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Genetic Algorithms (GAs) are search and optimization procedures based on the
mechanics of natural selection. They encode the parameters of a problem in a single-
stranded or haploid binary string. However, most haploid organisms in the biological
world are simple lifeforms such as bacteria. More complex lifeforms such as plants,
animals, and humans rely on a diploid chromosome, which contains homologous chro-
mosome pairs at each locus. When chromosome pairs contain different values at the
same location, a dominance operator usually resolves the conflict.

The primary motivation for incorporating diploidy and dominance into GAs is to
increase population diversity and thus avoid premature convergence to a suboptimal
solution. In a multimodal fitness landscape, this added diversity may enable a GA to
avoid convergence to local optima. In the case of non-stationary function optimization
problems, the objective is to use a diploid GA to adapt more readily to changing
requirements and thus exhibit improved performance over that of the haploid GA.
This paper will show analytically and empirically that a diploid GA is capable of
maintaining greater population diversity than the haploid GA, and that it is better
able to avoid complete convergence than the haploid GA. In addition, empirical tests
are performed to demonstrate the effectiveness of a diploid GA in multimodal and
non-stationary environments.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



Table of Contents

1 Introduction

1. Background . . . . .. ...
2. Motivation . . . . . ...,
3. Objective . . . .. .. L
4. Previous Work . . . . .. ..

2 Why Diploidy?

1. A Diploid Viability Model . . . . . .. . ... ... .. ... ..... ..
2. A Haploid Viability Model . . . . . . . .. .. .. ... ... ... ...
3. Conclusions . . . . . . . . L

3 The Dominance Operator
1.  The Function of Dominance . . . . .. .. .. .. ... ... .......

2. Dominance Maps . . . . . . . .. .

4 Four Alleles at a Single Locus

1. A multiple allele viabilitymodel . . . . . . .. ... ... .. ... ...
2. Mapping haploid fitnesses to a diploid fitness matrix . . . ... . . . ..
3 Remarks . . . . . . . . ..
4 Conclusions . . . . . . . . . . . e

5 A Scheme With Varying Heterozygote Fitness

1. Explanation . . . . .. .. .. ...
2. Analysis . . . . . . . oL
3. ExtendingtheModel . . . . . . . . ... Lo

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

16
16
18



6 Empirical Test Results

1.  Implementing a Diploid GA . . . . .. .. .. ... ... .. ...
2. Measuring Diversity . . . . . ... Lo L
3. The Oscillating 0-1 Knapsack Problem . . .. ... .. ... ... ... ..
4.  Multimodal Function Optimization . . . . . ... ... .. .. ......
5 ARuntimeStudy . . ... .. ... ... ...
6. Conclusions . . . . . . .. .. L

7 Conclusions

i

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



List of Figures

2.1 A generalized diploid lifecycle . . . . .. . .. ... ... ... .. .. 9
2.2 A plot of 2/ vs. z for the diploid model . . . . . . . . ... ... ... 12
2.3 A plotof ' vs. z forthe haploid model . . . . . . . .. ... ... .. 14
4.1 A comparison of convergencerates . ... ... ... ... ...... 34
5.1 A geometric argument for global stability . . . . . . . ... ... ... 48
5.2 The curve for p’ versus p must lie within the shaded region . . . . . . 49
5.3 The iterates of p staircase into the equilibrium point . . . . . . . . .. 49
5.4 The curve for Ap and its linear approximation . . . . . . . .. .. .. | 51
5.5 Convergence characteristics: haploid vs. diploid models . . . . . . .. 52
6.1 Computing the fitness of a diploid genome . . . . . .. ... ... .. 55
6.2 Diploid gametogenesis and fertilization . . . . . .. ... ... ... 56
6.3 Convergence characteristics: haploid vs. diploid GA . . . .. ... .. 58
6.4 Pairwise Hamming distance values forn =300 and [ =60. . . . . . . 60
6.5 Pairwise Hamming distance values forn =100 and [ =60. . . . . . . 61
6.6 Fraction of heterozygous loci for n =500 and =60 . . . . . . . . .. 62
6.7 Fraction of heterozygous loci forn =100 and [ =60 . . . . . . .. .. 63
6.8 0-1 oscillating knapsack results, prmut =0.001 . . . .. .. ... ... 67

6.9 0-1 oscillating knapsack results, pmut = 0.01

11

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



6.10 Deceptive problem fitness results, n =500 and I =30 . .. .. .. .. 71

6.11 Deceptive problem fitness results, n =100 and /=30 . .. .. .. .. 72

6.12 Deceptive problem diversity results, n =500 and [ =30 . . . . . . .. 73

6.13 Deceptive problem diversity results, n =100 and [ =30 . . . . . . .. 74

6.14 Runtime Differential, diploid - haploid . . . . . .. .. ... .. ... 77
v

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



Chapter 1
Introduction

1. Background

Genetic Algorithms (GAs) are search and optimization procedures based on the
mechanics of natural selection and genetics. Working with an encoding of a problem’s
parameter set, GAs search from a random initial population of points. Using fitness-
biased selection, the best individuals (or solutions to a problem) are chosen to pass
all or some of their genetic information on to a new generation. Stochastic operators
analogous to biological crossover and mutation are then used to create offspring from
the selected individuals. The resulting offspring become part of a new generation,
which, once a specified maximum population size is reached, replaces the previous
generation. As simulated evolution proceeds, the average fitness of the population is
likely to increase from one generation to the next as better solutions to the problem
are discovered. The entire procedure, (selection, crossover, and mutation), continues
until some stopping criterion is met. The cannonical GA is described in Goldberg
[6] and Mitchell [16], and the infinite population model-—an idealized mathematical
model used to study the properties of the cannonical GA—is described in Vose [19]

as well as Vose [20].
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CHAPTER 1. INTRODUCTION 2

2. Motivation

According to Hunter [9], in order to be effective, search techniques such as GAs
require two types of activity: exploration and exploitation. In exploration, the algo-
rithm should traverse different regions of search-space, l.ooking for promising areas.
In exploitation, a known good region should be examined to find its best point. A
purely random search is good at exploration, but it does not perform exploitation.
A purely hillclimbing technique, on the other hand, is good at exploitation, but does
little exploration. The two types of activity are contradictory, and a search algorithm
must find a good tradeoff between them. In practice, GAs are typically much more
effective at exploitation than they are at exploration. Granted, they start with a
random population, which means that many points in search-space are initially ex-
plored. However, as selection takes effect, the genes of a few relatively highly fit (but
possibly suboptimal) individuals may rapidly come to dominate the population. Once
the population loses its diversity and begins to converge, it is extremely difficult to
re-enter the exploration mode. Crossover of almost identical chromosomes produces
little in the way of new genetic material. Thus, new and innovative solutions are no
longer being sought out to any great extent. Only mutation remains to explore new
search-space, and this performs an unsatisfactorily slow random search.

This situation has become known as the problem of premature convergence. As
examples, consider each of the following scenarios: In the optimization of a multi-
modal function, the population may converge to a local, suboptimal point without
ever locating the global optimum. In the optimization of a non-stationary function,
(i.e. one which varies over time), the population may sufficiently converge so that
alleles are lost at many loci. When the objective function changes, it is unlikely that

the algorithm will be able to introduce alleles necessary to achieve the new optimum.
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CHAPTER 1. INTRODUCTION 3

In terms of a GA, this can be expressed as a particular bit of a binary string becoming
essentially fixed. However, it is precisely in these examples and other complicated
domains that GAs have the versatility to be applied and the potential to outperform
other specialized search techniques such as hillclimbing and gradient methods.
Attempts to combat premature convergence have centered around modifying the
selection operator by remapping raw fitness values. As listed in Beasley [1], they
include fitness scaling (or compression), fitness windowing, and fitness ranking. While
each of these techniques may avoid convergence to a local maximum, they may also
incur unwanted side effects, the most common of which is over-compression. In over-
compression, the presence of just one “super-fit” individual can cause a flattening-out
of the fitness function where the rest of the population is densely clustered about a
single value once the fitness scale is compressed. With a finite population, if the
fitness function is too flat, an accumulation of stochastic errors termed genetic drift
may dictate the trajectory of the population. The rate of genetic drift provides a
lower-bound on the rate at which a finite population GA can converge to a correct
solution. As a result, the fitness function must contain a gradient that supersedes
genetic drift. Researchers have found that overcompression not only leads to slower
performance, but, if it occurs to an extent that genetic drift is allowed to dominate,
may actually lead the population away from a maximum. Unfortunately, the degree
of over-compression may be dictated by a single, extreme individual, either the fittest
or the worst. Thus, unless the remapped fitness values are evenly distributed, these

techniques will break down.
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CHAPTER 1. INTRODUCTION 4

3. Objective

The purpose of this paper is to propose the study of a novel method for maintain-
ing population diversity and thus avoiding premature convergence in finite population
GAs. In the case of stationary optimization problems, it is important that this be
done without adversely affecting the algorithm’s overall performance. In the case of
non-stationary optimization functions, the proposed method should not only increase

diversity but also exhibit improved performance over that of the cannonical GA.

An explanation of the terminology used herein is warranted:
e A given string is commonly referred to as an individual’s chromosome.
e A position in a string is called a locus.
e The entity at a locus 1s called a gene.
e The possible values of each gene are called alleles.
e The complete collection of chromosomes is termed an individual’s genome.
e The particular set of genes contained in a genome is called a genotype.
¢ The external manifestation or behavior pattern specified by a genotype is called
a phenotype.
o A dominant allele is expressed in the phenotype when paired with some other allele.
e A recessive allele is NOT expressed in the phenotype when paired with a dominant

allele.

Most GAs are based on a single-stranded haploid chromosome. In this simple
model, a single-stranded string contains all of the problem-related information in a
binary encoding. However, most of the haploid organisms in the natural world tend
to be rather uncomplicated lifeforms. Most organisms rely on a diploid chromosome,
which consists of one or more pairs of homologous chromosomes, each containing

information for the same functions. When chromosome pairs have different values
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CHAPTER 1. INTRODUCTION 5

(or alleles) at the same locus, dominance usually resolves the conflict by allowing
the dominant allele to take precedence over the recessive allele. Although this seems
redundant, there are distinct advantages to a diploid scheme.

One of the advantages of diploidy is that it allows a wider diversity of alleles to be
kept in the population over time. Currently harmful, but potentially useful genetic
information can be maintained in a recessive position, shielded by the dominance
operator. In addition, when the dominance operator is allowed to evolve, it has been
hypothesized that this scheme can be used to infuse a form of “long-term distributed
memory” into the GA by permitting old solutions to be carried along, (but not
expressed), and rapidly reinstated if it becomes desirable in the context of the current
environment to do so. Biological studies such as Fisher’s [3] have indicated that
dominance evolves in diploid and polyploid plant and animal species, giving them the
ability to adapt more readily to changing environments. The intriguing implication
is that a dominance shift can produce a rapid change in an organism’s phenotype not
possible through simple mutation. Applied to GAs, this could provide a mechanism
for enhancing exploration or, in the case of a non-stationary problem, reintroducing

once useful alleles that have again become useful.

