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Pepin, David M., M.S., Fall 2000 Biological Sciences

Benthic macroinvertebrate response to hyporheic exchange on two alluvial flood plains in 
northwest Montana, U.S.A.

Director; F. Richard Hauer
Abstract

Contrasting hyporheic exchange regimes influenced the distributional patterns of 
benthic macroinvertebrates in the main channel of rivers flowing through two alluvial 
flood plains in northwestern Montana, U.S.A. I employed a random stratified design to 
sample macroinvertebrates, periphyton and seston seasonally between July 1999 and 
March 2000 from riffles affected by different groundwater-surface water exchange 
regimes. Sampling was stratified by bedform, current velocity and median substrate grain 
size in order to control for confounding explanatory variables. Study riffles were located 
in floodplain-scale regions of hyporheic recharge (downwelling) and discharge 
(upwelling) on two alluvial flood plains; one located on the fourth-order McDonald Creek 
and the other on the fifth-order Middle Fork Flathead River. I determined groundwater- 
surface water exchange patterns by installing mini-piezometers in riffles throughout the 
length of each flood plain and measuring vertical hydraulic gradients (VHG) and 
hydraulic conductivities. General patterns in groundwater-surface water exchange were 
demonstrated; downwelling occurred near the upper limit of each flood plain while 
downwelling occurred over the lower 14 of each flood plain. These patterns were 
confirmed by means of comparisons with previous studies conducted on flood plains in 
this region. There were no differences in the mean seston concentration between sites on 
either flood plain within any season. However, the Middle Fork transported more seston 
than McDonald Creek, reflecting differences in stream size and drainage area. Mean 
periphyton standing stock biomass varied with season and site on both flood plains. 
Although periphyton means were not significantly different in all seasons because of high 
within-site variation, maximum periphyton standing stock biomass was always 2-4 times 
greater in upwelling compared to downwelling sites. In addition, variation in algal 
standing stock biomass in upwelling zones was approximately twice what was measured 
in downwelling zones. These results support the findings of another study and suggest 
that primary production is greater, but spatially heterogeneous, in upwelling zones in 
response to the patchy discharge of nutrient-enriched hyporheic groundwater. Univariate 
statistical analyses of mean macroinvertebrate density and biomass measurements found 
no differences between upwelling and downwelling sites. However, multivariate analyses 
o f species by site distance matrices revealed species-specific responses to differential 
hyporheic exchange. These differences between upwelling and downwelling zones were 
correlated with differences in algal biomass and hyporheic exchange regimes. The results 
of this study suggest that changes in the physical habitat structure of main channel riffles 
induced by hyporheic exchange patterns influences the distribution and abundance of 
macroinvertebrates utilizing those habitats. As such, these results underscore the 
functional importance of the hyporheic zone, and particularly of exchange processes 
between groundwater and surface water, in developing and maintaining the complex 
physical habitat mosaic and faunal associations evident in alluvial floodplain ecosystems.
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Introduction

Stream systems form dynamic drainage networks reflecting the geologic, 

geomorphic and climatic histories o f the landscapes with which they are associated 

(Stanford 1996, Ward 1997, 1998a, 1998b). These influential factors interact across 

scales o f space and time forming physically heterogeneous landscapes comprised of 

highly connected elements (Ward 1997, Tabacchi et al. 1998, Ward 1998a, 1998b). 

Because o f their dynamic and highly interactive character, stream networks are not merely 

isolated, wet segments o f a drainage basin, but essential components indivisible from the 

landscapes they drain.

Hynes (1975) formally recognized the importance o f connectivity between a river 

and its valley with his assertion that the ultimate source of a stream's organic matter was 

the surrounding terrestrial environment. Since then, conceptual lotie ecosystem models 

have been developed in an effort to explain stream ecosystem dynamics from a catchment 

perspective (Vannote et al. 1980,Ward and Stanford 1983, Frissell et al. 1986, Minshall 

1988, Junk et al. 1989, Ward 1989, Gregory et al. 1991, Stanford and Ward 1993, Ward 

and Stanford 1995). Early models, such as the River Continuum Concept (Vannote et al.

1980), focused on the longitudinal dimension o f a riverine system and identified 

important energetic factors associated with observed patterns in biological diversity and 

faunal distribution along the continuum from headwaters to mouth (Vannote et al. 1980, 

Minshall 1988, Johnson et al. 1995), Lotie researchers now acknowledge that the 

structure and function o f a river ecosystem are the direct results o f the dynamic 

connectivity between a given river and its landscape in three spatial dimensions. That is, 

interactions among the lateral, vertical and longitudinal dimensions o f a riverine

1
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ecosystem vary over multiple scales o f time resulting in the high biological diversity and 

physical complexity evident in these systems (see Ward 1989, Gregory et al. 1991, 

Stanford and Ward 1992, 1993, Ward 1997, Tabacchi et al. 1998, Ward 1998a, 1998b).

Furthermore, contemporary lotie researchers recognize the importance of 

connectivity among stream, riparian and adjacent upland ecosystems within catchments 

and propose that pristine riverine landscapes are organized into geomorphic hierarchies of 

landscape features (see Frissell et al. 1986, Gregory et al. 1991, Stanford and Ward 1992, 

1993, Giller 1994, Ward 1997, Tabacchi et al. 1998, Ward 1998a, 1998b). A 

fundamental tenet o f hierarchy theory is that patterns or processes at a given hierarchical 

level are constrained by processes occurring at higher levels (c /  O'Neill et al. 1986, 

Swanson et al. 1988, Kotliar and Weins 1990); this principle applies strongly to the 

organization o f lotie ecosystems.

The catchment is the highest level o f the stream geomorphic hierarchy; its 

boundaries define a given river's watershed and it is the most spatially extensive and 

temporally persistent landscape element. The remainder o f the hierarchy is comprised of 

a series of nested elements, including the channel network, segment, reach and habitat. 

Spatial extent and temporal persistence decrease through this series (Frissell et al. 1986).

The geologic and geomorphic histories o f its catchment define a stream network’s 

drainage pattern. In northwest Montana, channel networks interact with catchments that 

have been heavily influenced by glaciation (Fagre et al. 1997). These channel networks 

are characterized by a predictable, repetitive sequence o f segment types: bedrock confined 

segments alternate with unconfined alluvial segments, both o f which contain reaches 

comprised o f alternating riffle and pool habitat types.
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Confined and alluvial segments differ in the relative sizes o f their lateral and 

vertical dimensions. Bedrock confined segments typically flow through steep regions o f a 

catchment and are characterized by straight, single thread channels with relatively high 

stream powers per unit stream length. Because o f this, erosional features typically 

dominate confined segment types; very few depositional features occur along confined 

segments in this region (Hauer et al. 1997). Hence, the vertical dimension o f confined 

reaches is often limited to shallow, spatially discrete channel bottom sediment deposits 

(Stanford and Ward 1992, 1993, Ward 1997, Hauer et al. 1997, Ward 1998a, 1998b). 

Additionally, the high level o f bedrock control exerted on confined segments minimized 

any interaction in the lateral dimension between the stream and the terrestrial 

environment.

In contrast, alluvial segments flow through deep sediments deposited over broad, 

shallow valleys by long-term fluvial processes resulting in a vertical dimension which can 

extend tens of meters (Church 1992, Lewin 1992, Stanford and Ward 1992, 1993, Ward 

1997, Huggenberger et a l  1998, Ward 1998a, 1998b). In northwest Montana, unconfined 

alluvial segments are distinctly defined on the landscape as spatially heterogeneous flood 

plains (see Amoros and Roux 1988, Stanford and Ward 1993, Hauer et al. 1997).

Alluvial floodplain systems are physically dynamic across several scales o f space and 

time. A topographically complex pattern of mixed age geomorphic surfaces is created as 

a river migrates across its flood plain through the processes o f cut-and-fill alluviation and 

channel avulsion (Salo 1990, Gregory et a l  1991, Church 1992, Lewin 1992, Naiman and 

Décamps 1997). These surfaces are differentially colonized by macrophytes and 

influenced by large scale restructuring events, including sediment deposition and scouring 

by bedload transport or the movement o f large woody debris during floods (Likens 1984,

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



Naiman and Decamps 1997). In addition, interstitial surfaces with high hydrologie 

conductivities occur throughout the vertical dimension of alluvial flood plains forming 

preferential groundwater flow-paths. These zones, referred to as paleochannels, appear to 

be the beds of former river channels covered and filled with alluvium (Stanford and Ward

1993). This physical complexity, particularly in the vertical dimension, contributes to the 

development o f hydrologie, thermal and biological complexity throughout the entire flood 

plain.

Extensive hydrologie exchange between ground water and surface water occurs in 

the vertical dimension o f unconfined alluvial flood plains (see Boulton 1993, Stanford 

and Ward 1993, Brunke and Gonser 1997, Boulton et a l  1998, Malard et a i  1999). The 

processes o f groundwater-surface water exchange operate within a hierarchy defined by 

floodplain geomorphology. Like other hierarchical systems, the broadest level is the most 

spatially extensive and temporally persistent, while subsequent levels are smaller and 

increasingly ephemeral.

At the largest scale (10^'^ m, lÔ "'* yr.) surface water flowing onto a flood plain at 

the upstream bedrock constriction point (knickpoint) penetrates the alluvium 

(downwells), recharging the aquifer as it enters the hyporheic zone. Hyporheic water 

moves through floodplain gravels along various interstitial pathways, including 

paleochannels, and erupts back to the surface (upwells) at various locations downslope 

(Boulton 1993, Stanford and Ward 1993, Brunke and Gonser 1997, Baxter and Hauer 

2000). Not all o f the hyporheic water returns directly to the main river channel in zones 

o f generalized upwelling, a portion is discharged on lateral floodplain surfaces some 

distance from the channel forming ponds, wetlands and springbrooks.
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Regardless o f its location, upwelling hyporheic water confers a moderated and 

attenuated thermal regime to the surface water system resulting in summer cool and 

winter warm conditions relative to non-upwelling portions o f the river channel. Several 

studies have demonstrated an increase in temperature o f up to 4® C in upwelling zones 

compared to downwelling or neutral zones under cold winter conditions (see Valett et al. 

