
University of Montana University of Montana 

ScholarWorks at University of Montana ScholarWorks at University of Montana 

Graduate Student Theses, Dissertations, & 
Professional Papers Graduate School 

1996 

Applying diploidy and dominance to artificial genetic search Applying diploidy and dominance to artificial genetic search 

Garrett L. Bidwell 
The University of Montana 

Follow this and additional works at: https://scholarworks.umt.edu/etd 

Let us know how access to this document benefits you. 

Recommended Citation Recommended Citation 
Bidwell, Garrett L., "Applying diploidy and dominance to artificial genetic search" (1996). Graduate Student 
Theses, Dissertations, & Professional Papers. 6606. 
https://scholarworks.umt.edu/etd/6606 

This Thesis is brought to you for free and open access by the Graduate School at ScholarWorks at University of 
Montana. It has been accepted for inclusion in Graduate Student Theses, Dissertations, & Professional Papers by an 
authorized administrator of ScholarWorks at University of Montana. For more information, please contact 
scholarworks@mso.umt.edu. 

https://scholarworks.umt.edu/
https://scholarworks.umt.edu/etd
https://scholarworks.umt.edu/etd
https://scholarworks.umt.edu/grad
https://scholarworks.umt.edu/etd?utm_source=scholarworks.umt.edu%2Fetd%2F6606&utm_medium=PDF&utm_campaign=PDFCoverPages
https://goo.gl/forms/s2rGfXOLzz71qgsB2
https://scholarworks.umt.edu/etd/6606?utm_source=scholarworks.umt.edu%2Fetd%2F6606&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:scholarworks@mso.umt.edu


Maureen and Mike
MANSFIELD LIBRARY

The Universitv of MONTANA

Penn iss ioa  is gi'anted by the author to reproduce this material in its entirety, 
provided that this material is used for scholarly pu iposes and is properly cited in 
published w orks and reports.

* *  Please check "Yes" or "No" and provide signature  * *

Yes, I grant perm ission 
No, I do not grant perm ission

Author's 

D ate

Signature i

1 \v\%__________
Any copying for commercial purposes or financial gain may be undertaken only with 
the author's explicit consent.

R ep ro d u ced  with p erm issio n  o f  th e  copyrigh t ow n er. Further reproduction  prohibited w ithout p erm ission .



R ep ro d u ced  with p erm issio n  o f  th e  copyrigh t ow n er. Further reproduction  prohibited w ithout p erm ission .



A p p ly in g  D ip lo id y  a n d  D o m in a n c e  t o  A r t if ic ia l
G e n e t ic  S earch

b y

G a rre tt L. Bidwell

B.S., D uke U niversity, 1989

p resen ted  in p a r tia l fulfillm ent of th e  req u irem en ts

for the  degree of

M aster of Science

in C om puter Science

T he U niversity  of M on tana  

Ju ly  22, 1996

(proved by^

erso;

Dean, G raduate School

Date

R ep ro d u ced  with p erm issio n  o f  th e  copyrigh t ow n er. Further reproduction  prohibited w ithout p erm ission .



UMI Number: EP37407

All rights reserved

INFORMATION TO ALL USERS  
The quality of this reproduction is dependent upon the quality of the copy submitted.

In the unlikely event that the author did not send a complete manuscript 
and there are missing pages, these will be noted. Also, if material had to be removed,

a note will indicate the deletion.

UMT
Ois*««lalion I^WisNng

UMI EP37407

Published by ProQuest LLC (2013). Copyright in the Dissertation held by the Author.

Microform Edition ©  ProQuest LLC.
All rights reserved. This work is protected against 

unauthorized copying under Title 17, United States Code

P r o .Q ^ s t*

ProQuest LLC.
789 East Eisenhower Parkway 

P.O. Box 1346 
Ann Arbor, Ml 4 8 1 0 6 - 1346

R ep ro d u ced  with p erm issio n  o f  th e  copyrigh t ow n er. Further reproduction  prohibited w ithout p erm ission .



G arre tt L. Bidwell, M.S., Ju ly  22, 1996 C om puter Science

A pplying Diploidy and Dom inance to  Artificial Genetic Search (81 pp.)

Director: Alden H. W right

Genetic Algorithms (GAs) are search and optim ization procedures based on the 
mechanics of natural selection. They encode th e  param eters of a problem in a  single­
stranded or haploid binary string. However, m ost haploid organisms in the  biological 
world are simple lifeforms such as bacteria. More complex lifeforms such as plants, 
anim als, and hum ans rely on a diploid chromosome, which contains homologous chro­
mosome pairs at each locus. W hen chromosome pairs contain different values at the 
same location, a dom inance operator usually resolves the  conflict.

T he prim ary m otivation for incorporating diploidy and dominance into GAs is to 
increase population diversity and thus avoid prem ature convergence to  a suboptim al 
solution. In a m ultim odal fitness landscape, th is added diversity may enable a G A to 
avoid convergence to local optim a. In the case of non-stationary function optim ization 
problem s, the objective is to use a diploid GA to  adapt more readily to changing 
requirem ents and thus exhibit improved perform ance over th a t of the haploid GA. 
This paper will show analytically and em pirically th a t a diploid GA is capable of 
m aintaining greater population diversity than  the  haploid GA, and th a t it is better 
able to avoid complete convergence than  the  haploid GA. In addition, empirical tests 
are perform ed to dem onstrate the effectiveness of a diploid GA in m ultim odal and 
non-stationary environm ents.
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C h ap ter 1

In tro d u ctio n

1. B ack grou n d

G enetic A lgorithm s (GAs) are search and optim ization procedures based on the  

m echanics of na tu ra l selection and genetics. W orking w ith an encoding of a  problem 's 

param eter set, GAs search from a random  initial population of points. Using fitness- 

biased selection, th e  best individuals (or solutions to  a problem ) are chosen to  pass 

all or some of their genetic inform ation on to a new generation. Stochastic operators 

analogous to  biological crossover and m utation  are then used to  create offspring from 

the  selected individuals. The resulting offspring become part of a new generation, 

which, once a specified m axim um  population size is reached, replaces th e  previous 

generation. As sim ulated evolution proceeds, the  average fitness of the  population is 

likely to  increase from  one generation to  the  next as b e tte r  solutions to  th e  problem  

are discovered. T he entire procedure, (selection, crossover, and m uta tion), continues 

un til some stopping criterion is m et. The cannonical GA is described in Goldberg 

[6] and M itchell [16], and the  infinite population m odel—an idealized m athem atical 

m odel used to  study th e  properties of the  cannonical GA— is described in Vose [19] 

as well as Vose [20].
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CHAPTER 1. INTRODUCTION  2

2. M o tiv a tio n

According to  H unter [9], in order to  be effective, search techniques such as GAs 

require two types of activity: exploration and exploitation. In exploration, the  algo­

rith m  should traverse different regions of search-space, looking for prom ising areas. 

In exploitation, a  known good region should be exam ined to  find its best point. A 

purely  random  search is good a t exploration, bu t it does not perform  exploitation. 

A purely  hillclimbing technique, on th e  other hand, is good at exploitation, bu t does 

little  exploration. T he two types of activ ity  are contradictory, and a search algorithm  

m ust find a good tradeoff between them . In practice, GAs are typically much more 

effective at exploitation th an  they  are at exploration. G ranted, they  s ta rt w ith a 

random  population, which m eans th a t m any points in search-space are initially  ex­

plored. However, as selection takes effect, the  genes of a few relatively highly fit (but 

possibly suboptim al) individuals m ay rapidly come to dom inate the  population. Once 

th e  population loses its diversity and begins to  converge, it is extrem ely difficult to 

re-enter the  exploration mode. Crossover of alm ost identical chromosomes produces 

little  in th e  way of new genetic m aterial. Thus, new and innovative solutions are no 

longer being sought out to any great extent. Only m utation  rem ains to explore new 

search-space, and th is perform s an unsatisfactorily slow random  search.

This situation has become known as the  problem  of premature convergence. As 

exam ples, consider each of the following scenarios: In the  optim ization of a  m ulti­

m odal function, the  population m ay converge to a local, suboptim al point w ithout 

ever locating the  global optim um . In the  optim ization of a non-stationary function, 

(i.e. one which varies over tim e), the  population m ay sufficiently converge so th a t 

alleles are lost at m any loci. W hen the  objective function changes, it is unlikely th a t 

th e  algorithm  will be able to introduce alleles necessary to  achieve the new optim um .
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CHAPTER L INTRODUCTION  3

In term s of a  GA, th is can be expressed as a particu lar b it of a b inary  string becom ing 

essentially fixed. However, it is precisely in these exam ples and o ther com plicated 

dom ains th a t GAs have th e  versatility  to  be applied and th e  potential to  outperform  

o ther specialized search techniques such as hillclimbing and gradient m ethods.

A ttem p ts to  com bat prem ature  convergence have centered around m odifying the 

selection operator by rem apping raw fitness values. As listed in Beasley [l], they  

include fitness scaling (or compression), fitness windowing, and fitness ranking. W hile 

each of these techniques m ay avoid convergence to  a  local m axim um , they  m ay also 

incur unw anted side effects, the  m ost common of which is over-com pression. In over­

com pression, the  presence of ju st one “super-fit” individual can cause a flattening-out 

of th e  fitness function where the  rest of the  population is densely clustered about a 

single value once the  fitness scale is compressed. W ith  a finite population, if the  

fitness function is too fiat, an accum ulation of stochastic errors term ed genetic drift 

m ay d ic ta te  the  tra jec to ry  of the  population. The ra te  of genetic drift provides a 

lower-bound on th e  ra te  a t which a  finite population GA can converge to  a correct 

solution. As a  result, the  fitness function m ust contain a  gradient th a t supersedes 

genetic drift. Researchers have found th a t overcompression not only leads to  slower 

perform ance, bu t, if it occurs to an extent th a t genetic drift is allowed to dom inate, 

m ay actually  lead th e  population away from a m axim um . Unfortunately, th e  degree 

of over-compression m ay be d ictated  by a single, extrem e individual, either the  fittest 

or th e  worst. Thus, unless the  rem apped fitness values are evenly d istributed , these 

techniques will break down.
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CHAPTER L INTRODUCTION  4

3. O b je c tiv e

T he purpose of th is paper is to  propose th e  study of a novel m ethod for m ain tain ­

ing population diversity and thus avoiding p rem ature  convergence in finite population 

GAs. In the  case of sta tionary  optim ization problem s, it is im portan t th a t th is be 

done w ithout adversely affecting the algorithm ’s overall perform ance. In the  case of 

non-stationary  optim ization functions, th e  proposed m ethod should not only increase 

diversity b u t also exhibit improved perform ance over th a t of the  cannonical GA.

An explanation of the  term inology used herein is warranted:

• A given string is comm only referred to  as an individual’s chromosome.

•  A position in a string is called a locus.

•  T he en tity  a t a locus is called a gene.

•  T he possible values of each gene are called alleles.

•  T he com plete collection of chromosomes is term ed an individual’s genome.

•  T he particu lar set of genes contained in a genome is called a  genotype.

•  T he external m anifestation or behavior p a tte rn  specified by a  genotype is called

a phenotype.

•  A dominant  allele is expressed in the  phenotype when paired w ith some other allele.

•  A recessive allele is NOT expressed in the  phenotype when paired w ith a  dom inant

allele.

M ost GAs are based on a single-stranded haploid chromosome. In th is simple 

m odel, a single-stranded string contains all of the  problem -related inform ation in a 

b inary  encoding. However, m ost of the haploid organisms in the  natu ra l world tend 

to  be ra ther uncom plicated lifeforms. Most organisms rely on a diploid chromosome, 

which consists of one or more pairs of homologous chromosomes, each containing 

inform ation for the  sam e functions. W hen chromosome pairs have different values
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CHAPTER 1. INTRODUCTION 5

(or alleles) a t th e  sam e locus, dom inance usually resolves th e  conflict by allowing 

th e  dom inant allele to  take precedence over the  recessive allele. A lthough th is seems 

redundan t, there  are d istinct advantages to  a diploid scheme.

One of the  advantages of diploidy is th a t it allows a wider diversity of alleles to  be 

kept in th e  population over tim e. C urrently  harm ful, bu t potentially  useful genetic 

inform ation can be m aintained in a recessive position, shielded by th e  dom inance 

operator. In addition, when the  dom inance operator is allowed to  evolve, it has been 

hypothesized th a t th is scheme can be used to  infuse a form of “long-term  distributed  

m em ory” into th e  GA by perm itting  old solutions to  be carried along, (bu t not 

expressed), and rapidly reinstated  if it becomes desirable in the  context of th e  current 

environm ent to  do so. Biological studies such as F isher’s [3] have indicated th a t 

dom inance evolves in diploid and polyploid p lant and anim al species, giving them  the 

ability  to  adap t m ore readily to  changing environm ents. The intriguing im plication 

is th a t a  dom inance shift can produce a rapid change in an organism ’s phenotype not 

possible through sim ple m utation . Applied to GAs, th is could provide a m echanism  

for enhancing exploration or, in the  case of a non-stationary problem , reintroducing 

once useful alleles th a t have again become useful.

4. P r e v io u s  W ork

Surprisingly, there  have been only a small num ber of studies applying diploidy 

and dom inance to  GAs. In 1971, Hollstien [8] introduced a triallelic diploid scheme 

w ith an evolving dom inance m ap to  represent diploidy and dom inance in artificial 

genetic search. His sim ulations m aintained b e tte r population diversity (as m easured 

by population variance) th an  a haploid scheme, bu t he used a test bed consisting 

entirely  of sta tionary  functions and found no overall im provem ents in perform ance.
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CHAPTER 1. INTRODUCTION  6

In 1987, Goldberg and Sm ith [5] com pared the  perform ance characteristics of Holl- 

s tien ’s triallelic scheme w ith those of a fixed (1-dominates-O) dom inance m ap and a 

sim ple haploid scheme. More im portantly , they  applied an oscillating 0-1 knapsack 

(non-stationary  function optim ization) problem  to  each of these schemes. However, 

th ey  were in terested only in im proving perform ance, and they  did not record pop­

ulation diversity sta tistics in their sim ulations. T heir experim ental results showed 

th a t  bo th  diploid schemes were b e tte r  able to  satisfy th e  changing requirem ents of a 

non-stationary  environm ent th an  was th e  haploid scheme. Furtherm ore, th e  evolving 

dom inance m ap was b e tte r  able to  respond to  changing optim a than  was the  fixed one. 

