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Hamilton, Dale A., M.S., May 1997 Computer Science

Analysis O f  Road Network AccessibiHty 

Chairperson: Ray Ford ^

Many interesting problems in natural resource management involve the assessment o f  the 
impact o f vehicle traffic moving into, through, and out o f  a designated area via a road 
network. In order to exactly determine the extent o f the influence o f  the road network, it is 
necessary to  determine which segments o f the network are accessible to vehicle traffic, 
when they are accessible, and to 'wHiat classes o f  vehicles they are accessible. These 
determinations can be made using a derivative o f a classical "connected components" graph 
algorithm, taking as inputs the road network represented as a graph and an associated set o f 
"barriers" which constrain travel across die network. In practice, barriers are real 
constraints, such as gates, kelly humps, revegetation, etc. Algorithmically, barriers are 
represented as nodes on the graph, attributed with values that define the nature o f the 
constraint. The algorithm groups together "connected arcs" as those which are accessible 
to  each other without passing through any barriers. The algorithm next determines the 
effects o f  the restrictions imposed by the barriers on each set o f connected arcs. Algorithm 
output is a road network represented as a graph with arcs attributed according to the nature 
o f  the travel restriction imposed by the set o f barriers.

This effort will focuses on the algorithm, and explains how it complements the analysis 
available using only the facilities embedded in a typical commercial GIS, such as ESRI's 
A rc/Info. Examples show how the algorithm can be used to record the arc restriction 
attributes for use with other types o f  analysis. The examples also show how the algorithm 
can be utilized to display which portions o f the road network are restricted for a given set o f 
dates. Additional types o f analysis that will utilize arc restriction attributes as input are 
discussed.
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C h  SL p  t  e r  1

PROBLEM DEFINITION AND MOTIVIATION

In driving through National Forest land one often finds locked gates that block through 

traffic on a road. Interestingly enough, one occasionally finds that the road on both sides 

of the gate is accessible to vehicle traffic. It is possible the road manager intended just to 

stop through traffic, but more often the intent was to restrict road access to an area. 

When both sides of a locked gate are accessible, the Forest Service obviously did not 

succeed.

This is the motivation for the problem investigated here: finding a way to identify which 

portions of a road network are restricted by a set o f barriers, and in addition, determining 

the nature of the restrictions imposed by the barriers (e.g. when are the road segments 

restricted, to which vehicle types are the restrictions applied.) A road may be closed by 

placing a gate on the road or by a more permanent means such as a kelly hump or 

revegetation. If any road leading into a subset of the network has not been closed, access 

to the subnetwork has not been adequately restricted.

The determination o f which road segments are restricted is dependent on the restrictions 

imposed by the barriers. When determining whether access past a barrier is possible, the 

answer may not be “yes” or “no”, but the answer might also be “maybe”. Maybe a person 

can get past the gate if they are in the right vehicle class on the right day. It is necessary

I
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to not just identify where the barriers are located, but also when the barriers are closed 

and to which vehicle classes it is closed. For example, two gates may be placed on a road, 

intending to close the road between the gates. If  the first gate is permanently closed and 

the second gate is only closed seasonally, the restricted portion o f the road between the 

gates is only closed seasonally, regardless o f the fact that the first gate is permanently 

closed. An additional aspect o f the seasonal nature of gates occurs when gates with 

different closure dates close the same subnetwork o f the road network. When the closure 

dates of the gates do not coincide, the effective closure period of the affected road 

subnetwork is the intersection o f the closure periods o f the associated gates. Gates may 

also impose different restrictions on different classes o f vehicles. A gate may specify that 

automobiles may not proceed past the gate at any time while All Terrain Vehicles (ATVs) 

may go past the gate for a portion of the year (say May 1 through October 15) and 

snowmobiles may proceed past the gate during a different part of the year (say December 

1 through March 30.)

Many organizations which are responsible for natural resource management rely on data 

indicating when road segments are accessible and when they are not. This data assists in 

critical decision support issues they are faced with concerning the area impacted or 

serviced by the road network. Even though road network information is becoming 

available in digital form, the analysis is still most often done manually. One manager who 

is responsible for finding these restriction attributes reports that the effort to perform the 

analysis manually generally takes many person-months o f effort. Other factors make a 

manual analysis less than desirable besides the labor cost involved in performing this

I 2
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analysis manually. The road systems many organizations manage resembles a plate of 

spaghetti. When attempting to determine the restrictions imposed on a particular road 

segment, it is hard to assure that the person manually performing the analysis has identified 

every possible path which affects the accessibility o f that road segment. Another factor 

which makes manual attribution undesirable is the fact that few road systems are static. 

Barriers are routinely added or removed or the barrier closure schedules are changed. In a 

complex network, barrier change can have dramatic and widespread effects, so the 

complete analysis should be repeated prior to the change. The addition of a road also 

dictates that the restriction analysis be repeated. Maintaining a complete and consistent 

analysis is thus much harder and more error-prone than simply attributing the road 

network once when digital information first becomes available.

Ideally, an automated analysis tool can be used to perform the analysis, allowing the 

restricted road segments to be identified and attributed in a matter of minutes. Besides 

requiring significantly lower labor cost to perform the analysis, this eliminates the 

possibility o f human error. An automated tool also allows the managing organization to 

run simulations to determine the effects that additional sets of gates can have on the road 

network. Without the availability of a tool of this nature, it might not be possible or cost 

effective to a priori determine the effects o f large sets of additional gates.

In addition to labor cost savings, the data generated by this effort can be utilized as input 

by many additional types o f analysis. For example, many types of analysis involve 

determining road closure alternatives that ensure that access into an area has been
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restricted. The restricted area can range from a sensitive wildlife habitat to a recreation 

area that has sufiered ill effects from excessive human use. This analysis can focus on 

finding “a simple solution”, “an optimal solution” or a set o f solutions for public comment. 

A simple solution would involve determining the placement of a set of gates (or other 

closure mechanisms) that ensure that every path into the area is closed. It would not 

attempt to quantify or optimize the placement o f these gates in any way, but would just 

make sure all routes into the area are closed. An optimal solution would try to accomplish 

area closure and meet some sort o f quantitative criteria. For example, an optional solution 

might select a set of gates to close that minimizes the number of new gates that need to be 

installed or minimizes the distance gates are from a main road while also minimizing the 

area outside the closed area that is affected by the road closures. A set of possible 

solutions might try to find all solutions that satisfy some specified cost constraints. Other 

similar types of analysis involve identifying nonaccessible or roadless areas which lie 

within the region serviced or impacted by the road network, or within a given distance of 

an accessible road segment on the network.

Other analyses would utilize data generated by this effort as input. These analyses include 

but are not limited to the following topics: identifying which parts of a road system are 

closed to traffic when a specific gate at a specific point o f a road network is closed or 

open; determining an area’s resulting road density (distance of accessible roads in the 

polygon on a given date divided by the size o f the area) when a portion of the road 

subnetwork in the area is closed; determining the effect on travel distance between points
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when gates are opened or closed; and finding good or optimal routes that allow staff to 

manually close a set of gates.

This thesis defines a class o f problems termed road closure analysis problems, and looks 

at specific problem instances, solutions possible using commercial GIS packages, and 

more ambitious solutions possible by combining data from a GIS with custom algorithms 

fi-om the study of graphs.
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C h a p t e r  2

PROBLEM BACKGROUND

A variety of issues are relevant to understanding the road closure analysis problem. 

These issues include concepts from graph theory, geographic information systems (GIS) 

concepts, and other related work.

2.1 Relevant Graph Theory Concepts

The main element in the road closure analysis problem is the road network that defines 

access to an area. A road network can be thought o f as a graph. Formally, a graph, G, is 

a pair (V,E) where F is a finite, nonempty set whose elements are called vertices, and E  is 

a set o f pairs from V  called edges (Baase, 1988). An example is shown in Figure 2.1. 

Vertices are used to represent intersections, as well as other points o f interest on the road 

network such as barriers, bridges and changes in road surface. Intuitively, edges represent 

bi-directional uninterrupted, homogeneous road segments. Vertices can have one or more 

associated edges. The number of edges that are associated with a vertex is referred to as 

the degree. Figure 2.1 represents a graph where V = {1,2,3,4,5,6,7,8,9} and E  = {(1,2), 

(2,3), (2,4), (2,8), (4,5), (4,6), (5,7), (5,8), (8,9)}. Note that vertex 5 has degree 3, vertex 9 

has degree 2, and vertex 7 has degree 1.
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Figure 2.1. Pictorial Representation o f a Graph

Both vertices and edges can be attributed by having special information, or data values 

attached to them. In road closure analysis this will assist in identifying to which class a 

particular vertex or edge belongs, or to record other data specific to the vertex or edge. 

To reflect the times when vehicle traffic access is restricted on parts of the graph, it is 

assumed that all vertices and edges have a not accessible dates attribute (NAD). This 

attribute defines the set o f days when different vehicle classes are known to be restricted 

fi-om accessing the road network at that location. Initially, this attribute has the value 

“undefined” for each member o f G.

The objective o f the road analysis problem from a graph theory perspective is to represent 

a road network with a particular type of graph, assign initial attribute values to some 

vertices, then compute other key attribute values for other member edges and vertices. 

Any type o f graph analysis is sensitive to the size of the graph. The road closure analysis 

only needs to consider the portion o f the road network which is local to the analysis area. 

For example, if road closures are being analyzed in the Bitterroot National Forest, it is not

7
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necessary to include all the roads in the United States in the graph. Including more of the 

road network than necessary in the graph will hamper performance of the analysis. 

Intuitively, including the roads that lie ‘‘within” or “near” the analysis area in the analysis 

graph will suffice, but it may be difficult to determine just which roads to include or 

exclude before doing the analysis.

In some instances the size o f the graph needed to include the surrounding loop of 

highways can be quite large. It may not be feasible to expect the organization doing the 

analysis on the study area to translate the whole road network into a graph so as to 

achieve this goal, especially if a large portion o f the road network lies outside their 

jurisdiction. As a result, the main road or highway may or may not be included in the 

graph. In the event that the main road or highway is not included in the graph, special 

access point vertices o f degree equal to one are introduced to summarize the accessibility. 

