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ABSTRACT

Johnson, Larry M., M.S., Spring 1986 Geology

An Overlap Zone Between a Laramlde Rocky Mountain Foreland Structure 
and Sevier-Style Thrust Structures Near Bannack, Montana

Ç.
Director: Jim Sears

Near Bannack, Montana, unusual preservation of late Cretaceous 
synorogenic conglomerates and volcanic rocks provides an opportunity to 
evaluate the evolution of the overlap zone between the overthrust belt and 
the Rocky Mountain foreland. This sequence of Beaverhead conglomerates 
and volcanic rocks defines a stratigraphie sequence that is similar to the 
Beaverhead type section in some major aspects.

Crosscutting and overlapping relationships between the late Cretaceous 
sequence of Beaverhead conglomerates and volcanic rocks, and fold and 
thrust structures in the Armstead Hills, define two structural episodes. The 
Archean-cored Armstead anticline was initially uplifted along a Laramide 
basement-rooted fault. Paleozoic rocks were drape folded over the uplifted 
basement block. Late Cretaceous syntectonic Beaverhead conglomerates 
and overlying volcanic rocks were then deposited on a flank of this foreland 
structure. Beaverhead conglomerates were also deposited on an associated 
low-amplitude fold. Sevier-style thrusts then advanced into the area. The 
Ermont and associated Sevier-style thrusts cut the foreland structure and 
displaced it eastward.

The interaction between Sevier-style thrust structures and the Laramide 
structure resulted in anomalous development of thrust structures. 
Younger-over-older thrust faults and thrusts that cut down-section in the 
direction of transport formed in this overlap zone.
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Chapter 1 

INTRODUCTION

Near Bannack, Montana, unusual preservation of late Cretaceous synorogenic 

conglomerates and volcanic rocks provides an opportunity to evaluate the 

evolution of the overlap zone between the overthrust belt and the Rocky Mountain 

foreland. This study was undertaken to determine the geometry and timing of the 

overlap zone where the Ermont thrust system intersects the Archean-cored 

Armstead anticline.

1.1. Location

The study area is located in Beaverhead County, Montana, approximately 28 

km. southwest of Dillon (Fig. 1-1). The area is in the Armstead Hills, a northern 

extension of the Tendoy Range. Mapping covered an area of approximately 135 

km  ̂ in parts of the Bannack, Burns Mountain, Eli Spring, and Daly's 71/2' 

quadrangles and Grant 15' quadrangle.
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Figure 1-1: Thesis Location Map



1.2. Regional Structural Setting

Southwestern Montana is the meeting ground of two structural provinces: 1) 

the largely allochthonous rocks of the Cordilleran thrust belt; and 2) relatively 

autochthonous rocks of the Rocky Mountain foreland (e.g. Scholten, 1968, DuBois, 

1982, Beutner, 1977). Following Armstrong (1968) and Beutner (1977), Perry and 

others (1983) adopted the terms Sevier-style for the western allochthonous 

province and Laramide for the eastern para-autochthonous province. Laramide 

structures are rooted in Archean basement rocks. Sevier-style structures are the 

classic "thin-skinned" fold and thrust structures.

Sevier-style thrust structures generally post-date local basement-involved 

Laramide structures (Tysdal, 1986, Schmidt and Garihan, 1983). The disruption of 

the basement in the foreland caused anomalous development of the thrust belt.

The McCartney's Mountain thrust belt salient may have formed in a structural basin 

of the foreland (Brandon, 1984). Anomalous cleavage developed in the thrust 

terrane near Melrose, Montana against a basement uplift (Geiger, 1985). Pre­

existing foreland structures control strike and stratigraphie position of the Tendoy 

thrust (Perry et al., T983, Perry et al., 1981, Kulik, 1984). In some cases, reactivated 

Laramide structures deformed Sevier-style structures (Perry et al., 1986) or 

Laramide and Sevier-style structures may have formed contemporaneously 

(Lageson and Miller, 1986).

Ruppel and Lopez (1984) recognize three parts to the Cordilleran thrust belt 

in southwest Montana and eastern Idaho (Fig. 1-2): 1)the Medicine Lodge thrust 

plate; 2)the Grasshopper thrust plate; and 3)the frontal fold and thrust zone. The
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Figure 1-2: Regional Tectonic Map 

Medicine Lodge and Grasshopper thrust plates are large, thick allochthonous slabs 

that display internally consistent structures and stratigraphie sequences (Ruppel 

and Lopez, 1984). Tertiary sediments bury the Grasshopper plate ten to fifteen 

kilometers north of Bannack (Thomas, 1981). The frontal fold and thrust zone is 

the leading imbricate fan of the Grasshopper plate and is the easternmost zone of 

Sevier-style folding and thrusting (Ruppel and Lopez, 1984). The Armstead Hills lie 

within the frontal fold and thrust zone (Fig. 1-2). East of this zone, Laramide



structures deformed the craton in the Rocky Mountain foreland.

Large areas of Archean rocks crop out in the Rocky Mountain foreland 

province (Fig. 1-3) because of late Cretaceous and Tertiary uplift (Scholten et al., 

1955, Perry et al., 1983, Schwartz, 1982). Archean rocks also crop out along the 

eastern edge of the thrust belt where they have been carried on Sevier-style 

thrusts (Fig. 1-3).

The Tendoy thrust (Fig. 1-3) is the leading edge of the thrust belt in 

southwest Montana (Ruppel and Lopez, 1984). West of the Tendoy fault, the Cabin 

thrust carries Archean rocks over Mississippian and older rocks (DuBois, 1982). 

Archean rocks carried on this thrust underlie the Maiden Peak Prong of the Tendoy 

Range (DuBois, 1982, M'Gonigie, 1965). Several other thrust faults east of the 

Maiden Peak Prong (Fig. 1-3) carry Archean rocks, but normal faults complicate the 

structures and make correlation of the thrust surfaces difficult (DuBois, 1982).