Because they  used an oscillating constraint function th a t reverted back to  previous 

sta tes, Goldberg and Sm ith claimed to  have induced a form of long-term  distributed  

m em ory into th e  GA with very little  com putational overhead. In o ther words, the 

redundan t m em ory of diploidy allowed old solutions to  be stored as recessive alleles 

and recovered again when th e  dom inance operator shifted.

A more recent paper by Ng and Wong [18] examines and repeats th e  experi­

m ents of Goldberg and Sm ith, bringing into question some of the  conclusions from 

th e  1987 paper and introducing a different diploid scheme along w ith a unique dom ­

inance change mechanism. They conduct experim ents which dem onstrate  th a t their 

novel diploid scheme is able to achieve greater diversity than  both a haploid scheme 

and th e  triallelic scheme used by Hollstien, Goldberg, and Sm ith. In tests th a t apply 

the  oscillating 0-1 knapsack function, their results indicate th a t if the  m utation  ra te  

is kept sufficiently low, {fi < 0.05), their scheme also outperform s the  others when 

responding to  changes in the  functional constraints. They point out th a t by chang­

ing th e  oscillation frequency, the  population size, and the  m utation rate , th e  haploid 

schem e is actually able to  outperform  the triallelic diploid scheme when given the  

proper param eters. This is a caution to anyone using a finite population GA to sup­
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CHAPTER 1. INTRODUCTION 7

p o rt conclusions— results m ay represent only an isolated case generated by a specific 

range of param eters.

T he disparity  between the  results of Ng and Wong and those of Goldberg and 

Sm ith m ay stem  from the  fact th a t their analyses are based in population genetics 

and schem a theory respectively. W hereas Ng and Wong use an infinite population 

viability  m odel to com pute allele recursions, Goldberg and Sm ith com pute a recursion 

for th e  proportion of recessive alleles based on a schema growth equation. W hile it 

is debatable  w hether an infinite population model is superior to  the  schem a theorem  

for th e  purposes of analysis, it is tru e  th a t the  theory of population genetics generally 

assum es an infinite population.

Despite differing viewpoints, both  of the aforem entioned studies agree th a t the  

idea of applying diploidy and dom inance to  genetic search appears to  hold promise. 

Moreover, we should rem em ber th a t these concepts have their origin in the  biological 

realm , and there  are num erous related studies, as well as a large body of analytical 

work concerning th e  m athem atics of genetics. In the  following chapters, the  advan­

tages of diploidy over haploidy are presented in a more form al, m athem atical context. 

Several models based on those used by population geneticists are analyzed both  from 

a theoretical standpoint and for their worth in application to  GAs. Finally, em pirical 

tests are used as a  supplem ent to  support and visualize the  results of the  analysis.
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C h ap ter  2

W h y  D ip lo idy?

1. A  D ip lo id  V ia b ility  M o d e l

To see how diploidy differs from haploidy, it is useful to  com pare their respective 

viability  models.

For the  diploid case, population geneticists such as H artl and Clark [7] have 

presented a  sim ple viability selection model th a t conveniently explores selection-based 

behavior of a population despite the  m any complexities introduced by fitness. The 

m odel makes the  following assum ptions:

1. a diploid organism

2. non-overlapping generations

3. infinite population size

4. v iability  selection only

5. random  m ating

6. no m utation
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CHAPTER 2. WHY DIPLOIDY?

parenti

gametes

viability
fertilization zygote adult

growth & 
development

parent2

gametes

Figure 2.1: A generalized diploid lifecycle

It is inform ative to  describe the  steps of the model in term s of the  stages in 

the  lifecycle of a  diploid organism. We begin w ith the gam ete phase, a  biological 

exam ple of which is sperm  or egg. This is a  haploid phase, because the  gam etes each 

contain only half of the  genetic inform ation of a diploid individual. T he rem aining 

phases are all diploid phases, and they  are much more conspicuous and are of greater 

duration  than  the  gam ete phase. Upon fertilization, we reach the zygote phase. The 

organism  then  undergoes growth and development to reach the  adu lt phase. It is 

during th e  transition  from zygote to  adult th a t proportional selection acts, based on 

the  differential viabilities of the  genotypes. The stages of the  diploid lifecycle are 

sum m arized pictorially in Figure 2.1.

Perhaps th e  sim plest exam ple is the  one-locus, two-allele viability selection model. 

Let 0 and 1 denote th e  alleles. Let x  denote the frequency of 0, 1 -  r  the  frequency 

of 1. T he random  m ating assum ption gives as the  frequency of the  zygote 00,
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CHAPTER 2. W H Y  DIPLOIDY?  10

2 x (l — x) as the  frequency of 01, and (1 — x)^ as the  frequency of 11. Note th a t 

a  genotype of 10 is equivalent to  01. Let the  relative fitnesses (or viabilities) of 00, 

01, and 11 be /oo, /o i, and f u  respectively, so th a t th e  zygotes survive in th e  ratio  

foo'-foi-fii' T he resulting ratio  of 00:01:11 among adults is

foox^ : 2 /o ix (l -  x) : / n ( l  -  x)%.

T he sum  of these term s represents the average fitness of th e  population and is denoted

by

/  =  foo^^ +  2 /o ix (l — x) +  / l l ( l  — 2^^.

To obtain  th e  gam etic frequencies for the  next generation, each of the  term s in the 

above ratio  m ust be norm alized so th a t the frequencies sum to  1. This is accomplished 

by dividing by the  average fitness. Thus, the  frequency x ' of the  gam ete 0 in the  next 

generation is given by
^  +  f o M l  -  x )  (2 . 1)

N ote th a t  th e  coefficient 2 associated w ith 01 frequencies until th is point has been 

lost, because 01 heterozygotes produce half 0 and half 1 gam etes due to  M endelian 

segregation.

A nother useful relation is the  change in allele frequency in one generation. A x — 

x ' — X or A x =  ^  W ith some algebraic m anipulation, th is can be

expressed in a more convenient form:

/ \ x  — ~  ^)[^(/oO ~  /oi ) +  (1 ~~ ^ )(/o i ~  / l l) ]  ^.0

T here are four cases to  consider, based on the  assignm ent of the  fitnesses.

ca se  1: /oo >  fox > fxi  

E xam ining equation 2.2 above, it is evident th a t A x is positive, since /oo — fox > 0,
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CHAPTER 2. W H Y  DIPLOIDY? 11

/oi — f  11 > 0, and th e  allele frequencies and /  m ust always be nonnegative. This 

im plies th a t  z  —» 1.

c a se  2: /oo <  foi < f i i  

T his case is analagous to case 1, except th a t /oo — /oi <  0, /oi — f n  < 0  and A x  

is now negative, im plying th a t z  —> 0. Cases 1 and 2 are said to  exhibit directional 

selection, since at equilibrium  z  =  1 and z  =  0 respectively. These fixed points are 

of little  in terest, however, since in each case one of the  alleles has been com pletely 

elim inated.

c a se  3: /oo <  /oi >  / i i  

W hen th e  heterozygote fitness is superior to th a t of both of th e  homozygote fitnesses, 

we have a condition known as overdominance. Here, there is a th ird  equilibrium  in 

addition  to  z  =  1 and z =  0, because z(/oo — foi) +  (1 — z)(/o i — f n )  can equal 

0 for some value of z. Because th is th ird  equilibrium  point is of some in terest, the  

overdom inant case is given m ore thorough trea tm en t below.

c ase  4: /oo >  foi < f i i  

W hen the  heterozygote fitness is inferior to  th a t of both of the  homozygote fitnesses, 

we have a condition known as underdominance. Again, there is a th ird  equilibrium  

poin t, and the  equation for z is identical to  th a t derived below for the  overdom inant 

case. However, the  resulting equilibrium  for th is case is unstable, so th a t  even if the  

value of z is close to z , it diverges away from the polym orphic equilibrium  point to  

a value of either 0 or 1. Furtherm ore, the  trajectories of the allele frequencies, and 

hence th e ir final values, are dependent upon their initial values.

Based on exam ination of the  above cases, case 3 seems worthy of fu rther tre a t­

m ent. It is well known th a t for the overdom inant case, there exists a polym orphic 

equilibrium  and th a t th is point is globally stable. This means th a t regardless of the  

in itia l allele frquencies, the  system  will always converge to the  equilibrium  point. The
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Figure 2.2: A plot of x'  vs. x  for th e  diploid model

equilibrium  point is “polym orphic” , because there is some non-zero fraction of each 

allele (i.e. the  fixed point lies w ithin the  interval (0,1) ). Figure 2.2 is a plot of x' 

versus x  for fitness values of /oo =  0.6, /oi =  1, and / n  =  0.3.

For a formal proof, the  reader is referred to  Nagylaki [17]. However, local asym p­

to tic  stab ility  of a fixed point can be determ ined based on the condition < 1

an asym ptotically  stable fixed point. The fixed point itself can be derived in term s 

of th e  fitnesses by se tting  x' = x m  equation 1 and solving for x to get

/ n  — /oix  =
/oo — 2/oi •+- / l l

C om puting the  derivative of equation 2.1 with respect to  x  and evaluating it a t the  

fixed point gives
dx'
dx

f 00 foi — 2 / 0 0 /1 1  4- /o i / i i  
/oi — /oo/ii
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W ithou t loss of biological generality, it is convenient to  let /qq =  1 — r , /o i  =  1, and 

/ l l  =  1 — 5 with 0 <  r, s <  1. This gives

r  +  s — 2rs
dx r + s — rs

since 2rs > rs.

<  1

2. A  H ap lo id  V ia b ility  M o d e l

To contrast th is w ith th e  haploid case, a single step of th e  single-locus Simple 

G enetic A lgorithm  as described in Vose [19] with zero m utation  (and no crossover) is 

outlined. Let the in itial population vector be x  =  [a: (1 — z)]^ , and the  fitness vector 

be [/o / i]^ . Begin by perform ing a proportional selection step according to  the  fitness 

function defined in [19]. This yields

fox
f o x + f \ { l - x )

A(l-r)
. f ox+f i i l - x )

N ext, th is vector is subjected to  the recom bination function A4.  This gives

f o x ‘̂  + f o f i x ( 1 - x )

x '  = A4{A'{x)) = UoX+fl

T he next generation frequency x'  of 0 is

fox[foX +  / i ( l  -  z)]
X  =

/oX
(2.3)

/  / o X - f / i ( l  -  x)

where /  =  [ f o X  +  /]  ( 1 -  x)Y-

It is not hard to  see th a t the  recurrence in equation 2.3 can only have fixed points 

a t 0 and 1. A plot of x ' versus x  for the  haploid model is shown is Figure 2.3 using 

fitness values of f o  =  0.8 and / i  =  0.2.
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Figure 2.3: A plot of x'  vs. x  for the  haploid model
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3. C o n c lu s io n s

M athem atically , th e  recurrence for the  diploid m odel {equation 2.1) is the  ratio  

of degree 2 polynom ials, whereas the  recurrence for th e  haploid m odel (equation 2.3) 

is th e  ra tio  of linear polynom ials, which gives th e  diploid m odel inherently  greater 

com plexity. Biologically, th e  overdom inant polym orphism  of the  diploid m odel is one 

of th e  basic m echanism s for m aintaining genetic diversity in a population, and it has 

no analogue in th e  haploid model.
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C h ap ter  3

T h e  D om in an ce  O perator

1. T h e  F u n ction  o f  D o m in a n ce

To illustra te  how the  dom inance operator works, consider a  diploid chromosomal 

struc tu re  where different letters represent different alleles;

A A a a

a A A a

Here, there  are two alleles, or two possible values th a t a  gene m ay take on at a 

given locus, nam ely A  or a. By convention, an uppercase le tte r is used to  denote 

a  dom inant allele, while a  lowercase le tter denotes a recessive allele. In nature , if 

a  given locus contains a gene for say, eye color, then the  A  allele m ight represent 

brown eyes, while th e  a allele m ight represent blue eyes. A lthough natu re  som etim es 

allows hybrids or in term ediate  forms, we will not allow th a t possibility. We m ake the 

restric tion  th a t  th e  phenotype cannot have both brown and blue eyes. Hence, there 

is a  pa ir of genes describing a given function, and the  potential exists for conflict. 

T he dom inance operator resolves th is conflict by allowing one allele (the dom inant 

allele) to  take precedence over the  other allele (the recessive allele) a t th a t locus. 

W hen there  are m ore than  two alleles, more than  one allele m ay play a dom inant

16
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role, depending on the  allele w ith which it is paired, and situations m ay arise when 

an allele is dom inant when paired w ith one allele, bu t recessive when paired with 

another. T he action of th e  dom inance operator can, a t least in p a rt, be defined 

in term s of observable phenom ena. An allele is dom inant if it is expressed {i.e. it 

is apparen t in th e  phenotype) when paired w ith an identical allele—th e  homozygous 

case where A  A  —* A  — or w ith a  different allele—the  heterozygous case where Aa A  

or a A  —» A.  An allele is recessive if it is expressed only when paired with an identical 

allele— th e  homozygous case where aa —̂ a. Thus, the  chromosome pairs above m ay 

be rew ritten  as:

A A aa

a A A a

A A A a

This can also be expressed in term s of the  following dom inance map:

A a

A A A

a A a

In an abstrac t sense, dom inance is a function th a t m aps from genotypes to  phe­

notypes. More im portantly , as Goldberg [6] notes, it serves as a form of genotype 

reduction. This m eans th a t th e  dom inance operator can be used in the  context of 

GAs as a m eans of m apping a diploid chromosome to  a haploid chromosome, which 

in tu rn  can be subjected  to  a haploid fitness function. In th is m anner, a diploid GA 

can be constructed w ith m inim al com putational overhead. The fitness function does 

not have to  be com pletely redefined for a diploid chromosome.