The edge from such a point leads “into” the road network o f interest; as explained below, 

data attributes at this point abstract the access to/from the outside world. Typically, 

access points are Identified when the graph is first reduced from a larger network.

As an interface between the study graph and the outside world, each access point has an 

initial not accessible dates (INAD) attribute, which lists the set of days when different 

vehicle classes are known to be restricted from accessing the road network from the 

outside at that location. For example, if an access point can only be reached by passing 

through a gate which is closed January 1 through May 15, the access point’s INAD has 

the value {Jan 1, Jan2, ..., May 15}. If  the access point can be reached at any time in the
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year its INAD is empty. If  there are multiple paths off the graph from the highway to the 

access point, its INAD will be the intersection of the restrictions on accessibility for each 

o f the paths. For example, if one path to an access point to a highway is closed January 1 

through June 15 and another path is closed April 1 through July 31, the access point’s 

INAD is (Apr 1, ..., June 15} If  a single path to an access point includes more than one 

barrier, the dates vehicle traffic can obtain access along that path is the intersection of the 

dates each barrier along that path restricts traffic.

Another class o f vertices which is of interest in road closure analysis are barriers, which 

record activities on the road network which have the ability to restrict traffic flow. 

Examples of barriers include gates, washouts, kelly humps, revegitation, and travel 

management signs. In graph terms, a barrier is represented as a vertex with degree equal 

to two with a barred access dates attribute (BAD) which lists the set of dates the barrier 

restricts traffic flow.

In review, there are four steps that must be taken to represent a road network as a graph 

The steps are as follows.

1. Create an initial graph which consists of a set o f vertices and edges, such that 

vertices represent intersections and edges represent road segments that connect 

the intersections. Restrict the graph to an analysis area representing the 

portion o f the road network o f interest by drawing a line that intersects only 

edges and that eventually encloses the analysis area.
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2. Create and add new access point vertices and corresponding edges, such that 

access vertices are placed on every edge which is intersected by the study area 

boundary. The new edges simply replace those whose termination points fall 

now outside the study boundaty. That is, an edge <X, Y> which is intersected 

by the study boundary with Y  on the outside, is replaced by <X,A> with A 

being a new access point.

3. Add barrier vertices and corresponding new edges, such that the barrier vertex 

is placed on every edge on which a barrier is found. That is, an edge <X, Y> 

which includes a barrier is replace by <X,B> and <B,Y>, and the characteristics 

o f the barrier are defined in the values o f the attributes for barrier node B.

4. Determine initial-not-accessible-dates attribute for each access point and the 

barred-access-dates attribute for each barrier.

As an example, consider the simple road network illustrated in Figure 2.2, which shows 

both highways, secondary roads, and barriers. The study area is represented as a dashed 

rectangle. A schedule of barrier closures specifies when each o f the barriers is closed.

10
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Figure 2.2 A Simple Road Network

The graph representation o f the same road network, restricted to the study area, is 

illustrated in Figure 2.3. The graph contains three classes of vertices. Vertices with a 

label “A” represent access point vertices, vertices with a label “B” represent barrier 

vertices, and vertices which are only labeled numerically represent intersection points in 

the road network (i.e. vertices that are neither access points or barriers.)

11
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Figure 2.3 Graph Representation Of Road Network Within Study Area

Figure 2.4 shows a table o f INAD and BAD values for graph access point and barrier 

vertices. For example, access point A3 corresponds to the point where the path from the 

highway which passes through Barrier 1 and the path from the highway which passes 

through Barrier 2 enter the study area. Barrier 1 is closed February 1 through July 15 and 

Barrier 2 is closed April 1 through October 15. A S’s resulting INAD attribute is {April 1, 

..., July 15} which is the intersection o f the INADs for the paths to the access point (i.e. 

(2/1..7/15}o(4/1..10/15)=(4/l..7/15}). Barrier vertex B 6 has a BAD attribute value of

12
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{3/1..7/15} which is derived from Barrier 6 ’s entry in the schedule of closures. Figure

2.4 lists the INAD and BAD attribute values for the barrier and access point vertices of 

the graph shown in Figure 2.3.

Vertex Vertex Class INAD Attribute BAD Attribute
A1 Access Point {}
A2 Access Point (Jan 1, ..., Dec 31}
A3 Access Point (Apr 1, ..., Jul 15}
A4 Access Point {Feb 1, ...,O ct 15}
B6 Barrier {Mar 1, ..., Jul 15}

B7 Barrier {May 1, ..., Sept 15}
B8 Barrier {Jan 1, ..., Dec 31}
B9 Barrier {Sept 1, ..., Nov 15}

Fig 2.4 Barrier And Access Point INAD And BAD Attribute Values

Given a graph with access point and barrier information, the goal is to determine the 

affects o f the barrier and access point INAD attributes on the NAD attributes of the 

graph’s member edges. To do this, we note that a connected element set (CES) is a set of 

vertices and edges which can be reached from X  without passing through any barrier. 

These sets include edges that are associated with a barrier, but do not include any barrier 

vertices. It is assumed that each connected element set has a not-accessible-dates (NAD) 

attribute, which has the seime value as the NAD attribute of all members of that connected 

element set. Each set also has an INAD attribute, which is computed as the intersection of 

the INAD attributes for each o f the set’s member access points. If none of the member 

vertices are access points, the set’s INAD attribute value is unknovwi.

13
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The graph shown in Figure 2.3 has four connected element sets. The table in Figure 2.5 

shows their members and INAD attributes.

Set Members INAD

CBS, <{A4), {<A4,B9>}> {Feb 1, ...,O ct 15}

CESs <{I,A1,A2,A3,I2,13,14,15},

{<1,I2>, <I2.A1>, <I2,I3>. <I3,B6>, <I3,I4>, 

<I4,A2>, <I4,I5>, <I5.B9>, <I5,A3> } >,

0

CESs <{16,17,18,9},

{<B6.I6>, <I6,I7>, <I7,B8>, <I7,I8>, <I8,B8>, 

<I8,9>}>

unknown

CES4 <{IJO, 11,12},

{<B7,110>,<I 10,11 >,<I 10,12>}>

unknown

Figure 2.5 Connected Element Sets

Note that the edges on either side of barrier vertex B8 are in the same connected element 

set (CESsy This is a result of the path which exists between the edges associated with B8 

(i.e. <I7,B8>-^<I7,I8>-><I8,B8>).

The objective o f this effort is to develop an algorithm that takes as input a graph, finds the 

connected element sets and their INAD values, then ripples the effects of the barriers’

14
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BAD attribute values across the connected element sets to determine each element’s NAD 

value.

2.2 Relevant Geographic Information System Concepts

Generally, abstract graph theory concepts have similar corresponding concepts in GIS. 

The edges in a graph correspond to ca-cs in GIS where the arcs are assumed to allow 

traffic flow in either direction, and the vertices in a graph correspond to nodes in GIS. 

The distinction between graph-vertex and GIS-node is important, because there is a 

meaning of “vertex” in GIS which does not correspond to a graph-vertex.

The key difference between an abstract graph and a graph in GIS is that o f correlating 

member elements to real spatial locations. An abstract graph shows only connectivity, not 

correlation to physical space, whereas in a GIS it is essential to correlate each arc and 

node to physical space. For example, graph-vertices are used to represent intersections 

and other points of interest on the road network; however, the resulting graph does not 

indicate where these vertices are located spatially, just that they exist. Similarly, the 

graph’s edges correspond to road segments on the road network, but they do not reflect 

the physical location o f the road segments. It is possible to correlate graph vertices and 

edges to physical space by adding appropriate attributes, attached to both vertices and 

edges. A GIS graph does exactly that, correlating both the nodes and arcs to physical 

space by attributing them with spatial characteristics. For example, each node has 

attributes that indicate its physical location (e.g. latitude and longitude). Arcs are

15
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attributed in a more complex manner to record the spatial path they follow between nodes. 

Many GIS attribute arcs with lists o f connected vectors that approximate the arc’s path 

through space. The endpoints o f these vectors represent special new types of nodes, GIS 

vertices, which approximate real road paths with sequences of straight line segments. A 

GIS graph which shows both nodes and vertices arranged in a coordinate system 

according to spatial values can be thought o f as a digital map which approximates a road 

network. As with abstract graphs, additional attributes can be added to record events that 

occur along the associated road network.

Algorithmically, GIS-resident barriers and access points are conceptually no different than 

they are in graph theory. Both are represented as nodes that are attributed to identify 

them as either a barrier or an access point. They also have an attribute which reflects the 

impact the node has on vehicle access on the network at that point (i.e. BAD for barriers 

and INAD for access points).

When discussing road closure analysis with computer scientists and GIS professionals, it 

becomes apparent that the two communities uses different terminology to describe the 

same components of the analysis. What a computer scientist calls edges and vertices, a 

GIS professional refers to as arcs and nodes. A computer scientist thinks of an edge as a 

linear object which connects two vertices. The GIS community understands that an arc is 

an undirected linear feature that connects two nodes. However, when comparing vertices 

and nodes, a discrepancy in terms becomes apparent, stemming from whether edges/arcs 

are ’’atomic” objects. In graph theory edges are atomic, i.e. not divisible into smaller

16
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units. In GIS, arcs are divided into smaller segments to map a course through physical 

space. Thus, arcs represent a series of connected line segments where each segment is 

connected at each end to either a node or another line segment; vertices are the points 

where the line segments connect to each other. This discrepancy makes it necessary to 

avoid using the term vertices in order to avoid confusion between the two disciplines. In 

GIS terms, a road network is represented as an undirected graph G = {N, A), where N  is 

the set o f nodes on the road network, A is the set o f undirected arcs on the graph that 

connect graph nodes, each node is attributed to reflect its spatial coordinates, and each arc 

is subdivided into a set o f line segments connected by vertices with spatial coordinates.

