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ABSTRACT

McKeen, Stuart A . ,  k.A., June 12, 197? Physics

A Tffo-JJimensional fcodel of the Rarth's Atmosphere with Application 
to Stratospheric Debris Transport (,67pp.)

Director; Richard J. Hayden Q,j,M

A two-dimensional transport model of the atmosphere from 0 to 
50 km is developed. The transport includes advection by the mean 
meridional circulation and a unique method of modeling the diffusion 
by large scale eddies. This method utilizes the assumption that, 
the large scale eddies can be characterized by random fluctuations 
in the velocity field. The mean winds and the magnitude of the 
random fluctuations vary with latitude, height and season. A 
Gaussian distribution is assumed for the random fluctuations at each 
grid point.

Observed mean winds are used below fifteen kilometers. Above 
this level the mean winds are computed by solving the thermodynamic 
and continuity equations. The horizontal random velocity fluctua
tions are made proportional to the observed root mean square of the 
meridional wind variance from seasonal averages. The vertical random 
velocity fluctuations are parameterized in terms of the static sta
bility.

The model is capable of simulating the transport of tracers 
from both low and high latitude sources. As a test of the model, 
the behavior of Tungsten-185 from low latitude U.S. tests and 
Zirconium-95 from the high latitude Chinese tests were simulated.
The overall distribution of the tracer, rate of spread and the rate 
of decrease of the maximum concentration agree qualitatively with 
observations. Discrepancies in the low latitude simulation are 
discussed in terms of the method used in deriving the characteristic 
time of the random fluctuations in the equatorial region.

This work demonstrates that diffusion due to eddy fluxes can 
be modeled under the assumption that the diffusion is due to random 
processes. This work also shows that the parameterization of dif
fusion coefficients typical of existing two-dimensional transport 
models can be circumvented.

ii
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Chapter 1 

INTRODUCTION

The possibility that human activity may be affecting the ozone 

layer of the stratosphere has placed an importance on understanding 

atmospheric transport processes. There is also the possibility 

of a nuclear event or an explosive volcano in which case it is 

advantageous to know that general areas would be affected by the 

long term fallout of debris originally introduced in the stratos

phere. For these reasons, and also for scientific interest in 

obtaining a more complete picture of our atmospheric environment, 

the study of atmospheric motions and transport properties are 

pursued. But the atmosphere forms a very complex system and an 

accurate determination of the relationship between the atmosphere 

and an introduced substance requires a knowledge of atmospheric 

dynamics, photochemical reactions, and many interactions between 

radiative properties and motions of the atmosphere. The problem 

is further complicated by the inability to obtain data at high 

altitudes. Therefore, numerical modeling and computational tech

niques are necessary in order to relate the complex physical laws 

of the atmosphere with accessible data.

Because of the amount of data, computational time and space 

required to accurately solve the physical equations in three 

dimensions, it is convenient to consider the two-dimensional

1
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problem. In two-dimensional modeling all the variables are aver

aged over longitude and time. Although these models cannot 

accurately describe the details of atmospheric motions they 

address themselves to the significant climatic averages. In the 

process of averaging the governing equations, most of the feed

backs between interdependent quantities are removed. The only 

one left is that between the radiative properties of the con

stituents and the mean motions. This feedback relationship is 

important in studying chemicals such as 0^, HgO, and CO^ where 

the radiative properties of the chemicals have a significant 

effect on the motions and hence on their distributions. But in 

considering chemicals without radiative properties such as most 

nuclear debris, it can be assumed that the dynamical changes 

will be small perturbations.

The advantages of simplifying the calculations by averaging 

over time and longitude are offset by a different problem. When 

the governing equations are averaged, there are correlation terms 

between the deviations of the motions and the deviations of the 

constituent concentration from their means. These correlations 

are generally non-zero and produce a net flux (the eddy flux) 

of the tracer. Since there is no quantifiable data for the 

correlation terms, they must be parameterized in terms of mean 

atmospheric quantities. In working out the equations, most two- 

dimensional models express the rate of change of a constituent 

as being dependent on two terms; the advection due to the mean
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motions and transport due to the correlation term. So the correla

tion term actually represents the effect of turbulent eddies and 

must be modeled accordingly. By analogy with the microscopic 

processes of molecular diffusion, the diffusion due to the eddy 

fluxes is made proportional to the concentration gradient. The 

proportionality constant between the correlation term representing 

the eddy fluxes and the concentration gradient is a second order 

tensor which is shown to be symmetrical. The parameterization of 

eddy fluxes is thus accomplished by evaluating or estimating the 

diffusion coefficients.

The plan of this work was to circumvent the necessity of 

these diffusion coefficients. By reexamining the formalism used 

in obtaining the averaged governing equation for the tracer con

centration, it was found that simple statistical techniques 

could be used to simulate eddy diffusion. This method required 

the assumption that the eddy fluxes are due completely to random 

fluctuations of the velocity field, which is not completely 

true. This assumption nonetheless provides one with a useable 

approximation to eddy transport.

In modeling random processes, the random fluctuations are 

considered to be related to mean quantities of the atmosphere 

that are observed or easily calculated. In this way, the neces

sity of parameter manipulation typical of conventional two- 

dimensional models employing diffusion coefficients is eliminated. 

Although in this work the diffusion coefficients of a model
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developed at NCAR, the National Center for Atmospheric Research 

(Louis, 1974), were used to derive the time scale over which the 

random fluctuations occur, this model demonstrates the feasi

bility of using random processes in two-dimensional modeling to 

explain eddy transport using only observed mean quantities-

As a test of the model, two simulations of previous nuclear
95detonations were performed: the distribution of Zr from the 

Chinese test of December 27, 1968 (40° N latitude) and the 

distribution from the HARDTACK test series of the summer of 1958 

(11° N latitude). The results were found to be in general agree

ment with observations. Some major discrepancies occurred as 

the simulations were carried out over long periods of time, but 

these are attributed to the method used in estimating the time 

scales of the fluctuations. A more comprehensive treatment of 

the outline developed by this work should eliminate the dis

parities that have been encountered.
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Chapter 2

A DISCUSSION OF ATMOSPHERIC PROCESSES AND 
STRATOSPHERIC DEBRIS TRANSPORT

The introduction of nuclear debris into the atmosphere has 

led to two general fields of investigation: the use of radio

activity to observe atmospheric processes, and the investigation 

of atmospheric processes to predict the distribution of atmos

pheric debris. The use of radioactive tracers in the atmosphere 

was intensively investigated by HASP (High Altitude Sampling 

Program) and other investigators from 1958-1960 following 

numerous nuclear weapons tests by the U.S., Britain, and the 

U.S.S.R. (Friend, ejt ^ . , 1961). Subsequent tests in the early 

1960's by the U.S. and U.S.S. R and more recent French and 

Chinese tests have contributed much in the way of observed 

atmospheric motions, especially in the stratosphere (List and 

Telegadas, 1969; Seitz, _et , 1968; Reiter, 1974).

This presentation is concerned with the use of known 

atmospheric parameters to predict the distribution of debris by 

means of computer modeling. The meterological information 

necessary to model the distribution of radioactive debris is 

generally unavailable. Specifically, one needs to know:

1) Distribution of vertical motions throughout the 

atmosphere

5
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2) The complete horizontal wind field (zonal and meridional)

3) The rate of turbulent mass exchange (eddy diffusion or 

Austausch) in the horizontal and vertical directions.

There is data for the horizontal winds up to 15 km but the time 

and distance intervals over which the data was taken makes it 

useful only for longitude and/or time averages. Above 15 km not 

enough data has been taken to make valid statistical computations, 

and vertical wind data is virtually nonexistent. The fluctuations 

of the winds are large compared to the mean winds, the vertical 

mean winds in particular being practically undetectable (of the 

order of mm/sec.). Crude calculations of the mean winds where 

data is unavailable are possible using the heat balance and con

tinuity equations. The procedure involves the evaluation of 

temperature changes due to adiabatic and diabatic heating, and 

of vertical and horizontal heat fluxes due to mean motions and 

turbulent eddy exchange. Sufficient data is available from 

rocket, satellite and rawinsonde observations for horizontal 

components but observations are imcomplete as to what extent 

the vertical eddy heat flux contributes to the total heating 

rate.

