
University of Montana University of Montana

ScholarWorks at University of Montana ScholarWorks at University of Montana

Graduate Student Theses, Dissertations, &
Professional Papers Graduate School

2000

A computerized tool for the collection and manipulation of A computerized tool for the collection and manipulation of

physical therapy outcomes data physical therapy outcomes data

Doug Lawrence
The University of Montana

Follow this and additional works at: https://scholarworks.umt.edu/etd

Let us know how access to this document benefits you.

Recommended Citation Recommended Citation
Lawrence, Doug, "A computerized tool for the collection and manipulation of physical therapy outcomes
data" (2000). Graduate Student Theses, Dissertations, & Professional Papers. 6244.
https://scholarworks.umt.edu/etd/6244

This Thesis is brought to you for free and open access by the Graduate School at ScholarWorks at University of
Montana. It has been accepted for inclusion in Graduate Student Theses, Dissertations, & Professional Papers by an
authorized administrator of ScholarWorks at University of Montana. For more information, please contact
scholarworks@mso.umt.edu.

https://scholarworks.umt.edu/
https://scholarworks.umt.edu/etd
https://scholarworks.umt.edu/etd
https://scholarworks.umt.edu/grad
https://scholarworks.umt.edu/etd?utm_source=scholarworks.umt.edu%2Fetd%2F6244&utm_medium=PDF&utm_campaign=PDFCoverPages
https://goo.gl/forms/s2rGfXOLzz71qgsB2
https://scholarworks.umt.edu/etd/6244?utm_source=scholarworks.umt.edu%2Fetd%2F6244&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:scholarworks@mso.umt.edu

I i
L

Maureen and Mike
MANSFIELD LIBRARY

Tlie University of] M [O N T A N A

Permission is granted by the author to reproduce tliis material in its entirety,
provided that tliis material is used for scholarly purposes and is properly cited in
published works and reports.

** Please check **Yes” or Wo" and provide signature * *

Yes, I grant permission
No, I do not grant permission

Autlior’s Signature

Any copying for commercial purposes or jfinancial gain may be undertaken only with
tlie author's explicit consent.

A COMPUTERIZED TOOL FOR THE COLLECTION AND MANIPULATION
OF PHYSICAL THERAPY OUTCOMES DATA

By

Doug Lawrence

Presented in partial fulfillment of the requirements

for the degree o f

Master o f Science

The University of Montana

2000

Approved by *

erson

Dean, Graduate Scnool

Date

UMI Number: EP37045

All rights reserved

INFORMATION TO ALL USERS
The quality of this reproduction is dependent upon the quality of the copy submitted.

In the unlikely event that the author did not send a complete manuscript
and there are missing pages, these will be noted. Also, if material had to be removed,

a note will indicate the deletion.

UMT
O is aa rta tio n P iib lish in a

UMI EP37045

Published by ProQuest LLC (2013). Copyright in the Dissertation held by the Author.

Microform Edition © ProQuest LLC.
All rights reserved. This work is protected against

unauthorized copying under Title 17, United States Code

uesf
ProQuest LLC.

789 East Eisenhower Parkway
P.O. Box 1346

Ann Arbor, Ml 48106 - 1346

Lawrence, Douglas C., M.S., May 2000 Computer Science

A Computerized Tool For The Collection And Manipulation O f Physical Therapy
Outcomes Data (66 pp.)

Director: Dr. Alden Wright

ABSTRACT

It is important in most any scientific discipline to review your work, to assess and
evaluate any weak areas and fix them, as well as enhance those aspects that are strengths.
Furthermore it is important that the practitioner have a method by which results can be
tracked. This computer program was developed as an answer to this problem as
presented by the Physical Therapy Department at the University o f Montana as part of
their Physical Therapy Outcomes program.

This paper presents in detail a project completed as part o f the fulfillment for the
University o f Montana Computer Science Masters Degree. It details the steps taken to
create a computerized tool for collecting patient data and responses and tracking these
responses for future evaluation. Some of the development tools were the Visual Basic
programming language. Universal Modeling Language (UML) and Structured Query
Language (SQL). The following pages present the background of this endeavor, the
methods used, and the final results o f this project.

11

Table of Contents

A bstract... ii
Background.. 1
M ethodology.. 3
The P rocess... 6

Plan and E laborate.. 7
A nalyze... 9
D esign .. 11

The P rogram .. 14
Sample run-through... 16

Conclusions.. 21
Further Enhancem ents.. 24
R eferences... 25
Appendix I .. 26
Appendix I I .. 29
Appendix I I I .. 39
Appendix I V .. 43
Appendix V ... 45

111

BACKGROUND

In the Spring o f 1999, the Physical Therapy Department of the University o f

Montana approached the Computer Science Department requesting help in completing a

project on which two o f their graduate students were working. These graduate students,

Eric Mills and Sarah Pataya, were researching a new tool, called an Outcome Tool, the

purpose o f which was to “assess the efficiency and effectiveness o f [physical therapy]

treatment”. This outcome tool is used to collect patient data in three key areas: clinical,

financial and satisfaction outcomes. These results are then used to aid in the evaluation

o f the profession, develop expertise, and direct future financial decisions regarding the

physical therapy program.

The problem they encountered was the storing and tracking of the results. They

had developed several forms which were filled out by the patients containing data in the

above three areas but realized that a stack o f papers in a file drawer would not work well

once they began to accumulate. To most computer science students it becomes a classic

example of a database application.

Kathy Lockridge approached me about helping Eric and Sarah and in February a

meeting was held to discuss their needs. They explained in general that what they wanted

would essentially consist of a program that would 1) allow for entry of data collected

from patient data and patient responses into a database and 2) allow for manipulation o f

this data such that teachers, educators and therapists could gauge how well their programs

were working. For example, it would track the average costs of visits for an individual

therapist. Different therapists could then be compared. It would also track satisfaction

scores given by patients.

In March o f 1999, during Spring Break, I wrote what is referred to as a “rapid

prototype”. Because it only took a week and because there was no specification or design

work, the program was functional but nowhere near perfect. After using the program for

a while, several ‘bugs’ became evident. In the summer it was decided a better and more

complete program was needed.

METHODOLOGY

One o f the main reasons for choosing this project was to allow me to learn and

apply the art o f software design. Although this project was not specifically about the

software engineering process it is important that the reader have a basic understanding of

what it entails. The project further allowed for some practical experience in the use of

what is known as Unified Modeling Language, or UML.

The software process is the way software is produced. The process begins by

simply talking to the client (the person wanting the software) and determining what they

want and/or need. This is called the Requirements stage and is in many respects the most

important. What follows are several other stages including the Specifications Phase

where it is determined what the product is supposed to do, the Design phase where it is

determined how the product is to do it, and the Implementation phase where the ideas are

coded into what is commonly referred to as ‘code’.

The Unified Modeling Language (UML) is a notation (mainly diagrammatic) for

modeling systems using object-oriented concepts. In the section that follows we will see

how the diagrams created using UML became the final program.

In practice the Software Process and UML become intertwined. They are used in

parallel in the development o f the computer program. Whereas the software process is

the art o f designing a piece o f software, UML is the method by which we can put these

ideas on paper (or virtual paper, if you will).

The process of designing software programs can be likened to that o f building a

skyscraper: Just as a builder would never build a skyscraper without blueprints, a

computer program shouldn’t be written without blueprints. Now, although there are

major differences in how a skyscraper is built and how a program is written, the basic

analogy is true. A poorly designed building will collapse whereas a poorly designed

software package will crash. Even now, as in the past, there are software engineers

sitting down to write code without either the slightest idea o f where to begin or worse,

what the client needs. Developing a method for writing computer programs has been a

major concern for the software industry and is supported by the government itself in the

form o f standards and regulations designers must meet.

There are several different ways in which the software process can be realized.

These are called Software Lifecycle Models, which take the elements o f the software

process and (possibly) reorder them. For example, some programmer may decide to put

the design phase directly after the specification phase with the understanding that there is

"no going back” to change the specifications (The Waterfall Model). Others may choose

to build the software incrementally where each build adds to what has been already

created (The Incremental Model).