Figure 1-3: Regional Basement Map

Regional distribution of Archean rocks in southwest Montana. 
AA»Armstead anticline, AT-Armstead thrust CT=Cabin thrust, ET-Ermont 

thrust, M"McKenzie thrust system, MPP-Maiden Peak Prong of the Tendoy
Range, TT-Tendoy thrust
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The Blacktail-Snowcrest arch is a southeast-verging fold structure within the 

Laramide structural province (Fig. 1-3). The Archean core of this fold crops out in 

the southeastern part of the Blacktail range, east of the Bannack area. Northwest- 

dipping Paleozoic sediments unconformably overlie the Archean rocks along the 

northwest limb of the fold (Scholten et al., 1955). The southeastern limb of the 

fold underlies the Snowcrest range. Structural data in the Snowcrest range 

indicates deformation associated with the Blacktail-Snowcrest arch is younger than 

the late Cretaceous Frontier Formation (Hadley, 1969). The axis of the fold lies 

between the Blacktail and Snowcrest ranges (Perry et al, 1983). Gravity and drill 

hole data indicate the Blacktail-Snowcrest arch is a hanging wall anticline of a 

blind thrust with up to 6,000 meters of vertical displacement (Perry et al., 1983). 

This fault, the sub-Snowcrest Range fault (Fig. 1-3) of Perry and others (1981), may 

have a Mississippian ancestry (Perry et al., 1983). Archean rocks in the Ruby and 

Tobacco Root ranges may be the northern extension of the Blacktail-Snowcrest 

arch (Karasavich et al., 1981). The Blacktail-Snowcrest arch splits into smaller 

scale folds (Fig. 1-3) near its southwest end (Scholten et al., 1955). The 

southernmost of the folds is the Garfield anticline which plunges beneath the 

Tendoy fault (Scholten et al., 1955, Perry et al., 1981). The Little Water Syncline to 

the north appears to similarly plunge beneath the Tendoy fault (DuBois, 1982). 

Archean rocks carried on Sevier-style thrusts west of the Tendoy fault are spatially 

associated with these southwest-plunging folds. Gravity and aeromagnetic trends 

associated with the sub-Snowcrest Range fault are also continuous to the 

southwest beneath the Tendoy fault (Kulik, 1984, Perry et al., 1983). It is therefore



very plausible that Archean exposures west of the Tendoy fault are the result of 

Sevier-style structures impinging on Laramide foreland structures (Armstrong and 

Dick, 1974, Perry et al., 1983).

Within the Rocky Mountain foreiand province more than 30 northwest- 

trending faults cut basement rocks (Tysdal, 1970, Schmidt and Garihan, 1983).

These faults have been interpreted as upthrusts (Tysdal, 1970) and as 

northeastward dipping reverse faults (Schmidt and Garihan, 1983). Many of these 

faults have attendant north plunging anticlines and synclines along their uplifted 

and downdropped blocks respectively. The plunge and geometry of these folds 

show that they are drape folds of the cover formed above basement block faults 

(Schmidt and Garihan, 1983, Tysdal, 1970). The north plunge of the folds may be 

related to northeastward rotation of the basement blocks (Tysdal, 1970). Structural 

data in the southern Madison Range indicates these faults post-date the more 

regional Laramide uplifts (Tysdal, 1986).

1.3. Structural Setting of Bannack Area

Three major structures underlie the Armstead Hills: 1) the Tendoy(?) thrust;

2) the Archean-cored Armstead anticline; and 3) the Ermont thrust (Plate 1).

The Tendoy thrust defines the leading edge of the frontal fold and thrust 

zone (Ruppel and Lopez, 1984). This fault can be traced northward from southwest 

of Lima, Montana, to a point northwest of Deli, Montana. At this point, the 

continuity of the thrust is disrupted by the McKenzie thrust system of Perry and 

others (1985) (Fig. 1-3). This structural zone marks the boundary between the
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Laramide province to the east, and the Sevier-style province to the west. The 

Tendoy fault carries Mississippian rocks over late Cretaceous to early Paleocene(?) 

syntectonic Beaverhead conglomerates along much of its exposed length 

(Hammons,1981). Near Lima, Montana, the thrust cuts up- section in the hanging 

wall from Pennsylvanian Quadrant Formation to the late Cretaceous Aspen 

Formation (Perry et al , 1983, Hammons, 1981). The fault passes southeastward Into 

a complex set of structures within the Cretaceous Frontier Formation (Perry et 

ai , 1983). Lowell(1965) and Coryell (1983) have mapped the Tendoy(?) thrust in the 

Armstead Hills which also carries Mississippian and Pennsylvanian rocks over 

Beaverhead conglomerates. However, structural complications associated with the 

McKenzie thrust system to the south of the Bannack area indicate the thrust in the 

Armstead Hills is not the same structure (Perry, pers.comm. 1986). I propose that 

the thrust in the Armstead Hills be named the Armstead thrust and will refer to it 

as such.

The Archean core of the Armstead anticline underlies a shallow topographic 

basin within the Armstead Hills. Archean rocks of this doubly-plunging fold 

continue south to Horse Prairie Creek (Fig. 1-3). A partial exposure of the Archean- 

core of the fold, about 3 km. south of Horse Prairie Creek (Brant et al., 1949, 

Hayden, 1872) is now concealed beneath the Hap Hawkins reservoir.

The Ermont thrust places Mississippian limestones over late Cretaceous 

Beaverhead conglomerates and associated volcanic rocks and extends 24 km. 

northward out of the map area (Thomas, 1981). The thrust fades into a complex 

set of structures at its southern end near Bannack. Tertiary sediments bury the
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thrust on its northern end, and It may die out In fold structures found north of the 

Tertiary cover (Thomas, 1981). Thrust structures further north are cut by the 

Pioneer batholith complex.

Several recent studies (Thomas, 1981, Coryell, 1983, Hammons, 1981) have 

focused on each of these structures but do not fully address their 

interrelationships.

1.4. Purpose

Late Cretaceous syntectonic Beaverhead conglomerates and volcanic rocks 

are either crosscut by, or overlap the three major structures. Beaverhead 

conglomerates and Cretaceous volcanic rocks crop out on the flanks of the 

Armstead Hills In the footwall of thrust structures but unconformably overlie 

associated fold structures. Prior to this study, the details of these structural and 

stratigraphie relationships had not been documented.

Thomas (1981) reported that the late Cretaceous volcanic rocks and 

Beaverhead conglomerates were cut by the Ermont thrust. Mapping by Lowell 

(1965) and Coryell (1983) documented that the Armstead thrust truncated 

Beaverhead conglomerates. It was therefore reasonable to assume that fold 

structures between these two thrusts. Including the Armstead anticline, were 

associated with Sevier-style thrusting. Based on this assumption, these fold 

structures were also perceived as being younger than the conglomerates and 

volcanic rocks. This implied that exposures of these late Cretaceous rocks 

occupied the footwall of the frontal fold and thrust zone. However, without
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detailed analysis of structural and stratigraphie relationships between the late 

Cretaceous sequence of rocks and the fold and thrust structures, this assumption 

was only tentative.