From an abstract GIS perspective, one objective o f road closure analysis is to take a road 

coverage with the associated sets o f access points and barriers, and determine which dates 

each road node and/or arc is accessible. In addition, the spatial information allows the 

analysis to be extended to answer questions such as “On what days is it possible for a 

vehicle to pass within distance D  of point <X,Y>T

2.3 Arc/Info Specific GIS Concepts

Arc/Info was developed by Environmental Systems Research Institute (ESRI) in the 

1970’s, and has grown to be the industry leading GIS. General market dominance plus the 

fact that Arc/Info is the GIS o f choice for the U.S. Forest Service, which is the agency 

with primary interest in road closure analysis, led to the selection of Arc/Info as the
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“implementation GIS” for this project. Arc/Info is also available in the Computer Science 

labs at the University of Montana, which made it convenient to use.

In Arc/Info, a line coverage can be used to represent a simple digital map which shows a 

network’s road segments and events that occur along the associated road network. The 

line coverage is a series o f <X,Y> coordinate pairs representing nodes. The coordinate 

pairs are assumed to be ordered, such that arcs are assumed to connect each successive 

coordinate pair. Internally, each arc is represented as a sequence of coordinate pairs 

which represent vertices, with line segments assumed to join each pair of vertices (ESRI, 

1995A). In contrast, a point coverage is a geographic data set consisting o f a series of 

<X,Y> coordinate pairs representing points (ESRI, 1995A), but without any arcs assumed 

between the pairs. A point coverage can be thought of as a digital map which shows only 

the geographic location of points (e.g. house, well).

Barrier data are currently represented in at least two forms by the Forest Service. Some 

analysts represent barriers as events in a point coverage. Utilizing a pomt coverage 

representation, a barrier is represented by a single point which has an associated <X, 

coordinates. These point coverage events have attributes describing information about the 

nature o f the restriction imposed by the barrier. Barriers stored in this manner must be 

correlated, or “coregistered” somehow on the separate road network as nodes. Arc/Info’s 

SPLIT command (ESRI, 1994) can be used to correlate members of a point coverage onto 

a line coverage. SPLIT takes as input a line coverage and a point coverage. The point 

coverage is processed on a one-by-one basis by taking each member of the point coverage,
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identifying the closest arc to that member point, and adding a node at the location where 

the arc is closest to the member point along with corresponding new arcs associated with 

the new node to replace the original arc. That is, an arc <A,B> with a point X ' which is 

closest to point coverage member X  is replaced by <A,X'^ and <X',B>. This effectively 

approximates X  as a new member o f the line coverage.

Other forests store barrier data in an Oracle database system called the Route 

Management System  (RMS). Each entry in the RMS specifies with which road a barrier is 

associated, in addition to where on that road the barrier is located. Arc/Info’s dynamic 

segmentation models linear features using routes and events. A  route represents a non

circular series of connected arcs, along with measures which can be used to calculate 

distance. Events are locations o f interest along a route (e.g. barriers, bridges, signs, etc.). 

Distance measures can also be used to identify the location of events along a route (ESRI, 

1995B). Dynamic segmentation is a process based on events and routes which allows arcs 

which contain specified events (e.g. barriers) to be identified along with where on the 

route (i.e. which arc) the event is located. Using dynamic segmentation, barriers in the 

RMS can be co-registered onto the associated road network as nodes.

Although dynamic segmentation could have definite applicability to road closure analysis 

in the future, its use needs to be augmented with point representation of barriers to 

produce an analysis tool capable o f allowing users to determine the effects o f new barriers 

or modified closure schedules on existing barriers. Currently, no forests have an RMS
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mature enough to reliably represent the existing set o f barriers, and the RMS that are 

available are not generally accessible outside the Forest Service.

The work here focuses on simple point/line coverages. Barriers and access points are 

modeled as line coverage nodes. Each line coverage has a node attribute table (NAT) 

which is a tabular datafile containing one row o f data for each node in the line coverage. 

Barrier nodes are identified via the road network coverage’s NAT by utiliring a ‘TSfode 

Class” column on the NAT, setting that column to a specified “barrier value” for each row 

in the table which represents a barrier node. Each barrier’s BAD is stored in the “Barred 

Access Dates” column on that barrier’s row. Access points are modeled as nodes much 

like barriers are. The “Node Class” column in the NAT is set to an “access point value” 

for each row corresponding to an access point. Each access point’s INAD is stored in the 

”Initial Not Accessible Dates” column on that access point’s row

From an Arc/Info perspective, the objective of this effort is to take a road coverage with 

the associated sets of access points and barriers (both represented as point coverages 

which are then coregistered onto the corresponding line coverage as nodes), and 

determine which dates each road coverage arc is accessible.

2.4 Analysis Related Work - Graph Algorithms and GIS Functions

A well known classical graph algorithm that can be used to solve certain types of road 

closure analysis problems is Dijkstra’s algorithm (Kumar, 1994). This algorithm takes as
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input a graph G = (N,A), then finds the shortest paths fi-om a node « e  to all other 

nodes in N, It is assumed that if a “shortest path” is found fi'om a node n to another node 

n ' Çl N, then it is possible for vehicle trafiBc to follow that path from n ^  n ' , thus w' is 

accessible fi'om n.

Environmental Systems Research Institute (ESRI) provides functionality within Arc/Info 

which can also perform a type o f road closure analysis. TRACE is a command which 

“Creates a selected set o f arcs and nodes that flow into and/or out of an origin node(sy\ 

(ESRI, 1995B) An origin node (which corresponds to an access point node) is the node 

that TRACE determines which arcs flow into and out of. It is assumed that there exists 

for any arc or node which is found to flow into or out of an origin node a path between 

that arc or node and the origin node. The path follows other nodes and arcs which flow 

into or out o f the origin node.

In using the TRACE command, the portion o f the network coverage to be analyzed is 

specified by selecting the set of arcs and nodes in the coverage on which TRACE 

operates. Prior to using TRACE, access point nodes need to be specified. After TRACE 

runs, there exists a path fi’om at least one access point node to each selected arc and node 

which does not pass through any unselected nodes or arcs.

TRACE allows the user to determine which portions of the coverage are analyzed by 

selecting the nodes and arcs to be included in the analysis. To accomplish the road closure 

analysis, all arcs and nodes in the road coverage are selected. The nodes representing 

closed barriers are then deselected, which prevents TRACE from considering paths that
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include that barrier node when tracing the coverage. Since roads are assumed to be 

undirected (at least outside cities they are) TRACE needs to be executed specifying a 

direction o f BOTH, allowing TRACE to ignore arc direction of flow. When TRACE 

runs, it identifies all the selected nodes and arcs for which a path exists to an access point 

node which does not pass through a unselected barrier node. As a result of not selecting 

nodes, arcs and nodes behind those unselected barrier nodes will not be traced unless there 

is another path fi-om an access point node to those arcs and nodes which does not pass 

through any unselected barrier nodes.

According to ESRI, TRACE is implemented using Dijkstra’s Algorithm to compute a

“single source shortest distance” on a graph. That is, given an access point %, the

algorithm identifies the shortest path to all other nodes reachable firom x. The algorithm

constructs a set .S' o f vertices whose shortest distance fi-om the source is known. At each

step, a node « whose distance from the source is shortest o f the remaining nodes is

identified. That node n is added to S. Since all edges have nonnegative costs, the path

fi'om the source to n passes only through nodes already in S. Therefore it is only

necessary to record for each node n  the shortest distance from the source to n along a path

that passes only through nodes of S. Aho (1974) describes an implementation of

Dijkstra’s algorithm using as input a directed graph G = {N, A), a source no e  A, and a

function / fi'om edges to nonnegative reals. For all w, and nj in N  where », ^  nj, /(» ,, nj) is

+ 0 0  if  (» ,, »y) is not an edge; /(» ,, »y) = 0. As output the algorithm produces for each » e

N, the minimum over all paths P  fi'om no to n  o f the sum of the labels of the edges (i.e.

arcs) o f P. To do so, the algorithm constructs a set 5  ç  A  such that the shortest path
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from the source to each node w in 5  lies wholly in S. The array D[ri\ contains the cost of 

the current shortest path from no to n  passing only through nodes o f S. A pseudo-code 

description o f the implementation appears in Algorithm 2.1.

SESfGLE-SOURCE-SHORTEST-PATH
Begin

S <— {wo}

D[«o3 < - 0

for each « in {no} do 

Z)[n] <- /(«o) 

while S ^ N  do 

begm

choose a node n 'm N - S  such that Z)[w] is a minimum 
add w to 5
for each n 'm N  - S  do

D{n} <— MIN(£>[«], D{w\ + /(w, n)
end

End

Algorithm 2.1. Single-source shortest path (Dijkstra’s algoritm).

Given that ESRI’s TRACE command uses this algorithm, the assumption that all barriers 

are either open or closed represents a major deficiency. In reality, many barriers are gates 

that are closed on a seasonal basis. Whether access is allowed past a gate is date 

dependent. The same problem exists with access points. Some access points correspond 

to locations on roads that are always accessible, but this is not always the case. As stated 

previously, an access point may correspond to a point on a road that is known to only be
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accessible on a seasonal basis. To determine the actual restrictions on segments of the 

road network utilizing the TRACE command, it is necessary to run TRACE for every 

possible nonoverlapping date range and vehicle type combination. The set of possible 

nonoverlapping date ranges can be determined by looking at every date specified in the 

schedule o f closures applicable to the road network. Each date found on the schedule of 

closures is the beginning of one range and the end of another date range such that no data 

exists on the schedule o f closures which he between any given date and either date which 

that date forms a date range. For example if a schedule o f closures included February 15, 

June 30, August 15 and October 1 the nonoverlapping date ranges would be February 15 

to June 30, June 30 to August 15, August 15 to October 1 and October 1 to February 15. 

This results in four date ranges.