4. Previous Work

Surprisingly, there have been only a small number of studies applying diploidy
and dominance to GAs. In 1971, Hollstien [8] introduced a triallelic diploid scheme
with an evolving dominance map to represent diploidy and dominance in artificial
genetic search. His simulations maintained better population diversity (as measured
by population variance) than a haploid scheme, but he used a test bed consisting

entirely of stationary functions and found no overall improvements in performance.
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CHAPTER 1. INTRODUCTION 6

In 1987, Goldberg and Smith [5] compared the performance characteristics of Holl-
stien’s triallelic scheme with those of a fixed (1-dominates-0) dominance map and a
simple haploid scheme. More importantly, they applied an oscillating 0-1 knapsack
(non-stationary function optimization) problem to each of these schemes. However,
they were interested only in improving performance, and they did not record pop-
ulation diversity statistics in their simulations. Their experimental results showed
that both diploid schemes were better able to satisfy the changing requirements of a
non-stationary environment than was the haploid scheme. Furthermore, the evolving
dominance map was better able to respond to changing optima than was the fixed one.
Because they used an oscillating constraint function that reverted back to previous
states, Goldberg and Smith claimed to have induced a form of long-term distributed
memory into the GA with very little computational overhead. In other words, the
redundant memory of diploidy allowed old solutions to be stored as recessive alleles
and recovered again when the dominance operator shifted.

A more recent paper by Ng and Wong [18] examines and repeats the experi-
ments of Goldberg and Smith, bringing into question some of the conclusions from
the 1987 paper and introducing a different diploid scheme along with a unique dom-
inance change mechanism. They conduct experiments which demonstrate that their
novel diploid scheme is able to achieve greater diversity than both a haploid scheme
and the triallelic scheme used by Hollstien, Goldberg, and Smith. In tests that apply
the oscillating 0-1 knapsack function, their results indicate that if the mutation rate
is kept sufficiently low, (¢ < 0.05), their scheme also outperforms the others when
responding to changes in the functional constraints. They point out that by chang-
ing the oscillation frequency, the population size, and the mutation rate, the haploid
scheme is actually able to outperform the triallelic diploid scheme when given the

proper parameters. This is a caution to anyone using a finite population GA to sup-
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CHAPTER 1. INTRODUCTION 7

port conclusions—results may represent only an isolated case generated by a specific
range of parameters.

The disparity between the results of Ng and Wong and those of Goldberg and
Smith may stem from the fact that their analyses are based in population genetics
and schema theory respectively. Whereas Ng and Wong use an infinite population
viability model to compute allele recursions, Goldberg and Smith compute a recursion
for the proportion of recessive alleles based on a schema growth equation. While it
is debatable whether an infinite population model is superior to the schema theorem
for the purposes of analysis, it is true that the theory of population genetics generally
assumes an infinite population.

Despite differing viewpoints, both of the aforementioned studies agree that the
idea of applying diploidy and dominance to genetic search appears to hold promise.
Moreover, we should remember that these concepts have their origin in the biological
realm, and there are numerous related studies, as well as a large body of analytical
work concerning the mathematics of genetics. In the following chapters, the advan-
tages of diploidy over haploidy are presented in a more formal, mathematical context.
Several models based on those used by population geneticists are analyzed both from
a theoretical standpoint and for their worth in application to GAs. Finally, empirical

tests are used as a supplement to support and visualize the results of the analysis.
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Chapter 2
Why Diploidy?

1. A Diploid Viability Model

To see how diploidy differs from haploidy, it is useful to compare their respective
viability models.

For the diploid case, population geneticists such as Hartl and Clark [7] have
presented a simple viability selection model that conveniently explores selection-based
behavior of a population despite the many complexities introduced by fitness. The

model makes the following assumptions:
1. a diploid organism
2. non-overlapping generations
3. infinite population size
4. viability selection only
5. random mating

6. no mutation
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CHAPTER 2. WHY DIPLOIDY? 9

parentt

gametes

viability

growth &
development

fertilization

gametes

Figure 2.1: A generalized diploid lifecycle

It is informative to describe the steps of the model in terms of the stages in
the lifecycle of a diploid organism. We begin with the gamete phase, a biological
example of which is sperm or egg. This is a haploid phase, because the gametes each
contain only half of the genetic information of a diploid individual. The remaining
phases are all diploid phases, and they are much more conspicuous and are of greater
duration than the gamete phase. Upon fertilization, we reach the zygote phase. The
organism then undergoes growth and development to reach the adult phase. It is
during the transition from zygote to adult that proportional selection acts, based on
the differential viabilities of the genotypes. The stages of the diploid lifecycle are
summarized pictorially in Figure 2.1.

Perhaps the simplest exampleis the one-locus, two-allele viability selection model.
Let 0 and 1 denote the alleles. Let z denote the frequency of 0, 1 — x the frequency

2

of 1. The random mating assumption gives x? as the frequency of the zygote 00,
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CHAPTER 2. WHY DIPLOIDY? 10

2z(1 — z) as the frequency of 01, and (1 — z)? as the frequency of 11. Note that
a genotype of 10 is equivalent to 01. Let the relative fitnesses (or viabilities) of 00,
01, and 11 be foo, fo1, and fi1 respectively, so that the zygotes survive in the ratio

foo:fo1:f11- The resulting ratio of 00:01:11 among adults is
fooﬂ?2 (2fnz(l —x): fuu(l - 3’)2~

The sum of these terms represents the average fitness of the population and is denoted
by
f= fooz? + 2fmz(l — z) + fun (1 — )

To obtain the gametic frequencies for the next generation, each of the terms in the
above ratio must be normalized so that the frequencies sum to 1. This is accomplished
by dividing by the average fitness. Thus, the frequency 2’ of the gamete 0 in the next

generation is given by
o = fooz? + forz(l — z)
= 7

Note that the coeflicient 2 associated with 01 frequencies until this point has been

(2.1)

lost, because 01 heterozygotes produce half 0 and half 1 gametes due to Mendelian
segregation.

Another useful relation is the change in allele frequency in one generation, Az =

' —z or Az = f””z”;”’(l—x) — z. With some algebraic manipulation, this can be

expressed in a more convenient form:

z(1 — z)[z(foo — f01)_+ (1 —2z)(for — fu1)]
f

Az =

o~
!‘-’
o
e

There are four cases to consider, based on the assignment of the fitnesses.

case 1: foo > for > fu1

Examining equation 2.2 above, it is evident that Az is positive, since foo — fo1 > 0,
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CHAPTER 2. WHY DIPLOIDY? 11

for — fir > 0, and the allele frequencies and f must always be nonnegative. This
implies that z — 1.

case 2: foo < for < fna
This case is analagous to case 1, except that foo — for < 0, for — fi1 < 0 and Az
is now negative, implying that £ — 0. Cases 1 and 2 are said to exhibit directional
selection, since at equilibrium £ = 1 and £ = 0 respectively. These fixed points are
of little interest, however, since in each case one of the alleles has been completely
eliminated.

case 3: foo < fo1 > fn
When the heterozygote fitness is superior to that of both of the homozygote fitnesses,
we have a condition known as overdominance. Here, there is a third equilibrium in
addition to £ = 1 and £ = 0, because z(foo — fo1) + (1 — z)(for — f11) can equal
0 for some value of z. Because this third equilibrium point is of some interest, the
overdominant case is given more thorough treatment below.

case 4: foo > fo1 < fu1
When the heterozygote fitness is inferior to that of both of the homozygote fitnesses,
we have a condition known as underdominance. Again, there is a third equilibrium
point, and the equation for Z is identical to that derived below for the overdominant
case. However, the resulting equilibrium for this case is unstable, so that even if the
value of z is close to Z, it diverges away from the polymorphic equilibrium point to
a value of either 0 or 1. Furthermore, the trajectories of the allele frequencies, and
hence their final values, are dependent upon their initial values.

Based on examination of the above cases, case 3 seems worthy of further treat-
ment. It is well known that for the overdominant case, there exists a polymorphic
equilibrium and that this point is globally stable. This means that regardless of the

initial allele frquencies, the system will always converge to the equilibrium point. The
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CHAPTER 2. WHY DIPLOIDY? 12

equilibrium
point

Figure 2.2: A plot of ¢’ vs. z for the diploid model

equilibrium point is “polymorphic”, because there is some non-zero fraction of each
allele (i.e. the fixed point lies within the interval (0,1) }. Figure 2.2 is a plot of z’
versus z for fitness values of foo = 0.6, fo; = 1, and f;; = 0.3.

For a formal proof, the reader is referred to Nagylaki [17]. However, local asymp-
totic stability of a fixed point can be determined based on the condition %lxe_-_r <1l=
an asymptotically stable fixed point. The fixed point itself can be derived in terms

of the fitnesses by setting ' = z in equation 1 and solving for = to get

fir = for
foo — 2fo1 + fur

Computing the derivative of equation 2.1 with respect to r and evaluating it at the

T =

fixed point gives
dz’ — Joofor = 2fo0f11 + for /1a
dz |,z f& — foofur
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CHAPTER 2. WHY DIPLOIDY? 13

Without loss of biological generality, it is convenient to let foo = 1 — 7, for = 1, and

Sir=1— s with 0 < r,s < 1. This gives

dz’ _r+s—2rs

—_ <1
dz

r+s—rs

=%

since 2rs > rs.

2. A Haploid Viability Model

To contrast this with the haploid case, a single step of the single-locus Simple
Genetic Algorithm as described in Vose [19] with zero mutation (and no crossover) is
outlined. Let the initial population vector be x = [z (1 — z)]7, and the fitness vector
be [fo f1]¥. Begin by performing a proportional selection step according to the fitness

function defined in [19]. This yields

fox
T 1—z
}'(x) — fo f-:-.);1—(-x )
foz+f1(1-x)

Next, this vector is subjected to the recombination function M. This gives

dri+fofrz(1-x)

' — [Joz+f1(1-x)]?
x = M(F(x)) F2(1=2)2+ fo frz{1=-2)

{foz+fr(1—x)}?

The next generation frequency z’ of 0 is

, _ fozlfor + A1 —z)] foz
v= 7 = et A=) (2.3)

where f = [foz + f1(1 — )]~
It is not hard to see that the recurrence in equation 2.3 can only have fixed points

at 0 and 1. A plot of z’ versus z for the haploid model is shown is Figure 2.3 using

fitness values of fo = 0.8 and f; = 0.2.
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CHAPTER 2. WHY DIPLOIDY?

Figure 2.3: A plot of 2’ vs. z for the haploid model
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CHAPTER 2. WHY DIPLOIDY? 15
3. Conclusions

Mathematically, the recurrence for the diploid model (equation 2.1) is the ratio
of degree 2 polynomials, whereas the recurrence for the haploid model (equation 2.3)
is the ratio of linear polynomials, which gives the diploid model inherently greater
complexity. Biologically, the overdominant polymorphism of the diploid model is one
of the basic mechanisms for maintaining genetic diversity in a population, and it has

no analogue in the haploid model.
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Chapter 3
The Dominance Operator

1. The Function of Dominance

To illustrate how the dominance operator works, consider a diploid chromosomal

structure where different letters represent different alleles:

AAaa
aAAa

Here, there are two alleles, or two possible values that a gene may take on at a
given locus, namely A or a. By convention, an uppercase letter is used to denote
a dominant allele, while a lowercase letter denotes a recessive allele. In nature, if
a given locus contains a gene for say, eye color, then the A allele might represent
brown eyes, while the a allele might represent blue eyes. Although nature sometimes
allows hybrids or intermediate forms, we will not allow that possibility. We make the
restriction that the phenotype cannot have both brown and blue eyes. Hence, there
is a pair of genes describing a given function, and the potential exists for conflict.
The dominance operator resolves this conflict by allowing one allele (the dominant
allele) to take precedence over the other allele (the recessive allele) at that locus.