The study area also was selected because of the rather unusual exposure of 

Archean rocks in the core of the Armstead anticline. Archean rocks exposed in the 

core of the Armstead anticline do not fit into either of the above ciassifications of 

Archean exposures in southwest Montana.

The abrupt termination of both the Ermont and Tendoy thrusts as they are 

traced into the Armstead Hiits was also somewhat enigmatic. Neither of these 

structural terminations had any readily apparent explanation.

1.5. Methods

The late Cretaceous sequence of Beaverhead conglomerates and volcanic 

rocks were deposited during the same time that structures were evolving in the 

area. Therefore, these rocks were recognized as having the potential of providing 

time constraints on the evolution of structures in the Bannack area. To take 

advantage of this potential, I mapped in detail the structural relationships between 

this sequence of rocks and the thrusts and folds in the area. I also gathered data 

that would allow interpretation of the stratigraphie relationships within this 

sequence of conglomerates and volcanic rocks.

Armed with this data, I constructed cross sections and developed a model 

which clarifies some of the structural problems in the Armstead Hills.



Chapter 2 

ROCK TYPES 

2.1. SEDIMENTARY AND VOLCANIC ROCKS

2.1.1. Archean through Triassic

Earlier workers provided thorough descriptions of the Archean (Young, 1982) 

and Paleozoic through early Mesozoic (Coryell, 1983, Hildreth, 1980, Thomas, 1981, 

Lowell, 1965) sections. Since this is a structural study, no further descriptions of 

these rocks are necessary. Formation thicknesses reported on the stratigraphie 

column (Plate 1) are based on mapping and reflect minimum thicknesses found In 

the field.

2.1.2. Late Cretaceous to early Paleocene(?)

Two distinct types of the Cretaceous to early Paleocene (?) Beaverhead 

syntectonic conglomerates are exposed in the map area. The two conglomerate 

units are stratlgraphicaily separated by a sequence of volcanic rocks believed to be 

Cretaceous in age (Thomas, 1981, Snee and Sutter, 1979). Crosscutting and 

overlapping relationships between these rocks and the older structurally deformed 

Archean through early Mesozoic rocks, provide details about the evolution of 

structures In the area. For this reason, these rocks require more thorough 

descriptions.

13



14

2.1.2.1. Lower Beaverhead Conglomerate

The stratigraphically lower Beaverhead conglomerate Is a limestone-pebble 

conglomerate with minor coarse- to medium-grained sand beds. Outcrops of the 

conglomerate are reddish-brown or grey in color and frequently form resistant 

ridges and cliff faces. The conglomerates are clast-supported and form beds .5 m. 

to 10 m. in thickness. Pebbles are subangular to rounded and range from <1 cm. 

to >20 cm. in diameter The pebbles are 80 to 90% limestone with recognizable 

Mississippian fossils common, and 10 to 20% quartzite plus chert. The 

conglomerate matrix and sand beds are composed of medium- to coarse-grained 

carbonate-cemented sands. Sand grains are predominately chert and quartz. 

Reddish-brown to maroon sand beds generally occur as lenses within the 

conglomerates.

2.1.2.2. Volcanic Rocks

Unconformably overlying the limestone-pebble conglomerate is a bedded tuff 

unit. This unit is white to tan to reddish-brown in color, fine-grained to aphanitic, 

and displays a well-developed platey parting in the lower part of the unit. The 

platey partings are developed sub-parallel to beds defined in hand sample by 

variations in color and/or grain size. The platey tuffs are porcelaneous and 

composed of subequal amounts of matrix and pumice fragments. Bedding is 

defined by variations in concentration of pumice fragments. Thin bedding, platey 

partings, and grading of pumice fragments into beds indicate the deposits may 

have been deposited in a still water environment (Thomas, 1981). Planar zones of 

platey parting are intercalated with tuffs without platey parting in the lower part of
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this unit. The lack of platey parting possibly represents episodes of subaerial 

deposition. Full thickness of this unit is unknown due to a lack of distinct bedding 

in the sub-aerially deposited tuffs. The thickest continuous section of this rock 

unit is in NW 1/4 Sec. 16, T.8S., R.11W., where approximately 30 meters of the 

platey tuffs are exposed. North of this exposure, in Sec.9, T.8S., R.11W., this unit 

unconformably overlies the limestone-pebble conglomerate. At this location the 

volcanic rock is deeply eroded and bedding attitudes are difficult to find. Thomas 

(1981) found that the conglomerate-tuff contact is a 20 degree angular 

unconformity. A similar angle may be extrapolated from geometric constraints 

observed in this area.

An andesitic agglomerate unit unconformably overlies the tuff unit. The 

contact is best exposed in SE 1/4 Sec. 21, SW1/4 Sec.22 and Sec.27,T.8S.,R.11W.

The rock matrix is composed of green to brown to purple, medium- to fine­

grained andésite with 5-30% plagioclase phenocrysts, 1-5% hornblende 

phenocrysts and occasional biotite phenocrysts. Plagioclase phenocrysts display a 

distinct zonation in thin section. Clasts are of the same composition and range 

from 1 to 20 cm. in size. Thomas (1981) estimated a minimum thickness of 300 

meters for this rock unit where it is exposed north of the map area. Thickness of 

the unit in this area is unknown due to a lack of distinct bedding. However, 

geometric constraints indicate Thomas's estimate is reasonable.

A volcanic agglomerate with andesitic fragments is exposed on the Grayling 

syncline. In NW1/4 Sec.7, T.9S., R.10W., this agglomerate forms a small lense 

within the andesitic agglomerate. This shows that the agglomerate with the felsic
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matrix is coeval with the andesitic agglomerate.

2.1.2.3. Upper Beaverhead Conglomerate

Quartzite and limestone-pebble conglomerates outcrop in the eastern part of 

the map area. This unit contains pebbles of red to maroon, medium- to coarse­

grained quartzite, which probably originated from the Belt Supergroup quartzites 

which crop out to the west (Ryder and Scholten, 1973, Ruppel and Lopez, 1984). 