We re tu rn  to  th e  discussion of diploidy from C hapter 2. Diploidy facilitates 

population  diversity by allowing heterozygotes (individuals with one dom inant and 

one recessive allele at a  locus) to  exist and reproduce. Heterozygotes not only pro­

tec t recessive alleles from extinction, they  propagate them . It seems reasonable to
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follow a  biological parallel here and in troduce a “heterozygote advantage” , i.e. to  

endow heterozygotes w ith a  higher fitness th an  homozygotes. In so doing, there  is 

a  g reater probability  of avoiding rap id  convergence to  a single genotype. This could 

be sim ulated  by assigning a “fitness bonus” to  heterozygotes. As the  diploid genome 

is m apped  to  a haploid genome, the  num ber of heterozygous loci is recorded. The 

resulting haploid genome is subjected to  the  fitness function, ju s t as is done in the  

cannonical GA. However, for each heterozygous locus, we add th e  value of the  fitness 

bonus to  th e  value obtained from  the  haploid fitness function. T he size of th e  bonus 

is im p o rta n t-a  bonus th a t is too sm all will not perm it overdom inance, and a bonus 

th a t is too  large will actually  speed convergence to  a population of heterozygotes. 

In addition , problem s m ay arise w ith large strings if the  resulting fitnesses are not 

evenly d istribu ted . Continuing w ith our exam ple, let s represent the  fitness bonus 

and /  th e  haploid fitness function. Then,

A A a a

a A A a

/(A A A a) -b 2s

In seeking guidelines for assigning fitnesses. C hapter 4 examines viability m odels for 

m ultip le  allele polym orphism s.

2. D o m in a n ce  M ap s

One of th e  earliest schemes for incorporating diploidy and dom inance in artificial 

genetic search is due to  Hollstien [8]. He began with a two-locus, evolving dom inance 

m ap. A t one locus, 0 and 1 are th e  allowable alleles. For each of these loci, there  is 

an associated locus, reserved for a modifier gene, a t which M  and m  are the  allowable 

alleles. T he 0 alleles are dom inant when there  is a t least one M  allele present at the 

hom ologous modifier locus. Hollstien assum ed th a t the  num erical and modifier loci are
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adjacen t on th e  chromosomes and th a t they  are never separated  by crossover. Thus, 

th e  com binations of alleles— OM, Om, I M ,  and Im — m ay be trea ted  as four alleles at 

a  single locus. The sixteen possible genotypes produce th e  following dom inance map;

OM Om IM Im

OM 0 0 0 0

Om 0 0 0 1

IM 0 0 1 1

Im 0 1 1 1

N ote th a t there  is a  g reater num ber of genotypes th a t produce 0 alleles th an  those 

th a t  produce 1 alleles. This requires th a t m easures be taken to  counteract th is bias, 

such as giving 0 alleles a  slightly higher probability of occurrence, both in the  initial 

population and through m utation .

Hollstien recognized th a t th ree  alleles are sufficient to  achieve the  effects of dom i­

nance in teraction and to provide th e  capability of dom inance shifts through selection. 

His triallelic scheme used 0 ,1 , and 2 as the possible alleles at a locus. As indicated 

in th e  dom inance m ap th a t follows, 0 alleles dom inate 1 alleles, (which are always 

recessive), and 2 alleles, (which play the  role of a “dom inant 1” ), dom inate 0 alleles.

0 1 2

0 0 0 1

1 0 1 1

2 1 1 1

W hen it is advantageous to  have 1 dom inate 0, selection can replace 1 alleles by 2 

alleles to  effect a dom inance shift a t each locus. Again, note th a t there is a bias (this 

tim e  tow ards 1 alleles) if all th ree alleles are evenly d istributed  in the  population.

Ng and Wong [18] use a two-allele, two-locus scheme th a t a ttem p ts to  remove the 

bias inherent in H ollstien’s. T here is no evidence to th a t they fully succeed in this.

R ep ro d u ced  with p erm issio n  o f  th e  copyrigh t ow n er. Further reproduction  prohibited w ithout p erm ission .



CHAPTER 3. THE DOMINANCE OPERATOR 20

however, because they  resolve dom inance contention arbitrarily . Curiously, they  also 

proh ib it certain  heterozygote genotypes by prom oting recessive alleles to  dom inant 

alleles. M ore interesting than  their dom inance m ap is perhaps their approach to 

dom inance shifts. They use a  dom inance change m echanism  th a t takes effect on a 

rapid  (i.e. a single generation) ra ther th an  an evolutionary tim e scale. They use the  

following criteria: if an individual’s fitness decreases by m ore th an  20% over a single 

generation, then  a  dom inance change occurs for th a t individual wherein dom inant 

alleles are dem oted to  récessives and recessive alleles are prom oted to  dom inants. In 

light of th is , it is little  wonder th a t their scheme outperform ed th a t of Goldberg and 

Sm ith on te s t problem s th a t  involved a rapid change in fitness over a  single generation. 

A lthough it is doubtful th a t it has any precedence in nature, their m ethod is consistent 

w ith one of th e  a ttrac tive  features of GAs— it achieves global perform ance through 

local action.

The analysis in C hapter 4 is rooted in and experim ents w ith a dom inance m ap 

based on H ollstien’s original two-locus evolving dom inance m ap. The sim plifying as­

sum ption  is m ade th a t it can be trea ted  as a single-locus model with four alleles as 

justified above. A different symbology is used, and the  m ap is sym m etric w ith respect 

to  ones and zeros in order to  elim inate the  need to  counteract a bias. Dom inance con­

ten tion  is resolved to  m aintain  this sym m etry. The tab le  below depicts the  four-allele 

dom inance m ap where 0 and 1 are dom inant alleles and o and i are the  corresponding 

recessive alleles.

0 o 1 i

0 0 0 0 0

o 0 0 1 1

1 0 1 1 1

i 0 1 1 1
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C h ap ter  4

Four A lle les at a  S ingle L ocus

1. A  m u lt ip le  a lle le  v ia b ility  m o d e l

C hapter 2 presented a viability model for two alleles a t a single locus. However, 

th e  dom inance m ap from the  previous chapter utilizes four alleles — a dom inant and 

recessive 0, and a  dom inant and recessive 1— at a single locus. Fortunately, biologists 

have considered th e  case where an autosom al gene m ay have m ore th an  two alleles 

segregating the  population. (In fact, th is occurs quite comm only in natu re .) H artl 

and C lark [7] describe a generalized model w ith viability selection operating on a gene 

w ith k alleles. The m odel is reproduced here for the  special case where k  =  4. Let 

th e  frequencies of alleles 0, o, 1, and i be PSi a.nd respectively. T he allele

frequencies m ust still sum  to 1, i.e.

E p < =  1
i = l

A rranging th e  alleles along the  rows and columns of a Punnet square gives th e  possible 

genotypes and the ir respective frequencies when random  m ating is assumed:

21
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0 0 1 i

0 00 Oo 01 Oi

Pi Pi Pa P1P3 P1P4

o oO 0 0 ol oi

P2P1 Pa P2P3 P2P4

1 10 lo 11 li

PsPi P3P2 P3 P3P4

i iO io il ii

P4Pl P4P2 P4P3 p:

Assum ing th a t there  is no distinction between the  genotype composed of alleles 

A{Aj  an d -th a t composed of AjA{^ then  there  are ten  distinct genotypes in the  tab le  

above. (H ereafter, th e  convention will be to  list 0 and o before 1 and i, and dom inant 

alleles before récessives.) Each heterozygote genotype thus has two entries in the 

tab le , so th a t  its corresponding frequency will have a coefficient of 2.

T he next step is to  assign fitnesses to  each genotype. This is m ost easily depicted 

as a 4 X  4 f itness matrix

W  =

W u m 2 m 3 W i 4

W 21 W 22 W 23 m 4

m i m 2 m 3 W34

m i tÜ42 W 43 W 44

(4.1)

where each entry  iVij corresponds to  the  genotype composed of alleles A, and Aj .  Note 

th a t  th is  m atrix  can be simplified into an upper (or lower) triangular m atrix , since 

Wij =  Wji. In deriving th e  recursion for the allele frequencies in the  next generation, 

it is helpful to  set up a tab le  th a t sum m arizes the inform ation presented thus far:
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genotype frequency fitness gam etes produced

0 0 1 i

00 PÎ ifn 1 0 0 0

Oo 2piP2 1
2

1
2 0 0

01 2piP3 W l Z
1
2 0 1

2 0

Oi 2piP4 1014 1
2 0 0 1

2
oo W 2 2 0 1 0 0

o l 2p2P3 W 2 3 0 1
2

1
2 0

oi 2P2P4 W24 0 1
2 0 1

2
11 P3 W33 0 0 1 0

li 2p3P4 W 3 4 0 0 1
2

1
2

ii P\ W 4 4 0 0 0 1

In general, p ' is derived by com puting frequency X fitness X  gametes produced 

for each row and sum m ing these products for the  appropriate  column. For p \ , this 

gives i vupI  +  Wi2p\p2 +  tuispips +  tL?i4PiP4- This can be generalized as PiYlj' '^ijPj- 

T he sum m ation  is com m only referred to  as th e  marginal fitness of an allele, and is 

denoted as W{ =  Y^jWijPj. As before, the  allele frequency m ust be norm alized to  

1 by dividing by th e  sum  of all the  allele frequencies (or the  average fitness of the 

population), which is once again labelled it). For m ultiple alleles, this is expressed as 

w  =  Y l i ^ j  ‘̂ ijP-iPj- Thus, the  general expression for the  allele frequencies in the  next 

generation is

P̂  =
PzW,

w
(4.2)

At equilibrium , th is becomes p, =  Since we desire a polym orphic equilibrium

such th a t each allele is present in some fraction—this is commonly referred to as a 

complete polym orphism  — we introduce the  stipulation th a t 0 <  p, <  I Vi. Now it is 

possible to  divide by pi and rearrange to  get
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Wi = w for i = 1 ,2 ,3 ,4

which m eans th a t  all of th e  m arginal fitnesses are equal when th e  population comes 

to  equilibrium . This can be rew ritten  as — Wj = 0  for i =  2 ,3 ,4 . By adding 

th e  condition th a t J2iPi =  1, we have a  system  of four linear equations in four 

unknowns, which can readily be solved. Nagylaki [17] provides an elegant m ethod for 

com puting the  allele frequencies a t equilibrium  based on techniques in linear algebra. 

It is qu ite  am enable to  im plem entation in a  m athem atical software package or a 

program m ing language. Nagylaki makes use of the  following identity, which can be 

found in Lancaster and T ism enetsky [14]:

a d j ( W ) W  = d e t ( W ) I

w here adj {W)  denotes the  adjoint of the  fitness m atrix  W ,  which is defined to  be the  

transposed  m atrix  of cofactors of W ,  de t{W)  is the  determ inant of W ,  and /  is the  

iden tity  m atrix . T he equilibrium  equation Wi = w =  is expressed in

vector form  as

W p  = ih l

w here 1 is th e  4 x 1  column vector of ones. M ultiplying th is by adj{W)  and using 

th e  iden tity  yields

(4.3)

In order to  break th is into its com ponents, denote the  ith com ponent of the  vector 

a d j { W ) l  as Vi. We now have

det{W)pi  = ivVi

If de t{W)  ^  0, K' 7  ̂ 0 Vi, and all the  V  have the same sign, then there exists a unique 

in ternal equilibrium

"  d ^ W )  =
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where th e  substitu tion  det{W)  =  has been m ade by post-m ultip lying both

sides of equation 4.3 by 1 ^ , th e  1 x 4  row vector of ones, and recalling th a t  l ^ p  =  1. 

N ote th a t  th is also serves to  norm alize the  equilibrium  allele frequencies.

In sum m ary, not only does equation 4.4 give a terse form for th e  allele frequencies 

a t equilibrium  solely in term s of the  fitness m atrix , bu t it also provides c riteria  for 

th e ir adm issibility, (i.e. 0 <  p,- <  1 Vi), in term s of th e  values in the  fitness m atrix , 

nam ely

1. de t { W )ÿ ^O

2. X f  0 Vi

3. sgn{Vi) =  sgn{Vj) \ / i J

A lthough equation 4.4 gives adm issibility criteria based on th e  fitness m atrix  as a 

whole, it does not  provide heuristics for assigning individual fitness values a priori. 

The question rem ains, how does one assign these fitnesses in order to guarantee a 

com plete polym orphism  th a t is biologically admissible? For the  case of two alleles at 

a single locus, overdom inance was a sufficient condition for a globally stable polym or­

phic equilibrium . One possible m eans of extending th is condition to the  four-allele 

case would be to assign th e  fitnesses such th a t

Wii < Wij > Wjj

Here, each heterozygote is m ore fit than  the  homozygote for either of its constituent 

alleles. U nfortunately, th is condition is neither necessary nor sufficient to guarantee 

a com plete polym orphism  when extended to  more than  two alleles. Lewontin, et. 

al. [15] were able to  derive conditions necessary for a com plete polym orphism  based 

on a triallelic model, bu t these cannot be readily applied to  a four-allele model. 