When there are more than two alleles, more than one allele may play a dominant

16

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



CHAPTER 3. THE DOMINANCE OPERATOR 17

role, depending on the allele with which it is paired, and situations may arise when
an allele is dominant when paired with one allele, but recessive when paired with
another. The action of the dominance operator can, at least in part, be defined
in terms of observable phenomena. An allele is dominant if it is expressed (i.e. it
1s apparent in the phenotype) when paired with an identical allele—the homozygous
case where AA — A —or with a different allele—the heterozygous case where Aa — A
or aA — A. An allele is recessive if it is expressed only when paired with an identical
allele—the homozygous case where aa — a. Thus, the chromosome pairs above may

be rewritten as:
AAaa
aAAa
AAAa

This can also be expressed in terms of the following dominance map:

Ala

AllAT A
all Al a

In an abstract sense, dominance is a function that maps from genotypes to phe-

notypes. More importantly, as Goldberg [6] notes, it serves as a form of genotype
reduction. This means that the dominance operator can be used in the context of
GAs as a means of mapping a diploid chromosome to a haploid chromosome, which
in turn can be subjected to a hapleid fitness function. In this manner, a diploid GA
can be constructed with minimal computational overhead. The fitness function does
not have to be completely redefined for a diploid chromosome.

We return to the discussion of diploidy from Chapter 2. Diploidy facilitates
population diversity by allowing heterozygotes (individuals with one dominant and
one recessive allele at a locus) to exist and reproduce. Heterozygotes not only pro-

tect recessive alleles from extinction, they propagate them. It seems reasonable to
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follow a biological parallel here and introduce a “heterozygote advantage”, i.e. to
endow heterozygotes with a higher fitness than homozygotes. In so doing, there is
a greater probability of avoiding rapid convergence to a single genotype. This could
be simulated by assigning a “fitness bonus” to heterozygotes. As the diploid genome
is mapped to a haploid genome, the number of heterozygous loci is recorded. The
resulting haploid genome is subjected to the fitness function, just as is done in the
cannonical GA. However, for each heterozygous locus, we add the value of the fitness
bonus to the value obtained from the haploid fitness function. The size of the bonus
is important—a bonus that is too small will not permit overdominance, and a bonus
that is too large will actually speed convergence to a population of heterozygotes.
In addition, problems may arise with large strings if the resulting fitnesses are not
evenly distributed. Continuing with our example, let s represent the fitness bonus
and f the haploid fitness function. Then,
AAaa

aAAa
f(AAAa) + 2s

In seeking guidelines for assigning fitnesses, Chapter 4 examines viability models for

multiple allele polymorphisms.

2. Dominance Maps

One of the earliest schemes for incorporating diploidy and dominance in artificial
genetic search is due to Hollstien [8]. He began with a two-locus, evolving dominance
map. At one locus, 0 and 1 are the allowable alleles. For each of these loci, there is
an associated locus, reserved for a modifier gene, at which M and m are the allowable
alleles. The 0 alleles are dominant when there is at least one M allele present at the

homologous modifier locus. Hollstien assumed that the numerical and modifier loci are
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adjacent on the chromosomes and that they are never separated by crossover. Thus,
the combinations of alleles—0M,0m, 1M, and 1m—may be treated as four alleles at

a single locus. The sixteen possible genotypes produce the following dominance map:

OM [Om | 1M | Im
oM 0 0 0 0
0m 0 0 0 1
1M 0 0 1 1
Im 0 1 1 1

Note that there is a greater number of genotypes that produce @ alleles than those
that produce 1 alleles. This requires that measures be taken to counteract this bias,
such as giving 0 alleles a slightly higher probability of occurrence, both in the initial
population and through mutation.

Hollstien recognized that three alleles are sufficient to achieve the effects of domi-
nance interaction and to provide the capability of dominance shifts through selection.
His triallelic scheme used 0,1, and 2 as the possible alleles at a locus. As indicated
in the dominance map that follows, 0 alleles dominate 1 alleles, (which are always

recessive), and 2 alleles, (which play the role of a “dominant 1”), dominate 0 alleles.

01142
010|001
Loy 1 |1
211111

When it is advantageous to have 1 dominate 0, selection can replace 1 alleles by 2

alleles to effect a dominance shift at each locus. Again, note that there is a bias (this

time towards 1 alleles) if all three alleles are evenly distributed in the population.
Ng and Wong [18] use a two-allele, two-locus scheme that attempts to remove the

bias inherent in Hollstien’s. There is no evidence to that they fully succeed in this,
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however, because they resolve dominance contention arbitrarily. Curiously, they also
prohibit certain heterozygote genotypes by promoting recessive alleles to dominant
alleles. More interesting than their dominance map is perhaps their approach to
dominance shifts. They use a dominance change mechanism that takes effect on a
rapid (i.e. a single generation) rather than an evolutionary time scale. They use the
following criteria: if an individual’s fitness decreases by more than 20% over a single
generation, then a dominance change occurs for that individual wherein dominant
alleles are demoted to recessives and recessive alleles are promoted to dominants. In
light of this, it is little wonder that their scheme outperformed that of Goldberg and
Smith on test problems that involved a rapid change in fitness over a single generation.
Although it is doubtful that it has any precedence in nature, their method is consistent
with one of the attractive features of GAs—it achieves global performance through
local action.

The analysis in Chapter 4 is rooted in and experiments with a dominance map
based on Hollstien’s original two-locus evolving dominance map. The simplifying as-
sumption is made that it can be treated as a single-locus model with four alleles as
justified above. A different symbology is used, and the map is symmetric with respect
to ones and zeros in order to eliminate the need to counteract a bias. Dominance con-
tention is resolved to maintain this symmetry. The table below depicts the four-allele
dominance map where 0 and 1 are dominant alleles and o and i are the corresponding

recessive alleles.

0Olo|l]1
00|00 ]0
of|0|0]1]1
1440114171
1011171
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Chapter 4

Four Alleles at a Single Locus

1. A multiple allele viability model

Chapter 2 presented a viability model for two alleles at a single locus. However,
the dominance map from the previous chapter utilizes four alleles —a dominant and
recessive 0, and a dominant and recessive 1—at a single locus. Fortunately, biologists
have considered the case where an autosomal gene may have more than two alleles
segregating the population. (In fact, this occurs quite commonly in nature.) Hartl
and Clark [7] describe a generalized model with viability selection operating on a gene
with k alleles. The model is reproduced here for the special case where & = 4. Let
the frequencies of alleles 0, o, 1, and i1 be py, p2, ps, and py respectively. The allele

frequencies must still sum to 1, i.e.

Arranging the alleles along the rows and columns of a Punnet square gives the possible

genotypes and their respective frequencies when random mating is assumed:

21
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PiP2 | P1P3 | P1P4

P2 D2 .P2P3 P2P4

1 10 lo 11 1i

pap1 | papz | P2 | paps

i|f 10 1o il i

P4aP1 | PaP2 | PaP3 Pzz;

Assuming that there is no distinction between the genotype composed of alleles
A;A; and that composed of A;A;, then there are ten distinct genotypes in the table
above. (Hereafter, the convention will be to list 0 and o before 1 and i, and dominant
alleles before recessives.) Each heterozygote genotype thus has two entries in the
table, so that its corresponding frequency will have a coefficient of 2.

The next step is to assign fitnesses to each genotype. This is most easily depicted

as a 4 x 4 fitness matriz

Wiy Wy Wiz W4

W3y W32 Waz W3ay4

Wy Wy Wq3 W44

- -

where each entry w;; corresponds to the genotype composed of alleles A; and A;. Note
that this matrix can be simplified into an upper (or lower) triangular matrix, since
w;; = wji. In deriving the recursion for the allele frequencies in the next generation,

it is helpful to set up a table that summarizes the information presented thus far:
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genotype | frequency | fitness | gametes produced

0lo}1l 1
00 p? wy [1]0]0] o0
0o 2p1p2 w2 | 3130 0
01 2p1p3 wys |[3]0]2 0
01 2p1p4 W14 % 010 %
00 Pl wee |0]11]0 0
ol 2p2p3 wes | 0 % -;— 0
oi 2p2pa wye [0 |30 3
11 p’ wss | 07011 0
1i 2paps wzg |00 3 :
ii A wy |0]0]0 1

In general, p! is derived by computing frequency X fitness x gametes produced
for each row and summing these products for the appropriate column. For pj, this
gives w11p? + wiep1p2 + wiap1ps + wiap1ps. This can be generalized as p; 3 Wip;-
The summation is commonly referred to as the marginal fitness of an allele, and is
denoted as w; = 3 ; w;;p;. As before, the allele frequency must be normalized to
1 by dividing by the sum of all the allele frequencies (or the average fitness of the
population), which is once again labelled w. For multiple alleles, this is expressed as
W = 3, 3. wi;pipj- Thus, the general expression for the allele frequencies in the next

generation is
piw;
w

p; = (4.2)

At equilibrium, this becomes p; = E;Jii’-'- Since we desire a polymorphic equilibrium
such that each allele is present in some fraction~—this is commonly referred to as a

complele polymorphism —we introduce the stipulation that 0 < p; < 1 Vi. Now it 1s

possible to divide by p; and rearrange to get
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w; =wfor:=1,2,3,4

which means that all of the marginal fitnesses are equal when the population comes
to equilibrium. This can be rewritten as w; — w; = 0 for 7 = 2,3,4. By adding
the condition that Y} ;p; = 1, we have a system of four linear equations in four
unknowns, which can readily be solved. Nagylaki [17] provides an elegant method for
computing the allele frequencies at equilibrium based on techniques in linear algebra.
It is quite amenable to implementation in a mathematical software package or a
programming language. Nagylaki makes use of the following identity, which can be

found in Lancaster and Tismenetsky [14]:
adj (W)W = det(W)I

where adj (W) denotes the adjoint of the fitness matrix W, which is defined to be the
transposed matrix of cofactors of W, det(W) is the determinant of W, and I is the
identity matrix. The equilibrium equation w; = w = > wi;p; = w; is expressed in
vector form as

1

=

Wp =

where 1 is the 4 x 1 column vector of ones. Multiplying this by adj(W) and using
the identity yields
det(W)p = w(adj(W))1 (4.3)

In order to break this into its components, denote the ith component of the vector

adj(W)1 as V;. We now have
det(W)p; = wV;

If det(W) #£ 0,V; # 0V, and all the V; have the same sign, then there exists a unique

internal equilibrium
wV; V;

;= = 4.4
P=daw) " 5V, (4.4)

-
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where the substitution det(W) = % ¥ ; V; has been made by post-multiplying both
sides of equation 4.3 by 1T, the 1 x 4 row vector of ones, and recalling that 1Tp = 1.
Note that this also serves to normalize the equilibrium allele frequencies.

In summary, not only does equation 4.4 give a terse form for the allele frequencies
at equilibrium solely in terms of the fitness matrix, but it also provides criteria for
their admissibility, (i.e. 0 < p; < 1 Vi), in terms of the values in the fitness matrix,

namely

1. det(W) # 0
2. Vi # 0 Vi
3. sgn(Vi) = sgn(V;) Vi,

Although equation 4.4 gives admissibility criteria based on the fitness matrix as a
whole, it does not provide heuristics for assigning individual fitness values a prior:.
The question remains, how does one assign these fitnesses in order to guarantee a
complete polymorphism that is biologically admissible? For the case of two alleles at
a single locus, overdominance was a sufficient condition for a globally stable polymor-
phic equilibrium. One possible means of extending this condition to the four-allele

case would be to assign the fitnesses such that
Wy < Wi > Wi

Here, each heterozygote is more fit than the homozygote for either of its constituent
alleles. Unfortunately, this condition is neither necessary nor sufficient to guarantee
a complete polymorphism when extended to more than two alleles. Lewontin, et.
al. [15] were able to derive conditions necessary for a complete polymorphism based
on a triallelic model, but these cannot be readily applied to a four-allele model.

