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Cosart, Ted F, M.S., May, 2006 Computer Science

Allometric Scaling in River Basin Models

Chairperson: Dr. Jesse Johns@’

River basins scale allometrically, flow rate to mass of material transported. They
exhibit a scaling index near a known theoretical limit for efficient transportation net-
works. Models called optimal channel networks (OCN’s) also approximate the scaling
index using minimum energy dissipation. OCN’s based on an initial loopless network
and optimization with simulated annealing show this allometric scaling with an index
very close to that predicted for efficient transportation networks. Models based on the
same initial conditions, and optimized to reach the scaling index itself, rather than
minimum total energy dissipation, show a much higher total energy dissipation than
do the OCN models, an unnatural direction of flow away from outlets in a multi-outlet
configuration, and unnaturally circuitous flow directions in the single-outlet model.
The results suggest that minimization of material in an allometric relationship is an
insufficient condition for the creation of efficient transportation network structures
found in nature.
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CHAPTER 1 INTRODUCTION

1.1 The Forces Behind Networks

Recent literature across the sciences investigates the driving forces behind the for-
mation of networks. Conceptualized as the set of links between nodes, the networks
studied are either those for which the cost of a link is mostly independent of physical
length or those for which that cost mostly depends on the links physical length. Links
between sites on the world wide web typify the first kind, while river basins, animal
circulatory systems, and city bus routes are examples of second. How the latter net-
works assume the forms we see qualitatively and assess geometrically is a problem
whose solution offers considerable benefit. For example, understanding river networks
aids management of scarce water resources. Ability to assess the anticipated form of
a blood vessel network enhances medical diagnosis.

This work explores the formation of river basin networks in light of 2 well known
observations: they exhibit minimal energy dissipation on all scales, and a minimal
amount of transported material on all scales. Minimal energy dissipation networks
have been modeled and the results reported extensively (Rodriguez-Iturbe, et. al.
[6], Maritan, et. al. [4], Meakin, et. al. [7]). The second observation is newer,
and has not been used as the constructive force in modeling river basins. This work

reproduces known models of minimum energy dissipation, and makes new models

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



based on minimization of transported material. Several measurements are made on

the models to explore their differences and similarities.

1.2 Allometric Scaling Limits

Central to this work is the finding in Banavar, et. al. [2] that some natural
transportation networks show an allometric scaling relationship, transportaion-rate to
amount of material transported, close to a theoretical limit of minimum transported
material. Banavar, et. al. [2] classify such networks as most efficient, since the
material transported is as small as possible for the area the network is serving. They
establish a theorem that gives the limit of such scaling. With C as the amount of
transported material®, L as the linear size of the area served by the network they give

the following theorem,

For any spanning network in D dimensions,
C scales at least LP+! and at most as L?P.

for large L.

The theorem leads to a minimum and maximum scaling relationship between ma-

terial transported and the linear size of the area served:

L?P Maximum Material

C x (1.1)
LP+1 Minimum Material

1C is first defined in Banavar, el. al. [2] as the total blood volume in an organism’s metabolic
system, and then redefined, generalized in the context of transportation networks to be the “quantity
of nutrients in the network at any instant of time.” The meaning of “nutrients” in this general context
is unclear.
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Given these limits and the relationship between rate of transport B and linear size,

B P, (1.2)

the authors show that the scaling relationship between rate-of-transport and network

mass is constrained. In the least-efficient case,

B LP (1.3)
C o L?P (1.4)
BxC? (1.5)

The least-efficient network is exemplified by a “space-filling spiral ” in which flow
accurnulates along a single path that covers the entire area served.

At the other extreme are networks like river basins. In such networks the flow
along each link is “directed ”, that is, the material is moving along shortest paths
away from a single source (in circulatory systems) or toward a single sink (in a river
basin)2. Here, a minimal amount of material is used for the given service area, leading
to the classification in Banavar, et. al. [2] as “most efficient”. Such networks in D

dimensions, with transport rate B and amount of material transported C satisty,

B« LP (1.6)
C o LP+1 (1.7)
B x CTH (1.8)

2See Banavar, et. al. [2], supplementary material, for a more rigorous definition of a “directed”
spanning tree, and a proof of their theorem.
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1.3 Self Similarity in River Basins

River basins networks share with other fractal objects self-similar properties evinced

in scaling relationships given by power laws of the form

g9(z) = az® (1.9)

where a and o are constants, z represents a measured property such as area and
g(x) a function of the property, such as the cumulative distribution of sub-basin
areas. The relationship in Equation 1.9 holds when z is multiplied by a constant
(Rodriguez-Iturbe, et. al. [6]). This means that any portion of the basin shows
the same relationship between g{z) and = (Rodriguez-Iturbe, et. al. [6]). The fixed
proportionality across all scales earns such congruencies the terms “scale free” and
“scale invariant”.

River basins are evaluated for self-similarities through analysis of flow networks
constructed from a digital elevation map (DEM). The pixel gives an area of uniform
elevation (30-200 square meters are common resolutions). Flow networks are con-
structed on the grid, commonly through steepest descent directions from each pixel
to one of eight surrounding pixels (2 horizontal, 2 vertical, 4 diagonal neighbors). The
flow accumulation along the elevation gradients can then be calculated, and related to
area and other properties®. From these measurements the scale invariant properties,
upholding Equation 1.9 are revealed.

Self-similar properties in river basins often complementary cumulative probability

3For a discussion of the geomorphologic concepts and the difficulties related to these map extrac-
tions, see Rodriguez-Iturbe, et. al. [6], Section 1.2.9.
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distributions expressed in the form

P(X > z) o z* (1.10)

(1.11)

where X is a random variable representing an instance from the range of values of z,
so that P(X > x) gives the frequency with which an instance of X exceeds z. Other
examples of self-similarity are found in size relationships and the quantities (like
flow-rate) that can be related to size. The theorem of allometric scaling described in

Section 1.2 gives such a relationship.

1.4 Allometry in River Networks

In confirming the predictions of the theorem, Banavar, et. al. [2] measure DEM-
derived river basin networks and report the expected relationship. In most-efficient
transportation networks, where B is the flow rate into a given site, M is the amount
of material transported by the network, here called network mass 4, and D is the

network dimension,

M « B%* (1.12)
D=2 (1.13)
M x B? (1.14)

4Dreyer, [3], in deriving separately from Banavar, et. al. [2] the same allometric scaling relation-
ship between rate and amount of material transported, computes the quantity giving the amount
of material as exactly the mass of the transported material. Thus, following Dreyer, [3], M will be
called network mass.
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with the relationship holding across all scales, as indicated by allometry.

In the DEM measurements flow rate B is replaced by a proxy, total contributing
area (Banavar, et. al. [2])°. As described in Banavar, et. al [2], the total con-
tributing area Ax, at a given site X can be computed as the sum of the areas of
its contributing nearest neighbors, nn, plus the single unit of area representing the
DEM pixel® Adopting the terms in Banavar, et. al. [2] flow, as area, is expressed

recursively:

Ax= DY Az+1 (1.15)

Zenn(X)
Again following Banavar et. al. [2] The network mass, M, is expressed here as the
summed total contributing areas of the collection v of sites that drain in to any site
X. The area (or, equivalently, flow) at site X itself is excluded from the sum, as M

denotes the material of the network that empties into X.