The model chosen for this project was a hybrid of several models. I used a little

from the Rapid Prototype model, combined with the Incremental Model and an Object

Oriented Analysis approach. The Rapid Prototype model allows for the collecting o f

requirements and the rapid development of a functional but not-quite-complete program

that is subsequently given to the client to evaluate. Based on this evaluation a better and

more complete program is developed. There are many advantages to using this approach,

not the least o f which is nailing down a functional interface that the client can use

effectively. This would be likened to the architect building a small-scale model o f the

skyscraper. The Incremental Model allowed for working on pieces o f the project in

exclusion o f the others.

An object-oriented analysis approach is an iterative process that allows for the

modification o f previously created documents and thus allows for change. It is not in the

scope o f this paper to explain Object Oriented Programming (OOP). In brief, however,

OOP is a type of programming where nearly every element o f the program can be

identified as an object. That is, an entity in and o f itself, having properties and methods

or procedures that operate on those properties. “During object-oriented analysis, there is

an emphasis on finding and describing the objects - or concepts - in the problem

domain.”

Hopefully with these brief descriptions we can proceed and not lose the reader

completely.

THE PROCESS

Object Oriented Analysis consists o f stages. These different stages combine to

form what is termed a Development Cycle. As mentioned above, the idea is to iterate

tlirough this development cycle, until you have the product desired. As Larman puts it,

“A strength of an iterative and incremental development process is that the results
o f a prior cycle can feed into the beginning o f the next cycle. Thus subsequent
analysis and design results are continually being refined and informed from prior
implementation work.” (Larman, pp. 297-8)

What follows is a breakdown o f the phases involved in the creation o f this

program. It by no means contains all the phases of object oriented analysis and is

therefore, not complete. Time constraints do not allow for a complete cycle, much less

several iterations over this cycle. Furthermore, this paper is not meant to be a tutorial on

how to develop software. However, as each phase is introduced a brief description of

what that phase is and why it is used will be given.

The phases used were 1) Plan and Elaborate, 2) Analyze, 3) Design and 4) Test.

As each phase is introduced and discussed, sample elements or artifacts o f the design

relative to that phase will be displayed or discussed. While some sample diagrams and

forms are presented in the body o f this paper and the appendices, a complete collection of

all documents and diagrams can be found on the CD accompanying this paper in HTML

format. To view them open the file entitled “Physical Therapy Project.html” .

Plan and E lab orate:

In this phase we define requirements, implement a prototype, and develop a

conceptual model.

Requirements: This portion was begun during the spring o f 1999 when the first

meeting was held with Eric and Sarah. A requirement meeting can be as formal or

informal as desired since it consists o f finding out what the client wants or needs.

Several techniques can be utilized from simply asking questions to letting the client do all

the talking. The designer needs to understand not only what is wanted but also what is

currently being used and why it isn’t working anymore. In the case of this project what

was desired was a way to track data over time. The current method was via paper forms

that, as noted above, could become unwieldy after a certain amount o f time. A sample of

the data collection forms can be seen in appendix I.

Most requirements documents are not developed in one meeting. In fact, three

different meetings were held to discuss issues before the prototype was coded. The final

requirements document can be seen in the appendix II. Although there is no absolute

method for writing requirements, it was decided to use an outline approach for this

program. A copy o f the requirements document is in Appendix II. This document also

contains the design glossary, the system attributes and some assumptions made about the

requirements.

Requirements prepared correctly can be the cornerstone to a great piece o f code.

Persons skilled at finding out what is needed verses what is wanted can be a great asset to

a software engineering firm. It is often the case that a bad program can be traced to

misunderstood or unclear requirements.

Implementing the prototype: The prototype is a quick-and-dirty model o f the final

product. It is usually created hastily and contains many bugs. The prototype for this

program was created in a period o f five (5) days, with about forty (40) man-hours of

work. After the prototype was coded more meetings were held to discuss problems and

issues that needed to be addressed.

Rapid prototyping can be an integral part o f the requirements phase. However,

there are many issues involved with using a rapid prototype that need to be addressed,

such as the fact that a prototype is just that, a prototype and not the real thing. Prototypes

are usually shelved after the information needed from them is made known. In this case

the prototype was not shelved but it wasn’t used in its entirety either. Parts o f it were

used with most o f it being significantly modified.

A working copy o f the prototype is included on the CD at the back o f this paper.

Conceptual Model: After the requirements are completed and (hopefully)

understood, the programmer can start to make a list o f concepts that are contained in the

document. A concept is just what it sounds like: It isn’t necessarily a real thing (i.e. - a

portion of code) although it might be. It illustrates “meaningful [] concepts in a problem

domain; it is the most important artifact to create during object-oriented analysis.”

(Larman, p. 85) It might include people that interact with the program as well as a

database file containing people’s names. A partial list of concepts for this program is as

follows:

The User
Satisfaction database
Patient database
The data entry form
Reports generated by the program

Once a list o f concepts is developed the idea is to figure out how these concepts

interact. For example, how will the user use the database? Is there a direct interaction?

Appendix I is the preliminary conceptual model for the physical therapy program. Much

discussion should revolve around whether a concept should be included and whether

more should be added.

In this design the conceptual model became the class diagram, which is discussed

later, and can be viewed in appendix III, figure 2. Notice the addition o f many (if not

nearly all) procedures and attributes. In a real world situation the conceptual model

would contain a nearly complete list o f attributes, methods and procedures before coding

begins. In the case of the Physical Therapy program many things were found wanting

once coding started. In a perfect world what should happen when this occurs is that the

coding should stop and a re-defining of the conceptual model be done.

Analyze:

In this phase Use Cases and System Sequence Diagrams are created.

Use Cases: Use cases might be best described as ‘how things might happen’

during the use o f the program. For example, in this program the user has to log in to gain

access to the database. A use case tells us who is involved in this process as well as how

the system reacts to the actor. The use cases can be read in Appendix IV.

Use cases can be ranked and ordered depending on the relative importance to the

design. In our case, the use case involving data entry became very important and was

thus a higher ranked use case.

System Sequence Diagrams: System Sequence diagrams illustrate events from

users (actors) to the system (program). You can’t really create System Sequence

Diagrams without first creating Use Cases as they are created directly from them. “The

UML includes System Sequence Diagrams as a notation that can illustrate actor

interactions and the operations initiated by them.” At this point we are not concerned

with the implementation (the “how”), just that they will happen. This is often termed a

“black box” approach.

Below is one o f the System Sequence Diagrams developed for the Physical

Therapy program.

C h art ID : a d d N e w U s e r
C h art N a m e : a d d N e w U s e r
C h art T y p e : UM L S e q u e n c e D ia g ra m

u s e r : U s e r

vddU serf)

addUser(id,password):8oolean()

c h e c k U s e r O ;B o o le a n ()

w riteT o F ileO f 1_________ ,

MDI : M PI
uf : U s e r F iles p : S e c u r i ty P o lic y

10

The diagrams flow from top to bottom and left to right, just as you’d expect. The

events are listed in the order they occur. System Sequence Diagrams consist o f system

events (those things generated by the user) and system operations (the action response

from the system).

Again, System Sequence Diagrams are closely tied to the Use Cases and

theoretically you would have a diagram for each Use Case.

Design:

In this phase the Collaboration Diagrams are created and a Class Diagram is built.

These objects are built simultaneously.

Collaboration Diagrams: Much can be shown with graphs and that is essentially

what a Collaboration Diagram attempts to do. Collaboration Diagrams illustrate object

interactions in a graph format. Theoretically at this point the programmer has a pretty

good idea as to what classes will be included in the final project. At the least, the final

list o f concepts has been created and the programmer can now define exactly how one

concept will collaborate with another.

Collaboration Diagrams illustrate the passing o f messages between two concepts

or classes. They are very much like the Sequence Diagrams discussed above.

Collaboration Diagrams tend to be more expressive and can convey more information

quickly than the Sequence Diagrams.