The quantification of turbulent eddy exchange is the main 

stumbling block in transportation modeling and also the most 

essential feature of a workable model. The distinction between 

turbulent exchange and exchange due to mean motions seems to be 

mainly a problem of semantics. In viewing the atmosphere as a
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total system the division of atmospheric transport into categories 

of mean motion and turbulent eddy fluexes is a heuristic over

simplification. Early stratospheric models considering only mean 

motions showed limited applications, other models considering 

turbulent diffusion to be the only transport mechanism have shown 

good agreement with atmospheric inventories, while still more 

recent models where mean winds and diffusion play a more equal 

role in transport have also shown good agreement with observation. 

Turbulence occurs over a wide range of spatial and temporal scales 

from the smallest wind gusts on the planet surface to cyclones and 

anticyclones of daily weather patterns to large scale eddies which 

extend to the order of thousands of kilometers. It is still 

uncertain which scales of turbulence contribute what portion of 

the total mixing. The incomplete knowledge of transport pro

cesses is compounded by the inability to obtain pertinent data.

Information regarding the initial conditions of a detonated 

bomb is also necessary for debris transport modeling. In 

particular:

1) The vertical distribution of the debris cloud after 

the establishment of thermal equilibrium

2) Particle size distribution in the stabilized cloud

3) Distribution of radioactivity as a function of 

particle size

4) Meteorological conditions at the time of injection.

The first three are functions of bomb yield, fusion/fission

ratio, amount of fractionation and coalescence of debris
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particles, tropopause height, and other detonation related 

factors. The fourth is a function of time, place, and 'how the 

wind blows' at the time of injection. These problems and how 

they are dealt with will be explained in conjunction with 

individual simulations.

Structure

A brief picture of the system under consideration may aid 

in understanding characteristics of the atmosphere that are 

significant in tracer propagation and deposition. Figure 1 

illustrates typical associated temperatures over a longitude 

average. The lowest layer of the atmosphere, the troposphere, 

is characterized by a decreasing temperature with height or what 

is called a positive lapse rate. It extends from the earth's 

surface up to altitudes that vary with season and latitude.

The extent of the troposphere in the tropics is approximately 

15 km while at the poles it decreases to 9 km or less. The 

summer pole tropopause extends higher than that at the winter 

pole since the summer pole is warmer and will exhibit a positive 

lapse rate over a greater height. Above the troposphere lies 

the stratosphere with a zero or positive vertical temperature 

gradient up to about 48 km. The term lower stratosphere 

applies to the lower 21 km of the stratosphere or the isothermal 

layer, the upper stratosphere refers to the remaining portion.

At the upper level of the stratosphere the temperature begins 

to decrease again up to about 81 km in the region known as the
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Figure 1. Taken from Newell (1964, pg. 68),

mesosphere. The region between the stratosphere and mesosphere 

where the temperature gradient changes from positive to negative 

is termed the stratopause, and the fact that its mean pressure 

is .1% of sea level pressure indicates that 99.9% of the earth's 

atmosphere lies below this layer. The definition of the 

stratosphere-troposphere boundary (tropopause) is that altitude
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where the temperature gradient changes in the lower 17 km of the 

atmosphere. This is the important region as far as stratospheric 

long term fallout is concerned since it represents the boundary 

for which less mixed stratospheric air enters the well mixed 

troposphere. Since the mean pressure of the tropopause is about 

25% that of sea level, 75% of.the atmosphere is in the tropo

sphere. Another positive temperature gradient above the meso- 

phere occurs. This region is referred to as the thermosphere 

and extends to undefined limits. The outer edge of the atmos

phere, called the exosphere, begins at about 600 km above earth 

and is defined roughly as the layer at which inter-atomic and 

inter-molecular collisions become negligible. In considering 

nuclear explosions that have occurred so far, we need only 

consider the lower 50 km of the atmosphere. The mean cloud 

height of a 20 megaton explosion is estimated to be about 35 km.

Tropopause Structure

The transition from troposphere to stratosphere is sometimes 

so abrupt that the tropopause can be identified as a surface with 

a positive lapse rate below (temperature decrease with height) 

and an inversion (temperature increase with height) above. Just 

as often, the transition is gradual and the boundary is undefined 

for a couple of kilometers, or a number of apparent tropopauses 

may exist in a longitude average. The tropopause is not a 

continuous surface, but rather a number of overlapping surfaces, 

as illustrated in Figure 2. The tropical tropopause is nearly
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Figure 2. Taken from Palmen (1969, pg. 92). J 
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solid lines represent the tropopause boundary in 
winter northern hemisphere.

horizontal at about 15 km above earth with a horizontal extent 

from about 33 degrees S. to 35 degrees N., being higher in 

summer than in winter. A less distinct subtropical tropopause 

exists at about 11 km with a horizontal extent from 30 degrees 

to 50 degrees in each hemisphere. The polar tropopause, on the 

other hand, slopes from the poles upward to about 8 km at 50 

degrees latitude for the winter pole. The polar tropopauses 

are more variable than the tropical and subtropical, varying 

not only seasonally but with day-to-day air mass movements.

When the tropopauses overlap there is a very important region, 

as far as stratospheric debris is concerned, termed the tropo

pause gap. The tropopause gap is a transition zone between 

stratospheric air on the poleward side and tropospheric air
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on the equatorial side. Particularly in winter, narrow bands of 

strong winds, the jet streams, are found meandering in wavelike 

currents around each gap. Turbulence is often severe in the jet 

stream regions and throughout each gap as a consequence of the 

large wind shears created by the jet streams. The latitude of 

each gap varies with season, being closer to the poles in the 

summer when the jets are weak, and closer to the equator in the 

winter when they are strongest. However, there are large varia

tions from day to day associated with migratory pressure systems. 

As a result, the stratosphere acts like a leaky reservoir of 

stratospheric debris. The leakage is effective in certain places 

at different times of the year.

Energetics

A concise but thorough account of atmosphere energetics is 

given by Newell (1964). The vertical change in the temperature 

gradient can be explained by the radiation of the sun, reradia

tion by the earth and emission and absorption of energy by ozone, 

carbon dioxide, and water vapor. The atmosphere absorbs approx

imately 19% of the sun's radiation, another 34% is reflected 

into space, and 47% is absorbed by the ground. The portion of 

energy' absorbed by the earth is divided between heating the air, 

evaporating water, and reradiation. The heating of air and 

reradiation from earth produces the negative temperature gradient 

from the ground to 15 km region. At 50 km absorption by ozone 

is a maximum, decreasing vertically in both directions, thus
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accounting for the rise in temperature to that region and the 

decline above. One must also consider the change of temperature 

with latitude at various heights, as seen in Figure 3. In the 

0 to 10 km region, the temperature decreases from equator to 

pole. In the 15 to 20 km region the temperature increases from 

equator to pole, exactly contrary to intuition (the coldest 

temperature below the mesosphere is 18 km above the equator).

In the 25-50 km region the temperature increases from equator 

to summer pole and decreases from equator to winter pole, as 

would be expected under consideration of the heating unbalance 

between poles. But from 50-80 km the temperature increases from 

summer pole to winter pole. It has been estimated that at

ground level the radiation arriving at the poles is 120 calories/
2 2 cm -day (annual average) with 390 calories/cm -day reradiated,

2giving a net deficit. At the equator there is 580 cal/cm -day
2incident and 500 cal/cm -day reradiated or a net surplus. The 

poles would reach a colder equilibrium, and the equatorial 

regions warmer, were it not for the net poleward flux of heat.

This poleward migration of air also transfers momentum, which 

is the cause of the predominant westerly winds at mid-latitudes 

and of the jet streams. The method of transporting this energy 

is due partly to ocean currents, but mostly to the eddy fluxes 

of cyclones and anticyclones of everyday weather patterns. So 

the region from 0 to 10 km acts as a heat engine, taking thermal 

energy and converting a small part of it to kinetic energy of
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non-random flow. In the region from 15 to 20 km, ozone concen

tration and temperature studies have shown that there is a down

ward flux of poleward moving air from the equator and an upward 

flux of equatorward moving air from the poles in this region, 

which represents creation of potential energy against opposing 

buoyant forces. The forcing of air parcels at angles greater 

than angles of lines of constant potential temperature (temper

ature the air would have at ground level) has been conjectured 

to be due to leaking of kinetic energy from the lower atmosphere.
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and since there is much less air in the overlying region, only a 

small percentage of the total kinetic energy in the lower region 

is necessary to accomplish the forcing. Above the 20 km region 

up to the 50 km region the summer pole is 20°C warmer than the 

winter, creating kinetic energy through unbalanced heating rates. 