Mx=> Az (1.16)

Zey
Figure 1.1 illustrates the calculations of total contributing area and network mass.
With proxies for flow and network mass, total contributing area and sum of total

contributing area, then, the allometric scaling relation given by Equation 1.12 can be

expressed:

3
2
5The validity of total contributing area as a proxy for flow is demonstrated in Rodriguez-Iturbe,

et. al. [6], Section 4.6.

$The single unit of area is analogous to a single unit of precipitation injected at site, leading to
sites with increasing accumulations of flow equal to their increasing total contributing areas along
fiow paths from sources to downstream sites.

My ~ A%, a = (1.17)
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A= ®) Ab(1+1)+1 =3 A =1

@ M, =0 ————> M, =(1+1)=2 © m =0
A =1
A,=(3+1)+1=5 A, 1
""a=°  =(1+3+1+41)=6 o

\/

® '=(5+1+2)+1=9
=(1) M=1+3+1+1+5+1+14+2=15

= >
wnu
° -h

A (1)+1=2

@ .9 ————3 (h) M

Figure 1.1 Example of steepest-descent flow on a 3 x 3 hexagonal grid.

Each letter names a site on this single-outlet network. Each site is centered on a
pixel, an area of uniform elevation. The arrows show the direction of
steepest-descent flow. To the right of each letter is the sum that gives that pixel’s
total contributing area (A;) and total material transported by the sub-network that
empties in to that pixel (mass, M,). Note that sites a, ¢, d, f, g represent ridges,
points of highest elevation relative to neighboring pixels. As such they receive no
upstream flow, which gives the networks they empty zero mass and a single unit of
contributing area, that of the pixel itself.
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1.5 Models of River Basin Geometry

River basins have been modeled using principles of minimum energy dissipation.
These models are called optimal channel networks (OCN’s). In Rodriguez-Iturbe, et.
al. [6], it is shown that over any link in a river channel the optimal energy expenditure

P is related to mean annual flow @ by,
P =kQ%5L, (1.18)

with k a constant and L the length of the link. Given this link between flow and opti-
mal energy dissipation, Rodriguez-Iturbe, et. al. [6] further analyze the relationship
between discharge and structure of basins. Both empirical evidence and their analysis

lead to 3 postulates, given a set of known discharge values throughout a basin:
1. Minimum energy expenditure in any link of the network.
2. Equal energy expenditure per unit area of channel anywhere in the network.
3. Minimum energy expenditure in the network as a whole.

Meakin, et. al. [7] present a simulation of multiple river basins distributed over an
area with a square boundary, created according to these 3 principles of minimum
energy dissipation. As indicated by principle 1, Meakin, et. al. [7] describe energy
dissipation at any link 4 in the network by P, = kQ%5L;, with Q; as the mean annual
flow in the link and L as the link length. Energy dissipation for a basin (the area

drained by a collection of sites flowing into a single outlet) is given by the sum:

P => kQL (1.19)
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An area of basins optimized to minimum energy dissipation should show a minimum

value F for the sum:

E=)"P (1.20)

Single outlet basins, reproduced by several investigators (Rodriguez-Iturbe, et. al.
[6], Banavar, et. al. [2], Maritan, et. al. [4]) and the multi-outlet model described
in Meakin, et. al. [7], show power-law scaling properties similar to those in real river

basins.

1.6 Goals of This Study

While river network models based on minimum energy dissipation have been mea-
sured for the mass-to-area scaling index given by Equation 1.17 (see Maritan, et. al.
[4]), the implications of the difference between the ideal index and the measured value
is explored by creating a network model whose formation is based on achieving the
allometric scaling index a = 1.50. This model is compared with minimum energy dis-
sipation models, to show the consequence of mass-minimization as the driving force
behind network formation.

Also, since the results of the work on the multi-outlet OCN model in Meakin,
et. al. [7] were published before Banavar, et. al. [2] published their theorem about
allometric scaling, this study also tests the multi-outlet model for the expected scaling

relationship of flow-rate to material-transported.
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CHAPTER 2 METHODS

2.1 The River Basin Models

2.1.1 Space-filling Grid

Most of the models of river basin geometry used in this thesis are based on that
described in Meakin, et. al. 7], using a triangular lattice of network sites. In graph
terms the network model created on the lattice is a tree or forest, depending on
whether a single or multiple outlets are used. A river basin is represented by a span-
ning tree whose edges are links representing flow from one network site (node) to one
of its neighbors, the flow terminating in an outlet, or a sink. A given site’s neighbor-
hood is the hexagonal constellation of sites nearest it. Border sites, corner sites, and
some sites adjacent to border sites do not have a full complement of neighbors.

Each site receives one unit of flow as “precipitation”, representing a mean measure
of rainfall into the system. Flow accumulates along the edges from sources (sites
that receive no flow from a neighbor) to the outlet. The flow at a site is calculated
as the sum of the flow values of contributing neighbors (if any) plus the one unit of
“precipitation”, following the recursive equation for total contributing area (Equation
1.15). Figure 2.1, shows the arrangements of sites and borders on the triangular
lattice. The single-outlet model differs only in that all low from all sites is emptied
into one outlet, usually a border site. Note that the border sites along the vertical

edges of the grid, as shown in Figure 2.1, number less than the horizontal, as they

10
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le] [o] T[] [e] T[] [e] [o]

Figure 2.1 Triangular lattice of 8 x 8 sites.

One hexagonal neighborhood is shown with dotted lines. Arrows indicate flow from
sources (arbitrarily chosen) into an outlet, the path labeled with each site’s flow
value, or, equivalently, total contributing area. All border sites are in boxes. The
distance between columns is defined as 1 unit. The distance between rows is reduced

to 3@ units, so that the length of a link from a site to any of its neighbors is 1 unit.

alternate with the offset rows. This scheme may be different from the border-outlet
scheme given in Meakin, et. al. [7], which does not specify whether all the sites along

the vertical edges of the grid are border sites.

2.1.2 OCN Models

Minimum energy dissipation models, also known as optimal channel networks
(OCN’s), with one and with multiple outlets, were created by optimizing the to-
tal energy dissipation of the system using simulated annealing, detailed in Section

2.2. While the border outlets may differ in number from the models described in

11
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Meakin, ef. al. [7] (the authors do not specify which sites are boundary sites), the
multiple-outlet model used here attempts otherwise to implement that described in
Meakin, et. al. [7]. The optimized value in either a multi- or single-outlet OCN is
the sum of the energy dissipation of all sites ¢ on the grid, the quantity F in Equation

1.20, with 7 = 1 in the case of the single-outlet model.

2.1.3 Scaling-optimized Models

Scaling-optimized networks (SON’s) differ from the OCN models in the optimiza-
tion function and the parameters used in simulated annealing. The target function is
that which gives the scaling index « in the scaling relation (see Equation 1.17). The
index is computed as the slope of the least-squares-fit line of the double logarithmic
plot of Equation 1.17 at each site. It is compared with the target slope, the theoretical
limit of 3. The optimality of a network configuration is given by the proximity of its

scaling index to the ideal slope.