Exposures of this unit along the north side of Grasshopper Creek also contain 

highly weathered andésite fragments (Fig.2-1). Visual estimates of andésite

Figure 2-1: Andésite Fragments in Upper Beaverhead Conglomerate 

abundance range from 3-5%. However, voids in the conglomerate which most 

likely represent weathered-out andésite, would account for another 3 to 5%. Fifty
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to eighty percent of the pebbles are pre-Cambrian quartzites, the remainder are 

Paleozoic limestone, quartzite, and chert. The conglomerates are clast-supported 

with a matrix of medium- to coarse-grained, carbonate-cemented sands. The 

conglomerates are intercalated with fine- to coarse-grained, tan to reddish-brown, 

carbonate-cemented sandstones and pebble conglomerates which dominate the 

unit south of Grasshopper Creek. Lowell (1965) was uncertain about the 

stratigraphie relationships between the andesitic agglomerate and the quartzite- 

limestone conglomerate. However, several exposures of the contact (NE1/4 

Sec.19,N1/2 Sec. 18, T.8S.,R.10W., Fig.2-2) indicate this unit unconformably overlies 

the andesitic agglomerate. This relationship is also supported by the presence of 

andésite within the conglomerate.
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Figure 2-2: Upper Beaverhead-Andesitic Agglomerate Contact

A) Looking northeast at contact 
B) Looking north at contact

B
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2.1.2.4. Correlation and Age

Beaverhead Conglomerate Lowell and Klepper (1953) first proposed the name 

Beaverhead Formation for a section of conglomerate, sandstone, siltstone, and 

limestone that outcrops over a 1,000 km.  ̂ area in Beaverhead County, Montana.

The type section is in McKnight Canyon, 10 km. west of Dell, Montana. A late 

Cretaceous to Paleocene or Eocene age was proposed for the formation. This age 

assignment was based on paleontological evidence and structural relations. Later 

palynology studies (Ryder and Ames, 1970) indicated an Alblan to Paleocene age. 

Most recently, Nichols et al. (1985) raised the section of syntectonic deposits from 

formation to group status and raised the Lima Limestone-conglomerate unit of 

Ryder and Scholten (1973) to formation status and named it the Lima 

Conglomerate. Based on further palynologlcal studies, they proposed a maximum 

Campanian age for Beaverhead conglomerates. They also concluded that a post 

Maestrichtian age is unlikely for any Beaverhead conglomerates. Since different 

lithofacies within the Beaverhead may represent different phases of orogeny (Haley, 

1983, Nichols et ai., 1985), it rs plausible that some rocks within the Beaverhead 

may be younger than Maestrichtian. Beaverhead age studies are summarized in 

Fig.2-3 which also includes my interpretation of the age relations with Cretaceous 

volcanic rocks exposed in the Bannack area.

The upper Beaverhead conglomerate cut by the Armstead thrust (Plate 1) in 

the eastern part of the map area was mapped as the Kidd quartzite conglomerate 

unit by Ryder and Scholten (1973). This conglomerate unit is younger than the 

Lima limestone conglomerate unit described in the same study, and is therefore
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Figure 2-3: Beaverhead Group Age Correlations 

probably younger than middle Campanian (78 Ma). Ryder and Scholten (1973) did 

not map the limestone-pebble conglomerate that outcrops in the western part of 

the map area, and therefore correlation Is suspect. However, since stratigraphie 

relationships indicate this unit is older than the Kidd quartzite conglomerate in the 

eastern part of the map area, it is most easily correlated with either the Lima 

limestone conglomerate unit in the Dell or Lima areas or McKnight limestone 

conglomerate unit of Ryder and Scholten (1973). The Lima limestone conglomerate 

unit in the Dell area and the Mcknight limestone conglomerate unit both contain 

significant percentages of Belt quartzite pebbles. Belt quartzite was not recognized 

in the limestone conglomerate in the map area. Therefore, this unit is tentatively 

correlated with the Lima limestone conglomerate unit in the Lima area which is the 

Lima Conglomerate of Nichols and others (1985). Limestone conglomerates
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exposed north of the map area have also been correlated with the Lima limestone 

conglomerate (Thomas, 1981). This correlation, coupled with palynology data 

(Nichols et al., 1985), suggests a middle Campanian (78-81 Ma) age for the 

iimestone conglomerate.

Volcanic Rocks Lowell (1965) assigned a Tertiary age to the platey tuffs and 

andesitic agglomerates. More reccent work (Thomas,1981) assigned a Cretaceous 

age to this volcanic sequence based on late Cretaceous (69-74 Ma) dates from the 

andésites (Snee and Sutter, 1979). The bedded tuff-andesitic agglomerate 

sequence in the map area occupies the same stratigraphie position as, and is 

continuous with, the same sequence mapped to the north by Thomas (1981).

These rocks are therefore considered to be late Cretaceous in age.

The volcanic rocks are stratigraphically bounded by Beaverhead 

conglomerates and are therefore part of the stratigraphie sequence. For this 

reason, they are considered part of the Beaverhead Group of Nichols and others 

(1985)(North American Stratigraphie Code, 1983, p.858-859).

2.I.2.5. Summary

The sequence of two lithologically distinct congiomerates and 

stratigraphically intervening volcanic rocks records an episode of deposition 

bracketed in time by the two conglomerate units. The younger conglomerate unit 

is supposedly Maestrichtian or older (Nichols et al, 1985) and overlies the 

andésites dated at 69 to 74 Ma. As argued above, the older conglomerate unit is 

probably 78 to 81 Ma in age. This sequence of rocks therefore represents 

deposition from approximately 81 to perhaps 65 million years ago (Fig.2-3).
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It Is Interesting to compare this stratigraphie sequence with the Beaverhead 

type section in McKnight Canyon. At this location a lacustrine limestone unit 

which is reported to be up to 620 m. thick (Ryder and Scholten, 1973) is overlain 

by conglomerates with Belt quartzite clasts and underlain by limestone 

conglomerates (Lowell and Klepper, 1953). This intervening lacustrine environment 

correlates with the probable lacustrine environment in which the platey tuffs were 

deposited. Lowell (1965) reports andésite clasts in conglomerates overlying the 

middle limestone unit exposed In Clark Canyon, located approximately 20 km. 

southeast of the area. This also correlates with the stratigraphie sequence in the 

map area where conglomerates with andésite clasts overlie the stratigraphically 

intermediate volcanic rocks. The limestone and platey tuffs may represent 

deposition in a foredeep lake, that later filled with conglomerates shed from the 

advancing thrust sheets.