1990, Case 1995, Cavallo 1997, Bansak 1998, Baxter and Hauer 2000). A moderated 

thermal regime such as this may confer an energetic subsidy to benthic invertebrate 

communities and contribute to physical habitat complexity by preventing the formation of 

anchor ice and surface ice in upwelling zones. Additionally, hyporheic discharge is 

enriched in both phosphorous and nitrogen (Ford and Naiman 1989, also see reviews in 

Brunke and Gonser 1997, Boulton et al. 1998, Dahm et al. 1998, Tabacchi et al. 1998) 

and has been shown to subsidize benthic primary production at both small (Valett et al.

1994) and large spatial scales (Bansak 1998).

Smaller scale patterns o f upwelling and downwelling (10*̂ ** m, 10° ' yr.) also 

occur along unconfined alluvial segments. Ephemeral ponds and floodplain streams may 

only be present when the groundwater table is recharged after annual peak discharge or 

extremely large storm events {cf. White 1993). Localized downwelling and upwelling 

occur at the head and tail o f  each floodplain riffle {cf. White 1993, Valett et al. 1994). 

Thus, this spatially complex mosaic o f floodplain habitats is constantly shifting in 

response to changes in hydrology and geomorphology over scales o f time ranging from 

hours to millennia (White 1993).

Stanford and Ward (1993) proposed an expansive riverine ecosystem model that 

modified previous conceptual models (Vannote et al. 1980, Ward and Stanford 1983,

Junk et al. 1989, Ward and Stanford 1995) by incorporating ecological interactions
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occurring between hydrologie subsystems (i.e., hyporheic - surface) in the vertical 

dimension. According to the hyporheic corridor concept (Stanford and Ward 1993), 

repetitive alluvial flood plains provide catchment-wide vertical connectivity in addition to 

the longitudinal connectivity proposed by the River Continuum Concept (Vannote et al. 

1980) or the longitudinal and lateral coimectivity proposed by the Serial Discontinuity 

Concept (Ward and Stanford 1995) and the Flood Pulse Concept (Junk et al. 1989). The 

Hyporheic Corridor Concept further hypothesized that repetitive floodplain elements 

would function as segment-scale (sensu Frissell et al. 1986) zones o f hyporheic-surface 

water exchange, thereby increasing landscape heterogeneity and influencing, presumably 

enhancing, biological diversity patterns across the entire catchment.

For the past twenty years, the physical, chemical and biological environments o f 

alluvial flood plains have been imder extensive investigation worldwide. Most o f the 

research has focused on the characteristics o f the hyporheic zone and how interactions 

between ground and surface water environments may influence floodplain diversity 

patterns. Results have revealed speciose and unique interstitial invertebrate and microbial 

assemblages, complex thermal and hydrologie regimes, complex nutrient dynamics 

characterized by nutrient enriched hyporheic water and spatially diverse habitats partially 

controlled by variable hyporheic exchange (Amoros and Roux 1988, Stanford and Ward 

1988, Triska et al. 1989, Gibert et al. 1990, Valett et al. 1990, Stanford et al. 1994, Valett 

et al. 1994, Ward et al. 1994, Case 1995, Cavallo 1997, Bansak 1998, Claret et al. 1998, 

Craft 1998, Dahm et al. 1998, Dole-Olivier 1998, Ellis et al. 1998, Ward et al. 1998, 

Baxter and Hauer 2000).

Four studies are o f particular relevance to the research summarized in this thesis. 

All focused on interactions between groundwater and surface water habitats and helped
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identify the need for further investigation into the functional significance o f hyporheic 

exchange in flood plain-river ecosystems. Three o f the studies focused on the Nyack 

flood plain o f the Middle Fork Flathead River and were extensions o f an initial 

investigation conducted by Stanford, Ellis, Craft and Hanson (unpublished). This 

investigation demonstrated floodplain-scale downwelling and upwelling using water mass 

balance data, thermal subsidy in upwelling zones and a spatiotemporally dynamic shifting 

habitat mosaic on the Nyack flood plain in an effort to provide a scientific rationale for a 

Federal Reserve Water Right on the Middle Fork.

Case (1995) compared the composition of benthic macroinvertebrate assemblages 

from surface water habitats (springbrook and main channel) with hyporheic invertebrate 

assemblages on the Nyack flood plain. Her results suggested that hyporheic habitats 

contained unique invertebrate fauna and that benthic assemblages were more similar to 

each other than those occupying the adjacent hyporheic zone regardless o f habitat type. 

She also demonstrated distinctly different thermal and chemical conditions among the 

three habitat types. O f particular interest, sites characterized by hyporheic discharge were 

thermally enhanced; they accrued up to 400 more annual degree-days than recharge 

habitats.

Cavallo (1997) investigated how thermal heterogeneity among various floodplain 

habitats influenced fish and amphibian diversity. Like Case (1995), his results showed 

that habitats associated with upwelling zones were characterized by moderated thermal 

regimes and distinctly different physical characteristics than downwelling habitats. He 

demonstrated that floodplain habitats contained vertebrate fauna distinct from river 

habitats and that this difference was a function o f the moderated thermal regime and 

different physical conditions that characterized floodplain habitat types.
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Bansak (1998) demonstrated that benthic algal assemblages responded to physical 

and chemical differences between areas o f segment-scale generalized upwelling and 

downwelling on a flood plain. Cobbles in generalized upwelling zones supported higher 

periphyton biomass than cobbles in downwelling zones in response to phosphorous 

enrichment conferred from hyporheic discharge. Phosphorous concentrations were up to 

three times greater in hyporheic water compared to surface water. Like Case (1995) and 

Cavallo (1997), he also demonstrated a significantly moderated and attenuated thermal 

regime for surface water habitats in upwelling zones.

Baxter and Hauer (2000) studied several alluvial segments in the Swan River 

drainage o f northwest Montana. They demonstrated that the discharge o f ground water 

into main channel riffle habitats occurs across a hierarchy o f spatial scales that affects 

thermal and physical habitat conditions. Their results indicated that bull trout (Salvelinus 

conjluentus) responded to upwelling hyporheic water at both the reach- and habitat-scale 

{sensu Frissell et al. 1986) when choosing spawning locations. They suggested that this 

choice was related to the moderated thermal regime evident in upwelling reaches. They 

also demonstrated that alluvial flood plains are repetitive elements in riverine landscapes 

with surface-hyporheic exchange patterns very well predicted by segment-scale 

geomorphology. Specifically, at the floodplain scale, surface water downwelling is 

concentrated at locations near the upstream knickpoint, while a majority o f the hyporheic 

upwelling occurs near the downstream knickpoint.

Within the river ecology literature, many experimental studies have documented 

complex energy flow through food webs that involve interactions among nutrients, 

periphyton and invertebrate consumers (see reviews by Feminella and Hawkins 1995, 

Borchardt 1996, Lamberti 1996). However, few studies have investigated whether
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changes induced in the in situ  benthic environment, either in the physical habitat or at the 

primary producer trophic level, could lead to similar results (Ward 1989, Boulton 1993). 

Likewise, catchment-scale thermal regimes have long been recognized as influential to 

aquatic insect distribution and abundance along the longitudinal river continuum (see 

Ward and Stanford 1982, Stanford et al. 1988, Vinson and Hawkins 1998, Lowe and 

Hauer 1999). In spite o f this, studies on a possible macroinvertebrate response to 

variation in segment-scale thermal conditions resulting from differential groundwater- 

surface water exchange on large alluvial flood plains are virtually nonexistent (but see 

Boulton et al. 1998 for a further perspective).

The objective o f this study was to investigate the relationship between segment- 

scale surface water-groundwater exchange and patterns in the distribution and abundance 

o f main channel benthic macroinvertebrates. I was specifically interested in determining 

if, within similar riffle habitats, the composition and structure o f benthic 

macroinvertebrate assemblages differed between zones o f segment-scale upwelling and 

downwelling on alluvial flood plains. Since large- (10^-m) and small-scale (lO'^-m) 

patterns in the distribution and abundance o f benthic macroinvertebrates have been linked 

to physical habitat conditions (see Reice 1980, Sheldon 1980, Resh and Rosenberg 1984, 

Culp and Davies 1985, Clements 1987, Parker 1989, Quinn and Hickey 1990, Ward 

1992, Wohl et al. 1995, Vinson and Hawkins 1998, Lowe and Hauer 1999), I employed a 

stratified design to identify and sample riffles with similar seston dynamics, current 

velocities and substrate grain sizes in an effort to isolate the effects o f hyporheic 

exchange. I addressed this question at both the stream segment (floodplain) and channel 

network (across stream order) scales {sensu Frissell et al. 1986).
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I developed four working hypotheses: 1) riffles in upwelling zones would have 

higher algal standing stock biomass than similar riffles in downwelling zones; 2) riffles in 

upwelling zones would support higher densities o f macro invertebrates than similar riffles 

in downwelling zones; 3) macroinvertebrates collected from riffles in upwelling zones 

would be larger than those collected from similar riffles in downwelling zones; and 4) the 

composition and structure o f macroinvertebrate assemblages would vary with river, but 

assemblages associated with riffles in upwelling zones would consistently contain more 

and larger individuals than assemblages associated with similar riffles in downwelling 

zones. The corresponding null hypothesis for each working hypothesis was that there 

would be no measurable differences between upwelling and downwelling zones on either 

flood plain.