Most distressing, however, are the  results of the ir experim ents th a t exam ined the
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p robab ility  th a t m ultip le  allele polym orphism s could be m aintained  by random  choice 

of viabilities:

1. Only a very sm all portion of the  param eter space adm its a stable polym orphism

2. As th e  num ber of alleles is increased, the  probability  of a stable polym orphism  

decreases dram atically

3. For genes w ith seven alleles, even if all heterozygotes have higher fitnesses than  

th e  respective hom ozygotes, only 0.1% of the  random ly chosen viabilities adm it 

a stable polym orphism

Based on th is inform ation, a purely random  search was ruled out. An a ttem p t was 

m ade a t a  “narrow ed” random  search th a t reduced the  param eter space by extending 

Lew ontin’s triallelic conditions and adding a small “fitness bonus” to  heterozygotes 

such as Oo and a “double bonus” to  double heterozygotes such as Oi. Specifically, 

v iabilities had to  satisfy the  condition

Wij > {wu +  Wjj)/2

T he search procedure— im plem ented in M aple— uncovered two possible fitness m atri­

ces th a t yielded com plete polym orphism s w ith allele frequencies within the  admissible 

range a t equilibrium . One was extrem ely sensitive to  and highly dependent on the 

value of th e  fitness bonus, while the  other was not.

A t th is point, th e  stab ility  of the  equilibrium  point has to be addressed. If the 

com plete polym orphic equilibrium  exists and is biologically admissible, then a result 

of K ingm an [13] provides a m ethod for determ ining its stability. For a gene w ith k 

alleles, if th e  fitness m atrix  W  has j  positive eigenvalues, then  at m ost k —j  + 1 alleles 

will exist w ith positive frequencies at equilibrium . S tated  slightly differently, a unique 

adm issible solution to equation 4.4 will be globally stable i f  and only i f W  has exactly
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one positive eigenvalue and a t least one negative eigenvalue. In such a case, the  system  

moves, for any in itial frequency point for which each pi is positive, to  th is equilibrium . 

If th e  equilibrium  is inadm issible or unstable, then  the  system  evolves in such a way 

th a t  one or m ore alleles becomes elim inated and the com plete polym orphism  is lost. 

Perhaps th e  sim plest exam ple to  dem onstrate  K ingm an’s theory  is the  k x  k  fitness 

m atrix  where all heterozygotes have fitness 1 and all homozygotes have fitness 1 — s, 

where 0 <  s <  1, i.e.

W  =

1 - s  1 1

1 1 - s  1

1 1 1 - s

1

1

1

1 - s

The adjoint of W  is

(A; — l)s&"2 —

adj(W) =

„ k - 2

—  2 —sk-2

— S k-2
(& -  -  S

_ g k - 2 {k -  l)s*-2 -  S

^k-2

k-2

,k-2

r.k—2

^k-2

— S k-2 — S k-2 n k  —  2 . . .  ( k - l ) s ^ - ^

Sum m ing th e  elem ents along any row, we have Vi = —s^~^ \/i. Since there  are k 

rows, V j  =  —fcs^“ T Substitu ting  these values into equation 4.4 gives

— s k-~\

— S k-l
Pi

W ith  th e  assum ption th a t A: >  1, the  equilibrium  is clearly admissible. T he eigen­

values of W  are {k — s ) , - - s , - - s , . . . , - - s ,  and thus the  stability  conditions are m et. 

However, th is configuration assigns a fitness penalty  to  homozygotes, which may incur 

unw anted side effects such as negative or zero fitness values after repeated applications 

of th e  recursion.
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K ingm an’s criteria  provides a  convenient alternative to  th e  m ethod  used for the  

two allele m odel, which in th is case would involve com puting th e  partia l differential 

of th e  allele frequency recursion— equation 4.2—for each allele and evaluating it at 

th e  equilibrium  point determ ined by equation 4.4. It should also be noted th a t it 

is qu ite  logical for th e  stab ility  of the  equilibrium  to  be dependent solely upon the 

fitness m atrix  and com pletely independent of the  allele frequencies.

2. M a p p in g  h a p lo id  fitn e sse s  to  a d ip lo id  fitn ess  m a tr ix

Recall th a t th e  objective is to  m ap haploid fitnesses to  a diploid fitness m atrix , 

while introducing a heterozygote advantage by a  assigning a  sm all fitness bonus to 

th e  heterozygote genotypes. The aforem entioned search revealed a  fitness m atrix  th a t 

accom plished th is objective and yielded an equilibrium  th a t was both adm issible and 

stab le  according to  K ingm an’s criteria. The m atrix  is based on a pair of haploid 

fitnesses, /o and /%, and a fitness bonus s. Using the  fitness m atrix  W  of equation

4.1, we substitu te  actual fitness values for each entry  Wij as follows:

/o fo + s m a x  -f- s m a x  +  s 

fo + s fo m a x  +  s ma x  + -s

ma x  + s m a x  +  s f i  f i + s

m a x  +  a m a x  +  a f i  + s f i

where m a x  = m a x i m um { f o ,  f \ )  and a <  fi  for i = 0 ,1 . Here, the homozygote 

genotypes appear along the  diagonal and have the  sm allest fitness values. T he “single” 

heterozygotes are next in fitness ranking, and the  “double” heterozygotes have the 

highest possible fitness values.

P ro p o sitio n : The fitness m atrix  in equation 4.5 yields an admissible and glob­

ally stab le  com plete polym orphic equilibrium  for all possible values of / o , / i ,  and a 

sub ject to  th e  constraint a <  /^ for i =  0,1.

W (4.5)
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Em pirical testing— a short com puter program  th a t chose random  values for the  

param eters / o , / i ,  and s w ith the  objective of finding a set of param eters for which 

th e  equilibrium  point was either inadm issible or unstable—failed to  find a counterex­

am ple. An analytical proof thus seems w arranted.

P ro o f :  We s ta r t w ith the  fitness m atrix  W  from equation 4.5. A case-by-case

analysis based on the  value of m a x  is required.

C a se  1: m a x  = fo

T he in itia l assum ptions are th a t fo > f i  > s > 0. For the  adm issibility of the  

equilibrium  point, we need to show th a t 0 <  pi <  1 Vi. Using Nagylaki's m ethod as 

described earlier, the  allele frequencies at equilibrium  are

P\ = P2 =

PS — P4

4 ( / o - / i + s )

2/o — 2 /i +  s
4(/o ~  / i  +  -s)

Clearly, since /o >  / i  >  5 >  0, the  num erator and denom inator of each equation is 

positive. This implies th a t pi > 0. We also have th a t s < 4(/o — / i )  +  4s and th a t 

2(/o — f i )  + s <  4(/o — / i )  +  4s, which implies th a t p% <  1. Thus, 0 <  p; <  1 V i and 

th e  equilibrium  point is admissible.

It can be shown th a t th e  eigenvalues of W  in equation 4.4 are —s, —s, fo + f i

\ / 5 / o  T  fi  — 2 /o /i +  8 /o S  +  4s%, and / o  +  / i  +  s — y^5 /o  +  — 2 / o / i  +  8 /o s  +  4s%.

We need to  show th a t  exactly one of these eigenvalues is positive and the  others are 

all negative. (This is actually  stric ter than  K ingm an’s criteria, which requires th a t at 

least one of th e  eigenvalues be negative, because we are only interested in a complete 

polym orphic equilibrium .)

1. Since s >  0, —s <  0.

2. /o  +  / ,  +  s  +  \ /5 Æ  +  / f  -  2 / o / ,  +  8 /„ s  +  4s2
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>  /o +  / i  +  s +  \/S /o  +  f i  -  2 / 0 / 1 , since /o >  0 and 5  >  0.

>  /o +  / i  +  5 +

— /o +  / i  +  a +  (/o — /i)^

=  /o  +  / i  +  -s +  /o  — / i

=  2 / 0  +  -s

>  0, since /o >  0 and s >  0.

3 /o  +  / i  +  a — y^5/o +  / i  — 2 / 0/1 +  8 /q s  +  4s^

<  f o  +  f i  +  s — ^/s/q +  /j  ̂ — 2/0 +  8 /qs +  4 s^, since /o >  / i .

=  / o  +  / i  +  s  -  \/3 /o ^  +  +  (4 /0 5  +  4 / 0 5 ) +  4 s2

<  / o  +  / i  4- 5 — \ / ( / o  +  2 /d ) +  / i  +  4/o5 +  4 / 1  s +  4s^, since / i  <  /q .

<  /o  +  / i  +  5 — y / f o  +  2 /0 /1  +  / f  +  4 /o s  +  4/1 s +  4s^, since / i  <  /q.

<  /o  +  / i  +  -5 — fo  +  2/0/1 +  / f  +  2 / o 5 +  2/15 +

=  /o  +  / i  +  s — y^(/o +  / i  +  s)^

=  / o  +  / i  +  <s — ( / o  +  / i  +  5 )

=  0

C a se  2: m ax =  / i  

Observing th e  allele frequencies at equilibrium ,

Pi =  P2

P3 =  P4 =

4{/i — fo + s)

2 /] — 2 ,/o s 
4 ( / i  — /o  +  -5)

and th e  eigenvalues of th e  fitness m atrix , —s, —s , f i + f o + s + y ^ 5 f f  + fo — 2 f \ f o  + S f \ s  + 4s2, 

and f i + f o  + s — \ j 5 f f  +  /o — 2 / i /o  +  8f ^s  + 4s^, we see th a t th is case is sym m etric 

to  case 1.

Therefore, we have th ree  negative eigenvalues and one positive eigenvalue, which 

satisfies K ingm an’s criteria for stability. O
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3. R em a rk s

T he results of th e  previous section prom pt a num ber of questions:

1. How does one m ap th e  haploid gene frequencies xq and xi  to  the  diploid allele 

frequencies P\,P2 ,P3 , and p4 ?

2. If we s ta r t w ith th e  in itial conditions th a t pi = p 2 and p^ =  P4 , will th is system  

m ain tain  these equalities?

3. If so, can this m odel w ith four alleles be equated to  a sim pler m odel th a t uses 

only two alleles?

4. Is th is m odel consistent w ith the  dom inance m ap in C hapter 3?

5. Can th is model be extended to  m ultiple loci?

We first address th e  problem  of m apping the  haploid gene frequencies, Zo and

Xi to  the  four diploid allele frequencies, and p4 . Referring to  the  sum m ary

tab le  in th e  first section of th is chapter and the  dom inance m ap in C hapter 3, we see 

th a t  genotypes 00, Oo, 01, Oi, and oo m ap to  0 and genotypes o l , oi, 11, li, and ii 

m ap to  1. Sum m ing the  frequencies of each of these genotypes and setting  this equal 

to e ither Xq or Xi as appropriate  yields

xo = p1 F  2pip2 + 2pip3 +  2pip4 + pI

X\ =  2p2pz +  2p2P4 +  Pa +  2pap4 +  p\

N ote th a t

Xq -{- X-i =  (pi +  P2 +  P3 +  p4Ÿ =  1̂  =  1 

We now proceed to  analyze the four allele system  and a ttem p t to  simplify it.

R ep ro d u ced  with p erm issio n  o f  th e  copyrigh t ow n er. Further reproduction  prohibited w ithout p erm ission .



CHAPTER 4. FOUR ALLELES A T  A SINGLE LOCUS  32

P r o p o s it io n : If th e  system  from th e  previous section is initialized w ith =  p 2 

and p3 =  P4 , then  the  iterates of the  system  will m ain tain  these equalities.

P ro o f :  Let the  in itial allele frequencies be such th a t pi = p2 and p^ = p 4 - We 

also have th a t pi +  P2 +  Ps +  P4 =  1- This can now be expressed as 2pi +  2ps =  1, so 

th a t  we can solve for each of the allele frequencies in term s of pi.  T h a t is, p2 = pi  and 

p^ = p^ = I —Pi. We substitu te  these values into the  allele frequecy update  equations 

th a t  result when equation 4.2 is expanded for each allele. The Wijs are expressed in 

term s of th e  fitnesses in the  m atrix  of equation 4.5.

WupI  H- W12P1P2 +  WizPxPz +  Wi4PxP4 _  {wi i  +  Wi2 )Pi +  (u^l3 +  t ^ l4 ) P l ( |  ~  P i)
Pi = w  w

_  ( 2 / 0  — 2 ma x  — s)p\  +  {max  - f  s)pi
w

_  W2lP2Pl +  W22pI +  W22P2PZ +  W24P2P4 _ (tÜ21 +  ^ 22)P i +  (W23 +  l^ 2 4 )P l( | “  P i)
p  — -  —

10 w

__ ( 2 /o  — 2ma x — s )p i  +  {max  4- s)pi _  ,
w

, tUsiPsPl +  W32P3P2 +  U>33P3 +  W34P3 P4 {u^31 +  lC 3 2 )p l( | “  p i ) +  ( W33 +  W^34)(| “  Pl )
P3 = ------------------------- --------------------------- --------------------------------------------------------------------------------------------

2

W  W

( 2 / 1  — 2max  — s )pI +  { max  -  2 / i ) p i  +  \ { 2 f i  +  s)
w

, _  UI4 1P4 P1 +  W4 2P4 P2 +  UJ43P4 P3 +  W44P4 _  (W41 +  U ^42)Pi(| ~  P i)  +  ( W43 +  XÜ44){ \  — Pi)"

w w

(2 / 1  -  2max  — s)p\  +  {max -  2 /i)p i +  J{2 /i 4- s) ,
w

It follows th a t  if pi =  p2 and ps =  P4 , then  p\ = Pg and P3 =  P4 . □
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An im portan t result of th is proof is th a t it is possible to  express all four allele 

frequencies in term s of one allele frequency. This allows the  expression of Xq and xi 

in te rm s of a  single allele, which in tu rn  perm its a simple m apping from zo and a-% to 

Pi ,P2 ,Pz, and p4 , nam ely = p2 = \ xq  and ps =  P4 =

We now proceed to  equate th e  system  of four alleles to  one with two alleles, çi 

and Ç2 , by setting  qi =  2pi and q2 =  2p3. This gives

, - ,  {fo — Txiax — \ s)Ap\  +  [max  +  s)2pi {fo — m a x  — \ s)q^  +  {max + s)qi
=  -------------------------â -------------------------= ------------------------ â -----------------------

, _ , (ŵ 3 i +  î^3 2 ) ( |  — P3)pz +  (1^33 +  ^ 3 4 )^ 3  ( / i  — m a x  — | s ) 4 p3 +  [max  +  s )2 p3
«^ =  2 P3 = -------------------------- ;r-------------------------- = -------------------------- ^ -------------------------

_  ( / i  — rnax — ^s)qj  +  {max + s)q2 

w

It can readily  be verified th a t this two allele system  is derived from the  following 2 x 2  

fitness m atrix ;
fo +  ^5 'max +  s 

m a x  +  3 / i  +

Furtherm ore, em pirical tests showed th a t the  two allele model represented by the  

fitness m atrix  in equation 4.6 and the four allele model represented by the  fitness 

m atrix  in equation 4.5 exhibited identical behavior.