2.1.3. Tertiary Volcanic Rocks

Several volcanic rock types of Tertiary age are found in the area. Scattered 

exposures of light-gray to yellow-gray volcanics are found on the Madigan Gulch 

anticline. These rocks have a porphyritic texture with 5-10% plagioclase 

phenocrysts and 5-10% quartz phenocrysts. Welded tuffs also can be found in 

float overlying the Cretaceous andesitic agglomerates and in places the platey 

tuffs. The youngest volcanic rock in the area is Paleocene to Eocene basalt 

(Chadwick, 1981).
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2.2. INTRUSIVE ROCKS

2.2.1. Granodiorite

Two granodiorite stocks are near Bannack. The larger was the locus of hard 

rock mining activity at Bannack and presumably was the source of rich placer gold 

deposits in the area.

The fine-grained granodiorite is composed of 60-70% plagioclase (An 40), up 

to 10% orthoclase, and 15-20% green hornblende (Thomas, 1981, This study). The 

larger stock has a fairly well developed marble contact aureole with the Madison 

Group limestones.

2.2.2. Andésite and Rhyolite

Deeply weathered andésites and rhyolites intrude Beaverhead conglomerates 

near Bannack. These rocks generally form dikes and sills in the conglomerate and 

a small stock (NE 1/4 Sec.8,T.8S.,R.11W.). Extensive weathering of the dikes and 

sills precluded detailed mapping so they are not shown on the map. These 

intrusions are quite pervasive west of the Ermont thrust; however, they were not 

recognized east of this thrust, except for a smail andésite sill(?) which is partly 

exposed where it is cut by Grasshopper Creek (SE 1/4 Sec.8, T.8S.,R.11W.).

Thomas (1981) found that andésite intrusions north of the map area crosscut 

the andesitic agglomerates.



Chapter 3 

GEOLOGIC STRUCTURES

Three large-scale folds and three major faults dominate the structure of the 

Bannack area (Plate 1). From west to east the folds are the Madigan Gulch 

anticline, the Armstead anticline, and the Grayling syncline. Archean through 

Triassic rocks are involved in these eastward-verging folds. The westernmost fault 

is the Ermont thrust which pieces Madison group limestones over Beaverhead 

conglomerates and overlying Cretaceous volcanic rocks. A possible southern 

extension of the Ermont thrust (plate 1, loc. A), south of Grasshopper Creek, places 

upper Mississippian and Pennsylvanian rocks over lower and middle Mississippian 

rocks and, farther south (plate 1, loc. B), over Beaverhead conglomerates. The 

easternmost exposed fault is the Armstead thrust which places Madison group 

limestones. Quadrant quartzite and Cretaceous andesitic agglomerate over 

Beaverhead conglomerates. A third major fault juxtaposed Mississippian and 

Archean rocks along the west limb of the Armstead anticline (plate 1, loc. C). A 

smaller but significant fault is exposed on the west limb of the Armstead anticiine 

(plate 1, loc. 0). It is nearly vertical where exposed and is interpreted as a reverse 

fault for reasons to be discussed later.

24
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3.1. FOLDS

The Madigan Gulch anticline is a southward-plunging, eastward-verging fold, 

cored by Mississippian limestones (plate 1). The fold axis trends approximately 

N24W and plunges about 7 degrees to the south (Coryell, 1983). The northern part 

of the fold has been cut by a possible southern extension of the Ermont thrust, 

which caused local overturning of the east limb. Two southward-verging, 

superimposed folds may also be related to the thrust.

Hayden (1872) first recognized the Armstead anticiine. Brant and others 

(1949) later named it and described it as a southward-plunging asymmetrical 

anticline. The southern portion of the fold observed by Brant et ai. (1949) and 

Eardiey (1872) is now flooded by the Hap Hawkins Reservoir behind Clark Canyon 

dam. In its northern portion, the structure is a northward-plunging, eastward- 

verging fold, truncated on the west limb by a fault that places Mississippian 

limestones against the Archean core of the fold (plate 1). South of the map area 

the fold axis trends N4W to N13W and plunges approximately 5 degrees northward 

(Coryell, 1983). Northeast trending sinistral faults on the east limb of the fold are 

interpreted as tear faults associated with thrusting.

The Grayling syncline is a broad, eastward-verging fold with Cambrian 

through Triassic rocks exposed on its limbs (Plate 1). The fold trends N10W to 

N25W and plunges 11 degrees to the north (Coryell, 1983). The east limb of the 

fold is truncated by the Armstead thrust.

While the Madigan Gulch anticline and the Grayling syncline appear to be 

relatively simple structures, the Armstead anticline is more complex. A wide range
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of dips and variable formation thicknesses are displayed on the east limb of the 

fold. A large part of this can be attributed to intraformational folding which is 

quite evident In the Lodgepole Limestone and upper Madison Group limestones. 

While intraformational folding may explain most of the thickening observed, air 

photos indicate other structures may be partially responsible. Duplication of linear 

features (bedding?) within the Mission Canyon Limestone in Sec.33 T.8S.,R.11W. 

indicates small scale thrusting may have locally thickened the formation. Another 

structural trend of the fold is the increase in dip and eventual overturning of beds 

as the fold limb is traced from north to south. Where the Paleozoic beds wrap 

around the nose of the fold, beds dip moderately to steeply eastward. Farther 

south, beds are generally overturned. This may reflect an increased displacement 

on the underlying Armstead thrust as the fold is traced southward. This 

interpretation Is supported by the presence of sinistral tear faults on the east limb 

of the fold. The fold also displays a significant increase In plunge from south to 

north. South of the map area the fold plunges approximately 5 degrees to the 

north (Coryell, 1983). Plunge calculations based on the Cambrian-Archean 

unconformity on the north end of the fold indicate a 25 degree plunge to the 

north. I believe the complex structure of the Armstead anticline Is related to Its 

complex history, which will be documented and discussed below.

Bedding in the platey tuffs in Secs. 21 and 22,T.8S.,R.11W. define a north- 

trending fold. The axis of this fold is parallel to, but not on trend with the axis of 

the Armstead anticline. I believe this structure may be related to ramping of the 

Armstead thrust in the subsurface.
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3.2. FAULTS

The Ermont thrust carries Mississippian limestones over Beaverhead 

conglomerates and Cretaceous volcanic rocks. North of the map area, the thrust 

dips 25 to 30 degrees to the west (Thomas, 1981), but near Bannack it steepens to 

35 to 40 degrees. In the north wall of Grasshopper Creek, the fault cuts down 

section from west to east in the hanging wall through the Lodgepole Limestone 

(Fig.3-1A). This shows that the hanging wall limestone was deformed before 

formation of the thrust structure, perhaps on the flank of a fold as in Fig.3-1B.