Methods

Field Sites

I conducted fieldwork in main channel riffle habitats on two alluvial flood plains 

in northwestern Montana, U.S.A. (Fig. 1). I selected flood plains based on total area and

river size to facilitate an across-scale investigation. The order Moose Country and 5^^ 

order Nyack flood plains cover approximately 3-km^ and 30-km^, respectively (Table 1). 

Both flood plains are within the 24,241-km^ Flathead River drainage basin. The Flathead 

Basin's imderlying geology is sedimentary bedrock from the late Paleocene to the 

Proterozoic; its mountain ranges are part o f the Rocky Mountain Belt Supergroup and its 

geomorphology reflects the recent glacial history of the region (Alt and Hyndman 1973, 

Hauer et al. 1999). Rivers within the Flathead Basin show a repetitive sequence of
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Table 1. Study site description and results o f site suitability assessments. One sample t- 
test on Ho: The true mean VHG is zero. Mann-Whitney test on Ho: There is no 
difference in the mean VHG values between sites on a flood plain.

Flood River Order Area Site VHG Significance
plain (km^) (mean ± 1 SE) t-test Mann-

Whitney
Moose

Country
McDonald

Creek
4 3 UW

DW
0.029 ± 0.006 

- 0.332 ± 0.083
< 0.0005
< 0.0005 < 0.0005

Nyack Middle Fork 
Flathead 

River

5 - 3 0 UW
DW

0.008 ± 0.003 
- 0.525 ± 0.189

0.042
0.027 < 0.0005
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bedrock-confined segments alternating with unconfined alluvial segments. Alluvial 

segments are often characterized by the presence o f flood plains containing unconfined 

aquifers in which connectivity between hyporheic groundwater and surface water is 

maximized, resulting in physically, spatially and biologically complex ecosystems.

Large-scale patterns o f upwelling and downwelling are well understood on the 

Nyack flood plain. Stanford et al. (1994) and Poole (2000) discuss detailed descriptions 

o f and mechanisms for these patterns; I will only provide a summary here. Downwelling 

occurs at the flood plain’s upper knickpoint and continues for approximately 2-km, by 

which point 30% o f the river flow has recharged the Nyack alluvial aquifer (Stanford et 

a l  1994, Poole 2000). Return flow to the river channel begins approximately 8-km from 

the upper knickpoint and all o f  the recharged water is returned to the Middle Fork’s 

channel before it enters the confined segment 10-km downstream from the upper 

knickpoint (Stanford et a l  1994, Poole 2000).

Baxter and Hauer (2000) provided support for the generality of this pattern; they 

observed similar groundwater-surface water exchange patterns on flood plains in four 

separate watersheds in northwest Montana. On all o f  the flood plains in their study, 

strong downwelling zones were found at the upper knickpoints while upwelling zones 

occurred near the lower knickpoints. During the early phase o f my research, I conducted 

an exploratory investigation with a stratified random design to identify large-scale zones 

o f downwelling and upwelling on the Moose Country flood plain and confirm patterns 

described for the Nyack flood plain within similar riffle habitats.
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Groundwater-Surface Water Exchange

I quantified groundwater-surface water exchange on these flood plains with mini

piezometers constructed o f 5/8" internal diameter PVC pipe. I installed an array o f mini

piezometers (n = 8 to 25) in randomly selected locations in riffles near the upper and 

lower knickpoints o f each flood plain using a piezometer driver and methods outlined by 

Baxter (1997). All piezometers were finished to depths o f 50-cm to 75-cm below the 

river bottom, bailed to ensure that they were free o f blockages and left to equilibrate for 

up to 15 minutes. I then calculated the vertical hydraulic gradient (VHG) at each 

piezometer from the equation:

VHG = dhldl

where d/i is the difference measured between the hydraulic head inside and outside the 

piezometer and d/ is the piezometer's depth o f penetration into the stream bottom (see Lee 

and Cherry 1978, Dahm and Valett 1996). Vertical hydraulic gradient is a imitless ratio 

in which negative values indicate downwelling, or groundwater recharge, while positive 

values indicate upwelling, or groundwater discharge.

Hydraulic conductivities (k, in cm/s) o f the floodplain sediments were determined 

with falling head tests (Fetter 1994). A failing head test was performed on each 

piezometer and hydraulic conductivity was estimated using the modified Hvorslev 

equation described in Baxter and Hauer (2000):

k  = [(0.2501) (D) (In {h(/h))\ / {dt) 

where D  is the inside diameter o f the piezometer and dt is the interval o f time required for 

the head level to drop from to h. After calculating VHG and k for each piezometer, I
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used Darcy's Law to quantify the flux (Q, in ernes’') o f  water between the groundwater 

and surface water compartments o f the floodplain gravels;

Q = -(^)(A )(V H G )

where A is the cross sectional area o f the piezometer and k  and VHG are calculated from 

the above equations (Fetter 1994). Mean values o f VHG, k  and Q were used in all 

subsequent analyses. If  the mean hydraulic conductivities were equal at two locations 

then flux was simply a function o f VHG. After identifying and confirming generalized 

upwelling and downwelling zones, I randomly selected a study riffle on each flood plain 

within each upwelling and downwelling zone (Table 1, Figure 2).

Benthic Macroinvertebrates

I employed a stratified random design (stratified by habitat type = similar riffles) 

to quantitatively sample benthic macroinvertebrates seasonally from six randomly 

selected 0.25-m^ plots in each riffle with a modified kicknet using methods described by 

Hauer and Stanford (1981) and Hauer and Resh (1996). I collected a total o f 48 samples 

per flood plain (six samples at two sites on four collection dates). I sampled seasonally 

during 1999 and 2000 (July, October, December and March). These dates represented 

summer, fall, early winter before ice formation and early spring after ice out yet before 

warm overnight temperatures initiated annual snowmelt runoff. Each sample was 

preserved in the field with 70-% EtOH and returned to the Flathead Lake Biological 

Station where it was rinsed and sorted. Ephemeroptera, Plecoptera and Trichoptera 

(EPT) taxa were identified to species when possible using available keys and an existing 

reference collection (Jensen 1966, Gaufin et a l  1972, Edmunds et a l  1976, Wiggins
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1977, Stewart and Stark 1988, Merritt and Cummins 1996, FLBS reference collection) 

and to genus in early instars. I quantified macroinvertebrate abundance from these data 

by calculating community level densities and biomass. I also quantified individual 

condition by measuring the size o f common taxa.

Taxon biomass was determined by first spinning individual taxa from each sample 

at 650 RPM for three minutes in an International Equipment Co. Model HN centrifuge to 

remove residual preservative and then weighing to the nearest 0.0005-g on an AND 

Company electronic balance Type ER-182A (Stanford 1973). I determined mean 

individual size o f common taxa by measuring either the interocular distance (Trichoptera 

and Plecoptera) or head capsule width (Ephemeroptera) o f a randomly selected subsample 

o f approximately 50 individuals. I defined common taxa operationally as those taxa that 

had more than approximately 25 late instar individuals in each sample on a flood plain. 

These taxa were not chosen a-priori, but were selected after a preliminary inspection of 

the samples. Common taxa often varied between flood plains and among seasons, but 

were always common to both sites within a given flood plain and season. Voucher 

specimens were preserved, labeled and archived at the Flathead Lake Biological Station.

Periphyton

I scraped a 4-cm^ area o f periphyton from the surfaces of five randomly selected 

rocks at each riffle on each sampling date. The scraped area was then scrubbed with a 

bristle brush to dislodge any remaining cells. I rinsed the scraped surface, blade and 

brush onto a glass fiber filter (Gelman type AE) and froze each filter on dry ice in the 

field (Steinman and Lamberti 1996). Chlorophyll a concentration, a surrogate of algal 

standing stock biomass, was quantified by acetone extraction followed by
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spectrophotometric analysis (American Public Health Association 1998). I conducted all 

periphyton analyses within 30 days from the collection date.

Seston. Substrate, and Current Velocity

At each sampling date, I collected seston (1-pm < suspended particulate matter < 

1000-pm) by straining three 100-L grab samples o f water collected from the river thalweg 

at each site through two sieves (I-m m  and 64-pm mesh). The seston accumulated on the 

64—pm sieve was transferred into a rinsed 125-mL HOPE container. A 25-L aliquot of 

the flow-through from the sieves was collected in a DI rinsed container. This aliquot o f 

flow-through represented the < 64-pm size fraction o f seston. Samples were placed on 

ice and returned to the Flathead Lake Biological Station for AFDW analysis. I filtered 

seston through pre-ashed Gelman type AE glass fiber filters (1-pm pore diameter), dried 

and ashed all samples within 24-h according to standard analysis procedures (Wallace and 

Grubaugh 1996, American Public Health Association 1998).

I quantified the dominant substrate grain size o f each riffle with a modified 

Wolman pebble count on the first visit to each riffle. I pooled all particles in each riffle 

and constructed frequency distributions. The median diameter o f each distribution was 

categorized according to the Wentworth Classification scheme (-log2(dso)) for 

comparison between riffles (Minshall 1984). Near substrate current velocity was 

measured at approximately 3-cm above the river bottom at each sample plot on each 

collection date with a Scientific Instruments Inc. Model 1215 type AA magnetic head 

current meter.
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Statistical Analyses

I assessed site suitability by first comparing the mean hydraulic conductivity 

values (k) o f each pair o f sites on a flood plain to verify that they were equal. Since the 

hydraulic conductivities were equal between sites on a flood plain (see Results) I was able 

to use VHG alone as an index of groundwater flux (see flux equation in VHG section 

above). I compared the mean VHG values of each pair o f sites on a flood plain with a 

Mann-Whitney test o f H^: the mean VHGs of the riffles are equal. I then performed a 

one-sample t-test on the mean VHG o f each riffle to confirm that each was different from 

zero, i.e., each riffle's mean VHG was significantly positive or negative. I defined 

suitable riffles as those with mean VHG values both different from each other tind 

different from zero at p < 0.05. Using those criteria, riffles with significant positive or 

negative mean VHG values were receiving water from or losing water to the hyporheic 

zone, respectively. Suitable sites were thus located in regions o f the flood plain under the 

influence of contrasting groundwater-surface water exchange regimes.