Most distressing, however, are the results of their experiments that examined the
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probability that multiple allele polymorphisms could be maintained by random choice

of viabilities:
1. Only a very small portion of the parameter space admits a stable polymorphism

2. As the number of alleles is increased, the probability of a stable polymorphism

decreases dramatically

3. For genes with seven alleles, even if all heterozygotes have higher fitnesses than
the respective homozygotes, only 0.1% of the randomly chosen viabilities admit

a stable polymorphism

Based on this information, a purely random search was ruled out. An attempt was
made at a “narrowed” random search that reduced the parameter space by extending
Lewontin’s triallelic conditions and adding a small “fitness bonus” to heterozygotes
such as 0o and a “double bonus” to double heterozygotes such as 0i. Specifically,

viabilities had to satisfy the condition
wij > (wy + wj;)/2

The search procedure—implemented in Maple—uncovered two possible fitness matri-
ces that yielded complete polymorphisms with allele frequencies within the admissible
range at equilibrium. One was extremely sensitive to and highly dependent on the
value of the fitness bonus, while the other was not.

At this point, the stability of the equilibrium point has to be addressed. If the
complete polymorphic equilibrium exists and is biologically admissible, then a result
of Kingman [13] provides a method for determining its stability. For a gene with k
alleles, if the fitness matrix W has j positive eigenvalues, then at most k—j+1 alleles
will exist with positive frequencies at equilibrium. Stated slightly differently, a unique

admissible solution to equation 4.4 will be globally stable if and only if W has exactly
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one positive eigenvalue and at least one negative eigenvalue. In such a case, the system
moves, for any initial frequency point for which each p; is positive, to this equilibrium.
If the equilibrium is inadmissible or unstable, then the system evolves in such a way
that one or more alleles becomes eliminated and the complete polymorphism is lost.
Perhaps the simplest example to demonstrate Kingman’s theory is the k& x & fitness
matrix where all heterozygotes have fitness 1 and all homozygotes have fitness 1 — s,

where 0 < s < 1, 1.e.

- -
l—s 1 1 1
1 l1—3 1 1
W= 1 1 1-s 1
1 1 1 l—s
The adjoint of W 1s
[ (k = 1)sk—2 = gk-1 _ k-2 _ k-2 _ k-2
___Sk—2 (k _ l)sk_2 — gk—1 —gk—2 — k-2
adj(W) = —gk—2 —sk—2 (k —1)sk=2 — k=1 | — k=2
_gk-2 _gk=2 _ k-2 o (k= 1)sk"2 = gk
Summing the elements along any row, we have V; = —s*~! Vi. Since there are k
rows, 3. V; = —ksk=1, Substituting these values into equation 4.4 gives
k—1
. —8 1 ...
P= g T

With the assumption that k£ > 1, the equilibrium is clearly admissible. The eigen-
values of W are (k — s),—s,—s,...,—s, and thus the stability conditions are met.
However, this configuration assigns a fitness penalty to homozygotes, which may incur
unwanted side effects such as negative or zero fitness values after repeated applications

of the recursion.
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Kingman’s criteria provides a convenient alternative to the method used for the
two allele model, which in this case would involve computing the partial differential
of the allele frequency recursion—equation 4.2—for each allele and evaluating it at
the equilibrium point determined by equation 4.4. It should also be noted that it
is quite logical for the stability of the equilibrium to be dependent solely upon the

fitness matrix and completely independent of the allele frequencies.

2. Mapping haploid fitnesses to a diploid fitness matrix

Recall that the objective is to map haploid fitnesses to a diploid fitness matrix,
while introducing a heterozygote advantage by a assigning a small fitness bonus to
the heterozygote genotypes. The aforementioned search revealed a fitness matrix that
accomplished this objective and yielded an equilibrium that was both admissible and
stable according to Kingman’s criteria. The matrix is based on a pair of haploid
fitnesses, fo and f;, and a fitness bonus s. Using the fitness matrix W of equation

4.1, we substitute actual fitness values for each entry w;; as follows:

[ fo fo+s maxr+s maz+s
+ s mar + 5 mar + s
W= fo Jfo (4.5)
mazr + s mar + s f fi+s
_maa:-l—s mar+s f1+s h
where maz = mazimum(fo, f1) and s < f; for : = 0,1. Here, the homozygote

genotypes appear along the diagonal and have the smallest fitness values. The “single”
heterozygotes are next in fitness ranking, and the “double” heterozygotes have the
highest possible fitness values.

Proposition: The fitness matrix in equation 4.5 yields an admissible and glob-
ally stable complete polymorphic equilibrium for all possible values of fy, fi, and s

subject to the constraint s < f; for z = 0, 1.
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Empirical testing—a short computer program that chose random values for the
parameters fy, f1, and s with the objective of finding a set of parameters for which
the equilibrium point was either inadmissible or unstable—failed to find a counterex-
ample. An analytical proof thus seems warranted.

Proof: We start with the fitness matrix W from equation 4.5. A case-by-case
analysis based on the value of maz is required.

Case 1: mazr = fy
The initial assumptions are that fo > f; > s > 0. For the admissibility of the
equilibrium point, we need to show that 0 < p; < 1 Vi. Using Nagylaki’s method as

described earlier, the allele frequencies at equilibrium are

S

T (fo—fi ¥ 9)

s e 2fo—2f1 + s
P3 = Pa 4(fo—f1+3)

Clearly, since fo > f1 > s > 0, the numerator and denominator of each equation is

~ A

D1 = p2

positive. This implies that p; > 0. We also have that s < 4(fy — fi) + 45 and that
2(fo — fi) + s < 4(fo — f1) + 4s, which implies that p; < 1. Thus, 0 < p; < 1 Vi and
the equilibrium point is admissible.

It can be shown that the eigenvalues of W in equation 4.4 are —s, —s, fo+ f1 +s+
\/5f3 + ff —2fofi +8fos +4s%, and fo+ fLr + s — \/5f02 + fI = 2fofi + 8fos + 4s2.

We need to show that exactly one of these eigenvalues is positive and the others are

all negative. (This is actually stricter than Kingman’s criteria, which requires that at
least one of the eigenvalues be negative, because we are only interested in a complete

polymorphic equilibrium.)

1. Since s >0, —s < 0.

2. fot+ fu +S+\/5f02+f12——2f0f1 + 8 fos + 452
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> fo+ fi+ s+ \/5f2 + f2 — 2fof1, since fo > 0 and s > 0.
> fot+ fr+s+/f2+ f2—2fof

=fo+ fits+4/(fo— fi)?

=fo+tfi+s+ fo— N

=2fo+s

> 0, since fo > 0 and s > 0.

3. fo+ fr+5— /53 + f2 ~2fofs + 8fos + 452
< fo+ fit+s—\/5f2+ f2—2f2 +8fos + 452, since fo > fi.
= fo+ fi+s— \/3f3+f12+(4fos+4fos)+432
< fot+ fits—J(fE+22) + J7 +4fos + 4fis +4s?, since f < fo.
< fo+ fi4s—FE+2fofi + f2 +4fos + 415 + 452, since fy < fo.
< fot frts—fE+2fofi + f2+2fos + 2frs + 52
=fot+ fi+s—/(fot+ fr +5)
=fotfits—(fot+tfi+s)
=0

Case 2: maz = f;
Observing the allele frequencies at equilibrium,

~ -~ S

pl:p2:4(f1°‘f0+3)

pa = Py = 2fi—2fo+s
ST T4 = fo+s)

and the eigenvalues of the fitness matrix, —s, —s, f1+fo+s+\/5f12 + f&—2fifo+8f1s + 452,

and f1+ fo+s— \/5f12 + f& — 2f1 fo + 8f1s + 452, we see that this case is symmetric
to case 1.
Therefore, we have three negative eigenvalues and one positive eigenvalue, which

satisfies Kingman’s criteria for stability. O
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3. Remarks

The results of the previous section prompt a number of questions:

1. How does one map the haploid gene frequencies zo and z; to the diploid allele

frequencies p;, p3, p3, and py?

2. If we start with the initial conditions that p; = p, and p3s = p,, will this system

maintain these equalities?

3. If so, can this model with four alleles be equated to a simpler model that uses

only two alleles?
4. Is this model consistent with the dominance map in Chapter 37
5. Can this model be extended to multiple loci?

We first address the problem of mapping the haploid gene frequencies, zy and
z, to the four diploid allele frequencies, py, p2, p3, and pys. Referring to the summary
table in the first section of this chapter and the dominance map in Chapter 3, we see
that genotypes 00, 0o, 01, 0i, and oo map to 0 and genotypes ol, oi, 11, 1i, and ii
map to 1. Summing the frequencies of each of these genotypes and setting this equal

to either zo or z; as appropriate yields
zo = p} + 2p1p2 + 2p1ps + 2p1pa + P

z1 = 2pap3 + 2paps + p5 + 2paps + pi

Note that

to+zi=(pr+p2+pst+p)=12=1

We now proceed to analyze the four allele system and attempt to simplify it.
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Proposition: If the system from the previous section is initialized with p; = p,
and ps; = py4, then the iterates of the system will maintain these equalities.

Proof: Let the initial allele frequencies be such that p; = p, and p; = p;. We
also have that p; + ps + p3 + ps = 1. This can now be expressed as 2p; + 2p3 = 1, so
that we can solve for each of the allele frequencies in terms of p;. That 1s, p, = p; and
ps = ps = 3 — p1. We substitute these values into the allele frequecy update equations
that result when equation 4.2 is expanded for each allele. The w;;s are expressed in

terms of the fitnesses in the matrix of equation 4.5.

w11p? + wiap1P2 + Wizp1P3 + WiaPrPa . (w11 + wi2)p] + (wis + w14)P1(% - p1)
w w

, —

_ (2fo — 2maz — s)p% + (maz + s)p
w

(wa1 + w22)p? + (w2s + waa)pr % — )

, _ Wa1Pap1 + Wyoph + Waapaps + WaaPaps
Py = D w

(2fo — 2maz — s)p} + (maz + s)p1 v
— =D
W

(war + 1032)101(% ~ p1) + (waz + w34)(% —p1)?

w w

_ (2f1 — 2maz — s)p} + (maz — 2f1)py + (21 + )

w

P = W31 p3p1 + WazPsP2 + Wazpj + WasPapa
3= -

; _ WaPaPpr + Wazpap2 + Wazpaps + W4aP’ _ (war + w42)P1(% — )+ (was + 1044)(']} —m)?