Below is one of the collaboration diagrams for this program.

11

Chart ID : Login
Chart Nam e ; Login
Chart Type : U M L Collaboration Diagram

i L

3.1:isSuperO

s: u e |si ':SuperUserStartup : Splash Screen/S tarti j

S P : Security Policy

3:checkUser(id,pw d)

M DI : MDI

As one might guess, the events occur in the order in which they are numbered.

Class Diagram: The Class Diagram is the logical extension o f the conceptual

model. Whereas the conceptual model represented ideas and concepts that may or may

not be real, the Class Diagram is a definition of classes as software components. The

Class Diagram contains all the important methods and procedures for a given class as

well as its attributes. Furthermore it graphically conveys the flow of the program. Where

does it start? What object creates another object? How does that object get information

from that object?

The class diagram for the Physical Therapy project is quite large and can be

viewed in appendix III, figure 2.

This completed the design portion of the project. Once again, in the real world,

there is no end to this part of the job. A good programmer would be updating the Class

and Conceptual Diagrams as more concepts became apparent. Additional Use Cases

would be developed and Collaboration Diagrams written.

12

The point is that you are not bound to the paperwork. The beauty of the iterative,

object-oriented approach is that the programmer can go back and change things, which, if

done correctly and logically, will result in a well written, documented, robust piece o f

software.

13

THE PROGRAM

Ideally, the design generated during the software process will translate into a

workable program. In this section I will explain what type of program this is and take the

reader through a basic use of the Physical Therapy Program.

Computer software it is often classified by its architecture. That is, what are the

component parts o f the system? How does one part relate to the other? The Physical

Therapy program here is an information system, meaning it needs to handle and store

information. A 2- or 3- tier design would be a good choice.

In a 3-tier architectural design there are 3 layers - the Presentation (the things the

user sees), the Application Logic (the rules that govern the process) and the Storage (such

as a database or record file). In an object oriented world these three pieces can be written

and developed separately, combining them at the end. A programmer may design the

structure of the database, not really knowing how the user interface programmer will use

it. All that needs to be handled up front is how these layers will communicate.

In a 2-tier design we erase the division between the Application Logic and

Presentation layer, combining the two. A disadvantage of this design is the “inability to

represent application logic in separate components”. This can make using the same code

later a more difficult task.

The Physical Therapy Program became a combination of the two types o f design.

This is possible because o f the way Visual Basic, the language chosen for development,

is itself designed. You can develop a completely object oriented program in Visual

14

Basic. In fact, some authors claim that it is “intuitively object oriented. In fact, it’s

difficult to think of using Visual Basic [] without using one type of object or another.”

(Spenik, p. 387) This becomes most evident in the use o f the Form objects, o f which this

program makes much use. A Form is certainly an object, which lends itself very well to

user interface design, but it also can contain much of the application logic for the

program. Not that it must contain the logic just that it lends itself to that task. In fact, it

is the way most books teach Visual Basic, starting with the Form object and adding code

to it. A good programmer will learn to separate the Forms (Presentation Layer) and the

code (Application Logic) as he/she progresses.

Similarly, it was desired that we maintain what is called the Model-View

Separation pattern. This pattern says that the logic of a program should be separated

from the presentation portion. There are many good reasons for using this pattern o f

program design, and I tried to make use o f it. But for some o f the reasons noted above

and due to programmer naivety, it was not strictly adhered to. One o f the unpleasant

results o f not following the Model-View separation pattern is high coupling in code.

15

Sample Run-through

A basic run-through of the program consists o f the following steps.

The user begins the program by executing the PTOutcomes executable. This

brings up the combination Splash/Login screen. A Splash screen usually tells the user

what program they’re running, a version number, and essentially anything interesting the

designer wants known. A login screen is just what it sounds like. Clicking on ‘Ok’

causes the users id and password to be checked. Administrators are allowed read/write

access; everyone else only read access. Below is this Form.

The University of
Moniana-Missoula O U tCO IFIfl 6 S

N o r i i S L i i a c l E v e r L C l i n i c

C om pany; U niversity o f M on tana , M issou la

Platform: Win 9x/NT
Version 1.0.0

User Id

Password I
(L ea v e p a ssw o rd b lank if n o t a n adm inistrator) q |̂

Once the user has been verified, the main Form appears. This Form is what is

called a Multiple Document Interface (MDI) Form, as opposed to a Single Document

Interface (SDI). Most Windows applications use an MDI Form, which simply means you

have one big Form in which all the others are displayed. In Visual Basic you can only

have one MDI Form. This Form presents the user with the main menu consisting o f the

basic File, Options, and Reports options.

16

At this point the user can choose to enter new data, create a new database, or if an

administrator, add other administrators. The most common task is data entry. If chosen

the data entry Form is displayed. This Form allows for entry o f all patient data from the

paper forms as well as updating of current patient information.

Below is the MDI Form containing the Main Data Entry Form.

ip*Physical Thaiapy Qulcom es
£Se Q p ïo m fl«portt k W a w

GglPfclE

I

P h y s ic a l T h e ia p y O a la b a i e • M atn

Add I Update I Delete I Exit I

I n 1 4 1 Physical Therapy D atabase - Record: ' &> (D ► I H h
PtBSOHAl #ÿ> / ' - P Y - l f W - W #

G aidet (M/Fl j f Age: j i Theiapist Code #. [s l Referring Phyi. Code #: R

3Irw uan te Providet;

c o m / r / P f f

IC D -a C o d e R p

T » e A T M £ M r

M uecUpekdeW Piaciice Pattetrr.

Dale of Evalualioo (Ertei u mm/dd/yyt (7 /7 /77 Dale of D échargé (Emei a» mm/dd/jiyt 17 /7/77

O i«el(dayi|: (9 Hinrtbei of SchoolD a/» L m t (3

n m M O A L

T ptsl Nurnber of T realioent/viell»

Talal Ceao Charge* (tO 00|:

FA TtEftTAaiENI SÎA TUS

Number ol Canceealiooe/No Show*;

Imptovemeni: |g CofflpianceiMlh Home Eneicise Program: 19

FiiaclionatAbrliiy tJSioep: 2JPei*onalCare 3) SchoolAcüvîliBr. 4)R*oreaiiondSpoii*: tV 4) ' 2S

Intiial: |9 19 13 J3

Déchargé fg |g ig 13

Imliat Direhaige
Pam J9-------- (9--------

Seesr

General Fiancboh: [9

5 /2 /00

O f all the Forms in this program the data entry was the most difficult to create.

The user interface was relatively easy but the data manipulation portion took some time.

Visual Basic gives the option of using Microsoft’s data control, which alleviates much of

the dreariness o f programming with databases. The flipside is that you must learn about

the underlying concepts involved, namely Recordset objects, Structured Query Language

(SQL) and a little Active Data Objects (ADO). As a side note, Microsoft utilizes these

concepts throughout its Visual Studio programs including Visual J++ and C++.

17

Once the user is done entering patient data, he may choose to enter satisfaction

data. In the prototype version o f the program the patient and satisfaction data was

entered on the same Form. However, the client decided later to separate how these pieces

o f information were collected during treatment. Namely, it was decided that a patient's

satisfaction results should be kept separate from their personal data for privacy reasons.

In the new version o f the program there are three databases - A patient database, an

Initial Satisfaction database, and a Post Satisfaction database. The data entry person can

choose which database to utilize depending on what data he needed to enter. The File

menu gives options for entering data and creating databases for all three options.

One of the more complicated issues to solve in the development of the program

was data validation. There are a total o f thirty-two (32) pieces o f data in the patient form

and 8 on each satisfaction form. In order to make sure data gets manipulated correctly

and to make a robust piece o f software, a design decision was made that data would not

enter the database itself until it was in the correct form. This means that dates must be

actual dates and numbers range-checked for validity. Almost every data item needed to

be checked.

