
- . 5000C00TUO00CU000000C0O0C00CCUEQD
. 1666566666650666660066685600006E+00
—-.3%%335323333%33%2%%5523%335353E~01
.2)c,u/;‘2)5\)772380952580952580"T -0l
-.33%3%33335233%%%82235532555553E~01
-797)777/7/7575777)777/7/7775u—01
-.253%113%55%21%55%11355%2113%5551E+00
. 116666665566666566560666660000E+01
.700215680274 0880592156&£6274E+01
L SU97117754486215538847117794E+02
.5291242424242424;%242 2420205403
.5152123188405797101445275302E+04
.80580253115755115/5)11255511E+O5
. 142551716666665606660660060060E+07
~,272982%106781609195402298850E+08
.6015808739500642%683%3843038681LE+09
~.1511631576709215686274509803E+11
420614643061 1666666066606050005+12
15711657205088532/72153087O4L+l4
JABBE%23185735C31600000000000E+10

—.1929657954194006814865266814E+17

.8416930475736826150005537098E+18

B(44)=~,40328071854059455413076811595+20

B(46)=

B(48)=-

B(50)=
B(52)=
B(54)=

.2115074863%808199160560145390E+22
.12086625522256525934602731195+24
. 7500866746076904366855720075E+25
-.50%8778101481068914137893050:+27
» H052877648481812%5351104%085L+29

B(56)=-.28458750302450882226209140435+51

The last Bernoulli
number in this table
already contains
round-off error, its
numerator having
exceeded the limita-
ticns of our 283
arithmetic.

Most other numbers
involved in the
calculation for ?/
have some round-off
error inherent in
their final few
digits.



found in Rainville (1960), (1967).1 The series on the
right is divergent; but Stirling was able to show that the
error in approximeting ln(n!) by truncating this series
is of the same order as the first term omitted. For large
n, theabsolute values of the terms in this series decrease
very rapidly before they grow arbitrarily large. By tak-
ing the partial sum of the series up to, but omitting, the
term of least absolute value, one obtains the best approx-
imation afiorded by this series for a particular value of
n.

Following these and similar early uses of divergent
and asymptotic series, the move to place anzlysis on a
sounder basis by Abel, Cauchy and their contempcraries all
but banished non-convergent series from mathematical work.
Asymptotic series reapreared vigorously in the late nine-
teenth century. They occur in Stokes' work on the behav-
ior of Bessel's functions and other functions for large
values of the arguments. They are found in Stieltjes'
work involving investigations of special functions and are
the?e seen to be related to continued fractions. Asymp-
totic series are again encountered in the work of denri
Poincaré, to whom is due the credit for the modern defini-
tion of asymptotic equality, and for the introduction of
the word "asymptotic." The preceding historical remarks
are primarily from Bromwich (1926), Copson (1965), and

Jeffreys (1962).°



9
Then in this century, with the development of atomic
physics, modern diffraction theory, antenna design, and the
space sciences and aeronautics, there has been increasing
use of asymptotic approximations as a means of obtaining
useful answers in a reasonable amount of time.
Let us return to a discussion of equation (1.2) from

another standpoint. Equation (1.2) says that

n

B B B

L _ L __2 4 S

on on
The left-hsnd member of this equation is a well-defined

(finite) real number for every finite integral value of n.

The series on the right, as remarked earlier, is not con-

vergent for any value of n. To see talis, we can use the

relbion from Abramowitz and Stegun (1968):

(1.4) ' 2§2k2ék <:‘IBZK, < 2(2k)ék ll—2k .
(2m)=" (2T) 1 -2

Taking the absolute value of the ratio of the k+l-st term

to the k~th term of the series in (1.2) we have

Boxsp  21n®X| 2(2k+2) 1 20 (2 YK 12k,
2k B k+ - IEW
(2k+2)n5 2 By | (277)K 202K 2(opep) 22K

J 20y (1) 2k g pl-2ky _ 2k(2+l) o0 1
(27rn)e  2(k+l) (21n)? oox-1
. k(2k+1)
> 2k(2k+1) (1 _.lg = —— 1+ 00 as k—¥%c0.

Therefore, by the ratio test, the series diverges for all

n. So the series on the right in (1.2) can never be a
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well-defined function of n. The reader can now see way
Cauchy might have mistrusted such an "equation.,"
In what sense, then, can the expression (l.2) be
interpreted as an equation? Rather than stretch logic
any nmore or further overwork the symbol =, it seems better
to introduce, as Foincaré did, a new symbol to denote the
situation which we want to characterize in (1.2). Thus we
use the symbol ~~, which is read "is asymptotic to" or
as "is asymptotically equal to," and rewrite (1.2) as
N o0 B
3%
(1.6) L. inn - 7/ - ~ —<X_ for n— 0o.
k 2n 2] 2k
R=z{ k=1 Kn
The precise meaning of (1.6) is then taken to be as fol-

1 1. ;
lows. Denote :E:E-— lnn - ’)/ ~Zn by E(n). By (1L.6)
=)

is meant that, for eachm =1, 2, 3, ..., 1t is the case

m
B
E(n) - 2-—%—-
—2kn =0

that (1.7) iz T Alternatively,
n2m
®. 3
we say that the formal series __E%E is an asymptotic
2kn
Rzt

expansion for E(n) as n—s oo, Qualitatively this nmeans
that the difference between E(n) and the m-th partial sum
of the series grows smaller much ITaster than the quantity

l/n2m

, for each fixzd m, as n— o0o. To see that the
situation in (1.7) actually holds for the series in ques-
tion requires consideration of the remainder term in the

Euler-Maclaurin sum formula. That, nowever, is extrzneous
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to our vresent purpose, which is only to outline the
description of asymptotic relationships.

An analogous restatement of (1.3), on Stirling's
approximation, would be that

B, ()
k-1 °

m
(1.8) 1nn! +(n+®)- n+%)In(n+%)+1nyf 27|~
E ] %;; 2k(2k~1)n

This means only that, analogous to (1.7), for each integer
m = l, 2, 5’ . . L}
(1.9)

Z’“ By (%)
Inn! + (n+%)-(n+%)ln(n+%)-an2TT- ST
<—r2k(2k-1)n"

plim ' 1 . =0,
nam-l

Again, to show that this condition is satisfied for the
present case involves consideration of the remainder in
the Fuler-lMaclaurin formula or a more difficult analysis
3

involving the Gamma function.

Occasionally one encounters expressions such as

(1.10) u! = (2)* /2 or n! 2 () /ama (1 +42p)

These are both simplified but obscurative forms of

1
(1.11) n ~L b — 1 - ..

(& 2k Jewn 12(n+l)  288(n+1)°

where the rule for the formation of subsequent coeffi-

. . . . 4 )
cients is itself rather obscure. The expression

n! ~o (%)n 27Tn  nmeans that
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nl -1
(%)Il y27Tn
i.e., that  lim I = 0,
(n+1)°
Notice that nlim...__.l_..a..:: 1 so that _lim — — - 1,
—->oo(n+1) -—ﬁ-oo(_é_);m

This formulation does not give us any quantitative infor-

mation about how closely (%)n¢27rn approximates n! for

any finite nj; and in any physical situation, it is only

finite n in which we are really interested.



CHAPTER II
ASYMPTOTIC SEQUENCES AND EXFANSIONS

We now make a sketch of the definitions and results
related to asymptotics which are found in the current
literature and which are useful in applications., The
material here basically follows the presentation of

Copson (1965) and Erdélyi (1956).
Asymptotic Seguences

In the examples considered in Chapter I, n avpeared
as the variable of major interest. We are now going to
frame our definitions in terms of a variable x, which may
be real or complex, or a rositive integer. We shall most
often regard x as a continuous real variable. At the end
of Chapter I we mentioned an asymptotic expansion with the
variable n "for n —eoc0," Similarly, we shall consider
asymptotic expansions for x-— o0, and more generally,
for'x-——+-xo. This roint X, may be any real number or *f oo,

If we are given a sequence of functions of x, {fn(x)},
such that in some deleted neighborhood of X for esch

n=1,2, 3, « + +, We have

. fn+l(x)
(2.1) X}E'EXO __f—n_C;C_y_- = O,

13
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then we say that {fanﬁ is an asymototic exransion for

1 . .
X X oo As an examrle, {—722 is an asymptotic seguence
n

for n——»co. In the definition, set X = n and n = k and

then £ .(n) = 1. Ve also have
k n2k

£, . (n) 2k
1§+%n) - gk+2 = L+ — = 0 as n—— 0O for
k n n

each k = 1, 2, 3, + « .o Other examples frequently en-
countered are '{xn} for x —— O, .{;%} TOr X e 00,
‘ X
n A 1
(x~b) ds X —s b, {(—F for X —» ©0, where {an}

n
X

is a strictly increasing sequence of positive real nun-

bers. This follows since

‘fn+l<X> xan 1 1
= = = e e Q28 X 0O,
fn(x> &n+l 8n+l " %n x €
X X
where 8p41 " 8y = € > O bvecause a, 1is increasing. One

other example is {xne—nx} for X —— 0. Note that,
in these examples and in the definition, it is x which
varies while n is fixed; that is, we fix attention on two

adjacent elements of the sequence and then let X —> X .

This is to be contrasted with the situation of a conver-
n " '
gent seguence such as {x }, which converges for [|x] < 1.

Here we fix a value of x such that |[x|] <{ 1, and then
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consider x" for n = 1, 24 34 o « & . More will be

said on this point later.
Asymptotic Approximations

Given a function F(x) defined on some set R, of which

X, is a cluster point, and {fn(x)} is an asymptotic

sequence for x —sXx then we call the formal series

o’
(Formal means that we are not concerned with convergence

N
or divergence.) E anfn(x) an asymptotic expznsion in

—

=

5

-

R, to XN terms, of &t}

¢ function F(x) 88 X-—=X , relative

to the ssymptotic sequence 4in(x)} , if it is true that

F(x) =~ zg%j anfn(x)

(2.2) lin_ n=1 = o.
0 .
_fN(X)

Some modern books, for example Jeffreys (1962), use the

expression asymvtotic avproximation to N terms for what

we have Jjust defined. One often tinds omitted the words
"in R," "as x-——a-xo," or "relztive to the sequence

R,

{fn(x)}," when 1t is supposed to be obvious what x_,

and {fn(x)} are.,
In the terminologzgy of the definition, returning to an

earliesr example, 1 i1s an asymptotic expansion to one term
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n! 1 1l

(%)n el while 1 +

an expansion to three terms, etc.

is

of F(n) = + 2
12(n+1) 288(n+1)

Asymptotic Expansions

N

If the series E a, fn(x) is an asymptotic expan-

n=1
sion to N terms of F(x) for x-——*»xo and for each value of
N=1, 2, 3y «+ « ., then we call the series a complete

asymptotic expansion, or simply Jjust an asymototic expan-

sion, of F(x) for x—x (in some set R).
Examples: If a function F(x) has a valid power series
expansion in X, then this power series is an asymptotic

expansion for x— 0 of F(x) (with respect to the asymp-

0
totic sequence {xn}). To see this let F(x) = E a, x? ve
n=o
the power series in question. Then we have
N ()
E n § n
F(x) - a, X a, X 0o
n=0 _ n=N+1 _ i
N - = X E an+2+i X >0
i=0
fove)

as Xx— 0. So we may write F(x) ~v a, %2 for X~—2 O,
n=o0

i :—l—= 1 = - 2 4—
Consider F(x) iy = IS(o%y l-x+x“_xo+x%~ . . .,

which is a valid power series expansion for (x| << 1. We



also have F(x) ='T%§Trvl - X + x2'- x5 + ¢« « o« for x— 0.
1 1
Also, for x # 0, F(x) = TT%%?F = X T = X =
N

1 1 1 L1 ... . which is valid for l-}-ﬁ—‘< 1, i.ee,

+
x2 x3 x4
N ("'l n+1l
F(x) - E ——l——n
. . n:l X
for |x] > 1. This time we have T =
N
n+l n+l o M4l+i
XN F(x) - E ("l) E (-1) l) ;1{_ g (=1) .
n=1 x" n=n+l % i=0 x
( l)n+l
which tends to zero as x—»&®. So F(x) ~~— = as
n= X
as x—= 0. Similarly for |x > 1, F(x) = 5= = 5L =
) ’ 1+x X -1
1 oo
2 n+l
(x - l)sz—ff— = E (x - 1)-Qi%%f—— ; and
X

o0
n+l
F(x) = 'T%E— ~ E (x - 1) j;gé%;__ for x—= 00,
- X

These asymptotic exvsnsions and similar ones are of impor-
tance in ottaining expansions for more inaccessible func-
tions, such as the exzmples in the next chapter.

