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Cosart, Ted F, M.S., May, 2006 Com puter Science

A llom etric Scaling in  R iver Basin Models 

Chairperson: D r. Jesse Johns

River basins scale allom etrically, flow rate to  mass o f m aterial transported. They 
exh ib it a scaling index near a known theoretical lim it fo r efficient transporta tion net­
works. Models called optim al channel networks (O CN’s) also approximate the scaling 
index using m inim um  energy dissipation. OCN’s based on an in itia l loopless network 
and optim ization w ith  simulated annealing show th is a llom etric scaling w ith  an index 
very close to  th a t predicted for efficient transporta tion networks. Models based on the 
same in itia l conditions, and optim ized to  reach the scaling index itself, ra ther than 
m inim um  to ta l energy dissipation, show a much higher to ta l energy dissipation than 
do the OCN models, an unnatural d irection o f flow away from  outlets in  a m u lti-ou tle t 
configuration, and unnatura lly circuitous flow directions in  the single-outlet model. 
The results suggest th a t m inim ization o f m aterial in  an allom etric relationship is an 
insufficient condition for the creation o f efficient transporta tion network structures 
found in  nature.
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C H A P T E R  1 IN T R O D U C T IO N

1.1 T h e Forces B eh in d  N etw ork s

Recent lite ra tu re  across the sciences investigates the d riv ing  forces behind the for­

m ation o f networks. Conceptualized as the set o f links between nodes, the networks 

studied are either those fo r which the cost o f a lin k  is m ostly independent o f physical 

length or those fo r which th a t cost m ostly depends on the links physical length. Links 

between sites on the world wide web ty p ify  the firs t kind, while river basins, animal 

c ircu la tory systems, and c ity  bus routes are examples o f second. How the la tte r net­

works assume the forms we see qua lita tive ly  and assess geom etrically is a problem 

whose solution offers considerable benefit. For example, understanding river networks 

aids management o f scarce water resources. A b ility  to  assess the anticipated form  of 

a blood vessel network enhances medical diagnosis.

Th is work explores the form ation o f river basin networks in  lig h t o f 2 well known 

observations: they exh ib it m inim al energy dissipation on a ll scales, and a m inim al 

amount o f transported m ateria l on aU scales. M in im al energy dissipation networks 

have been modeled and the results reported extensively (Rodriguez-Iturbe, et. al. 

[6], M aritan , et. al. [4], M eakin, et. a l  [7]). The second observation is newer, 

and has not been used as the constructive force in  modeling river basins. This work 

reproduces known models o f m inim um  energy dissipation, and makes new models
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based on m in im ization o f transported m aterial. Several measurements are made on 

the models to  explore th e ir differences and sim ilarities.

1.2 A llom etr ic  S caling  L im its

Central to  th is  work is the find ing in  Banavar, et. al. [2] th a t some natura l 

transporta tion networks show an allom etric scaling relationship, transportaion-rate to  

amount o f m aterial transported, close to  a theoretical lim it o f m inim um  transported 

m aterial. Banavar, et. al. [2] classify such networks as most efficient, since the 

m ateria l transported is as small as possible for the area the network is serving. They 

establish a theorem th a t gives the lim it o f such scaling. W ith  C  as the amount of 

transported m ateria l^, L  as the linear size o f the area served by the network they give 

the follow ing theorem,

For any spanning network in  D  dimensions,

C  scales at least and at most as

fo r  large L.

The theorem leads to  a m inim um  and maxim um scaling relationship between ma­

te ria l transported and the linear size o f the area served:

M axim um  M ateria l 
C o ^ {  (1.1)

M inim um  M ateria l

is first defined in Banavar, et. al. [2] as the to ta l blood volume in an organism’s metabolic 
system, and then redefined, generalized in the context of transportation networks to be the “quantity 
of nutrients in the network at any instant of tim e.” The meaning of “nutrients” in this general context 
is unclear.
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Given these lim its  and the relationship between rate o f transport B  and linear size,

B  oc (1.2)

the authors show th a t the scaling re lationship between rate-of-transport and network 

mass is constrained. In  the least-efficient case,

B o c L ^ (1.3)

C o c B ^ (1.4)

B ( x C i (1.5)

The least-efficient network is exemplified by a “space-filling spiral ” in  which flow 

accumulates along a single path th a t covers the entire area served.

A t the other extreme are networks like river basins. In  such networks the flow 

along each lin k  is “directed ” , th a t is, the m aterial is moving along shortest paths 

away from  a single source (in  c ircu la tory systems) or toward a single sink (in  a river 

basin) Here, a m inim al amount o f m aterial is used for the given service area, leading 

to  the classification in  Banavar, et. al. [2] as “most efficient” . Such networks in  D  

dimensions, w ith  transport rate B  and amount o f m aterial transported C  satisfy,

B  oc (1.6)

C  oc (1.7)

B  oc (1.8)

^See Banavar, et. al. [2], supplementary m aterial, for a more rigorous definition of a “directed” 
spanning tree, and a proof of their theorem.
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1.3 S e lf S im ilarity  in  R iver B asin s

River basins networks share w ith  other fracta l objects self-sim ilar properties evinced 

in  scaling relationships given by power laws o f the form

g{x) =  ax°‘ (1.9)

where a and a  are constants, x  represents a measured property such as area and 

g{x) a function o f the property, such as the cum ulative d is tribu tion  o f sub-basin 

areas. The relationship in  Equation 1.9 holds when x  is m u ltip lied  by a constant 

(Rodriguez-Iturbe, et. al. [6]). This means th a t any portion  of the basin shows 

the same relationship between g(x) and x  (Rodriguez-Iturbe, et. al. [6]). The fixed 

p ropo rtiona lity  across a ll scales earns such congruencies the terms “scale free” and 

“scale invariant” .