In addition to not handhng the seasonal nature of gates, there is also the issue of whether 

utilizing Dijkstra’s Algorithm (as TRACE does) is the best way to determine which arcs 

are cormected to the access points. Aho (1974) states that “if we only wish to know to 

which (nodes) there exists a path fi'om the source, the problem is trivial and can be solved 

by a number of algorithms which operate in 0{e) on an e-edge (arc) graph.” He goes on 

to state that Dijkstra’s Algorithm is 0 {r^ \ not 0(e).

Chapter Three describes a graph algorithm that more efficiently performs the analysis than 

Arc/Info’s TRACE function or any version o f Dijkstra’s algorithm. The algorithm 

accomplishes this by handling the seasonal nature of barriers and using a design which 

improves on the time complexity o f 0{r^') for Dijkstra’s Algorithm^
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C h a p t e r  3

A GRAPH THEORETIC ALGORITHM FOR ROAD CLOSURE ANALYSIS

The graph theoretic solution developed for this project utilizes two phases to solve the 

road closure analysis problem. The first phase groups together graph members which can 

be reached fi'om each other without passing through a barrier. This phase is based on a 

classical “connected components” graph algorithm which takes into account that some 

gates are closed on a seasonal basis. The second phase of the solution calculates the NAD 

attributes o f each connected set of graph members based on access point INAD attribute 

values and barrier BAD attribute values.

3.1 A Classical “Connected Components” Graph Algorithm

Determining which portions of the road network have accessibility restrictions imposed by 

barriers is accomplished with a connected components algorithm (Cormen, 1990). A 

classical connected components algorithm identifies groups of nodes in a graph which are 

connected by arcs. Figure 3.1 shows an example of a graph with three groups of 

connected components {1,2,3}, {4,5,6,?} and {8 }
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Figure 3.1 - Connected Graph Components

This section describes a classic connected components algorithm from which an algorithm 

capable of handling gates closed on a seasonal basis is derived. The algorithm takes a 

standard graph as input. Each node on the graph is initially put into a connected 

component set by itself. The algorithm examines each arc in the graph. As each arc is 

processed, the nodes to which it is connected via an arc are identified. If both source and 

target nodes are contained in different connected component sets, the two sets are 

merged. I f  both nodes are already in the same connected component set, no further action 

is required for that arc. When the algorithm completes, each node in any connected 

component set may be reached from any other node in the same connected component set 

by following a path o f arcs in the graph.

The classic CONNECTED COMPONENTS algorithm described by Cormen utilizes a 

disjoint-set data structure which maintains a collection T = {Si, S2,...,Sk) of disjoint 

dynamic sets. Each set is identified by a representative, which is some member of the set.
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Letting jc denote one of these sets, the following operations are utilized by the 

CONNECTED COMPONENTS procedure shown as Algorithm 3.1.

•  MAKE_SET(%) creates a new set whose only member (and thus representative) is 

pointed to by x. Since the sets in T are disjoint, we require that x  not be in a set.

• UNION(x, y)  unites the dynamic sets that contain x  and y, Sx  and Sy  respectively, into a 

new set that is the union o f these two sets. The two sets are assumed to be disjoint 

prior to the operation. The sets Sx  and Sy  are destroyed following the union, removing 

them from the collection T. The representative of the resulting set is some member of

Sx  W Sy.

•  FIND SET(%) returns the representative of the set containing x.

The procedure CONNECTED COMPONENTS uses these operations to group together 

components o f the graph which are connected. It takes as input a graph G .  As output it 

produces a set of connected components, in the form of the graph nodes in the connected 

components. Once CONNECTED COMPONENTS has been run with graph G as input, 

FIND SET will return the same value for nodes that are in the same set of connected 

components.
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CONNECTED_COMPONENTS(G) 

for each node n e  A^G] 

do MAKE_SET(AO 
for each arc (w,v) e E\G]

do if FIND_SET(w) 9  ̂FIND_SET(v) 

then UNION(i/,v)

Algorithm 3.1 - CONNECTED_COMPONENTS

CONNECTED COMPONENTS puts nodes firom G into a disjoint-set data structure, 

grouping connected nodes into the same set. A simple way to implement a disjoint-set 

data structure is to represent each set with a linked list. The first object in each linked list 

serves as its set’s representative. Each object in the linked list contains a set member, a 

pointer to the object containing the next set member and a pointer back to the 

representative. Within each linked list, the objects may appear in any order (subject to our 

assumption that the first object in each list is the representative).

Using this linked list representation, both MAKE-SET and FIND SET are easy, requiring 

G(I) time (Cormen, 1990). To carry out MAKE SET(%), create a new linked list whose 

only object is x. For FIND SET(%), return the pointer from x back to the representative.
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3.2 A Derivative Algorithm That Can Handle Seasonal Barriers

The classical CONNECTED COMPONENTS algorithm described by Cormen (1990) 

does not explicitly indicate which arcs connect the nodes in a connected component set. In 

addition, it is difficult to adapt to handle barriers, especially ones that are closed 

seasonally. As mentioned previously, a node representing the barrier is attributed to 

indicate when traffic access is restricted. The classic algorithm assumes that each node 

will end up in one and only one connected component set, and does not check the 

attributes on barrier nodes to adjust connectivity. Although a barrier is reachable from the 

two connected component sets on either side o f the barrier, the barrier is not a member of 

either connected set.

To overcome these deficiencies, a derivative algorithm 

CONDITIONAL CONNECTED COMPONENTS, shown as Algorithm 3.2, keeps the 

node representing the barrier in a connected set by itself. This connected set is labeled as 

a barrier, is attributed with any restrictions the barrier imposes on traffic access, and is 

linked via barrier links to the connected sets containing the nodes on either sides of the 

barrier. These barrier links allow the derivative algorithm to identify the impact of the 

barriers restrictions on access from the neighboring connected sets. 

CONDITIONAL CONNECTED COMPONENTS also utilizes a construct to group 

connected graph members (both arcs and nodes) in a special structure referred to as a 

connected set. In order to attribute arcs with the access restrictions identified for the
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same data structure. A connected set originates in the same way as a connected 

component set, with each node in the graph being placed in a connected set by itself.

CONDITIONAL-CONNECTED-COMPONENTS processes arcs one by one. If both 

nodes are in the same connected set, the arc is placed in that connected set. If  neither 

node is a barrier and the two nodes are in different connected sets, the connected sets are 

merged and the arc is placed in the merged connected set. If neither node is a barrier, the 

arc joining them is put in the connected set with its end points. If one of the nodes 

represents a barrier, the arc is placed in the connected set which contains the arc’s 

nonbarrier node and a barrier link is also established between the two connected sets. If 

both nodes associated with an arc are barriers, a pseudo connected set is created which 

contains no nodes, but has the arc and links to the connected sets containing the two 

nodes.

The CONDITIONAL-CONNECTED-COMPONENTS algorithm requires a slightly 

different data structure than the classic CONNECTED-COMPONENTS algorithm. 

CONDITIONAL-CONNECTED-COMPONENTS requires a data structure of sets where 

each set consists of a list o f connected nodes and a list of associated arcs. Each connected 

set contains a list o f references to the connected sets containing neighboring barrier nodes 

Connected sets contain a ENAD and NAD attributes. Calculation of values for these two 

attributes is addressed in Section 3.3. The derivative data structure supports the following 

operations.
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• MAKE SET(%) creates a new connected set whose only node member is node 

X, and which has no member arcs. If x  represents a barrier, the connected set is 

attributed accordingly.

•  FIND SET(%) returns the connected set which contains node jc.

• UNION(x, ÿ) unites the dynamic sets that contain non-barrier nodes x  and y, Sx 

and Sy  respectively, into a new set that is the union of these two sets. Sx  and Sy  

are assumed to be disjoint prior to the operation. The arc <x,y> is added to the 

new set. The representative o f the resulting set is some member of Sx  vj Sy. 

The original sets Sx  and S y  are destroyed following the union, removing them 

from the collection o f connected sets.

•  MAKE_LINK(jcj/) establishes a barrier link between a non-barrier connected 

set JC and a barrier connected set j .  The arc <Jc,jy> is added to the connected 

set containing node x.

As shown in Algorithm 3.2, the procedure

CONDITIONAL_CONNECTED_COMPONENTS uses the preceding disjoint set 

operations to group together connected graph components with barriers. Once 

CONDITIONAL CONNECTED COMPONENTS produces its results, it is possible to 

determine whether two nodes are on the same connected set by comparing the results of 

running FIND SET for both nodes. If the same connected set is returned by both calls, 

then the nodes reside on the same connected set; otherwise they are in different connected
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sets. The set o f nodes from graph G is denoted iV[G], and the set of arcs is denoted by 

^[G ]. In solving the road closure analysis problem, once the procedure CONDITIONAL- 

CONNECTED-COMPONENTS produces its results, the NAD attributes for each 

connected set can be determined, as discussed in Section 3.3. The NAD attribute for each 

set can be recorded with each of its member arcs once the attribute is determined for the 

connected set.
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CONDITIONAL-CONNECTED-COMPONENTS

Begin

for each node n in N[G]

MAKE_SET(n) 
for each arc(u,v) in A[G]

set_u := FIND_SET(u) 
set_v := FIND SET(v) 
if (set_u = set_v)

add arc(u,v) to set_u’s arc list 
else if (neither set_u or set v are barrier sets) 

add arc(u,v) to set_u 
UNION(set_u, set_v) 

else if (set u and set v are barrier sets) 

create pseudo set 

MAKE_LINK(pseudo set, set u) 
add arc(u,v) to the pseudo set 

else if (set u is a barrier set)

MAKE_LINK(set_v, set_u) 
put arc(u,v) to set_v 

else if (setjv is a barrier set)

MAKE_LINK(set_u, set v) 

put arc(u,v) to set_u

end if
end for

End

Algorithm 3.2. CONDITIONAL-CONNECTED-COMPONENTS
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An illustration of the graph representation of the connected sets and barriers produced by 

CONDITIONAL_CONNECTED COMPONENTS when the road network represented 

by the graph in Figure 2.3 is supplied as input is shown in Figure 3.2.