The pole-to-pole flux of heat energy transfers momentum and 

accounts for the westerly winds in the winter hemisphere and 

for the easterly winds in the summer hemisphere at this region. 

This is because the angular momentum of an air parcel is con

served in moving from one latitude to another. Above 50 km, 

a pole-to-pole refrigerator operating in the same way as the 

equator-to-pole counterpart at lower altitudes is responsible 

for the observed counter-gradient of temperature. So the picture 

of the atmosphere is two coupled heat-engine, refrigerator cycles, 

one from 0 to 20 km acting from equator to pole, the other from 

20 to 80 km acting from pole to pole. The vertical interactions 

between the two separate coupled systems account for the spring 

maximum of ozone and radioactive transport into the troposphere.

In the Northern Hemisphere on December 21st, in the 30 km region 

the air is moving poleward and ascending from the circulation 

induced by the warmer south pole, while the air underneath it 

in the refrigerator cycle of the lower system is moving northward 

and downward, creating a dead space as far as intermixing goes.

But as the radiation balance between poles starts to shift, the 

vertical motions of the upper level heat-engine begin to change
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and eventually come into phase with the downward motions of the 

lower layer, thus forcing any stratospheric debris into mid

latitudes in early spring.

Static Stability

A quantity of importance in explaining the stability and 

instability of different regions of the atmosphere is the static 

stability. Here it is advantageous to consider the atmosphere 

as adiabatic in order to simplify the calculations. Atmospheric 

motions are generally divided into diabatic and adiabatic cate

gories, depending on their origin.

In considering an air mass in equilibrium, let a small air 

particle at level ẑ , pressure p̂ , density and entropy s^ be 

displaced to level ẑ , p̂ , p̂ , and ŝ . Assume the displacement

does not affect the pressure field so the particle arrives at

with p̂ , p', ŝ . The vertical buoyancy force per unit mass 

becomes

F = -g(P» p'

The density can be considered a function of entropy and pressure 

in an unsaturated atmosphere, so

dp = ydp - yds, where

Y m .£-CpRT Cp

C = specific heat at constant volume 
V
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So,

= specific heat at constant pressure 

R = ideal gas constant (per gram) from p = 

R = 2.87 X 10^ cm^/sec^-°K)

T = temperature in °K

P’-Pl = -P(V®1^ - P %  (Zl-Zo)

F = - ^  ' ~  • (z^-Zg) where F is positive upwards. The
d sparticle is restored to equilibrium (or stable) if —  > 0 and 

the particle is moved away from equilibrium (or unstable) if

This treatment is only a demonstration of a more rigorous 

proof which arrives at the same result by considering the extrema 

(and the signs of the extrema) of the energy stored (kinetic and 

potential energy) of a virtually displaced particle (Eliassen 

and Kleinschmidt, 1957).

The entropy/unit mass (s) is defined by

Tds = de + pda, where

a = “ , e = internal energy/unit mass.

For dry air e = C T + a constant. So,
V

Tds = CpdT - or ds = ^ ̂  .P T p

From the hydrostatic equation,

-pg, hence . So,

F/(2i-z )̂ = f ( static stability.
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Physically this means that if the temperature gradient is negative 

and larger than the dry adiabatic lapse rate (g/Cp) the air is 

unstable and turbulent mixing will occur.

The stratosphere is considered stable because the temperature 

gradient is always positive. The instability of the troposphere 

can be attributed to its negative temperature gradient, while the 

tropopause can be considered a transition region.

Characteristics and Removal Mechanisms 
of Stratospheric Radioactive Debris

A prediction of the deposition of long term fallout requires 

the specification of the following quantities: the initial injec

tion, transport processes throughout the atmosphere, stratospheric- 

tropospheric exchange processes, and deposition mechanisms. In a 

nuclear event, the radioactive debris injected into the stratos

phere is carried with the fireball to a height where thermal 

equilibrium is reached (Figure 4). The height of the radioactive 

cloud therefore depends on the yield and type of burst and also 

on the tropopause height. The type and amount of radioactive 

debris will also depend on the fission/fusion ratio of the 

reaction, the higher the ratio the more heavy nuclei particles

are injected. A 10 MT ground burst in the tropics would inject
90anywhere from 25% to 50% of its total yield of Sr into the 

stratosphere. The particles that remained in the troposphere 

will be rained out or will settle, the troposphere having a 

residence time (time for which only 1/e of the original amount
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is present) of 20 to 40 days. The rest of the material remains 

in the stratosphere with residence times of a few months to a 

few years depending on location and season of injection. A 

striking feature of past stratospheric inventories is that, 

after enough time, the concentration maximum lies along certain 

defined angles regardless of the height and latitude of injection 

(Figure 5, Machta, jet al. , 1970). These angles of maximum 

concentration nearly coincide with the isentropic surfaces of 

the lower stratosphere (lines of constant potential temperature
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Figure 5. Observed levels of maximum concentration and mean 
annual isentropes. Numbers in parentheses are months from injec
tion into the stratosphere to observation. Taken from Matcha, 
et aa-, (1970, pg. 2288).

Tracer
Latitude of 
Injection

1962 Sr-89 75°N
1968 Sr-89 40°N

W-185 ' 11°N
Pb-238 11°S

Cd-109 17°N

GFDL tracer 11°N

Date (and height) of Injection
September 1 - November 4 
June 17, 1967 
August 21, 1958 
April, 1964 (about 55 km 
satellite burnup)

July 9, 1962 (about 400 km 
satellite burnup)

January 21, 1968 (about 20 km)
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are lines of constant entropy). This approximation is often

utilized in models to simulate the angle of turbulent diffusion

exemplified by Figure 6. But evidence more closely supports

the notion that these levels lie along lines of constant poten-
>

tial vorticity [(Vxv)'aVGJ, a quasi-conserved (adiabatically 

conserved) quantity.

The exact mechanisms behind the transfer from stratosphere 

to troposphere are not completely understood, and not quantifiable 

in terms of what process contributes what percent to the total 

exchange since any conjectured 'process' is a simplification taken 

from scattered observations of complex atmospheric phenomena. 

Evidence strongly suggests that the tropopause gap is a major 

center for exchange, and some outstanding general features of 

debris deposition can be attributed to gap phenomena. Examples 

are the spring and mid-latitude maxima illustrated in Figures 

6 and 7. Besides horizontal and vertical eddy diffusion being 

greater at this region, there is a high frequency of baroclinie 

storms in the region, especially during the spring. The tropo

pause gap moves north and south with the migration of polar 

fronts. The gap is not a well defined hole, but a weak spot 

in the tropopause, fluctuating in intensity at a given location.

To further complicate matters the higher latitude tropopause 

has vertical motion, ascending in the spring and descending in 

the fall, which brings the gap up to a level near the highest 

concentration. The forcing down of polar air from the spring
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Figure 6. Taken from Matcha, al,, (1962, pg. 168).

breakup of the polar vortex and the relation of the gap to migra

tion patterns of the jet stream intensity have been conjectured 

to be responsible when and where the gap is effective. Other 

portions of the tropopause facilitate leakage through high level
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Figure 7. Taken from Matcha, et̂  al., (1962, pg. 160).

troughs and upper cloud lows of high altitude weather systems. 

Short time injections of high level air due to folding of the 

tropopause has been demonstrated to occur continuously
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throughout the tropopause area. A stratospheric extrusion may
12contain approximately 10 metric tons of air, being replaced by 

a near equivalent amount of tropospheric air, with about 5 

extrusions active around a hemisphere at any time. Penetration 

from large convective storms will mix debris with clouds, bringing 

down higher concentrations of radioactivity in the form of rainout. 

Recent studies (Reiter, R., 1975) have shown a well-marked corre

lation between solar flare activity and large scale instusions of 

stratospheric air. All of these factors tend to make accurate 

modeling more dependent on empirical parameterization, and in 

most cases, all the exchange phenomena are simply lumped into 

'eddy diffusion.'