Differences in macroinvertebrate assemblage composition and structure were 

analyzed with both multivariate and univariate techniques. Since species composition 

was highly variable among seasons and between flood plains I performed all tests 

seasonally within flood plains. In ail cases, I considered p-values o f 0.10 or less 

significant.

I conducted three multivariate analyses with PC-ORD for Windows Version 3.2 

(McCune and Mefford 1997): Multi-Response Permutation Procedures (MRPP), Mantel 

tests o f association and Indicator Species Analysis. For the multivariate tests, species by

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



2 0

site matrices were constructed based on raw EPT abundance data and then coded by 

habitat type (i.e., upwelling or downwelling).

I used nonparametric MRPP to determine if  species composition differed between 

habitat types on a flood plain. My MRPP tested the null hypothesis that there was no site 

effect on species composition. I converted the species by site matrices to distance 

matrices using Sorenson's distance:

S = 1 - (2w / (a+b))

where w is the sum of the smaller abundance values o f taxa common to both upwelling 

and downwelling sites and a and b are the sum o f all taxa abundances in upwelling and 

downwelling sites. Each MRPP produced an R-statistic, which described the level of 

observed compared to expected within group homogeneity based on the distance 

matrices. R-statistics can assume values o f -1 to 1. Positive values suggested that there 

was more within group homogeneity than expected and, thus, differences in species 

composition between sites; negative values suggested less within-group homogeneity and, 

thus, no site differences. MRPP associated a p-value with each R-statistic, providing a 

statistical interpretation o f significance.

I used the nonparametric Mantel test to determine whether differences in 

macroinvertebrate assemblages were significantly associated with environmental 

parameters (chlorophyll-^ and VHG). As in MRPP, 1 used Sorenson's distance to convert 

both species by site and environmental conditions by site matrices to distance matrices. 

Specifically, the Mantel test evaluated the null hypothesis that no relationship existed 

between site-specific differences in species composition and environmental conditions.

A p-value was obtained by performing 2000 iterations o f a Monte Carlo randomization 

procedure.
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I used Indicator Species Analysis on seasonal species abundance by site matrices 

o f each flood plain to identify taxa indicative o f upwelling or downwelling habitats, i.e., 

to determine the drivers o f differences uncovered with MRPP. In PC-ORD, the relative 

abundance and relative occurrence o f each taxon was used to calculate an indicator value 

for that taxon. Indicator values ranged from 0 to 100 and were indices of whether the 

presence o f a given taxon was indicative o f a specific habitat type (no indication to 

perfect indication). I used a Monte Carlo randomization procedure with 2000 iterations 

to test the null that a taxon's observed indicator value was no different from what could 

be expected by chance.

In addition to multivariate analyses, 1 compared mean values of macroinvertebrate 

abundance measured as density, biomass and relative abundance. Very obvious 

differences in aquatic insect assemblages may be demonstrated with comparisons o f mean 

community-level values. In fact, this approach has been used to show the effect o f 

catastrophic disturbance events on insect communities and to illustrate regional 

differences in the composition o f macroinvertebrate communities (Reice 1984). 1 used 

Mann-Whitney U tests to compare total EPT density and biomass and EPT relative 

abundance and biomass seasonally within flood plains to determine if  there were gross 

differences in macroinvertebrate assemblages correlated with groundwater-surface water 

exchange patterns.

Macroinvertebrate assemblage structure is also often examined from a trophic 

perspective. Aggregating species into functional feeding groups often helps describe 

differences in assemblage composition between locations or treatments by highlighting 

differences in the relative abundances o f different food type specialists (Cummins and 

Merritt 1996). Functional feeding group (PPG) composition has proven useful in
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describing changes in the longitudinal distribution patterns o f macroinvertebrates related 

to the availability o f specific energetic resources such as CPOM, FPOM, plant material 

and prey species (Vannote et al. 1980, Minshall and Petersen 1985). FFG analysis has 

also been successful as a descriptor o f changes in community structure related to river 

impoundment and other types o f flow regulation (Stanford et a l  1988). I aggregated EPT 

taxa collected in upwelling and downwelling zones into five functional feeding groups 

based on each taxon's primary mode of feeding: collector-filterer, collector-gatherer, 

predator, scraper/grazer and shredder (sensu Cummins and Merritt 1996). Taxa were 

further categorized as specialists or generalists depending on whether they utilized more 

than one type o f food resource, e.g., a generalist obtains energy and nutrients from both 

detritus and live plant material while a specialist only eats living plants. Differences in 

the relative abundance o f FFG’s were analyzed with Mann-Whitney U tests to determine 

if  there were gross changes in the assemblage structure from a food availability 

perspective.

I also used Mann-Whitney U tests to compare the mean individual sizes and 

biomass of several common taxa and to test for seasonal between-site differences in 

chlorophyli-a, seston concentration and current velocity within flood plains. I converted 

the median particle diameter o f each riffle's substrate distribution to a categorical value on 

the Wentworth scale and considered the substrate composition to be different between 

sites on a flood plain if  the median particle diameter fell into different Wentworth 

categories (Minshall 1984).
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Results

Seston. Current Velocity and Substrate

Despite strong seasonal trends, there were no significant differences between 

seston AFDW concentrations at upwelling versus downwelling sites on either flood plain 

within any season (p > 0.05 between sites within season and flood plain). I measured 

annual maximum mean seston concentrations in the summer samples, which were 

collected shortly after annual peak discharges. Nyack sites transported more seston 

(mean ± 1 SE, 0.553-mg/L ± 0.04-mg/L) than the Moose Country sites (0.225 mg/L ± 

0.05-mg/L) in this season. I measured annual minimum mean seston concentrations in 

the winter samples, which were collected during a period corresponding to extended 

baseflow conditions. As with the maxima, Nyack sites carried larger minimum seston 

loads (0.130-mg/L ± 0.01-mg/L) than the Moose Country sites (0.098-mg/L ± 0.01- 

mg/L).

There were no differences in mean near-substrate current velocities between sites 

on either flood plain in any season (Nyack p > 0.10, Moose Country p > 0.10 in all 

seasons). Overall mean values varied with season but no trends were evident. However, 

mean current velocities were generally higher at the Nyack sites than the Moose Country 

sites. I measured ranges in current velocity from 0.50-mps to 0.86-mps at the Nyack sites 

and 0.44-mps to 0.65-mps at the Moose Country sites.

Small cobble particles (64-mm to 128-mm diameter) dominated the substrate o f 

all study riffles. There were no significant between-site differences in the substrate grain 

size composition, although downwelling sites tended to have larger substrate particles 

than upwelling sites. Across all sites, the median particle diameter expressed on the
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Wentworth Classification scale was -6. However, the Nyack flood plain contained larger 

particles than the Moose Country flood plain (117-mm vs. 87-mm), reflecting differences 

in conveyance between the two rivers.

VHG and Site Suitabilitv

Moose Countrv

I identified suitable riffles in generalized downwelling and upwelling zones o f the 

Moose Country flood plain approximately 30-m and 1750-m downstream from the upper 

bedrock knickpoint (Figure 2). Since both sites contained sediments with hydraulic 

conductivities o f approximately 0.05-cm/s, values within the range expected for 

unconsolidated, well-sorted gravels (Fetter 1994), I used VHG as an index of 

groundwater flux. Both riffles had mean VHG values highly significantly different from 

zero (p < 0.0005 in both upwelling and downwelling zones) and each other (p< 0.0005), 

permitting me to assign them as suitable study sites (Table 1, Figure 3). However, the 

relative strengths o f groundwater-surface water exchange were not equal at the upwelling 

and downwelling sites. The mean VHG in the upwelling zone was approximately 12 

times less than in the downwelling zone (Table 1). In addition, the distribution of VHG’s 

was highly variable in the upwelling zone but constant in the downwelling zone. 

Approximately 14% o f the mini-piezometers I installed in the upwelling zone had 

negative VHG measurements while all o f the mini-piezometers in the downwelling zone 

had negative VHG measurements (Figure 3). Such a difference in VHG between 

upwelling and downwelling zones indicated a patchy, non-uniform discharge o f 

hyporheic water in upwelling reaches o f the floodplain river channel but strong 

homogeneous surface water recharge in downwelling zones.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



25

o
X
>

.10

.08

.06

.04

.02

0.00

.02
- .0 4

p < 0.0005

Mean
VHG

.2
0.0
-.2
- .4

-.6
-.8

- 1.0
- 1.2
-1 .4
- 1.6

0  p < 0.0005

Mean
VHG

f
V

0.0
-.2
- .4

-.6
-.8

- 1.0
- 1.2

-1 .4
- 1.6

3

.2

Mean
VHG

p = 0.0271 p = .042

0.0 Mean
VHG

1

U pw elling D ow nw elling
Z o n e Z one

Figure 3: Scatterplots of VHG values at A: Moose Country sites and B: Nyack 
sites. Figure should be read across the panels. Solid upward facing arrows 
indicate piezometers with positive VHG values, Open downward facing arrows 
indicate piezometers with negative VHG values.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



26

Nyack

I identified two suitable study riffles in previously described generalized 

downwelling and upwelling zones (J. A. Stanford, unpublished data) of the Nyack flood 

plain approximately 1500-m and 7500-m below the flood plain's upper constriction point. 