South of Grasshopper Creek, a thrust carrying uppermost Madison Group 

iimestone and a thin veneer of Quadrant Quartzite crosscuts the Madigan Gulch 

anticline (plate 1, ioc. A). Older Mississippian limestones are exposed in the 

footwali; this, therefore is a younger-over-older thrust fault. The fault overturned 

the footwali beds where it intersects the east limb of the anticline. The lower 

Beaverhead conglomerates were caught-up in this overturned part of the fold 

(SWl/4 Sec. 17, NE1/4 Sec. 19, NW1/4 Sec.20, T.8S., R.11W.). A window into this 

thrust exists in a deeply incised drainage in SE 1/4 Sec.24, T.8S., R.12W. This 

window shows upper Mississippian limestones thrusted over Lodgepole 

Limestones. The footwali limestone is deformed into low-amplitude (.2- 5 meter) 

folds which have no consistent orientation.

An outcrop in SE1/4 Sec. 18, T.8S., R.11W., may be part of the thrust 

described above. This outcrop exposes Mississippian limestone and Quadrant 

Quartzite in fault contact with the Dinwoody Formation and underlying Phosphoria 

Formation. The Mississippian and Pennsylvanian rocks are the same as those
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Figure 3-1: Sketch of Ermont thrust cutting down-section

A) Sketch of thrust looking north.
B) Sketch of how Ermont thrust may have developed, cutting through a

pre-existing fold.

exposed in the hanging wall of the thrust to the east. The fault contact dips 

steeply to the west. If this is indeed part of the thrust it has been rotated 

through a considerable angle. An alternative Interpretation for this fault is that it 

may be part of an extensional fault that bounds the valley to the west.

In the southwestern corner of the map area, a thrust carries Mississippian
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limestones and unconformably overlying Beaverhead conglomerates over 

Beaverhead conglomerates (plate 1, loc. B). This thrust carried a similar part of the 

section in the hanging wall and is on trend with the thrust to the north; therefore, 

it may be the same thrust. This implies the fault has climbed up-section to 

Beaverhead conglomerates in the footwali. This portion of the fault also appears 

to change stratigraphie position in the hanging wall. Formations In the hanging 

wall are difficult to identify because exposures of the limestone are mostly on dip 

slopes; however, several clues exist. In Sec. 36, T.8S., R.12W., small exposures of 

Quadrant Quartzite are in the hanging wall. In the S.E. cornor of Sec.1, T.9S.,

R12W., hanging wall beds are thin-bedded (.2m to .5m thick) limestones, which 

may belong to the Lodgepole Limestone. This would indicate the fault is cutting 

down section in the hanging wall as it is traced from north to south. Lateral 

ramping is also indicated where the southern trace of this thrust is lost in the 

Beaverhead conglomerate, implying the thrust surface has cut the Madison Group- 

Beaverhead unconformity, and Beaverhead conglomerates are thrust over 

Beaverhead conglomerates. Superimposed southward-verging folds in Sec. 19, 

T.8S., R.11W. may also reflect a lateral ramp of the thrust surface. Geometrical 

constraints indicate the fault dips at about 10 degrees throughout its exposed 

length between Grasshopper Creek and the southwest corner of the map area 

(cross sections B-B' and C-C", Plate 2). Coryell (1983) calculated a dip of 12 

degrees for the fault where it is exposed farther south. This is a fairly flat dip 

considering the changes in stratigraphie level in both the hanging wall and 

footwali. This most likely indicates later flat faults crosscutting folded beds which
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were already unconformably overlain by Beaverhead conglomerates.

Interpretations of the fault on the west limb of the Armstead anticline (plate 

1, loc. C) include normal faulting (Kupsch, 1950, Brant et al., 1949), younger-over- 

older thrust faulting (Lowell, 1965), and listric normal faulting over a subsurface 

ramp (Coryell, 1983). Coryell also entertained the idea that the fault could be a 

west directed reverse fault, later rotated to the east by thrusting. The common 

denominator of these interpretations is that the fault dips steeply to the west. As 

will be discussed iater, I agree with Lowell's (1965) interpretation of a younger- 

over-older thrust fault (cross sections B-B' thru D-D', Plate 2), which is consistent 

with obvious exposures along Grasshopper Creek.

The Armstead thrust is exposed or inferred for approximately 8 km. of strike 

length in the eastern part of the map area. Where the fault truncates the Grayling 

syncline, it carries Mississippian.and Pennsylvanian rocks over Beaverhead 

conglomerates. This fault has not previously been recognized north of the 

Grayling syncline (Lowell, 1965, Coryell, 1983). However, this study concludes that 

the fault continues to the north where it places Cretaceous volcanic rocks over the 

upper Beaverhead conglomerates (cross sections B-B' and C-C", Plate 2). This 

portion of the fault is not well exposed due to the high degree of weathering of 

both the volcanic rocks and conglomerates. However, mapping of the contact is 

aided by a striking contrast in vegetative cover. The volcanic rocks support a 

dense population of sage brush white the conglomerates have only grasses 

growing on them. Two features of the contact strongly indicate a thrust 

relationship. As established above, the andesitic agglomerates are older than the
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upper Beaverhead conglomerate. In Secs.30 and 31, T.8S., R.11W., the andesitic 

agglomerate overlies the conglomerate, which requires a structural interpretation 

of the contact. The contact also has a striking continuity in trend with the 

Armstead thrust to the south, where it places Paleozoic rocks over the 

conglomerates. The thrust interpretation of this contact only requires the thrust to 

cut up-section in the hanging wall from Paleozoic rocks to the unconformably 

overlying Cretaceous volcanic rocks, which is quite reasonable considering the 

northward-plunge of the Grayling syncline.