When we have an asymptotic expansion for some function
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and when we are not particularly interested in the func-
tion itself, then we will sometimes call this expansion

an asymptotic series. VWe are now in a rposition to be able

to point out a distinction between convergent series and
asymptotic series, which distinction may help illuminate
why they are worthy of study in their own right.

2 3
Recall that F(x) = e = 1 + x+-’é‘-!-+i§—l-~+ . . . is

convergent for all x (real or complex). Theoretically
then, this series could be used to compute e* for any
(real) x to any desired degree of accuracy. It is prob-
ably not well understood that this series i1s not good for
computing e* for "large" x, say x| > 3%. Assume, for
example, that one wished to compute the gquantity

10077 | 314.15926... 1, ving at the absolute value of

the ratio of the n+l-st term to the n-th term in the above

Xn+1 n!
H
(n+l)! B

Axb

el regarding 1

power series, we have

and x as the O-th and l-st terms, respectively. This
ratio is greater than one until n+l > |x|, i1.e., the terms
of the series increazsse in azbsolute value until n+l > x| .

In the present case of elOO7T, the terms grow in size

until the 31l4-th term, which term has a value of

314 -
(longﬁ> which is about equal to 10149. Clearly the
above series is not the way to compute elOD?T‘ >
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/100 _

On the other hand, if we desire to know e

CDOReoe
&0+ 031415926 s then the ratio Jfa is about 0.03 when

n=20, i.e., the second term is only about 3% of the first
term. The tenth term is only 0.%% of the ninth, etc.

2Tr, the

This discussion should convey that, for x = 10~
terms of the sries become small very quickly. This is a
desirable feature for a series to have if it is to be

used for computation., Recall that {xn} is an asymptotic

oo
x n

X
seguence for x—- 0 and note that e ~~ T as X—s O,

n=0
This fact is what makes the series rapidly convergent, for
X near the origin, and thereby useful for computation.
For when we get to the point in the series where the trun-
cation error is less than our allowable error, then we can
stopv. If the terms grow small quickly, then we can afford
to truncate after a fairly small number of terms.

Note that in using the series for an actual computa-
tion, we have not used the fact that the series is conver-
gent. Rather we made use of the characteristic of the
series that‘the terms grow small quickly and that an esti-
mate of the urper bound of the error incurred by truncat-
ing the series is calculable.

In just the same way, if we have a function F(x) and

an asymptotic exvansion of F(x) for X—> X then for any

x sufficiently close to X,y We can be sure that the early
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terms of the series become small rapidly. If, in addi-
tion, we have some rule for finding an upper bound for
the error incurred by stoppving the sum at any term, which
error usually depends in a sinple way on the first term
omitted or on the last term retained, then we have a means
of making an approximation to F(x) of known minimum accu-
racy by summing relativeily few terms of the formal series.
Once more we have made no comment on rossible convergence
or divergence of the asymptotic series.

If an asymptotic expansion happens to be a convergent
series for some value of x, then we know that eventually
the terms must become arbitrarily swmall and remain so.
With our backgrounds in rigorous analysis, this is a re-
assuring behavior for a series to exhibit, even if it is
not computationally useful. However, if our asymptotic
expansion heprens to be divergent, then there is no guar-
antee that the terms will become arbitrarily small znd
'keep getting smaller. In fact, the terms of many useful
asymptotic series become arbitrarily large, affer an in-
itial rapid decrease.

As an example, in the next chapter we will derive the
o0
: . (-1)" n! iy
asymptotic series s ralative to the sequence
b d
n=0

{—%ﬁ}, for x—s 00. Here the coefficients are an=(-l)nnl.
X

The sequence-{jﬁ} we have seen to be asymptotic for x—00,
X
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Performing the ratio test on this series we have

(n+l1)! xn' _ n+l
NET n!l [x1

—_— 00 &S n——> 00, no matter what

X we choose such that |x| < o0.

Therefore, to regard an asymptotic expansion of a
function as a convergent or divergent infinite series is
often misleading or confusing, and obscures the main pur-
pose of employing an asymptotic expansiocn, which is to
study the behavior of some F(x) as x approaches the cluster
point X, about which the formal series is an asymgtotic

expansion. It would probably be better not to regard the
oo

expression F(x) ~u E a, fn(x) as having anything to do
n=

with series at all, but ratner to consider the expression
as signifying a whole (infinite) class of finite-sun
approximations to F(x), the elements of the class being

N
F(x) ~v E a, £ (x), By(x)) , where Ey(x) is an upper
n=1

bound for the error in the corresponding apyroximation,
the class being indexed by N = 1, 25, 34 o o «o

The terms and partial sums of an arbitrary convergent
series, and the terms and partial sums of an asymgtotic
series which harpens to be convergent, will behave about
the same way, excect that the asymptotic series wiil

generally "converge faster" for a value of x close to the
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X about which it is an asymptotic expansion. By "converge
faster" is meant that greater accuracy and smaller relative
error are attained by the asymptotic exyvansion for partial
sunms to a fixed number of terms than are attained by the
other series.

The contrast between convergent series and asymptotic
series is probably best seen by a comparison of a conver-
gent series with a divergent asymgtotic series. Toward

that end we shall consider the convergent rower series

exosansion, a geometric series, for

—_— 6 1 1 1 1
0.857142857142 = - = = ] -t = e ==, ., .
Vs 1 - (_6%)) © 62 65 ’

and conmpare that with the asymptotic expansion for

10 o1© El(lO), where
00
2 E.(2) = z e® e—tdt ~l -2 2l 3L
Z e .Eal e t Z "_? 5 o O )
Z z
Z

Here z is a conmnclex number with |phz]<<-%;, i.e., with
Re(z) >>O.6 For the moment Jjust accept this asymptotic

series as a validvasymptotic exension of the given func-
tion. In the next chapter we shall derive this expansicn
as one of our examples. This formal asymptotic series is
divergent for all finite z, as the ratio test shows:

(n+1)! 2% n+l

= = OO e .

Convergence for an infinite series is defined in terms of



e>3

the convergence of the sequence of partisl sums; so it is

N
natural to look at the partial sums S(N) = E (__%Jn—l of
n=1
the geometric series for ———l—i— . See Table 2.1, wherein
1+ =

6

both the partial sums, S(N), and the terms, 4(N), are
given to 15D. Since S(N+1) = S(N) + A(N+1) and since
A(N+1) = S(NW+1) - S(¥), any entry, S(N), in the first
column of Table 2.1 is the sum of the two entries, S(N-1)
and A(N), in the row immediately above it. The A(N)
represent the differences, S(N+1) - S(Ili), between succes-
sive partial sums. In Table 2.1 the partial sums increase
and decrease by an amount, A(N+1l), that decreases steadily
in absolute value and finally disappesrs for N = 20, after
which the partial sums no longer change. In actuasl fact,
the terms A(N) are never really zero, but our computations
were carried only to 15D. Therefore, for N = 20 we have
that |A(N+l}| < .5 x 10712, Since our numbers are print-
ed out at fifteen decimal digits, these latter A(¥+1) are
rounded off to zero.

It is easier to see what is occurring if we do the
problem once more, printing the S(N) out at 15D but now
printing the A4(+1) at 158, i.e., as 4-107% where O<ld<1.
Then the A(H+1) will not be rounded to zero when

|A(N+l)]<< .5 x 10712,  These computations are given in

Table 2.2. Note that S(N) is already of maximum accuracy



TABLE 2.1

N-1
s = > ()R
n=90
APPROXIMATIONS TO 6/7 =
N S(N)
1 1.000000000000000
2 «833333333333333
3 e861111111111111
4 «856481481481481
5 «857253086419753
6 «857124485596707
K 0857145619067215
8 e857142346822130
9 e857142942196311
1C 0857142842967281
11 «857142859505453
12 «857142856749091
13 0857142857208484
14 «857142857131919
15 «857142857144680
16 «857142857142553
17 e857142857142907
18 e857142857142848
19 «857142857142858
20 «857142857142856
21 «857142857142857
22 eB857142857142857
23 e857142857142857
24 eB857142857142857

GEOMETRIC SERIES

0857142857142

A(N+1)

—e166666666666666
Q2777777777777
~e004629629629629
«000771604938271
-.000128600823045
«+000021423470507
-.000003572245084
«000000595374180
-+000000099229030
«000000016538171
-«000000002756361
«000000000459393
-«000000000076565
- 000000000012760
-+«000000000002126
«00000000000C354
-000000000000C59
«000000000000009
-+ 0000000000000201
0.000000000000000
0.000000000000000
0.000000000000000
0.000000000000000
0.000000000000000

24



TABLE 2.2

N-1

SIN) = E (—{%)11 GEOMETRIC SERIES

n=0

APPROXIMATIONS TO 6/7 =

VO NOWU & W

S{N)

1.000000000000000
«833333333333333
e861111111111111
«856481481481481
0857253086419753
e 857124485596707
e857145919067215
«857142346822130
«857142542196311
«857142842967281
0e857142859505453
0857142856749091
0857142857208484
e8571428571321919
«857142857144680
«857142857142553
e857142857142907
e8571428571428438
«857142857142858
e857142857142856
«857142857142857
e857142857142857
«857142857142857
«857142857142857

0857142857142

A(N+1)

~0166666666666666E~-00

Q2777777777777 7E-01

~0462962962962962E-02

o 171604938271604E-03

—0128600823045267E-03

e214334705075445E-04

-e357224508459076E-05

0595374180765127E~-06

—e992290301275212E~-07

0165381716879202E~07

-e275636194798670E-08

0459393657997 783E-09

- 765656096662972E-10

«127609345443828E~10

~—0212682249073047E-11

e 354470415121746E-12

~e590784025202910E-13

s 984640042004851E-14

-16410667366T7475E~-14

0273511122779125E-15

—-o455851871298542E~16

e 759753118830903E~-17

-e126625515805150E-17

«211042533008584E~18

25
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when N = 21. The A(N+1l) steadily decrease in size, and no
longer influence the printed value of S(N) for N =2 21.