2.2 Optimization with Simulated Annealing

2.2.1 The Principle Behind Simulated Annealing

Press, et. al. [5] notes that simulated annealing is a good method for optimizing
large discrete configuration spaces with many poor local extrema that can hide good
global ones, and with factorially large numbers of configurations. It has (as have other
methods) effectively solved the traveling salesman problem, and is used to optimize
complex circuit designs (Press, et. al. [5]). The algorithm uses a process analogous to
thermodynamic processes, seen in “the way liquids freeze and crystallize, or metals
cool and anneal” Press, ef. al. [5]. It is an optimizing process in that, in slowly

cooling systems, “nature is able to find [ a | minimum energy state” Press, et. al. [5].

12
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A system probabilistically changes energy states, such that, even at a relatively low
temperature, there is still a (small) probability that a component may be in a state
of high energy. The Boltzmann distribution describes the probability distribution as

a relationship between temperature T and energy E, a constant k:
D(E) = e* (2.1)

When used as a computational algorithm to search for global optima in a solution

space, the general application of simulated annealing includes:

1. Establishment of a “cooling” schedule for the reduction of T in Equation 2.1.
The schedule tells how slowly 7', an analog to temperature in the thermody-
namic system, will be lowered, that is, how slowly to lower the probability that

the current solution will be replaced by a counter-optimal solution.

2. Between temperature reductions, a series of random solutions are generated.
To each new solution the Boltzmann probability distribution is applied, such
that solutions more optimal than the current one are always accepted (the new
solution becomes the current one), and solutions less optimal are accepted when
the Boltzmann equation yields a higher probability than a random probability.

Otherwise the current solution does not change.

Describing their solution to the traveling salesman problem, Press, et. al. [5] note
that experimentation is needed in finding the correct schedule. Such trial-and-error
adjustments in the schedule improved the non-OCN models described here. Unlike
the OCN models (with parameters supplied by Meakin, et. al. [7]) their optimization

procedure lacked a proven set of parameters.

13
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2.2.2 Simulated Annealing Algorithm

Meakin, ef. al. [7] gives the following annealing algorithm, used as described
here for creating optimal channel networks (OCN), and modified as noted in creating

slope-optimized networks (SON):

1. Make an Eden growth model® of the network, using boundary sites as collection

sites, until the whole grid is filled.

2. Calculate the total contributing area for each site: the sum of the contribut-
ing area of neighbors plus 1 (see Equation 1.15). Given the area calculation,

ascertain other quantities according to the desired optimization:

(a) For OCN'’s, calculate the total energy dissipation, E (see Equation 1.20),
with £k = L = 1. As seen in Figure 2.1, the length of each link is 1, and &,
as a constant of proportionality, can be set to 1 without loss of accuracy

in relative total energy dissipation, the minimized quantity.

(b) For SON’s, calculate the scaling index a (see Equation 1.17) with least
squares regression on the set of all lattice points with mass greater than

ZETOo.
3. Randomly select one site in the grid and change its flow direction.

4. If the change creates a loop in the network, repeat (3).

!The Eden model is a loopless tree or forest produced by a random walk, producing one link
per step. The randomness is dampened by the constraint that a given new link must connect a
non-linked site with a linked site, so that, at a given step only neighbors to currently linked sites
are eligible to become part of a network. Thus, for example, the initial link in the Eden model must
represent flow from a site neighboring an outlet into the outlet, the second link must either connect
to the just-linked non-outlet site, or a border site. This constraint establishes the local connectivity
and loopless (tree) topology of river basin networks.
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5. Given the valid perterbation (change of flow in one site), recalculate the flow
for the new configuration, and then the appropriate value:
(a) For OCN’s, total energy dissipation, E’

(b) For SON’s, scaling index o
6. If the new configuration is better, adopt it as the current:

(a) for OCN’s, if ' < E adopt the new configuration.

(b) For SON’s, in most cases, the squared difference between o' and a was
the minimized quantity, so that, with oereet @8 the sought scaling index,

if (o — atarget)z < (a— am,get)z, new configuration was adopted. 2
7. Otherwise compute the Boltzmann probability p for the current temperature 7T'.

(a) For OCN’s, as given by Meakin, ef. al. [7], the analog to the Boltzmann
probability is,
p=e E-EVT (2.2)

(b) For SON’s as an aid to tuning the annealing schedule (discussed below
in 2.2.3) the constant k in the original Boltzmann (see Equation 2.1) was
included, and given a value less than unity to attenuate T, with 0.6 the

best found, so that the probability calculation becomes:

p= e_(a'~a)2 /06T (2. 3)

2In the early attempts at tuning the SON optimization, a simpler comparison was used, such that,
similar to the OCN comparison, a smaller or larger o/ was a sufficient test for a better configuration.
This was possible because the progress of the scaling index approached the target strictly from above
or below, deepening on the relationship being expressed in the optimization. SON’s optimized to
reach an index if 3/2, to satisfy Ax ~ Mx % never achieved a value under 3/2, while the scaling index
in those optimized to the inverted index to satisfy the relationship, Mx ~ Ax % never exceeded 2 /3.
The latter were earlier models, and the former were preferred as the results were closer to the ideal
given the same annealing parameters.
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Given p, sample a random number r from a uniform distribution between 0 and
1, and compare r and p. If » < p accept the new configuration. Otherwise,

reject it.

8. Repeat (3) - (7) many times, each iteration comprising a step at a given tem-

perature.

9. After a given number of steps (discussed below in 2.2.3), and while the tem-

perature is above some set minimum, lower the temperature, and repeat (3) -

(8)-

2.2.3 Annealing parameters

The following parameters were set using Meakin, ef. al. [7] as the guide:

1. The number of steps. This gives the number of new configurations generated
between temperature reductions. The authors used 2562 = 65,536 steps for
their grid of size [ = 256. In this study, this proportion was adopted for all
sizes, so that all schedules set [ steps between temperature reductions for a

network of size [ x [.

2. Initial temperature, T'(0): Initial temperature was determined according

to,

T(0) = AP(0), (2.4)

where P(0) is the total energy dissipation in the original configuration, and the

constant A is adjusted according to the model.

(a) OCN models: Meakin, et. al. [7] chose T(0) = 12,800. This is about %

of the total energy dissipation of an initial eden model of the multi-outlet
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model used by the Meakin, et. al. [7], of size ] = 256 (the average for 22
examples of multi-outlet eden models of size I = 256 was about 12,752).
While different values for A were tried3, this standard seemed to produce
the best results in OCN models, and the T'(0) was set with Equation 2.4
and A = 0.05, for all of the OCN networks produced.

(b) SON models: Trial and error, after initially using the same initial temper-
ature as that for the OCN’s, showed that a much larger larger proportion
of the initial energy dissipation, with the other parameters set as noted,

gave a better T'(0), the best results achieved with A = 0.7.

3. Temperature adjustment: In Meakin, et. al. [7] the temperature for the n*?

stage, set at the end of stage number (n — 1) is given by

T(n) = B"T(0), (25)

with 3 set according the type of network:

{a} OCN models: Following Meakin, et. al. [7], a reduction schedule with
3 = 0.982 was adopted for all.

(b) SON models: Experimentation showed that results improved inversely
with the steepness of temperature change. Long, gradual series of temper-
ature reductions, all other parameters being equal, gave the best results.

In the most effective set of parameters, the value was 8 = 0.996.

