University of Montana

ScholarWorks at University of Montana

Graduate Student Theses, Dissertations, & Professional Papers

Graduate School

1965

Breathing oxygen as an aid to recovery after exertion

Richard Kingsbury Bjorgum The University of Montana

Follow this and additional works at: https://scholarworks.umt.edu/etd Let us know how access to this document benefits you.

Recommended Citation

Bjorgum, Richard Kingsbury, "Breathing oxygen as an aid to recovery after exertion" (1965). *Graduate Student Theses, Dissertations, & Professional Papers*. 6247. https://scholarworks.umt.edu/etd/6247

This Thesis is brought to you for free and open access by the Graduate School at ScholarWorks at University of Montana. It has been accepted for inclusion in Graduate Student Theses, Dissertations, & Professional Papers by an authorized administrator of ScholarWorks at University of Montana. For more information, please contact scholarworks@mso.umt.edu.

3)

By

RICHARD K. BJORGUM

B.S. Eastern Montana College of Education 1955

Presented in partial fulfillment of the

requirements for the degree of

Master of Science

UNIVERSITY OF MONTANA

1965

Approved by: Examiners Chairman, Board of

Dean, Graduate School

JUL 2 2 1965

Date

UMI Number: EP37048

All rights reserved

INFORMATION TO ALL USERS

The quality of this reproduction is dependent upon the quality of the copy submitted.

In the unlikely event that the author did not send a complete manuscript and there are missing pages, these will be noted. Also, if material had to be removed, a note will indicate the deletion.

UMI EP37048

Published by ProQuest LLC (2013). Copyright in the Dissertation held by the Author.

Microform Edition © ProQuest LLC. All rights reserved. This work is protected against unauthorized copying under Title 17, United States Code

ProQuest LLC. 789 East Eisenhower Parkway P.O. Box 1346 Ann Arbor, MI 48106 - 1346

ACKNOWLEDGEMENT

The author would like to take this opportunity to express his appreciation to Dr. Brian J. Sharkey, Graduate Research Director, for the invaluable assistance in the writing of this thesis. The author, also, wishes to express his thanks to Mr. Rodger Spaulding, for his capable and faithful assistance in helping collect the raw data.

R.K.B.

TABLE OF CONTENTS

CHAPT	ER	PAGE
I.	INTRODUCTION AND REVIEW OF LITERATURE	1
	Statement of the problem	2
	Need for the study	2
	Limitations of the study	
	Definition of terms	3
	Review of literature	3
	Summary	7
II.	PROCEDURES OF THE STUDY	8
	Research design	8
	Pilot study	8
	Testing sequence	9
	Air collection	13
	Sampling equipment	13
	Measurement equipment	16
	Ventilation rate	16
	Gas analysis	17
	Oxygen consumption	17
III.	ANALYSIS AND DISCUSSION OF RESULTS	18
	Method of analysis	18
	Analysis of results	19
IV.	SUMMARY, CONCLUSIONS, AND RECOMMENDATIONS	23
	Summary	23
	Conclusions	23
	Recommendations	23

	111
CHAPTER	PAGE
SELECTED BIBLIOGRAPHY	25
APPENDIX	28

LIST OF TABLES

TABLE		PAGE
I.	Means of Pulse Decrease, Post Exercise Oxygen	
	Consumption and Ventilation rate	18
II.	Means of Pulse Decrease Post Exercise Oxygen	
	Consumption and Ventilation Rate for Runners	
	and Non-Runners	19
III.	Pulse Decrease	19
IV.	Oxygen Consumption	21
v.	Ventilation Rate	21
VI.	Heart Rate Decrease (Raw Data)	30
VII.	Oxygen Consumption (Raw Data)	31
VIII.	Ventilation Rate (Raw Data)	32
IX.	Raw Data Complete Testing Period	33
x.	Order of Treatments	36

LIST OF FIGURES

FIGURE		PAGE
I.	Treadmill Components and Nomenclature	10
II.	Subject Ready to Run	11
III.	Subject Breathing Oxygen	12
IV.	Collecting Expired Air	14
v.	Collecting Gas Sample	15

CHAPTER I

INTRODUCTION AND REVIEW OF LITERATURE

Breathing pure oxygen as an aid to recovery has been employed by coaches and athletes for a number of years, but it has not been definitely proven if it is a physiological or a psychological aid.

Tanks of oxygen are not an uncommon sight at college and professional athletic contests, and in recent years the number of high schools using them has increased. One of the most publicized uses of oxygen as an aid in sports involved the United States Olympic Hockey team of 1960 who used it at the suggestion of the Russian team and won the Olympic Gold medal.