R iver basins are evaluated for self-sim ilarities through analysis o f flow networks 

constructed from  a d ig ita l elevation map (D EM ). The pixe l gives an area o f uniform  

elevation (30-200 square meters are common resolutions). Flow networks are con­

structed on the grid, commonly through steepest descent directions from  each pixel 

to  one o f eight surrounding pixels (2 horizontal, 2 vertical, 4 diagonal neighbors). The 

flow accumulation along the elevation gradients can then be calculated, and related to  

area and other properties^. From these measurements the scale invariant properties, 

upholding Equation 1.9 are revealed.

Self-sim ilar properties in  river basins often complementary cum ulative p robab ility

^For a discussion of the géomorphologie concepts and the difficulties related to these map extrac­
tions, see Rodriguez-Iturbe, et. al. [6], Section 1.2.9.
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d istribu tions expressed in  the form

P {X  > x ) c x x ^  (1.10)

(1.11)

where % is a random variable representing an instance from  the range o f values o f x, 

so th a t P {X  >  x) gives the frequency w ith  which an instance of X  exceeds x. O ther 

examples o f self-sim ilarity are found in  size relationships and the quantities (like 

flow-rate) th a t can be related to  size. The theorem of a llom etric scaling described in  

Section 1.2 gives such a relationship.

1.4 A llo m etry  in  R iver N etw ork s

In  confirm ing the predictions o f the theorem, Banavar, et. al. [2] measure DEM - 

derived rive r basin networks and report the expected relationship. In  m ost-efficient 

transporta tion networks, where B  is the flow  rate in to  a given site, M  is the amount 

o f m ateria l transported by the network, here called network mass and D  is the 

network dimension.

M  oc (1.12)

D  =  2 (1.13)

M o c B i  (1.14)

^Dreyer, [3], in deriving separately from Banavar, et. al. [2] the same allometric scaling relation­
ship between rate and amount of m aterial transported, computes the quantity giving the amount 
of m aterial as exactly the mass of the transported m aterial. Thus, following Dreyer, [3], M  w ill be 
called network mass.
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w ith  the relationship holding across a ll scales, as indicated by allom etry.

In  the DEM  measurements flow rate B  is replaced by a proxy, total œ ntributing  

area (Banavar, et. al. [2])^. As described in  Banavar, et. al. [2], the to ta l con­

trib u tin g  area A x ,  a t a given site X  can be computed as the sum of the areas of 

its  con tribu ting  nearest neighbors, nn, plus the single u n it o f area representing the 

DEM  pixel® A dopting the terms in  Banavar, et. al. [2] flow, as area, is expressed 

recursively;

A x  — ^  A z +  1 (1-15)
Zen n{X )

Again follow ing Banavar et. al. [2] The network mass, M , is expressed here as the 

summed to ta l con tribu ting  areas o f the collection 7 o f sites th a t drain in  to  any site 

X .  The area (or, equivalently, flow) at site X  itse lf is excluded from  the sum, as M  

denotes the m ateria l o f the network th a t empties in to  X .

M x  =  ^ 2 A z  (1 16)
ZÇ-y

Figure 1.1 illustra tes the calculations o f to ta l con tribu ting  area and network mass. 

W ith  proxies for flow  and network mass, to ta l con tribu ting area and sum of to ta l 

con tribu ting  area, then, the allom etric scaling re lation given by Equation 1.12 can be 

expressed:

M x  ~  A x ,  ®  =  2 (1 17̂ )

^The validity of to ta l contributing area as a proxy for flow is demonstrated in Rodriguez-Iturbe, 
et. al. [6], Section 4.6.

®The single unit of area is analogous to a single unit of precipitation injected at site, leading to  
sites w ith  increasing accumulations of flow equal to  their increasing total contributing areas along 
flow paths from sources to downstream sites.
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(b)

A = 1
»>

A ^ ( 1  + 1 )  + 1 = 3  
= (1+1) = 2

(h)

(e)

1 = 2

m M, = 0

A, = (5 + 1 + 2 )  + 1 = 9
#*. = 1 +  3 + 1 + 1 + 5  + 1 + 1 + 2  = 15

Figure 1.1 Example o f steepest-descent flow  on a 3 x  3 hexagonal grid.