The problem was solved in this way: When the user moves from one text box to

the next, the data in the box is checked for validity. If it is not valid a message appears

and the offending box gets the focus. There is a double check on some boxes in that the

data control has a validate event which double-checks the boxes whenever the user clicks

on any of the move or update buttons.

18

Another issue was the structure of the database. In the prototype the database

fields contained different types, meaning that a field might contain the date type while the

next one a String type. This turned out to be a problem during validation so in the final

version all fields contain either the String or Single type. Dates are cast into dates when

date manipulation is desired.

After entry o f any data the user might progress to the report generation screen.

P h y iic a l T hciapy O ulcotncx

£ile Option* geportx ÿfridow

Patient D atabaxe Choose

Initipl S a t D atabase D atabases

P ost S a l D atabase |r-'niR';,v

t f P in t to te ie e n P in t to (Jet 1
Choose da tab ase options
Gy S em ester o ty e a c Î2000

* . gglggg:'
r SpiirtB (Jan - May)

r S u m tn e ttJu n e 'A m l

P el [S e p -D e c)

By D ate
,______ j M L u

^ r Fiom)5/3/99 to I5/2/00 ^

ByY eat

r Y ea. [2000

a* EnJirfs d a tabâse

y ? yy i ^

Ok I Cancel

r Print to piintei

C hoose Cfileria

f ' fly Iheiapisl..

C* By refeirng physician.,.

C ByICD '9 code...

r ByM PP„,

C AI

L,Jg|xi

i W # # ' ' '

lus N U M S E I # . ' 1 0 . 2 G P M : 5/2/m

This screen allows for selection of the range of records to include in the outcome

summary and how this summary should be created (File, Screen, Printer). The prototype

made an attempt at giving the user a choice but the method seemed clumsy and

confusing. After discussing this with the client a more exact requirements definition was

developed.

19

Once ‘Ok’ is pressed an Outcome Summary object is instantiated. There are

many properties that the Report Choice Form sets in this object, such as the type o f

output desired as well as the range o f records. This object generates the appropriate

recordset object, which is then manipulated. The report is generated according to the

users preferences.

A sample o f an Outcome Summary for the entire database is in Appendix III.

At this point the user can repeat any o f the above steps or quit the program.

20

CONCLUSIONS

In this section I will make some conclusions about the process used to develop

this software as well as some of the things I might do differently. Most o f the elements

that are left undone or that lack in completeness are due to a combination of a lack o f

time and lack o f complete understanding o f Visual Basic.

For the most part the written program translated very well into the written code. I

was determined not to begin writing code until I had completed the paperwork. I

discovered that I was running into mental blocks concerning the concepts and how they

fit together. There was also the time issue to consider so even though I could have spent

a considerable amount of time refining the diagrams and models, I decided to begin

coding. I believe one could have made a complete project out of just the UML portion of

this project.

Developing the conceptual model proved to be the most beneficial element o f

coding. It helped me see what classes or Forms needed to be created and how they

needed to communicate. I believe very strongly that doing the up-front work created a

better, more robust program. It also contributed to faster development.

One o f the frustrating elements o f the project was that often, after I had completed

a section of code, I would discover a new and possibly better method o f doing it. As I

was doing the coding for the program I was also reading and doing some research on the

Visual Basic programming language. Not just for this project but also for some o f the

students I had in a class I was teaching. I suppose that this happens to all beginners in

any discipline similar to this one. I found myself fighting the desire to go back and do

things differently.

21

One o f the things I would do differently is to make the program even more object-

oriented. For the most part it is centered around objects and manipulation of their

properties but there are many aspects that could be developed further. For example, there

are many properties and methods associated with the MDI Form that I did not use. For

example the Forms collection allows the programmer to keep track o f windows/forms

that are open. It was while I was reading about collections that I further discovered

Visual Basic does not handle garbage collection, as does Java. Using the collection

object allows one to destroy all the Forms at once.

Another aspect of the program I might do differently is in the use o f the Windows

Registry. I found many bits of information on different web sites about how to utilize it

but felt I didn’t have the time to include it. (Maybe part o f that was the fear o f messing

up my own computer’s Registry!) There are several things I could use the Registry for,

the most obvious being the opening of recently used files. You could program this using

text files but most programs for which I have seen the code use the Registry to store a

most-recently-used list o f files.

By far the most interesting and maybe frustrating thing that happened while

working on this project happened about two weeks after completion o f the code. While

helping a fellow employee with the Microsoft Access program, a program with which I

had very little familiarity, I began to see how I could have written the whole program

using Access. Access utilizes Visual Basic to do much o f the coding but more

importantly it allows one to develop Forms and manipulate databases with little effort.

Although I learned quite a bit about using recordsets and databases using Visual Basic

itself, I essentially wrote from scratch what was already being used in Access.

22

In developing reports I utilized three different sub procedures. Although this

works as expected it isn’t very elegant. All three procedures do the same thing, they just

send their results to different output devices. It might be better to create the report as a

text file and then use it for printing. If the user had chosen not to print the report the file

could just be deleted.

I have also discovered how to use pop-up menus which, although not really

necessary, would add a little completeness to the program.

23

FUTURE ENHANCEMENTS

In this section I will present some items that might be added to the program at a

later date.

In the requirements meeting we discussed having the program work in a

networked environment. I never implemented this into the code but it wouldn’t take too

much effort. Most o f the work involves keeping databases open exclusively for reading

or writing, much o f which is handled by default in Visual Basic. Access to the server

would also be needed.

The format o f the reports seems very list-like. In looking at how a different

school developed reports for a similar tool it is obvious that more could be done in this

area. For example it would be nice to break up the results into more categories and do a

little more analysis. This would require additional help from the Physical Therapy

department as to what they would like to see.

The development o f some graphs would be an excellent addition to the program,

allowing the user to graphically view trends in certain areas. Visual Basic has at least

two different ways by which a programmer could do this using built in controls.

Overall it would be nice to make the program adhere to the Windows standard of

doing things. By this I mean making menus and any other visual items similar to what is

seen in other Windows programs. I ’ve tried to do this as much as possible but there is

room for more work in this area.

24

References

Larman, C., (1998). Applying UML and Patterns. Prentice Hall (3,4,5,6,7)

Mill, E, Pataya, S. (1999) The University of Montana Outcome Tool, Mills, Pataya (1)

Mullet, Kevin, Sano, Darrell (1995) Designing Visual Interfaces. SunSoft Press, Prentice
Hall publishing

Schach, S.R., (1998). Classical and Object Oriented Software Engineering. Vanderbilt
University, Mcgraw Hill (2)

Spenik, M, Indovina, A, Jung, D, Boutquin, P (1999). Teach Yourself Visual Basic 6
Online. Sams publishing (8)

25

APPENDIX I

Below are the data collection forms used by the Physical Therapy Department to gather
patient data.

m The University ofMontana
Nora Staael E vert Physical T herapy Clinic

Patien t/C lien t Self Assessment (Discharge Visit)

Please take a moment to fill out the following form. Please answer all o f the questions to the best o f your
ability.

Name Date

School Days Lost: Approximately how many days were you unable to attend class due to your
condition? ___________________

Im provem ent:
O n th e s c a le b e lo w , p le a s e ra te th e am ou n t o f im p ro vem en t in y o u r co n d itio n s in c e th e b eg in n in g o f y o u r
p h y s ic a l th e ra p y trea tm en t.
Please m ark on the line with a slash (/).

N o improvement ■ Complete recovery

Home Program
O n th e s c a le below , p le a s e ra te y o u r a d h ere n c e w ith the h om e p ro g ra m g iv en to y o u b y y o u r p h y s ic a l
th era p ist.

I never performed my home program I performed my home program regularly as instructed

Functional Abilitv
F o r ea c h qu estion , p le a s e ra te y o u r cu rre n t co n d itio n on th e s c a le s below .

1) Do you have difficulty sleeping?

N o difficulty — My sleep is completely disturbed

2) Do you have difficulty with personal care (dressing, washing, grooming, etc.)?

N o difficulty I am completely dependent on others for my personal care

3) Do you have difficulty with school activities (walking to class, sitting, working at a computer,
etc.)?