In spite of the acceptance of oxygen as an aid, some investigators doubt its effectiveness. Karpovich (10) stated that the use of oxygen to hasten recovery after physical exertion was based upon salesmanship rather than upon physiology. The American Medical Association (7) strongly disapproves of the use of oxygen in interscholastic sports because the athlete may exert beyond his normal limits, because of its expected help, and encounter harmful effects. Despite this disapproval athletic coaches and trainers continue to use oxygen with the objectives of increasing the rate of recovery from previous exercise and improving subsequent performance. This use is based on heresay rather than experimental evidence. <u>Statement of the Problem</u>. This study attempted to determine if oxygen inhalation had any effect on recovery after exertion as measured by net heart rate recovery, ventilation rate, and the recovery oxygen consumption. The problem compared oxygen inhalation with similar inhalations of compressed atmospheric air and normal atmospheric air.

<u>Need for the Study</u>. There have been many studies investigating the use of oxygen as an aid to recovery and performance in athletics. Karpovich (8) found that breathing oxygen increased the speed of swimmers, while Sharkey (14) found no speed increase with swimmers. Both studies found that breathing oxygen did not facilitate recovery. Elbel (4) found that breathing oxygen depressed the heart rate during recovery and thus was of some help. This disagreement in the conclusions of these studies points out the need for further investigations to prove that oxygen is or is not an aid to recovery after physical exertion.

Limitations of the Study. This study was limited to twelve male students at the University of Montana. Six students were members of the university cross-country team and the other six were non-runners selected from the physical education service program at the University of Montana. The testing took place during the last two weeks of January and the first week of February 1965.

The subjects were pretrained in treadmill running. This training did not effect the physical condition of any

of the subjects. Because the diets of the subjects could not be controlled the testing was done between six and eight o'clock in the morning while the subjects were in the postabsorptive state.

Definition of Terms.

<u>Steady state</u>. In this study "steady state" refers to the leveling off of the heart rate during exercise.

<u>Resting heart rate</u>. This refers to the heart rate of the subjects taken during the thirty minute period before they started to exercise.

<u>Runners</u>. This refers to the subjects who were members of the cross-country team.

<u>Non-runners</u>. This refers to the students who were not members of the cross-country team.

<u>Ventilation rate</u>. The amount of expired air measured in liters per minute.

<u>Net heart rate</u>. This is the difference between the resting heart rate and the maximum heart rate reached during exercise.

<u>Review of Literature</u>. Many investigations have been conducted in regard to the use of oxygen as an aid to performance and recovery. A brief summary of those studies pertinent to the use of oxygen as an aid to recovery and performance ensues.

Sharkey (14) found that three deep inhalations of

oxygen immediately before a swimming race did not help the performance of the swimmer and breathing oxygen did not facilitate recovery.

Karpovich (8) in a similar study with swimmers, found that breathing oxygen for five minutes before a race of one hundred yards increased the speed of the swimmer, but breathing oxygen for five minutes during recovery from the race did not decrease the time needed for the swimmer to recover. He found that the same recovery time was needed when the swimmers breathed oxygen as when they breathed atmospheric air.

In a study with Rao on nine male subjects, who ran to exhaustion on a treadmill, rested for ten minutes and ran to exhaustion again, Karpovich (9) reported that breathing pure oxygen immediately after running did not decrease the time required to recover. The recovery time was the same as when the subjects breathed from a placebo tank of compressed air.

Elbel, Ormond and Close (4), in a study of sixty-three athletes, found that the breathing of pure oxygen during six minutes of rest, air during five minutes of treadmill running and oxygen during nineteen minutes of recovery caused the respiratory rate to decrease during the early part of recovery. It also depressed the heart rate during the first two minutes of exercise and during the recovery period. The depressed heart rate suggests that the breathing of oxygen helped the recovery of the subjects. Michaels and Cureton (11) found the heart rate decreased in relation to the increase in oxygen intake and stroke volume.

In a study by Rowell and associates (13) on four athletes in good physical condition and four non-athletes it was found that the hemoglobin saturation of oxygen decreased with exercise. The hemoglobin saturation of both groups was determined before a three month period of intensive training and also at the end of this period. The athletes were found to have a hemoglobin saturation of oxygen of 97.5 per cent at rest and 84.4 during exercise while the sedentary group had percentages of 95.4 at rest and 91.4 during exercise. The above shows that in athletes who are well conditioned and pushing themselves to the limit of their capacity, arterial desaturation of oxygen can take place. Karpovich (9) stated that when the heart rate increased and there was a positive pressure of oxygen in the lungs, the hemoglobin would absorb more oxygen. With more oxygen available, the hemoglobin saturation level of oxygen would remain higher during exercise, thus the recovery time would be shortened.

Bannister and Cunningham (1), conducted a study with four men, two athletes and two non-athletes. When they ran on a treadmill at six and one-half miles per hour breathing oxygen it took twelve to twenty-one minutes, depending on the gradient, to run to exhaustion. Using the same technique but breathing air instead of oxygen it took only six to nine minutes to reach exhaustion. They stated that the addition of oxygen to the inspired air always improved performance considerably and often resulted in the establishment of a steady state during exercise which would normally produce rapid exhaustion.