Like the Moose Country sites, both Nyack sites contained sediments with similar 

hydraulic conductivities o f approximately 0.09-cm/s, values within the range expected for 

unconsolidated, well-sorted gravels (Fetter 1994). Therefore, I used VHG as an index of 

groundwater flux. Mann-Whitney U test results suggested that these riffles were under 

the influence o f significantly different (p < 0.0005) groundwater-surface water exchange 

regimes (Table 1). One-sample t-test results showed that the true mean VHG values did 

not equal zero in either the downwelling (VHG = -0.525, p = 0.027) or upwelling (VHG 

= 0.008, p = 0.042) zones (Table 1, Figure 3). Therefore, the riffles were under the 

influence o f contrasting groundwater-surface water exchange regimes. However, the 

strength o f this exchange was not the same at upwelling and downwelling sites. The 

magnitude of VHG in the upwelling zone was approximately 100 times less than in the 

downwelling zone (Table 1) and its distribution was patchy; approximately 29% of the 

mini-piezometers that I installed in the upwelling zone had negative VHG’s (Figure 3). 

All o f the piezometers I installed in the downwelling zone, on the other hand, had 

negative VHG’s (Figure 3). Like at the Moose Country sites, this difference in VHG data 

suggests a non-uniform discharge o f hyporheic groundwater across riffles in the 

upwelling zone and a strong uniform recharge o f surface water into the alluvium of 

downwelling zones.
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Periphyton Standing Stock Biomass

Moose Countrv

Chlorophyll a concentration, an index o f periphyton standing stock biomass, 

differed between upwelling and downwelling sites in every season and exhibited a strong 

seasonal trend (Figure 4). Minimum chlorophyll a concentrations (Mean ± 1 SE), which I 

obtained from the summer samples, were surprisingly similar between sites (0.101- 

pg/cm^ ± 0.008-pg/cm^). I calculated maximum periphyton standing stock biomass in the 

winter samples from the upwelling zone (2.279-pg/cm^ ± 0.400-pg/cm^) and spring 

samples from the downwelling zone (1.102-pg/cm^ ± 0.182-pg/cm^) (Figure 3).

Although I only demonstrated a statistically significant difference in mean chlorophyll-a 

concentrations for the winter samples (p = 0.016), I always measured maximum 

chlorophyll-a concentrations from the upwelling site. Furthermore, the average range of 

chlorophyll-a concentrations was approximately 78% larger in samples taken from the 

upwelling zone compared with those taken from the downwelling zone.

Nvack

Periphyton standing stock biomass at the Nyack sites followed a pattern similar to 

that at Moose Country where I observed differences in chlorophyll-a concentrations 

between upwelling and downwelling sites both within and among seasons (Figure 4). 

Chlorophyll a concentration (Mean ± 1 SE) was lowest at both sites in the summer 

samples (0.213-pg/cm^ ± 0.088-pg/cm^ UW, 0.218-pg/cm^ ± 0.286-pg/cm^ DW) and 

highest in the fall samples (8.172-pg/cm^ ± 2.511-pg/cm^ UW, 2.724-pg/cm^ ± 2.424- 

pg/cm^ DW) (Figure 4). I demonstrated significantly different mean chlorophyll-a values
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in the spring samples only (p = 0.008). However, like at the Moose Country sites, 

maximum chlorophyll-a concentrations were always measured in samples collected from 

the upwelling zone. The average range of chlorophyll-a values was approximately 85% 

larger in samples taken from the upwelling zone when compared with those collected 

from the downwelling zone.

Benthic Macroinvertebrates

Moose Countrv Univariate Analyses 

Univariate analyses on community-level measurements o f macroinvertebrate 

abundance did not demonstrate differences between floodplain-scale zones o f upwelling 

and downwelling zones in the main channel riffle habitats that I sampled. Community 

structure and composition varied seasonally, reflecting the variety of life history strategies 

evolved by aquatic macroinvertebrates. However, there were no differences (p > 0.10 in 

all seasons) in mean total EPT density or biomass between upwelling and dovmwelling 

habitats within any season. I measured maximum mean annual density in the spring and 

minimum mean annual density in the fall. Densities ranged froml 178-individuals/m^ to 

6357-individuals/m^ in the upwelling zone and 2876-individuals/m^ to 3982- 

individuals/m^ in the downwelling zone. Biomass measurements reflected this same 

seasonal pattern with values ranging from 1.09-g/m^ to 13.82-g/m^ in the upwelling zone 

and 1.01-g/m^ to 16.52-g/m^ in the downwelling zone. Variation in seasonal abundance 

and biomass was comparable between habitat types and never exceeded 32% of the mean 

value.

A statistical analysis o f functional feeding group composition showed no 

significant differences between upwelling and downwelling habitats (p > 0.10 in all
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seasons). The collector-gatherer FFG dominated all samples, comprising an average of 

45% o f the upwelling zone community and 40% of the downwelling zone community in 

all seasons. The predator and collector-filterer FFGs contributed few individuals to either 

habitat type and did not show any temporal trends. In every season, filter feeders and 

predators each comprised an average o f 3% to 5% o f the community. The scraper/grazer 

FFG achieved its maximum relative abundance in the winter samples, contributing 59% 

of the total individuals to the upwelling zone and 46% to the downwelling zone. In all 

other seasons, scraper/grazers comprised approximately 15% to 20% of the community. 

Shredder relative abundance reached a spring maximum in the upwelling zone (37%) and 

a fall maximum in the downwelling zone (40%). In all other seasons, shredder 

abundance was variable and comprised between 1% and 19% of the community on 

average. Variation in seasonal FFG relative abundance often exceeded 100% o f the mean 

value, resulting in nonsignificant differences between sites even when the mean values 

appeared widely separated.

I compared the mean individual size, mean individual biomass and total density of 

four common taxa from upwelling and downwelling sites. D rum lla doddsi 

(Ephemeroptera; Ephemerellidae) and Drunella coloradensis (Ephemeroptera: 

Ephemerellidae) are ubiquitous generalist scraper/grazer/facultative predator mayflies. 

Both are univoltine and occur across a broad range o f environments from headwaters to 

large river habitats (Edmunds et al. 1976).

D. coloradensis was sampled in high enough densities to be considered common 

in the summer samples only, when its size, measured as head capsule width, was 

approximately 1.75-mm ± 0.02-mm (mean ± 1 SE) at both sites. I calculated densities o f 

33-individuals/m^ ± 12-individuals/m^ in the upwelling zone samples and 25-
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individuals/m^ ± 8-individuals/m^ in the downwelling zone samples. Mean individual 

biomass was likewise similar between upwelling (0.35-g/ind. ± 0.09-g/ind.) and 

downwelling (0.36-g/ind ± 0.12-g/ind.) zones.

D. doddsi was common in all samples and showed a distinct temporal trend in 

size, measured as head capsule width. I collected the largest individuals (3-mm ± 0.036- 

mm) in the summer samples and the smallest (1.7-mm ± 0.04-mm) in the winter samples. 

Both fall and spring samples contained individuals o f approximately the same size at both 

sites (2.5-mm ± 0.025-mm). Patterns in mean individual biomass, total abundance and 

total biomass reflected the pattern evident in size. Although there were no differences 

within any season, all measured parameters attained their highest values in the summer 

samples and their lowest in the winter.

Arctopsyche grandis (Trichoptera: Hydropsychidae) is a generalist filter feeding 

caddisfly common to northwestern Montana rivers. A. grandis is abundant in riffles o f 4“̂ 

and 5*’’ order rivers in this region (Hauer and Stanford 1981). Its distributional patterns 

have been linked to catchment-scale patterns in water temperature (Lowe and Hauer 

1999). A. grandis is semivoltine, requiring two years to complete its life cycle. Adults 

emerge during June and July. I first collected A. grandis in the fall samples at densities o f 

approximately 60-individuals/m^. Subsequent samples contained A. grandis at the same 

approximate densities and no between-site differences in either individual size (p =

0.537) or biomass (p = 0.550) were demonstrated on any sampling date.

Glossosoma sp. (Trichoptera: Glossosomatidae) is a specialist grazer caddisfly. 

Approximately 25 species have been described in North America and all but three species 

are restricted to Western mountain regions (Wiggins 1977). In northwest Montana,
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Glossosoma alascense feeds exclusively on live periphyton material (Hauer 1980) and 

always occurs on the surfaces o f cobbles. Glossosoma alascense is univoltine; adults 

emerge from June through August (Hauer 1980). I collected Glossosoma in all seasons 

but only considered it abundant in the fall samples, where I calculated densities o f 30- 

individuals/m^ to 35-individuals/m^ (Figure 5). Although there was no significant 

difference between upwelling and downwelling Glossosoma density, individuals living in 

the upwelling zone were significantly larger with respect to both mean interocular 

distance (p < 0.0005) and mean individual biomass (p = 0.05, Figure 6). Glossosoma 

total biomass was also larger in upwelling zones, reflecting the larger individual size (p = 

0.05, Figure 5).

Moose Countrv Multivariate Analvses

Mantel test results indicated that between-site differences in species composition 

were significantly associated with chlorophyll-a and VHG in all seasons except for spring 

(Table 2). The strongest associations were calculated for the fall samples (r = 0.374, p = 

0.005 and p = 0.006) although associations in the winter samples were also highly 

significant (r = 0.201, p = 0.026 and p = 0.035) (Table 2). The chlorophyll-a association 

strength could not be assessed for the summer samples due to similar mean chlorophyll-a 

concentrations o f 0.102-pg/cm^ at the upwelling and downwelling sites (Table 2). 

Differences in spring macroinvertebrate samples were marginally correlated with 

chlorophyll-a (r = 0.068, p = 0.121) and VHG (r = 0.068, p = 0.130), but this association 

was not statistically significant (Table 2).

Multi-response permutation probability analysis o f the Moose Country data 

demonstrated strong differences between macroinvertebrate assemblage composition and 

structure in upwelling versus downwelling sites in all seasons (Table 3). The differences
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Table 2. Mantel test o f association among assemblage structure 
and environmental variables between riffles located in UW zones 
and riffles located in DW zones on two alluvial flood plains. 
Monte Carlo randomization procedures with 2000 iterations were 
employed to obtain p-values.