N o difficulty I am unable to perform any school
activities

26

4) Are you able to engage in recreational/sport activities as you did prior to your injury?

I am able to participate in my sport I am unable to participate fully

Pain: O n th e sc a le below , p le a se ra te vo u r w o r s t p a in in th e la s t 4 8 hours.

No pain Worst pain imaginable

Stress: O n th e s c a le b e low , p le a se ra te th e am ou n t o f s tr e s s c u rre n tly in v o u r life.

N o stress Worst stress imaginable

General Function: O n th e s c a le b e low , p le a se r a te vo u r cu rren t le v e l o f o v e ra ll fu n c tio n in s

I am functioning I am at the worst level at my pre-injury level
o f functioning since my injury

Figure 1

27

The University ofMontana
Patient/Client Satisfaction Assessment (Discharge Visit)

Your evaluation and suggestions will allow us to improve our services and make the
physical therapy experience better in the future. Please take a moment to fill out the
following form. Please answer all the questions to the best o f your ability.
On the scales below, please rate your level o f satisfaction (circle N/A i f not applicable).

1)

2)

3)

4)

5)

6)

7)

8)

With your primary physical therapist

Very dissatistied Y^ery satisfied

With your student physical therapist(s)

Very dissatisfied Very satisfied

O I did not have a student physical therapist

With the length o f time you waited in the reception area past your scheduled appointment time

Very dissatisfied

With privacy during treatments

Very dissatisriea

With the overall cleanliness o f the facility

Very dissatisfied

With the explanation o f your treatment plan

Very dissatisfied

With the explanation o f the payment policy and billing procedure

Very dissatistied

With your overall physical therapy experience

Very dissatisfied

9) Any additional
comments:

Figure 2

Very satisfied

very satisfied

Very satisfied

Very satisfied

Very satisfied

Very satisfied

28

APPENDIX II

Requirements Document

Overview Statement

The purpose of this program is to allow the client to enter data collected from paper forms filled out
by Physical Therapy patients and subsequently manipulate this data. The results are used to evaluate
the effectiveness o f the physical therapy given to the patient as well some o f the costs associated
with providing Physical Therapy. The program will also be used to show clients (i.e. - physicians)
the benefits o f performing Physical Therapy.

Customers

Brenda Mahlum - Physical Therapy Instructor
Dave Levison - Physical Therapy Instructor
The University o f Montana Physical Therapy Department

Goals

The goal o f this program is to allow clients to view collected data in a manner that allows them to
make critical evaluations o f the Physical Therapy methods in use, provide better care to patients, and
determine the costs involved in providing Physical Therapy.

29

System Functions

This section is broken down into four categories:

1. Input o f data
2. Manipulation o f data
3. Output o f results
4. The user interface (GUI)

Note: The data collection form is the form from which the user will enter data into the database. The
data collection form is a paper form created using 2 other forms. See attachment 1 and glossary.

Input of data
1.1 Enter Patient Personal data from data collection form

1.1.1 Gender (M or F)
1.1.2 Age (Range from 0 to 150)
1.1.3 Therapist Code Number (Range from 1 to infinity)
1.1.4 Referring Physician Code Number (Range from 1 to infinity)
1.1.5 Insurance Provider (One o f these: Self Pay, Private Insurance, W orkman’s Comp.,

MVA, Medicaid)
1.2 Enter Patient Condition data from data collection form

1.2.1 ICD-9 Code Number (Positive number, possibly with decimal places)
1.2.2 Musculoskeletal Practice Pattern (Range from (A to K) or Other)

1.3 Enter Patient Treatment information from data collection form
1.3.1 Date of Evaluation (mm/dd/yyyy format)

1.3.1.1 Verify that value entered is in valid date format before allowing
further input.

1.3.1.1.1 mm/dd/yyyy
1.3.1.1.2 mm/d/yyyy
1.3.1.1.3 m/dd/yyyy
1.3.1.1.4m/d/yyyy
1.3.1.1.5 mm/dd/yy
1.3.1.1.6 mm/d/yy
1.3.1.1.7m/dd/yy
1.3.1.1.8m/d/yy

1.3.1.2 Assume that ‘00’ is equal to ‘2000’ in reference to a year. (As
opposed to 1900).

1.3.1.3 A 2-digit date will be interpreted this way:
1.3.1.3.1 40 to 99 will be 1940 to 1999
1.3.1.3.2 00 to 39 will be 2000 to 2039

1.3.2 Date o f Discharge o f Last visit (mm/dd/yyyy format, or other legal date
format)
1.3.2.1 See 1.3.1.3 regarding date issues.

1.3.3 Onset of symptoms - days (Range from 0 to infinity)
1.3.4 Number of School/Work Days Lost (Range from 0 to infinity)

30

1.4 Enter Patient Financial information from data collection form
1.4.1 Total Number o f TreatmentsA^isits (Range from 0 to infinity)
1.4.2 Number o f Cancellation/No-Shows - days (Range from 0 to infinity)
1.4.3 Total Case Charges (Dollar amount - currency format)

31

1.5 Enter Patient Status from data collection form
1.5.1 Improvement (0-100)
1.5.2 Compliance with Home Exercise Program (0-100)
1.5.3 Functional Ability

1.5.3.1 Initial (Average of the following four values)
1.5.3.1.1 Sleep (0-100)
1.5.3.1.2 Personal Care (0-100)
1.5.3.1.3 School Activities (0-100)
1.5.3.1.4 Recreational Sports (0-100)
1.5.3.1.5 Verify all four values are between 0 and 100, compute average.
1.5.3.2.1 Allow for 'no answer’. That is, the average is the average o f only

those entered.
1.5.3.2 Discharge (Average o f the following four values)

1.5.3.2.1 Sleep (0-100)
1.5.3.2.2 Personal Care (0-100)
1.5.3.2.3 School Activities (0-100)
1.5.3.2.4 Recreational Sports (0-100)
1.5.3.2.5 Verify all four values are between 0 and 100, compute average.
1.5.3.2.6 Allow for ‘no answer’. That is, the average is the average of only

those entered.
1.5.4 Pain

1.5.4.1 Initial (0-100)
1.5.4.2 Discharge (0-100)

1.5.5 Stress
1.5.5.1 Initial (0-100)
1.5.5.2 Discharge (0-100)

1.5.6 General Function
1.5.6.1 Initial (0-100)
1.5.6.2 Discharge (0-100)

1.6 Enter Patient Satisfaction Scores from data collection form (Will be on a separate GUI)
1.6.1 Eight (8) entries, each ranging from 0 - 100.

1.6.1.1 Allow for ‘no answers’. Need to keep track o f these when averaging.
1.7 Write entered data to SQL database

1.7.1 Write values to database
1.8 All data should be range-checked and corrected before allowing further input.

1.8.1 The user cannot move to a new item until the current item has been entered correctly.
For example, the date must be in the correct form before the functional ability can be entered.

1.9 There will be two types o f users - Those that can enter data AND print reports and those that
can only print reports. There should be some method o f allowing/disallowing users to certain
aspects o f the program.

1.10 There needs to be some sort o f help on the screen in regards to how to use the program. For
example, how to input data, how to move through the screen, etc.