Dry fallout comprises anywhere from 10% to 30% of the total 

fallout, depending on precipitation rates and the latitude under 

consideration. The mechanisms by which rain scavenges nuclear

debris are not understood. It should be kept in mind that the
90 137fallout associated with Sr and Cs actually refers to aerosol 

particles of diameter less than .2 microns (or .02 microns at 

altitudes above 30 km), while the term 'fallout' is also associated
] 4with gaseous radioactive material such as ' C which is unaffected 

by precipitation scavenging. There is no convincing evidence 

that the fallout particles themselves act as condensation nuclei 

in the formation of droplets, but to some extent the particles in 

the upper troposphere attach themselves to sulfur compound 

particles which do act as condensation nuclei. The correlation
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Figure 8. Taken from Glasstone (1962, pg. 287).

of deposition to high level convective storms indicates that water 

vapor and precipitation simply wash the debris from the sky once 

the material has mixed with the unstable air. In some regions 

the deposition rate is proportional to rainout while in others, 

there are large deviations from linearity (see Figure 8). Com

pletely empirical but thorough models using only interpolation 

from previous tests and observations yield moderately successful 

predictions (Peterson, 1971). Deposition models rely heavily 

on empirical and semiempirical parameterization. Many models 

divide the atmosphere into a number of boxes and use observed 

residence times for each region to approximate diffusion coef

ficients. Settling velocities for particles are sometimes 

included, and it is generally assumed that all fallout is linearly 

dependent on the precipitation rate with removal factors varying
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with height. The most noteworthy model is one by Davidson, et al.. 

(1966, 1968), which includes a 4 box model with 2 gap regions, 

and assumes diffusion, rainout and settling to be the determining 

factors. After sufficient parameter manipulation the model was 

able to simulate time and latitude maxima and minima for polar 

and equatorial injections.

Reproduced with permission o f the copyright owner. Further reproduction prohibited w ithout permission.



Chapter 3 

A DISCUSSION OF MODELING

The importance of an accurate description of atmospheric 

transport goes beyond scientific curiosity to problems of imme

diate concern. Stratospheric pollutants and their effects on the 

ozone layer have prompted the SST controversy, and have led to 

many attempts toward an accurate description of relevant pro

cesses. Since only a limited amount of data and knowledge exists 

concerning the photochemistry, radioactive properties and dynamics 

of the atmosphere, numerical modeling is essential. Although it 

was generally concluded in the early 1970's that the immediate 

effects of stratospheric fallout from the nuclear tests conducted 

so far were not significant in terms of human health, the compar

ison between observed radioactive distributions and those predicted 

by a model provides a good check of the modeler's intuition. In 

considering long term fallout, there are completely empirical 

models (Peterson, 1970) that interpolate and extrapolate data 

produced from previous nuclear tests to estimate deposition given 

the latitude and yield of the explosion. It is more advantageous 

in terras of descriptive processes to model the atmosphere and 

then to study the dispersal of an introduced tracer.

Atmospheric modeling on local and global scales has a long 

history. The first effort was made in 1911 by the British

27

Reproduced with permission o f the copyright owner. Further reproduction prohibited w ithout permission.



28

mathematical physicist L. F. Richardson, who did hand calculations 

of finite difference hydrodynamic equations that gave pressure 

differences over Europe 60 times greater than had ever been 

observed. His errors lay in the size of his time step, and in 

meteorological noise due to errors in the initial conditions.

It was not until the late 1940's that, under the direction of 

John von Neumann, the Maniac computer at the Institute of Advanced 

Studies at Princeton was used to give a reasonably accurate 

description of an incompressible, two-dimensional flow over the 

Northern Hemisphere. The mid-1950's brought further attempts to 

predict weather patterns by the Navy, Air Force, and Weather 

Bureau which were the beginnings of recent three-dimensional 

global circulation models (GCM's). More recent GCM's have been 

developed by several research groups (e.g., Manabe ^  , 1970;

Smagorinsky et al., 1965; Kasahara and Washington, 1971;

Kasahara and Sasamori, 1974). These models solve simultaneously 

the continuity, momentum and energy equations in order to simu

late the evolution of the pressure, temperature, and wind fields 

in the atmosphere. Tracers can be included in these models, and 

their transport can be studied. Photochemical reactions could 

also be included.

All GCM's must obey the physical laws of the atmosphere 

which can be written as

1) p ̂  = -pV<p - 2prx$ - VP + F Equation of Motion 
8 (momentum equation)
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2) + pg . 0

3) ^  + V . (pv) = 0

4) + V •(qv) = 0

5) p = pRT 

and

6) + y-(pTv) = pŜ

p = density

T = temperature

V  = velocity

S = source or sink of 
constituent q'

4)g = geopotential

= sources of thermal 
energy

29

Hydrostatic Balance Approximation 

Equation of Continuity of Air

Equation of Continuity of 
Substance q'

Ideal Gas Law

The Conservation of Energy or 
Thermodynamic Energy Equation. 
>
= angular velocity of earth 

p = pressure

F = frictional force terms

q = density of constituent q'
2g = 980 cm/sec 

R = 2.87 X 10^ cm^/sec^-“K.

The set of equations is a closed set if F and plus all 

the source terms for interactive substances q' in the atmosphere 

are known. That is, for one constituent (q'), there are six 

equations and six unknowns, for two constituents there are seven 

equations and seven unknowns ... etc. When finite difference 

techniques are used, all subgrid scale processes of importance, 

such as the vertical flux of horizontal momentum and subgrid 

turbulent eddy diffusion, must be parameterized in the friction 

and source terms. According to the needs of the model, such 

processes as the release of latent heat by cumulus convection
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(the principal heat source in tropospheric circulation), the 

effects of clouds, ozone and ocean-atmosphere interactions must 

all be parameterized in the heating rate and friction terms of 

the governing equations. The errors inherent in GCM's arise 

from the parameterization of subgrid processes, the specification 

of the initial state and the approximation of nonlinear systems 

of differential equations by finite difference equations. All 

the variables appear simultaneously in several equations in such 

a way that it is not possible to separate them. The variables 

are related to each other by feedback phenomena and it is not 

possible to modify one variable without affecting the others.

For example, a change in temperature will modify the pressure 

and wind patterns. These modifications will affect the transport 

of sensible heat, thus changing the temperature again. Another 

feedback loop exists between the continuity equation for con

stituents with radiative or photochemical properties and the 

heat balance and continuity of air equations. If the distribution 

of a radiatively active constituent (such as ozone) changes, the 

thermal structure of the atmosphere changes, the wind pattern 

changes, and consequently the constituent distribution is 

itself modified.

Tracers are introduced into the model through the constituent 

continuity equation and the distribution is simulated, but the 

typical three-dimensional GCM has a very large vertical grid 

space which does not allow accurate simulation of vertical
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processes such as tropopause folding in the region of the tropo

pause. Three-dimensional computer simulations take a large amount 

of storage space and time. An average model may have 100 Ian grid

points horizontally and 15 grid points vertically with about
32 X 10 arithmetic and logical operations per grid point at each

time step. For a 5 minute time step (typical for long range

forecasting) and a computing ratio of 20 to 1 (1 day's computing
8forecasts 20 days ahead) 10 operations/see would be required.

This rate is near the upper limit of presently existing computers. 

Therefore there are distinct disadvantages to three-dimensional 

modeling in describing debris transport, and until a new gener

ation of computers exists to overcome these disadvantages the 

most promising approach toward a more workable description of 

atmospheric transport seems to be two-dimensional modeling.

Two-Dimensional Modeling

In conventional two-dimensional models all the equations 

are averaged over time (month, season, or year) and/or longitude. 

These models cannot describe all the atmospheric motion, but 

address themselves to the more important climatic averages. By 

averaging the equations most of the feedback effects between 

different quantities are removed. The only effect left is the 

one between the radiative properties and the mean motions. For 

radioactive tracers the radiative properties are negligible and 

the dynamical changes can be assumed to be small perturbations.
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With this simplification the transport of a tracer can be des

cribed by a single equation, the averaged tracer continuity 

equation. The advantages of two-dimensional averaged modeling 

are obvious. The amount of computer time and storage space 

necessary makes such modeling feasible for existing computers, 

even for the University of Montana Decsystem-10. There are 

inherent disadvantages with conventional two-dimensional models. 