Each le tte r names a site on th is single-outlet network. Each site is centered on a 
pixel, an area of uniform  elevation. The arrows show the direction of 
steepest-descent flow. To the righ t o f each le tte r is the sum th a t gives th a t p ixe l’s 
to ta l con tribu ting  area (Ax) and to ta l m aterial transported by the sub-network th a t 
empties in  to  th a t pixe l (mass, Mx). Note th a t sites a,c,d, f , g  represent ridges, 
points o f highest elevation re lative to  neighboring pixels. As such they receive no 
upstream flow, which gives the networks they empty zero mass and a single u n it of 
con tribu ting  area, th a t o f the pixel itself.
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1.5 M od els  o f  R iver B asin  G eom etry

River basins have been modeled using principles o f m inim um  energy dissipation. 

These models are called optim al channel networks (O CN’s). In  Rodriguez-Iturbe, et. 

al. [6], i t  is shown th a t over any lin k  in  a river channel the optim al energy expenditure 

P  is related to  mean annual flow  Q  by,

P  =  kQ ^^L, (1.18)

w ith  k a constant and L  the length o f the link . Given th is  lin k  between flow and op ti­

mal energy dissipation, Rodriguez-Iturbe, et. al. [6] fu rthe r analyze the relationship 

between discharge and structure o f basins. Both em pirical evidence and the ir analysis 

lead to  3 postulates, given a set o f known discharge values throughout a basin:

1. M inim um  energy expenditure in  any lin k  o f the network.

2. Equal energy expenditure per u n it area o f channel anywhere in  the network.

3. M inim um  energy expenditure in  the network as a whole.

Meakin, et. al. [7] present a sim ulation o f m u ltip le  rive r basins d istributed over an 

area w ith  a square boundary, created according to  these 3 principles o f m inim um  

energy dissipation. As indicated by princip le 1, Meakin, et. al. [7] describe energy 

dissipation at any lin k  i  in  the network by Pi — k Q f^L i, w ith  Q* as the mean annual 

flow  in  the lin k  and L  as the Unk length. Energy dissipation for a basin (the area 

drained by a collection o f sites flow ing in to  a single ou tle t) is given by the sum:

Pj =  Y ,k Q f^ L ,  (1.19)

8
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A n area o f basins optim ized to  m inim um  energy dissipation should show a m inim um  

value E  fo r the sum:

E ^ ^ P j  (1.20)
i

Single ou tle t basins, reproduced by several investigators (Rodriguez-Iturbe, et. al. 

[6], Banavar, et. al. [2], M aritan , et. al. [4]) and the m u lti-ou tle t model described 

in  M eakin, et. al. [7], show power-law scaling properties sim ilar to  those in  real river 

basins.

1.6 G oals o f  T h is S tu d y

W hile river network models based on m inim um  energy dissipation have been mea­

sured for the mass-to-area scaling index given by Equation 1.17 (see M aritan, et. al. 

[4]), the im plications o f the diflFerence between the ideal index and the measured value 

is explored by creating a network model whose form ation is based on achieving the 

a llom etric scaling index a  =  1.50. This model is compared w ith  m inim um  energy dis­

sipation models, to  show the consequence of m ass-m inim ization as the d riv ing  force 

behind network form ation.

Also, since the results o f the work on the m u lti-ou tle t OCN model in  Meakin, 

et. al. [7] were published before Banavar, et. al. [2] published the ir theorem about 

a llom etric scaling, th is  study also tests the m u lti-ou tle t model for the expected scaling 

re lationship of flow -rate to  m aterial-transported.

9
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C H A P T E R  2 M E T H O D S

2.1 T h e  R iver B asin  M od els

2.1.1 Space-filling Grid

M ost o f the models o f river basin geometry used in  th is  thesis are based on th a t 

described in  Meakin, et. al. [7], using a triangu la r la ttice  o f network sites. In  graph 

terms the network model created on the la ttice  is a tree or forest, depending on 

whether a single or m u ltip le  outlets are used. A  river basin is represented by a span­

ning tree whose edges are links representing flow from  one network site (node) to  one 

o f its  neighbors, the flow term ina ting in  an ou tle t, or a sink. A  given site ’s neighbor­

hood is the hexagonal constellation o f sites nearest it .  Border sites, corner sites, and 

some sites adjacent to  border sites do not have a fu ll complement of neighbors.

Each site receives one u n it o f flow as “precip ita tion” , representing a mean measure 

o f ra in fa ll in to the system. Flow  accumulates along the edges from  sources (sites 

th a t receive no flow from  a neighbor) to  the outlet. The flow  a t a site is calculated 

as the sum of the flow  values o f con tribu ting  neighbors ( if  any) plus the one u n it of 

“p recip ita tion” , fo llow ing the recursive equation for to ta l contribu ting area (Equation 

1.15). Figure 2.1, shows the arrangements o f sites and borders on the triangu lar 

la ttice . The single-outlet model differs only in  th a t a ll flow from  a ll sites is emptied 

in to  one ou tle t, usually a border site. Note th a t the border sites along the vertica l 

edges o f the grid, as shown in  Figure 2.1, number less than the horizontal, as they

10
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Figure 2.1 Triangular la ttice  o f 8 x  8 sites.