1.11 Each input should have a record number which can be associated with a paper copy o f the
data collection form.

1.12 Must be able to move through records.
1.13 Must be able to change/modify records that have already been entered.

32

1.14 Must be able to enter new records.

33

2. Manipulation o f Data

2.1 Must be able to move through records.
2.2 Must be able to change/modify records that have already been entered.
2.3 Must be able to enter new records
2.4 Allow user to choose from more than one database (optional)
2.5 Create outcome summary

2.5.1 Choose type o f summary from list
2.5.1.1 By semester

2.5.1.1.1 By therapist
2.5.1.1.2 By referring physician
2.5.1.1.3 By ICD-9 code
2.5.1.1.4 By MPP

2.5.1.2 By Year
2.5.1.2.1 By Therapist
2.5.1.2.2 By referring physician
2.5.1.2.3 By ICD-9 code
2.5.1.2.4 By MPP

2.5.1.3 By entire database
2.5.1.3.1 By Therapist
2.5.1.3.2 By referring physician
2.5.1.3.3 By ICD-9 code
2.5.1.3.4 By MPP

2.5.2 Compute total number o f visits
2.5.3 Compute number o f males/females
2.5.4 Compute number o f visits per therapist
2.5.5 Compute number o f new evaluations (total number o f records)
2.5.6 Compute number o f new referrals per referring physician
2.5.7 Compute average total case charges
2.5.8 Compute average charge per visit (case charges/visits)
2.5.9 Compute average charge per visit per therapist
2.5.10 Compute number o f cancellations/no shows
2.5.11 Compute number o f patients per type of insurance
2.5.12 Compute average percent change in functional ability
2.5.13 Compute average percent change in general function
2.5.14 Compute average percent change in pain
2.5.15 Compute average percent improvement
2.5.16 Compute average number o f school/work days lost
2.5.17 Compute average days from onset
2.5.18 Compute average satisfaction for each satisfaction question 1-8
2.5.19 Compute average overall satisfaction
2.5.20 Compute average number o f days from evaluation to discharge

34

3. Output o f Results

3.1 Screen
3.1.1 Print heading for report based on choice in 2.5.1
3.1.2 Print out computations from 2.5 to screen.

3.2 Printer
3.2.1 Determine printer options with common dialog box
3.2.2 Print heading for report based on choice in 2.5.1
3.2.3 Print out computations from 2.5 to printer.

3.3 File
3.4.1 Allow report to be output to a comma-delimited text file for import into other

programs.
3.4.2 Create heading for report based on choice in 2.5.1
3.4.3 Ask user for name for file.
3.4.4 Write report to file, notifying user o f name and location o f file when done.

4. The user interface
4.1 Allow for the separation o f the data entry GUI into two sections

4.1.1 Entry o f data collected from data collection form.
4.1.1.1 Bring up separate GUI for data entry.

4.1.2 Entry o f data collected from satisfaction questions.
4.1.2.1 Bring up separate GUI for data entry.

4.2 Each GUI should consist of areas to enter each o f the data values collected on the data
collection form.
4.2.1 Text boxes for numerical input.
4.2.2 Drop down or combo boxes for entries with limited choices, (i.e. - MPP)

4.3 Each data entry object should have some sort of explanation. (Label)
4.4 The satisfaction questions are not necessarily tied to the patient information.
4.5 The report screen should be separate from the data entry screen(s).

4.5.1 Allow for choice o f report type. (See 2.5.1)

35

System Attributes

1. The program will run on Windows 95/98/NT machines.
2. The program will be a client/server application which means that the program itself will reside

on individual computers while the main database will reside on a server. Write access to this
database will be restricted. Only those users designated by Brenda or Dave will be allowed to
modify the database.

3. The input screen should have ‘helps’ displayed that make it obvious how data is to be entered
and how to maneuver through the screen.

4. Upon encountering invalid data, the program should inform the user in a clear way what the
problem was. Although the data cannot be entered incorrectly (in theory) it may encounter bad
data after it has been entered. (Power fluctuations, bad hard drives, etc..). The user should be
allowed to view the offending data and correct it.

5. After completion o f the program, the Physical Therapy Department should have access to
support. That is, if a problem with the program arises, the writer o f the program should be
available to fix it. A reasonable amount o f time would be assumed. For example, for 1 full year
after delivery I would be available at no cost.

6. There should be some sort o f written documentation. One set should consist o f the source code
for future students and the other should be a manual on how to use the program.

36

Glossary

Record - One complete entry in the SQL database. Includes all the information available from the
data collection form.

SQL Database - A type of database that allows the programmer to perform SQL type queries. For
example, it allows for selection o f specific records, excluding others.

Onset - The number o f days from when the malady was first detected.

MPP - Musculoskeletal Practice Pattern

Referring Physician - The number o f the physician who referred this patient.

Functional Ability - A measure o f how able the patient is to participate in a certain activity such as
sleeping and school activities.

Therapist Code - A number assigned to a given therapist.

Comma-delimited file - A file in which each element is separated by a comma.

Graphical User Interface (GUI) - The collection of text boxes, buttons and graphical images that act
as the interface between the user and the program and allow for interaction. For example, the text
boxes that allow for input o f data from the data collection forms are part o f the GUI.

37

Assumptions

- We assume that the data on the data collection form is accurate to the extent that it is used for this
program.

- We assume the users o f this program are familiar with the Windows working environment. For
example, how to use a mouse or close a window.

- We assume that the program will be run from the hard drive o f the computer and not from the
floppy drive.

38

Appendix III

Below is the preliminary conceptual model for the Physical Therapy Program:

Class Oiagram: Physical Tharapy Class Diagram

Chart ID ; Physical Therapv Class Di^f^m i
Chart Name : Physical Therapy Clas^Di&%Wh# I I ^
Chart Type ; UML Class Diagram f ^

User File
Names I 1
Security Code*

Security Policy

I 1

I

I Data Moverj

t— ^
Uses I 1

[pateCollector/Vlewerj
[Reoprd, S e t s | I w h le s to

V érifiés with
1 1 7 1 7

Modifies Enters Data in.

1 ./ I 1 1

Super User Reg User
Secuntv Cod ^ O j C it y C o d e J 0 . , . in...

1..*

Uses

1..*\j

i l

Uses

Data Collection Form
(All Patient Data)

1 . .*

DataManl&ulator

Outcome Summary

Uses

Writes to.

Patient Data fExcluding Satlafactfon)^

Matches

Contains
0 /

Uses

Record

0..*
Contains

11 1 /
Satisfaction Data

Date: Peb 23. 2000 Paae:-1 of 1

Figure 1
Time: 8:46:04 AM

39

Ch)lt K) : P h y iic tI Thw*py C lass OiagrtMn
Chan Name : Physical Therapy C lass Diagram
Chatl Type : UML C lass Diagram
Corrceplual Model - Version 4

«Form Class»
♦IlslU sati

nwmberOKIsers M eger
■cnnenlUser Integer
■user. Reccrd
•Sub» -fiiBullsns()

medrbes

password

•Components
User File

wi(leToF<leO()

•C lass Module»
«S tn iiltv P t i l a

Super Boolean
lu lislUserf otm
tlifCJUBljMCHL
addUser(id,password)'Boolaan()
deleleUser(| Boolean)}
geiTolalUseraOlnlega^)
chockUserO Boolean))
crsateUeerFile))
selSuperU ter))
ieSuperBoolean) j

verifies with 1

+*le: String
■sdir String
■vsalType. Siring
■tp: Security Policy
■td: Sirmg
pwd: String
marn: Data Codoclton Form

iForm ClasBi *Sp)gih
■Ok))

•Component»

rAII Patient Datai___

•Form Class»
 îMOI_____

•Method» -mnuAddUset))
•Method» -mnuCiPatOb))
■mnuCrSalDb))
•Method» -mnuOeleteUser))
■mnuEiit))
•Method» -mnulogott))
•Functron» ■sopenDatabase)) Boolean
•Sub» mnuOpenPalDB))
•Sub» -mnuOpenPoetSatDB))
•Sub» mnuOponlnrt SatOB))
•Sub» ■mnuPepona))
mnuCreateOB))

•C laes Module»
lUHUIk-

■MlesToOelete String(ICO)
■mieCounter. Integer
•Functron» *gelFtteName)elr String): String
•Sub» ■vdeleteFrtea))
• Function» ■HjetPrreclonrfstr Strinot: String

•PiUBaMUlDlty

•createDBiname: Sinnol

Super Ut 9̂ . l" T t(jU s e r

•Form Class»
•ren o rtC h o o ser

♦palFilo String
-rnrlSatFile: String
-postSalFile Siting
-palDrraclory Sinng
•postSatOrrectory String
■vrnitSatOirectory String
MAN Data Manrculator