3Trials on OCN$ using a constant T°(0) = 12800 for grid sizes smaller than ! = 256 showed that
T should be adjusted to reflect the initial energy dissipation value, since relatively large T yields
small values of the exponent in the Boltzmann equation and so gives relatively large Boltzmann
probability values, so that the “temperature” stays “hotter” longer.
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4. The minimum temperature is the value for T which signals the end of the

annealing process. It was set according to network type:

(a) OCN models were optimized using the minimum temperature after Meakin,

et. al. [7], of 0.0004

(b) SON models, as noted above, benefited from longer annealing scheduling,
and trial and error produced a most effective set of parameters with the

minimum temperature set at 4 x 10711,

2.3 Measurements and Error

2.3.1 Total Energy Dissipation

As seen in the description of the simulated annealing algorithm, before beginning
the optimization process, the total energy dissipation of an OCN model is computed.
This initial energy calculation is a summing of energy dissipation of all the sites in the
model, producing the quantity given in Equation 1.20, with k = L = 1 (see 2.2.2, item
2). Thereafter the total is adjusted according to each new configuration during the
annealing process. Each change is a perterbation of a single site’s direction of flow, so
that only the flow values of sites “downstream” in the old and new directions need be
diminished and augmented accordingly. The total energy dissipation, then, is adjusted
by subtracting from the current total the individual energy dissipation values in the
affected sites, and adding to the total their new individual energy dissipation values.
Given roundoff error and other problems associated with repeated computations using
64-bit IEEE floating point operations, a check for accuracy in the final result was made
using 20 runs of multiple-outlet OCN models. The final total energy dissipation at

program’s end resulting from all the adjustments made over the annealing process
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(here called the program total), was comparing with a new calculated total over all
the flow values in the sites in the final model configuration. The 2 totals differed in
magnitude by no more than 0+ 10~ for all 20 models, whose total dissipation values
(as measured by the program total) averaged 1.9571 x 10%, with a standard deviation
of about 307.

2.3.2 The Scaling Index

As noted in the description of the models in Section 2.1.3 the allometric scaling
index, a in Equation 1.17, was computed as the slope of the line of least squares fit to
the double logarithmic plot of the total contributing area (see Equation 1.15) versus
the total network mass (see Equation 1.16).

In computing a during simulated annealing on the SON models, The least-squares
line was fit to the all of the data points, logipAx and logioMx (Ax is the total
contributing area at each site, and My is the network mass for the sub-basin that

empties into the site, given in Equation 1.16).

Binning Procedure In plotting the index of the final models it was noted
that in OCN models the raw data yielded slopes that deviated significantly from the
examples of real river basins and OCN models in the literature (Banavar, ef. al
[2], Maritan, et. al. [4]). It was also noted that the plots in the literature used a
binning method, such that the plotted data points are, as explained in Banavar, et.
al. [2], “obtained by binning total areas, and computing the ensemble average of the
sum of the inner areas for each sub-basin within the binned interval.” Maritan, et.
al. [4] also used this method to plot the data obtained for real river basins. The
method used in measuring the index in the models is not specified. In this study the

binning method just described was used to obtain the data points in the optimized
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models. More precisely, logioAx was binned into 4 bins per decade. Per-bin averages
of logipAx and log,oMx were used to obtain a least-squares fit line, its slope giving
the index «. Besides the best fit line, log1oMx is plotted against the midpoint of
each bin (see Figure 3.14. Bins with less than 10 data points were not used in the
calculation.

The number of sites in a size range (as measured by total contributing area) declines
as the site-size increases, as expected, since sites of relatively large flow accumulation
must number fewer than the sites whose flow is accumulated therein. Figure 2.2 shows

the bin sizes for each bin for both OCN networks and SON networks. I
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(c) Multi-outlet SON (d) Single-outlet SON

Figure 2.2 Bin sizes for binned plots of logigAx vs. logioMx

The plots show the number of sites vs. the bins of log;y Ax. Note that in all
examples the first bin, containing flow values below 2, less than log102 ~ 0.3, is not
plotted because it is empty, as sites with area A = 1 receive only their single unit of
injected flow, and are non-massive networks, that is, M = 0, (see Equation 1.16).
The least massive sub-basins have A = 2.
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2.3.2.1 The Least Squares Method

The least squares calculations used to determine the the scaling index o was com-
puted using the procedure described by Gould and Tobochnik [1]. The error noted on
the plots shown throughout the discussion of the models is the most probable error in
the slope. The slopes generated by this method showed, in about 10 tests, to match

that generated by the software package Matlab, in its linear plot fitting utility.
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CHAPTER 3 RESULTS

3.1 Network Structures

Figures 3.1 - 3.9 show the structures of the initial Eden model and the resulting
optimized networks. The channels are the collection of links along flow paths. Link
width is proportional to the log of the area of the basin whose outflow the link
represents. In all of the depictions of the full model output, sites with areas below a
threshold A, < 6 are not plotted. For depicting the whole network, trial and error
showed that excluding this range of small sites best reduces the clutter of smallest
channels, producing white space borders that highlight the various subbasins on a
reasonably fine scale. Each picture of the full model is followed by a detail from the
lower left corner of the whole, with full resolution.

OCN structures show the branching patterns similar to the OCN models in the
literature (Meakin, et. al. [7], Rodriguez-Iturbe, et. al. [6], Maritan, et. al. [4]). The
branching pattern of the SON models in Figures 3.7 and 3.9, for which no examples
were found in the literature, is typical for all the SON models created for this study.
In the multi-outlet model almost all of the border sites become detached from other
sites during optimization, and a single large site (large total contributing area) receives
most of the flow, resulting in a structure similar to the single-outlet SON model (The
plots of cumulative distributions presented below show the sparse distribution of

large-area drainage basins in the multi-outlet SON model).
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The SON models are also striking for their unnatural flow direction, that, unlike
the OCN models (Figures 3.3 and 3.5) they are characterized by paths of flow that
converge into a main channel in the middle of the basin area, so that even sources
adjacent to the outlet flow away from the outlet, toward the middle of the drainage
area. These circuitous paths are seen in all the examples of both single- and multi-
outlet SON models. The large channels turn into themselves, in some cases with
diagonal turns that suggest the hexagonal arrangements in the underlying triangular
lattice. While such a solution is not explored here, the idea that the SON model’s
main channels may be dividing and spiraling into ever-shrinking miniatures of a single
kind of polygon is reminiscent of the form of an exact fractal structure like the Peano
basin (discussed in Rodriguez-Iturbe, et. al. [6], Section 2.4).

The emergence of the final network forms can be seen in Figures 3.11, 3.12, and
3.13. They reveal that for both OCN’s and SON’s, the initial Eden configuration is
first tranformed by simulated annealing to a highly dissipative system, distinguishable
as having, qualitatively, an irregularly sinuous structure. With the steep decline in
energy dissipation the main channels to be featured in the final form appear amid
smaller channels yet retaining the sinuousness of the “hot,” chaotic-looking earlier
networks. In the SON case the sinuosity of smaller channels is retained to the final

form, while the OCN models resolve, even to the smallest basins into straight channels.

3.2 Area to Mass Scaling

Figure 3.14 shows the indices o for the mass-to-area scaling index (see Equation
1.17), as measured using bins. Figure 3.15 shows the fit of the data without bins. In
the binned plots the single outlet OCN matches the index given in Maritan, et. al.