The main disadvantage is the parameterization of correlation 

terms between the deviation (from zonal and time averages) of 

the winds and the tracer concentration that arise in averaging 

the equations. These correlation terms are generally nonzero 

and produce a net flux (the eddy flus) of the tracer. In almost 

all two-dimensional transport models the spreading of introduced 

material is accomplished by these eddy fluxes which represent 

the effect of turbulent eddy diffusion. There is no measurable 

quantity that can be assigned to eddy diffusion, so it must be 

approximated in terms of mean atmospheric quantities. By analogy 

with the microscopic processes of molecular diffusion, the macro

scopic diffusion produced by the large-scale eddies is parameter

ized by assuming that the eddy flux is proportional to the 

gradient of the mean concentration of the tracer. Since the 

mixing processes in the atmosphere are not isotropic (along 

vertical and horizontal axes), the proportionality factor (or 

diffusion coefficient) must be a second order tensor. Modeling 

under the assumption that the mixing processes are due to mean 

motions and eddy diffusion has met with varied success.
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The first two-dimensional models originated in the late 

fifties and were a consequence of two different fields of 

research. The detonations by the U.S. and U.S.S.R. of 1958 and 

1959 were extensively studied. Numerical models appeared to 

predict the evolution of radioactive materials from these sources

and from others purposely introduced for transport investigation,
185such as W tracer isotopes. At the same time it was realized 

that the peculiar distribution of ozone in the stratosphere 

could not be explained by photochemical processes alone and 

that atmospheric motions were a definite influence, thus adventing 

the use of two-dimensional models in ozone studies.

The work by Prabakhara (1963) was an early attempt to 

explain the ozone distribution. This study combined a mean 

circulation due to Mergatroyd and Singleton (1961) and a Fickian 

diffusion with no off-diagonal terms in the diffusion coefficient. 

The magnitudes of the diffusion coefficients were based on the 

distribution from the Hardtack tests as observed by Feeley 

and Spar (1960). The circulation of Mergatroyd and Singleton 

was inaccurate in that they neglected the effect of eddy heat 

transport in their calculations of the mean winds. Thus 

Prabakhara made diffusion the main mechanism for the poleward 

flux of ozone in the lower equatorial stratosphere. The omission 

of the eddy transport made it necessary to reduce the winds by 

80% to describe mid- and high-latitude distributions.

At the same time studies at MIT (Oort, 1964) showed an 

equatorial flux of heat in the lower stratosphere which is
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unexplainable in terms of eddy transport by Fickian diffusion.

As mentioned in the previous chapter (Energetics section) Newell 

(1964) showed that this process was possible if parcels of air 

moved from equator to pole along trajectories with angles greater 

than that of mean isentropic surfaces. Hence the off-diagonal 

terms of the diffusion coefficient must be non-zero.

Reed and German (1965) tried to devise a way to determine 

the diffusion coefficients from observed mean quantities without 

arbitrary parameter adjustments typical of existing two-dimensional 

models, but they were unable to obtain an analytical solution 

without setting the diffusion coefficients at constant values 

throughout the atmosphere. This model and a more successful one 

by Davidson, jet̂ al., (1966) have only diffusion as the means of 

transport, but unlike Reed and German, Davidson varied the 

values of diffusion coefficients over specific regions and 

allowed for a transition zone at the tropopause. In experimenting 

with the principal axis of diffusion Davidson, e^ , observed 

that the concentration pattern and rainout were quantita

tively well produced when the principal diffusion axis was

parallel to lines of constant potential vorticity. Injections 
90of Sr in the polar regions were qualitatively reproduced.

Gudisken, ^  , (1968) used the varying diffusion coef

ficients of Reed and German (divided by a factor of 8 horizon

tally and 2 vertically) and a circulation based on the horizontal
18 5wind observations of Tev/erles (1963). The W distribution
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was reproduced quite well by this model but it could not account 

for mid-latitude maxima actually observed. More recently, there 

are many other two-dimensional models that may or may not utilize 

diffusion coefficients. Stone (1974) uses results from baroclinie 

wave theory to calculate eddy heat fluxes. A tropospheric model 

by McCracken (1971) solves the complete set of governing equations 

but in two dimensions, avoiding seasonal averages.

The NCAR Model

It is illustrative to elaborate on one particular two- 

dimensional model that is relatively successful and is actually 

the basis for much of this study. This model was developed by 

Jean-Francois Louis (1974) for the National Center for Atmos

pheric Research at Boulder, Colorado. Essentially, the averaged 

equation for the continuity of the tracer concentration is solved 

numerically with 5 degree latitude grid space from pole to pole 

and 1 km grid space from ground level to 50 km, using seasonally 

averaged wind, density, and diffusion calculations. To obtain 

the tracer concentration continuity equation, the equations of 

continuity for air and for the tracer are averaged over longitude 

and time. For any quantity b, a function of space and time.

2, <t> = longitude 
t = time
T = one season (90 days)
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Then,

b = b + b*, where b' is the deviation of b from b. Clearly

b' = 0. Difficulties arise in taking the average of products.

For any quantities a and b, functions of time and space,
T2tt t + 2

1_
2 tt j   ̂ j  (ab) dt d<() =

T
b'2

T2tt t-4-j

^  j  J J  (a + a') (b + b') dt d({> .

t ^

When t equals the midpoint of the season and a and b are constant 

over the season.

ab = ab + a'b'.

a'b' is called the correlation between the deviations of a and b. 

The equation of continuity for air becomes

= -V (pv) 1)

using the common assumption that all density correlations are

negligible. The density of the tracer, Pj. = xp and the con

tinuity equation for the tracer = -V'pvx + pS (where

S is the source term), when averaged becomes,

= -V’(p̂  x) - V'(pv'x') + pS . 2)
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î&iltiplying equation 1) on both sides by x, subtracting this 

result from equation 2) and dividing this result by ” gives

>x > r,-= - vVx - — V’(pv'x') + S . 3)

The first term on the right hand side of 3) represents the 

effect of advection by the mean winds. The second term involving 

the correlation between the deviations of wind and concentration 

represents the effect of diffusion by eddies. Since there is not 

data for this correlation, the diffusion term must be approximated 

in terms of mean atmospheric quantities. The correlation term 

could be considered as an unknown and continuity equations for

the two components of v'x' could be formalized but these equations

involve triple correlations v'v'x', v'w'x', and w'w'x' where v' 

is the horizontal component of v' and w' is the vertical component 

of v'. This veature introduces the problem of closure. The 

technique generally employed is to use a first order closure

method and make v'x' proportional to Vx. Then v'x' = -K*Vx where 

K is the second order diffusion coefficient tensor. Equation 3) 

then becomes

—  =  - V  • Vx + 3  V‘(p  K'Vx) + S . 4)dt p

The time-dependent equation for x is solved using a semi-implicit 

alternating direction scheme once p, v, w, and K have been chosen, 

p was determined from satellite and rocket data of mean temperature 

distributions and the 500 millibar pressure height. Below 15 km
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V and w can be estimated from observations, but above 15 km v and 

w were determined simultaneously from the averaged heat balance 

equation and the equation of continuity for air. The heating 

rates were given by Kuhn (1969) and the horizontal eddy heat 

fluxes were taken from rocket and rawinsonde observations. 

Although the vertical eddy heat fluxes are unknown they were 

assumed to be negligible (see justification on pg.46).

First attempts at evaluating the diffusion coefficients 

followed somewhat the formalism set by Reed and German (1965).