Moose Country Nyack
Season Variable r p-value r p-value

Summer chl-a t t .25030 0.1835
VHG .37641 0.0965 .25030 0.1840

Fall chl-a .37415 0.0055 .36030 0.0015
VHG 0.0060 0.0030

W inter chl-a .20069 0.0255 .43424 0.0100
VHG 0.0345 0.0115

Spring chl-a .06799 0.1205 .44017 0.0020
VHG 0.1300 0.0025

t  M ean chlorophyll-a concentrations were identical at upwelling and 
dow nw elling M oose Country sites on the Summer 1999 collection 
date.
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were highly significant in the summer, fall and winter samples and marginally significant 

in the spring (Table 3). I found the greatest difference between sites in the fall samples 

(R-statistic = 0.115, p = 0.004) and the smallest in the spring (R-statistic = 0.036, p = 

0.094) (Table 3).

Seasonal Indicator Species Analysis o f upwelling and downwelling Moose 

Country sites allowed me to define two general categories o f indicator species (Table 4). 

Species membership in any given category varied, but each general category o f indicator 

operated identically across every season except for summer, when I was unable to 

demonstrate any significant habitat indicators (Table 4). Obligate scraper/grazers and 

taxa with hyporheic habitat affinities were always indicators o f upwelling zones 

regardless o f season (e.g., Glossosoma (Trichoptera: Glossosomatidae), Paraperla 

frontalis (Plecoptera: Chloroperlidae) and Capniidae spp. (Insecta: Plecoptera)). 

Generalist feeders, on the other hand, were indicators o f either upwelling or downwelling 

in every season (e.g., Zapada spp. (Plecoptera: Nemouridae), Drunella doddsi 

(Ephemeroptera: Ephemerellidae), Rhithrogena robusta (Ephemeroptera: Heptageniidae) 

(Table 4, Figure 7).

Nvack Univariate Analvses

Similar to the Moose Country sites, univariate analyses on community level 

abundance measurements were unable to demonstrate differences between large-scale 

upwelling and downwelling zones in the main channel riffle habitats sampled. As 

expected, community composition and structure varied seasonally but there were no 

significant differences in mean total EPT density or biomass between samples collected 

in upwelling versus downwelling zones in any given season (p > 0.10 in all seasons). 

Samples taken from the Nyack sites showed the same temporal patterns in density and
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Table 3. MRPP analysis on differences between 
macroinvertebrate communities associated with upwelling 
zones and those associated with downwelling zones. 
Positive values o f R indicate more within-habitat 
homogeneity than expected and, hence, differences between 
upwelling and downwelling habitats. Monte Carlo 
procedures with 2000 iterations generated the reported p- 
values.

_ N ^ c k   M oose Countrv
Season R-statistic p-value R-statistic p-value

Summer 0.087 0.084 0.100 0.051
Fall 0.100 0.002 0.115 0.004

Winter 0.101 .0004 0.065 0.021
Spring 0.117 0.002 0.036 0.094
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Table 4. Macroinvertebrate taxa indicative o f upwelling or 
downwelling habitat types at Moose Country and Nyack flood plains. 
Monte Carlo randomization procedures with 2000 iterations were used 
to calculate significance o f each taxon's indicator value. GF denotes 
generalist feeder taxa, HHA denotes taxa with hyporheic habitat 
affinities, OS/G denotes obligate scraper/grazer taxa.

Season Site
Indicated

Taxon G roup Sig.

Fall UW Rhithrogena spp GF 0.052
UW Pteronarcella badia GF 0.003
UW Glossosoma sp OS/G 0.066
UW Arctopsyche grandis GF 0.012
DW Isogenoides colubrinus GF 0.003

W inter UW Drunella doddsi GF 0.012
UW Taenionema sp GF 0.024
UW Paraperla frontalis HFIA 0.012
UW Glossosoma sp OS/G 0.008
DW Rhithrogena robusta GF 0.003
DW Baetis spp GF 0.012
DW Hydropsyche cockerelli GF 0.035

Spring UW Ephemerellidae GF 0.023
UW Capniidae HHA 0.006
UW Paraperla frontalis FIHA 0.003
UW Glossosoma sp OS/G 0.005
DW Ephemerella inermis GF 0.016
DW Rhithrogena robusta GF 0.042
DW Paraleptophlebia sp GF 0.034
DW Arctopsyche grandis GF 0.004

M oose C o u n try
Fall UW Epeorus grandis GF 0.047

UW Zapada cinctipes GF 0.038
UW Zapada columbiana GF 0.008
UW Paraperla frontalis HHA 0.024
UW Glossosoma sp OS/G 0.055

W inter UW Ephemerellidae GF 0.027
UW Capniidae HHA 0.056
DW Rhithrogena robusta GF 0.005
DW Drunella doddsi GF 0.001
DW Zapada oregonensis GF 0.037

Spring UW Leuctridae GF 0.045
UW Prostoia besametsa GF 0.002
UW Paraperla frontalis HHA 0.015
DW Drunella doddsi GF 0.062

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



39

Rhithrogena robusta

<DV
C
«0

•o
c
3

<
<D
>
co

i

3 Z

Paraperla frontalis

X

20
G lossosom a  sp

15

10

5

0

5
Fall W in te r S pringS u m m e r

F igure  7: Seasonal relative abundance of representative indicator 
species at M oose Country sites from Table 4. Error bars are 95%  
confidence intervals on the m eans. Closed squares represent 
upwelling zones, closed triangles represent downwelling zones.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



40

biomass as the Moose Country samples but contained more individuals. Annual 

maximum mean total density and biomass, measured in the spring samples, were not 

significantly different (5083-ind/m^ and 16.09-g/m^ UW; 5230-ind/m^ and 22.29-g/m^ 

DW) nor were the minima, which were measured in the summer samples (1560-ind/m^ 

and 4.33-g/m^ UW; I677-ind/m^ and 2.47-g/m^ DW). Variation about the mean values 

was similar between sites and among seasons and never exceeded 35% o f the mean.

Results o f analyses performed on aggregated fimctional feeding group data did not 

demonstrate any differences within any season between the relative abundance o f FFGs in 

main channel upwelling versus downwelling zones (p > 0.10 in all seasons). Patterns in 

the relative abundance o f the five FFGs were identical to those seen at the Moose Country 

sites, with the exception o f the collector-filterer group, which occurred in higher densities 

in the Nyack samples. Collector-gatherer organisms dominated the community in all 

seasons, comprising an average o f 44% o f the community sampled in upwelling zone and 

41% o f the community sampled in the downwelling zone. The relative abundances of 

predators (6%) and shredders (16%) were stable across the period sampled. Scrapers 

comprised approximately 25% o f the summer, winter and spring community but only 9% 

of the fall community. The collector-filterer FFG was virtually unrepresented in the 

summer samples, comprising only 0.3% o f the community, but by the fall collection date 

its relative abundance had grown to 25%. A seasonal decrease in collector-filterer 

relative abundance was seen in the winter (15%) and spring (11%) samples. As was the 

case with the Moose Country data, the variation associated with FFG mean relative 

abundance at the Nyack sites was often close to 100% o f the mean.

I compared the mean individual size, mean individual biomass, mean sample 

density and mean sample biomass o f four taxa common to the upwelling and
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downwelling Nyack sites, D. doddsi was common in fall, winter and spring samples and 

temporal trends were evident. While not common in the summer samples, D. doddsi was 

present in large enough numbers to allow us to estimate individual size for that season. 

Nyack samples showed the same general pattern in head capsule width as the Moose 

Countiy samples; D. doddsi individuals were largest on the summer and smallest on the 

winter collection date. Mean individual biomass peaked in winter for the upwelling zone 

(4.39-g/m^) and in spring for the downwelling zone (2.73-g/m^). I measured maximum 

abundance in the winter upwelling samples (385-ind/m^) and the fall downwelling 

samples (195-ind/m^). Like at the Moose Country sites, although head capsule width, 

individual mass, total abundance and individual biomass showed strong temporal trends, 

there was no evidence o f a within-season site effect with respect to any o f these 

characteristics.

Arctopsyche grandis was common at both Nyack sites. I first collected A. grandis 

on the fall sampling date. Samples taken from upwelling sites in this season contained 

significantly higher densities o f  A. grandis than downwelling samples (664-ind/m^ ± 256- 

ind/m^ v& 145-ind/m^ ± 56-ind/m^). Fall total biomass was similarly higher in upwelling 

samples. Winter and spring samples contained A. grandis at similar densities (100- 

ind/m^ to 150-ind/m^) and no differences in either individual size or biomass was 

demonstrated for any sampling date (p > 0.10 in all seasons).

Pteronarcella badia (Plecoptera: Pteronarcyidae) is a generalist, detritus 

shredding stonefly indigenous to the Middle Fork Flathead River (Stanford 1975). 

Intensive studies o f P. badia life history and ecology conducted by Stanford (1975) 

indicated a feeding preference for allochthonous leaf litter. P. badia is univoltine in 

northwestern Montana; adults emerge from the river’s edge in June (Stanford 1975). I
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collected P. badia from my upwelling and downwelling sites on the Nyack flood plain in 

every season (Figures 8 and 9).

Interactions between P. badia populations and hyporheic exchange on the Nyack 

flood plain were complex. I did not see any temporal trends in total abundance or total 

biomass. These values remained relatively constant within a habitat type across seasons, 

ranging from 75-ind/m^ to 150-ind/m^ in the upwelling zone and 12-ind/m^ to 57-ind/m^ 

in the downwelling zone (Figure 8). Samples taken from upwelling sites always 

contained a significantly larger number o f organisms than those taken from downwelling 

sites (p < 0.05 in all seasons) and were more variable with respect to total P. badia 

density (Figure 8). However, there were never any differences in total sample biomass 

between upwelling and downwelling zones (Figure 8).