CES
CES

B9

CES B7

B6 CES

B8

Figure 3.2 - Condensed Graph of Connected Sets and Barriers

3.3 NAD Attribute Identification

NAD attribute determination is performed using an iterative breadth first search. The 

NAD attributes that are calculated for any connected set apply to each of its member arcs 

and nodes. The first step in calculating NAD values is to identify the connected sets which
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have known INAD values, based on the member access points they contain which have an 

INAD attribute. This is determined for each connected set by taking the intersection of 

each member access point’s INAD attribute. It can be assumed that any connected set 

that is has a known INAD value also has a known NAD value which equals the INAD 

value. Connected sets that have an unknown INAD value are assumed to have a NAD 

value of {1/1 .. 12/31}.

Next an iterative breadth first search is done of the collection of connected sets. Each 

breadth first search starts by placing each connected set which is known to have unlimited 

access onto a queue and setting its NAD attributes to null. Unlimited access is defined as 

allowing vehicle access to that point at any time. Unlimited access is represented by an 

INAD or known NAD attribute with an empty value. As each set on the queue is 

processed, all neighboring sets which have not been previously placed on the queue in the 

current search iteration are pushed onto the queue. As each set is pulled off the queue, 

it’s NAD attribute is updated by taking the intersection of it’s current NAD (if known), its 

INAD (if it has one) and the efifective restrictions imposed by each neighboring barrier. 

The effective restriction imposed by a neighboring barrier can be determined only if the 

NAD o f the connected set on the other side o f the barrier is known. If  that NAD is 

known, the effective restriction of the barrier is union of the barrier node’s BAD attribute 

and the NAD attribute of the connected set lying on the other side of that barrier fi-om the 

connected set currently being processed. This breadth first search is repeated until the 

NAD attribute for each connected set are the same as they were after the previous breadth 

first search. This NAD attribute determination algorithm, referred to as
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NAD_ATTRIBUTE_DETERMINATION is shown in Algorithm 3.3. This algorithm 

takes as input a disjoint set of connected sets (denoted as DS) which is produced by 

CONDITIONAL CONNECTED COMPONENTS.

NAD_ATTRIBUTE_DETERMINATION (DS) 
NAD_CHANGED:= True 

while NADJOHANGED 
NADJCHANGED := False 

clear the queue

put connected sets that have NAD = {} on the queue 
while the queue is not empty 

C := queue.pop

for all connected sets #  which are neighbors of C 

B is the barrier node between C and N  

i f #  has not been pushed onto the queue this iteration 
push N  onto the queue 

end if
if#.NAD is known

C.NAD = C.NAD o  (5.BAD w #.NAD) 

NAD_CHANGED:= True 

end if 

end for 

end while 

end while

Algorithm 3.3. NAD Attribute Determination Algorithm

To illustrate how the NAD_ATTRIBUTE_DETERMINATION algorithm works, 

consider a graph consisting of connected sets and barrier nodes which is produced by
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CONDITIONAL_CONNECTED_COMPONENTS. The graph and element values shown 

in Figure 3.2 represents a road network similar to the road network shown in Figure 2.3. 

The example that follows only shows NAD values consisting of a single set of dates; NAD 

attributes can handle multiple vehicle classes by maintaining a separate set o f dates for 

each vehicle class. While this example does not prove the correctness of using NAD- 

ATTRTBUTE DETERMINATION to determine NAD values, it does show that this 

approach does seem to work in practice.

INAI>=unknown
NAD={1/1..12/31}

B2 ) BAD={3/1..7/15}CES:
INAD={2/1.. 10/15} 
NAD={2/1..10/15>

BAE^{9/1.. 11/15}

B1 B 4 ) BAD={5/1..9/15}

CESz
XNAD^unknown t  ÿ NAD={1/1..12/31}

B3

BAD={3/1..7/15}
B5 ) BAD={ 1/1.. 12/31}

Figure 3.3 Condensed Graph Prior To NAD Attribute Determination
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On the first iteration of the breadth first search, CES2 has a null NAD  value and is placed 

on the queue. CES2 is then popped off the queue. CES2 has two neighboring connected 

element sets, CESi and both o f which are pushed onto the queue now, since neither 

connected set has been placed on the queue previously. C£S!?.NAD is then updated to 

reflect the effective restrictions imposed by the neighboring connected sets as follows:

First CESr.

Œ % .NAD := CE&.NAD r i (57.BAD Œ S ’/.NAD)

:= {} r\ ({Sqpt 1, ..., Nov 15} 'u {Feb 1, ...,Oct 15})

:={}

Then CES3.

C2%.NAD := C % .N A D  o  (55.BAD LJ CES'^.NAD)

:= {} o  ({Mar 1, ..., Jul 15} c  {Jan 1, ...,Dec 31})

:={}

Next CESt is pulled off the queue. Its two neighbors CES2 and CES3 have both been 

previously placed on the queue, so there is no need to do so again. CES";.NAD is updated 

to reflect the effective restrictions imposed by the neighboring connected sets as follows: 

First CESï.

CE5'/.NAD := CE5/.NAD o  (EJ BAD w CE5^.NAD)

;= {Feb 1, ...,Oct 15} r\ ({Sept 1, ..., Nov 15} kJ {})

:= {Sept 1, ..., Oct 15}

Then CES3.
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CE& NAD := CES/.NAD o  (52.BAD w CE& NAD)

— {Sep 1, Oct 15} r\ ({Mar 1, Jul 15}w{Jan 1, ...,Dec 31})

:= {Sep 1, Oct 15}

Next CESs is pulled off the queue. Of its three neighbors CESj, CES2 and CES!#, only 

CES# needs to be placed on the queue. CESj.NAD is updated to reflect the effective 

restrictions imposed by the neighboring connected sets. Incidentally, the barrier links to B5 

are ignored because CES3 lies on both sides of that barrier. The update of CESj.NAD is 

as follows:

First CES/:

CES5 .NAD := CESi.NAD o  (B2 BAD ^  CES/.NAD)

:= {Jan 1, ...,Dec 31} r> ({Mar 1, ..., Jul 15}w{Sq) 1, ..., Oct 15})

:= {Mar 1, ..., Jul 15, Sep 1, ..., Oct 15}

Next CES2'.

CESj.NAD := CES3.NAD  o  (E3.BAD vj CES^.NAD)

:= {Mar 1, .... Jul 15, Sep 1, ..., Oct 15}ni({Mar 1, ...,Jul 15}i_/{})

:= {Mar 1, ..., Jul 15}

Then CES#:

CES3 .NAD := CESj.NAD r ,  (B4BAD  w CES#.NAD)

:= {Mar 1, ..., Jul 15}o({May 1, ..., Sq> 15}u{Jan 1, ...,Dec 31}) 

:= {Mar 1, ..., Jul 15}
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Last o f all, CES4 is pulled off the queue. Its neighbor CES3 has been previously placed on

the queue, so there is no need to do so again. Cê SV.NAD is updated to reflect the ejffective

restrictions imposed by the neighboring connected set CES3 as follows;

CE&.NAD := Œ^^.NAD o  {B4MAD C % .N A D )

;= {Jan 1, ...,Dec 31}o({May 1, Sep 15}w{Mar 1, ..., Jul 15})

:= {Mar 1, ..., Sq) 15}

Figure 3.3 shows the condensed graph along with the corresponding attribute values after 

the first pass through the NAD attribute determination breadth first search.

NAD={3/1..9/15}B2 ) BAD={3/1..7/15)CES
CESNAD={9/1.. 10/15}

BAD={9/L. 11/15}

B1 B 4 ) BAD={5/1..9/15}

CES2

NAD={3/1..7/15}
CES

B3

BAD={3/1.7/15}
BAD={1/1..12/31}

Figure 3.4 Condensed Graph After First Breadth First Search
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During the first iteration of the breadth first search, the NAD values of three of the sets 

(i.e. CESi, CESj and CES4) were updated, necessitating the need for at least one more 

pass through the breadth first search. On the second iteration of the breadth first search, 

CES2 is still the only set with a null NAD  value and is placed on the queue. CES2 is then 

popped off the queue. CES2 has two neighboring connected element sets, CESi and CESs, 

both o f which are pushed onto the queue. CES^.NAD is then updated to reflect the 

effective restrictions imposed by the neighboring connected sets as follows;

First C E S j :

CES2.IAAD := CES2.TSiAD o  (E/.BAD ^  CE5/.NAD)

:= {} o  ({Sept 1, ..., Nov 15} kj {Sep 1, ...,Oct 15})

:={}

Then C E S y .

CE%.NAD := CE^^.NAD o  (Ei.BAD w  CE^^.NAD)

:= {} o  ({Mar 1, ..., Jul 15} w {Mar 1, ...,Jul 31})

~  {}

Next CESj is pulled off the queue. Its two neighbors CES2 and CESs have both been 

previously placed on the queue, so there is no need to do so again. CESi.NAD is updated 

to reflect the effective restrictions imposed by the nei^boring connected sets as follows: 

First CESy

C E S i .N A D  := C E S j .N A D  m (E7.BAD ^  CES^.NAD)

;= {Sep 1, ...,Oct 15} o  ({Sept 1, ..., Nov 15} {})
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;= {Sq)t 1, Oct 15}

Then CES3.

C E 5 /.N A D  :=  C E ^ y .N A D  o  (J 5 2 .B A D  w  C E & .N A D )

:= {Sep 1, Oct 15} ({Mar 1, Jul 15}w{Mar 1, Jul 15})

:= {}

Next CESs is pulled off the queue. Of its three neighbors (i.e. CES], CES2 and CES4), 

only CES4 needs to be placed on the queue. CE% NAD is updated to reflect the effective 

restrictions imposed by the neighboring connected sets as follows;

First CES]\

Œ ^ j .N A D  :=  Œ 5 3 .N A D  o  (B 2 .B A D  w  C E S y .N A D )

:= {Mar, ...,Jul 15} o  ({Mar 1, ..., Jul 15}w{})

:= {Mar 1, ..., Jul 15}

Next CESf.