Also, this time none of the A(Ii+1l) is printed as zero.

elO

Now consider the computation for 10 El(lO) as

approximated asymptotically by (see Table 2.3)

N N-1
N _ (-1 n! .
™K) = ¢(n) = =4, where El(x) is the well-
: =5 10

n=1

known Exponential Integral. The tabled value (Abramowitz
and Stegun (1968), p. 243, Table 5.1) for 10 ™0 & (10)
is 0.91563%3%329. If we take the ratio of adjacent terms,
(-1® nt 10771 |
107 (-1 (1)t |

_n Tt o .
=30 ° This ratio

we obtain

is less than one until n = 10. That is, the terms, C(n),
decrease in absolute value until n = 10, so that C{(9) and
C(10) are the same size. After this the ratio is greater
than one; and tine terms begin to grow in absolute value,
and continue to do so without bound. Therefore this
asymptotic series is clearly divergent, for x = 10 and
for any other value of x. But this asymptotic series is
not an infinite series, in the sense of defining a certain
real number as with a convergent series; it is merely a
convenient Way of denoting a countably infinite set of
finite-sum approximations to 10 elO El(lO) with known

error bounds. These error bounds are (see next chapter)



TABLE 243
, X - _
ASYMPTOTIC APPROXIMATIONS To X e Eq(x) =
©0
-t { n
X % -———-et at ~~ -l)n ni or x = 10.0
X n=o0 x

N T(N) CIN+1)

1 1e000600NDNR0A000 -.1000000000N00ND

2 «9000I0NONNO00N - CO2A0NANNREANAN

3 JOZDNnNnecAroNnNaN =« NOLOONNNCOGCNND

4 «914000070000000 L 002400000000AND

5 «916400600G00000 -.001200000000000

6 915200000000000 «0007270000000N0

7 291592000000006A0 ~ 0050400000000

e 915416000000000 <300403200000000

6 o .5158102M0000000 ~.000362820000000
10 c915456320000000 LC0N362880000000
11 <915819200000000 ~.0003299168000000
12 c915420032000000 L00N4T9001600000
13 «915899023600000 ~.000622702080000
14 \915276331520000 CCOBBT1782912000
15 c916148114422000 . C013075T4268000
16 CO14RLOLACCALODD «002002278982800
17 c916932719052600 ~.003556874280960
18 WS15275844771840 LC06L023T3705728
19 CI19TTE21R477568 —.0121645100460862
20 W90T613708426685 LC24229020081766
21 .931 342726518451 —.051090942171709
22 BOES517826346747 «112400072777760
23 .9932510J914 507 —e258520167388848
24 LT7347231691725654 L620448401733235

The arrow on the right marks the term of least
absolute value or, as in the present case of two
adjacent terms of equal absolute value, the first
such term. The arrow on the left marks the best
rartial sum approximatiocn to the above function
value. This partial sum includes all terms up to
the term of least absolute value but omits that
term.
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N
x e* El(x) - :Ej(—l)g n!|<: (n+i2i = the absolute value
=3 I
6f the first term omitted. The error is also the same
sign as the first term omitted. Therefore 10 e10 El(lO)
will always be in the interval (T(N), T(¥) + C(N+l)). We
have then the best accuracy attainable with this expansion,
for this ﬁalue of x = 10, when we take the partial sum up
to but not including the term least in absolute value.

Looking at Table 2.3 we have 10 et

El(lO) in the interval
(0.91581920, 0.91545632). The actual value is 0.81563334,
If this awnproximation is good enough for our purposes,
then we can be happy. If not, then we need some other
method of approximation, perhaps a different asymptotic

expansion, for x = 10, reserving the given asymptotic

series for larger x, i.e., for x closer to x, = + 00.

The main point to notice here is that, after N = 10,
the values of C(N+1l) continue to grow; and the varia-
tions in successive T(W) become increasingly larger. A4s
N—> oo, |T(E)l grows without bound; and the ap;roxima-

tion to 10 elo

El(lO) becomes worse and worse. This is
typical behavior for so-called "divergent" asymptotic
series, these being the only type of series considered ip
works on asymztotics prior to about 1940. In such an

asymptotic series the smallest variation in successive

partial sums corresponds to the term of least absolute
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value. The best approximetion is often taken to be the
partial sum for which the term of least absolute value is
the first term omitted in the partial sum. Sometimes this
"best" value is "improved" by adding half of the smallest
term. This new sum is usually closer to the actual func-
tion value. Other techniques are also used to improve the
simple "best estimate” such as Euler's transformation,
Shanks' various non-linear transformations, etc., some of
which will be mentioned in an agppendix.

Cften we will have situations such as

7(x)

o0
- H(x) ~v E &, fn(x) as X ——=X . In such
G(x) n=o

cases we permit ourselves license with the definition and
0

write PF(x) ~v G(X) H(x) + E ay fn(x) as X ——>= X

n=0
Similar considerations hold for other combinations of
functions. For example, we coculd rewrite (1.6) as

n % g
E —%—Nlnn+ 7/4--2%i—+ E —f—g—kﬁforn—-——»oo,
k=1 k=1 °K »

and, as soon as ':y is a known quantity, use this exran-

sion as a means of making an asymptotic estimate of the

n
quantity E -%? for large values of n.
k=1



CHAPTER IIT

METHODS OF OBTAINING ASYMFTUTIC
EXPANSIONS AND APPROXIMATIONS

. . 1
Fower series in x and =

There are several ways of generating asymptotic
approximations to functions. If there are valid power
series expansions for some F(x) in x or inﬁ%—, then these
are asymptotic expansions for F(x), as x— 0 or as
X —= o0, respectively. If a function has a representa-
tion as a_definite inteszral, then often an asymptotic
expansion can be obtained from this integral. This sort
of problem will be our primary interest in this charter.
Asymptotic series can also be obtained as formal solutions
to differential equations. There are other technigues for
obtaining expansions, mostly dealing with functions of a
complex variable and contour integration, which will be
mentioned in an aprendix.

The remainder of this chapter will deal with various
examples of deriving asymptotic expansions for particular

functions. Consider the function defined by
o0

OL(x) = £ _dt for x> 0. One of the comsonest
e 30
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ways to obtain an asymptotic expansion is to expand part
of the integrand as a series (finite or not) and then to

integrate term by term. Let us use the fact that

2 3

l -2+ 2«27 + .. .+ (-2

N
yN-1 - i — E:gg , which

is valid for z # -1. Transforming this, we determine

(3.1) '1—%—5'2 1 -2 +2° 22+ ...+ (-Z)N"l —S——l~

1+ 2z

Setting z = t and substituting in the above integral we

have ‘_’?Xt % 5 ( >N
-— e—.___., = -Xt — -— 5 0 @ - N-l _-‘———--t
Ol(x) = T——dt= fe [lt+t t 4 e e et (=t) +l+t]dt
o o
) oo oo
= L/;—Xt at - /;'Xtt at + /;"Xt £2dt - o o
[ (¢} [
00 o0
- ~kt Iy
+ e~ Xt (-t)N-Ldt + T +(tt) Using the fact7
o °
00
- 1
that et tPat = 2;1 s, we then have
o X
- t . N
1 o} _ 2 ~-X
a(x) = _]_7 %4_?_.‘. +.-.+( ")n l.g_IE—L ( l)q ...._....._..__E__dtc
X % XB X 1l + €

The terms on the right up to the term with (N-1)! will be
an asymptotic approximation to N terms of 0l(x) and the

final integral will represent the error in the approxima-
tion. Now we need an agproximation to the value of this

integral. In the interval of integration, 1 + t = 1 and
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also il 1 T < 1. Therefore, it is true that

% t N > t N %

-X -X N

e + e t 3 -xt N NI
I—-——-l ——dt| S J‘:——————l at = e t" at = T

So the absolute value of the error is bounded above by
that of the N+l-st term. Since the integral has a factor
of (—l)N, we see that the error has also the same sign as
the N+l-st term. This particulax type of error bound does
not hold for all as*mptotlc expansions, but it does happen
often enough to be looked out for.

To verify that this approximation is asymyptotic, we

could note that {jh} is an asymptotic seguence. We can
X

also check that it satisfies the definition, (2.2):

N-1

O(x) - ; (1) nl
n'rl N \
< _ lim x N . o,
X

lim <28  SFET

Since this approximation clearly holds for all integers

N=1,2, 32, .+ « «4 Wwe have a congplete asymptotic expan-

sion and we write OX{(x) = l - Udt A~ ; = 1g+1 .

This last expression is the form most commonly encountered
in the literature on abstract analysis. There the writer

usually desires an asymptotic expansion of a function,
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say F(x) ~v ; a, fq(x) for x-— x_; and he is really
n=1

interested in the behavior of F(x) only as x tends to the
limit, x_ . For example, see De Bruijn (1958).

The situation is quite different, however, when it is
desired to use an asymptotic expansion for numerical cal-
culation.. Here it is not enough just to know that, for

N 1

each N = 1, 2, 3, « « «, |F(x) ~ E a, fn(x) can be made
n=1

arbitrarily small by tazking x sufficiently close to Xy
That is, in this statement about the error, Jjust as in
the definition of asymptotic approximation, N is fixed
and x can vary as X—=X . In using this asymptotic
aprroximation for numerical calcultion, however, we want
the value of #(x) for some fixed x. EHere N ié the only
rarameter waich can vary. We need in this case an expli-
cit estimate of the error in the approximation. It would
therefore seem desirable in numerical work to emphasize
the finiteness of the asymptotic sum and to write some-
thing similar to the following: For each N = 1, 2, 3, oo,
N

RGO Aoy 1,00 = 805 and [5G0 - 50| <

n=1

ays1 fN+1(x) and is of the same sign.

This is not usually done in the available literature.
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For example, in Abramowitz and Stegun (1968), and in
Jahnke and Emde (1945), there are numerous complete asymp-
totic expansions given. However, to use them for calcula-
tion, one needs a concrete estimate of the error. This

means doing some extra analysis in order to derive an

error estimate. oo
Consider the g/nt_lex-t<lt which, setting t = xv
x

for x> 0, is equal to, with v = 1 + w,

-1 X=XV _ e\ TV _ e* if_ =
xf(xv)e v = x [ =g dv-[ - dv =
i

i

0o 00
ex(—w) Xt o '
T dvw = it = (x) of a previous example.
o) o
?;—t I n-1
- -1)! ,
Therefore et at A~ (1) n(n 1)! for each
X =0 x

N=1,2, 3, « « o3 and the error is the same sign as and

N
p L=1)" H!

~—RiT — » ‘the
X

bounded above by the absclute value o

N+l-st term of the expansion.
Very closely rekated to the above integral is the
00
-t

function, El(x) = 5%;—dt y one of the several Exponen-
p

tial Integrals. This is the function of an example in

1

Chapter II, where we were finding 10 e'¥ E/(10). See

Abramowitz and Stegun (1968), Chapter 5, for a discussion
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of this class of functions.8 We have that El(x) =

00 o 00
-t x .-t x=-t
Q[‘-?—_E-—dt = g X fl—éi-dt =g X e_t at = e~ ¥ CX(x),
Vx X X

where O{(x) is as before.