[4]. No measure for « is given for the multi-outlet OCN model in any of the literature
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Figure 3.1 Eden Growth Model, the Random Initial Configuration
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Figure 3.2 Detail, Lower Left Corner, Full Resolution, Eden Model
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Figure 3.3 Multi-outlet OCN
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Figure 3.4 Detail, Lower Left Corner, Full Resolution, Multi-outlet OCN
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Figure 3.5 Single-outlet OCN
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Figure 3.6 Detail, Lower Left Corner, Full Resolution, Single-outlet OCN
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Figure 3.7 Multi-outlet SON
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Figure 3.8 Detail, Lower Left Corner, Full Resolution, Multi-outlet SON
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Figure 3.9 Single-outlet SON
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Figure 3.10 Detail, Lower Left Corner, Full Resolution, Single-outlet SON
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Networks Sampled During OCN Optimization

Figure 3.11

outlet area of basins, sampled during different stages of annealing for an

OCN. Below each network is the plot of total energy dissipation versus annealing
stages. The square in each plot indicates the annealing stage at which the

corresponding network was the current configuration.
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Figure 3.13 Networks Sampled During SON Optimization, Continued

The final network sampled during different stages of annealing for a multi-outlet
SON model. (See the Series in 3.12).
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reviewed for this study, so that its higher index cannot be compared to any other
examples. The SON models, having been optimized to match the limiting value of
a = 1.5, closer to that value.

Unbinned, in the OCN case the scaling index is considerably higher than in the
binned plots, indicating that the averaging process is attenuating some scatter within
some ranges of basin-area size. In the case of the SON models, although the binned
data shows a scaling index further from the target value of @ = 1.5, the paucity of
data points mutes the sharply different scaling trend at the smaller scales. As the
unbinned SON plots show, sub-basins with areas less than about 10 are trending
to a steeper slope, indicating a relatively high mass-to-area scale. Sinuosity in flow
paths increases mass relative to flow! and so the tendril-like smaller channels (see

Figures 3.7 and 3.9) scale heavier on the mass side of the scaling relation.

3.3 Cumulative Distributions

3.3.1 Total Contributing Area

The power law for the cumulative distribution of total contributing area®, P[A > a,
that a randomly selected site has a total contributing area greater than size a, has

been found to scale with a, in real river basins (Rodriguez-Iturbe, et. al. [6}) as,

P[A>alxa™®, 8=0.43+0.02 (3.1)

For OCN networks optimized by simulated annealing, Rodriguez-Iturbe, et. al.

[6] found the index® 3 to be nearer 0.50. The latter value is shown analytically in

! As discussed in Banavar, et. al. [2], the least efficient transportation network is the “space-filling
spiral,” which is maximally indirect and is the most massive network.

2See Equation 1.15 for the recursive definition of total contributing area.

3Rodriguez-Iturbe, et. al. [6], Section 4.33. The index was measured by extracting the largest
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Figure 3.14 Network Mass versus Total Contributing Area.

The plot is shown for data binned as described in Section 2.3.2

Rodriguez-Iturbe, et. al. [6] Section 4.23, to be the “exact” solution for a networks
with globally minimal total energy dissipation. Simulated annealing, then, insofar as
it attains the global minimum total energy dissipation, should yield networks with
B =~ 0.5.

A more natural 8 ~ 0.43 was achieved by Rodriguez-Iturbe, et. al. [6] with a hill
climbing algorithm, a version of the simulated annealing in which the temperature is

kept at zero, so that the only accepted changes in network configuration are those that

network in a multi-outlet basin with periodic boundary conditions, on the theory that, having
developed within such an environment, the networks development would be free of the influence of
boundary constraints.
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Figure 3.15 Network Mass versus Total Contributing Area, Unbinned Data.

lower the total energy dissipation. This procedure produces more dissipative networks
(the network configuration converges to local optima, globally sub-optimal), but with
several power law relationships, including this one, closer to natural river basins than
are those optimized to a better minimum with a temperature reduction schedule.
Figure 3.16 shows the cumulative area distributions for OCN and SON created with
the annealing schedule as outlined in Section 2.2. The OCN examples as expected
exceed the natural 8 =~ 0.43. The best fit portion of the data shows values for
larger than 0.5, unlike the OCN models in Rodriguez-Iturbe, et. al. [6] (Chapter 4),
which do not exceed 0.50. The exceedence here may be caused by finite size effects
in the range of data chosen for the best-fit line. The larger areas steepen the slope

as linearity of the plot decays with increasing logioa, seen most dramatically in the
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plot of the multi-outlet OCN. The effect becomes especially obvious in the tails of the
plots, as the sites with large contributing areas are few in number and the cumulative
distribution frequency falls dramatically for each successively larger value of a.
While showing similar slopes to the OCN models in their linear midsections, plots
of the SON models show a non-linear head and tail, such that there is about 2% orders
of magnitude of linearity, as opposed to 3 to 4 orders in the OCN examples. The
SON examples also show a sporadic distribution of the largest sites, reflecting the
consolidation of low from most sites into few main channels, rather than in the more

balanced distribution in the OCN structure.

3.3.2 Total Contributing Area of Drainage Basins

Meakin, et. al. [7] measure the cumulative distribution of the number of drainage
basins with a given total contributing area. A drainage basin is a network that drains
into one outlet in a multi-outlet model. As measured here for both OCN’s and SON’s

in Figure 3.17, the scaling relationship is,

N(A>a) xa?, (3.2)

with N(A > a) as the number of basins with area greater than a.
Meakin, et. al. [7] found a slope of # = 0.51, compared to the 8 ~ 0.55 shown

here, and notes that this indicates a power law distribution of the number of basins

of size A as,

N(A) ~ A, (3.3)

with 7 & 1.51 for results in Meakin, et. al. [7], and in this study 7 =~ 1.55, this
discrepancy possibly due to different border schemes (discussed in 1.5).

Although Meakin, et. al. [7] reports no field data measuring a collection of
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Figure 3.16 Cumulative Contributing Area

Log, log plot of the cumulative probability for contributing area versus contributing
area size. The solid line has the slope of the least-squares best fit of P[A > a] to a
range of logypa as indicated. The range was chosen by eye to find the most
linear-looking, contiguous 3 orders of magnitude. The dashed line has slope —0.43,
the index found in real river basins (+0.02).
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drainage-basins over a contiguous area, the slope 8 =~ 0.51 is close to the 0.50 noted
above in 3.3.1, the cumulative distribution of total contributing area found in OCN
models optimized with simulated annealing to obtain a global minimum (compared
to the 0.43 in natural basins, which are mimiced by OCN models optimized with
hill climbing). It is interesting to note that, for the OCN models, the cumulative
distribution of drainage areas scales similarly to the cumulative distribution of areas
for a single network, while, in a single-outlet model, the finite grid-size effects on the
sub-basins of size similar to drainage basins, do not scale in line (see Figure 3.16).
In stark contrast to the OCN models, the SON model shows that the scaling-index
optimization has reduced border outlets to only 4 sizes, other than than the main
outlet that receives the bulk of the flow. The SON imperative of minimum network
mass on all scales would seem to undermine the OCN imperative of minimum energy
dissipation in the multi-outlet context: ”optimal drainage structure of an area tends
to have a few large river networks together with a distribution of smaller networks

covering the whole area” (Meakin, et. al. [7]).