One hexagonal neighborhood is shown w ith  dotted lines. Arrows indicate flow from  
sources (a rb itra rily  chosen) in to  an outle t, the path labeled w ith  each site ’s flow 
value, or, equivalently, to ta l con tribu ting  area. A ll border sites are in  boxes. The 
distance between columns is defined as 1 un it. The distance between rows is reduced 
to  ^  un its, so th a t the length o f a lin k  from  a site to  any o f its  neighbors is 1 un it.

alternate w ith  the offset rows. This scheme may be different from  the border-outlet 

scheme given in  Meakin, e t al. [7], which does not specify whether a ll the sites along 

the vertica l edges o f the grid  are border sites.

2.1.2 O CN M odels

M inim um  energy dissipation models, also known as optim al channel networks 

(O C N ’s), w ith  one and w ith  m u ltip le  outlets, were created by optim izing the to­

ta l energy dissipation o f the system using sim ulated annealing, detailed in  Section 

2.2. W hile  the border outlets may d iffe r in  number from  the models described in

11
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M eakin, et. al. [7] (the authors do not specify which sites are boundary sites), the 

m u ltip le -ou tle t model used here attem pts otherwise to  implement th a t described in  

M eakin, et. al. [7]. The optim ized value in  either a m u lti- or single-outlet OCN is 

the sum o f the energy dissipation o f a ll sites i  on the grid, the quantity E  in  Equation 

1.20, w ith  j  — 1 in  the case o f the single-outlet model.

2.1.3 Scaling-optim ized M odels

Scaling-optim ized networks (SON’s) diflFer from  the OCN models in  the optim iza­

tio n  function and the parameters used in  simulated annealing. The target function is 

th a t which gives the scaling index a  in  the scaling re lation (see Equation 1.17). The 

index is computed as the slope o f the least-squares-fit line o f the double logarithm ic 

p lo t o f Equation 1.17 a t each site. I t  is compared w ith  the target slope, the theoretical 

h m it o f I . The o p tim a lity  o f a network configuration is given by the p roxim ity o f its  

scaling index to  the ideal slope.

2.2  O p tim ization  w ith  S im ulated  A n n ealin g

2.2.1 T he P rincip le B ehind  Sim ulated A nnealing

Press, et. al. [5] notes th a t simulated annealing is a good method for optim izing 

large discrete configuration spaces w ith  many poor local extrema th a t can hide good 

global ones, and w ith  fac to ria lly  large numbers o f configurations. I t  has (as have other 

methods) effectively solved the traveling salesman problem, and is used to  optim ize 

complex c ircu it designs (Press, et. al. [5]). The algorithm  uses a process analogous to  

therm odynam ic processes, seen in  “ the way liquids freeze and crystallize, or metals 

cool and anneal” Press, et. al. [5]. I t  is an optim izing process in  tha t, in  slowly 

cooling systems, “nature is able to  find [ a ] m inim um  energy state” Press, et. al. [5].

12
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A  system probab ilis tica lly  changes energy states, such tha t, even a t a re la tive ly low 

tem perature, there is s till a (sm all) p robab ility  th a t a component may be in  a state 

o f high energy. The Boltzm ann d is trib u tio n  describes the p robab ility  d is tribu tion  as 

a re lationship between tem perature T  and energy E , a constant k:

D {E ) =  e i f  (2.1)

W hen used as a com putational a lgorithm  to  search for global optim a in  a solution 

space, the general application o f sim ulated annealing includes:

1. Establishm ent o f a “cooling” schedule for the reduction of T  in  Equation 2.1. 

The schedule te lls  how slow ly T , an analog to  tem perature in  the therm ody­

namic system, w ill be lowered, th a t is, how slowly to  lower the probab ility  tha t 

the current solution w ill be replaced by a counter-optim al solution.

2. Between tem perature reductions, a series o f random solutions are generated. 

To each new solution the Boltzm ann p robab ility  d is tribu tion  is applied, such 

th a t solutions more optim al than the current one are always accepted (the new 

solution becomes the current one), and solutions less optim al are accepted when 

the Boltzm ann equation yields a higher p robab ility  than a random probability. 

Otherwise the current solution does not change.

Describing the ir solution to  the traveling salesman problem. Press, et. a t [5] note 

th a t experim entation is needed in  find ing the correct schedule. Such tria l-and-error 

adjustm ents in  the schedule improved the non-OCN models described here. Unlike 

the OCN models (w ith  parameters supplied by Meakin, et. al. [7]) the ir optim ization 

procedure lacked a proven set o f parameters.

13
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2.2 .2  Sim ulated A nnealing A lgorithm

M eakin, et. al. [7] gives the follow ing annealing algorithm , used as described 

here fo r creating op tim al channel networks (OCN), and m odified as noted in  creating 

slope-optim ized networks (SON):

1. Make an Eden grow th model^ o f the network, using boundary sites as collection 

sites, u n til the whole grid  is filled.

2. Calculate the to ta l con tribu ting  area for each site: the sum o f the con tribu t­

ing area o f neighbors plus 1 (see Equation 1.15). Given the area calculation, 

ascertain other quantities according to  the desired optim ization:

(a) For O CN’s, calculate the to ta l energy dissipation, E  (see Equation 1.20), 

w ith  k =  L  =  1. As seen in  Figure 2.1, the length o f each lin k  is 1, and fc, 

as a constant o f proportionality, can be set to  1 w ithou t loss o f accuracy 

in  relative to ta l energy dissipation, the m inim ized quantity.