C E S ^ .N A D  :=  C E ^ ^ .N A D  o  (E 5 .B A D  L; C E & .N A D )

:= {Mar 1, ..., Jul 15}o({Mar 1, ...,Jul 15}Lj{})

:= {Mar 1, ..., Jul 15}

Then CES4.

C E ^ i.N A D  :=  C E ^ '^ .N A D  o  (E ^ .B A D  w  C E E ^ .N A D )

:= {Mar 1, ..., Jul 15}o({May 1, ..., Sep 15}u{Mar 1, ...,Sep 15})

:= {Mar 1, ..., Jul 15}
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Last of all, CES4 is pulled off the queue. Its neighbor CES3 has been previously placed on 

the queue, so there is no need to do so again. CES^.NAD is updated to reflect the effective 

restrictions imposed by the neighboring connected set CES3 as follows;

Cg&.NAD := C£5^.NAD o  w CE&.NAD)

:= {Mar 1, 15}o({May 1, ..., Sep 15}w{Mar 1, ..., Jul 15})

:= {Mar 1, ..., Sep 15}

Figure 3.4 shows the condensed graph along with the corresponding attribute values after 

the second pass through the NAD attribute determination breadth first search.

B2 ) BAD={3/1..7/15}CES
CES

BAD={9/1.. 11/15}

B1 B 4 ) BAD={5/1..9/15}

CES2

NAD={3/1.7/15}
CES

B3

B 5) BAD={ 1/1.. 12/31}

Figure 3.5 Condensed Graph After Second Breadth First Search

43

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



Since CES4 had its NAD updated during the second pass through the breadth first search, 

a third pass is necessary. Upon completion of the third pass, none of the NAD values 

have been updated, eliminating the need for a fourth pass through the breadth first search. 

Since the details o f the third pass are the same as the second pass with one exception (i.e. 

the initial value of CE^/ .NAD) the detail of the third pass are omitted.

3.4 Analysis oftheCONDmONAL_CONNECTED_COM PONENTS Algorithm

The performance analysis discussed in this section only pertains to the

CONDITIONAL_CONNECTED_COMPONENTS algorithm discussed in Section 3.2. 

Due to the complexity of the analysis of the breadth first search algorithm which calculates 

the NAD attributes as discussed in Section 3.3, that analysis is not discussed in this 

document.

Even though the data structure and associated operations utilized by

CONDITIONAL CONNECTED COMPONENT S have a higher cost than those used by

either CONNECTED COMPONENTS or Dijkstra’s algorithm (i.e. TRACE) due to the 

more complex data structure used by CONDITIONAL CONNECTED COMPONENTS, 

the cost of performing the road closure analysis is lower for

CONDITIONAL_CONNECTED_COMPONENTS. The cost savings of

CONDITIONAL_CONNECTED_COMPONENTS results from being able to perform the 

analysis for multiple nonoverlapping date ranges and vehicle classes at the same time.
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while CONNECTED COMPONENTS must process each nonoverlapping date range 

separately for each vehicle class.

Cormen (1990) describes an optional representation of disjoint sets which represents sets 

o f nodes as rooted trees, with each node containing one node and each tree representing 

one set o f nodes. In these disjoinUset forests, each member points to its parent. The root 

of each tree contains the representative and is it own parent. Although the straightforward 

algorithms that use this representation are no faster than ones that use the linked-list 

representation, by introducing two heuristics, “union by rank” and “path compression”, 

the asymptotically fastest disjoint-set data structure known can be achieved.

Disjoint-set forests utilize three primary operations. A MAKE SET operation simply 

creates a tree with just one node. FIND SET chases parent pointers until the root of the 

tree is located. The nodes visited on this path toward the root constitute the fin d  path. A 

UNION operation causes the root of one tree to point to the root of the other.

The first heuristic, union by rank, which can improve on the linked-list implementation 

makes the root of the tree with fewer nodes point to the root of the tree with more nodes. 

Rather than explicitly keeping track of the size o f the subtree rooted at each node, a rank 

is maintained that approximates the logarithm of the subtree size and is also an upper 

bound on the height o f the node. In union by rank, the root with smaller rank is made to 

point to the root with larger rank during a UNION operation.
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The second heuristic, path compression, assists in improving the linked-list 

implementation during FIND-SET operations by making each node on the find path point 

directly to the root. Path compression does not change any ranks.

In analyzing the cost associated with solving the road closure analysis problem with 

CONDITIONAL CONNECTED COMPONENTS utilizing a linked list representation 

for the disjoint node sets, the cost associated with the individual operations it utilizes are 

influenced by the implementation decision to utilize linked lists for the disjoint sets. The 

cost associated with the operations can be reduced by utilizing disjoint-set forests data 

structures in place of the linked list representation o f sets used m this implementation.

MAKE SET(.%) creates three linked lists, one for nodes, one for arcs and one for barrier 

links. X  is then placed on the node list. This results in a cost of 0(1) for MAKE SET

FIND SET(%) traverses the list of connected sets checking each set’s node list for X. The 

number of node list elements that must be visited to find X  is bounded by the number of 

graph nodes m. The cost associated with FIND SET is 0(w).

MAKE LINK(A^ T) starts by finding the sets which contain X  and Y. Utilizing FIND SET 

to find the sets has a cost o f 0{m ) each. A barrier link referring to Y  is then added to %’s 

barrier link list at a cost o f 0(1). The total cost associated with MAKE LINK is 2*0(w) 

+ 0(1) which equal 0 {m).

UNION(JC Y) starts by finding the sets which contain X  and K Utilizing FIND SET to find 

the sets has a cost of 0(m ) each. Next the node, arc and barrier lists in the set containing
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y  is appended to the corresponding lists in the set containing X  Each of these appends 

have a cost o f 0(m ). The set which initially contained Y  is deleted at a cost of 0(1). The 

total cost associated with UNION is 5*0(/w) + 0(1) which equal 0(m).

The CONDITIONAL CONNECTED COMPONENTS procedure consists of two loops. 

The first loop has m iterations, one for each node in the graph. Each pass through the 

loop calls MAKE SET which has a cost of 0(1). This results in a cost associated with the 

first loop o f w * 0 (l) which equals 0(m). The second

C ONDITIONAL CONNECTED COMPONENT S loop has e iterations, one for each 

edge in the graph. This loop utilizes a variety of operations including UNION, 

FIND SET and MAKE LINK, but does not contain any loops. All the operations inside 

the second loop are either 0(1) or 0 (m), resulting in a cumulative cost of 0 (m) for a 

single pass through the second loop. The total cost associated with the second loop is 

e*0(m ) which equals 0(em ). Since 0(em ) is greater than 0(#w), the cost associated with 

CONDITIONAL_CONNECTED_COMPONENTS is 0(em).

By contrast, Aho (1974) states Dijkstra’s algorithm (i.e. TRACE) has a cost of 0(m^) . 

However, since it must be run for each nonoverlapping date range and vehicle class 

combination, the cost is 0 (ctvm^) where d  is the number of nonoverlapping date ranges 

and V is the number o f vehicle classes.

47

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



Ch a p  t e  T 4

COMPARISON OF SOLUTIONS

Two solutions to the road closure analysis problem have been presented. One solution is 

an implementation o f the Conditionally Connected Component Algorithm from Chapter 

Three. The other solution utilizes the Arc/Info TRACE command mentioned in Chapter 

Two. When comparing the performance o f the two solutions, both execution time and 

disk space utilization are issues that need to be examined. This chapter also examines two 

approaches to visualizing the results o f the road closure analysis.

4.1 Road Closure Analysis Solution Comparisons

To compare the two algorithms, I use as benchmarks their performance in the analysis of a 

road coverage representing the Rocky Mountain Division of the Lewis and Clark National 

Forest. This coverage consists of approximately 3100 arcs, and represents an “average 

sized” coverage. Forest Service personnel have indicated an interest in performing 

additional analyses on study sizes ranging from individual Bear Management Units (some 

of which are less than 1000 arcs) to whole ecosystems comprising multiple national forests 

(the road coverage for the Kootenai National Forest alone contains over 21000 arcs). 

However, the analysis here is limited to that of the Rocky Mountain Division of the Lewis 

and Clark National Forest.
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The execution times compared for each of the solutions include the time needed to take an 

input road coverage with barriers and access points represented as nodes on the road 

network coverage, determine which arcs have vehicle access restricted by barrier nodes, 

and record the NAD attributes o f those arcs in the Arc Restriction Table (ART). The ART 

is an ‘Tnfo” RDBMS table consisting o f an a r c jd  column with a width of 4 bytes, a 

vehicle type column with a width o f 6 bytes, a closure beginning date column with a 

width o f 4 bytes and a closure end date column with a width of 4 bytes. Each row requires 

a total of 18 bytes.

The solution utilizing the TRACE command requires that the command be run multiple 

times. As discusssed in Chapter Two, it must be run for each nonoverlapping date range 

and vehicle combination. For each arc that is found to be restricted, a row is placed in the 

ART for each nonoverlapping date range / vehicle type combination. An arc’s NAD 

attribute comprises the set of rows recorded in the ART for that AAT row. This solution 

records all the arcs that are restricted for a single date range / vehicle type combination 

before looking at the next date range / vehicle type combination. As a result, ART is not 

sorted by arc id. The unsorted order of the ART rows becomes a factor when an 

application tries to use the ART to determine which arcs are restricted for a given set of 

dates and vehicle types. If  the rows are sorted by arc id, an application can make one 

pass through the table. All the rows for a given arc are located together. When a row 

with a different arc id is found, the assumption can be made that all the rows for that arc 

have been examined and it is possible to determine whether the arc is restricted for the 

specified criteria. However, if the ART is not ordered by arc id, either the table must be
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sorted by arc id (using the Tables module SORT command) or the application must 

search through the whole table for rows for a particular arc.

Section 3.3 describes how connected sets determined by CONDITIONAL- 

CONNECTED-COMPONENTS can be used to calculate NAD attribute values for the 

arcs on a road network. This solution places one row in the ART for each contiguous 

range o f dates an arc is closed to a particular vehicle type. This solution places rows in 

the ART sorted by arc id.