Tests of particu lar interest were those th a t compared the  ra te  of convergence for a 

haploid m odel with th a t of the  diploid model. For the haploid case, the im plem enta­

tion details followed those of Vose [19] for the  infinite population model. The diploid 

case was im plem ented based on the  four allele model described above. A plot of the  

0-bit convergence over a  tim e scale of 250 generations is shown in Figure 4, where the  

in itia l values of Xq and X\ are 0.01 and 0.99 respectively, and the  fitness values are 

fo =  1.00 and f \  ~  0.90. The three curves representing the diploid model correspond

W  = (4.6)
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haploid model
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Figure 4.1: A comparison of convergence rates

to  th ree  different values of s, the  heterozygote fitness bonus. Observe th a t s can be 

used to  control th e  ra te  and the  asym ptotic value of convergence, and th a t for any 

value of s greater th an  0, the  diploid curve lies below th e  haploid curve. The case 

for 1-bit convergence is sym m etric, and the curves of Figure 4.1 can be duplicated 

by interchanging the  fitnesses and the  initial values of xq and From the figure, it 

is evident th a t  the  diploid model is capable of both slowing the  ra te  of convergence 

(to a hom ozygote genotype) and avoiding com plete convergence (by forming a stable 

polym orphism ).

T here  arises a problem , however, when we a ttem p t to  reconcile the  four-allele 

fitness m atrix  w ith the  dom inance m ap from C hapter 3. These two entities are 

superim posed in the  tab le  below. Let Wij and dij denote th e  i j t h  entries of th e  fitness
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m atrix  W  and the  dom inance m ap, respectively. Com paring th e  fitness m atrix  with 

th e  dom inance m ap for consistency, we should see th a t th e  subscript on the  fitness of 

Wij corresponds to  the  value in dij.

0 0 1 i

/o /o +  5 m a x  -f s m a x  + s

0 0 0 0 0

/o +  ^ fo m a x  -f- s m a x  +  s

0 0 0 1 1

m a x  s m a x  + s f i / l  +  -5

1 0 1 1 1

m a x  -f s m a x  -f s / i  +  ^ h

i 0 1 1 1

In th e  case of th e  eight m a x  +  s entries in W ,  m a x  m ust evaluate to either fo or 

f i . It is clear, though, th a t some of the  corresponding entries of th e  dom inance m ap 

contain a 0, while others contain a  1. For exam ple, Wis = W23 = m a x  +  s, bu t di^ =  0 

and <^23 =  1. The dom inance m ap could be altered so th a t di3 =  d \ 4  =  ^ 2 3  =  ^2 4  =  

dsi =  ds2 =  ^41  =  <̂4 2 , bu t this would create an im balance heavily favoring either 0  or

1 . Furtherm ore, it is not possible to  know in advance w hether m a x  will evaluate to 

fo or / i -  This problem  is inherent when using m a x  in the  fitness m atrix , and there 

is no fixed-value dom inance m ap th a t can be used consistently w ith it.

Consistency betw een the  fitness m atrix  and the  dom inance m ap becomes an im ­

p o rtan t issue when the  single-locus diploid model is extended to  m ulitple loci, i.e. 

b it strings of a rb itrary  length. W ith the  current model, the  entries of the  dom inance 

m ap th a t  correspond to th e  m a x  -f s entries of the  fitness m atrix  m ay be resolved 

consistently  only after m a x  has been evaluated. As defined previously, the  com puta­

tion of m a x  relies on having knowledge of fo and f i  at a particular locus. This does
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not present a  problem  in a  single-locus or 1-bit GA, bu t for a rb itra ry  string lengths 

and fitness functions, th is inform ation is not available, since in trad itional GAs the  

fitnesses typically  correspond to  entire strings, not to  particu lar locations w ithin a 

string.

4. C o n c lu s io n s

A lthough th e  four allele model presented in th is chapter is not extendible to  m ul­

tip le  loci and therefore not applicable to  GAs in general, it does provide some insight 

into th e  assignm ent of fitnesses in order to  achieve overdom inance, the  convergence 

characteristics of diploid models relative to  th e  haploid GA, and the  num ber of alleles 

required to  effect the  desired behavior.

Specifically, two alleles are sufficient to  bring about the  desired im provem ent in 

th e  convergence characteristics. The assignm ent of the  heterozygote fitnesses is c rit­

ical to  achieving overdom inance. To take a two-allele exam ple, let w n ^ w i 2 .,W2i  ̂ and 

W22 be th e  fitnesses of genotypes 00,01,10, and 11 respectively. Note th a t w \ 2  = toai- 

Choose =  f o , w i 2 = W21 =  /o +  -5, and it>n =  / i .  This will allow overdom inance if 

fo > / i ,  bu t if / i  >  fo +  5 , we have directional selection w ith W22 > Wn =  «^21 >  

and a globally stable polym orphic equilibrium  is not possible. We could assign the 

fitness bonus so th a t s > I/o — / i | ,  bu t this requires knowledge of fo and f i  a t a 

single locus, and it m ay result in inordinately large values for s. Because of sym ­

m etry, W12 = W21 = f i  A  s suffers from the  same problems. We m ight try  some 

com bination of fo and / i ,  e.g. W12 = W21 =  0.5/o -f 0 .5 /i +  5 . The entries in the 

dom inance m ap for 01 and 10 could be assigned based on the  outcom e of a “coin flip” 

for each entry. In o ther words, w ith probability 0.5 we assign a value of 0 to  an entry, 

and w ith probability  0.5 we assign a value of 1. However, this looks beyond a more
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fundam ental problem — it is still possible th a t, for instance, fo > 0.5/o +  0 .5 /i +  s 

if fo > / i  +  2s, so we cannot achieve overdom inance for a rb itrary  values of fo and 

f i .  Thus, using m a x  in the  fitness m atrix  creates irresolvable conflicts in th e  dom i­

nance m ap. Using some com bination of fo and f i  can be resolved in the  dom inance 

m ap w ith non-determ inistic entries, bu t up to  th is point, no com bination has been 

presented th a t  can guarantee overdom inance for all possible values of fo and / i-
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C h ap ter  5

A  Schem e W ith  V arying  

H etero zy g o te  F itn ess

1. E x p la n a tio n

Building on th e  results of C hapter 4 and the  concept of a dom inance m ap with 

non-determ inistic entries, we present a scheme th a t uses two alleles, 0 and 1, and a 

heterozygote fitness th a t varies over tim e. Instead of a fixed com bination of f o  and 

/ i , we use th e  allele frequencies to  determ ine the  relative contributions of /o and / i  

to  th e  fitness of th e  heterozygote genotypes. In the  fitness m atrix  below, p  is the 

frequency of allele 0, and q is the  frequency of allele 1. Note th a t since p + q — 1, we 

have q = I — p.  Thus, once p  has been assigned, q is fixed. As before, s represents a 

sm all additive fitness bonus.

fo  f oP +  f i { l  — p) + ^

f oP  +  / i  ( 1 — p) +  -s / i

Recall th a t  W{j refers to  the  i,jth en try  of W  and th a t lOn, W2 1 , and W22 are the  fit­

nesses of zygotes 00,01,10, and 11 respectively, where it»i2 =  it>2i- The corresponding 

dom inance m ap would look like the  following:

38
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0 1

0 0 0 : p 

1 : 1-p

1 0 : p 

1 : 1-p

1

Here, th e  genotypes 01 and 10 m ap to  0 w ith probability p  and 1 with probability  

1 — p, where p is defined as the  frequency of allele 0 at th e  locus under consideration 

in th e  curren t generation.

Using the  m atrix  of equation 5.1, we can derive an equation for the  allele fre­

quencies in th e  next generation in the  same m anner th a t equation 2.1 was derived. 

This gives
/ foP^ + [foP + M ^ - p )  + s ] p { l - p )  /c

P =  r  ^9 , ^7— -7-— ----     —  (5.2)/op2 +  2{fop + / i ( l  -  p) +  a )p (l -  p) +  / i{ l  -  p)2 

For a rb itrary  in itial values of /o , / i ,  and p, it is quite possible th a t the  system  

of equation 5.2 will in itially  exhibit directional selection. For exam ple, take the  case 

where p = q — 0.5 and /o >  / i  +  2s. This gives 1^12 =  u;2i =  0.5/o +  0 .5 /: +  <

O.5 / 0  T  0.5(/o — 2s) -f- s =  fo ~  and W12 — ^ 2 1  — 0.5/o T  0.5/% -)- s >  0.5(y% T  2s)

0 .5 / 1  +  s =  / i  +  2s >  / i  =  u>2 2 - Recall from C hapter 2 th a t th is situation  represents 

directional selection, where the  allele frequencies will approach a lim it based on the  

differential fitnesses. T h at is, for w n >  W12 = W21 > W2 2 ,P —+ 1 and 9  —+ 0. However, 

a lthough th e  system  will begin to  converge toward p =  1, it will become overdom inant 

before it actually reaches p =  1 and elim inates all 1 alleles. To see why this is true, 

let tuii = fo > W22 ~  f \  and let p =  1 — e. Suppose th a t for sufficiently small e, it is 

th e  case th a t W\ 2  =  u;2 i <  Wn. Substitu ting  p — \ — t  into the  m atrix  of equation

5.1,

W-[ 2 U?21 — (1 — c) /q "h c/i T  s
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=  /o +  ( / i  — /o)e +  -s
s

> /o =  Wn if e <  7  r  >  0
Jo — h

This contradicts th e  assum ption th a t w \ 2  = W21 < inn for sufficiently small e. We 

see th a t  for e < «^12 =  "^^21 >  ^ 1 1  >  W2 2 , and we conclude th a t the  system

of equation 5.2 is overdom inant. A sim ilar argum ent can be m ade for in itial values 

where W22 =  / i  >  =  /o-

2. A n a ly s is

In a  sense, we have added a feedback mechanism  which adjusts the  heterozygote 

fitness un til it produces overdominance, regardless of th e  in itial allele frequencies 

and th e  fitnesses. This comes at some expense, though, as equation 5.2 is a  ratio  of 

degree 3 polynom ials, and the  analysis becomes significantly more difficult. Moreover, 

because the  entries of the  fitness m atrix  are no longer all constant, we cannot apply 

th e  m ethods of Nagylaki and Kingm an to solve for the  fixed point and determ ine its 

stability. Consequently, the  m ethods used in C hapter 2  for two alleles will be used 

again here. By setting  p' =  p in equation 5.2 and solving for p, we can derive the  

fixed point in term s of th e  fitnesses. This procedure yields four solutions;

Pi =  0 

P2 =  1

fo  — f i  — -s +  \ /  f o  — 2 / 0/1  +  f \  +
2 ( / o - / i )

fo — f i  — ^ — \Jfo — 2 / 0 /1  +  f l  +

At th is poin t, we need to  show th a t exactly one of these solutions gives a fixed point 

in th e  open interval (0 ,1 ). Clearly, pi =  0  and p^ =  1 do not lie w ithin (0,1), so they
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can be elim inated. We wish to  show th a t p4 can also be elim inated.

T o  sh o w : p4 <  0  or p4 > 1 

C a se  1 : / o  >  / i

h - u - s -  -  2 f o f , + n +

f o  —  f i  —  s  —  i j i f o  — / i ) ^  +  

2 ( / o - / i )  

f o  —  f i  ~  S  ~  i j i f o  — f l Y  , 2

<  — 2 U w n —

_  fo — f l  — s — (fa — f l )

— 5

2 (/o -  A )
<  0  since fo > f i  and 5 >  0

C a se  2: / i  >  fo

fo — f l  — s — y/fo — 2 / o / i  +  f ï  +  5^ 

“  2 ( / o - / i )

fo ~  f l  — S — yj f l  — 2 /o /l +  /o  +  2 (/i -  /o )s +  .
> ---   ^ 7 7 ------7 7 ------------------------------  since 2 ( / i  -  /o )s >  0

2(./o — Ji J

fo — f l  — s — y j i f i  — fo + s f  

2 (/o — f l )
_  i fo — f l )  — S — {fl  — fo + s)

2 (/o — f l )
_  2 (/o — f l )  — 2s

2 ( / o - / i )

>  1 since/i >  /□ ands >  0

Therefore, P4 < 0 for fo > f i  and p4 > 1 for / j  > /o, so p4 is not a biologically valid 

equilibrium  point.
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It rem ains to  be shown th a t falls w ithin (0,1) and is biologically valid.

To show : 0 <  p3 <  1 

C a se  1: / o  >  / i

We begin by showing th a t ps >  0 .