4 w w

_ (2f1 — 2maz — s)pi + (maz — 2f1)p1 + H2AH + 5) —
= - = Ps3
w

It follows that if p; = p; and ps = ps, then p), = p} and py = pj. O
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An important result of this proof is that it is possible to express all four allele
frequencies in terms of one allele frequency. This allows the expression of x4 and x,
in terms of a single allele, which in turn permits a simple mapping from 2 and z; to
P1, P2, P3, and py, namely p; = p; = 1zg and p; = py = 121,

We now proceed to equate the system of four alleles to one with two alleles, ¢;

and ¢, by setting g1 = 2p; and ¢2 = 2p3. This gives

(fo — maz — 1s)dp! + (maz + s)2p; _ (fo —maz — 3s)g} + (maz + s)q

’:2’:
U} P1 @ D

,_ (wn + w32)(3 — Pa)ps + (was + wsa)pd (i — maz — 35)4p} + (maz + 5)2ps
w w

_ {fi —maz — 35)q} + (maz + s)g>

w

It can readily be verified that this two allele system is derived from the following 2 x 2
fitness matrix:
W= fot+is maz+s (4.6)
mazr+s fi+ %s

Furthermore, empirical tests showed that the two allele model represented by the
fitness matrix in equation 4.6 and the four allele model represented by the fitness
matrix in equation 4.5 exhibited identical behavior.

Tests of particular interest were those that compared the rate of convergence for a
haploid model with that of the diploid model. For the haploid case, the implementa-
tion details followed those of Vose [19] for the infinite population model. The diploid
case was implemented based on the four allele model described above. A plot of the
0-bit convergence over a time scale of 250 generations is shown in Figure 4, where the

initial values of zo and z, are 0.01 and 0.99 respectively, and the fitness values are

fo =1.00 and f; = 0.90. The three curves representing the diploid model correspond
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haploid model —\
1+

o S
s i
—

diploid model

0-bit convergence

Parameters:
Xinit = [ 0.01 0.99]T
f={1.00 0.90]7

0 50 1090 150 200 25¢C

Generation

Figure 4.1: A comparison of convergence rates

to three different values of s, the heterozygote fitness bonus. Observe that s can be
used to control the rate and the asymptotic value of convergence, and that for any
value of s greater than 0, the diploid curve lies below the haploid curve. The case
for 1-bit convergence is symmetric, and the curves of Figure 4.1 can be duplicated
by interchanging the fitnesses and the initial values of 29 and z,. From the figure, it
is evident that the diploid model is capable of both slowing the rate of convergence
(to a homozygote genotype) and avoiding complete convergence (by forming a stable
polymorphism).

There arises a problem, however, when we attempt to reconcile the four-allele
fitness matrix with the dominance map from Chapter 3. These two entities are

superimposed in the table below. Let w;; and d;; denote the 7 jth entries of the fitness
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matrix W and the dominance map, respectively. Comparing the fitness matrix with
the dominance map for consistency, we should see that the subscript on the fitness of

w;; corresponds to the value in d;;.

0 o 1 i
fo fo+s |mar+s|maz+s

0 0 0 0 0
Jot+s fo maz + s | mazx + s

o 0 0 1 1

maz + s | mazr + s fi fi+s

1 0 1 1 1

maz +s | mar+s| fi+s h

1 0 1 1 1

In the case of the eight maxz + s entries in W, maz must evaluate to either f, or
f1. It 1s clear, though, that some of the corresponding entries of the dominance map
contain a 0, while others contain a 1. For example, w3 = wy3 = maz+s, but dj3 =0
and dy3 = 1. The dominance map could be altered so that di3 = dyy = doz = dyy =
d31 = d3; = d4; = dag2, but this would create an imbalance heavily favoring either 0 or
1. Furthermore, it is not possible to know in advance whether maz will evaluate to
fo or fi. This problem is inherent when using maz in the fitness matrix, and there
is no fixed-value dominance map that can be used consistently with it.

Consistency between the fitness matrix and the dominance map becomes an im-
portant issue when the single-locus diploid model is extended to mulitple loci, i.e.
bit strings of arbitrary length. With the current model, the entries of the dominance
map that correspond to the maz + s entries of the fitness matrix may be resolved
consistently only after maz has been evaluated. As defined previously, the computa-

tion of max relies on having knowledge of fy and f, at a particular locus. This does
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not present a problem in a single-locus or 1-bit GA, but for arbitrary string lengths
and fitness functions, this information is not available, since in traditional GAs the
fitnesses typically correspond to entire strings, not to particular locations within a

string.

4. Conclusions

Although the four allele model presented in this chapter is not extendible to mul-
tiple loci and therefore not applicable to GAs in general, it does provide some insight
into the assignment of fitnesses in order to achieve overdominance, the convergence
characteristics of diploid models relative to the haploid GA, and the number of alleles
required to effect the desired behavior.

Specifically, two alleles are sufficient to bring about the desired improvement in
the convergence characteristics. The assignment of the heterozygote fitnesses is crit-
ical to achieving overdominance. To take a two-allele example, let wyy, wiq, we, and
wq2 be the fitnesses of genotypes 00,01, 10, and 11 respectively. Note that wy; = wy;.
Choose wyy = fo, w12 = wey; = fo + s, and wyy = f;. This will allow overdominance if
fo > fi, but if f; > fo + s, we have directional selection with wyy > wiy = wy > wy
and a globally stable polymorphic equilibrium is not possible. We could assign the
fitness bonus so that s > |fo — fi], but this requires knowledge of fo and f; at a
single locus, and it may result in inordinately large values for s. Because of sym-
metry, wis = Wy = fi; + s suffers from the same problems. We might try some
combination of fo and fi, e.g. wis = wy = 0.5f + 0.5f; + s. The entries in the
dominance map for 01 and 10 could be assigned based on the outcome of a “coin flip”
for each entry. In other words, with probability 0.5 we assign a value of 0 to an entry,

and with probability 0.5 we assign a value of 1. However, this looks beyond a more
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fundamental problem—it is still possible that, for instance, fo > 0.5f + 0.5f; + s
if fo > fi + 2s, so we cannot achieve overdominance for arbitrary values of fy and
J1. Thus, using maz in the fitness matrix creates irresolvable conflicts in the domi-
nance map. Using some combination of fs and f; can be resolved in the dominance
map with non-deterministic entries, but up to this point, no combination has been

presented that can guarantee overdominance for all possible values of fy and f;.
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Chapter 5

A Scheme With Varying

Heterozygote Fitness

1. Explanation

Building on the results of Chapter 4 and the concept of a dominance map with
non-deterministic entries, we present a scheme that uses two alleles, 0 and 1, and a
heterozygote fitness that varies over time. Instead of a fixed combination of f; and
f1, we use the allele frequencies to determine the relative contributions of f; and f;
to the fitness of the heterozygote genotypes. In the fitness matrix below, p is the
frequency of allele 0, and ¢ is the frequency of allele 1. Note that since p+ ¢ =1, we
have ¢ = 1 — p. Thus, once p has been assigned, ¢ is fixed. As before, s represents a

small additive fitness bonus.

W= fo for+ i(l—p)+s (5.1)

fop+ (Ll —p)+s h

Recall that w;; refers to the z,jth entry of W and that wq1, wi2, w21, and wy; are the fit-
nesses of zygotes 00,01, 10, and 11 respectively, where w;, = wq;. The corresponding

dominance map would look like the following:

38
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Here, the genotypes 01 and 10 map to 0 with probability p and 1 with probability
1 — p, where p is defined as the frequency of allele 0 at the locus under consideration
in the current generation.

Using the matrix of equation 5.1, we can derive an equation for the allele fre-
quencies in the next generation in the same manner that equation 2.1 was derived.

This gives
' fop® + [fop + f1(1 — p) + slp(1 — p)
P o+ 2(fop+ AT —p) +9)p(1 = p) + /il = p)?

For arbitrary initial values of fy, fi, and p, it is quite possible that the system

(5.2)

of equation 5.2 will initially exhibit directional selection. For example, take the case
where p = ¢ = 0.5 and fo > fi + 2s. This gives w2 = wyy = 0.5f0 +0.5f; +s5 <
0.5f6+0.5(fo—2s)+s = fo=wy and wyz = way = 0.5 +0.5f1+5 > 0.5(f1 +2s)+
0.5f1 +s= f1 +2s > fi = wyy. Recall from Chapter 2 that this situation represents
directional selection, where the allele frequencies will approach a limit based on the
differential fitnesses. That is, for wy, > w2 = wy; > wey,p — 1 and ¢ — 0. However,
although the system will begin to converge toward p = 1, it will become overdominant
before it actually reaches p = 1 and eliminates all 1 alleles. To see why this is true,
let w1 = fo > w22 = f; and let p = 1 — €. Suppose that for sufficiently small e, it is
the case that w1z = wy; < wy;. Substituting p = 1 — ¢ into the matrix of equation

5.1,

Wiz =wyn = (1—¢€)fo+efy+s
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= fo+(fi— fo)e+s
S

fo—hr

>0

> fo"—:wll if €<

This contradicts the assumption that wy; = wg; < wy; for sufficiently small e. We
see that for ¢ < ﬁ, Wi = Wy > Wiy > Wz, and we conclude that the system
of equation 5.2 is overdominant. A similar argument can be made for initial values

where wq; = f] > wy = fo.

2. Analysis

In a sense, we have added a feedback mechanism which adjusts the heterozygote
fitness until it produces overdominance, regardless of the initial allele frequencies
and the fitnesses. This comes at some expense, though, as equation 5.2 is a ratio of
degree 3 polynomials, and the analysis becomes significantly more difficult. Moreover,
because the entries of the fitness matrix are no longer all constant, we cannot apply
the methods of Nagylaki and Kingman to solve for the fixed point and determine its
stability. Consequently, the methods used in Chapter 2 for two alleles will be used
again here. By setting p’ = p in equation 5.2 and solving for p, we can derive the

fixed point in terms of the fitnesses. This procedure yields four solutions:

pr=0
p2 =1
 Jo—fi—sHyR-2ffi+ fit S
P = 2(fo — f1)
. _fo-f1—3—\/f§~2fof1+f12+sz
P = 2(fo— f1)

At this point, we need to show that exactly one of these solutions gives a fixed point

in the open interval (0,1). Clearly, py = 0 and p, = 1 do not lie within (0,1), so they
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can be eliminated. We wish to show that ps can also be eliminated.
To show: py <Oorp; > 1
Case 1: fo > fi

. fO“fl”'s“\/fg—Qfofl-i—flz—}-sz

e = 2(fo— f1)
_ fO—fl_S—\/(fO_f1)2+32
- 2(fo = f1)
Jo—fi—s—/(fo—f) |
< o= F) since s? >0
_ fO_fl_S—(fO"“fl)
2(fo— f1)
_ —s
T 2(fo—f1)

< 0 since fo> f; and s> 0

Case 2: f1 > fp

A fo—fi—s = \/fd —2fofi + f2 + 5

e = 2(fo — 1)

—-J1—8— 2 —2foh 3 1— fo)s+s%
_ fo—fi—s—/(fi— fo+s)
- 2(fo— f1)
_ (fo—fi)—s—(fi— fo+s)

2(fo— f1)

_ 2(fo— fL) —2s

2(fo — f1)
= T ETR

> 1 sincef; > fo ands >0

Therefore, ps < 0 for fo > f; and py > 1 for f; > fo, so Py is not a biologically valid

equilibrium point.
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It remains to be shown that p; falls within (0,1) and is biologically valid.
To show: 0 < p; <1
Case 1: fo > fr

We begin by showing that p; > 0.