3.3.3 Energy Dissipation per Unit Channel Link Length

Meakin, et. al. [7] note that “uniform energy input to a dissipative system often
results in a power law distribution of energy dissipation,” and that in river basins the
scaling index for the cumulative distribution of energy dissipation per unit channel
length, p, is given by

I(p > p*) ~ p*™ (3.4)

where, in natural basins v is between 0.90 and 0.93. p is this case can be represented
by the energy dissipation along a given link ¢ (see equation 1.18), that is, the unit

link of outflow from site ¢ (recall that all sites in the model are connected by links of
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Figure 3.17 Cumulative Contributing Area of Drainage Basins

Log, log plot of the cumulative distribution of the size of drainage basins
(sub-basins that empty into a sink on the border). The line has the slope of the
least-squares best fit of P[A > a] to a range of Ina values as indicated. The range
was chosen by eye to fit the most linear-looking section. Given its paucity of site
sizes and non-linear arrangement, the SON model’s data was not fit with a line.
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length 1). Unlike all other sites, basin outlet sites, since they have no flow, do not
represent a unit channel link.

For this measure, in this study, all of the models exceed the expected values, with
multi-outlet OCN showing v = 1.2, much larger than the expected and larger than its
counterpart in Meakin, et. al. [7]. The reason for this large discrepancy is unknown,
but may reflect a binning procedure used in Meakin, et. al. [7], though it is not

described.

3.4 Total Energy Dissipation

Figure 3.19 shows the total energy dissipation for each annealing stage. The multi-
outlet OCN example replicates the overall character and flnal value for total energy
dissipation of the plot shown in Meakin, et. al. [7], whose model is the basis for this
example. One striking difference between this plot and that of Meakin, et. al. [7]
is seen in the initial, large jump in energy dissipation from the value of the original
configuration in this example (common to all the examples created for this study),
while the plot in Meakin, et. al. [7] shows no such immediate rise. In Meakin, et. al.
[7] the initial value is shown to be around 3.8 units, as opposed to the initial value
here of about 2.5.

The final total is higher in the single-outlet OCN example, while its reduction rela-
tive to the initial configuration, about 7%, is close to the reduction in the multi-outlet
example, about 8%. This suggests that for a given area, multiple basins can achieve
more optimal energetic configurations than possible with a single outlet configuration.

The SON models show a higher total energy dissipation than that in the OCN
networks. Optimization on the scaling index plainly does not result in minimal (opti-

mal) total energy dissipation. That both the multi-outlet and the single-outlet models
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Figure 3.18 Cumulative Energy Dissipation per Unit Channel Link Length

Log, log plot of the cumulative probability of energy dissipation per unit channel
link length. The solid line has the slope of the best-fit line to a data-range of in(a)
as indicated. The range was chosen by eye to find the most linear-looking portion of
the plot. The dashed line has slope —0.92, the approximate index found in real river

basins (Meakin, et. al. [7]).
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Figure 3.19 Total Energy Dissipation over Annealing Stages

have the same final total (within 1% of each other) reflects the transformation in all

examples of the SON optimization, into networks with the same essential structure

(see Figures 3.7 and 3.9). It also suggests that the optimized SON network will yield

the same total dissipation from many different initial configurations.
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3.5 Mean Distance of Site to Outlet

Figure 3.20 shows the mean distance of a site to the outlet of a sub-basin versus

the size of the outlet. As argued in Maritan, et. al. [4], this relationship should be

(L) o A% (3.5)

where (L x) is the mean distance from site to the outlet of a sub-basin Ay is the total
contributing area of the outlet, and h is Hack’s exponent, that relates the length of
the longest stream Lx in a sub-basin to the total contributing area.

Maritan, et. al. [4] assume that Lx o {L.), which leads? to a relationship between

the mass-to-area scaling index o and h, such that

a=1+h. (3.6)

Whereas a and 1 + h match within 0.002 in single-outlet OCN models in Maritan,
et. al. [4], models in this study show a larger discrepancy between mass-to-area
scaling index o and 1 + h, with h derived from Equation 3.5. In Maritan, et. al. [4]
h is computed directly using the length L, the distance from the outlet to its most
distant contributing source rather than the mean length, (L).

Table 3.5 shows a comparison of h as derived from the scaling index & and from

the relationship of Equation 3.5.

4The following proportionality, shown by Maritan, et. al. [4], relates Hack’s exponent to the
mass-to-area scaling index o through the mean distance value. Given a sub-basin with outlet at
site X, with a constant injection into the system (for example constant mean annual precipitation
at all sites), then network mass M, total contributing area Ax, and mean-distance-to-outlet (Lx)
are related by Mx o« Ax(Lx).
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Figure 3.20 Mean Distance to Outlet

Log, log plot of the mean distance of sites in a sub-basin to the outlet versus the
outlet size (total contributing area). The data has been binned as described for the

mass-to-area scaling index (see Figure 3.14).
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Model h=a—1]|Error | h: (L) x A" | Error
Multi-outlet OCN 0.59 0.01 0.54 0.00
Single-outlet OCN 0.57 0.01 0.54 0.00
Multi-outlet SON 0.52 0.02 0.47 0.02
Single-outlet SON 0.51 0.02 0.47 0.02

Table 3.1 Hack’s Exponent from a versus Mean Distance

3.6 Summary of Power Laws

The table 3.6 summarizes the power-law scaling results discussed above, showing

the indices for the models created here, as well as those for models published else-

where, and the indices for real river basins. Table entries without error estimates

reflect the lack of an error estimate in the literature providing the index.

Mass-to-area Cumulative Cumulative
Scaling Probability Probability
Distribution, | Distribution,
Basin Area Energy
Dissipation
Network M oc A= P[A > a] [P > p*|
Multi-outlet OCN 1.59 £ 0.01 0.597 + 0.002 1.198 4 0.004
Single-outlet OCN 1.57+0.01 0.513 +0.001 0.962 £+ 0.001
Multi-outlet SON 1.52 £ 0.02 0.515 £+ 0.001 0.949 + 0.002
Single-outlet SON! 1.51 +0.02 0.530 + 0.001 0.979 + 0.003
Published, Multi-outlet OCN NA 0.50 0.92
Published, Single-outlet OCN 1.57 £ 0.02 0.50 NA
Real River Basins 1.50 to 1.59 +0.02 0.43 £ 0.02 0.92

Table 3.2 Summary of the Scaling Indices of Power Laws
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CHAPTER 4 DISCUSSION

4.1 Assumptions About the Models

If the results in Chapter 3 are to be seen as relevant to real river networks, these

assumptions about the models are necessary:
1. Energy dissipation is correctly modeled by the Equation 1.18.

2. The scaling of network mass to flow rate, and hence the proximity to the most
efficient class of networks as described in Banavar, et. al. [2], is correctly
measured by the slope of the least-squares fit line to the log, log plot of the
quantities in Equation 1.17, in its non-binned form. This is the measure used
to calculate the value of the current configuration being optimized by simulated

annealing to create a scaling-optimized network (SON).

3. For the respective target functions (total energy dissipation, scaling index),
simulated annealing is finding a local optimum in the solution space that is
close to the global optimum. In the case of multi-outlet OCN’s the final total
dissipation values match that in the literature (Meakin, ef. al. [7]), while all

other’s have no confirmation from other investigations.

4. The Eden model provides a sufficiently random configuration that annealing

can properly search the configuration space.
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5. The random number generators used in the models produce statistically random
series throughout a given simulated annealing session (see the Appendix for a

discussion of random number generators).