P3 =
/o — / l  — -S +  f o  — 2 / 0 /1  +  / l  +  5̂  

2(/o  — / i )

_  fo  -  h  -  s  +  ^ i f o -  f l Y  +

2(/o — / i )

_  f o  — f i  — s  A  s  

2(/o  — / i )
/o  — f i

2 ( / o  — / i )  

1/2

> 0

Now, we show th a t ps <  1 .

fo — h  — s + yj  /o — 2 / 0 /1  +  / /  +  5̂

“  2 (/o - 7 i )
/o — / l  — 5 +  s j f o  — 2 / 0 /1  +  / /  4- 2(/o — / i  )s +  6̂

<     2 { f o - f i ) -------------------------------  2( / o - / i ) s > 0

/o  — / l  — S +  \ / ( / o  — / l  +  5)^

2 ( / o - / i )
_  / o  — / l  — -S +  ( / o  — / l  +  ■s)

2(/o  — / i )
2 ( / o - / i )  
2 ( / o - / i )

=  1

C ase  2: / i  >  /o

T he steps from the  first pa rt of Case 1 may be duplicated to  show th a t P3 >  0 for
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f i  > fo-

T he following dem onstrates th a t pi <  1 .

f o - A - S  +  y j s l  -  2/o/l +  R  +

/ l  “  /o  +  S — ^fo — 2 /o /x  +  +  5^

2 ( / i  — /o)

/ i  — / o  +  5 — y j f o  —  2 / 0 /1  +  / ?  +  2 ( / o  — / i ) 5  +

2 ( / i  -  fo)

/ l  — /o  +  5 — y ^ (/o  — / l  +  -s)^

<   2 ( / ~  / o ) -----------------------------  s i n c e  2 { f o  -  f i ) s  < 0

2 ( / i  — /o)
—  / i  ~  / o  +  -s — ( / o  — / i  +  a )

2 ( / i  — fo)
_  2 ( / i  — / o )

2 ( / i - / o )
=  1

Therefore, 0 <  /J3 <  1 for both f o  > f \  and / i  >  f o ,  so is a biologically valid 

equilibrium  point w ithin (0,1). For notational convenience, we let p  =  p3 so th a t we 

have
fo — f i  — -s +  \J fo — 2 / 0/1  +  f f  +

p =  ----------------
2(/o — /i)

W ithou t loss of generality, we can assum e th a t fo and / i  differ by a m ultiplicative 

factor, say 2 / ,  so th a t /q =  1 +  /  and f i  = 1 — f  and the  above equilibrium  can be 

rew ritten  as

P = ------------ ^ ------------  (5-3)

We proceed to  determ ine the  stab ility  of the  equilibrium  point. As in C hapter 2 , we 

take  the  first derivative of the  allele recursion (equation 5.2) and evaluate it a t the  

equilibrium  point. For local stability, th is m ust yield a value less than  1.

T o  show : ^ \ p - p  < 1

M e th o d :  Since th e  quan tity  is a  quotient, we show th a t the  num erator is less than
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th e  denom inator by m atching common term s.

dp' 
dp

p = p

=  1 6 f  ( 1 6 / ^  +  8 / Y V "  +  a:' -  4 f  a \ / 4 / 2  ^2 +  i 6 y 4  ^  ^ 2 )3 /2

+  2 s" +  12/^5^ +  2 5 ^ 4 / 2  +  52 _  16/2 j  _  4^3 __ ^ 3 ^ 4 /2  + ^ 2

- 6 (4 f  +  a')"/')  /  (16 f  +  12 / Y 4 f -  (4 f  +  +  6^ 4 ^ + 6 ^ ) :

E xpanding th e  denom inator and elim inating common term s, we need to  show th a t

1 6 / ^ 4 / '  +  a" -  4 (4 /"  +  6 ")^/" +  4 / " g \ / 4 / 2 + a 2 +  ^(4 ^ 2  ^2)3/2

+ 5 ^ 4 / 2  +  52  -  2 s^ +  16 f s  +  4s^

>  0

We will need to  assume th a t 5  <  /  in order to m anipulate  th e  inequality further. 

Expressing (4 /2  +  5 2 3̂ /2  ĝg (4 / 2  +  ^2,

16jF"l/4jr2 _p ,,2 __ gjT2 s2 __ 5 " ) \ /4 / 2  +  62  +  'ljF".S\/'4 jF2 -f ,,2

+ 5 (4 /"  +  5 " ) ^ 4 / 2  +  52  ^3 ^4 /2  +  s 2 _  2^" +  16 f s  +  4s^

=  1 6 /" '/4 /2  +  s2 _  8/2^2 -  16 /"-^4 /2  +  52 _  4 s " ^ 4 /2  +  s2 

+ 8 / " s ^ 4 /2  +  s2 +  2 5 ^ 4 /2  +  s 2 _  2 /  +  16 /"s +  45^

>  - 8 / " s "  -  4 a " \ /4 / 2  +  5 2  g/ 2 j ( 2 / )  +  2 a^(2 / )  -  2 a'' +  16/"a +  4s^

since ^ 4 /2  +  s 2 >  2 /

=  —8 /" s "  — 4s"y^4/2 +  s2 +  16/^s +  4 /s^  — 2s^ +  16/" s +  4s 

>  - 8 /" s "  -  4s"y^4/2 +  s 2 +  16/"s" +  4s" -  2 s" +  1 6 /" s +  4s'

since /  >  s

=  -4 s" \/4 /2  +  s2 +  8/"s" +  2s" +  16/" s  +  4s^

>  - 4 s " ( 2 /  +  s) +  8 /" s "  +  2s" +  16 /"s  +  4s^ since ^ J i p  + s^ <  2 /  +  s 

=  —8 / s " —4s^ +  8 / " s "  +  2 s" +  16 /"s +  4s^
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>  —8 / 5  ̂ +  8 / ^ 3  ̂4 - 2s^ +  16/s^ since f  > s

= 8 f s ^  + 2 s ^ + 8 f s ^

> 0  since /  >  0

Since th e  num erator is less th an  the  denom inator, we have shown th a t

< 1
dp'
dp

p = p

provided th a t  s < f  = ^\fo — f i \ .

In order to  prove th a t the  internal equilibrium  point is globally stable, we need 

to  show th a t  the  system  defined by equation 5.2 satisfies two additional criteria:

1 . ^  >  0  for 0  <  p <  1

2. A p >  0 for 0 <  p <  p 

A p <  0 for p <  p <  1

T o  sh o w ; ^ > O f o r O < p < l

~  2/o/iP^ +  f i P ^  +  4 /o /ip^  — 4/^p^ 4- fo^P^ +  ^ f i P ^  — 6/o/ip^

d p

dp'
dp

+f isp^  + 4 /o /iP  -  4/i*p -  2 / 1  sp 4 - / 1 3 4 - f l )  /

(2/op^ — 2/ip^ — 3/op^ 4 - 3/ip^ 4 - 2sp^ — 2sp — f \ Ÿ  (5.4)

Clearly, th e  quantity  in th e  denom inator is greater than  0. We proceed to  evaluate 

th e  num erator. Grouping th e  term s of the num erator,

( / o  — / i ) V ^ + 4 ( / o / i — / i  ) p ^  +  ( / o 4 - / i ) 5 p ^  — 6 ( / o / i — / f  ) p ^ - l - 4 ( / o / i  - f \ ) p - 2 f i s p + f i s + f ‘f  

C a se  1: fo > f \  > s

{fo — f iYp*  +  4 ( /o /i — f i ) p ^  +  {fo 4- /i)>sp^ — 6 ( /o /i  — f i ) p^  4- 4 (/o /i — / f  )p 

—2 / 1  sp 4- f i s  + /?
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— {fo -  +  {foi l  -  +  4p) +  {fo +  f i )sp^  -  2 / is p  + f i s  A

>  {fo —  +  ( /o /i  — / f )(4p^ -  6 p^ +  4p) +  {fo A  fi)sp'^ -  2 f i s p  A  f i s p A  f i

since p <  1

>  {fo — /i)^P^ +  ( /o /i  — yf)(4p^ -  6 p^ +  4p) +  {fo +  /i)sp^  — 2 f i sp  4- f \ s p  A f \ s

since f \ >  s

> {fo — /i)^p'* +  ( /o / i  — /i^)(4p^ — 6 p^ +• 4p) +  {fo +  f i )sp^  — 2 /is p  +  / i s p  +  / j s p

since p <  1

=  (/o -  +  ( /o /i  -  / i  )(4p^ -  6 p^ +  4p) +  {fo A  f i )sp^

> ( /o / i  -  / i  )(4p^ -  6 p^ +  4p) +  {fo +  f i )sp^  since {fo -  / i ) V  >  0

>  {fof i  -  /?){4p^ -  6 p^ +  4p) since {fo A  fi)sp'^ > 0

>  0 since f o f i  — / j  >  0 and 4p^ — 6 p^ +  4p >  0

We can e laborate fu rther on the  la tte r quantity  by sta ting  th a t 4p^ — 6 p^ +  4 p =  

p(4 p^ — 6 p 4- 4). O ur original assum ption is th a t p >  0. It can easily be verified th a t 

y — 4x^ — 6 x 4 - 4 is parabolic w ith a global m inim um  at x  =  0.75, which corresponds 

to  p =  1.75 >  0.

C ase 2; / i  >  /o >  5

{fo — fi)^P^ +  4(/o/i — f t ) p ^  A  {fo A  f i )sp^ — 6(/o/i — f i ) p^  A  4(/o/i — f i ) p  

- 2 f ^ s p A  f \ s  A  f l

=  /oP^ — fofiP^  +  { f l  — fof \ ){p^ — 4p^ 4- 6 p^ — 4p) 4- {fo +  f i )sp^ — 2 / is p  A f^s  A  f l

> /oP^ — f o f i  A  { f l  — /o/i)(p'* -  4p^ 4- 6 p^ — 4p) 4- {fo 4- f i )sp^  — 2 /is p  4- /i-s 4- f l  

since p^ < 1

=  /o V  +  { f l  -  f o f i W  -  4p^ +  6 p^ -  4p 4- 1 ) 4- {fo A  fi)sp'^ -  2 / i s p  4- / i5  4- f l

> /oP'* 4- { f l  -  /o / i  )(p'* -  4p^ 4- 6 p^ -  4p +  1) 4- (/o +  / i  )ap^ -  2 /is p  4- /%ap +  f l
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since p <  1

^  foP* +  {f l  ~  fof i ){p^ — 4p^ +  6 p^ — 4p 4- 1) +  {fo +  /i)-sp^ — 2 f \ sp  +  / is p  +  /i-s

since f \ > s

> /o P ‘‘ +  { f l  -  /o/i)(p '* -  4p® +  6 p^ -  4p +  1) +  (/o +  /i)ap^  -  2 / i s p  +  / i s p  +  / i s p  

since p <  1

=  +  { f l  -  fof i ){p^  -  4p^ +  6 p^ -  4p +  1) +  (/o +  /i)sp ^

>  ( / i  - /o / i ) (p ‘* - 4 p ^  +  6 p^ -  4 p + 1) +  (/o + /i)sp^  since /^p"* >  0

>  { f l  — /o /i)(p ^  -  4p^ +  6 p^ -  4p +  1) since {fo +  f i ) sp^  > 0

>  0 since / j  — /o / i  >  0 and — 4p^ +  6 p^ — 4p +  1 =  (p — 1 )^ >  0

N ote th a t we have added the  additional restriction th a t s <  min{fo,  f i ) .

It rem ains to  be shown th a t Ap >  0 for 0 <  p <  p and A p <  0  for p <  p <  1 . In 

determ ining  th e  equilibrium  points, we showed th a t the  curve of p' versus p intersects 

th e  line p' =  p a t exactly  three points in the  closed interval [0 ,1 ], nam ely a t p =  0 , p =  

p, and p =  1. The line p' =  p, or the  diagonal, represents the  set of points where 

A p =  0. Thus, points above this line will have A p >  0, and points below it will have 

A p <  0. We have shown th a t ^  > 0 in the open interval (0,1). This implies th a t 

th e  curve of p' versus p is stric tly  increasing within (0,1). Evaluating equation 5.4 at 

p =  0  yields
dp'
dp

h + i > i
J ip=0 ^

This implies th a t th e  curve of p' versus p lies above the diagonal for sufficiently small, 

nonnegative values of p. Since the  curve does not cross the  diagonal again with 

increasing values for p until p =  p, we claim th a t for 0  <  p <  p, A p > 0 . A t p =  p, 

th e  curve passes through the  diagonal w ith slope less than  1 , as implied by the  earlier 

result th a t ^ \p=p < 1. Hence, the  curve of p' versus p is below th e  diagonal when
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equilibrium
point

0 .

0 .

p'
p = p

0

0 . dp'
p = 0

Figure 5.1: A geom etric argum ent for global stability

p =  p +  e for sufficiently small e. As the  value of p increases, the  curve does not 

in tersect th e  diagonal again until p =  1 , a t which point it has slope

_  fo + s

p=i

dp'
dp fo

> 1

Figure 5.1 depicts th is argum ent graphically. Since the  slope of p' versus p is positive 

in (0 ,1 ), we can place an additional bound th a t its curve does not extend above the 

line p' = p  for 0 <  p <  p or below this line for p < p < 1. Thus, the  curve of p' versus 

p m ust lie w ithin the  shaded region of Figure 5.2. For any curve w ithin th is region, 

th e  ite ra tes of p will staircase into the  equilibrium  point as depicted in Figure 5.3.

An analytical argum ent can be m ade for A p >  0 for 0 <  p <  p and A p <  0 for 

p <  p <  1. From calculus, (see [4]), the  curve of a function /  can be described by the  

form ula

f {p)  =  / ( “ ) +  f'{(^){p — a) +  -^f ' {c){p — aŸ
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1 - ■

0 . 8 -■

0 . 6

P’

0 . 4

0 . 2

equilibrium
point

Figure 5.2: The curve for p' versus p m ust lie w ithin the  shaded region

P’

1

. 8

6

4

. 2

0
0 PP 0 . 2 0 . 4 10 . 8 initinit

Figure 5.3: The iterates of p staircase into the  equilibrium  point
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where a is a  point in the  neighborhood of p, th e  point under consideration, / '( a )  is 

th e  first derivative of the  function /  evaluated at a, and f "{c)  is th e  second derivative 

of /  evaluated a t a point c between a and p. The first two term s of th is equation 

com prise a linear approxim ation of the  curve, i.e.

f{p)  ~  / ( a )  +  f {a){p -  a) =  H p)

T he th ird  te rm  is an error term , the  absolute value of which represents th e  distance 

from  the  line described by L{p)  and the  curve of f {p) .