A simplified version of a more formal approach shows how these 

coefficients can be approximated. By analogy with molecular 

processes, the net flux due to turbulence (correlation term) is 

assumed to be proportional to the gradient of the mean tracer 

mixing ratio. Since atmospheric turbulence is nonisotropic the 

proportionality constant must be a second order tensor, i.e.,

5)Kyy Kyz

Kzy Kzz

It was argued that if a certain parcel of air carries with it 

the characteristics of the environment a distance ^ then x' =

By further assuming

 ̂= v'T 6)

where T is the characteristic time of the mixing processes, 

equation 5) can be written as
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( v'x' \ ( v'v' v'w' \ A y  \  _
y w'x’ / " ^w'v' w ’w* I i  â ï  I

' 3 2 }

The assumption of equation 6) that t and v are in the same 

direction may not be true and is currently under investigation 

at NCAR. Equation 7) states the diffusion coefficient tensor 

is the Reynolds stress tensor multiplied by a characteristic 

time T .  Equation 7) also shows that the tensor is symmetrical, 

which means a rotation of the original coordinate axis by a

unique angle would make the tensor diagonal. Only v'v' can be 

estimated from observations; the other two terms must be para

meterized. w'w' was made proportional to the static stability.

and once the principal diffusion axis was determined, v'w' was 

found by a coordinate change of the tensor.

After several attempts this approach was abandoned because 

of the inability to negate the effect of the mean vertical 

circulation in the tropical troposphere. A larger downward flux 

of tracer from the 1968 Chinese test was predicted than was 

actually observed. The coefficients were then determined in 

certain regions by subtracting the mean circulation from observed 

ozone fluxes, and were parameterized or linearly.approximated 

in other regions. This second model worked very well in simulat

ing high latitude and equatorial injections when the mean winds 

and diffusion coefficients were divided by two ^ a procedure 

consistent with the limits of accuracy for the computed winds 

above 15 km.
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Modeling with Random Processes

The time dependent solution of equation 4) is actually an 

approximation. To obtain equation 2) it was assumed in averaging 

the term xv that

Tt+| 2tt

T J  2tt y  xv' d(), dt = 0
o

But in the time dependent approach, this term will not necessarily 

be zero. Also, the lengthy arguments and calculations involved in 

obtaining the diffusion coefficients led me to search for a more 

direct way of modeling eddy transport in terms of physical 

processes.

In obtaining equation 3) the continuity equations for the 

tracer and air were first averaged over longitude and time, and 

then combined by subtraction to give a continuity equation for 

the tracer concentration x. By first averaging the continuity 

equation for the tracer and the continuity equation for air over 

longitude (to make the equations over two dimensions),

and

Then multiplying 8) by x and subtracting this product from 9), 

one obtains
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9x 3 X 3x > „ -,
3ÏÏ = "^730"''3l" 10)

which is just the two-dimensional Liouville equation for x. With 

such a simplification, all the transport properties must be 

modeled in the velocity term. It is convenient to consider the 

velocity as consisting of two parts: a mean circulation and a 

random deviation from the mean circulation that represents a 

random eddy transport, or

> > > > >
V =  V  + where v = mean velocity, = random velocity.

Within a time period characteristic of the mixing processes (of 

the order of a day) a number of random wind events will effec

tively diffuse the tracer. For the eddy transport to be modeled 

as completely random, the average over the characteristic time 

interval of the random winds must be zero. There is some physical 

reason for believing the diffusion process to be partly nonrandom 

(that portion due to standing eddies). Then the average of the 

random winds would not necessarily be zero, and a predetermined 

random wind average corresponding to observed fluxes would need 

to be incorporated. But transport mechanisms such as clear air 

turbulence and transient eddies on all scales suggest that random 

modeling may be useful to some extent. The random portion of 

the velocity may be parameterized in terms of atmospheric quan

tities quite easily, which is a major advantage over diffusion 

modeling. However, a distinct disadvantage and probably the 

biggest drawback to the method is the lack of a diffusion term
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2(V x) in the governing equation. A more complete formalism could 

possibly combine random processes and diffusion processes to better 

simulate a distinction between transient and standing eddies.

For the purpose of this work, the random winds formed a 

Gaussian distribution and averaged to zero over a long time.

The horizontal component of the random winds was set proportional 

to the meridonal wind variance, the vertical portion being pro

portional to the static stability. To simulate random diffusion 

off the regular axis the random winds were assumed to originate 

in a different coordinate system rotated through an angle from 

the regular coordinate axis. For convenience only, the angle 

was chosen to be proportional to the off-diagonal term of the 

diffusion tensor given in the NCAR model. The mean circulation 

below 15 km was teken from observations as given by NCAR and 

above 15 km the winds were recomputed in the same fashion as in 

the NCAR model. All the data used were seasonally averaged, 

which is inappropriate for a precise time dependent solution, 

but the main features of the mean transport are identifiable.
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Chapter 4 

THE MODEL

As mentioned in the previous chapter, the modeling of debris

transport is done by numerically solving equation 1 0 ) for the mass

mixing ratio, x. With the partitioning of the velocity into mean

and random components, equation 1 0 ) becomes

A. = (v +. VRAM) ^  + (w + wj^) dx . 11)
dt r d(j> dz

For a given time step, x is determined for several random wind 

possibilities. The average x determined by these events is used 

in the calculation of the next time step. The density of the tra

cer, Pf. , is related to x by p̂ - = xp . So once the amount of the 

initial injection is known in terms of the density of the tracer, 

it is necessary to know p in order to solve equation 1 1 ) for x. 

Therefore, there are five quantities that must be known in order 

to solve 11); p , v, w, vjj^, and w^^. The following section 

describes how these quantities were obtained.

Determination of Density

Once a temperature field over the region considered has been

chosen, by knowing the height for a given pressure, the density

can be found over the entire vertical extent. Using the hydrostatic

equation, and the equation of state,

dp = -pg and p = p R T ,
dz

43
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then ^  = - g dz and p(h) - 500(mb)exp(-» g dh )
p %  T  •' 1Î T  .

h(500mb)

where h(500mb) is the height of the 500 mb pressure and p(h) is the 

pressure at height h. With this pressure field, p is determined by 

the equation of state. The temperature field used is the one adopted 

by J. F. Louis (1974) and the pressure height was taken from the NCAR 

data bank. The temperature field is based on rocket and satellite 

observations (SCR, 1972). These observations were first hand smoothed 

by Louis in order to ensure that the important characteristics of 

the actual soundings were preserved, and then a computational data 

smoothing technique was used. When using the temperature field to

determine the zonal winds by the geostrophic equation,
—  - 2  —  —fu 4- u tany = jL ^  p = mean density

r ■p" 3<j) <P = degrees latitude
f = 2wsin(J) 
ui = earth's angular 

frequency 
r = earth radius 
^  = mean pressure 
TÎ “ zonal (east-west) .wind 

component

it was found that the zonal winds were in good agreement with obser

ved winds given by Newell, ejt a^., (1969) and Groves (1971), except 

in two regions; the southern polar stratosphere and the equatorial 

region. Around the equator, the Coriolis parameter is small, and 

u depends on the ratio of two small quantities. Therefore, small 

errors in the temperature field produce large errors in the zonal 

winds. The temperature in these areas was adjusted to minimize the 

discrepancies between computed and observed zonal winds and tenq)-
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erature, while keeping the two fields related to each other 

through the geostrophlc equation. The adopted temperature field 

is estimated to be within + 5“ K error in the southern stratosphere.

The Mean Winds

The longitude and season averaged heat balance equation ( see 

pg. 28 ) becomes

^  + v ^  + w ( 3T + T) + aCv'T' COS* ) + 9(w'T') = $ . 12)
At rd^ 3z r cos# 9# 9z

where T = mean temperature  = latitude angle
r = adiabatic lapse rate v ’T' = mean horizontal eddy heat 
2  = earth radius flux
0 = mean diabatic heating rate w ’T'= mean vertical eddy heat

flux.

It was assumed that ^  is negligible since it is at least two orders
9t _

of magnitude smaller than the other terms. ^  is the seasonal trend,
At

and the next two terms represent the heat advection due to the mean

circulation. The last two terms on the left hand side represent

the horizontal and vertical eddy diffusion of heat. Equation 12) and

the continuity equation

9 (o V cosè) + 9 (d w) = 0 13)
r cos# 9# 9 z

form a set of equations that can be used to solve for v and w. Below 

15 km V and w can be determined from rocket and rawinsonde observa

tions. Above 15 km too little data exists to make valid statistical 

confutations, so equations 12) and 13) are solved simultaneously for 

V and w in this region. The observed circulation as given by Newell, 

et al., (1969) was used as a lower boundary condition for the conf

utation above 15 km.
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With, the temperature field given and the density already calcu

lated, the quantities necessary in solving equation 12) are w'T' , 

v*T' , and Ç  . Not enough observations are available to estimate

the vertical eddy heat flux w'T' . Results from three-dimensional 

general ctfculation models (Kasahara and Sasamori, 1974) suggest that 

this term contributes very little to the heat balace in the strat

osphere. Therefore, the term was neglected in the calculations.