•Sub» crrndChoose))
•Sub» acmdOk))
•Function» -openO aiabases)) I

Sub» +pnnlPeporiToPrinler))
Gel Param etersf 1

•Form Class»
♦ P a la tjille c lo ,/V iew er IS atlsfactlon Petal
♦salType: String
♦drr; Stnng
iWCi.Sltipg,
■Add))
■Delaie))
•Sub» 'E lIt))
•Sob» Updale))
•Sub» Vakdale))
•Function» -checkt)): Boolean
•Sub» -ftlllnValuesf >__________

•Form Class»
•Data Coliactor/Viaterai IPatiem Petal

IrecNum: Smgle
dir String
hit Siring

movsNew))
iriewRepoits))
movsForwardO
moveBaclrward))
moveToEnd))
moveToBegrnnrng))
•Sub» -Add))
•Sub» -Close))
•Sub» -Delete))
•Sub» -Update))
•Sub» -Reposilion))
•Sub» -Validate))
new))
FilllnValues))

•C lass Module»
• Data M an lau la la r

•OBI: Satisfaction Data - Pre
DB2 Satisfaction Data • Post

-063: Patient Data
-patRS
-loilSatRS
-PostSalR S
-numTher Integer
-numPhys: Integer
-theiLisll: Integer
therU stl: Integer

-therListS: Currency
-refeiPhysU stt: Integer
-refarPhysLrsiZ Integer
♦patOBName: Stnng
-vIniiSatDBName Stnng
■•PostSatDBName; Stnng
■HromOate: Date
floOate: Dale
+SemesterYear Stnng
■fAJIVear String
*M P P String
■rtCO Sinng
■Hef Stnng
■Mhti String
♦oftTher Boolean
♦opiRef Boolean
•optled: Boolean
•opt MPP Boolean
•opt Spring Boolean
•opt Sum m er Boolean
eoplF a#: Boolean
•optEntire: Boolean
•optAd: Boolean
•opiFromTo Boolean
■to(«¥e»r Boolean
Qstr: S ln n o ____________

seleclOatabaseflitename)
chooseReportType(repgrttype)
vi*wReport(reportt ype)
•Sub» +CrealeOutcomeSummary))

Sub» -ctassTerminate))
•Sub» -HesetVelues))

Function» •setR epoitChoice)) Inleger
•Function» +determineOuery)teble Siring). String

Sub» -getTherapiEtüs1)RS. RecordSet)
Sub» •g«tPei«tnngPhysLisl)RS RecordSet)
Sub» +PrinlRepoitToFite)lilename: String)
Sub» •PiiniRepoilToPrinterfp Object)

•DwabaseiF
• re iro n r u a la

•D atabase»
•S a tlafac tloo D ata ■ Pro

•D atabase»
•S a tisfac ilo n Data ■ Poet

Contains

f Contains

Satisfaction Record Salistaclion Recoil s

•Component»
Satisfaction Record»
■ alt String
sal3 String
eats String
said String
eats Stnng
salB Stnng
sal? Stnng
sa tS String

•Component»
R eco td

-gender Stnng
-age Inleger
■theicorfe String
-retphye: Stnng
-ineproir Suing
-ICDScode Single
-mpp: Stnng
dateeval String

-daledie: Stnng
-onset: Integer
-dayelosi: kitegar
-totabaeits: Integer
-cancel Integer
•casecharges Single
-improve Inleger
-compliance Inleger
■fat mil: Integer
-faZinil Inleger
-faSinil: Integer
-tadinit. Integer
-tatdie: Integer
-la?dis Integer
-faSdia: Integer
-taddis Integer
tuncabinit: Single

-funcabdis Single
-paininif Integer
-paindie Inleger
hstressintl: Inleger
■sliessdis Inleger
genfunctnil Integer
genfuncrlis integer
rec num ber Sin ole

I pnnler |

prints to

•C lass Module»
•O u tcom e S um m ary

•Sub» •printReporlTeScreenftvtAN: Data Manipulatar, referPhysU sit: String. reforPhysUst !: ; r i t L t Mnng. therli«t2 Stnng, theriJstS: Single)
•Sub» •onrrtReportTofiletfilename String. MAdd Data Manipulator. reterPhvsListt S tnna. reterPnvstjsiJ Sintite. th erljs tl Stnno. thertisl2: Inteoer, th e rü s tS: Sinalet

Figure 2

40

Sample Outcome Summary

Outcome Summary for 01/01/1900 to 12/31/2050

General Summary

Total number o f visits: 30
Total number o f new evaluations: 4
Number o f new referrals per referring physician:

Physician # 9 had 1 referral(s).
Physician # 8 had 1 referral(s).

Total males in this selection: 2
Total females in this selection: 2
Number o f visits by Therapist and average charge per visit:

(For this selection only)
Therapist # 89 had: 9 visit(s). Average charge: $1.00
Therapist # 6 had: 21 visit(s). Average charge: $0.57
Therapist # 0 had: 0 visit(s). Average charge: $0.00

Average case charges for this selection: $5.25
Average charge per visit for all therapists: $0.70
Number o f cancellations/no-shows: 21
Percent o f patients by insurance type:

Self Pay: 0.00%
MVA:0.00%
Private Insurance: 0.00%
Medicare: 75.00%
Workman’s Compensation: 25.00%
Other: 0.00%

Average functional ability at initial evaluation: 7.50
Average functional ability at discharge: 7.00

Average percent improvement in functional ability: -7.14%

Average general function score at initial evaluation: 3.00
Average general function score at discharge: 3.00

Average percent improvement in general function: 0.00%

Average pain score at initial evaluation: 7
Average pain score at discharge: 7.00

Average percent decrease in pain: 0.00%

Average stress score at initial evaluation: 3.25
Average stress score at discharge: 15.75

Average percent decrease in stress: -384.62%

41

Average number of school/work days lost: 7.50
Average number o f days from onset: 5.25
Average number o f days from evaluation to discharge: 7.25

Overall home program compliance: 7.00%
Overall improvement: 7.00%

Satisfaction information

INITIAL SATISFACTION

Average satisfaction for questions 1 through 8:
Physical Therapist: 1.00
SPT: 1.00
Waiting time: 1.00
Privacy: 1.00
Cleanliness: 1.00
Explanation Rx: 1.00
Explanation billing: 1.00
Overall Experience: 1.00

Average overall satisfaction: -0 .17

POST SATISFACTION

Average satisfaction for questions 1 through 8:
Physical Therapist: 100.00
SPT: 100.00
Waiting time: 100.00
Privacy: 100.00
Cleanliness: 100.00
Explanation Rx: 100.00
Explanation billing: 100.00
Overall Experience: 100.00

Average overall satisfaction: 100.00

42

Appendix IV

Use Cases:

Note; There is only one actor in this system, the user of the program.

Use Case: Input Data
Type: Primary
Cross Reference: R1.1 to R1.7
Description: The user opens the program and chooses to enter new data. Using the data

collection form for reference, each item is entered and checked for
validity. When finished, the data is written to the SQL database.

Use Case: Log in
Type: Primary
Cross Reference: R1.9
Description: This use case begins when the user opens the program. A name and

password is entered. The program then allows access to the appropriate
elements of the program.

Use Case: Move through data
Type: Primary
Cross Reference: R l . l l to R1.14 and R2.1 to R2.3
Description: The user has opened a database and desires to display records. The user

chooses to move
forward or backward through the database. Depending on the choice, the
program responds by displaying the data for the previous or next record.
The user might also choose to enter a new record at which point the
program allows it. See use case "Input Data".

Use Case: Manipulate Data
Type: Primary
Cross Reference: R2.4 to R2.5
Description: This use case begins when the user has decided to use the data entered in

previous steps.
The user decides how he wants to group the data. Based on this choice an
outcome summary is generated.

43

Use Case: Output Results
Type: Primary
Cross Reference: R3.1 to R3.3
Description: The user desires to see the outcome summary. He chooses to display this

summary on the screen, send it to the printer or send it to a file. I f it is a
file the user is asked for a name for the file. If it is sent to a printer a
printer dialog box comes up.