Another minor thrust fault is exposed near Bannack, just east of the Ermont 

thrust (Plate 1). This fault cuts through stratigraphie unconformities making it 

difficult to document; however, several relationships indicate the fault exists. The 

contact between the limestone conglomerate and andesitic agglomerate north of 

Grasshopper Creek (Sec.16,T.8S.,R.llW.) dips to the west at about 40 degrees. This 

contact has stratigraphically lower limestone conglomerates over stratigraphically 

higher andesitic agglomerates, therefore requiring a structural explanation. A 

structural interpretation is also required to explain the structurally higher position 

of the platey tuffs with respect to the stratigraphically higher andesitic 

agglomerates in Sec.9,T.8S.,R.11W. Platey tuffs exposed in a deeply incised 

northeast-trending gully (NW1/4 Sec.16., T.8S.,R.11W.) are structurally lower than 

the older limestone-clast conglomerates to the northwest. This contact also 

requires a structural interpretation. The best hard evidence for this thrust is found 

Just north of the section line between Secs. 9 and 16, T.8S.,R.11W.. A prospect pit 

at this location exposes a gouge zone 5 to 10 cm. wide that dips 40 degrees to
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the west. While this structure has andesitic agglomerate in both the footwali and 

hanging wall, it is continuous with other unconformabie relationships in the area, 

and is therefore interpreted as an exposure of the thrust. Displacement on this 

thrust is translated into strike-slip movement which cuts a klippe of Paleozoic 

rocks in Sec.17,T.8S.,R.11W.

A thrust which places Mississippian limestones over Mississippian limestones 

can be traced for about 1.5 km. through Sec.5, T.8S., R.11W.

A structurally complex outcrop on the north side of Grasshopper Creek 

(SE1/4 Sec.8,T.8S.,R.11W.) eludes satisfactory interpretation. This outcrop contains 

at least three faults which cut Madison Group limestones and includes a rotated 

angular unconformity that can be traced south for 8 km. (see discussion under 

Crosscutting and Overlapping Relationships). One of the faults in this outcrop (#1 

in Fig.3-2) appears to be a thrust fault continuous with the Ermont thrust to the 

east (cross section A-A', Plate 2). This fault crosscuts the other two faults in the 

outcrop and is therefore the youngest. This fault Is probably responsible for the 

klippe of Madison Group limestones that overlies Beaverhead congiomerates (Plate 

1). A second fault in this outcrop (#2 in Fig.3-2) suggests at least two 

interpretations. One interpretation is that this fault is a portion of the thrust that 

cuts the Madigan Gulch anticline. This interpretation stems from the relationship 

between the fault surface and the underlying overturned folds, which is 

geometrically the same as the thrust-overturned bed relationship exposed on the 

northern part of the Madigan Gulch anticline. The argument against this 

interpretation is that this fault does not cut the limestone-pebble conglomerate.
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Since other thrusts In the area post date the limestone-pebble conglomerate. It Is 

difficult to understand why the conglomerate is not cut by this fault. A possible 

counter-arguement is the thrust fault could have affectively "bulldozed" the 

conglomerate into Its current upright position. The second interpretation Is based 

on the fact that this fault does not cut the conglomerate. This would Indicate the 

fault preceded deposition of the conglomerate, and Is therefore related to Laramide 

structural development. If this Interpretation Is correct, the fault was rotated along 

with the conglomerate beds and was therefore originally near vertical. The third 

fault In this outcrop (#3 In Flg.3-2) has no apparent correlative in the area.
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Figure 3-2: Outcrop on north side of Grasshopper Creek, near Bannack

^  \
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3.3. LINEAMENT

Discontinuity of thrust structures and changes in Beaverhead bedding 

attitudes and facies on either side of Grasshopper Creek define a iineament. 

Termination of the trace of the Ermont thrust near Bannack requires a structurai 

interpretation. The kiippe of Madison Group iimestones overiying Beaverhead 

congiomerates near Bannack (S.E. 1/4 Sec.8,T.8S.,R.11W.) have no structurai 

correiative on the south side of Grasshopper Creek The structurai levei of the 

Beaverhead congiomerates underiying the klippe is anomalously low with respect 

to levels further south. The Armstead fault also appears to be offset where it 

crosses Grasshopper Creek. The quartzite-iimestone-ciast Beaverhead 

congiomerates on the north side of Grasshopper Creek dip gently to the south, 

while beds in the same rocks south of Grasshopper Creek dip gently northeast. 

Beaverhed congiomerates are also distinctly finer grained on the south side of the 

creek. Contrary to the apparent displacement of structures along or sub-parallel 

to the creek is the continuity of the thrust fault exposed in Secs.9,16,and 

17,T.8S.,R.nw. No single structure can be envisioned that would satisfactorily 

explain these relationships.

3.4. CROSSCUTTING AND OVERLAPPING RELATIONSHIPS

Beaverhead congiomerates and the stratigraphically intermediate Cretaceous 

volcanic rocks are involved In crosscutting and overlapping relationships that 

reveal the structural history of the area.

North of Grasshopper Creek, the limestone-pebble conglomerate unit and
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overlying volcanic rocks are truncated by the Ermont thrust. Therefore, the Ermont 

thrust post-dates the Cretaceous volcanic rocks thought to be 69 to 74 m.y. old 

(Snee and Sutter, 1979). As established above, the Armstead thrust carries the 

Cretaceous volcanic rocks over the younger Beaverhead conglomerates and 

therefore post-dates both of these rock units.

Due to deep erosion of the Cretaceous volcanic rocks, the contact between 

the volcanic rocks and the east limb of the Armstead anticline is obscure.

However, the contact is exposed on the north plunging axis of the fold (plate 1, 

loc. E) and shows the Cretaceous volcanic rocks overlap the fold (Fig.3-3).

Figure 3-3: Cretaceous tuff overlapping upper Mississippian Limestones on
Armstead anticline

The tuffs also overlie Triassic rocks exposed in the core of the Grayling syncline.
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The overlying andesitic agglomerates also overly these Triassic rocks. Between 

these two obvious exposures of the overiapping relationship, the contact is poorly 

exposed. However, along the east limb of the Armstead anticline, float rocks with 

andesitic agglomerate In depositional contact with Paleozoic rocks also attest to 

the overlapping relationship. The position of the volcanic rocks unconformably on 

Paleozoic rocks on the east limb of the Armstead anticline and in the core of the 

Grayling syncline, implies that these Paleozoic rocks were deformed before 

deposition of the volcanic rocks. Therefore, the Armstead anticline was folded, at 

least in part, before thrusting.