(b) For SON’s, calculate the scaling index a  (see Equation 1.17) w ith  least 

squares regression on the set o f a ll la ttice  points w ith  mass greater than 

zero.

3. Randomly select one site in  the g rid  and change its  flow direction.

4. I f  the change creates a loop in  the network, repeat (3).

^The Eden model is a loopless tree or forest produced by a random walk, producing one link 
per step. The randomness is dampened by the constraint that a given new link must connect a 
non-linked site w ith a linked site, so th at, at a given step only neighbors to  currently linked sites 
are eligible to become part o f a network. Thus, for example, the in itia l link in the Eden model must 
represent flow from a site neighboring an outlet into the outlet, the second link must either connect 
to the just-linked non-outlet site, or a border site. This constraint establishes the local connectivity 
and loopless (tree) topology of river basin networks.
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5. Given the valid  perterbation (change o f flow  in  one site), recalculate the flow 

fo r the new configuration, and then the appropriate value:

(a) For O CN’s, to ta l energy dissipation,

(b) For s o n ’s, scaling index or'

6. I f  the new configuration is better, adopt i t  as the current:

(a) fo r O CN’s, i f  £ " <  £" adopt the new configuration.

(b ) For SON’s, in  most cases, the squared difference between o ' and o  was

the m inim ized quantity, so th a t, w ith  atarget as the sought scaling index,

if  (o ' — atargetŸ <  («  ~  onargetŸ, Configuration was adopted. ^

7. Otherwise compute the Boltzm ann probab ility  p  for the current tem perature T.

(a) For O CN’s, as given by Meakin, et. al. [7], the analog to  the Boltzm ann 

probab ility  is,

p==e-W r-a )/r (2.2)

(b) For SON’s as an aid to  tun ing  the annealing schedule (discussed below 

in  2.2.3) the constant k  in  the orig inal Boltzm ann (see Equation 2.1) was 

included, and given a value less than un ity  to  attenuate T , w ith  0.6 the 

best found, so th a t the p robab ility  calculation becomes:

p =  e - ( “ ' - “ )Vo.6T (2.3)

^In the early attempts at tuning the SON optim ization, a simpler comparison was used, such that, 
sim ilar to  the O CN comparison, a smaller or larger a' was a sufficient test for a better configuration. 
This was possible because the progress of the scaling index approached the target strictly from above 
or below, deepening on the relationship being expressed in the optim ization. SON’s optimized to  
reach an index if  3 /2 , to satisfy A x  ~  M x   ̂ never achieved a value under 3 /2 , while the scaling index 
in those optimized to the inverted index to  satisfy the relationship, M x  ~  A x  * never exceeded 2 /3 . 
The la tter were earlier models, and the former were preferred as the results were closer to  the ideal 
given the same annealing parameters.
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Given p, sample a random number r  from  a uniform  d is tribu tion  between 0 and 

1, and compare r  and p. I f  r  <  p  accept the new configuration. Otherwise, 

reject it .

8. Repeat (3) - (7) many times, each ite ra tion  comprising a step at a given tem­

perature.

9. A fte r a given number o f steps (discussed below in  2.2.3), and while the tem­

perature is above some set m inim um , lower the tem perature, and repeat (3) - 

(8).

2.2 .3  A n n e a lin g  p a ra m e te rs

The follow ing parameters were set using Meakin, et. al. [7] as the guide:

1. T h e  n u m b e r o f  s teps. This gives the number o f new configurations generated 

between tem perature reductions. The authors used 256^ =  65,536 steps for 

the ir grid  o f size I — 256. In  th is study, th is proportion was adopted for a ll 

sizes, so th a t a ll schedules set steps between tem perature reductions for a 

network o f size I x I.

2. In it ia l te m p e ra tu re , T (0 ) : In itia l tem perature was determ ined according

to,

T (0 ) =  AP(0), (2.4)

where P{0) is the to ta l energy dissipation in  the orig inal configuration, and the 

constant A is adjusted according to  the model.

(a) OCN models: M eakin, et. al. [7] chose T (0) =  12,800. This is about ^  

o f the to ta l energy dissipation o f an in itia l eden model o f the m u lti-ou tle t
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model used by the Meakin, et. al. [7], o f size I =  256 (the average for 22 

examples o f m u lti-o u tle t eden models o f size I =  256 was about 12,752). 

W hile  different values for A were tried^, th is standard seemed to  produce 

the best results in  OCN models, and the T (0) was set w ith  Equation 2.4 

and A =  0.05, for a ll o f the OCN networks produced.

(b) SON models: T ria l and error, after in itia lly  using the same in itia l tem per­

ature as th a t for the OCN’s, showed th a t a much larger larger proportion 

o f the in itia l energy dissipation, w ith  the other parameters set as noted, 

gave a better T (0 ), the best results achieved w ith  A — 0.7.

3. T e m p e ra tu re  a d ju s tm e n t: In  Meakin, et. al. [7] the tem perature for the 

stage, set a t the end o f stage number (n — 1) is given by

T (n ) =  /?” T (0 ), (2.5)

w ith  /3 set according the type o f network:

(a) OCN models: Following Meakin, et. al. [7], a reduction schedule w ith  

P =  0.982 was adopted for all.