In comparing execution times, both solutions were run on a IBM RS/6000 model 220 

(named Tincup) in one o f the Computer Science labs at the University of Montana. The 

solution utilizing TRACE ran in 22:26 minutes, creating an ART containing 59,831 rows 

requiring 1,076,958 bytes of disk space. The solution utilizing the Conditional Connected 

Components algorithm ran in 2:48 minutes, creating an ART containing 4710 rows 

requiring 84,780 bytes of disk space. The improvement in ART disk space utilization 

obtained by the Conditional Connected Components algorithm results from its ability to 

identify and merge multiple contiguous date range values for NAD values. The TRACE 

solution does not have this ability, resulting in more rows and as a consequence, higher 

disk space usage.
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4.2 Analysis Results Visualization Comparisons

Two methods of visualizing the results of the accessibility analyses were investigated. 

Both approaches allow the user to specify visualization criteria that include a date range 

and multiple vehicle types. Arcs that have access restricted for one or more specified 

classes o f vehicles for the entire date range are identified and are given a Restricted 

Vehicle Classes (RVC) attribute value which specifies how many of the specified vehicle 

classes have access restricted on that arc. The RVC is used to assist in color coding the 

arcs to display how many of the specified vehicle classes have restricted access for the 

entire date range. Arc/Info’s ArcPlot module is used to display the road network 

coverage, utilizing the RVC attribute to color code the arcs to show how many of the 

specified vehicle classes have restricted access on the arcs.

ESRI recommends implementing this visualization tool with an AML script using nested 

cursors. The outer cursor visits each row in the Arc Attribute Table (AAT). The inner 

cursor visits each row in the ART with the same arc id as the row currently pointed to by 

the outer (AAT) cursor. To handle the one-to-many relation between the ART and the 

AAT, the inner cursor is implemented as a relate cursor. Each row in the AAT that is 

found to have rows in the ART which indicate that the arc meets restriction date criteria 

for one or more specified vehicle types has a value reflecting the number of restricted 

vehicle classes placed in the RVC column in the AAT. The value is used to assist in color 

coding arcs to display how many o f the specified vehicles are restricted on the arc for the 

specified date range.
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Another approach to visualizing the results of the analysis is to simply write a C-h - 

program to read the AAT and ART to accomplish the same objectives as the AML cursor 

based solution.

Both visualization approaches were implemented and applied to the road coverage 

representing the Rocky Mountain Division of the Lewis and Clark National Forest. The 

coverage’s ART had been previously created by an implementation of the Conditionally 

Connected Components Algorithm. The C++ approach was able to read the ART, 

calculate the RVC attribute values, and display the results in 2:27 minutes. The AML 

cursor approach was terminated after failing to finish running after 3.5 hours.
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C h a p  t  e  r  5

INTEGRATION OF GRAPH THEORETIC SOLUTION WITH A GIS

This project focuses on the development o f a road network analysis tool based on the 

CONDITIONALY CONNECTED COMPONENTS algorithm. The tool provides a 

means o f specifying access points and barriers, determines the extent of the restrictions 

imposed on the road network by the associated barriers via an implementation of the 

algorithm, and provides a visualization mechanism to display the travel restrictions 

identified by the analysis. The implementation and visualization component help establish 

the validity and practical performance characteristics of the algorithm. The analysis tool 

operates in an Arc/Info environment, taking a road coverage as input and allowing the 

user to specify the location and attributes o f barriers and access points. This chapter 

describes from a technical standpoint how the analysis tool manages the data to be 

analyzed for travel restrictions. For a functional description of how to operate the tool 

described in this chapter, refer to the Network Accessibility Analyzer Instructions in 

Appendix A.

5.1 Access Point Management

The first phase of the analysis involves access point management. Access points are 

locations on the road network that are known to be accessible to vehicle traffic. It is
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possible for there to be restrictions on when certain vehicles may have access at the 

specified location. These points may correspond to highways or other roads which are 

designated as being open to vehicles.

The analysis tool provides a way for the user to add access points to a point coverage and 

specify accessibility attributes to be associated with the access points. The accessibility 

attributes specify when vehicle trafBc is known to be able to have access to the road 

network at the access points. The portion of the toolset which is used for this part of the 

analysis is implemented as an Arc Macro Language (AML) script. The script utilizes 

Arc/Info’s ArcEdit module to add user specified access points to a point coverage which 

stores access points. ArcEdit displays the road coverage and allows the user to 

graphically specify the location of access points to be stored in the corresponding point 

coverage with the ADD command and attributes the access point with its accessibility 

attribute via the MOVEITEM command.

The Forest Service does not have a standard rule system or data set format which specifies 

information about access points, nor do any of their standard GIS databases have these 

access points recorded. It is assumed that vehicles can always gain access to any location 

on a highway, other main road, or a node on the edge of the coverage which is known to 

be accessible to a highway by a road which is not on the road coverage.
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5.2 B arrier Management

The second phase of the analysis involves barrier management. Barriers are entered in a 

manner similar to how access points are added. The analysis tool provides a mechanism 

allowing the user to add barriers to a barrier point coverage and allows for associating 

restriction attributes with the barriers. The portion of the toolset which is used for this 

part o f the analysis utilizes an AML script which is similar to the script used for the 

management of access points. The script utilizes Arc/Info’s ArcEdit module to add user 

specified barriers to a point coverage which stores the user specified barriers. ArcEdit 

displays the road coverage and allows the user to specify the location of barriers to be 

stored in the corresponding point coverage with the ADD command and attributes the 

barriers with the nature o f the restriction imposed on traffic flow by the barrier with the 

MOVEITEM command.

5.3 Running The Analysis

The third phase of the analysis process involves co-locating the access points and barriers 

specified by the user onto the road coverage, then running an implementation of 

CONDITIONALY COKNECTED COMPONENTS on that road coverage. The process 

for merging elements of the access point and barrier coverages are the same. Both point 

coverages are merged into the road network’s line coverage via Arc/Info’s SPLIT 

command. An AML script processes the elements o f the point coverages on an individual
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basis using an AML cursor. The road coverage arc which is closest to the barrier or 

access point feature being processed is identified. That arc is then split into two arcs 

where the arc is closest to the feature being processed. The node connecting the two parts 

of the split arc is given the attributes o f the feature being processed.

The CONDITIONALLY_CONNECTED_COMPONENTS analysis program is run on the 

road coverage, which now includes the barriers and access points represented as attributed 

nodes. The program is implemented in C++. It accesses the road coverage by reading 

ASCn copies of the road coverage’s AAT and NAT, which have been dumped as ASCII 

files firom Arc/Info via the UNLOAD command. The analysis program produces an Arc 

Restriction File as an ASCII output file, which records the arcs found to have restrictions 

and the nature of those restrictions. This file can be loaded into a newly created ART via 

the Arc/Info ADD command.

The CONDITIONALLY CONNECTED COMPONENTS analysis program can achieve 

additional performance gains by modifying the implementation to directly access tables 

within Arc/Info, rather than exporting and importing ASCII files. The tables can be 

directly accessed by using facilities in either Arc Software Developers Library (ArcSDL) 

or Infolib. ArcSDL is a C application programming interface developed by ESRI which 

allows C/C++ applications to directly access Arc/Info data structures and invoke Arc/Info 

commands firom within an application. While a copy of ArcSDL is available at the 

University of Montana Computer Science Department, it is not used in this effort because 

distribution and support for ArcSDL is highly restricted. Another means of directly
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accessing the Arc/Info tables is using Infolib. Infolib is an unsupported C library which 

allows applications written in C/C++ to directly access the Arc/Info tables. Infolib was 

developed by ESRI and is available free at many sites on the Internet. However, ESRI 

makes it clear that this library is not officially supported, so its use in any long term project 

is also questionable. This, any development of a more robust means to interface the CCC 

program and Arc/Info is dependent on ESRI’s ability and willingness to provide standard 

interface libraries to their data formats.

5.4 Analysis Results Visualization

The last phase o f the analysis entails utilizing the analysis tool’s analysis results 

visualization script to view what impact the barriers have on the road network as 

determined by the algorithm implementation. This crude visualization mechanism is 

implemented as an AML script. The script allows the user to specify visualization criteria 

including begin date, end date and vehicle class. The script calls a C++ program which 

examines the ART to identify which arcs are restricted from the specified begin date 

through the specified end date for one or more o f the vehicle classes specified. The script 

then utilizes Arc/Info’s ArcPlot module to graphically display the road network. The 

color used to display an arc signifies how many of the specified vehicle classes are 

restricted for that arc. Which colors are used is dependent on the local symbol file being 

used by Arc/Info. When using the default symbol table, white signifies arcs that are not 

restricted for any specified vehicle class, red arcs are restricted for one specified vehicle
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class, green for two vehicle classes and blue for three vehicle classes. The script also 

identifies arcs which are found to not be on any path to any access point. This 

visualization script may be run multiple times for different sets o f dates and vehicle classes.

5.5 Summary

This analysis tool which utilizes the CONDITIONAL_CONNECTED_COMPONENTS is 

effective in solving the road closure analysis problem. It allows a person to perform in a 

matter o f minutes an analysis that currently must be performed manually at a cost of 

multiple person-months. As the performance benchmarks indicate, this approach to 

solving the road closure analysis problem is the most effective approach to automating the 

analysis when the alternative options for automation are considered. Although this 

approach is the most effective solution to the road closure analysis problem, additional 

performance gains could be achieved with a more direct access to the Arc/Info data via 

standard interface libraries.
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A p p e n d i x  A

Network Accessibility Analyzer Instructions

Overview

The Network Accessibility Analyzer performs an analysis of a road network, 
determining what effect barriers have on the accessibility of the arcs on the road 
network. The analysis is performed with the following steps:

• Determination of which restriction references are effective for the road network.

• Specification of access points.

•  Specification of barriers

• Analysis of the effects of the gates on the road network.