We have already seen the use of term-by-term integra-
tion of a (finite) series expansion to dérive an asymp=-
totic expansion. Another common technique is the use of

integration by varts. Let us aprly this technique to the

function in the last example, El(x). Setting e Pat = av
and u =-%-, we have v = -e~ ¢ and du = 4:%§L, so that
t

oft t=00 t= 00 -] /‘Ocltg
'e—t'—dt = [u V]t - vdu = - et - < 2 dt
X =X t= X Ux t

(]
-X -t
= £ - U/ﬂeg dt. Repeating the integration by parts
*

t
o0
N - 1 times, we find that E,(x) = et it =
X
(7]
e-x _ e-x . 2e-x _.-'+(-1)N"l e"‘X(N_J..)! + ("l)NN ____e_;dt
X 2 3 = o T
X X
o0
-t
-x|1 1 2! 31 N-1 (N-1)! N e
= [x 2 +(-1) X } + (1) N | =t



0o_, o 00

e e_ _ Nt -t _ Nl -x

N’fNH.‘“’ S W owTdt s nT e A T e e
X X

-t - 1 |
Therefore, El(x) = L}[L%;-dt N~ e X{%-— ]é + ié - i4+u.o]
X

as X—» 09O, and the error of the sum up to and including

the term in :% is the same sign as and bounded above by
% !

5
the absolute value of the next term, (- l)J-E—N:%— . This

is the same expansion which we obtained before.

Another form of integral which one encounters is

(9 Z, = .._...___._.ed-t - = _____.....edt = = ez ._______.___ed tt-
( ) 1+ 2zt z .__.l + t Z t 4+ _...l ( Z)
o o 2 l/z Z

o2
--——-El(l/z) El(l/z) is the same Expo-

i
ST
®
S
\‘%
sr% 8
=
o
=
]H

7
Z
nential Integral considered before. 00
Another rels#ed integral is )\(x) = Egirfgdt,

0

which is defined for x > O. We can rewrite this as

00
>\(X) "f =—"' —-———I-—dt —%F(—%) =—§é eX El(X)a

l + —-t

which is almost the same function which we approximated

for x = 10 in Chagter II.

The examples so far can all ve reduced to the Expo-
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nential Integral, El(x); and the expansions found are
asymptotic for x — po. E; (x) also has a valid power
series expansion which is accordingly asymptotic for

Xx— 0. Ve are considering only real x, but this power
e-t
series for El(x) = —7;—dt is valid for all complex X

such that lphx1<( JT. Consult Abramowitz and Stegun (1968)
again for a discussion; one can find a derivation in

Franklin (1964), Art. 331, ppe. 570-2. The expansion in

uestion is E.(x) = - - lnx + « This
q 1(x) Z —
n:

time, verifying the definition (2.2):

n+l n £ n._n
E (x) +27+ inx E (= 1)n n' x (-1)" x
——= (¥+n) (¥+n) !
I)cN, x N
<o n_n
= (_l> X ——s= 0 as X — 0O+,
n=l(N+n)(N+n)!

Related to El(x) are the so~called Incomplete Gamma func-

X
. -t La-1
tions, /)/(a, X) = e ~ t at (for x > 0, a > 0)
[+
o0
and [aza, X) = (—za) - /7Y(a, x) = et 21y , and
X

the often-used Error Function.9



Asymptotic solutions of

differential equations

Another source of asymptotic expansions is as formal

solutions to differential equations. If for the equatiocn

ég% = f% + by, for b > 0, we assume a formal solution,
22 a
¥y = E 2 s, then we find that we must have the series
=0~
a 1 21 %51 s s
y o= -===11- + - + e . This is
o0
A
just the expansion of - a (bx) =-a Ty dt. It
0o

can be verified that this function, - a >\(t>x), is a

10

sclution of the equation,'%ﬁg = f% + by. Therefore, if

we can find a differential equation which is satisfied by
a function for which we desire an asymptotic expansion,

then we can sometimes obtain the asyuoptotic expansion as a
formal power series in x, in-%w or in some auxilisry

veriable.
A second example of an asymptotic expansion derived
from a differential equation is afforded by Bessel's dif-

38
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1 ot . v =0, with initial con-

ferential equation, y" +
ditions y(0) =1 and y'(0) = O, the solution of which
is Jo(x), the Bessel function of the first kind. We de-
sire an expansion which is asym»totic for x—e O, and

toward that end assume a formal power series in X as a

o0
solution. Denote the series by E a, x® . Then we find
n=o

from the initial conditions that a, = 1, a; = O. We also

. . 2 ~ _
find that a + (n + 2) a .o =0 forn=20,1,2, .

This implies that a = O and that a, = (-1)" x°n
. on+l ~ en T 22 a2
2 4 . @ .(dn)

forn=1, 2, 3, «+ « «. Thus the series expansicn is

2 4 6
j 2n X X X
y = a X = l - -+ - + hd . * e The
-— 2n 22 2242 224262
a X2n+2' X2n+2 2242---(2n)2
. . 1
ratio test gives o+ =
a_x°® 224, (2n+2)° x°0
X2

>~ () as n— 00, So the series is

22 (n+1)2

convergent for all x, real or complex; and we can write

o0
Jo(x) = E 8sp x°% | since {xgé} is asymptotic for x— O,
=0
o0
we can also write Jo(x),f\/ 85 xR . Or, verifying
n=0
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definition (2.2) dirszsctly:

N (o)
2n 2n|
Jo(x) - :>: as, X E s, X oo
n=o0o n=N+1 2; 2n
= =]|x a X ——
ON ON N+1+n
X X n=0

as Xx— Oy for each N = O, 1, 24 » + =,

Since this series is asymptotic for x—= 0, we
would expect it to be good for calculation only in the
vicinity of x, = O. The values of JO(X) have been calcu-
lated for the arguments x = 0(0.2)3, using this asymptotic
serles expansion. The computations were performed on a
Digital Equipment Corporation electrcnic computer, model
PDP-11. The program was in the language called Z2ASIC.
Table 3.1 contains the results. The computed values are
rrinted at 7S, the maximum accuracy attainable in BASIC.
In the next-to-last column of Table 3.1, note the small
numbers of terms which were required in the sums. This is
one of the benefits of the series being asymptotic for
X—= 0. Note that, for larger x, more terms are needed
in the sums. ‘That is, the farther x is from X, = G, the
longer 1t takes to reach the truncation point in the series
for that particular value of x. Cf course, the asymptotic
series employed here is also convergent; so the terms keep
diminishing in absolute value. In such a case, the point
at which the series is truncated is dictated by the limits

of the computer, rather than by the limitations of the



Value
of x

0.0
0.2
0.4
0.6
0.8
1.0
1.2
1.4
1.6
1.8
2.0
2.2
2.4
2.6
2.8
3.0

TABLE 3.1

ASYMPTOTIC APPROXIMATION T0 J _(x)

Tabled* Value
of Jo(x)

1.00000 00000
0.99002 49722
0.96039 82267
0.91200 48635
0.84628 73528
0.76519 76866
0.67113 27443
0.56685 51204
0.45540 21676
0.33998 64110
0.22389 07791
0.11036 22669
0.00250 76833
-0.09680 49544
-0.18503 60334
~-0.26005 19549

* Tabled values are

Table 9.1, p. 390.

Computed
Value of Jo(x)

1.00000 O
.99002 50
.96039 82
+91200 49
84628 T4
.76519 77
.67113 27
.56685 51
.45540 22
.33998 64
.22389 08
.11036 23
. 25076 83E-2

-.96804 95E~1

-.18503 60

-.26005 20

Number
of Terms
in Sum

W WO W O 0 3 3 ~1 o O U U A~ 5N

10

Last Term
Retained

0
.1736111E-10
«4444444E-8
-+ 4100625E-9
- (281777E-8
- 4709503E-9
.4199040E-8
-. 2670001E-9
-.1731405E~8
-.9006043E-8
.6151187E-9
. 2826454E-8
-, 202L791E-9
-.8539928E-9
-2 3241743E~-8
. 2525219E-9

from Abramowitz and Stegun (1968),

41
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series.

Most students of mathematics have a good deal of
experience with convergent series, but they probably have
not worked seriously with many divergent series. We are,
therefore, now going to consider some examples of diver-
gent asymptotic series. This should enable the reader to
see how a given expansion behaves for different values of
the argumént, and how expansions differ for various func-
tions.

The firet function to be discussed is a modification

of the Error Function, erf(x), which is defined by

X
2
erf(x) ==$%: et dt, and the Complementary zrror Function,
(]
[o]
® 2
defined by erfc(x) = 2 e—t dt. These two functions are

e
X

related by the equation, erf(x) + erfc(x) = 1. We desire

an asymptotic excansion of erf(x) for X —= 0@ 2and use

, . 2 -t .
the equation, erf(x) = 1 - erfe(x) =1 = |e dt. We

will actually derive an asymptotic expansion only for the

©o

e
integral, e Y dt.
X 00
_t2
To obtain an expansion for I = e dt, we use the

X
technique of successive integration by parts, where we
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_t2

take dv = - 2te y U = ~-§%—for the first integration,

n
and u = (=1) '325 -(2n-1) for the n-th integration by
% n+1l

parts. This process gives us the following equation.

2 -X
(2.2 T = e ¥ag =8|l - 2o —2 o _ 32 , ...
: 2x 2x°  (2x°)°  (2x°)2
oQ
2
n _3:5:::(2n-1) n 3-5-.-(2n+1) [ ~2te” Y
+ ( l> ( Xc.)ﬂ + ( l) 2n+2 t2n+5 dt.

X
We now show that this last integral, rercresenting the

error in the avproximation to I by the sum up to the term

containing 1/(2x2)n, has the same sign as, and is less in

absolute value than, the n+l-st term:

o0 —t2
(-1)B %.5.. (2n+1)u/12te <l- lfHﬂ.B ~(2n+1)
X

2n+2 t2n+5 2n+1 2n+2
00
= (- l)n+l(%)n+l 1 Ste 2 at (- l>n+l n+l -t )
- 2n+2 il 2n+2
2xVyx 2Xt

(-1)m*1 5(5 gﬁfill .g; e * | = |n+l-st tern|.
2

Therefore, the maximum number of significant digits of
accuracy in I can be determined by the ratio of the least
term to the first term inside the brackets in (3.2). That

is, if the n+l~-st term is the minimum term, and if this



v
17

minimum is, say, - 0.3 x 10 ~/, then the sum up to and
including the n~th term should have 175, assuming that we

2
can determine e™X that accurately. It is the quantity

2
1 3 2:5
S=S(x)=2xexIr\/l- + = - + o o o
2x° (2x2)a (2x2)5

which has been computed and tabulated in Tables 3.2 to 3.5.