(b) SON models: Ebcperimentation showed tha t results improved inversely 

w ith  the steepness of tem perature change. Lcwig, gradual series o f tem per­

ature reductions, a ll other parameters being equal, gave the best results. 

In  the most effective set o f parameters, the value was p  =  0.996.

^TOals on OCNs using a constant r (0 )  =  12800 for grid sizes smaller than I — 256 showed that 
T  should be adjusted to reflect the in itia l energy dissipation value, since relatively large T  yields 
small values of the exponent in the Boltzmann equation and so gives relatively large Boltzmann 
probability values, so that the “temperature” stays “hotter” longer.
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4. T h e  m in im u m  te m p e ra tu re  is the value for T  which signals the end o f the 

annealing process. I t  was set according to  network type:

(a) OCN models were optim ized using the m inim um  tem perature after Meakin, 

et. al. [7], o f 0.0004

(b) SON models, as noted above, benefited from  longer emnealing scheduling, 

and tr ia l and error produced a most effective set o f parameters w ith  the 

m inim um  tem perature set a t 4 x  10“ ^ .̂

2.3  M easu rem en ts and Error

2.3.1 T o ta l E n e rg y  D is s ip a tio n

As seen in  the description o f the simulated annealing algorithm , before beginning 

the optim ization process, the to ta l energy dissipation o f an OCN model is computed. 

Th is in itia l energy calculation is a summing o f energy dissipation o f a ll the sites in  the 

model, producing the quantity  given in  Equation 1.20, w ith  k =  L  =  1 (see 2.2.2, item  

2). Thereafter the to ta l is adjusted according to  each new configuration during the 

annealing process. Each change is a perterbation o f a single site ’s direction o f flow, so 

th a t only the flow values o f sites “downstream” in  the old and new directions need be 

dim inished and augmented accordingly. The to ta l energy dissipation, then, is adjusted 

by subtracting from  the current to ta l the ind iv idua l energy dissipation values in  the 

affected sites, and adding to  the to ta l the ir new ind iv idua l energy dissipation values. 

Given roundoff error and other problems associated w ith  repeated com putations using 

64-bit IEEE  floating po in t operations, a check for accuracy in  the fina l result was made 

using 20 runs o f m u ltip le -outle t OCN models. The fina l to ta l energy dissipation at 

program ’s end resulting from  a ll the adjustments made over the annealing process
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(here called the program to ta l), was comparing w ith  a new calculated to ta l over a ll 

the flow  values in  the sites in  the fina l model configuration. The 2 tota ls differed in  

m agnitude by no more than 0 ±  10"^ fo r a ll 20 models, whose to ta l dissipation values 

(as measured by the program to ta l) averaged 1.9571 x 10®, w ith  a standard deviation 

o f about 307.

2 .3 .2  T h e  S ca ling  In d e x

As noted in  the description o f the models in  Section 2.1.3 the allom etric scaling 

index, a  in  Equation 1.17, was computed as the slope o f the line o f least squares f it  to  

the double logarithm ic p lo t o f the to ta l contribu ting area (see Equation 1.15) versus 

the to ta l network mass (see Equation 1.16).

In  com puting a  during simulated annealing on the SON models, The least-squares 

line was f it  to  the a ll o f the data points, IoqiqA x  and IoqiqM x  {A x  is the to ta l 

con tribu ting  area a t each site, and M x  is the network mass for the sub-basin th a t 

empties in to  the site, given in  Equation 1.16).

B in n in g  P ro ce d u re  In  p lo ttin g  the index o f the fina l models it  was noted 

th a t in  OCN models the raw data yielded slopes th a t deviated significantly from  the 

examples o f real river basins and OCN models in  the lite ra tu re  (Banavar, et. al. 

[2], M aritan , et. al. [4]). I t  was also noted th a t the plots in  the lite ra tu re  used a 

binning method, such th a t the p lo tted data points are, as explained in  Banavar, et. 

al. [2], “obtained by binning to ta l areas, and com puting the ensemble average of the 

Slim  o f the inner areas for each sub-basin w ith in  the binned interval.” M aritan , et. 

al. [4] also used th is  method to  p lo t the data obtained for real river basins. The 

m ethod used in  measuring the index in  the models is not specified. In  th is study the 

b inning method ju s t described was used to  obtain the data points in  the optim ized
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models. More precisely, log ioAx  was binned in to  4 bins per decade. Per-bin averages 

of log ioAx  and lo g ^ M x  were used to  obtain a least-squares f it  line, its  slope giving 

the index a. Besides the best f it  line, log ioM x  is p lo tted against the m idpoint of 

each b in  (see Figure 3.14. B ins w ith  less than 10 data points were not used in  the 

calculation.

The number o f sites in  a size range (as measured by to ta l contribu ting area) declines 

as the site-size increases, as expected, since sites of re la tive ly large flow accumulation 

must number fewer than the sites whose flow is accumulated therein. Figure 2.2 shows 

the b in  sizes for each b in  for both OCN networks and SON networks. I

I■B 10»

0  1 2  3  4
Bin fdecades)

f  10* 
2
1’ " ’

0 1 2 3 4  9
BlnOtocadMl

(a) M ulti-outlet O CN (b) Single-outlet O CN

10?