^ { p )  =  -  a Ÿ

T he error te rm  varies w ith th e  proxim ity of a to p. The closer the  proxim ity, the 

sm aller th e  error. T he value of f"{c)  is bounded, i.e. there is some B  for which 

<  B  for all c between a and p. Note th a t when a is close to  p, (p — a) >  (p — a)^ 

and thus L(p) > E{p).  Let / (p )  = A p  = p' -  p. Then f { p )  =  ^  =  ^  -  1. 

A t a =  0 ,A p  =  0, so /(O ) =  0. /'(O ) =  -  1 >  0, since >  1- Thus,

L{p) > 0, and the  linear approxim ation for Ap lies above th e  x-axis. The actual curve 

of A p lies either above or below L{p),  depending on the  sign of the  error term . The 

d istance from  the x-axis is either L(p)  +  |E (p )| or L{p) — |£^(p)|, respectively. Clearly, 

L{p) + \E{p)\ > 0. The case when the  curve of Ap is below L{p)  is shown in Figure 

5.4. We wish to  show th a t for sufficiently small values of p, L{p) >  E{p).  In other 

words, for sufficiently small p,

/(O) +  / '(0 ){p  -  0) =  / '(0 )(p )  >  l / " ( c ) ( p  -  0)^ =  ^f"{c)p^

Since p >  0, both sides of the  equation can be divided by p to  give /'(O ) >  \ f ' { c ) p  

or
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Ap

L(P)

E(p)

L(p) - 1 E(p)

a  = 0

Figure 5.4: T he curve for A p  and its linear approxim ation

which holds for sufficiently sm all p, since f "{c)  is uniformly bounded by B  in a 

neighborhood. Hence, A p >  0 for 0 <  p <  p. Similarly, it can be shown th a t for 

p <  p <  1 , A p < 0 by taking a =  p and exam ining values of p sufficiently close to , but 

greater th an  p. We conclude th a t th e  equilibrium  point of equation 5.3 is globally 

stable. □

Finally, Figure 5.5 is a  plot of the  0 allele frequency for the  system  of equation 

5.2 superim posed w ith a plot of th e  0-bit frequency for the  haploid m odel over a 

tim e  scale of 500 generations. T he initial values of xq and po are both 0 .0 1 , and the 

in itia l values of xi  and pi are 0.99. The fitness values are fo =  1.00 and f \  =  0.90. 

T he two curves representing the  diploid model correspond to  two different values of 

s, th e  heterozygote fitness bonus. The case for 1 allele convergence is sym m etric, 

and th e  curves of Figure 5.4 can be duplicated by interchanging the  fitnesses and 

th e  in itial values of po w ith pi and xq w ith Xi. Once again, it is evident th a t the
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Figure 5.5: Convergence characteristics: haploid vs. diploid models

diploid m odel is capable of both slowing the  rate  of convergence (to a homozygote 

genotype) and avoiding com plete convergence (by forming a stable polym orphism ). 

More im portantly , th e  scheme of th is chapter can be extended to  m ultiple loci.

3. E x te n d in g  th e  M o d el

G eneticists such as H artl and Clark [7] have taken the  next logical step by an­

alyzing a  two-locus, two-allele viability model. T he prim ary difference between this 

m odel and single-locus models is the  addition of recom bination between pairs of genes 

linked on th e  same chromosome. This is sim ulated in GAs with the  crossover opera­

tor. An allele recursion can be derived, but the  two-locus selection problem  has not 

been solved for the  general case. In o ther words, for an a rb itrary  fitness m atrix , there
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is no form ula for th e  equilibria and their stability. Several papers have exam ined

a special case of th e  two-locus selection problem  referred to  as th e  additive m odel,

w here th e  sim plifying assum ption is m ade th a t the  fitness of a given genotype is the  

sum  of th e  fitness effects at each locus. Most notable among these are perhaps a se­

ries of papers by Karlin and Liberm an [10], [11], and [12] th a t analyze the  two-locus 

additive  fitness m odel and extend it to  an a rb itrary  num ber of loci. The com plexity 

of th e  analysis dem ands a level of m athem atics and a system  of notation th a t are 

quite  beyond th e  scope of th is paper. In [12], Karlin and Liberm an develop a global 

convergence criterion and then  apply it to  establish th a t the  polym orphic equilibrium  

of a  general m ultilocus additive viability model is globally stable provided:

1 . Each of the  loci is diallelic.

2. Each of the  loci is overdom inant.

3. T he m ultilocus recom bination ra te  is positive.

Clearly, item  1 is satisfied w ith th e  system  outlined in th is chapter. We have shown 

th a t th e  single-locus case is capable of attain ing  overdom inance, thus m eeting the 

requirem ent of item  2. W ith a positive crossover rate , item  3 can be satisfied. How­

ever, it is not clear w hether a m ulti-locus extension of the  system  in this chapter can 

be equated  to  the additive model. As sta ted  earlier, fitnesses in a trad itional GA 

usually correspond to  entire strings, not to  particular locations within a string. For 

an a rb itra ry  fitness function, there is no way to  derive quantitatively  th e  fitness of a 

given string from th e  sum of the  fitnesses of its com ponent bits, since an individual 

b it typically  has no fitness associated with it. The issue of w hether a globally stable 

polym orphic equilibrium  exists for a m ultilocus diploid GA will have to be resolved 

by em pirical m ethods.
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E m pirica l T est R esu lts

1. Im p le m e n tin g  a D ip lo id  G A

The procedure for im plem enting a diploid GA th a t conforms to  the  scheme dis­

cussed in chapter 5 is very sim ilar to  the  procedure for the  haploid GA as presented in 

M itchell [16]. The m ain dilferences lie in the  need to com pute allele frequencies du r­

ing each generation, the  com putation of fitnesses, and the  application of the  crossover 

operator. For th e  diploid GA, we perform the following steps:

1. R andom ly generate an initial population of n diploid individuals, where each 

individual consists of two /-bit binary strings.

2 . C om pute the  allele frequencies in th e  to ta l population for each locus.

3. E valuate the  fitness of each individual.

4. G enerate a new population of n diploid individuals by repeatedly performing:

(a) selection— select two parents based on fitness

(b) gam etogenesis—generate a pair of gam etes from each parent, perform ing 

crossover w ith probability  pcross and bit-wise m utation  with probability 

pmut.

54
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r 0 1 0 1
genotype 1  ̂  ̂ q

phenotype 0 1 1 0 = >  f(0110) + 3s

Figure 6.1; C om puting the  fitness of a diploid genome

(c) fertilization— random ly combine one set of gam etes from each parent to 

create a (diploid) zygote or child.

5. Goto step 2.

T he two f-bit binary  strings are aligned so th a t a  locus of the  diploid chromosome 

refers to  th e  same position in each string. The allele frequency at a given locus is 

com puted by counting the  num ber of 0  alleles at th a t locus for each individual in 

th e  population , then  dividing by two tim es the  population size. This is done for all / 

loci. These frequencies are then used to  assist in th e  resolution of the  heterozygote 

entries of the  dom inance m ap. To com pute the fitness of an individual, its diploid 

genotype m ust first be m apped to  a haploid phenotype. The genotype is exam ined 

on a locus-by-locus basis. 0 0  m aps to  0  and 11  m aps to  1 . 0 1  and 1 0  m ap to  0  with 

probability  p, where p  is the  frequency of allele 0 at th a t locus. Thus, 01 and 10 m ap 

to  1 w ith probability  I — p. The num ber of heterozygote loci is recorded and stored 

in a  bonuscount variable. The haploid fitness function /  is applied to the  phenotype 

and a bonus equivalent to  bonusvalue  x bonuscount is added to the  resulting fitness. 

T his is depicted for a  string of length 4 in Figure 6.1. The m ethod of selection is 

stochastic  sam pling w ith replacem ent, or “roulette  wheel” selection.
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Gametogenesis

Generates a pair of gametes from each parent, 

parent 1 parent2

0  1 

1 1

1 0  

0  1

0

0

0 1 0 
1 0 1

crossover
point

gam etelA  0 1 0  1 
gam etelB  1 1 1 0

gamete2A 0 1 0  1 
gamete2B 0 0 1 0

Fertilization

Generates a single child.
4 offspring are possible, each with probability 0.25

0  1 0  1 1 1 1 0

0  1 0  1 0 0  1 0

0 1 0  1 
0 0  10

1 1 1 0  

0 1 0  1

Figure 6.2: Diploid gametogenesis and fertilization

Crossover in th e  diploid GA occurs a t a different stage of the  lifecycle than  in the 

haploid GA. Since each diploid parent consists of two strings, recom bination of genetic 

m ateria l can occur w ithin a single parent. One-point crossover is performed. Before a 

paren t can donate a  pair of gam etes to  the  fertilization process, the  m utation operator 

is able to  act upon each b it of the  gam etes with a small probability. Fertilization 

consists of random ly choosing one gam ete from each parent and combining them  to  

form  a new diploid individual. Gametogenesis and fertilization are shown in Figure 

6.2 for a 4-bit exam ple where bonusvalue = s and bonuscount =  3. In the  figure, 

one-point crossover is perform ed between locus 2 and locus 3 for parent 1, and between 

locus 1 and locus 2  for paren t2 . For the sake of clarity, no m utation  is perform ed in
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th is  exam ple.

T he first tests a ttem p ted  to  duplicate the  results a tta ined  in Figure 5.5 for allele 

convergence. C hapter 5 presented an idealized model of a GA w ith no m uta tion  and 

an infinite population. We saw th a t the  infinite population haploid model converged 

rapidly  and completely, while the  diploid model exhibited a slower ra te  of convergence 

and reta ined  both  types of alleles. The diploid im plem entation described above should 

be able to  achieve sim ilar results for large size populations. Figure 6.3 shows a 

com parison of th e  convergence rates for the  haploid G A and th e  diploid GA. W ith  the 

sam e initial param eters, pcross  =  0  and p m u t  =  0 , and a population size of 1 0 , 0 0 0 , 

the  results appear to  agree quite  closely w ith th e  models. The sm all pertu rbations or 

lack of “sm oothness” in the  curves are due to  stochastic errors. Again, we see th a t we 

can a lte r th e  ra te  of convergence and percentage of alleles rem aining at equilibrium  

by varying th e  value of the  heterozygote fitness bonus, s.

2. M ea su r in g  D iv e r s ity

A pairwise Ham m ing distance function is used to m easure the  diversity of the 

haploid and diploid GAs. The function works as follows: Each individual’s binary 

representation  is com pared locus-by-locus with th a t of every other individual in the 

population. In order to  correlate diploid results with haploid results, the  Ham m ing 

distances will be com puted from  each individual’s phenotype in the  diploid case. Each 

tim e  th e  allele values differ a t a  given locus, the  Ham m ing distance is increm ented by 

one. If there  are n  individuals in the  population, each consisting of a string of length /, 

then  a to ta l of /n (n —1)/2 bitwise comparisons are required. The Ham m ing distance is 

then  norm alized over the  population size and the  string length, so th a t diversity results 

can be com pared among differing population sizes and string lengths. Because the
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Figure 6.3: Convergence characteristics: haploid vs. diploid GA
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degree of possible diversity decreases w ith increasing population size for sm all string 

lengths, we norm alize the  Ham m ing distance values only when 2‘ %§> n. A nother 

im p o rtan t m easure in the  case of the  diploid GA is th e  num ber of heterozyous loci in 

th e  population. By recording th is sta tistic , we can determ ine w hether overdom inance 

is being m aintained  in the  diploid population.

In th e  absence of selective pressure, changes in allele frequency can result from 

chance alone, a phenom enon biologists refer to  as random genetic drift. Left to  

th e  influence of random  genetic drift, the  allele frequencies in a haploid or diploid 

population  will w ander about, bu t will eventually converge as alleles are either lost 

or becom e fixed. The ra te  of convergence is dependent upon population size, initial 

allele frequencies, and other factors. The reader is referred to  H artl and C lark [7] for 

an overview of random  genetic drift, including studies, models, and a  list of further 

references. We would like to  show th a t a diploid GA will converge at a  slower ra te  

th an  a haploid GA under these conditions and th a t the  heterozygote fitness bonus 

can affect the  ra te  of convergence.

Random  genetic drift can be sim ulated in a  GA by using a flat fitness function 

th a t  gives every individual in the  population equal probability  of being selected to 

paren t an offspring. In addition, the  m utation  rate  is set to  zero. We assum e th a t 

th e  random ly generated in itial population provides an even distribution of allele fre­

quencies. The heterozygote fitness bonus is com puted as a small percentage of the 

average fitness of th e  population in the  previous generation, e.g. 0.01 or 0.05. This 

ensures th a t  the bonus is relatively small with respect to  the  fitness of a  given indi­

vidual during a given generation. The bonus is set to  zero when the fitnesses of the 

first generation are evaluated. Figures 6.4 and 6.5 com pare the pairwise Ham m ing 

distance values for the  haploid GA with those for the  diploid GA with various values 

of s, the  heterozygote fitness bonus. Figure 6.4 was generated with a population size
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Figure 6.4: Pairwise Ham m ing distance values for n =  500 and / =  60

of 500 and a string length of 60, while Figure 6.5 was generated with a population 

size of 100 and a string length of 60. Each figure represents results averaged over 

10 runs. Both GAs use one-point crossover with a rate  of pcross =  0.5. We see 

th a t th e  diploid GA does indeed converge at a slower rate  than  the  haploid G A, even 

w ithout the  benefit of the  heterozygote fitness bonus. Moreover, increasing the  bonus 

decreases the  ra te  of convergence. As expected, Ham m ing distance values are sm aller 

and convergence rates are faster for the  sm aller sized population.