Benedict, Lee, and Strieck (2) reported that the heart rate of a subject was lower when he breathed highly oxygenated air during rest. They also found the same results when the subject used oxygen during exercise. This lowered heart rate was not observed when the subject breathed atmospheric air.

Pembrey, Cook, Hewlett, and Karpovich were reported in the study by Benedict, Lee, and Strieck (2) as concluding that breathing oxygen after exercise gave quicker relief from symptoms of distress than breathing atmospheric air. In the same review Miyama, Barach, and Parkinson were reported to have found that the heart rate was lower when the subjects breathed oxygen after exercise than when they breathed atmospheric air. Miyama also was reported as stating that breathing oxygen both before and after exercise gave a more satisfactory recovery from fatigue.

Hill and Flack (6) reported that the fatigue which follows exertion seems to be mainly cardiac in origin and is due to the lack of oxygen. When oxygen was inhaled during exercise the lasting power of the subjects was increased and the after fatigue lessened. They also reported that the heart

rate was lowered by breathing oxygen.

<u>Summary</u>. Most investigations show that breathing oxygen before exercise has no effect on recovery and very little on improved performance. Morehouse and Miller (12) state that in laboratory tests nearly all workers agree that the breathing of oxygen following exercise has little effect on the rate of recovery, but breathing oxygen during exercise is beneficial, although there is disagreement concerning the degree of benefit.

The psychological aspects of benefit from oxygen inhalation during athletic contests should not be underestimated.

CHAPTER II

PROCEDURES OF THE STUDY

<u>Research design</u>. This study was primarily concerned with the effect breathing pure oxygen had on the recovery rate of runners and non-runners. Runners and non-runners were used to see if breathing oxygen would be of more benefit to the trained athlete or to the untrained person. It was hypothesized that the ability to lower the hemoglobin saturation, as evidenced by the trained runners in the study by Rowell and associates (13), might be one factor resulting in the contradictory results of the previously noted studies. Hence the decision to compare untrained subjects with trained endurance runners. It was therefore necessary to use a treadmill speed that the non-runners could maintain and still enable the runners to reach a steady state.

<u>Pilot study</u>. A pilot study was conducted to determine the following: the speed of the treadmill, the length of running time necessary to reach a steady state, the capabilities of the student assistant, and the clarity of the instructions to the subjects. The pilot study also provided the subjects with ample training in the use of the treadmill and breathing apparatus.

The study was administered over a period of nineteen testing days from January 18, 1965 to February 8, 1965. All tests were conducted in the Human Performance Laboratory of the department of Health and Physical Education and Athletics at the University of Montana. Six male students were selected from the required physical education program and six from the cross-country team at the University of Montana. The testing of each subject was randomized in order to avoid the introduction of a training effect.

Testing sequence. Each subject was tested in the post-absorptive state. When the subject arrived at the laboratory he weighed himself, measured his height, and recorded them on the daily testing data sheet. He then sat on a stool on the treadmill and rested for a period of thirty minutes. During this thirty minute rest period the subject's oral temperature was taken and the electrodes that connect to the cardiotachometer were placed on his body. The three electrodes were placed at approximately the lateral aspect of the fifth right and left ribs and the dorsal aspect of the first thoracic vertebra. The subject's resting heart rate was determined at this time. At the end of the thirty minute rest period the stool was removed and the subject ran for five minutes at a treadmill speed of 235 yards per minute (approximately eight miles per hour). Upon completion of the run the treadmill was stopped, the stool was replaced on the treadmill and the subject sat down and breathed either pure oxygen, compressed air, or atmospheric air for one minute.

FIGURE II

SUBJECT READY TO RUN

- Two-way valve to Douglas gas bag and atmosphere Automatic one-way breathing valve Cardiotachometer Treadmill A.

- B. C. D.

FIGURE III

SUBJECT BREATHING OXYGEN

- A.
- Oxygen tank Compressed air tank Face mask for oxygen breathing в. С.

With five seconds left of the one minute period the subject stood up and got ready to run for another five minutes. At the end of the second run the subject placed the mouthpiece of the breathing valve into his mouth while the student assistant placed a nose clamp on the subject's nose. The subject rested on a stool during the recovery period. The subject's expired air was collected for three minutes in a Douglas gas bag. Each subject was tested three times, breathing oxygen once, compressed air once, and atmospheric air once. The subjects did not know whether they were breathing the oxygen or the compressed air. They were told that the two tanks contained different percentages of oxygen. The tests were scheduled one week apart to further reduce possible training effects.

Heart rates were recorded every twenty seconds during the running and the one minute rest between runs and every fifteen seconds during the three minutes of gas collection.