. fo—fi—s+\/fE—2fcfi+ fE+5?

o = 2(fo— 1)

_ fo=fi=s+y/(fo— i)+
B 2(fo— f1)

— f — 32
> fo 2{}0 -—Sf—i—)\/_ since (fo— f1)*>0
_ Jfo—fi—s+s

2(fo = fr)
_ _f—h

2(fo— f)

= 1/2
> 0

Now, we show that p; < 1.

fo—fi—s+/f2 = 2fofy + f2 + *

s = 2(fo = 1)
—fi—s+JfE=-2fcfi+ fE+2(fo— f1)s+s*
_ Jomhi-s+ i 2(;{)]‘_ ﬁ{ (fo— 1) since 2(fo— fi)e >0
_ fo—f1—3+\/(f0'"f1+5)2
- 2(fo— f1)
_ fo—fi—s+(fo— f+5)
2(fo— f1)

_ 20fo—f)

2(fo — f1)
= 1

Case 2: f1 > fo

The steps from the first part of Case 1 may be duplicated to show that p; > 0 for
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h > fo

The following demonstrates that p; < 1.

4 = fo—fi—s+\fA—2fofi+ f2 +s
=

2(fo — f1)
A= fots—\JRR—2ffr + 2+ 5
B 2(f — fo)
1—fo+s—+/fE—2fo 2+ 2(fo— f1)s + s?
_ S fots— VS Q(in;{m (fo— f1)s + since 2 fo— fi)s < 0
_ fl—fo+5—\/(f0—f1+8)2
N 2(f1 — fo)
_ fi—=fo+s—(fo— fi+5)
2(f1 — fo)
— 2(f1—f0)
2(f1 — fo)
= 1

Therefore, 0 < p3 < 1 for both fo > f; and fi > fo, so p3 is a biologically valid
equilibrium point within (0,1). For notational convenience, we let p = ps so that we

have

. fo— fi— s+ \/fE—2fofs + f + s
p= 2(fo — f1)

Without loss of generality, we can assume that fo and fy differ by a multiplicative

factor, say 2f, so that fo = 1 + f and f; = 1 — f and the above equilibrium can be

rewritten as

2f —s44f2+ 52

(5.3)

We proceed to determine the stability of the equilibrium point. As in Chapter 2, we
take the first derivative of the allele recursion (equation 5.2) and evaluate it at the
equilibrium point. For local stability, this must yield a value less than 1.

To show: %IF,;, <1

Method: Since the quantity is a quotient, we show that the numerator is less than
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the denominator by matching common terms.
dp’
s = 16f%(16f2 + 8f%\/af2 4+ s2 — 4f2s\/4f2 + 2 + 164 + 2(4f2 + s2)%/2

p=p
+2s% + 12767 + 257 /4f2 + 52 — 16fs — 45° — s\ [4 2 + 52
—s(4f> + &)%) [ (167 + 12f%\/4f2 + s2 — (41 + %)% + s%\ [4f2 4 s2)?

Expanding the denominator and eliminating common terms, we need to show that

16£24/42 4+ 52 — 8f%s% — 4(4f2 4 52)¥% 4 4261 /4f? + 5% + s(4f% + s2)*/?
+83\/4f2 + 52 — 25 4+ 16f%s + 45°

> 0

We will need to assume that s < f in order to manipulate the inequality further.

Expressing (4% + s?)3/? as (412 + s2)\/4f2 + s2,

16f21/41% + 52 — 8f25% — 4(4f2 + )\ /42 + o* + 425\ /47 + 52
+5(4f7 + 82)\/4f2 + 52 + P fAf7 + 62 — 251 + 16f2%5 + 4

= 16/7/4f2 + 52 — 8f7s* — 16f7/af2 + 2 — 4\ Jaf? + 5
+8f254/4f2 + 82 + 25°4/4f2 + 52 — 25* + 1675 + 45°

> —8f%s% — 452\ J4f? + 52 + 875(2f) + 25°(2f) — 25* + 16f2s + 45
since \/W >2f

= 822 — 4s?\J4f? + 52 + 16f%s + 4fs® — 25* + 16f2s + 4>

> —8f2%2 — 42\[4f7 + 52 4+ 16f2% + 45" — 25% + 1675 + 45
since f > s

= —45*\/4f7 + 52+ 8257 + 25" + 1625 + 4s°

> —45%(2f +s) + 8f%s% + 2s? + 16f%s + 45> since m <2f+s

= —8fs® —45% 4+ 8f%s% 4+ 25% + 16 f%s + 4s°
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> —8fs? 4+ 8f%s2 4+ 25?4+ 16fs? since f > s
= B8f%s*42s* + 8f.ss2

> 0 since f>0

Since the numerator is less than the denominator, we have shown that

do'
._‘?_ <1
pp:ﬁ

provided that s < f = 3[fo — fi].
In order to prove that the internal equilibrium point is globally stable, we need

to show that the system defined by equation 5.2 satisfies two additional criteria:
1. &£ >0for0<p<l

2. Ap>0for0O<p<p

Ap<Oforp<p<1

To show: %ﬂl>0for0<p<1
P

dp'

dp (fap* = 2fofip* + fip* + 4foip® — 411D + fosp® + 6 f1p® — 6fo fip?
+fisp® +4fofip—4fip—2fisp+ fis+ 1)/
(2fop® — 2f1p° — 3fop® + 3f1p* + 2sp® — 2sp — f1)* (5.4)

Clearly, the quantity in the denominator is greater than 0. We proceed to evaluate

the numerator. Grouping the terms of the numerator,
(fo=F1)? P +4(fofi— F1)P*+(fo+ f1)sp* —=6( fo i— FO)P* +4(fo r— FD)p—2rsp+ fis+ f]
Case 1: fo> fi> s

(fo— [1)’p* +4(fofi = FHIP* + (fo+ f1)sp* — 6(fofs — fFR)P* + 4(fof1 — f2)p

—2fisp+ fis+ fF
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= (fo— fi)P* + (fofi — flz)(4P3 —6p° +4p) + (fo+ fl)SP2 —2fisp+ fis+ f12

> (fo— f)’p* + (fofs — F2)(4p* — 6p® + 4p) + (fo + fi)sp” — 2fisp + fisp + f}
since p <1

> (fo— H)'p" + (fofs = f2)(4P° — 6p° +4p) + (fo + fi)sp® — 2fisp + fisp + fis
since f; > s

> (fo— fi)*p* + (fofr — fA)(4p® — 6p* + 4p) + (fo+ f1)sp” — 2fisp + fisp + fisp
since p<1

= (fo— f)*p* + (fofr — f})(4p° — 6p® + 4p) + (fo + f1)sp?

> (fofr — f1)(4p® — 6p* 4+ 4p) + (fo + f1)sp® since (fo — f1)’p* >0

> (fofi — f7)(4p® — 6p® + 4p) since (fo+ fi)sp® >0

> 0 since fofi — ff>0 and 4p® —6p* +4p >0

We can elaborate further on the latter quantity by stating that 4p® — 6p? + 4p =
p(4p* — 6p + 4). Our original assumption is that p > 0. It can easily be verified that
y = 4x% — 6z + 4 1s parabolic with a global minimum at z = 0.75, which corresponds
toy = 1.75> 0.

Case 2: fi > fo>s

(fo— fiPP* +4(fofr — F)P° + (fo + f1)sp® — 6(fofr — F1)P* + 4(Jor — fT)p
—2fisp+ fis+ fi

= 2t = fofap* + (fE = fof)(p* — 4p° + 6p° — 4p) + (fo + fr)sp’ — 2fisp+ fis + f}

> f2pt = fofi + (fE — fof1)(p* — 4p° + 6p* — 4p) + (fo + f1)sp®* — 2fisp+ frs + f]
since p? <1

= fip*+ (T — fof)(p' —4p° +6p° —dp + 1) + (fo + f1)sp* — 2fisp+ fis + f7

> fipt 4+ (fI— o) (' —4p® +6p> —4dp+ 1) + (fo + f1)sp® — 2fisp+ fisp+ [T
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since p <1

> o+ (ff = fof))(p* —4p* + 6p* —dp + 1) + (fo + f1)sp® — 2fisp + fisp + fis

since f; > s

> for' + (ff = fofi)(p* — 4% + 6p° — 4p + 1) + (fo + f1)sp® — 2fisp + fisp + fisp
since p <1

= fop' + (fi = fof1)(p* — 4P° + 6p° — 4p + 1) + (fo + f1)sp®

> (ff—fof)(p* —4p® +6p> —4p+ 1) + (fo + fi)sp® since fip* >0

> (ff — fofi)(p* — 4p° + 6p° —4p+ 1) since (fo+ f1)sp® >0

> 0 since f2—fofi>0 and p*—4p* +6p> —4p+1=(p—-1)*>0

Note that we have added the additional restriction that s < min(fs, f1).

It remains to be shown that Ap >0for0<p<pand Ap<Oforp<p<1. In
determining the equilibrium points, we showed that the curve of p’ versus p intersects
the line p’ = p at exactly three points in the closed interval [0,1], namely at p = 0,p =
p, and p = 1. The line p’ = p, or the diagonal, represents the set of points where
Ap = 0. Thus, points above this line will have Ap > 0, and points below it will have
Ap < 0. We have shown that %%I > 0 in the open interval (0,1). This implies that
the curve of p’ versus p is strictly increasing within (0,1). Evaluating equation 5.4 at

p = 0 yields
/
@l _hEs
dp p=0 fl

This implies that the curve of p’ versus p lies above the diagonal for sufficiently small,
nonnegative values of p. Since the curve does not cross the diagonal again with
increasing values for p until p = p, we claim that for 0 < p < p, Ap > 0. At p = p,
the curve passes through the diagonal with slope less than 1, as implied by the earlier

result that %|p=,3 < 1. Hence, the curve of p’ versus p is below the diagonal when
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equilibrium
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Figure 5.1: A geometric argument for global stability
p = p + € for sufficiently small ¢. As the value of p increases, the curve does not

intersect the diagonal again until p = 1, at which point it has slope

i&' _fo+s
dp p=1 Jo

>1

Figure 5.1 depicts this argument graphically. Since the slope of p’ versus p is positive
in (0,1}, we can place an additional bound that its curve does not extend above the
line p’ = p for 0 < p < p or below this line for p < p < 1. Thus, the curve of p’ versus
p must lie within the shaded region of Figure 5.2. For any curve within this region,
the iterates of p will staircase into the equilibrium point as depicted in Figure 5.3.
An analytical argument can be made for Ap > 0 for 0 < p < p and Ap < 0 for
p < p < 1. From calculus, (see [4]), the curve of a function f can be described by the

formula

£ip) = f(a) + f/(@)(p — a) + 3 /"(e)(p — o)’
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equilibrium
point

0.6 |
|
p’ :
I
0.4 :
I
I
|
0.2 |
:
!
0 * + e ‘ i
0 0.2 0.4 - .
o D 0.8 1

0 . + +
0 P 0.2 0.4
init1

0.8 D..t
|n|2

Figure 5.3: The iterates of p staircase into the equilibrium point
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where a is a point in the neighborhood of p, the point under consideration, f'(a) is
the first derivative of the function f evaluated at a, and f”(c) is the second derivative
of f evaluated at a point ¢ between a and p. The first two terms of this equation

comprise a linear approximation of the curve, i.e.

f(p) = f(a)+ f'(a)(p — @) = L(p)

The third term is an error term, the absolute value of which represents the distance

from the line described by L(p) and the curve of f(p).

1,
B(p) = 51"(e)(p — 0’
The error term varies with the proximity of a to p. The closer the proximity, the
smaller the error. The value of f”(c) is bounded, i.e. there is some B for which

]

and thus L(p) > E(p). Let f(p) = Ap = p’ — p. Then f'(p) = d’;” = &

f"(c¢) £ B for all c between a and p. Note that when a is close to p, (p—a) > (p—a)?
= T — 1.