î ’ “ ‘2 10*
1 .0»

10* 

a 10*
s
I  10*

I .

0  1 2  3 4  5
Bin (decade»)

(c) M ulti-outlet SON (d) Single-outlet SON

Figure 2.2 B in  sizes for binned plots of logioAx  vs. logioM x

The plots show the number o f sites vs. the bins o f log^g A x- Note tha t in  a ll 
examples the firs t bin, containing flow  values below 2, less than logio^ R) 0.3, is not 
p lo tted  because i t  is empty, as sites w ith  area A  =  1 receive only the ir single u n it of 
injected flow, and are non-massive networks, th a t is, M  = 0 , (see Equation 1.16). 
The least massive sub-basins have A  =  2.
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2.3 .2 .1  T he Least Squares M ethod

The least squares calculations used to  determ ine the the scaling index or was com­

puted using the procedure described by Gould and Tobochnik [1]. The error noted on 

the plots shown throughout the discussion o f the models is the most probable error in  

the slope. The slopes generated by th is  method showed, in  about 10 tests, to  match 

th a t generated by the software package M atlab, in  its  linear p lo t fittin g  u tility .
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C H A P T E R  3 R E SU L TS

3.1 N etw ork  S tru ctu res

Figures 3.1 - 3.9 show the structures o f the in itia l Eden model and the resulting 

optim ized networks. The channels are the collection of links along flow paths. L ink 

w id th  is proportional to  the log o f the area o f the basin whose outflow  the lin k  

represents. In  a ll o f the depictions o f the fu ll model output, sites w ith  areas below a 

threshold <  6 are not p lo tted. For depicting the whole network, tr ia l and error 

showed th a t excluding th is  range o f small sites best reduces the c lu tte r o f smallest 

channels, producing w hite space borders th a t h igh light the various subbasins on a 

reasonably fine scale. Each p icture o f the fu ll model is followed by a detail from  the 

lower le ft corner o f the whole, w ith  fu ll resolution.

OCN structures show the branching patterns sim ilar to  the OCN models in  the 

lite ra tu re  (Meakin, et. al. [7], Rodriguez-Iturbe, et. al. [6], M aritan, et. al. [4]). The 

branching pattern o f the SON models in  Figures 3.7 and 3.9, fo r which no examples 

were found in  the lite ra tu re , is typ ica l for a ll the SON models created fo r th is study. 

In  the m u lti-ou tle t model almost a ll o f the border sites become detached from  other 

sites during optim ization, and a single large site (large to ta l contributing area) receives 

most o f the flow, resulting in  a structure sim ilar to  the single-outlet SON model (The 

plots o f cum ulative d istribu tions presented below show the sparse d is tribu tion  of 

large-area drainage basins in  the m u lti-ou tle t SON model).
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The SON models are also s trik in g  fo r the ir unnatural flow  direction, tha t, unlike 

the OCN models (Figures 3.3 and 3.5) they are characterized by paths o f flow  th a t 

converge in to  a m ain channel in  the m iddle o f the basin area, so th a t even sources 

adjacent to  the ou tle t flow away from  the outle t, toward the m iddle o f the drainage 

area. These circuitous paths are seen in  a ll the examples o f bo th  single- and m u lti­

ou tle t SON models. The large channels tu rn  in to  themselves, in  some cases w ith  

diagonal turns th a t suggest the hexagonal arrangements in  the underlying triangu lar 

la ttice . W hile such a solution is not explored here, the idea th a t the SON m odel’s 

m ain channels may be d iv id ing and spiraling in to  ever-shrinking m iniatures o f a single 

kind o f polygon is rem iniscent o f the form  of an exact fracta l structure like the Peano 

basin (discussed in  Rodriguez-Iturbe, et. al. [6], Section 2.4).

The emergence o f the fina l network forms can be seen in  Figures 3.11, 3.12, and 

3.13. They reveal th a t fo r both O CN’s and SON’s, the in itia l Eden configuration is 

firs t tranform ed by sim ulated annealing to  a h ighly dissipative system, distinguishable 

as having, qualita tive ly, an irregu la rly  sinuous structure. W ith  the steep decline in  

energy dissipation the m ain channels to  be featured in  the fina l form  appear am id 

smaller channels yet reta in ing the sinuousness o f the “ho t,” chaotic-looking earlier 

networks. In  the SON case the sinuosity of smaller channels is retained to  the fina l 

form , while the OCN models resolve, even to  the smallest basins in to  stra ight channels.

3.2  A rea  to  M ass Scaling

Figure 3.14 shows the indices a  for the mass-to-area scaling index (see Equation 

1.17), as measured using bins. Figure 3.15 shows the f it  o f the data w ithou t bins. In  

the binned plots the single ou tle t OCN matches the index given in  M aritan, et. al. 