Figures 6 . 6  and 6.7 show the  percentage of heterozygous loci for successive gen-
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Figure 6.5: Pairwise Ham m ing distance values for n =  100 and / =  60
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Figure 6 .6 : Fraction of heterozygous loci for n =  500 and / =  60 

erations and correspond to  Figures 6.4 and 6.5, respectively.

3. T h e  O sc illa tin g  0-1 K n ap sack  P ro b lem

T he goal of the  0-1 knapack problem  is to  m axim ize the  to ta l value of a subset of

objects selected from a set of N  possible objects th a t m ay be placed in a knapsack,

sub ject to  a  weight constraint. Letting u,- be the value of the  dh  object and Wi be

th e  weight of the  ith object, the  problem  m ay be expressed m athem atically  as

N

m a x ^  ViXi
t=l
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Figure 6.7: Fraction of heterozygous loci for n =  100 and I = 60
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sub ject to  th e  weight constraint

N

^  W i X i  < W  
1 = 1

w here Xi G {0 , 1 } denotes w hether th e  zth object is in or out of the  knapsack, and 

W  is th e  m axim um  perm issible weight. As Goldberg and Sm ith note in [5], the  

problem  is presented to  th e  G A blindly. T h a t is, the  algorithm  has no knowledge of 

th e  s tru c tu re  or param eters of the  problem , since they  are represented externally  as 

p a rt of th e  fitness function. In addition, nonstationarity  is introduced by varying the  

weight constraint as a  step function between two values— 82% and 50% of th e  to ta l 

ob ject weights— every 50 generations. The weight constraint is handled as follows: 

a  knapsack weight th a t exceeds the  m axim um  perm issible weight results in a fitness 

penalty  which is deducted from  the  to ta l value. Specifically, the  penalty  function 

applied to  overweight knapsacks is

N

penalty  =  2 0  x — W Y
Z=1

N egative fitness values th a t result from applying the  penalty  function are set to  zero. 

T he tab le  below depicts the  param eters in the  17-object knapsack problem used by 

bo th  G oldberg and Sm ith [5] and Ng and Wong [18].
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O bject num ber

i

O bject value

Vi

O bject weight

Wi

0 2 1 2

1 3 5

2 9 2 0

3 2 1

4 4 5

5 4 3

6 2 1 0

7 7 6

8 8 8

9 1 0 7

1 0 3 4

1 1 6 1 2

1 2 5 3

13 5 3

14 7 2 0

15 8 1

16 6 2 0

to tals 91 1 2 2

This results in weight constrain ts of W^2% =  100 and ^ 50% =  61. The optim al strings 

for each case are as follows:

W string value weight

1 0 0 0 1 1 1 1 1 0 1 1 1 1 1 1 1 1 1 1 87 1 0 0

61 0 1 0 1 1 1 0 1 1 1 1 1 1 1 0 1 1 71 57

U nfortunately, it is very difficult to  correlate the  results of the two papers, because 

th ey  disagree on the  selection and crossover strategies. W hile Goldberg and Sm ith 

use stochastic rem ainder selection with replacem ent and two-point crossover with
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pcross  =  0.75, Ng and Wong use linear ranking selection and uniform  crossover 

w ith pcross  =  0.5. O ur own tests indicated th a t the  selection m ethod can have a 

significant im pact on the  results obtained. For exam ple, stochastic sam pling w ith 

replacem ent resulted in slower convergence {and thus b e tte r  recovery from  changes 

in th e  weight constraint) th an  did stochastic rem ainder selection with replacem ent 

when used in the  haploid GA runs. Because Goldberg and Sm ith provide sufficient 

inform ation to  repeat the ir experim ents, the ir GA param eters and im plem entation 

were chosen for th e  tests used in th is chapter. The weight constraint was switched 

every 50 generations, and test runs were perform ed with p m u t  =  0.001 and p m u t  =

0.01. Figure 6 . 8  plots the  average and m axim um  fitnesses over 500 generations with 

p m u t  =  0.001 for the  haploid GA, triallelic diploid GA(as per Hollstien, Goldberg, 

and Sm ith), and diallelic diploid GA (as presented in th is chapter and m odelled in 

th e  previous chapter). In the  diallelic diploid GA, the heterozyogte fitness bonus is 

com puted as 0.01 of th e  average fitness of the  previous generation. Once again, the 

bonus is used only in the  selection process and is not included in the fitness results. 

Each plot represents average and m axim um  generational fitnesses averaged over 1 0  

runs. Figure 6.9 presents the  results averaged over 10 runs w ith pm ut  =  0.01. 

Clearly, when the  weight constraint is switched to  the  lower value, the  diploid GAs 

are able to  reach a good solution before the  next weight constraint change, while 

the  haploid GA w ith p m u t  =  0.001 converges sufficiently so th a t all strings have 

zero fitness after application of the penalty  function. W ith  p m u t — 0.001 and an 

oscillation period of 100 generations, none of the  GAs are able to  achieve the  optim al 

fitnesses of 87 and 71. A lthough both the  triallelic and diallelic diploid GAs have 

sim ilar fitness values for the  82% constraint, the  diallelic scheme exhibits a slight 

perform ance advantage for the  50% constraint when p m u t  =  0.001 and a decidedly 

greater advantage for th is constraint when pm ut  =  0.01. W hen pm ut  =  0.01, the
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Figure 6 .8 : 0-1 oscillating knapsack results, pm ut = 0.001
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Figure 6.9: 0-1 oscillating knapsack results, pm ut — 0.01
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trialle lic  scheme not only reaches lower fitness values for th e  50% constrain t, bu t also 

degrades w ith successive oscillations. The higher m utation  ra te  gives the  haploid 

G A b e tte r  perform ance for both  weight constraints, but it falls short of th e  diallelic 

diploid GA, which finds th e  optim um  for both  weight constrain ts when p m u t  =  0.01.

4. M u lt im o d a l F u n ction  O p tim iza tio n

A fundam ental hypothesis th a t a ttem p ts  to  explain how GAs work is th e  build­

ing block hypothesis [6 ]. The hypothesis states th a t strings which include substrings 

th a t are contained in th e  globally optim al string (or building blocks) will increase 

in frequency. F itte r  strings are thus constructed from the m ost fit partial solutions 

of past samplings. To test th is hypothesis, GA researchers such as Goldberg have 

devised fitness functions specifically designed to  deceive a GA. A deceptive fitness 

function is one in which the  average fitness of substrings which are not contained in 

th e  global optim um  is higher than  the  average fitness of those which are. We present 

a  3-bit deceptive problem  based on the m inim al deceptive problem  of Goldberg [6 ], 

We assign fitnesses to  each of the  possible 3-bit substrings as follows:

string fitness

0 0 0 3

0 0 1 2

0 1 0 2

Oil 1

1 0 0 2

1 0 1 1

1 1 0 1

1 1 1 4
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Here, 1 1 1  is th e  optim al substring, bu t all o ther substrings have fitnesses th a t produce 

a gradient away from 111 tow ard a local optim um  a t 000. We concatenate 10 of these 

3-bit substrings together to form a string of length of 30. A 30-bit string 's fitness 

is evaluated 3 bits at a tim e (using th e  fitness values in the  above table) and is the 

sum  of 10 of these fitness values. Thus, th e  globally optim al string consists of all Is, 

and th e re  are 2 *̂̂ — 1 local optim a designed to  entrap  a  rapidly converging GA on a 

suboptim al peak.

We apply th is fitness function to  th e  haploid and diploid GAs, m easuring average 

and m axim um  fitness and pairwise Ham ming distance. T he m uta tion  ra te  is varied in 

th e  haploid G A, while m utation  is set to  zero and th e  value of the  heterozygote fitness 

bonus is varied in the  diploid GA. In order to  ensure th a t  fitness comparisons are m ade 

fairly, th e  fitness bonus is incorporated only during the  selection process, bu t is not 

included in an indiv idual’s contribution to  the  average fitness of th e  population, which 

is used in th e  fitness plots. Again, results are averaged over 10 runs, and a crossover 

ra te  of pcross — 0.5 is used w ith one-point crossover. Exam ining figures 6 . 1 0  and 6 .1 1 , 

we see th a t  for population sizes of 500 and 100 respectively, the  diploid GA perform s 

b e tte r  under any fitness bonus selection scheme than  does th e  haploid GA. We also 

note th a t the  haploid GA never reaches the  global optim um  in its best-of-generation 

fitness results (not p lo tted). The corresponding diversity results are reported  in term s 

of th e  pairwise Ham m ing distance in figures 6.12 and 6.13 for population sizes of 500 

and 1 0 0  respectively.

We see th a t for the  sm aller population, the  diploid GA requires a higher h e t­

erozygote fitness bonus to  achieve the same degree of diversity as it did w ith the 

larger population. A lthough a relatively high m utation  ra te  of pm u t  =  0 . 0 1  enables 

th e  haploid GA to  m aintain  the  greatest diversity in the  sm aller population, the  cor­

responding fitnesses indicate th a t its perform ance suffers greatly as a side effect of a
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high ra te  of m utation . It appears th a t for th is deceptive problem , the diploid GA is 

able to  give both b e tte r perform ance and increased diversity when given a sufficient 

heterozygote fitness bonus.

5. A  R u n tim e  S tu d y

W ith  large population sizes and long bit strings, conventional GAs m ay require a 

significant am ount of tim e to  run in order to reach a desired stopping criterion. Cer­

tainly, th e  diploid GA introduces additional com putational overhead when evaluating 

th e  fitness of an individual. Allele frequencies a t each locus m ust be com puted and 

stored for each generation. The individual’s genotype m ust be m apped to  a pheno­

type, and the  num ber of heterozygous loci m ust be determ ined before an individual 

can be assigned a fitness. In m easuring runtim e perform ance, we are m ost in ter­

ested in determ ining w hether th e  diploid GA gets linearly or exponentially worse 

w ith increasing string lengths and population sizes. We take th e  difference of the  

diploid m inus the  haploid run tim e for various string-length x population-size prod­

ucts. “R untim e” is defined as the  user-mode tim e as m easured by the  Unix t im e  

facility. All program s are w ritten  in C, compiled with the  IBM x lc  com piler, and 

run under AIX 4.2 on an RS-6000/250 workstation. The deceptive fitness function 

of th e  previous section is used in bo th  the haploid and diploid GAs. The crossover 

ra te  for both  GAs is pcross =  0.5. W hile the  haploid GA is given a m uta tion  ra te  

of p m u t  =  0 .0 0 1 , th e  diploid GA is given p m u t  =  0  and a heterozygote fitness bonus 

of 5 =  0.01 X  avg. fitness. The following (string length, population size) pairs were 

used:
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string length 

/

population size 

n

30 1 0 0

60 1 0 0

90 1 0 0

30 500

45 500

60 500

75 500

90 500

T he results are shown in Figure 6.14, and they appear to  indicate a linear ra ther than  

an exponential relationship.

6. C on clu sion s

W hen selection and m utation  are elim inated, the  diploid GA is able to  slow the  

ra te  of convergence associated w ith random  genetic drift. By modifying th e  fitness 

bonus for heterozygotes, we can control the  ra te  of allele loss and the  percentage of 

heterozygous loci in the  population. W ith a m ultim odal fitness function, the  diploid 

GA gives both greater diversity and improved perform ance over th a t of th e  haploid 

GA. Moreover, it does so w ithout the  need for m utation. W hen applied to  th e  oscil­

lating 0-1 knapsack problem , th e  diploid GA presented herein outperform s both the  

haploid GA and the  triallelic diploid GA of Goldberg and Sm ith in adjusting to  peri­

odic, large changes in fitness and recalling previous problem  solutions. A lthough the  

run tim e differential between the  diploid and haploid GAs increases with increasing 

string  length and population size, it does so at a linear, ra ther than  an exponential 

rate .
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C on clu sion s

From th e  preceding chapters, we arrive at the  following conclusions:

1 . T he diploid model has an allele recursion equation which is inherently more 

complex than  th e  corresponding equation for the  haploid model. This fact, 

along w ith biological observations, suggests th a t diploid populations are capable 

of exhibiting more complex behavior than  haploid ones.

2. Two alleles are sufficient to  provide overdom inance and thus globally stable 

polym orphism s in diploid populations, given the  proper assignm ent of fitnesses.

3. A dapting a diploid genome to a haploid fitness function requires variable het­

erozygote fitnesses in order to  guarantee overdom inance for arb itrary  haploid 

fitness values.

4. A diploid m odel with variable heterozygote fitnesses can be realized as a p racti­

cal GA th a t exhibits the  properties of overdom inance and globally stable poly­

m orphism s.

5. The diploid GA is able to  introduce and m aintain  greater population diversity 

to  prevent (or at least m itigate) the  problem  of prem ature  convergence.

78
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6 . On a  highly m ultim odal, deceptive fitness function, th e  diploid GA m aintained 

g reater population diversity and achieved b e tte r  fitness results than  th e  haploid 

GA. W hile th e  haploid GA converged to  local op tim a for all runs, the  diploid 

GA found th e  global optim um  for all runs.

7. W hile the  m utation  operator gives the  haploid GA a m eans to  introduce diver­

sity  into the population, it is an undirected m ethod th a t m ay have unwanted 

side effects. High m utation  rates are usually deleterious to  GA perform ance.

8 . T he heterozygote fitness bonus of the  diploid GA appears to  provide and m ain­

ta in  population diversity w ithout large negative effects on perform ance.

9. T he diploid GA presented herein outperform s both  the  haploid GA and the 

triallelic  diploid GA of Goldberg and Sm ith in tests w ith an oscillating 0-1 

knapsack problem.

We have achieved the  objectives of introducing greater population diversity, p re­

venting (or in some cases m itigating) the problem  of p rem ature  convergence, and 

im proving GA perform ance in complex problem  domains such as m ultim odal and 

nonsta tionary  fitness landscapes. Based on the  wealth of theory available in th e  field 

of population genetics and the fact th a t GAs already borrow heavily from some of th is 

theory, there  appears to  be great potential in using biological analogues to  fu rther 

GA research.
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