The iimestone-pebbie conglomerates unconformably overlie Paleozoic rocks 

exposed on the limbs of the Madigan Gulch anticline. This unconformity is 

exposed on both limbs of the fold. Conglomerate beds on the west limb of the 

fold dip moderately to the west, while beds on the east limb dip steeply to the 

east, thus conforming to the fold structure in the pre-Beaverhead rocks (cross 

section C -C , Plate 2). This implies the sub-conglomerate unconformity was 

involved in the folding, and therefore pre-dates the folding. The unconformity is 

on top of Mississippian limestones on the west limb of the fold; however, rocks as 

young as Permian are overlain by the conglomerate on the east limb. This implies 

that the Paleozoic rocks were deformed before deposition of the congiomerates.

In the SW1/4 Sec. 33,T.8S.,R.11W. near the nose of the Armstead anticline, a small 

exposure of limestone-pebble conglomerate appears to overlie Mississippian 

Mission Canyon Formation, which is in fault contact with the west limb of the 

Armstead anticiine. The fault predates the Cretaceous andesitic agglomerate and
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may pre-date the limestone-pebble conglomerate. The limestone-pebble 

conglomerate is not exposed anywhere east of this location within the map area. 

This feature could have several explanations. The most simple interpretation is the 

limestone-pebble conglomerate was not deposited in the eastern part of the area. 

This could mean the eastern most exposure of the conglomerate marks the line 

between erosion of source rocks and deposition of the conglomerate. This could 

imply that the Armstead anticline was the source for the conglomerate, and both 

the source structure and the resultant sediments remain exposed. A second 

explanation may be that the limestone-pebble conglomerate was deposited east of 

present exposures and later eroded. Both interpretations imply that this 

conglomerate was derived from the east as Ryder and Scholten (1973) proposed 

for most Beaverhead limestone-pebble conglomerates. However, It is possible that 

that this conglomerate was derived from the west (Haley, pers.comm., 1986). I 

propose that Beaverhead conglomerate sedimentation was partially controlled by 

the pre-existing Armstead anticline. Conglomerates could have been deposited 

west of the foreland structure while being eroded from the uplift.

The quartzite-limestone-pebble conglomerate is thought to be derived from 

Belt Supergroup rocks in thrust plates to the west. In the eastern part of the area 

it is truncated by the Armstead thrust. Immediately east of the map area this unit 

overlies Paleozoic rocks ranging from Mississippian to Cretaceous in age (Lowell, 

1965). This also indicates the Paleozoic rocks were deformed before deposition of 

the younger conglomerate unit.
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3.5. Summary

Cross-cutting and overlapping relationships indicate considerable folding and 

some faulting had taken place before deposition of congiomerates and Cretaceous 

volcanic rocks. Furthermore, the Cretaceous volcanic rocks that predate thrusting, 

post-date initial folding of the Armstead anticline. This implies the Armstead 

anticline predates thrusting, and is related to Laramide structural developments.

The steep fault exposed on the west limb of the Armstead anticiine, which is older 

than the andesitic agglomerate, also attests that deformation preceded thrusting.



Chapter 4 

CONCLUSIONS

The Laramide structure was formed In response to west-directed, basement- 

rooted reverse faulting. This basement cored foreland bulge may be related to the 

northwest-trending reverse faults of Schmidt and Garihan (1983). The steep fault 

exposed on the west side of the nose of the Armstead anticline (Plate 1, loc. D) is 

interpreted as a splay of the unexposed, larger-scale, reverse fault. The Laramide 

structure was eroded and then overlain by late Cretaceous Beaverhead 

conglomerates and volcanic rocks (Fig.4-1 A and 0). A possible southern 

extension of the Ermont thrust (Plate 1, loc. A) cut Paleozoic rocks and 

unconformably overlying conglomerates and volcanic rocks. This thrust is 

responsible for the klippe of Paleozoic rocks to the east of the Madigan Gulch 

anticline. Where the thrust underlies the klippe, it is an older-over-younger thrust 

fault. However, where the fault cuts the Madigan Gulch anticline, it is a younger- 

over- older thrust fault. The younger-over-older thrust fault in the southwestern 

corner of the area (Plate 1, loc.B, Fig.4-1D) may be a continuation of this fault with 

an intervening lateral ramp. The Madigan Gulch anticline is a hanging wall fold 

which involved Paleozoic rocks, the Paleozoic-late Cretaceous unconformity, and 

the Ermont(?) thrust. This fold formed over the younger-over-older thrust fault 

that cuts the west limb of the Armstead anticline. This thrust turns into a blind 

thrust along its northern trace (Fig.4-1 B, cross sections B-B' and C-C", Plate 2).

40
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Figure 4-1: Schematic Cross Sections

Cross sections showing how structures in the Armstead Hiiis evolved. 
Sections are from south (C&D) to north (A&B). Circled letters 

correspond to locations on Geologic map (Plate 1).

The Armstead thrust cut the east limb of the pre-existing Laramlde structure and
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gently folded this limb into the Grayling syncline (cross section E-E% Plate 2). This 

thrust also cut the Paleozoic-late Cretaceous unconformity and carried the 

andesitic agglomerates over the upper Beaverhead conglomerates. Steepening and 

overturning of the east limb of the pre-existing structure also accompanied 

displacement along the thrust.

Time relationships between the thrust faults are not clear. The southern 

extension of the Ermont thrust may have proceeded the thrust cutting the west 

limb of the Armstead anticline. The Ermont(?) thrust dips east where it underlies 

the klippe, but dips west where it cuts the Madigan Gulch anticline. This indicates 

that the thrust was folded along with the Madigan Gulch anticline. This folding 

also may have involved the Ermont thrust north of Grasshopper Creek. The 

Armstead thrust may have formed before or after the more western thrusts.

Thrusts in the Bannack area developed after deposition of the late 

Cretaceous volcanic rocks (69 to 74 Ma). The Armstead thrust cuts Beaverhead 

conglomerates that are younger than the volcanic rocks and may have developed 

in earliest Paieocene time.

The sequence of late Cretaceous Beaverhead conglomerates and volcanic 

rocks define a stratigraphie sequence. The stratigraphie contacts within this 

sequence of rocks are ail unconformable. This shows that this sequence of rocks 

was deposited while structures were forming in the area.

Crosscutting and overlapping relationships between the late Cretaceous 

sequence of conglomerates and volcanic rocks and fold and thrust structures 

define two structural events in the Armstead Hills. The earlier Laramlde event
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created a foreland bulge. Sevier-style thrust structures then cut the pre-existing 

Laramide structure. The interaction of these structures resulted in younger over 

older thrust faults, thrust faults that cut down-section in the direction of transport, 

and thrust faults that cut through and displace stratigraphie unconformities.
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