Within each season, the riffle located in the downwelling zone tended to support 

larger individuals than the similar riffle in the upwelling zone (Figure 9). The differences 

in mean individual size were not significant in the summer or fall samples, but 

downwelling sites supported significantly larger P. badia individuals on the winter (p = 

0.001) and spring (p = 0.011) collection dates. Mean individual biomass data reflected 

this general pattern of larger individuals in the downwelling site. However, individual 

biomass was significantly higher (p < 0.10) in the downwelling P. badia samples in every 

season (Figure 9).

Nyack Multivariate Analvses 

Mantel test results indicated that differences in species composition between sites 

on the Nyack flood plain were significantly associated with VHG and chlorophyll-a in all 

seasons except for summer (Table 2). Strongest associations were calculated for the
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spring samples (r = 0.441, p = 0.003 and p = 0.002), although associations in the winter (r 

= 0.434, p = 0.012 and p = 0.010) and fall (r = 0.360, p = 0.003 and p = 0.002) were also 

highly significant (Table 2).

Multi-response permutation probability analysis on the Nyack sites suggested that 

strong differences existed between macroinvertebrate community composition and 

structure in upwelling versus downwelling sites in all seasons (Table 3). The differences 

were highly significant in the fall, winter and spring samples and marginally significant in 

the summer (Table 3). I found the greatest difference between upwelling and 

downwelling Nyack sites in the spring samples (R-statistic = 0.117, p = 0.002). Species 

composition and structure were most similar in upwelling and downwelling zones in the 

summer (R-statistic = 0.087, p = 0.084) (Table 3).

Seasonal Indicator Species Analysis on upwelling and downwelling Nyack sites 

resulted in the identification o f the same two general categories o f indicator species as at 

the Moose Country sites (Table 4), Similarly, species membership in any one category 

varied, but each general category of indicator operated identically across every season 

except for summer, when I was unable to demonstrate any significant habitat indicators 

(Table 4). Obligate scraper/grazers and taxa with hyporheic habitat affinities were always 

indicators of upwelling regardless o f season, while generalist feeders indicated both 

upwelling and downwelling in every season (Table 4, Figure 10).

Discussion

1 anticipated three distinct responses to contrasting groundwater-surface water 

exchange within similar riffles on alluvial flood plains. The predictions were based on 

previous research conducted in similar systems and included a periphyton response (sensu
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Bansak 1998), a community-level macroinvertebrate response {sensu Case 1995) and an 

organism-level macroinvertebrate response to hyporheic discharge (as suggested by 

Stanford et a l  1994, Cavallo 1997, Baxter and Hauer 2000) in upwelling zones. 

Furthermore, I predicted that these responses would not be restricted to a single flood 

plain but would occur across scales of floodplain area and river size as suggested by 

Stanford and Ward (1993).

Habitat Variables and VHG

My results indicated that despite large between-floodplain differences reflecting 

differences in river size and catchment area, there were no within-floodplain differences 

in seston concentrations, current velocities or substrate grain sizes between riffles on 

either o f the flood plains I studied. I anticipated this, and in fact attempted to control for 

differences in these variables with the stratified sampling design. However, the 

magnitude and variability o f groundwater - surface water exchange varied both between 

and within flood plains.

Although the relative difference in VHG between upwelling and downwelling 

sites was greater at Nyack (DW »  100 X UW) than at Moose Country (DW » 12 X UW), a 

pattern o f strong uniform downwelling and weak variable upwelling on both flood plains 

emerged (Table 1, Figure 3). These patterns in groundwater-surface water exchange were 

not surprising when viewed in the context o f hydrogeomorphically complex floodplain 

ecosystems.

Surface water interacts dynamically with floodplain geomorphology in three 

spatial dimensions. The strongest interaction occurs in the vertical dimension at the 

geomorphically, well-defined upper floodplain knickpoint. At this location, strong.
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uniform, floodplain-scale downwelling occurs as a function o f the change in slope 

associated with the transition from confined to alluvial segment type and the depressed 

piezometric gradient o f the floodplain gravels. Upwelling, on the other hand, occurs 

across the entire area o f the flood plain as hyporheic groundwater discharges to the 

surface at multiple locations downslope from the upper knickpoint (Stanford and Ward 

1993, Stanford et al. unpublished). Upwelling hyporheic water contributes directly to the 

formation and maintenance o f a complex mosaic o f floodplain habitats by forming lotie 

and lentic water bodies and influencing the production o f floodplain vegetation. 

Springbrooks and wetlands account for an unknown, but expectedly large, proportion of 

the total aquifer discharge and are formed on lateral floodplain surfaces when high 

volume interstitial flow-paths with high hydraulic conductivities (saturated 

paleochannels) intersect the surface.

However, a portion of the aquifer is discharged directly into the main river 

channel near the lower end o f the flood plain as the encroaching downslope confined 

segment causes an elevation o f the piezometric gradient. The unconsolidated alluvium 

surrounding the main channel in these upwelling zones contains poorly sorted sediments, 

probably as a legacy o f past discharge events with variable magnitudes, temporally 

variable cut-and-fill alluviation and discrete channel avulsion events. Micro-scale 

heterogeneity in sediment conductivity causes non-uniform groundwater discharge within 

upwelling reaches (see Darcy's Law in Methods section), resulting in a highly variable 

distribution of VHG measurements. This is clearly illustrated in Figure 3. Moreover, 

since Stanford et a i  (1994) were unable to demonstrate any significant phreatic sources 

for the Nyack aquifer, it is likely that a significantly large proportion of the total aquifer 

discharge occurs in springbrooks, wetlands and ponds. Hence, the magnitude of
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upwelling is much smaller than the magnitude o f downwelling in the main channel as a 

function o f this difference between the total volume o f water recharging the aquifer at the 

upper knickpoint and the total volume o f water discharging into the main channel.

Although both o f the study riffles in my designated upwelling zones were 

receiving significant groundwater discharge (i.e., significantly positive mean VHG), 

approximately 15% to 30% o f the piezometers 1 installed in those riffles displayed 

negative VHG measurements. This was probably a function o f spatial heterogeneity in 

the vertical dimension o f  the sediments and associated variation in the piezometric 

gradient downslope from the upper knickpoint. It is likely that some piezometers were 

intersecting regions o f  high hydraulic conductivity relative to the surrounding alluvium 

(subsurface interbars) or discrete locations where clasts with diameters much greater than 

the surrounding alluvium were buried; at these locations advection o f the surface water or 

high velocity interstitial flow was recharging these flow pathways {sensu White 1990, 

see Baxter 1997 for similar results). This highly variable discharge of hyporheic water 

explains the spatially variable periphyton response evident in the upwelling zones of both 

flood plains and will be discussed in more detail below.

Periphvton

Periphyton standing stock biomass responded to upwelling as anticipated; 

upwelling zones supported higher levels o f primary production than downwelling zones. 

Although 1 was only able to demonstrate significant differences in mean chlorophyll-a 

concentrations on one collection date at each flood plain, maximum values were always 

obtained from particles collected in upwelling zones. Furthermore, algal standing stock
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biomass was more variable in upwelling zones with ranges approximately 80% larger 

than those measured in downwelling zones.

This pattern suggested that the distribution o f periphyton was spatially 

heterogeneous (patchy) in upwelling zones. Field observations confirmed this 

conclusion; in upwelling zones some clasts were covered with visibly abundant 

periphyton and others appeared almost bare, while in downwelling zones there were no 

visibly discernible periphyton accumulations on any streambottom cobbles.

Nitrogen and phosphorous enrichment in hyporheic water has been demonstrated 

in a wide variety o f locations and across spatial scales ranging from gravel bars to river 

segments (Ford and Naiman 1989, Triska et al. 1989, Valett et a l  1990, Stanford et a l 

1994, Valett et a l  1994, Bansak 1998, Dahm et a l  1998, Dole-Olivier 1998, Ellis et a l  

1998). In the Middle Fork, nitrogen and phosphorous are in significantly higher 

concentrations (up to 300% greater) in hyporheic water (see Stanford et a l  1994, Bansak 

1998, Ellis a/. 1998).

It was this supply o f limiting nutrients conferred from discharging hyporheic 

water that elicited the algal response in the generalized upwelling zones of both flood 

plains in every season (see Bansak 1998 for similar results), but the response was not 

uniform across the riffles due to the microhabitat patchiness evident in the distributions of 

VHG’s in these upwelling zones. Instead, the algal response occurred at the scale of 

individual cobbles (microhabitat scale sensu Frissell et a l  1986), and not across the entire 

riffle (habitat scale sensu Frissell et a l  1986). As such, cobbles located near 

microhabitat-scale (lO 'm ) localized upwelling zones within a riffle supported higher 

periphyton standing stock biomass than particles from other zones o f the same riffle. It 

follows that those clasts that supported the maximum algal biomass on each date were
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sampled from patches within the generalized upwelling zone characterized by large 

positive VHG’s.

Because o f this hierarchical and patchy nature o f upwelling -  even within a single 

riffle - mean values may not be the most ecologically significant measurement o f algal 

production in alluvial river-flood plain ecosystems. Maximum values that reflect the 

inherent spatial heterogeneity (patchiness) of upwelling may be more important because 

most obligate grazers (e.g., Glossosoma) identified in this research were mobile. Mobile 

grazers can move among resource patches utilizing those patches that contain the highest 

algal biomass. Hence, macro invertebrate distributional patterns responded to a localized 

increase in primary production within riffles in generalized upwelling zones despite there 

being no demonstrable difference in mean values calculated across the entire riffle.