Use Case: Choose database
Type: Primary
Cross Reference: R2.4
Description: Upon choosing to enter data, the user must choose which database in

which to enter the data or whether to create a new database.

Use Case: Modify User File
Type: Secondary
Cross Reference:
Description: Upon opening the program, a super user decides to add or delete records

o f those people allowed to change the database.

44

Appendix V

The following pages contain all the diagrams pertaining to this project.

Use Case Diagram

O

«Actor»
User

Physical Th raj. * i '"e Di^^»'am

Output results

Manipulate data

Log In

Move through data

Modify User File

input Data

45

System Sequence Diagrams

Chart ID ; Log In
Chart Nam e : Log In ;
Chart Type : U M L Sequence Diagrarh

Super User : User

User File : User File

enterldandPassword()

i/aiiuate

C h a r t ID : Input D a t a
C h a r t N a m e : Inpu t D a t a
C h a r t T y p e : U M L S e q u e n c e D ia g r a m

U s e r : U s e r

D a t a c o l l e c t o r : D a t a C o l te c to r A / i e w e r f P a t i e n t D a ta i

A s e a c h i t e m is e n t e r e c it ; d le i.'

e n t e r D a t a f)-- ^

_ valid--------

m o v e N e w f)

D i s p l a y n e w r e c o r d

a u i t H r o q r a m t ï --------------------- ^

Chart ID : Move Through Data 1
Chart Name : Move Through Data
Chart Type : UML Sequence Diagrarh

U s e r : U s e r

V i e w e r : D a t a C o l l e c t o r A / i e w e r f P a t i e n t D a t a i

m o v e F o r w a r d n

m o v e B a c k w a r d f)

m o v e T o E n d O

m o v e T o B e q i n n i n q n

d e l e t e l t e m t)

47

Chart ID : Output Results
Chart Name ; Output Results
Chart Type : UML Sequence Diagram

U s e r : U s e r

- c m d C h o o s e f)

R e p o r t C h o o s e r : r e p o r tC h o o s e r M a n ip u la to r : D a ta M a n ip u la to r

-> -C re a te O u tc o m e S u m m a rv f ^

G e t P a r a m e t e r s H

X
D is p la y R e p o r t

48

Chart ID : Choose Database
Chart Name : Choose Database
Chart Type : UML Sequence Diagram

M PI : M PI V ie w er : D a ta C o lle c to rA /ie w e r fP a t ie n t D a ta i
Util : U tility

U s e r

n e w () ^

+ a e tF i le N a m e f s tr) ^

! - m n u O p e n P a tP B H i^

^ ! m o v e T o B e g in n in g O

49

Chart ID ; AddRecord "
Chart Nam e : AddRecord: j
Chart Type : U M L Sequence Diagram |

U ser : User

D ata Collector/Viewer fPatient Datai

•Addn

] -Validate()

] F illlnValuesO

-U p d ateO

50

Chart ID ; Delete I
Chart Name : Delete ,
Chart Type : U M L Sequence Diagram |

User : User

Main : Data CollectorA/iewer fPatient Data)

-Deletef)

-D e le te ()

51

Chart ID : createN ew D atabas
Chart Nam e : createNewDats la? ;
Chart Type : U M L Sequence Diagram

user : User
mnuCres « u l f)

MDI : MDI dbUtil : DataBaseUtilitv

+createD B fnam e)

52

Chart ID : addNewUser
Chart Name : addNewUser
Chart Type : UML Sequence Diagram

u s e r : U s e r
MDI : MDI

s p : S e c u r i ty P o licy u f : U s e r F ile

a d d U s e r (id ,p a s s w o rd) :B o o le a n ()

c h e c l< U s e rO :B o o le a n ()

w riteT oF ileO f)_________ ^

53

Collaboration Diagrams

C hart ID : v iew R ep o rts
C hart N a m e : v iew R ep o rts
C hart T ype : UML C ollabo ra tion D iagram

MDI : MDI DVC : D a ta C ollecto r/V iew er fP a tien t D ata^

1 :c rea teO

1.1;loadO

5 :o p e n (d b N a m e :S trin g)

0 6 2 : S a tis fa c tio n D a ta - P re

1--------------- -—— ----------- — — , O ' t I . i t ') '*anioulator
2 :c re a te n J ' , ____ .

3: o p en (d b n a m e : S tring)

4 :o p en (d b N a m e ;S trin g)
DB : P a tie n t D a tab x re a te O

DB1 : S a tis fa c tio n D a ta • P o s t

O S : O u tc o m e S u m m ary

7 ;d isp lay R ep o rtO

54

Chart ID : OpenExistingDB
Chart Name : OpenExistingDB
Chart Type : UML Collaboration Diagram

R e tu rn s th e f i lenam e m in u s the d i r e c t o r y ^

2: g e tF ileN am e(f i leN am e: String): S tr ing

J:(it pa tien tU B]new O

3:(if s a t is fac t io n]n ew O

M a in S a t : D a ta C o l l e c to r M e w e r fSa l sfa i

MDI : MDI

Util :

M a in P a t : D a ta C ol lec to rA /iew er fP a t ien t D a ta i

55

1:get new record nurnbeçO

mainSat : Data Collector/Viewer fSalisfaction Datai

Record Number File

Chart ID : AddNewRecord
Chart Name : AddNewRecord
Chart Type : UML Collaboration Diagram

mainPat : Data ColledorM ew er fPalient Datai

2:filllnValuesO 3;updateO 4:validaleQ 2;filllnValuesO 3:updateO 4:validateQ

After user has entered the values
actions 2, 3 and 4 occur.

The actions occur in both the
patient and satisfaction viewers
depending on which one is
being used._____________________

56

Chart ID ; addUser
Chart Name : addUser
Chart Type : UML Collaboration Diagram

U s e r file is not an object . It is a ran d o m a c c e s s file th a t c an be
o p e n e d by a n y secu ri ty policy object.

MDI : MDI

4:[not dup]writeldPwd(id,pwd)

s o : S ecu r i ty Po licy
3;dupC heck(id)

2 :g e tU ser i \ lam ean d P v V u O

57

Chart ID : deleteUser i
Chart Name : deleteUser |
Chart Type : UML Collaboration Diagram |

MDI : MDI

1:de le teU se rO

SP : Securi ;_F J
L

j f : U se r File

3; [if found]de le teU ser(reco rdN um ber: in t)

lu : l is tU se rs 2 .1 :m oveThruUserQ

58

Chart ID : Createh ,
Chart N am e : Cre: ;eh j" D J
Chart Type ; U M L Uollaboration Diagram

MDI : MDI

2: createDB(nam e: String)

DBUtil : DataBaseUtilitv

59

Chart ID : Login
Chart Name : Login i
Chart Type : UML Collaboration Diagram |

3.1:isSuperO

s: u e isi^SuperUserS t a r t u p : S p l a s h S c r e e n / S t a r t i d

SP : Security Policy

1:createQ 3;checkUser(id.pwd)

MDI : MDI

60

Chart ID ; e r «it'atpO
Chart N am e er e Cat; 3
Chart Type ; uivIL Collaboration Üiagram

1 *: ranqeCheckfdat a)

D v u : Udia Coileutor/Viewer fPatient Datai

2;writeDataO

)t : lent Data

61

Chart ID : er e iC at?0
Chari Nam e er e Cat;)
Chart Type : u M L Collaboration Diagram

1*:ranqeCheckfdata)

D v c : jjd ia Coiieutor/Viewer fPatient Datai

2:writeDataO

)E : lent Data

61

Chart IC . , ov^New ..
Chart N mr ; ,,uv N w
Chart Type : U M L Collaboration Diagram

D VC : Data Collector/Viewer fPatient Datai

1 vatidateQ

62

	A computerized tool for the collection and manipulation of physical therapy outcomes data
	Let us know how access to this document benefits you.
	Recommended Citation

	tmp.1459884606.pdf.vcu6p