The next function which we shell discuss is

-Xt
Px) = —E———?-dt. Using (3.1), with z = 2 and N = n+l,
1+ ¢t~
2\n+l
1l 2 4 2\n (=t%)
we have — = 1 -t 4+t = e + (=t°)" + 224
1+t 1+ t°

Substituting this in the avove integral and integrating

term by tern, and using the result of Note 7, we have

00 00
~Xt 2\n+1
P(x) == 5 dt = Xt - t2 +oeat (__t2)n + ﬁi% at =
1+t 1+ %
o [}
o o0 o °°t el
-X n+
e *¥Pat - [e7¥0420 8 heuer [ ¥ PPt + o (s )2 at =
o 1l + ¢
0 0
m‘t 2n+2
21 ! ! TXU peny
X X b o 1+t
: - . 2n+l .
The error in the sum up to the term in 1/x is the

final integral above. Neglecting the sign of this

12<1f0r0<t<oo,
1+t

integral we have, since



TABLF 3.2 2

THE ASYMPTOTIC EVALUATION OF S = S(X) = E?xex i
THF CURRENT VALUE OF X IS 2.00
I Cl{I)s TERM OF SERIES
1 «100000020000C E+01
2 =+12500000000000 00 E+00
] «4687500000000000000 E-01
4 ~e2929687520000000000 O E-01l
5 —— o 25634765562500000000000000 £E-01
6 ~e2883911132812500000000000000E-01
7 «396537780751718750N000000000E-01
8 =e56443738937377329687500000000F-01
9 «1208201050758361816406250000E+00
10 ~e2567427232861516859863281250E+00
11 e 6097639678046107292175232967E+00
12 -+1600630415487103164196014403E+01
IMIN= 5 AND THE MINIMUM TERM IS
ct 5)= 0256347656250000000000C000 0E-01
N= 12 AND THE SUM OF L TERMS IS
«8925781250000000000600 E+00

THE BEULER TRANSFORMATION OF SERIES FROM IMIN TO N

I J TERM B(J) OF EULER TRANSFORMATIO
5 1 21281738281250000000000000000E-02
6 2 -e801086425781250000000C0000000E~-03
7 3 «95129C130615234375000000C0008~073
8 4 ~e3974139690399169921875000000E~-03
9 5 «3522355109453201293945312500E£-03
10 & ~e2974859671667214208314988281F-03
11 7 e3145951995975337922573089585F~-03
12 8 ~e3671658373605165890208005937£~-03

JMIN= 6 AND THE MINIMUM R(J) IS

Bl 6)= —~e2974859671667216208312988281F~03
HEAD= - «892578125000000000000 O E+00
STIFLTJES TAIL= «128173828125000000000000CN00F-01
EULER TAIL= e1292240805923938751220703125g~-01
STIELTUES SUM= «905395507812500000000C800000CE+00
EULER SUM= «90550053305923932875122070312E6+00

THE SUM TO & TERMS OF THF ASYMPTOTIC SEFRIES FOR
SH 2.00) IS «89257312500000C000000 E+00

45



TABLE 3.3
THE ASYMPTOTIC EVALUAT
THE CURRENT VALUE OF X

[T -

X2
ION OF & = S(x) = 2xe” 1T
15 5400

Cl{Iys TERM OF SERIES

«10000002000000 F+01

-+ 2000000000000 £E-01
«12000000000000 O E-02
~¢12000000000000 E-073
«168000CC000C0OQC0 00 E-04
=e30240000000000%00 £E-05
«6652800000000C0000C E-06
~e1729728C00000C00000 O E-06
«518G9184000000000000 O E-07
~e176432256000000000000 E-07
«670442572800000002002000C E~-08

-e28158588057600000000000C0000E-08
«1295295050649600000000000000F =08
~e64T64T525224R800000000000N0COF-09
«3497296636753920000000000000F=09
~e2028432049317273400000000G00E-09
e 12576278705767096322000000000E=09
~¢8300342945806283571200000000F-10
«5810240762064298439940000000E-10
~e42095781639276548858816000005~10
«33536709678635T0814107648000E-10
—e2750010193648L24067568271360E~10
«23650087665372390138108713369F-10
~e21285078898836511246297842032E-10
«2000797416490632C5483%971510F~10
~e1960781468160219415703172079F-10
+19999970975240358040172355205-10
—e21199960233754779522582695651F~10
«23319966157130257474684096616E-10
—e265847614191224%2352131870142E-10
«313700184745716222551560676TE~10
~e3827142253897727927329040255F~10
C4822159239911145T88434590720E-1 )
— W 62688590118844546724964957936E-10)
«84002710759252229314530570325~1 )
~e115923740847768C764540521870E-09
e16461171200383066R85647541055E6-09
~e2403330995255927761045409940E-09
«3604996692883R9156415681149105-09
~e5551694599041192125014896960E-09
eB87716774664850651422635371965-09
~e14210117495705837930466930256~08
«2358879504287169095457510421E-08

46



26
27
28
29
30
31
32
33
34
35
36
37
38
33

'8!
(%)

41
4z
473

TABLE 3.3 ~- Continued

IMIN= 26 AND THE MINIMUM TERMY IS
ct 26)= ~e1960761468160819415703172079E-10
N= 43 AND THE SUM OF 25 TERMS IS
«9810943073251908705630383417F+0.)

THE EULER TRANSFORMATION OF SERIES FROM IMIN TO N

J TERM B(J) OF EULER TRANSFORMATION
1 +9803907340804097078515860395F~11
2 .98039073Q08040@707“51/VQOZSOE 13
3 ~e1005802456102821999087133625E-12
4 « 1009793748674929411138840000E-14
5 ~e35200%29 'O7157110560A1‘18'z5F 14
6 .5972001 1]4111714%95>421‘7C 15
7 —-2416906‘9 LLOLNTB1E658T30468F~15
8 e 6725257249843 071901i1914002F—76
9 —e27006652007844250802499521256-10
10 «99713366412063373378%8 534087F—1/
11 —.4?2)1)/642,““199%3944bv8 593£-17
12 «1905415719053024818070190429E~17
13 ~e91401240060610672284536523437FE~18
14 «A45T152987801029 7852904663085 -18
15 —e 2422529154943 7878173132324215-18
16 e 1342547649452G8016644T72876958~

17 —~e 779569150572%9220241G5480346565~19
18 4T720654436020210945312332153F-19

JMIN= 18 ARND THE MINIMUM B(J) 1S

B( 18)= e 4T2065442602C210946312332153F~19

HEAD= «G81094307325190870563038341TE+00

STIFLTJES TAlL= .9805907340“0»“”’07851:360395F*11
FULER TAlIL= « 980295 613QO?/)U’““+f109847985—11
STIELTJES SUM= .98109430/)1‘3’ GOR222234244TE+00
FULER SUM= «8810943072152879144090103505E+00

THE SUM TGO 25 TERMS OF THE ASY¥PTOTIC SERIFS FOR
St 5400) IS +98109£30722310027056302383417F+00

47
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TABLE 3.4 2
THE ASYMPTOTIC EVALUATION CF S = S(X) = 2xe> I
THE CURRENT VALUE OF X IS 7.50

C{1)s TERM OF SERIFS

1

«100000000000C ~+01
-~ BB8B88EU0EBERBBoB8B8R8888888E-02
«e237037037023702703703T7037Q3E2E-02
-2 10534G7C422386831275720164608E~04
.555309Q203181727“37“1%357560E*06
e S 24407864654 TT8435025148604648E-07
051275435655133”/18“9;456413)E~O8
5925161423482136530487674L0TT6E~ 09
-79032152/150.51507316H931701f
-e1193810307664%4 QQQ*SP‘¢G463;~1J
«e201621296405568:561625411278E-11
~e3763507532G0394095838794677176~1"
.76944660672/w279513lio7,j998r~13
~e1709881248282284291510829777F~13
e 410371522587 T7422200345991463F-14
~-e 1057846554173 7’“Hﬁ&&53563J35+:-14

ho;
i

r

g

e 291495505940057804484823412%E-15
—e855053484090836£2648881534437-15
02660160, S4LG4Y ZF\UCG\).L\ v/’-/+2') ‘J.Qr"‘l()
~eB7489516989442600%3727532800E~17
303298375896 T736453485925544704F-17
—e1105254091979200628003620726E~17
.422490907%7H72P 237163329481 28-18
.16097(3589?1%?8 494%377‘7924F~]£

0 70602G2329528834067447521992F~17
—-e3075149 a7972F5{ I82550318200F~-19
e 1394C6T77950808932400132934416F-19
—~ e B56T6CE2T9QLTTHRLLTIAR21I202126F-20
e 32108307142011291546814765995-20
~e16263820895165235771503948143E-20
«e8531771805912807779S467372481E~-21
—e4620116268094%4466H2G15641966F-21
e 25906251 1012216Y011222759500E-21
~e 149680361 3188C532064900288228-21
8914209020G421855408740083983F-272
~e H5UGTLLU2ERELITTRTESTLIT250588428~272
«34580563G422100351341452312689E~22
—~e223%0226028007323G0°278686232F=-22
e 1492683401566 715593351%104154F-272
—.10216622-35@77+42d7%¢”0757315~22
e T1T7433959296L034729%51376243E~-23
—eH165524506G21945005554990894E-23
«3811C0CY9191780601648550171059E-253

48



TABLE 3.4 -- Continued

L4 ~e28794291671233472122379070Q22F=23
45 o?2267)835“9057423HH463;P‘429E 23
46 ~e1761613435341122598278171974F~-23
47 o1424949r343648lul6*3 5010218523
48 ~e 1177958281 7415838458649417E80E~-23
49 QIGT7 2032660400641 365081LT730586E~24
50 ~.85766“Qi0066)6*gbb7 1Q2692149E-24
51 e 154 TUIBT4LIB60T75C 3859855690895 -24
52 —e&ETT5CTR05491GH81T5986259G8028-24
53 6203780598 7262810775186466265~-24
54 ~«579019522547723623393G07T237132E-24
55 «5507119C1L4454500180576078871E~24
56 ~eH33ETBEL22E8G36S35N8291489745F-24
57 —— e G B26LGL2603G21TTTSGARLTEQB21TE~24
58 —~e52RB04101E494TE32T723046925RQ6F =24
59 « 5405552038061 3135630035242468F=24
60 = e 5821775129582 766110723662217E~-24
61 e 59465888254 T7GE281526T76588095F-24
62 —eH3C588565E505290724212152529E=-24%
63 «69G28360800641845251385820087FE-2¢4
64 —~e 176981786673 TS8LBOBTQF8TTERL4E~24L
65 o BT712610584508 783673342379 21F8-24
&6 ~e 1005771268020 70071945424083534E-273
67 e 1171164765446015948875T721348FE-273
68 ~+1384577011593956632893075016F~-22
&9 « 166149241391 2747953471690019E~-23
7C ~e202332853950%20 19592344 134238-23
71 -24999)4?17Q2QJ6*97A36/]$6 08FE-23
72 ~e313225163R244%054107557138805-23
73 3982/1CC?1@C/3019@&/p66318645-23
T4 —e5133271G1870274L785547214401F~23
75 «56707475207104%1982311502568106E-23
16 ~eBE8B36TB406TL3L0496]10]14568848E~-25
IMIN= &7 AND THE MINIMUM TER 1S
ci{ 57)= eS5264642603921777594847603217E~24

N= 76 AND THFE 5UY OF 56 TERMS IS5
«29133822084156307362189920439E400

THE EULER TRANSFORMATION OF SERIES FRCHM IMIM TO N

1 J TERM B{J) OF EULER TRANSFORMATION
57 1 e2632321301Y6088E87974238015608E-24
58 2 ~e584G6028532464L1954583055697508-27
59 3 e11764201374619557709465945850F-26
606 4 -e2872804G76461015378915841875F-28
61 5 0 1651552326950306394ATRR58125E~-28
62 6 ~a11346L06526783725275750140626-29
63 7 e 41996152524510325010434921587E~-30

49



64
65
66
67
68
69
70
71
5

73
74
75
76

TABLE %.4 —- Continued

8 —e5358827992392900351887265625E-31
9 2 1651893660583419245225605468E-31
10 -¢31167497483897609049472656256-32
11 «91702355465652581468672851562E-33
12 —e2220732460193617257705078125F-233
13 «6T03958727403299020261220468F~34
14 -e19143772624205106582972412109E-34
15 e6128109373794952019RG7440937E-35
16 ~-e1967395261742344963989257812F=35
17 e675231982622514481387532910156E-36
18 ~—e2374371716582633183326721191F-36
19 e BTL24560563523724G4888305664E-37
20 ~e331771802240770395726694335%E~37
JMIN= 20 AND THE MINIMUM B(J) IS
' 3( 20)= ~+33177180224077032273669432598-37
HEAD= «99132822084156307326318990439FE+00
STIELTJES TAlL= «2632321301C46088837874L23201608F-24
FULER TAIL= «26381086234000007472227425740F-24
STIELTJES SUM= «F9133E82208415630726318993071C+00
EULER SUM= «9913382208415630735318993077E+00

THE SUM TO 56 TERMS OF THE ASYMPTOTIC SERIES FOR
S T«50) 1S «991338220841563C72531899043%E400

50
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TABLE 365
THE ASYMPTOTIC EVALUAT
THE CURRENT VALUEZ OF X

2
ION OF $ = S(X) = 2xeX T
IS 1C.00

<

C{I)s TERM OF SERIES

«100000C00000C E+0Q1
~«50000000C0000 E-02
« 75000CONODO0ON D E-04
=« 1875000000000 0NON E-05
«EH6250N00000000N0OANN F-07
—e29532125000000000N000 O E-NR
«162421875000200000000 £-09

!