The horizontal eddy heat flux used was given by NCAR. In the trop

osphere and lower stratosphere the data published by Newell, et al. . 

(1960) was used; these data were derived from ten years of rawinsonde

observations. In the upper stratosphere, v'T' consisits of weekly 

analyses of the 4, 2, and .4 mb levels published by ESSA (U.S. Depart

ment of Commerce, 19b4 to 1967). These data are based on rocket 

observations convering only the western half of the northern hemi= 

sphere., These data were considered representative of both halves of 

both hemispheres. The horizontal eddy heat flux term is of the order 

of 1® K/ day, which is a fraction of the diabatic heating rate, so 

amy discrepancies should not be significant.

The original heating rate used by J. F. Louis (1974) was 

determined from ultraviolet absorption by Og and Og as given by 

Park (1972), and the cooling due to COg and H 2 O was calculated by a 

program developed by Kuhn (Kuhn and London, 1969) at the University 

gf Michigan. The cooling due to O3 above 30 km was given by Kuhn and 

London (1969) and below 30 km by Dopplick (1970). These rates are 

corf>ined-to give the net diabatic heating rate.
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After several trials at different iteration schemes, it was

decided to use the same iteration technique that was used by J, F.

Louis (1974) for the NCAR model. A convergent solution of v and w

independent of a reasonable initial guess is reached if a contrived

w is first substituted into equation 13), which is then integrated

to give a v. This v is substituted back into equation 13) and the

process repeated. For lack of a better upper boundary condition the

top boundary given in the NCAR data was used. Since v = 0 at the

poles, w = 0  at the ground and the equation of continuity must be
^90°N

satisfied over any region, it follows that I p w d<|> = 0  for any 

given height. But this integral was not 0, so a corrected vertical 

velocity w was introduced after w had been determined from equation

12), ,902_N_
_ J p w d<t>

w = w - Ceos# where C= 90°S_______  . 14)
O-N

p cos# d(t
0"9f•90*

The integral of p w then vanished. Central differences were used 

which provided for a smooth transition at the 15 km boundary.

Figures 9 and 10 show the vertical and meridional winds for the 

winter calculation. There are slight discrepancies between my 

computation and that given by NCAR. This result can be accounted 

for by the fact that the diabatic heating rate used in the present 

study is different than the one used in the NCAR calculations.

When J. F. Louis did the calculations, it was found that the constant 

C of equation 14) did not converge to 0 as the winds converged, thus 

the final winds did not correspond to Che original heating rate. The

Reproduced with permission o f the copyright owner. Further reproduction prohibited w ithout permission.



50

4 0  ■ ‘

9060300309 0 60

48

north Latitude (“) SOUTH

Figure 9). Vertical winda (mm/sec), winter

50

6 04 04 0  ■ •

- 4 0

- 4 0

4-1
•H
4-4rH<10 4 0

,40

30 9030 0 6 090 60

NORTH Latitude (°) SOUTH

Figure 10). Meridional winds (cm/sec), winter

Reproduced with permission o f the copyright owner. Further reproduction prohibited w ithout permission.



49

heating rate used herein corresponds to the heating rate that would 

be observed if the correction factor of equation 14) were added.

Because of this fact, it was decided to use the NCAR mean circulation 

in the calculations. The errors associated with this circulation 

are estimated to be as large as 50% due to the many uncertainties 

involved in averaging the data that was observed below 15 km, and 

the data used in the calculations above 15 km. The random winds used 

to simulate spreading are at least one order of magnitude larger 

than the mean winds, so any errors in the mean circulation should not 

have an important over-all effect.

The Random Winds

To determine the random winds, at each point a Gaussian distri

bution centered at zero for each component was assumed. The proba

bility density P of randomly choosing v and w is,

P(v) = Ay exp(-v^/20y^) and P(w) = A^ exp (-w^/2o^^) , respect- 

ively, where and are the standard deviations and A^ and A^ are 

normalization constants for the respective winds. In order that 

exp(-v2/2oy2)dv = 1 , A^ => • Similarly,

The expectation values become

JvA^ exp(-v^ / 2  y2 )dv =j7 and jwA^ exp(-w^ / 2  ^^)dw 0(,'

Horizontally, there is data that can be used to approximate the expecta

tion value. These data were furnished by NCAR as the meridional wind 

variance, or the deviation of the horizontal wind from its seasonal 

average. These data, like the horizontal heat flux data, were pub-
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llshed by Newell, et al., (1969) for altitudes below 30 km and by ESSA 

(U.S. Department of Commerce, 1964 to 1967) above 30 km. The actual

observations were of v'v', where v' is the meridional wind variance, 

so v' is always positive. As a first guess, it was assumed this 

variance should be equal to the horizontal random wind expectation 

value, so Oy v'.

Vertically, there is no data for an analogous w*,.so a w' was 

estimated from the static stability. Baroclinie theory shows that 

the rate of growth of baroclinie disturbances depends on the static

stability ( £  (dT + ^  )). The vertical motions, especially at the
T dz Cp

scale of thermal convection, are critically dependent on the static 

stability. It is well known that tracers diffuse much faster in the 

troposphere than in the stratosphere, and the main physical difference 

between these two regions is the static stability. Therefore the 

random vertical component was related to the static stability through 

an exponential function,

w' = C- exp(-CoE) where S = Jg, (dT + ). Then, a = (T w',
T dz Cp V2

where Cg and Cg are adjustable parameters.

It was mentioned in the previous section that in order to simulate 

random diffusion along axes other than vertical-horizontal, it is 

necessary to assume that the random winds originate in a coordinate 

system rotated by an angle a from the regular. It was shown in the 

first chapter. Figure 5, that a common characteristic of all strat

ospheric debris, regardless of height or latitude of injection, is the 

slope of the maximum concentration trajectory. The maximum concen-
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tration and therefore the diffusion slopes up toward the equator and 

down toward the poles. The angle at which this diffusion occurs is 

about the same as the angle of the mean isentropic surfaces. Eady 

(1949) computed that the maximum rate of growth for baroclinie 

disturbances occurs when the angle of the disturbance is half the 

angle of the mean isentropic surfaces. This angle corresponds to 

a maximum transfer of potential energy into kinetic energy. Further 

calculations by Green (1970) show that the angle decreases to 0 at 

the ground, near the tropopause, and throughout the middle troposphere. 

It was pointed out in chapter one that the investigations of Newell 

(1964) and Oort (1964) have shown that in the lower stratosphere 

parcels of air must have .trajectories greater than the angle of the 

mean isentropic surfaces to account for the transfer of heat from 

cold equatorial regions to warmer polar regions. The data used for 

a was furnished by the NCAR program in the following way. The 

diffusion coefficient tensor of equation 5)

K —fKvv Ku=/Kyy Kyz\ where Kyg = K^y
\ ẑy ^zz /

can be transformed into a diagonal tensor

K ’ = /k i i 0 \
\ 0  K22/

by imposing a coordinate transformation

X  =  I cosa -sinal 
\sina cosaj.

Then

K ’ = X"1 K X

or
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Kyy = COS + sin

K^z ~ cos^0 1 ^ 2 2 ■*■ sin^oK^^
Kyg = Kgy = Sina cosa (K^i - K22) •

The angle a is of the order of 10~^ radians and ^2 ^< . Therefore,

K y y  = Kyz =a Kzz = ^22 + “^^11 ' a = Kyz '
Kyy

In the NCAR data a was actually given by Green (]9 70) and used to 

calculate Ky^ in every region but the lower stratosphere and equatorial 

troposphere, where the observed distribution of ozone was used to 

determine the diffusion coefficients. So the angles obtained by 

dividing the coefficients are actually the angles given by Green (1970) 

except in the lower stratosphere and equatorial regions. In these 

regions the angles are also consistent with observations. The random

velocities are now related to v' and w' by the coordinate rotation ̂  ,

''̂ RAN “ v'cosa - w'sina

WgAN “ v'sina + w'cosa •

Tests, Results, and Further Revisions

In order to establish the parameters for the vertical random 

winds, the Gunung Agung volcanic eruption of March 17, 1963 (11° 

south latitude) was simulated and good agreement was obtained with 

predictions by Cadle, Kiang and Louis (1976) when the constants

relating the static stability and vertical random winds were set at
6 o ,C2 = .473 and C3 = 2 x 10 sec^/gm .