• Visualization o f the analysis results.

The Network Accessibility Analyzer operates in an Arc/Info environment. The 
intended audience for this document are individuals who have some familiarity 
with Arc/Info and their organization’s GIS data this process utilizes as input. The 
creation of road network and polygon coverages mentioned in this document is 
beyond the scope o f this effort.

Restriction Reference Identification

A Restriction Reference File must be created which lists the Restriction Schedule 
(or Schedule of Closure) which is in affect for the road network to be analyzed. 
The file shall have a set o f records for each Restriction Schedule Code Each set 
o f records for a given Restriction Reference Code shall have one record for each 
vehicle type affected by the restriction. Each record shall be on a line of its own. 
The data included in each record shall be delimited with commas and is defined as 
follows:

Restriction Code Code identifying a particular Restriction Schedule. This
code must be placed inside single quotes.

Vehicle Type A type of vehicle the Restriction Schedule applies to.
This value must be placed inside single quotes. The
Vehicle type shall not exceed 6 characters.
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Restriction Begin Date Date the restriction begins for the specified vehicle. This
date value must be specified in îvÂi DD format, (e.g.
09.15 for September 15.)

Restriction End Date Date the restriction ends for the specified vehicle. This
date value must be specified in MM.DD format, (e.g.
09.15 for September 15.)

An example of a Schedule o f Closures and the associated Restriction Reference 
File follows.

Restriction
Code Automobile

All-Terrain
Vehicle Snowmobile

A Yearlong Yearlong Yearlong

B 10/1 - 6/30 10/1 - 12/1 No Restriction

Fig 1. Schedule of Closures

‘A’, ‘Auto’,01.01,12.31 
‘A’, ‘ATV’,01.01,12.31 
‘A’, ‘Snom’,01.01,12.31 
‘B’, ‘Auto’,10.01,06.30 
‘B’, ‘ATV’,10.01,12.01

Fig 2. Restriction Reference File

Note that if a Restriction Reference does not apply to a particular vehicle type, no 
record for that vehicle type is included with that Restriction Reference’s set of 
records. Restriction Reference B from above illustrates this point, (i.e. Restriction 
Reference B does not include a restriction for snomobiles.)

Access Point Identification

Access Points are locations on the road network that are known to be accessible to 
vehicles. It is possible for there to be restrictions on when certain vehicles may 
have access at the specified location. These points may correspond to Highways 
or other roads which are designated as being open to vehicles.
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Step 1 ; Identify the road coverage corresponding to the road network which is 
to have barriers added.

Step 2: Identify a polygon coverage which will assist in giving reference when
viewing the road coverage. Some sort of polygon coverage 
representing jurisdictional boundaries is often useful as reference when 
viewing a road coverage. The usage o f such a polygon coverage is 
optional.

Step 3: Start AP_MGR ami script. The script can be invoked by typing the
following at the ARC command prompt:
<AML_dir>/ap_mgr <Rd_Cover> <AP_Cover> <Back Poly Cover>

• AML_dir is the directory where the AML scripts for the network 
analyzer have been installed. If you do not know the path name for 
that directory, ask your system administrator.

• Rd Cover is the road coverage identified in Step 1.

• AP Cover is the name of the point coverage that will contain the 
access points specified by the user while running this script.

•  BackJPoly_Cover is the polygon coverage identified in Step 2. This 
argument to the script is optional. Only include this coverage if the 
user desires to see a polygon coverage in addition to the road 
coverage when entering Access Points.

As the script starts, a ArcEdit session is started and the road coverage is 
displayed.

Step 4: Once the script starts, the user is prompted for a Restriction Reference.
If  the first Access Point to be entered does not have any restrictions on 
when any vehicle type may have access to that point, hit a return at this 
prompt. If  the first Access Point does have restrictions on when it is 
accessible, enter the Restriction Reference Code corresponding to that 
restriction.

Step 5: Move the cursor onto the ArcEdit window over the point on the road
coverage where an access point is located and click the left mouse 
button.

Step 6: To add additional access points with the same restriction reference
move the cursor to the points where additional access points are located 
and click the left mouse button where each additional access points is to 
be added.

Step 7: To add access points with a different restriction reference, move the
cursor to where the first access point with the new restriction reference
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To add additional access points with this same restriction reference 
move the cursor to where the additional access points are located and 
click the left mouse button (as in Step 6.)

Step 8; To stop adding access points click the right mouse button. As the script 
is exiting ArcEdit the user is prompted as to whether they want to save 
their work. Answer yes to this query (both times.)

Note; It is recommended that the user save their work periodically. This is 
accomplished by exiting, then restarting the script.

Barrier Identification

Barriers are locations on the road network where restrictions are imposed on the 
travel of vehicles. These points may correspond to Gates, Kelly Humps, Berms, 
Washouts or other means of restricting further access on a road or trail. Gates 
may be permanently closed or may only be closed seasonally. Barriers are entered 
in a manner similar to how access points are added.

Step 1 : Identify road coverage corresponding to the road network which is to
have gates added.

Step 2: Identify a polygon coverage which will assist in giving reference when
viewing the road coverage. Some sort of polygon coverage 
representing jurisdictional boundaries is often useful as reference when 
viewing a road coverage. The usage o f such a polygon coverage is 
optional.

Step 3: Start GATE MGR ami script. The script can be invoked by typing the
following at the ARC command prompt:
<AML_dir>/gate_mgr <Rd_Cover> <Barrier_Cov> <Back_Poly_Cov>

• AML dir is the directory where the AML scripts for the network 
analyzer have been installed. If  you do not know the path name for 
that directory, ask your system administrator.

•  Rd Cover is the road coverage identified in Step 1.

•  Barrier Cov is the name of the point coverage that will contain the 
barriers specified by the user while running this script.

•  Back Poly Cov is the polygon coverage identified in Step 2. This 
argument to the script is optional. Only include this coverage if the 
user desires to see a polygon coverage in addition to the road 
coverage when entering Access Points.

As the script starts, a ArcEdit session is started and the road coverage is 
displayed.
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Step 4; Once the script starts, the user is prompted for a Restriction Reference.
Enter the Restriction Reference Code corresponding to the restriction 
imposed by the first barrier to be entered.

Step 5; Move the cursor onto the ArcEdit window over the point on the road
coverage where the first barrier of the session is located and click the 
left mouse button.

Step 6: To add additional barriers with the same restriction reference move the
cursor to the points where additional barriers are located and click the 
left mouse button where each additional barrier is to be added.

Step 7: To add barriers with a different restriction reference, move the cursor to
where the first barrier with the new restriction reference is located and 
click the middle mouse button. The user is then queried for the 
restriction reference for the barrier that was just entered. To add 
additional barriers with this same restriction reference move the cursor 
to where the additional access points are located and click the left 
mouse button (as in Step 6.)

Step 8; To stop adding barriers click the right mouse button. As the script is
exiting ArcEdit the user is prompted as to whether they want to save 
their work. Answer yes to this query (both times.)

Note; It is recommended that the user save their work periodically. This is 
accomplished by exiting, then restarting the script.

Network Analysis
Network Analysis entails merging the barrier and access point coverages created in 
the preceding phases into the road coverage corresponding to the road network to 
be analyzed. A merged road coverage with nodes representing the gates and 
attributes is the result of this merger. After the merger, a program is run on the 
merged road coverage determining what effect the gates have on the road 
network. Each arc that is found to be restricted by one or more gates is attributed 
with the restrictions imposed by those gates.

Step 1 : Start NW ANLZR ami script The script can be invoked by typing the
following at the ARC command prompt on one line:
<AML_dir>/nw anlzr <Rd Cov In> <Mrg_Rd_Cov> <Barrier_Cov> 
<AP_Cov> <Restr_Ref^File> <Search_Dist>

• AML dir is the directory where the AML scripts for the network 
analyzer have been installed. If  you do not know the path name for 
that directory, ask your system administrator.
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Rd Cov In is the road coverage identified in Steps 1 o f Access 
Point Identification and Barrier Identification

Mrg Rd Cov is the merged road coverage containing the barrier 
(BarTier_Cov) and access points (AP_Cov) represented as nodes on 
the input road coverage (Rd Cov In). This coverage also has a Arc 
Restriction Table which contains each arcs restriction attribute if it 
has any.

Barrier Coverage is the name of the point coverage that contains 
the barriers to be merged into the road network as nodes.

AP Coverage is the name of the point coverage that contains the 
access points to be merged into the road network as nodes.

RestrJRel^File is the file discussed above in Restriction Reference 
Identification

Search Dist is an optional argument which specifies how far the 
script needs to look to when trying to merge a barrier or access 
point onto the road network. This has been defaulted a 1000, but a 
higher value may be specified if necessary.

Analysis Results Visualization
The Analysis Results Visualization script allows the user to see the effect the 
barriers have on the road network. This crude visualization mechanism allows the 
user to specify visualization criteria including begin date, end date and vehicle 
types. The script will color code arcs which are restricted from the specified begin 
date through the specified end date for one or more of the vehicle types specified, 
the color of the arc specifying how many of the vehicle types are restricted for that 
arc. Which colors are used is dependent on the local symbol file being used by 
Arc/Info. The script will also specify arcs which are found to not be on any path 
to any access point. This process may be run multiple times for different sets of 
dates and vehicle types.
Step 1: Start DISP RES ami script. The script can be invoked by typing the

following at the ARC command prompt on one line;
<AML dir>/disp res <Road_Cov> <Gate_Cov> <Begin_Date> 
<End_Date> <Vehiclel> ... <VehicleN>

• AML dir is the directory where the AML scripts for the network 
analyzer have been installed. If you do not know the path name for 
that directory, ask your system administrator.
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Grate_Cov is the name of the gate coverage created in Barrier 
Identification.

Road Cov is the resulting coverage (Mrg Rd Cov) from Network 
Analysis.

Begin Date is the begining date of the search criteria.

End Date is the ending date of the search criteria.

Vehicle is the vehicle type associated with the search criteria. Up to 
6 vehicle types may be specified.
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