¢ 10BRTLZ2IRTEOCOD0O0NNNNLON E-10
e 79180664C625C000DNDNDCCOANNNE-T2
e6573035644531250000000C000000E-13
«639383BE230468750000000C0000E-14
e671353055419392187800000000008~-15
« 77205601373291015625000000005~-16
« 96507001 7146613756953125000000F-17
«1302844523174285888671875000E-17
¢«1889124558602714538574218750F~18
«29281430658342075R479G039062E-19
483143605 8R264424324023854452E-20
«8455013102596274256705237731F-21
«15641774239803107374506539915~-21
«30501459767616059281067752828-22
—e 5252799252361 29.172116689328E~-23
« 1344251339576 778172205612055-23
«3026G7916538329TT75083746462T711E~-24
« 710826035007 4371458553717370F~-25
e 17TA41523785768260007245650755E-25
L4 40BEHE53T70G223841873231424925E-26
e 11768346%8222%T7458094638302355~26
e 32262954201 406R03T72650333201F-27
e 9223441347400 03906205%34019622F-28
e2720G152744822770232305935788E-28
«82G87G1892173954921085104153E-29
¢ 261411946460348084001461177808%-29
e849538219961312730045382787T6E~320
e 28461225468703976456533707338E-30
«96191227867028718775052903168-31
« 348578065852 7951%516514378062E-31
«e1272212835087024623227747392E~-31
CO4T7T1172131576%4233822%054%970E-32
«18369C16556356891300218186163F-22
a 1255761539844 722610P618353435-373
«2938582423627112657299043313F-32
«1219512120809401752220602%74F-33

i

¥
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TABLE %3.5 -~ Continued

44 ~eD182926512439957449687562639F-34
45 e 2254573033346381L49052 708 T47TE-34
46 -+ 1003284959839 13%763284554G37F~34
47 U564 LETH492680859229447240635-35
48 —0212270023840965595416G297107F-35
49 « 1008282513244583478230416&125F-35
50 -~ 48901706 7423623411941 7518206F=-24
51 24206344583 746945789111671511F5-356
52 ~el1222420416292207623501394112F~36
53 0629546513360486926103217556831F-37
54 ~e¢33051191951425563462041894332E-37
55 .1768238769401?‘7%%3692413#67E—37
56 —eS5636901293236G00712623653365E-38
57 .93484802L7/LéASAjJ5J0612763QE‘38
58 ~e3021891323020762649560762113F-38
59 e 17375E751074C38v0984975%553214FE-28
60 —e 1016488693782 127622521068630F-38
61 «604810772800960%3545G53583348F-3¢C
62 —e3650105175445513658520191300F-29
&2 2250345682899175400611067257F-36
&4 ~.1Q0646 5518119245253 5.917473F=-3G
65 e 8931075230400CH1IN2371175173983F~40
66 ~e576054357108393A02%407908480F ~40
67 ¢3773155035059G750952462232460E~40
68 ~e25091487659748854360093345655-40
69 «16936754170230676693056334594F-40
70 ~e1160167660667563T756534TL83331Y6E-40
71 e 806316524 16400515916501324L2F~-41
72 —e 5684531498356 2575926133433605-41
3 4K LLL4NDIGITOTZ241T78TIER4Q04L9%F -4 1]
74 -~ 29467180 12CORRNNG2SETCYAIRBERS L]
75 e 21658234 75220295521734642265%E-41
76 —-161354§66&O’“’”45675923u AR TF-41
77 e 121822G9%£348501071087692GCT7E~41
78 —-9319459472074,7637Q97007ﬂ7ﬂ85~&2
79 e 712225810%0857643398586159321~-42
80 —e 56697261263 2225006T78%0125NKEE-42
81 .4507432294276C893"”7/5057«/7t~42
82 ~e362R4L4B2OCHEY29TL96219T92U 1 EEF 42
83 2957212342467 77T214%9191361138E-42
84 ~e 2439701255020 17023082872980QF-42
85 e 203715054 7GH498653Q2741G8038F-42
86 —e17213922123021C63625686RC33102F-42
87 e 14 T1790R4 21337 T4RSGIAKZI2HRTTE =42
88 —e 1273098645545 71 6T484ATZ29TLAE =42
89 «1112%956131520250¢% ?Oﬂ”” SRLTTFE-42
S0 -eG858557639542159588445127756F-43
91 -8823469087?P0234Q04u00653075F—43
92 - 1585185224 088180688350021022F-473



TABLE 5 5 -~ Continued

92 e T306LLA4LB800L066TO22RL40269244F~473
94 —e675846114403761T7002602249050F~473
95 e63191611696751719974331025861F-43
%6 e 59716073054 ENITLLANTHR2RP203E~43
97 .570288a0766026no7L81 159395035~
o8 ~e5503284002421504%772 léOildln?OC—aJ
99 53657019 U/%éuv/LQ°Q611154079L—43
100 —e5285215373825587400480484T79TE~45%
101 ——— e525875029195642962144405253736-43
102 —e 52830042434 16211L7T695512T2634F~43
103 e 536436050706 T4549460G4541T723F 43
104 ~e5498469519744141319T46905266E~43
1C5 ¢ 5690915982925 1 8626593304695 0F <473
106 —e59470071708172A6G647305259nNA2E 43
107 .6?7409?565212?19478540048310?*&3
108 ~e668150858195101374464L5151450F -
109 e 7183051725658 733%77546525378 oar-a,
110 ~e 7793611122272 1365641C4885215-453
111 e 8534004 1L T888Y05Y453TES484930FE-43
112 —eJ4300746175724106964152808475~473
113 10514532 198706737926503023814F-42
114 ~e11828849848542830147231591790E-42
115 e 134257445780G611223390356681F-42
116 ~e1537247754162C045851468958390F 42
IMIN=1GT AND THE MIMIMUM TFR'™ 15
cl101y= «5P5RT7G029195642G621 4040023 73E 473

=116 AND THE SUM OF 100 TER™S IS
«99507321878244697473807371968F4+00

THE EULER TRANSFORMATION COF SERIES FROM IMIN TO N

I J TERM B(lJ) OF EULER TRANSFORMATION
101 1 026293651459 78214810722026186F-43
102 2 ~e65T7348TE64TLE5H3TNZE8050652508-46
1032 3 e H62278502383262¢ 334)06104 2OF =46
1C4 4 ~e1156523021228E55472CA532522500F 47
108 5 .5169483286466?711lLL@3°37SOOT—AQ
10 6 e Z2319E5L6TE2YBBTEEL42 14147 1IHTHQF 4GS
107 7 o70°97“ TANAELTLGASCNNTNR L2550 =50
108 8- eS5T78469CT056G450432712203125005-51
149 9 .14994 6967500054063009375000F-51
110G 10 ~e 1771654872576 71156310066%359375~-52
111 11 41281806 T41I34G05YHER0H604L406250F~-53
112 12 —eb8114252206500353812744614062E~54
113 13 e 1515408879058268436767578125E-54
114 14 —e2930561115460640CHL6T7 7246093 7T0F~E5
11% 15 ¢ 69032C07609974079257202148437¢ - 36
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TABLE 3.5 -- Continued
116 16 ~e1526178942185392439270019531FE~56

JMIN= 16 AND THE MINIMUM B(J) IS
Bl 16)= ~e15261789421852392439270019531E~56

HEAD= «GIB50T731BTEL24469T7T4T72807371G6RE+00

STIELTJES TAIL= «26293551459T78214810722026186E-473
EULER TalbL= «262337883529481715354556127798F~-43
STIELTJES SumM= ¢ 995073187824469T74733073715968E400
FULFR SUM= «99507318782446G7472807371968F+00

THF SUM TO 100 TERMS OF THE ASYMPTOTIC SERIES FOR
SU 10.00) IS 499507318782446974673807371968E400
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0 (2]
Xt 2n+2
-xt ,2n+2 ., _ (2n+2)! .
1 . -t2 at < e t at = _PH:‘“T e Again,
(o] o

therefore, the error has the same sign as, and is less in

absolute value than, the first term omitted in the sun.

K

xt
So we write F(x) = e T L E (- l) (Zn)l and
l + t

the error, E,(x), is the same as, and less in absolute
N ?

N+1 - .
velue than, the next term, (-1 2N£§h+2). « This
X

approximation holds for W =0, 1, 2, « . . and so is a
complete expansion. This series is asymototic for x— 09,
and we would accordingly expect its accuracy to improve as
X increases. Since the minimum term (in absolute value)
is a measure of the maximum accuracy attainable, we have
tabulated the minimum terms in the expansion of #(x) for
various values of x in Table 3.6.

One can see from the table that this expansion for
P(x) is practically useful only for x > 20, whereas some
of the previous expansions for x—= oo were useful for

smaller X.



TABLE 3.6

ACCURACY OF THE

BEXPANSION OF THE FUNCIION

00 't; o0
-X n
Mx) = - 5 dt /'\./E ( l)2n£§n)!
R 1+t neo X
Number,| Rela- |Number of

n, of tive Signif-
Least Least Error icant

X Sum up to the Least Term Term Term in Sum |Digits
5/-.08 .384 E-1 2 1.5 1
10{-.0179 ~.363 E-3 5 1.02 3
20| -.485995 E-2 .232 E-7 10 |.5 E-5 6
501 -.79620508315550446 E-3 -.349 E-20 25 |.4 E-17 17
100/ -.19976071600381751 351709617055 B-3| .933 B-42] 50 |.5 m-38*| 26"

~ Superscript minus means the final digit is probably in error.

* The actual error is not really so small.

calculations.

See next note.

Therefore, the actual error is due mostly to

round-off and, after fifty terms, likely affects the last

two digits of the twenty-eight.

The asymptotic error is considerably less than the 28S of our
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CHAFTER IV
CONCLUSION

We have seen that a power series in x is asymptotic
for x—— 0 and is useful for computational purposes Tfor
values of x close to the origin. An asymptotic expansion
for x— ©O is similarly useful for large x. Where one
has computational difficulties is for x in the midrange,

say for 2 <<x < 20. If an integral such as that defined

00
by F(x) = | £f(x, t)dt is to exist, then the integrand
o
must have a strong decay factor, such as e—t, and have the

horizontal axis as an asymptote for t —== CO.