The major discrepancy was in the rate of spread of the maximum con

centration. After 60 days, the model showed the maximum concentration
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to be twice as much as that predicted by the NCAR model, althogh 

the rest of the volcanic ash cloud spread in agreement.

When the same set of data was used to simulate the December 27, 

1968 Chinese 3 megaton detonation (45* N latitude) it was found 

that the model spread 7 or 8 times faster than was observed. This 

reult led me to believe there was an important process missing in 

the model, and it turned out the time scales of the random winds had 

been neglected. In different parts of the atmosphere turbulent 

diffusion is accomplished in different ways. The mid-latitudes are 

characterized by a high frequency of baroclinie storms and represent 

a barrier between two distinct regions. The motions of the high 

latitudes can be characterized by large scale waves, such as Rossby 

waves (1942), that are present because of the large Coriolis effect. 

The equatorial region, where the Coriolis force is small, can also 

be characterized by large-scale waves but of a completely different 

nature (Kelvin-Helmholtz waves, studied by Lindzen, 1967, and others). 

Therefore, the time scales of these different processes are different, 

and must be modeled accordingly. In considering a point in the 

atmosphere imagine taking hundreds of horizontal wind measurements 

in a given time period t. Then, if the distribution of these winds 

is Gaussian, the normalized distribution function would look like
P(v) = 1 e%p(-v2/2a^2)

Ov^TT

where is the standard deviation as taken from the wind measure

ments. The expectation value is given by

(v/ay2n)exp(-v2/2Gy2)dv .
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A characteristic distance of spread for this sample would be d =a At;. 

This distance can be thought of as the distance over which a parcel 

of air retains certain characteristics of its environment. But this 

distance can also be thought of in terms of the deviation of the mean 

meridional velocity component v'. If t is a time characteristic of the 

mixing processes, then v't represents an analogous characteristic 

distance, and the two distance scales could be related by 

CTAt = Dv't where D is a proportionality constant.

In the discussion of diffusion, it was shown that the diffusion coeffi

cient tensor is related to the Reynolds stress tensor by

IT , 15)

so Kyy = v'v’ T.

I simply divided the horizontal diffusion tensor coefficient by v ’v' to 

get an estimate of t or t. Then

Ov = Dtv' . 16)
At

The proportionality constant D represents a free constant that tunes 

the rate of spread of this model to the quantities and v' of the 

NCAR model. Best agreement was found with D = 9.0 .

The Chinese Test:

During the period 1967-1972, a number of nuclear bombs were det

onated by the French and Chinese. The distributions of the debris

clouds were observed for several months after each test, and doc-
95umented by Telegadas (1974). Zr from the December 27, 1968 

detonation of a 3 megaton device was chosen as the first check of the
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model. It was estimated that 4.6 megacuries of were introduced

into the stratosphere.

Although the location of the Chinese explosions was 40° N latitude 

(90° E longitude. Lop Nor, China), the location of the zonally- 

averaged center of mass of the stratospheric debris cloud was estimated 

to be between 60° N and 65° N latitudes a few days after the injection. 

The initial vertical distribution of the cloud follows that predicted 

by Peterson (1970) with the maximum at 18 km. The latitude of injec

tion was chosen to be 60° N.

Figures 11 a), b), and c) show the confuted distributions various 

dates after injection with comparison to Telegadas' (1974) observations. 

The spreading appears to be a little slow, and the computed distribution 

lacks the large concentration observed in the southern hemisphere.

It should be noted that the numerical technique used in solving 

equation 11) had to be changed 1.5 months after the Injection. The 

large concentrations in the southern hemisphere were calculated using 

a 3 point central difference, semi-implicit, alternating direction 

scheme. This method involves the solution of a set of linear 

equations by a matrix inversion technique, hence all points in the 

atmosphere are interrelated and the distribution in one region of 

the atmosphere has an effect on the distribution in another region.

But this technique proved to be unstable after about 3 months of 

simulation. It actually predicted the distribution as becoming 

stationary and then contracting. This was thought to be due to the 

small number of random samples considered for each days calculation.
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For each day 15 random velocity fields were taken, which is a small 

number statistically, so there exists a definite probability that the 

maximum concentration could actually increase. When this happens, it 

affects the distribution throughout the entire grid space. Eventually, 

the distribution becomes unstable and begins to converge.

To correct this result, all further calculations employed a 

completely explicit difference scheme. In doing so, the governing 

equation 11) is solved locally for each grid point and the distribution 

in one region doesn't affect the distribution in another region. 

Although the maximum concentration may still Increase, it will not make 

the entire distribution unstable, and on the average the tracer 

disperses as the figures illustrate.

The HARDTACK Test Series:

During the project HARDTACK in 1958, the United States detonated

several bombs in the south Pacific around 11“ N latitude and intro-
185duced a previously undetected radioisotope into the stratosphere, W.

185From the amount of W observed to have been deposited on earth in the 

following years, it is estimated that about 95 megacuries (decay

corrected to August 15, 1958) were initially injected. The date of the

injection was taken to be August 15, 1958 and the latitude of

injection was taken to be 10“ N. Again, the initial vertical distribu

tion and location of the maximum concentration were taken from 

predictions of Peterson (1970). Figures 12 a), and b) show the computed 

distributions 3, and 10 months after injection, compared to that given 

by Friend, et. al., (1961). The 3 month computed distribution is in
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fair agreement with observation except at heights below 10 km. The 

computation predicts a rapid drop of debris around 15® latitude in 

each hemisphere that is not observed. This disagreement can be 

attributed to the way in which the time scale of the random fluctua

tions was calculated in this region. Equation 16) shows the 

relationship between the standard deviation of the random wind 

probability distribution (which is a measure of the horizontal rate of 

spread) and the characteristic time of the fluctuations. Equation 15) 

explains how this characteristic time was obtained, by dividing the 

horizontal eddy diffusion coefficient, Kyy» by the observed data for

v'v'. In the equatorial region Louis (1974) obtained his diffusion 

coefficient by canceling the effect of his mean circulation from 

observed ozone fluxes. As a result, the horizontal diffusion 

coefficient is a maximum in this region. In comparison, Gudisken 

(1968) set his diffusion coefficients equal to zero up to 14 km in the 

equatorial region. Since the vertical random fluctuations are 

directly related to the horizontal fluctuations by the diffusion 

angle, the large characteristic time calculated from the diffusion 

coefficients makes the vertical spreading much larger than observed. 

After 10 months of calculation, this disparity is further emphasized. 

The model also predicts a tendency towars dispersal in the northern 

hemisphere, while observations show a near equal distribution in 

both hemispheres. The location of the maximum concentration and the 

slope of diffusion are qualitatively reproduced.
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OONCLUSION

In this work a two-dimensional model of the atmosphere has been 

developed. It simulates the distribution of Introduced tracers by 

assuming transport Is due to advectlon by a mean circulation and by 

turbulent eddies. A unique method of modeling the effect of eddies 

Is Introduced by assuming that the turbulent eddy fluxes are due to 

random fluctuations in the velocity field. The main advantage to 

this approach Is that the diffusion due to the random fluctuations 

can be parameterized from observed data, while similar two-dimensional 

models require emprlcal or seml-emplrlcal evaluations of diffusion 

coefficients.

The model was tested with Independent sets of data by simulating 

the radioactive debris from the mid-latitude Chinese numclear explosion 

of Dec. 1968, and the equatorial U.S. explosions of Aug. 1958. 

Calculations were carried out to 6 months, and 10 months after 

Injection, respectively. The simulation of both tracers was qual

itatively reproduced, despite discrepancies In some of the data.

This result supports the assumption that eddy transport can be 

characterized by random processes.

It Is hoped that the modeling of random processes as set forth 

in this work could provide a starting point for a more complete 

description of debris transport without the necessity of arbitrary 

parameterization typical of existing two-dimensional models.
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