Benthic Macroinvertebrates

As with the physical variables, community-level measurements o f 

macroinvertebrate density, biomass and species composition varied predictably between 

the two flood plains investigated in this study. Nyack sites supported macroinvertebrates 

at higher densities and biomass per m^ o f river bottom than Moose Country sites and 

distinct invertebrate taxa were present in different proportions on each flood plain 

(Figures 7 and 10). However, univariate statistical analyses of mean community-level 

measurements o f macroinvertebrate density and biomass did not show significant 

differences between samples collected from upwelling zones compared with those 

collected from downwelling zones. On the surface, these results suggested that there was 

no macroinvertebrate response to variable groundwater-surface water exchange; i.e., the
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composition and structure o f benthic macroinvertebrate assemblages vary with flood 

plain but not as a function o f VHG within a flood plain.

However, the variance associated with the density and biomass measurements in 

this study was large (25% to > 100% of the mean) and was probably a function o f the 

inherent spatial heterogeneity o f riffle habitats in spite o f the stratified sampling design. 

Downes et al. (1993) demonstrated how naturally existing spatial heterogeneity within 

similar riffle habitats could effectively mask any ecologically significant difference 

between sites due to the wide confidence limits associated with estimates o f density or 

biomass. In a review o f how the patch dynamic concept applies to lotie systems, Pringle 

et al. (1988) suggested that the scale at which much aquatic sampling is done might not 

be the scale at which the organisms of interest perceive their environment (i.e., 0.25 m^ 

incorporates many cobbles, but benthic macroinvertebrates might respond to between- 

cobble differences).

Hence, randomly sampling a biophysically complex riffle, even with a stratified 

design, may capture too many microhabitat variants to be useful when attempting to 

uncover patterns in the distribution and abundance o f macroinvertebrates due to the 

small-scale habitat selection behavior o f many taxa (see Cudney and Wallace 1980,

Hauer and Stanford 1981). This may be especially true when community-wide 

measurements o f macroinvertebrate density are used as indices. I concluded that, given 

the highly variable nature o f the macroinvertebrate data and the high degree o f similarity 

between sites, multivariate analyses and investigations o f species-specific responses 

would provide more insight into possible community differences than standard univariate 

statistical approaches. Analyses based on sample-level measurements o f density or 

biomass should not be used when assessing complex and subtle ecological processes.
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Indeed, although univariate statistics were unable to differentiate between 

upwelling and downwelling habitats, multivariate analyses (MRPP, Mantel tests and 

Indicator Species Analysis) on the macroinvertebrate assemblage data revealed highly 

significant differences between sites. These differences were significantly correlated with 

differences in VHG and chlorophyll-a. Furthermore, multivariate analyses suggested that 

these differences were driven by subtle species-specific responses to hyporheic 

groundwater discharge.

Species-specific responses identified by the multivariate analyses may be 

explained by two types o f modifications to the physical habitat template resulting from 

the discharge o f hyporheic groundwater to riffles in upwelling zones: (1) nutrient 

enriched hyporheic discharge in upwelling zones indirectly affected the specialist- 

herbivore component o f the main channel macroinvertebrate community by subsidizing 

periphyton production, and (2) the presence o f upwelling hyporheic flow-paths directly 

altered the species composition o f macroinvertebrate assemblages with the addition of 

taxa with hyporheic habitat affinities.

Glossosoma

There was a species-specific response to upwelling-induced periphyton production 

demonstrated by Glossosoma. On the Nyack flood plain, Glossosoma sp. was a 

significant indicator o f upwelling in every season, except summer, when communities 

were very similar. At the Moose Country sites Glossosoma indicated upwelling in the 

fall only; abundances were too low to be significantly indicative o f any habitat type in any 

other season.
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I attribute the differences in Glossosoma numbers between flood plains to 

differences in the availability and abundance o f food. As an obligate grazer, Glossosoma 

relies exclusively on periphyton as a food resource {cf. Hauer 1980). While periphyton 

production was indeed higher in the upwelling zones at both flood plains, the absolute 

concentrations o f chlorophyll-a were much higher at the Nyack sites, which could explain 

the higher numbers o f Glossosoma at those sites in every season. On both flood plains, 

Glossosoma was collected almost exclusively from upwelling zones and in significantly 

greater relative abundances despite the small proportion of the community it represented.

I believe the greater abundance o f Glossosoma in upwelling zones was a function of 

increased periphyton production.

Glossosoma individuals were in high enough numbers to be considered common 

at the Moose Country sites on the fall collection date. At that time, organisms collected 

from upwelling zones were significantly larger compared to those taken from 

downwelling zones. However, there were no differences in total Glossosoma densities 

between sites. These results are similar to those reported from an experimental study on 

algal-grazer interactions (Hart and Robinson 1990) in which the individual size and 

densities o f two grazing caddisflies were up to two times greater in enriched laboratory 

streams than in control streams. My results indicate a bioenergetic subsidy {sensu Hall et 

al. 1992) to Glossosoma indirectly conferred by groundwater discharge and mediated 

through periphyton primary production.

Pteronarcella badia

Another species-specific response was not attributable to upwelling-induced 

increases in periphyton production. Pteronarcella badia was common in all samples
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collected on the Nyack flood plain in every season. A pattern in P. badia abundance, size 

and individual mass emerged that was plainly different from the pattern exhibited by 

Glossosoma-, upwelling zones supported larger numbers o f smaller individuals than 

downwelling zones in every season. This was an unexpected result and did not support 

my hypothesis that upwelling zone populations would consistently be comprised o f more 

and larger individuals. It was, however, a response to a change induced in the physical 

habitat by differential groundwater-surface water exchange. In particular, P. badia's 

increased size in the downwelling zone was most likely the result o f  an excess in food at 

that site.

Although not explicitly measured in this study, field observations indicated more 

coarse leaf detritus entrained between cobbles in the downwelling zone o f the Nyack 

flood plain. This difference in food availability could potentially provide P. badia 

communities inhabiting downwelling habitats with an energetic advantage over those 

inhabiting upwelling habitats. Alternatively, between-site size differences could have 

resulted from differences in the sex ratios o f the respective populations. P. badia is 

strongly sexually dimorphic; females are larger than males (Stanford 1975). These 

explanations remain untested and certainly merit further investigation.

Paraperla frontalis and the Capniidae 

A final type o f species-specific response to upwelling was demonstrated by 

Paraperla frontalis (Plecoptera: Chloroperlidae) and members o f the Plecopteran family 

Capniidae, taxa with known hyporheic habitat affinities. These taxa were rarely collected 

in my benthic samples. However, when present, they were highly significant indicators of 

upwelling. In fact, they were not present in samples taken from downwelling zones.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



56

Both o f these taxa spend their entire larval stages in the hyporheic zone, only returning to 

surface water habitats to emerge (Stanford and Ward 1988, Stanford et al. 1994). P. 

frontalis preferentially selects emergence locations in the main river channel, final instar 

nymphs and adults are rarely associated with springbrook habitats (Stanford et al. 1994, 

Case 1995). Adults o f both taxa are commonly collected in streamside vegetation sweeps 

and pitfall traps. The exact mechanisms by which these taxa navigate through the 

alluvium back to the main river channel pre-emergence are unknovm, but studies on the 

Kalispell flood plain o f the mainstem Flathead River (Montana, U.S.A.) suggest that P. 

frontalis nymphs may follow temperature gradients to emergence locations (Stanford et 

al. 1994). The fact that I collected these amphibitic Plecopteran taxa almost exclusively 

from upwelling zones suggests that they follow hyporheic discharge flow-paths directly to 

upwelling reaches in the main river channel as opposed to moving up some sort o f 

interstitial surface water gradient to emerge from downwelling reaches.

Conclusions

Segment-scale groundwater-surface water exchange patterns of rivers flowing 

through alluvial flood plains in northwest Montana occurred predictably across scales of 

flood plain area and river size. Strong, uniform downwelling was concentrated near the 

upper floodplain knickpoint. Upwelling occurred throughout the lower half o f these 

flood plains but was variable due to interaction between segment-scale and habitat- or 

microhabitat-scale flow paths.

This segment-scale hyporheic exchange directly augmented primary productivity 

in upwelling zones o f flood plains, regardless o f their sizes. As a result, algal biomass 

was maximized in the upwelling zones o f these flood plains. The algal response was
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likely attributable to an energetic subsidy gained by access to nutrient enriched hyporheic 

discharge in upwelling zones. Furthermore, periphyton appeared to respond to variable 

upwelling at the scale o f individual cobbles and not across an entire riffle.

Benthic macroinvertebrates also responded to differences in groundwater-surface 

water exchange in the main channels o f rivers flowing through these alluvial flood plains. 

As with the periphyton, the macroinvertebrate response was not isolated to a particular 

flood plain or river but occurred across scales of both floodplain area and river size. The 

response, while generalizable, was species-specific. Hence, univariate analyses o f total 

densities and biomasses were unable to detect these differences. Ecologically-significant 

responses to complex and subtle environmental differences may have been hidden within 

habitat- or sample-scale data due to its inherently high variability. Therefore, conclusions 

drawn from univariate statistical analysis o f these types o f data would not have accurately 

reflected real differences.

Benthic macroinvertebrates responded to their environment in species-specific 

manners. Therefore, multivariate analyses performed on species by site dissimilarity 

matrices were able to isolate and demonstrate highly significant differences between 

upwelling and downwelling habitats. Species-specific differences were the result of 

changes in the physical habitat o f upwelling zones induced both directly and indirectly by 

hyporheic groundwater discharge. Indirect obligate scraper/grazer responses to hyporheic 

discharge were mediated through increased periphyton production, while taxa with 

hyporheic habitat affinities responded directly to the presence of hyporheic discharge 

flow paths.

The results o f this study underscore the functional importance o f the hyporheic 

zone to alluvial river ecosystems. Exchange processes between ground water and surface

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



58

water are important in providing physical-biological linkages in these systems. As such, 

the biological complexity that characterizes alluvial flood plains is inseparable from the 

physical complexity derived from the large-scale exchange between ground water and 

surface water.
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