Such a geometric situastion as an asymptote can often
be closely aprroximated by a rational function much more
easily than by a power series in x. For ratiomneal functions
can have asymptotes in any position in the plane. On the
other hand, no polynomial ever had an asymnptote; and for
computational purposes, a power series in X is only a very
high order polynomial.

Another means of aprroximation in the midrange is the
use of continued fractions. These, however, are difficult

to apply when one desires fixed minirum accuracy. These

o7
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and other techniques are discussed in the current journal
literature and in various textbooks, such as Acton (1970),
Hamming (1962), and Hildebrand (13956).

One seldom obtains something for nothing. Therefore,
when an asymptotic expansion, designed really only for
investigating the behavior of a function for values of an
argument tending to some limit, harpens also to be useful
for calculation in some sizable neighborhood about this
limit, then this would seem to be an occasion for glad~
ness. We shculd, therefore, make thankful use of such
asymptotic methods when they are applicable and look for

the next easier method when they are noft.



APFENDIX I

THE IMPROVEMEINT OF ASYMFTOTIC APZROXIFATIONS
AND THE TRANSFORMATION OF SERIES

At the end of Chapter II mention was made of some
techkniques to improve an ssymptotic approximation, such
as Euler's transformation and Shanks' transforrations.

We now comment briefly on these transforzations.

If for some function of x, one has power series
expansions in x and in 1/x which are asyuptotic for x—=0
and for x—= OQ, respectively, then there is usually
some nidrange of x, a < X < b, wherein neither series
gives satisfactory service. What is often done in prac-
tice is to sum a convenient number of terms of the ascend-
ing series, the power series in x, and then to arply the
Euler transformation to the remaining "tail" of this
series.

Then, for the same value of x, one sums the descend-
ing series,'the series in 1/x, to a number of terms which
is determined by the behavior of the particular series,

If this series is divergent, then the sum is taken up to
but omitting the term of least absolute value. The Euler

transformation is then applied to the diverging tail.
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The Euler terms obtained in this way usually become
smaller in absclute value for a time and then begin to
grow in size, reflecting the behavior of the original
series. The partial sum of these is taken, first omitting
the smallest term. The LKuler transformation is then
applied to this new diverging tail. The process is con-
tinued until good sense or fatigue dictates a halt. All.
these partial sums are then added together and the result
called the corrected sum of the descending series. This
prolonged process, hopefully, results in a greater number
of significant digits than were had from the original
series.

After this, the results obtained from the ascending
and descending series are compared. The digits for which
these two values agree are then very likely to be correct.

Alternatively, sometimes the ascending (convergent)
series 1s sunmmed to a convenient number of terms and the
tail "Eulered." Then the process is reveated, summing a
different number of initial terms and Eulering that tail,
The digits which agree in these twec quantities are then
regarded as being correct.

For series of sgecific type, the Euler transformation
often induces coavergence in divergent series and can
accelerate convergence in convergent series. rfortunately,
the more slowly the original series converges, the more

rapidly convergent is the Euler-transfiormed series.
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Regarding x as a complex variasble, 1f the series
satisfies the requirements associzted with the Euler trans-
formation, then the transformation Jjust extends the region
of convergence of the series. The most helrful sources on
this topic seem to me to be Knopp (1854), pp. 244-7,
262ff, and 468ff; Bromwich (1926), pp. 62-8 and 318f; and
all of Rosser (1951). Ames (1901-02) discusses the Euler
transformation without calling it by name. The content of
this paper is troubled with errors and is covered much
better in more recent literature.

Since Rosser (1951) is current and well worth read-
ing, an error there should be noted. On page 56, column 2,
line 9 from the bottom, an additional factor of x is need-

ed. This line should read:

AN m
(=x) X m!
T XX 1+ x (N 4+ L1)e o o(H+m+ 1) °
m=0

In Rosser's accompanying numerical example, nis choice of

x = 1 allows the error to remain hidden.

Apparently not much work has beesn done on the problem
of optimum separation of a series into a head and a tail,
in connection with the use of Euler's transformation. The
author of this present paper has performed some numerical
experiments along these lines, but so far there are no
illuminating results.

Also mentioned before were Shanks' transformations.
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These non-linear sequence-to-sequence transformations are
discussed in Shanks (1955). An example of such a trans-
formation is {SA}"—4>'{Tn} which is defined by the
2
Snel ~ Sy

~ -~ ., The reader will note
* bn+l Ebn

Sn-—l

equation T _ =
n Sn—l

that this is Jjust Aitken's 52 process, but it occurs
naturally as a specific instance of Shanks' more general
transformations. Applications are given in Shanks' paper
on inducing and accelerating convergence, summing numeri-
cal series, generating continued fractions from series,
and the generation of a sequence of rational function
approximations to power series, useful in conjunction with
the difficult midrange evaluation of asymptotic series
mentioned earlier. Also included are some examules of the
use of these transformations to detect errors in tables
and in formulae.

The theory developed by Shanks is uniformly arpli-
cable to summing divergent series and accelerating the
convergence of slowly convergent series. This is not
rossible in using linear transforrations.

The literature on linear transformations of series
and sequences is large and has been long in the making.

In contrast, the literature on non-linear seqguence trans-
formations is small and recent. Shanks' paper on the

subject constitutes a major portion of such work.
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Other methods of transforming series include convert-
ing the series into a contour integral and evaluating the
integral by means of Cauchy's theorem, sometimes leading
to a new series which is more rapidly convergent. Another
technique is the use of Mellin transforms, a class of
integral transforms discussed in Macfarlane (1949),

In much of the recent literature on asymptotic expan-
sions, use is rade of a technique called converging fac-
tors, due to John R. Alrey. ZEssentially this method takes
the divergent tall of a series and exrpresses it as the
first term of the tail tTimes a numerical factor, wihich is
derived from a transiormation of the original series.

This method is discussed at length in Airey (1937), in
Dingle (1958) and (1959), and is mentioned in the mono-

graph, Erdélyi (1956).

APPENRDIX II

ADVANCED TECHNIQUES FOR OBTAINIEG
ASYMFTOTIC EXTANSIONS

There are several additional technigues for obtain=-
ing asynptotic expansions of functions of a complex vari-
able. The first is known as Vatson's Lemma, which gives
conditions under which the term-wise Laplace transform of
a series gives an asymptotic expansion for the Laplace

transform of the sum of the series. That is, for an



aporopriate f(t), F(x) = U/:- () at = n/r *
X
o

A simple example is discussed in Rainville (1960), on
rp. 41 ff.

The secondtechnique is known as the method of steep-
est descent, and originated with G. F. B. Riemann and
P. Debye.. There are also the methods of Laplace and
stationary phase and the saddle-point method. These are
discussed in Erdélyi (1956), Jefrfreys (1962), Copson
(1965), Jeffreys and Jeffreys (1956), Friedman (1959),
and in Evgrafov (1961). These books, zas well as much of
the late Jjournal literature, are concerned with asymptotic
approximations which hold uniformly in some region of the

complex plane,

PENDIX IIT
RECENT WORK IN THE LITERATURE

Recent papers on asymptotics, or on topics which are
ancillary to asymptotics or to other subjects mentioned in
this paper, are included in the bibliography. It is by no
means intended to be a complete list, but rather only a
representative view of the extent to which the ideas of
asymptotics have become part of the fabric of current

mathematical and scientific work.



NOTES

1. In addition to Rainville (1960), p. 2299, and (1967),
pp. l44-7, one can find more discussion in Franklin (1964),
Dpe. 546-52, and Exercises 8-11l on p. 5763 in 3Bromwich
(1926), pv. 297-303; in Courant (1957), Vol. I, pp. 421-2,
and Exangles 3 and 4 on p. 446; in Pierpont (1959), p. 289
and pp. 310-7; in Abramowitz and Stegun (1968), Ch. 23; in
Whittaker and Watson (1952), Art. 7.2 on ppr. 125-6; and in
Knoprp (1854), poe. 183, 203-4, 237, 475, 523, and 534-5,
When using these numbers, one should be aware that
various systems of notation exist for them. OCne system

has Bo=l, B1=—l/2, B2=l/6, By 4170 for k = 1, B4=—l/50,
B6=1/42, 38=—l/50, etc., with a continuing and regular

alternation in sign. Rainville, Franklin, Xnopp and this
paper use this system. Another system disregards the
first two numbers, 1 and -1/2, and then orders the remain-
ing non-zero Bernoulli numbers, those with even subscripts
in the previous system, in serial order, beginning with
Bl=l/6. In this system the Bernoulll numbers are all
positive, using the absolute values oi the numbers in the

first systen.
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NOTES --~ Continued
2. See Bromwich (1926), Ch. XII; Copson (1965), Ch. 1;
Jeffreys (1962), Ch. 1; and Knopp (1954), Ch. XIV.

3. See Bromwich (1926), pr. 329-31, p. 340; and
Whittaker and Watson (1952), Art. 12.33, pp. 251-2.

4, See Salzer (1954), p. vii; Davis (1933), p. 180; and
wrench (1968), ¢p. 618-9.

5. To compute elOO7T we would use loglo(ex)=>clogloe

and e* = explo(x loge) = 10¥ loge  guehn computations
constitute one of the principal uses left for logarithnms
to the base ten after the wide=spread availability of
calculators and comyuters. Another use is the computation

of Inx for large x, using lnx = (1n 10)(logx ).

6. There is an error in Abramowitz and Stegun, (1968),
p. 231, entry (5.1.51), where it is stated that the
exvansion 1s valld for Z in the sector defined by

Iarg Z'<:€%7T. It should bve Iarg Zl<: %;u Compare
with (5.1.4), p. 228, of the same work.

> ")
-{xt n
-xt . n _ e~ *Y (xt) -
70 For x > O’ fe t at = Xn+l xdt =
° o
o0
1 n!
1 -W _n o - & P -
e wo dw = _n+l l (n+1) = L o Setting w=xt.
[~]
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NOTES -- Continued
8. The reader might wonder why, when we are interested
in El(x), the table contains values of x e~ El(x). The
answer is that the "auxiliary" function, x e~ El(x), is
better behaved, i.e., is simpler or more nearly linear on
the tabled interval, than the original function, El(x).
Interpolation in the table 1s then easier and more accur-
ate; and El(x) is easily recoverable from x e~ El(x),
since e* is well tabulated.

As another example of an auxiliary function for the
purposes of tabulation, suppose that some F(x) has a
singularity at, say, the origin, and that i{ behaves like
- 1lnx there. Then the auxiliary fuanction F(x) + lnx
would be much ezsier to table in the vicinity of the
origin than #(x) would be. See Abramowitz and Stegun
(1968), p. x; Fox (1S56), pp. 5-7; and Goodwin and Staton
(1948), p. 320,

9. BSee Copson (1965), Ch. 3; Jeffreys (1962), p. 2;
Copson (19%5), p. 230; and Abramowitz and Stegun (1968),
pp. 230 and 260.

(7]
-t
10, To verify that - a -B§~:f§-dt is a solution of
[+
o
a e~V

. w1 _ 8 - o e

the equation y' =— + by, set F(x) a [T dt.