6. The calculations of total contributing area and network mass are valid measure-

ments of their counter parts in real river basins.

7. The hexagonal grid provides enough freedom of direction to emulate continuous

space, for the purposes of accurately measuring fluvial geometric properties.

8. The size of the grid is large enough that its limits do not invalidate the data it

provides, so that the single flow direction behaves like multi-directional flow.

9. The constant, uniform injection of material (the model of precipitation, as noted
in 2.1.1), and constant velocity throughout the network correctly model real

river basins (see Rodriguez-Iturbe, ef. al. [6], Section 4.3).

4.2 The SON Model and the Theoretical Scaling Limit

This study’s SON networks are optimized to scale as closely as possible to a = 1.50
(Equation 1.17), the theoretical limit in efficient transportation networks. They differ
both qualitatively and in scaling properties from the OCN models. Qualitatively, as
noted in Section 3.1, they do not show the directed flow expected in the class of
most efficient networks (c.f. Banavar, et. al. [2]). Compared to the OCN models,
in the double log plots of cumulative distributions (Figures 3.16 and 3.16) the SON
model’s apparent self-similarity, as indicated by the most linear portion of the plotted
data, is restricted to a comparatively narrow range of scales. The double log;, plot of
cumulative distribution of total contributing area, for example (Figure 3.16), shows

this narrow range to be about 2-21- orders of magnitude versus 3 or more for the OCN
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The log, log plot of network mass versus total contributing area in a single-outlet
SON model. The data plotted is for sub-basins with area larger than 101°.

examples. This narrowed range is also seen in the log, log plots giving a (Figures 3.14
and 3.15), which show the same non-linear features over the same range of small-area
basins. Even though « is closer to the ideal limit of 1.50 in the SON models, there
is a distinctly steeper linear trend indicating a larger value for & on the small scale.
Thus the remaining data, in compensation, has an index smaller than the ideal, as
seen in Figure 4.1, with o ~ 0.48.

Figure 4.2 isolates the structure of the small sub-basins, corresponding to the non-
linear-trending small-scale portion of power-law plots, and the midsize sub-basins
corresponding to the linearly trending portion of the power law plots of the single-
outlet SON models. For camparison the sub-basins of corresponding size are shown
for the single-outlet OCN. The largest sub-basins, corresponding to the tails of the
power-law plots, clearly the effect of finite grid size in both OCN and SON networks,
are not shown.

The small sub-basins in the OCN model are relatively straight channels. The small
sub-basins in the SON model have the sinuous character of a whole network in a “hot”

phase (characterized by high energy dissipation) of the simulated annealing process
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(Figures 3.11 and 3.12). Besides high energy dissipation, sinuosity also indicates mass-
heavy scaling (@ >> 1.50), as indicated by the theoretical upper limit of @ = 2.00
seen in a single spiral flow path filling an entire area, and accounts for the steep linear
trend of the small area data in the SON plot for a. During the optimization, grid
size, or the method by which o (the slope of the least-squares fit line)} is calculated,
may be forcing the 2-phase scaling and structure. Whatever the cause, the consistant
structure and measurements for all the SON models created for the study indicates
that this particular optimization scheme might stubbornly disfavor self-similar scaling
across all basin-sizes, while the OCN models show no such division in the plots of a.
There may be a temperature reduction schedule, or change in the way the optimization
procedure measures «, that would allow a “straightening” of the small-area basins,
and a smoother allometric plot. Depending on the final overall structure, such a
correction could also significantly lower the total energy dissipation, bringing the
SON model closer to the minimal energy dissipation condition common to the OCN'’s
and real river basins.

For the (larger) portion of the SON plots whose trend attenuates «, the differences
in network strutcure of the 2 models are less pronounced (Figure 4.2), though the
SON model lacks the regular, elongated main channels fed by short sub-channels,
seen in the OCN.

Overall, the SON model scales closer to the ideal o = 1.50 than does the OCN
model, while the index in real river basins shows more variation between individual
networks. In a summary of scaling in 15 river networks, Maritan, et. al. [4] show
« ranging from 1.50 to 1.59, with little “noise” in the plots of the individual basins.
Plotting a using ensemble averaging of many river basins gives an a “statistically
indistinguishable” from 1.50. Maritan, et. al. [4] conclude that there is a “robust

central tendancy” of allometric scaling in network structures toward the limit, while
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individual variations, given that their scaling is not “noisy”, are “sensitive probes of
the network structure”. The meaning of such variability may be informed by the SON
model. It acheives a scaling index « close to 1.50, but shows a high (sub-optimal)
energy dissipation, and an unnatural network structure. Though the discontinuity
in the scaling trend of its power law measurements suggests the small-area basins
could be made more energetically efficient in the SON model, the extent to which
allometric scaling is achieved without minimal total energy dissipation suggests that
the imperative of minimized network mass in allometric scaling is not a sufficient
cause of natural transportation network structure.

While there is no certain formulation providing for the driving forces behind nat-
ural river basin structure, the OCN’s scaling similarities, paired with principles of
least energy expenditure provides, as noted in Rodriguez-Iturbe, et. al. [6], a “com-
prehensive theoretical framework supporting the likelihood” of river basins as natural
OCN’s. Though imperfectly realized by the SON model in this work, a thorough
exploration of non-energetic optimization according to the theorem that establishes
allometric scaling as an observed condition of river basin networks, could, depend-
ing on the relative energy dissipation of the resulting network, suggest a tie between
the SON and OCN imperatives, with implications for the formation of other trans-

portation networks, like animal circulatory systems, for which the minimization of

transported material is prima facia advantageous.

4.3 Future Directions with New Models

When this thesis was presented orally, members of the thesis committee suggested
that the discontinuity in the scaling trend of the SON model might be remedied by a

target function in the simulated annealing process that minimized the sum over each
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site X of the squared difference,

AM =" (Mx - kA§)2, (4.1)
X

where My is the mass (amount of transported material) associated with site X, and
Ax the total contributing area of site X. k is the constant of proportionality that

defines the mass-to-area power law (see Equation 1.17) as the equivalence:
3
Mx =kA% (4.2)

With £ known the difference in Equation 4.1 is the difference between each site’s
mass and the most-efficient mass for the area given by that site in the most-efficient
mass-to-area scaling relationship. If the sum of the square of the difference over all
sites could be sufficiently minimized with simulated annealing the resulting network
would closely approximate the allometric mass-to-area scaling, the same goal sought
for the SON. It was hoped that this new way of calculating the relative optimality
would eliminate the discontinuity discussed above in Section 4.2.

Because the value of £ in Equation 4.2 is not known for the grid, it was suggested
that linear regression could be used to obtain k for a given configuration. During
simulated annealing, when the network is perturbed and a new configuration is to be
tested for its optimality, an approximation of k£ could be obtained from finding the
y-intercept b of the least squares linear fit of log;y Mx, logigAx, for all sites X. The
surrogate k can then be computed as 10°. During the early stages this value would
reflect a log-space linear fit to data far from the desired values. However, the exact
exponent, %, will have the greater influence on values of AM, so that reductions in

AM might produce values for k closer and closer to the actual value of k for exact
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allometric scaling on the grid.