<u>Air collection</u>. The open circuit method for the collection of expired air was used. The subject used a nose clamp and a mouthpiece which was attached to an automatic one-way valve. This valve let the subject inhale atmospheric air while his expired air went into a rubber hose connected to a two-way valve which directed the air into a Doublas gas bag.

Sampling equipment. The expired air sample was collected

FIGURE IV

COLLECTING EXPIRED AIR

- Automatic one-way breathing valve Two-way valve to Douglas gas bag Cardiotachometer A.
- B. C.
- Electric timer D.
- E. Douglas gas bag

FIGURE V

COLLECTING GAS SAMPLE

- A. B. C.
- Bailey bottle Douglas gas bag 600 liter chain compensated gasometer

from the gas in the Douglas gas bag over mercury into a Bailey bottle. This gas sample was analyzed within one hour after collection.

<u>Measurement equipment</u>. A 600 liter chain compensated gasometer was used to draw the subject's expired air out of the Douglas gas bag. A meter stick attached to the gasometer indicated the height that the gasometer bell rose when all the expired air had been drawn from the Douglas gas bag. The volume of the expired air was obtained by multiplying the rise in centimeters by the conversion factor of the gasometer, which was 5.158 liters per centimeter. The expired air was mixed by an electric fan located within the gasometer bell to stabilize the temperature of the gas. The temperature of the gas was obtained from a therometer located in the top of the gasometer bell.

<u>Ventilation rate</u>. The volume of gas collected from each subject was converted to standard temperature and pressure dry (STPD) by multiplying the volume obtained from the gasometer by a correction factor obtained from a chart prepared by Darling and reported by Consolazio, Johnson, and Pecora (3). The magnitude of the factor was dependent on the gas temperature and the barometric pressure of the atmosphere. The barometric pressure was recorded immediately after the gas was collected from an aneroid barometer located in the laboratory. The corrected volume of gas was then divided by the number of minutes of gas collection and the resulting volume was the ventilation rate of the subject and was recorded in liters per minutes.

<u>Gas analysis</u>. The Scholander method of gas analysis was used to determine the percentage of oxygen and carbon dioxide in the expired air samples. The procedure used for the gas analysis is described by Consolazio, Johnson, and Pecora (3).

Oxygen consumption. Oxygen consumption was computed by using the formulas provided by Consolazio, Johnson, and Pecora (3). Oxygen consumption was expressed as cubic centimeters per minute consumed. The true oxygen percentage was obtained from a chart prepared by Dill, et al. and reported by Consolazio, Johnson, and Pecora (3). This chart corrected for the difference in inspired and expired volumes as related to the percent of nitrogen in the expired air. The volume of oxygen consumed per minute was determined by the formula:

Vol. L
$$O_2$$
/Min. = Vol. expired air/Min. x true O_2 %
100

CHAPTER III

ANALYSIS AND DISCUSSION OF RESULTS

Method of Analysis. The analysis of variance as described by Garrett (5) was used to determine whether the mean changes in pulse rate, oxygen consumption, and ventilation rate resulting from the breathing of oxygen, compressed air, or atmospheric air were significant.

This method was chosen because the same group was tested in three different situations. The .05 and .01 level of significance were determined from Garrett's (5) table of "F" ratios.

Table I shows the means of pulse rate decrease, oxygen consumption, and ventilation rate for the three different testing situations, while Table II shows the means separated into the runners and non-runners.

TABLE I

MEANS OF PULSE DECREASE, POST EXERCISE OXYGEN CONSUMPTION AND VENTILATION RATE

Treatment	Pulse decrease	Post exercise O ₂ Consumption	Post exercise Ventilation rate
Oxygen	55.00	1184.00 cc/min.	29.97 L/min.
Compressed air	54.17	1160.58 cc/min.	30.30 L/min.
Atmospheric air	52.25	1155.17 cc/min.	31.16 L/min.

TABLE II

MEANS OF PULSE DECREASE, POST EXERCISE OXYGEN CONSUMPTION AND VENTILATION RATE FOR THE RUNNERS AND THE NON-RUNNERS

	Treatment	Pulse decrease	Post exercise O ₂ Consumption	Post exercise Ventilation rate
70	Oxygen	64.67	922.67	19.45
nner	Compressed air	65.00	839.17	18.65
Bu	Atmospheric air	65.17	865.50	18.52
ຽມ	Oxygen	45.33	1445.33	40.49
Runne :	Compressed air	43.33	1482.00	41.95
-uon-	Atmospheric air	39.33	1444.83	43.80

<u>Analysis of Results</u>. The analysis of variance of the pulse rate decrease from the end of the first five minute run to the end of the one minute rest period is shown in Table III.