P
At a =0,Ap =0,s0 f(0) =0. f'(0) = %lp=0 — 1 > 0, since %%[|p=0 > 1. Thus,
L(p) > 0, and the linear approximation for Ap lies above the x-axis. The actual curve
of Ap lies either above or below L(p), depending on the sign of the error term. The
distance from the x-axis is either L(p) + |E(p)| or L(p) — | E(p)|, respectively. Clearly,
L(p) + |E(p)| > 0. The case when the curve of Ap is below L{p) is shown in Figure
5.4. We wish to show that for sufficiently small values of p, L(p) > E(p). In other

words, for sufficiently small p,
£0) + £ O)(p—0) = FO)p) > 37(e)p — O = 5"(c)p*

Since p > 0, both sides of the equation can be divided by p to give f'(0) > 2 f"(c)p

or

2f'(0)

P< i

ffl(c)
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Figure 5.4: The curve for Ap and its linear approximation

which holds for sufficiently small p, since f”(c) is uniformly bounded by B in a
neighborhood. Hence, Ap > 0 for 0 < p < p. Similarly, it can be shown that for
P <p<1l,Ap <0 by taking ¢ = p and examining values of p sufficiently close to, but
greater than p. We conclude that the equilibrium point of equation 5.3 is globally
stable. O

Finally, Figure 5.5 is a plot of the 0 allele frequency for the system of equation
5.2 superimposed with a plot of the 0-bit frequency for the haploid model over a
time scale of 500 generations. The initial values of zo and pe are both 0.01, and the
initial values of z; and p; are 0.99. The fitness values are f; = 1.00 and f; = 0.90.
The two curves representing the diploid model correspond to two different values of
s, the heterozygote fitness bonus. The case for 1 allele convergence is symmetric,
and the curves of Figure 5.4 can be duplicated by interchanging the fitnesses and

the initial values of po with p; and zo with ;. Once again, it is evident that the
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Figure 5.5: Convergence characteristics: haploid vs. diploid models

diploid model is capable of both slowing the rate of convergence (to a homozygote
genotype) and avoiding complete convergence (by forming a stable polymorphism).

More importantly, the scheme of this chapter can be extended to multiple loci.

3. Extending the Model

Geneticists such as Hartl and Clark [7] have taken the next logical step by an-
alyzing a two-locus, two-allele viability model. The primary difference between this
model and single-locus models is the addition of recombination between pairs of genes
linked on the same chromosome. This is simulated in GAs with the crossover opera-
tor. An allele recursion can be derived, but the two-locus selection problem has not

been solved for the general case. In other words, for an arbitrary fitness matrix, there
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is no formula for the equilibria and their stability. Several papers have examined
a special case of the two-locus selection problem referred to as the additive model,
where the simplifying assumption is made that the fitness of a given genotype is the
sum of the fitness effects at each locus. Most notable among these are perhaps a se-
ries of papers by Karlin and Liberman [10], [11], and [12] that analyze the two-locus
additive fitness model and extend it to an arbitrary number of loci. The complexity
of the analysis demands a level of mathematics and a system of notation that are
quite beyond the scope of this paper. In [12], Karlin and Liberman develop a global
convergence criterion and then apply it to establish that the polymorphic equilibrium

of a general multilocus additive viability model is globally stable provided:
1. Each of the loci i1s diallelic.
2. Each of the loci i1s overdominant.
3. The multilocus recombination rate is positive.

Clearly, item 1 is satisfied with the system outlined in this chapter. We have shown
that the single-locus case is capable of attaining overdominance, thus meeting the
requirement of item 2. With a positive crossover rate, item 3 can be satisfied. How-
ever, 1t is not clear whether a multi-locus extension of the system in this chapter can
be equated to the additive model. As stated earlier, fitnesses in a traditional GA
usually correspond to entire strings, not to particular locations within a string. For
an arbitrary fitness function, there is no way to derive quantitatively the fitness of a
given string from the sum of the fitnesses of its component bits, since an individual
bit typically has no fitness associated with it. The issue of whether a globally stable
polymorphic equilibrium exists for a multilocus diploid GA will have to be resolved

by empirical methods.
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Chapter 6
Empirical Test Results

1. Implementing a Diploid GA

The procedure for implementing a diploid GA that conforms to the scheme dis-
cussed in chapter 5 is very similar to the procedure for the haploid GA as presented in
Mitchell {16]. The main differences lie in the need to compute allele frequencies dur-
ing each generation, the computation of fitnesses, and the application of the crossover

operator. For the diploid GA, we perform the following steps:

1. Randomly generate an initial population of n diploid individuals, where each

individual consists of two I-bit binary strings.
2. Compute the allele frequencies in the total population for each locus.
3. Evaluate the fitness of each individual.
4. Generate a new population of n diploid individuals by repeatedly performing:

(a) selection—select two parents based on fitness

(b) gametogenesis—generate a pair of gametes from each parent, performing
crossover with probability pcross and bit-wise mutation with probability

pmut.

o4
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: 0101
genolype 1 1110

phenotype 0110 = {f(0110)+3s

Figure 6.1: Computing the fitness of a diploid genome

(c) fertilization—randomly combine one set of gametes from each parent to

create a (diploid) zygote or child.
5. Goto step 2.

The two [-bit binary strings are aligned so that a locus of the diploid chromosome
refers to the same position in each string. The allele frequency at a given locus is
computed by counting the number of 0 alleles at that locus for each individual in
the population, then dividing by two times the population size. This is done for all /
loci. These frequencies are then used to assist in the resolution of the heterozygote
entries of the dominance map. To compute the fitness of an individual, its diploid
genotype must first be mapped to a haploid phenotype. The genotype is examined
on a locus-by-locus basis. 00 maps to 0 and 11 maps to 1. 01 and 10 map to 0 with
probability p, where p is the frequency of allele 0 at that locus. Thus, 01 and 10 map
to 1 with probability 1 — p. The number of heterozygote loci is recorded and stored
in a bonuscount variable. The haploid fitness function f is applied to the phenotype
and a bonus equivalent to bonusvalue x bonuscount is added to the resulting fitness.
This is depicted for a string of length 4 in Figure 6.1. The method of selection is

stochastic sampling with replacement, or “roulette wheel” selection.
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Gametogenesis

Generates a pair of gametes from each parent.

parenti
0110
11101
crossover
point
gametelA 0101 gamete2A 0101
gameteiB 1110 gamete2B 0010
Fertilization

Generates a single child.

4 offspring are possible, each with probability 0.25 :

0101 1110
0101 0010

0101 1110
0010 0101

Figure 6.2: Diploid gametogenesis and fertilization

0j010

56

Crossover in the diploid GA occurs at a different stage of the lifecycle than in the

haploid GA. Since each diploid parent consists of two strings, recombination of genetic

material can occur within a single parent. One-point crossover is performed. Before a

parent can donate a pair of gametes to the fertilization process, the mutation operator

is able to act upon each bit of the gametes with a small probability. Fertilization

consists of randomly choosing one gamete from each parent and combining them to

form a new diploid individual. Gametogenesis and fertilization are shown in Figure

6.2 for a 4-bit example where bonusvalue = s and bonuscount = 3. In the figure,

one-point crossover is performed between locus 2 and locus 3 for parentl, and between

locus 1 and locus 2 for parent2. For the sake of clarity, no mutation is performed in
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this example.

The first tests attempted to duplicate the results attained in Figure 5.5 for allele
convergence. Chapter 5 presented an idealized model of a GA with no mutation and
an infinite population. We saw that the infinite population haploid model converged
rapidly and completely, while the diploid model exhibited a slower rate of convergence
and retained both types of alleles. The diploid implementation described above should
be able to achieve similar results for large size populations. Figure 6.3 shows a
comparison of the convergence rates for the haploid GA and the diploid GA. With the
same initial parameters, pcross = 0 and pmut = 0, and a population size of 10, 000,
the results appear to agree quite closely with the models. The small perturbations or
lack of “smoothness” in the curves are due to stochastic errors. Again, we see that we
can alter the rate of convergence and percentage of alleles remaining at equilibrium

by varying the value of the heterozygote fitness bonus, s.

2. Measuring Diversity

A pairwise Hamming distance function is used to measure the diversity of the
haploid and diploid GAs. The function works as follows: Each individual's binary
representation is compared locus-by-locus with that of every other individual in the
population. In order to correlate diploid results with haploid results, the Hamming
distances will be computed from each individual’s phenotype in the diploid case. Each
time the allele values differ at a given locus, the Hamming distance is incremented by
one. If there are n individuals in the population, each consisting of a string of length /.
then a total of In(n—1)/2 bitwise comparisons are required. The Hamming distance is
then normalized over the population size and the string length, so that diversity results

can be compared among differing population sizes and string lengths. Because the
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Figure 6.3: Convergence characteristics: haploid vs. diploid GA

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



CHAPTER 6. EMPIRICAL TEST RESULTS 59

degree of possible diversity decreases with increasing population size for small string
lengths, we normalize the Hamming distance values only when 2! > n. Another
important measure in the case of the diploid GA is the number of heterozyous loci in
the population. By recording this statistic, we can determine whether overdominance
is being maintained in the diploid population.

In the absence of selective pressure, changes in allele frequency can result from
chance alone, a phenomenon biologists refer to as random genetlic drift. Left to
the influence of random genetic drift, the allele frequencies in a haploid or diploid
population will wander about, but will eventually converge as alleles are either lost
or become fixed. The rate of convergence is dependent upon population size, initial
allele frequencies, and other factors. The reader is referred to Hartl and Clark [7] for
an overview of random genetic drift, including studies, models, and a list of further
references. We would like to show that a diploid GA will converge at a slower rate
than a haploid GA under these conditions and that the heterozygote fitness bonus
can affect the rate of convergence.

Random genetic drift can be simulated in a GA by using a flat fitness function
that gives every individual in the population equal probability of being selected to
parent an offspring. In addition, the mutation rate is set to zero. We assume that
the randomly generated initial population provides an even distribution of allele fre-
quencies. The heterozygote fitness bonus is computed as a small percentage of the
average fitness of the population in the previous generation, e.g. 0.01 or 0.05. This
ensures that the bonus is relatively small with respect to the fitness of a given indi-
vidual during a given generation. The bonus is set to zero when the fitnesses of the
first generation are evaluated. Figures 6.4 and 6.5 compare the pairwise Hamming
distance values for the haploid GA with those for the diploid GA with various values

of s, the heterozygote fitness bonus. Figure 6.4 was generated with a population size
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diploid GA, s =0.05

string length = 60
population size = 500

Pairwise Hamming Distance (normalized to 1)
W
(%))

(@]
}>
9]
PR
¥

0 100 200 300 400 500
Generation

Figure 6.4: Pairwise Hamming distance values for n = 500 and ! = 60

of 500 and a string length of 60, while Figure 6.5 was generated with a population
size of 100 and a string length of 60. Each figure represents results averaged over
10 runs. Both GAs use one-point crossover with a rate of pcross = 0.5. We see
that the diploid GA does indeed converge at a slower rate than the haploid GA, even
without the benefit of the heterozygote fitness bonus. Moreover, increasing the bonus
decreases the rate of convergence. As expected, Hamming distance values are smaller
and convergence rates are faster for the smaller sized population.