The hope was that this target function, by avoiding the least-squares calculations,
might avoid the discontinuity in the mass-to-area scaling between the large-area and
small-area basins (discussed above in Section 4.2).

Time did not allow for the program changes needed to efficiently optimize a 256 x
256 grid. A smaller version on a 64 x 64 grid was created to see if the allometric
scaling was smoother, and to have a look at the topology of the resulting network.
Figure 4.3 shows the structure of a single-outlet model optimized to Equation 4.1.
Figure 4.4 shows various metrics, including area-to-mass scaling.

Immediately striking is the more direct flow paths than those exhibited in the SON
structures (see Figures 3.7 and 3.9 ). Its mass-to-area scaling is farther from the
theoretical most-efficient scaling index, a = 1.50, than is that seen in the SON, in
both raw and binned measurements. Compared to the OCN’s, however, the raw data
plot is closer to the target and for the binned plots about the same (see Figures 3.15
and 3.14).

The model also displays a discontinuity in the area-to-mass scaling similar to that
in the SON model. Further, a linear data trend is missing in the log, log plots of the
cumulative probability distributions for area and energy dissipation, indicating that
the model shows less self-similarity than do the OCN and SON models (see Figures
3.16 and 3.18). This may be caused by a combination of the smaller grid size and
the short time spent tuning the simulated annealing algorithm, resulting in a network
reflecting a local optimum with a significantly higher AM (see Equation 4.1) than
the global minimum.

The suggestive finding is the combination of the directed, efficient-looking structure
(also reflected in the mass-to-area scaling index matching that in the OCN) with

higher-than-optimal energy dissipation {about 15,000 in this model, and 9,000 for
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an OCN of the same size). This suggests that a efficient structure (none of the
indirection of flow seen in the SON), with a condition of efficient mass-to-area scaling
and inefficient energy expenditure. Arguing against drawing any conclusions are the
discontinuity in the mass-to-area scaling and the lack of self-similarity in the other
scaling measurements. These speak to the need for further refinement in the model.

Suggestions for an improved model based on Equation 4.1 include the addition
of binning during the annealing process. At each step the site to perturb is chosen
randomly from within a bin, the bin itself chosen according to a random number
weighted by its value for (M x — kAi)i where X is a bin, and My, Ax the average
mass and area, respectively, of the sites within the bin. Such a scheme might allow a
more uniform adjustment across all sites during simulated annealing, eliminating the
discontinuity in the final model that inhibits smooth allometric mass-to-area scaling

across all sub-basins.
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Figure 4.2 Sub-basins Extracted by Size in Single-outlet Models

In these sub-basins of single-outlet models, small sub-basins X have total
contributing areas Ax < 10'%. Midsize sub-basins X shown here have areas in the
range 101 < Ay < 10%. The midsize range corresponds to the most linear looking
portions of the log, log plots of the cumulative distribution of total contributing
area in SON models. The small size range corresponds to the SON’s sinuous data
trend over small scales in the log, log plots.
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Figure 4.3 New Model Structure
Structure of the Model Optimized to the Squared Difference (Equation 4.1)
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tribution in real river basins.
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APPENDIX A Table of Most-Used Variables

Variable | Definition

Linear size of a basin area

The number of dimensions of the network

Rate of transport, or, proportionately, the number of transport sites.

Total contributing area.

Network mass, or total material transported.

SEESPN L el

Scaling index in the allometric relationship, M o« A%, with A ~ B

Table A.1 Most-used Variables
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APPENDIX B Random Number Generation

The simulated annealing algorithm used to generate these models relied on a pseudo
random number generator to provide uniform random deviates for the stepwise perter-
bation of the network configuration (see Section 2.2.2, item 3), as well as for evaluating
the Boltzmann probability (Section 2.2.2, item 7). The number generator used here
is that given by Press, et. al. [5], Section 7.,, called ran2. Initially the ran! was used,
about which the authors advise “we do not know of any statistical test that rani fails
to pass, except when the number of calls starts to become on the order of the period
m, say > 10%7. It was discovered that the OCN modeis approach the period of ranl,
while the SON models surpass the period. Tests were performed comparing results
from the 2 generators.

5 program runs showed that the procedure that produces the OCN models makes,
on average, 2.16968 calls ! per run, on the upper end of the period, but still within the
stated range for statistically effective random number generation. The SON models,
however, often surpass the period of the generator: the best SON results 2 make calls
numbering about 1.5 x 10°. New models, created with the ran2 generator, with its
period on the order of 108 were created to compare with the former results, for both
OCN’s and SON’s. Comparisons of 7 OCN models generated using ran2 showed

an average total energy dissipation of 195,620, and a standard deviation of 231.86,

1The standard deviation of this 5-run sample is about 1.6 x 10%.
2Models with a scaling index, in raw data terms, of 1.50 and an error less than 1072
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compared to an average of 195,718 for 25 runs with rani, and a standard deviation of
307. 3 SON models (2 multi-outlet, 1 single-outlet) were run with ran2 and compared
with 3 models of the same type run with rani. All 6 models had a scaling index of
1.500 £ .001. The ran2 models had an average total energy dissipation of 332, 400,
with a standard deviation of 1433. The ran! models had an average total energy
dissipation of 337,700, with a standard deviation of 7.0123e+03. Qualitatively all
the networks looked similar by type.

One possible effect of the misuse of ranl can be seen in the total energy dissipation
of the SON models, which were about 1.5 % higher in the (small) sample tested, and
had a much higher variability between models, when rani was used. While the small
samples do not allow a definitive connection with the random number generator, the
variability in energy dissipation between the ranl and ran2 SON models, versus the
uniform slope index reached in all the models testifies to the variety of dissipative
states that provide the “correct” scaling relationship, a finding that should be seen
in the light of the model’s constraints: finite size, the square grid boundary, the
triangular lattice, and the initial eden growth model from which the result is derived.

All models pictured and measured in this work, when not otherwise stated, were

created with the ran2 generator.
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APPENDIX C A Note on Performance with Different C

Compilers

The simulated annealing program was written in the C programming language.
One version of the program makes many calls to the pow function, while another
uses the sqgrt instead, both functions declared in the standard C library’s math.h file.
The gcc version 3.4.5 proved to have a slow implementation of the pow functions,
compared to the Intel icc compiler version 9.0.

A program run that took 1700 seconds with a geec compiled version took about
87 seconds on the Intel compiler. The running-time profiler gprof showed that the
bottleneck was the loop shown below. The function that contains the loop takes up
over 893% of total running time, as sampled by the profiler (the test ran for 1 anneal-
ing stage of 2,562 steps). These are the offending lines, as shown by the profiler’s

breakdown:

for( i =0; i < i_n_squared; i ++ )}

{

d_returned_diss = d_returned_diss
+ pow( (double) pi_flow[ i ], DISS_EXP);

} /*end "for each site"*/

The pow function seems to contribute significantly to this difference. A simple

program that computes the pow function 600 x 10° times, in six loops of 100 x 108
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iterations, took less than a millisecond using icc, but 111.930 seconds with gcc. When
the pow calls were replaced by sgrt, gcc took 9.717 seconds, and icc less than a
millisecond. When the body of the loop contained no line of code at all the gcc
compiled program ran in about half a second (as expected, the icc program in less
than a millisecond), suggesting that the compilation of loop-intensive code is done
better by icc All the executables were compiled with the optimization given by the
-02 flag,.
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