TABLE III

PULSE DECREASE

Analysis of Variance

Source of variance	đſ	SS	Mean square Variance	F-ratio
Between trials Among subjects Interaction	2 11 22	47.722 6376 972 1818.945	23.861 579.725	.288
Level of significanc	e .0	5 = 3.98	.01 = 7.20	

Although the oxygen inhalation treatment resulted in the largest mean pulse decrease the "F" ratio obtained was not found to be significant. This indicated that the breathing of pure oxygen did not help lower the pulse rate of the subjects during the one minute rest between the two five minute runs.

Table IV shows the analysis of variance of the recovery oxygen consumption of the subjects.

Since Benedict, Lee and Strieck (2) had found that oxygen inhalation did not lower oxygen consumption during exercise, it was assumed that the breathing of high percentages of oxygen would not alter the steady state oxygen intake. Therefore, a three minute sample of expired air was collected following the second five minute run to reflect any differences in the time required to attain the steady state on the assumption that a hastened recovery due to breathing oxygen would result in a lower level of oxygen consumption at the beginning of the second run. This lower level at the outset of the second run would, in theory, show up as an elevated oxygen consumption during recovery.

The difference in the recovery oxygen consumption of the subject was not significant. It should be noted, however, that the minor differences in the mean recovery consumption (Table I) agree with the hypothesis.

TABLE IV

OXYGEN CONSUMPTION

Analysis of variance

Source of variance	df	88	Mean square Variance	F-ratio
Between trials Among subjects Interaction	2 11 22	5636.17 3 98 7974.08 397414.50	2818.09 362543.10 18064.30	.156
Level of significance	.0	5 = 3.98	.01 = 7.20	

Table V shows the analysis of variance of the recovery ventilation rate of the subjects.

Elbel and associates (4) found that the recovery ventilation rate decreased during the early part of recovery. Therefore, by measuring the subject's ventilation rate during the first three minutes of recovery, it was assumed that a lowered ventilation rate would be an indication of a shortened recovery period.

TABLE V

VENTILATION RATE

Analysis of variance

Source of variance	df	SS	Mean square Variance	F-ratio
Between trials Among subjects Interaction	2 11 22	8.976 5906.273 138.939	4.488 536.934 6.315	0.711
Level of significance	.05	= 3.98	.01 = 7.20	

The "F" ratio showed that there was no significant difference in the ventilation rates of the subjects at either level of confidence.

The differences in pulse rate, oxygen consumption, and ventilation rate that showed up in the raw data seem to be due to individual differences and not to any aid derived from the breathing of oxygen.

The differences between the runners and non-runners were seen most clearly in an analysis of the pulse rate decrease between oxygen inhalation and atmospheric air. The differences ranged from a minus eighteen beats per minute to a plus twenty-eight beats for the runners, with a mean of minus one-half beat per minute and from a minus thirteen to a plus sixteen beats per minute with a mean of plus six beats per minute for the non-runners. This data indicated that greater aid was generally derived by the group (nonrunners) that was forced to near maximal exertion. The exertion was sub-maximal for the trained endurance runners.

Tables VI, VII, and VIII in the appendix give the raw data for heart rate decrease, oxygen consumption, and ventilation rate for each of the subjects while breathing oxygen, compressed air, and atmospheric air. Table IX contains all the data collected during the testing period.

CHAPTER IV

SUMMARY, CONCLUSIONS, AND RECOMMENDATIONS

<u>Summary</u>. The purpose of this study was to determine if breathing pure oxygen would aid the twelve subjects in recovery after exertion. This recovery was to be determined by heart rate recovery, recovery oxygen consumption, and recovery ventilation rate.

A review of literature indicated that the use of a high percentage of oxygen as an ergogenic aid was not a recent development in athletics. The breathing of a high percentage of oxygen has been used since the early 1900's. Because the review of literature showed a disagreement of conclusions, the investigator decided that additional research was needed.

Analysis of variance was the method employed to find the significant difference between the use of oxygen, compressed air, and atmospheric air. The "F" test was used to determine if the differences between the tests were real or due to chance.

<u>Conclusion</u>. On the basis of this study the following conclusion was made:

1. The breathing of a high percentage of oxygen is of no physiological help in aiding a person's recovery after exertion.

<u>Recommendations</u>. In view of the findings and conclusions of this study the following recommendations are made:

- 1. The work load of the cross-country runners should be increased to an amount that is closer to their maximum exertion. The data of this study and that collected by Rowell and associates (13) suggest that for recovery aid to be derived from the inhalation of oxygen, the subject should be a trained endurance runner performing in a maximal test of endurance. Only then would the hemoglobin saturation of oxygen be sufficiently low to require any post exercise supplement.
- 2. In future studies the expired air should be collected each minute throughout the exercise period. This would enable the investigator to note all changes in oxygen consumption and ventilation rate.

SELECTED BIBLIOGRAPHY

.