0

67



NOTES —-- Continued

%t ab
Then we have F'(x) = ab > . Now we have,
o(bx + t)
integrating by parts on the right, with u = e'"JC and
dv = dt 5, du = - e~tdt, v =‘Tsé;%fg‘ and
(bx + t)
& oo 00
t -t t
F'(x) = ab e dt -~ = ab e f e dt
(bx + t) bx + t A obx + t
0
00 .00
ab(._.l_..) - b —-g:f-d__t— - i + b(_a) ___e.:i(.i_l - ._8:_ + bF (X)
bx a bx + t ~— x bx + t ~ x *
0 o

Therefore, y = F(x) is a solution of the differential

equation, y' =-§{—+ by .
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PROGRAM FOR TABLE 1.1
ASYMPTOTIC APPROXIMATION OF EULER*®'*S CONSTANT

%2805
C
C
10
15

1 + 172 + 1/3 +6ee+ 1/N =~ 1/2N - LOGN +
B{2)/2N¥%2 + B(4)/4N¥%4 +,4, = GAMMA

DIMENSION X(300)+8(60)sC{60)sR(60)

TYPE 160 '

ACCEPT 150N

Y=N

DO 10 I=1sN

Fl=1

X{11=1e/F1

PUNCH 100+s14X{1}

CONTINUE

SUM=0,

DO 15 I=14N

SUM=SUM+X (1)

CONTINUE

SUM2=SUM—=e 5% X {N)-LOG(Y)

Z1=e5%X(N)

Z2=L0G(Y)

PUNCH 110+21+Z22sS5UM2

23=10

B(l)=-65

B(2)=1e/6e

B(Q)z’lo/aoo

Bl6)=1a/42.

B(81=8(4)

B(10)=5%./66,

B(12)=—-691./2730.

B(l4)y=7e/6.

Bl16)=-36174/510,

B(18)=43867./798.

B(20)=-174611+/330s

B(22)1=854513./138,

B(24)==2363640914/2730.

B{26)=8553103s/6,

B(281=-23749461029./870.

B(301=8615841276005./14322,

B(321==-7709321041217./510.

B(34)=2577687858367e/60

B{361=-26315271553053477373,/1919190.

B(381)=2929993913841559./6.

B(40)==-261082718496449122051/7/13520.,

B(421=15200976439180708C2651+./1806.

Bla4s)y=~27822269579301024235023,./690,.

B(46)=596451111593912163277961./282,

B{48)=-560940336E8997817686249127547./46410,

B(50)=495057205241079648212477525./66,

B(52)1=-8011657181354859573479249919,52/1590,

B(54)=2914996363488486242141812381.E4/798.

BI56)=~2479392929313226753685415T744ET/87C,
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PUNCH 1195273
IDUM=1
PUNCH 120sIDUM.B(1)
DO 20 1I=1+28
J=2%]
PUNCH 120s4sB(0J}
20 CONTINUE
PUNCH 125
DO 25 1=1+27
JTOP=2#(1+1)

JROT=2%]
F1=1
R(I)=((8LJTCP)/BIJBOT) I /Y*%2) % (FI/(FI1+1e))

PUNCH 130s1sR(1)
25 CONTINUE

PUNCH 140

DO 30 I1=1+28

IBRY2=2%1

F1=1RY?

C(I)=RB{IBY2)/(FI*Y%¥%IRY2)

PUNCH 14551+sC(1)
30 CONTINUF

TYPE 135

ACCEPT 150K

BERNOU=0.

DO 35 I=14K

BERNOU=BERNOU+C ()
35 CONTINUE

SUM3=SUM2+BERNOU

IMIN=K+1

PUNCH 155sSUM3sC(IMIN)
100 FORMATI(26Xs2H1/1251H= E34.28)
110 FORMAT(26Xs5H1/2N= E34,28/26Xs5HLOGN= E34.28 /

1/726X39H1 + 1/2 + 1/3 +eee+ 1/N ~ 1/2N - LOGN =

2 /31XsE34,28 )
119 FORMAT(//27Xs27HTHE RERNOULLI NUMBERSs B(N)/

1 25X6HB( 0)=E34,28 )
120 FORMATI(25Xs2HB(12+2H)= E34428 )
125 FORMAT(///12Xs 15HTHE VALUES OF I 12Xs4HR(I) /)
130 FORMAT(19Xs12510XsF942 )
135 FORMAT(42H WHAT IS Ks FOR SUM OF R-TERMS UP TO B(2K))
140 FORMAT(///24X34HTHE RBRERNCULLI TERMSs B(2K)/2KN%%2K//

1 20X1HK12X13HB(2K ) /2KN*¥%¥2K/ )
145 FORMAT(19Xs12s10XsE34428 )
150 FORMAT(12)
155 FORMAT(39HTHE APPROXIMATION TO EULER'S CONSTANTS

110HGAMMASs IS /21XF344,28//3X1THAND THE ERROR IS

2 11HBOUNDED BY €34,28 )
160 FORMATI(8HN= (1I2))

STOP

END



PROGRAM FOR GEOMETRIC SERIESs TABLFE 2.1

*¥1505
DIMENSION A(100)+5(100)
PUNCH 1
All)r=1e.
S(1)=1.
DO 100 I=2s25
A{I)=~-Al1-1)/6.
S{I)1=S(I-1)+A(1)
J=I-1
PUNCH 53sJsS(J)YsALT)
100 CONTINUE

1 FORMAT(19Xs1HNsI11Xs4HSIN) 919Xs6HAIN+1) //)

5 FORMAT(17X9I1395XsF18e¢1535XsF18.15)
STOP
END

FOR TABLE 2.2y THIS NEXT CARD REPLACING THE OLD ONE.
5 FORMAT(17X91335XsF18,1596X9F21:15 )



PROGRAM FOR TABLE 2+3s ASYMPTCTIC APPROXIMATION

TO x & El(x)

%1505
DIMENSION A(1001).5(100C)
PUNCH 1
Al{l)=1.
S(1)=1.
DO 100 I=2+25
F=1-1
ALT)==F%0a1%A (]~
S{IN=5(I-1)+A(1)
J=1-1
PUNCH 5sJeS5(J)eA(])
100 CONTINUE |

1 FORMAT (10X s 1HN T IXs4HTIN) 919X eAHCIN+T) /7))

5 FORMATUIL1T7X 1348 X+F18a1595XeF18415%)
STOP
END

1)



PROGRAM FOR TABLES 3.2 TO 3.5 2

ASYMPTOTIC APPROXIMATION TO S = S(X) =2Xe

#2805

100

150

200

300

330

325

210

215

X1

DIMFNSION C{100)sA(100)sB(100)sU(100)sVI100)sH(10)
PUNCH 48

TYPE 10

ACCEPT 11l X

TYPE 12

ACCEPT 13s LLslLU
PUNCH 43X

Cll)=1.

IDUM=1

PUNCH 15sI1DUMsC(1)
DO 150 I=LLsLU
F1=1
CUlI)==C{I=1)%(FI1-165)/X%%2
PUNCH 15s1sC(1)
CONTINUE

TYPF 12

ACCEPT 13s LbLs LU
IF(LLY 30093005200
CONT INUE

GO TO 100

CONTINUE

N=LU

IMIN=1
EM9=ARS(C(1))

DO 325 I=24N
IF{ABSIC(I))-FM9) 33093254325
IMIN=1
EM9=ARSI(C(11))
CONTINUE

PUNCH 30, IMINs IMINs C{IMIN)
K=IMIN-1

HEAD=0,

DO 210 I=1sK
HEAD=HEAD+C(I)
CONT INUE

PUNCH 353N sKsHEAD
H{1)=HFAD
NTATL=N-K

DO 215 I=1sNTAIL
LDUM=T+K
A(T)y=C(LDUM)
CONTINUE

PUNCH 20
Bl1)=A(1l)%45
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340

345

350

385

380

351

355

JDUM=K+1

IDuM=1

PUNCH 21sJDUMsIDUMR(1)
B(2)=(A(1)+A(2))1%,25

- JDUM=K+2

IDUM=2

PUNCH 21sJDUMs IDUMsB(2)
U(1)=1o

Ut2i=1, .

DO 335 I=3,NTAIL
IDUM=1-1

DO 340 J=2s1DUM
VIJ)=U(J)y+U(J=-1)
CONT INUE

DO 345 J=2,1DUM
Uutdr=vied)

CONTINUE

UlIy=1.

T9=A(1)

DO 350 J=2s1
TO=T9+U(J)*A(J)
CONTINUE
BII)=TO/2 %]
KDUM=K+]1

PUNCH 21sKDUMsIsRBR(I)
CONT INUE

DO 36C I=1sNTAIL
IF(ABRS(R(T1)11360+360+370
TMIN=ABS(B(1})
JMIN=]

NDUM=T1+1

GO TO 2375

CONTINUE

TYPE 50

GO TO 351

DO 380 J=NDUMSNTAIL
IF(ARSIR(J))I~-TMIN)I38553805380
JMIN=J
TMIN=ARS(R(J))
CONTINUE

PUNCH 519 JMINsJMINIBR(IMIN)
KDUM=JMIN-1

T9=0.

DO 355 I1=1sKDUM
T9=T9+B(1)

CONTINUE

TAIL=T9

H{2)=TAIL
SUM=HEAD+TAIL
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STAIL=e5%C(IMIN)

PUNCH 44 sHEADSSTAIL

STSUM=STAIL+HI{1)

PUNCH 45eH(2)sSTSUM

EUSUM=HEAD+H(2)

PUNCH 46sEUSUM

PUNCH 49sKsXsHEAD
10 FORMAT( 16HX= (F7¢2)4~—=e=—= )
11 FORMATI(F7.2)
12 FORMAT(18H LLs LU ARE (21I3) )
13 FORMAT( 213 )
15 FORMAT(12X13+22XE34428 )
20 FORMATI(//15X34HTHE EULER TRANSFORMATION OF SERIES

1 15H FROM IMIN TO N //14X1IHITX1HJLI4X

2 33HTERM B({J) OF EULER TRANSFORMATION /)
21 FORMAT(12X1395X13414XE34e28 )
22 FORMAT (/)
30 FORMAT(15XS5HIMIN= [3+24H AND THE MINIMUM TERM IS /

1 27X2HC(I3s2H)=3XF34,.,28 )
35 FORMAT({15X2HN=13+16H AND THE SUM OF 13s94 TERMS IS

1 /37XE34,4,28 )
42 FORMAT(///7)
43 FORMAT(15X26HTHE CURRENT VALUE OF X IS F7e.2//

1 14X1IHIZ24X20HC(1)Ys TERM OF SERIES /)
44 FORMAT(25XSHHEAD=T7XF34428/

1 15X15HSTIELTJUES TAIL=7XE34428 )
45 FORMAT(19X11HFULER TAIL=7XE34,28 /

1 16X14HSTIELTJES SUM=T7XE34.28 )
46 FORMAT(20X10HFULFER SUM=7XE34,4,28 //)
48 FORMAT (15X39HTHE ASYMPTOTIC EVALUATION OF S = S(X) =)
49 FORMAT{15X11HTHE SUM TO I3,

1 35H TERMS OF THE ASYMPTOTIC SERIES FOR /

7 22X2HS(FT7e296H) IS5 E344.28 )
50 FORMAT(16HALL B'S ARF ZERO )
51 FORMAT(/15X5HJMIN=134+24H AND THE MINIMUM B(J) IS /

1 27X2HB(I345H)= E34428//)

STOP

END-
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