Figures 6.6 and 6.7 show the percentage of heterozygous loci for successive gen-
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string length = 60
population size = 100

diploid GA, s=0.05

Pairwise Hamming Distance {(normalized to 1)

100 200 300 400 500
Generation

Figure 6.5: Pairwise Hamming distance values for n = 100 and [ = 60
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Figure 6.6: Fraction of heterozygous loci for n = 500 and [ = 60

erations and correspond to Figures 6.4 and 6.5, respectively.

3. The Oscillating 0-1 Knapsack Problem

The goal of the 0-1 knapack problem is to maximize the total value of a subset of
objects selected from a set of N possible objects that may be placed in a knapsack,
subject to a weight constraint. Letting v; be the value of the #th object and w; be

the weight of the ith object, the problem may be expressed mathematically as

N
max Z v
1==1
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Figure 6.7: Fraction of heterozygous loci for n = 100 and ! = 60
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subject to the weight constraint
N
Z wiz; < W
=1
where z; € {0,1} denotes whether the ith object is in or out of the knapsack, and
W is the maximum permissible weight. As Goldberg and Smith note in [5], the
problem is presented to the GA blindly. That is, the algorithm has no knowledge of
the structure or parameters of the problem, since they are represented externally as
part of the fitness function. In addition, nonstationarity is introduced by varying the
weight constraint as a step function between two values—82% and 50% of the total
object weights—every 50 generations. The weight constraint is handled as follows:
a knapsack weight that exceeds the maximum permissible weight results in a fitness
penalty which is deducted from the total value. Specifically, the penalty function
applied to overweight knapsacks is
N
penalty = 20 x () wiz; — W)?
i=1
Negative fitness values that result from applying the penalty function are set to zero.

The table below depicts the parameters in the 17-object knapsack problem used by
both Goldberg and Smith [5] and Ng and Wong [18].
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Object number | Object value | Object weight

) v; w;
0 2 12
1 3 5
2 9 20
3 2 1
4 4 o
) 4 3
6 2 10
7 7 6
8 8 8
9 10 7
10 3 4
11 6 12
12 ) 3
13 5 3
14 7 20
15 8 1
16 6 20

totals 91 122

65

This results in weight constraints of Wg,y = 100 and Wypy, = 61. The optimal strings

for each case are as follows:

W string value | weight
100 { 01111101111111111 | 87 100
61 | 01011101111111011 | 71 57

Unfortunately, it is very difficult to correlate the results of the two papers, because

they disagree on the selection and crossover strategies. While Goldberg and Smith

use stochastic remainder selection with replacement and two-point crossover with
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peross = .75, Ng and Wong use linear ranking selection and uniform crossover
with pcross = 0.5. Our own tests indicated that the selection method can have a
significant impact on the results obtained. For example, stochastic sampling with
replacement resulted in slower convergence {and thus better recovery from changes
in the weight constraint) than did stochastic remainder selection with replacement
when used in the haploid GA runs. Because Goldberg and Smith provide sufficient
information to repeat their experiments, their GA parameters and implementation
were chosen for the tests used in this chapter. The weight constraint was switched
every 50 generations, and test runs were performed with pmut = 0.001 and pmut =
0.01. Figure 6.8 plots the average and maximum fitnesses over 500 generations with
pmut = 0.001 for the haploid GA, triallelic diploid GA(as per Hollstien, Goldberg,
and Smith), and diallelic diploid GA (as presented in this chapter and modelled in
the previous chapter). In the diallelic diploid GA, the heterozyogte fitness bonus is
computed as 0.01 of the average fitness of the previous generation. Once again, the
bonus 1s used only in the selection process and 1s not included in the fitness results.
Each plot represents average and maximum generational fitnesses averaged over 10
runs. Figure 6.9 presents the results averaged over 10 runs with pmut = 0.01.

Clearly, when the weight constraint is switched to the lower value, the diploid GAs
are able to reach a good solution before the next weight constraint change, while
the haploid GA with pmut = 0.001 converges sufficiently so that all strings have
zero fitness after application of the penalty function. With prmut = 0.001 and an
oscillation period of 100 generations, none of the GAs are able to achieve the optimal
fitnesses of 87 and 71. Although both the triallelic and diallelic diploid GAs have
similar fitness values for the 82% constraint, the diallelic scheme exhibits a slight
performance advantage for the 50% constraint when pmut = 0.001 and a decidedly

greater advantage for this constraint when pmut = 0.01. When prmut = 0.01, the
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Figure 6.8: 0-1 oscillating knapsack results, pmut = 0.001
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Figure 6.9: 0-1 oscillating knapsack results, pmut = 0.01
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triallelic scheme not only reaches lower fitness values for the 50% constraint, but also
degrades with successive oscillations. The higher mutation rate gives the haploid
GA better performance for both weight constraints, but it falls short of the diallelic

diploid GA, which finds the optimum for both weight constraints when pmut = 0.01.

4. Multimodal Function Optimization

A fundamental hypothesis that attempts to explain how GAs work is the build-
ing block hypothesis [6]. The hypothesis states that strings which include substrings
that are contained in the globally optimal string (or building blocks) will increase
in frequency. Fitter strings are thus constructed from the most fit partial solutions
of past samplings. To test this hypothesis, GA researchers such as Goldberg have
devised fitness functions specifically designed to deceive a GA. A deceptive fitness
function is one in which the average fitness of substrings which are not contained in
the global optimum is higher than the average fitness of those which are. We present
a 3-bit deceptive problem based on the minimal deceptive problem of Goldberg [6].

We assign fitnesses to each of the possible 3-bit substrings as follows:

string | fitness
000 3
001 2
010 2
011 1
100 2
101 1
110 1
111 4
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Here, 111 is the optimal substring, but all other substrings have fitnesses that produce
a gradient away from 111 toward a local optimum at 000. We concatenate 10 of these
3-bit substrings together to form a string of length of 30. A 30-bit string’s fitness
is evaluated 3 bits at a time (using the fitness values in the above table) and is the
sum of 10 of these fitness values. Thus, the globally optimal string consists of all 1s,
and there are 2'° — 1 local optima designed to entrap a rapidly converging GA on a
suboptimal peak.

We apply this fitness function to the haploid and diploid GAs, measuring average
and maximum fitness and pairwise Hamming distance. The mutation rate is varied in
the haploid GA, while mutation is set to zero and the value of the heterozygote fitness
bonus is varied in the diploid GA. In order to ensure that fitness comparisons are made
fairly, the fitness bonus is incorporated only during the selection process, but is not
included in an individual’s contribution to the average fitness of the population, which
is used in the fitness plots. Again, results are averaged over 10 runs, and a crossover
rate of peross = 0.5 is used with one-point crossover. Examining figures 6.10 and 6.11,
we see that for population sizes of 500 and 100 respectively, the diploid GA performs
better under any fitness bonus selection scheme than does the haploid GA. We also
note that the haploid GA never reaches the global optimum in its best-of-generation
fitness results (not plotted). The corresponding diversity results are reported in terms
of the pairwise Hamming distance in figures 6.12 and 6.13 for population sizes of 500
and 100 respectively.

We see that for the smaller population, the diploid GA requires a higher het-
erozygote fitness bonus to achieve the same degree of diversity as it did with the
larger population. Although a relatively high mutation rate of prmut = 0.01 enables
the haploid GA to maintain the greatest diversity in the smaller population, the cor-

responding fitnesses indicate that its performance suffers greatly as a side effect of a
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Figure 6.13: Deceptive problem diversity results, n = 100 and [ = 30
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high rate of mutation. It appears that for this deceptive problem, the diploid GA is
able to give both better performance and increased diversity when given a sufficient

heterozygote fitness bonus.

5. A Runtime Study

With large population sizes and long bit strings, conventional GAs may require a
significant amount of time to run in order to reach a desired stopping criterion. Cer-
tainly, the diploid GA introduces additional computational overhead when evaluating
the fitness of an individual. Allele frequencies at each locus must be computed and
stored for each generation. The individual’s genotype must be mapped to a pheno-
type, and the number of heterozygous loci must be determined before an individual
can be assigned a fitness. In measuring runtime performance, we are most inter-
ested in determining whether the diploid GA gets linearly or exponentially worse
with increasing string lengths and population sizes. We take the difference of the
diploid minus the haploid runtime for various string-length x population-size prod-
ucts. “Runtime” is defined as the user-mode time as measured by the Unix time
facility. All programs are written in C, compiled with the IBM xlc compiler, and
run under AIX 4.2 on an RS-6000/250 workstation. The deceptive fitness function
of the previous section is used in both the haploid and diploid GAs. The crossover
rate for both GAs is pcross = 0.5. While the haploid GA is given a mutation rate
of pmut = 0.001, the diploid GA is given pmmut = 0 and a heterozygote fitness bonus
of s = 0.01 x avg. fitness. The following (string length, population size) pairs were

used:
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string length | population size
l n
30 100
60 100
90 100
30 500
45 500
60 500
75 500
90 500

The results are shown in Figure 6.14, and they appear to indicate a linear rather than

an exponential relationship.

6. Conclusions

When selection and mutation are eliminated, the diploid GA 1s able to slow the
rate of convergence associated with random genetic drift. By modifying the fitness
bonus for heterozygotes, we can control the rate of allele loss and the percentage of
heterozygous loci in the population. With a multimodal fitness function, the diploid
GA gives both greater diversity and improved performance over that of the haploid
GA. Moreover, it does so without the need for mutation. When applied to the oscil-
lating 0-1 knapsack problem, the diploid GA presented herein outperforms both the
haploid GA and the triallelic diploid GA of Goldberg and Smith in adjusting to peri-
odic, large changes in fitness and recalling previous problem solutions. Although the
runtime differential between the diploid and haploid GAs increases with increasing
string length and population size, it does so at a linear, rather than an exponential

rate.
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Chapter 7
Conclusions

From the preceding chapters, we arrive at the following conclusions:

1. The diploid model has an allele recursion equation which is inherently more

complex than the corresponding equation for the haploid model. This fact,
along with biological observations, suggests that diploid populations are capable

of exhibiting more complex behavior than haploid ones.

. Two alleles are sufficient to provide overdominance and thus globally stable

polymorphisms in diploid populations, given the proper assignment of fitnesses.

. Adapting a diploid genome to a haploid fitness function requires variable het-
erozygote fitnesses in order to guarantee overdominance for arbitrary haploid

fitness values.

. A diploid model with variable heterozygote fitnesses can be realized as a practi-
cal GA that exhibits the properties of overdominance and globally stable poly-

morphisms.

. The diploid GA is able to introduce and maintain greater population diversity

to prevent (or at least mitigate) the problem of premature convergence.

78
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6. On a highly multimodal, deceptive fitness function, the diploid GA maintained
greater population diversity and achieved better fitness results than the haploid
GA. While the haploid GA converged to local optima for all runs, the diploid

GA found the global optimum for all runs.

. While the mutation operator gives the haploid GA a means to introduce diver-
sity into the population, it is an undirected method that may have unwanted

side effects. High mutation rates are usually deleterious to GA performance.

. The heterozygote fitness bonus of the diploid GA appears to provide and main-

tain population diversity without large negative effects on performance.

. The diploid GA presented herein outperforms both the haploid GA and the
triallelic diploid GA of Goldberg and Smith in tests with an oscillating 0-1

knapsack problem.

We have achieved the objectives of introducing greater population diversity, pre-

venting (or in some cases mitigating) the problem of premature convergence, and

improving GA performance in complex problem domains such as multimodal and

nonstationary fitness landscapes. Based on the wealth of theory available in the field

of population genetics and the fact that GAs already borrow heavily from some of this

theory, there appears to be great potential in using biological analogues to further

GA research.
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