•

SELECTED BIBLIOGRAPHY

- 1. Bannister, R. G. and Cunningham, D. J. C., "The Effects on the Respiration and Performance During Exercise of Adding Oxygen to the Inspired Air," <u>Journal of</u> <u>Physiology</u>, 125: 118-35, 1954.
- Benedict, F. G., Lee, R. C., and Strieck, F., "The Influence of Breathing Oxygen Rich Atmospheres on Human Respiratory Exchange During Severe Muscular Work and Recovery from Work," <u>Arbeitsphysiologie</u>, 8: 266-303, 1935.
- 3. Consolazio, C. F., Johnson, R. E., and Pecora, L. J., <u>Physiological Measurement of Metabolic Functions in Man</u>. New York: Blakiston Division, McGraw-Hill Book Company, Inc., 1963.
- 4. Elbel, E. R., Ormond, D., and Close, D., "Some Effects of Breathing Oxygen Before and After Exercise," <u>Journal</u> of <u>Applied</u> <u>Physiology</u>, 16: 48-52, January, 1961.
- 5. Garrett, H. E., and Woodworth, R. S. <u>Statistics in</u> <u>Psychology and Education</u>, David McKay Company, New York, 1958.
- 6. Hill, L. and Flack, M., "The Influence of Oxygen on Athletes," Journal of Physiology, 38: 28-36, 1909.
- 7. Illinois Interscholastic, "What About the Use of Oxygen for High School Athletics?", <u>School Activities</u>, p. 50, October, 1960.
- 8. Karpovich, P. V., "Effects of Oxygen Inhalation on Swimming Performance," <u>Research Quarterly</u>, 5:24, May, 1934.
- 9. Karpovich, P. V., "Ergogenic Aids in Athletics," <u>Exercise</u> and <u>Fitness</u>, University of Illinois, 1959.
- 10. Karpovich, P. V., <u>Physiology of Muscular Activity</u>. fifth edition: W. B. Saunders Company, 1959, Philadelphia.
- 11. Michaels, E. D. and Cureton, T. K., "Effects of Physical Training on Cardiac Output at Ground Level and at 15,000 Feet Simulated Altitude," <u>Research</u> <u>Quarterly</u>, 24: 446-, December, 1953.
- 12. Morehouse, L. E. and Miller, A. T., <u>Physiology</u> of <u>Exercise</u>, The C. V. Mosby Company, 11th edition, 1963, St. Louis, Missouri.

- 13. Rowell, R. L., Taylor, H. L., Wang, Y., and Carlson, W. S., "Saturation of Arterial Blood with Oxygen During Maximal Exercise," Journal of Applied Physiology, 19 (2): 284, March, 1964.
- 14. Sharkey, B. J., "Tests Debunk Oxygen," <u>Swimming World</u>, 3: 11, November, 1962.

APPENDIX

ł

DAILY TESTING DATA SHEET

Name	Weight	Height
Oral Temp. F ^O	,	
Room Temp. <u>C^O</u>		
Baro, Press.		
Gas Temp. <u>C^o</u>		
Corr. Factor	(STPD)	
Rest. Heart Rate	,, M	ean
Exer. Heart rate 20 sec. 1st. min.	40 sec. 60 sec	•
2nd. min		
3rd. min		
4th. min		
5th. min		
1 min rest		
6th. min.		
7th. min		
8th. min		
9th. min	ومرواعتها ومحبوبهم ومرواعتي والمترور ومرواعتها والمراجع والمراجع	
10th. min		
Recovery heart rate 30 sec. 60 sec. 90	sec. 120 sec. 150 s	ec. 180 sec.
Spirometer reading S	pirometer correction f .158 x corr. factor - 1	actor 5.158 mins. = Vent
post pre rate L/min. Ges analysis CO2		Mean X
0 ₂	······································	Mean%

TABLE VI

PULSE DECREASE

S	ub,	jects	Oxygen	Compressed air	Atmospheric air
G	D	в	58	56	63
R	в	H	67	75	39
P	0	D	59	56	66
B	J	G	73	76	76
M	E	U	64	55	82
F	J	F	67	72	65
D	M	G	36	31	20
R	H	H	42	37	39
в	S	P	62	58	47
D	A	Y	39	59	52
L	L	T	42	40	32
С	J	С	51	35	46
To	ote	al	660	650	617
Me	∋ar	1.	55	54.17	52.25

TABLE VII

OXYGEN CONSUMPTION IN C.C./MINUTE

S	ub,	jects	Oxygen	Compressed air	Atmospheric air
G	D	В	712	698	845
R	В	Н	946	892	1022
P	0	D	1058	849	838
B	J	G	734	767	745
M	E	U	1128	1092	908
F	J	F	9 <i>5</i> 8	737	935
D	М	G	1692	1306	1467
R	H	н	1397	1489	1753
B	S	P	1055	1506	1040
D	A	Y	1190	1158	1173
L	L	T	1735	1751	1623
C	J	С	1603	1682	1613
Te	ote	al	14208	13927	13862
M	ear	1	1184	. 1160.58	1155.17

TABLE VIII

VENTILATION RATE IN LITERS/MINUTE

Subjects			Oxygen	Compressed air	Atmospheric air
G	D	В	15.21	14.27	14.29
R	в	H	21.07	21.40	21.39
P	0	D	19.88	16.92	15.52
B	J	G	16.02	17.54	16.96
M	E	U	24.58	23.63	21.47
F	J	F	19.95	18,16	21.47
D	M	G	44.76	41.47	46.57
H	H	Н	37.87	41.59	49.24
B	S	P	34.14	33.03	30.41
D	A	Y	31.49	31.73	35.76
L	L	T	49.02	53.21	50.09
C	J	C ·	45.68	50.65	50.72
Total		al	359.67	363.60	373.89
Me	ear	1	29.97	30.30	31.16

TABLE IX

RAW DATA

	Heart Rate											
Subj.	Rest	Exercise		e Pei	Per/Min.		1 Min. Exerci		erci	se Pe	er/M:	in.
		1	2	3		5	Rest	6		8		10
GDB RBH POD BJG MEU S FJF SO DMG RHH BSP DAY LLT CJC	39 65 52 55 47 88 52 85 72 85 77	133 146 140 130 141 150 170 187 151 165 166 168	134 151 144 145 151 181 191 169 175 176 180	134 155 145 149 151 182 194 174 180 181 184	134 157 148 150 152 153 188 196 178 184 184 189	134 158 150 151 150 153 193 193 181 185 187 193	76 90 89 78 86 155 155 146 144 144	136 150 145 139 145 189 165 180 184	137 159 149 154 145 197 202 185 180 190 193	138 160 151 157 145 149 201 207 188 190 193 196	140 162 157 1452 203 199 199 198	140 164 155 157 145 152 206 210 192 195 196 203
GDB RBH POD BJG MEU PJF SDMG SCRHH SSP MED SSP DAY CJC	382 565 565 565 57 865 786 57 865	140 139 144 136 182 185 185 165 177 157	140 151 135 151 137 187 187 187 163 190 165	140 152 136 154 140 192 191 167 193 178	135 155 139 157 148 198 198 196 168 184 190 182	140 158 142 160 150 143 199 197 190 191 187	80 82 85 82 94 70 168 160 112 129 150 150	137 148 134 154 135 140 194 200 168 172 188 179	139 158 142 159 137 143 202 203 177 181 195 187	139 158 142 160 141 146 207 183 187 197 191	139 159 142 162 153 146 203 210 185 199 199	139 159 145 162 157 145 205 212 185 205 199 198
GDB HRBH POD BJG JFJF MEU FJF DMG RHH BSP LLT CJC	4655 5665125699	130 142 140 137 1380 160 160 158	140 155 147 150 153 140 185 190 186 170 1867	140 158 153 153 142 190 202 178 173 189 177	140 169 152 156 144 195 204 179 191 182	140 1603 1566 1445 1803 187 187	77 120 86 78 79 175 165 127 160 139	136 1534 142 1395 1900 1771 1908	139 163 151 153 147 208 182 181 198 189	141 163 155 159 150 205 210 186 203 193	143 163 163 163 150 212 190 195	143 163 155 160 163 151 210 213 210 204 200

.

.

-

TABLE IX

RAW DATA

	Heart Rate						Gas	Anal.	True	اخذ فرید اورونی است. می اورونی است وی است اورونی اورونی اورونی است وی است و اورونی اورونی اورونی اورونی اورونی	02
Subj.	Re 30	cove 60	ry P 90	'er/M: 120	in. 150	180	in CO ₂	% 0 ₂	%	02	cons. cc/min
GDB RBH POD BJG MEU G FJF MG MG MG KRHH O BSP DAY LLT CJC	94 120 128 180 148 165 164 176	84 104 92 120 160 144 120 135 140 160	72 96 87 106 144 128 130 124 130 124 148	64 92 85 95 132 116 125 120 136	56 80 76 82 128 112 81 128 124 128 128	56 805 76 603 122 80 112 815 112 120	3.51 3.68 4.30 3.98 3.98 3.98 3.98 3.98 3.58 3.58 3.58 3.18 3.89 3.90	16.50 16.62 15.84 16.50 16.48 16.41 18.08 17.27 17.79 17.28 17.32 17.34	3.485 3.65 27 3.87 3.95 3.04 3.05 3.05 3.05 3.05 3.05 3.05 3.05 3.05	4 4 5 4 4 3 5 5 9 6 9 7 8 4 4 3 3 5 5 9 6 9 7 8 7 6 9 9 8 7 6 9 9 8 4 1 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3	3 712 9 946 2 1058 3 734 9 1128 9 58 1692 1397 1055 1128 1397 1055 1190 1603
GDB RBH POD BJG P SS FJF SS DMG RHH BSP DAY LLT CJC	96 140 120 120 92 185 168 155 185	88 100 84 100 84 170 144 120 132 175 160	84 88 80 84 96 151 132 132 130 145 140	76 882 804 146 1126 128 136	76 88 72 80 84 140 112 96 108 121 132	690 772 772 132 1146 108 114 124	3.63 3.69 3.69 3.85 3.24 3.24 3.24 3.24 3.24 3.24 3.25 3.23 3.23 3.23 3.23 3.23 3.23 3.23	16.32 16.87 16.03 16.70 16.48 17.02 17.76 17.33 17.67 17.24 17.68 17.51	3.60 3.666 4.46 3.82 3.21 3.21 3.66 3.86 3.86 3.86 3.86 3.86 3.79	445444334333 445444334333	698 892 849 767 1092 737 1306 1489 1506 1158 1751 1682
Atmospheric Air BBH BDD BJEN BDBT BDBT BDBT BDBT BDBT BDBT CJC CJC	100 143 116 108 140 108 200 185 180 180 180 176	88 100 88 100 185 132 132 132 148 155	844 986 9765 1124 1320	80 924 68 68 68 162 125 104 120 128	76 894 788 657 108 108 110 120	69 884 782 150 125 912 108 1106	3.88 3.67 4.07 3.14 3.17 3.15 3.48 7.5 3.44 3.90	16.25 16.41 15.72 16.62 16.77 17.21 17.88 17.45 17.50 17.61 17.61 17.52	3.853 8.558 4.091 3.2.15 4.43 3.2.15 4.41 3.3.33 3.33 3.33 3.33	54 54 4 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3	845 1022 838 908 835 1467 1753 1040 1173 1623 1613

34

-

TABLE IX

RAW DATA

_	Subj.	Resp. Rate L/min.	Gas Temp C ^O	Baro. Pres.	Conv. Fact.	Wt. Lbs.	Ht. In.	Body Temp. F ⁰	Rel. Hum.	Hoom Temp. C ^O	
Oxygen	GDB RBH POD BJG MEU FJF DMG RHH BSP DAY LLT CJC	15.21 21.07 19.88 16.02 24.58 19.95 44.76 37.87 34.14 31.49 49.02 45.68	24 21 22 21 20 19 20 20 22 21 22	670 682 679 681 681 683 685 685 682 673 676 679	.790 .817 .815 .810 .817 .823 .829 .825 .824 .804 .810 .810	138 149 153 142 171 147 148 172 138 146 206 171	67 769 721 767 767 767 70 70 70	94.0 97.0 95.0 95.0 95.8 95.8 97.5 95.8 97.5 95.8 99.5 95.8 99.5 98.2	14 28 21 25 27 22 24 18 21	25 22 23 24 22 20 19 22 20 22 22 22 22 22	
Compressed Air	GDB RBH POD BJG MEU FJF DMG RHH BSP DAY LLT CJC	14.27 21.40 16.92 17.54 23.63 18.16 41.47 41.59 33.03 31.73 53.21 50.65	23 22 22 19 20 19 23 21 20 19 23 19	678 685 669 675 676 671 682 679 678 678 675	.806 .819 .800 .816 .818 .819 .796 .820 .821 .824 .806 .816	136 150 155 145 167 148 149 172 143 144 205 165		95.6 94.7 96.4 96.6 98.2 96.8 97.6 97.6 97.6 97.1	13 22 24 19 32 32 14 21 28 21 13 19	23 22 23 21 21 21 20 22 20 21 22 20	
Atmospheric Air	GDB RBH POD BJG MEU FJF DMG RHH BSP DAY LLT CJC	14.22 21.39 15.52 16.96 21.47 21.47 46.57 49.24 30.41 35.76 50.09 50.72	22 23 22 20 21 19 22 23 22 20 19 19	682 685 674 682 675 675 692 685 674 682 675 679	.815 .814 .806 .822 .811 .816 .828 .814 .804 .822 .816 .824	138 152 143 167 147 147 171 138 146 204 167		96.0 95.0 98.0 98.6 94.4 96.8 96.8 96.8 96.8 96.4 96.8 98.6 98.6	21 26 19 31 18 19 28 26 19 31 19 21	22 23 24 21 21 25 25 24 21 20 20	

TABLE X

Subjects			Oxygen	Compressed air	Atmospheric air
G	D	В	2	3	1
R	в	H	3	1	2
P	0	D	1	2	3
В	J	G	2	1	3.
M	E	U	1	3	2
F	J	F	1	3	2
D	M	G	3	1	2
R	H	Н	2	1	3
в	S	P	2	3	1
D	·A	Y	3	2	1
L	L	T	3	2	1
c	J	С	1	2	3

ORDER OF TREATMENTS

Number 1 - First testing period

Number 2 - Second testing period

Number 3 - Third testing period