[4]. No measure for a  is given for the m u lti-ou tle t OCN model in  any of the lite ra tu re
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Figure 3.1 Eden G row th Model, the Random In itia l Configuration
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Figure 3,2 D eta il, Lower Le ft Corner, Fu ll Resolution, Eden Model
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Figure 3.3 M u lti-o u tle t OCN
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Figure 3.4 D eta il, Lower Le ft Corner, Full Resolution, M u lti-ou tle t OCN
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Figure 3.5 Single-outlet OCN
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Figure 3.6 D eta il, Lower Le ft Corner, Fu ll Resolution, Single-outlet OCN
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Figure 3.7 M u lti-o u tle t SON
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Figure 3.8 D eta il, Lower Left Corner, Fu ll Resolution, M u lti-ou tle t SON
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Figure 3.9 Single-outlet SON
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Figure 3.10 D eta il, Lower Le ft Comer, Fu ll Resolution, Single-outlet SON
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Figure 3.11 Networks Sampled D uring OCN O ptim ization

A  m u lti-ou tle t area o f basins, sampled during different stages o f annealing for an 
OCN. Below each network is the p lo t o f to ta l energy dissipation versus annealing 
stages. The square in  each p lo t indicates the annealing stage at which the 
corresponding network was the current configuration.
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Figure 3.12 Networks Sampled D uring SON O ptim ization

A  m u lti-ou tle t area o f basins, sampled during different stages o f annealing fo r an 
SON. Below each network is the p lo t o f to ta l energy dissipation versus annealing 
stages. The square in  each p lo t indicates the annealing stage a t which the 
corresponding network was the current configuration. The fina l structure is shown 
in  Figure 3.13.
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Figure 3.13 Networks Sampled D uring SON O ptim ization, Continued

The fina l network sampled during different stages o f annealing for a m u lti-ou tle t 
SON model. (See the Series in  3.12).
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reviewed for th is  study, so th a t its  higher index cannot be compared to  any other 

examples. The SON models, having been optim ized to  match the lim itin g  value of 

a  =  1.5, closer to  th a t value.

Unbinned, in  the OCN case the scaling index is considerably higher than in  the 

binned plots, ind ica ting th a t the averaging process is attenuating some scatter w ith in  

some ranges o f basin-area size. In  the case o f the SON models, although the binned 

data shows a scaling index fu rthe r from  the target value of a  =  1.5, the paucity of 

data points mutes the sharply different scaling trend at the smaller scales. As the 

unbinned SON plots show, sub-basins w ith  areas less than about 10  ̂® are trending 

to  a steeper slope, ind ica ting a re la tive ly high mass-to-area scale. Sinuosity in  flow 

paths increases mass re lative to  flow* and so the tendril-like  smaller channels (see 

Figures 3.7 and 3.9) scale heavier on the mass side o f the scaling relation.

3.3  C u m u lative D istr ib u tion s

3.3.1 Total C ontributing Area

The power law for the cum ulative d is tribu tion  o f to ta l con tribu ting area^, P [A >  a], 

th a t a random ly selected site has a to ta l con tribu ting area greater than size a, has 

been found to  scale w ith  a, in  real rive r basins (Rodriguez-Iturbe, et. al. [6]) as,

P [A  >  a] oc a "^ , (3 =  0.43 ±  0.02 (3.1)

For OCN networks optim ized by sim ulated annealing, Rodriguez-Iturbe, et. al.

[6] found the index^ (3 to  be nearer 0.50. The la tte r value is shown analytica lly in

 ̂As discussed in Banavar, et. al. [2], the least efficient transportation network is the “space-filling 
spiral,” which is maximally indirect and is the most massive network.

^See Equation 1.15 for the recursive definition of to tal contributing area.
^Rodriguez-Iturbe, et. ai. [6], Section 4.33. The index was measured by extracting the largest
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Figure 3.14 Network Mass versus Tota l C ontribu ting Area.

The p lo t is shown for data binned as described in  Section 2.3.2

Rodriguez-Iturbe, et. al. [6] Section 4.23, to  be the “exact” solution for a networks 

w ith  g lobally m inim al to ta l energy dissipation. Simulated annealing, then, insofar as 

it  atta ins the global m inim um  to ta l energy dissipation, should yield networks w ith  

/? % 0.5.

A  more natura l 0  % 0.43 was achieved by Rodriguez-Iturbe, et. al. [6] w ith  a h ill 

clim bing algorithm , a version o f the sim ulated annealing in  which the tem perature is 

kept a t zero, so th a t the only accepted changes in  network configuration are those tha t

network in a m ulti-outlet basin w ith periodic boundary conditions, on the theory that, having 
developed w ithin such an environment, the networks development would be free of the influence of 
boundary constraints.
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Figure 3.15 Network Mass versus Total C ontribu ting Area, Unbinned Data.

lower the to ta l energy dissipation. This procedure produces more dissipative networks 

(the network configuration converges to  local optim a, g lobally sub-optim al), but w ith  

several power law relationships, including th is  one, closer to  natura l river basins than 

are those optim ized to  a better m inim um  w ith  a tem perature reduction schedule. 

Figure 3.16 shows the cum ulative area distributions for OCN and SON created w ith  

the annealing schedule as outlined in  Section 2.2. The OCN examples as expected 

exceed the natura l 0  % 0.43. The best f it  po rtion  o f the data shows values for P 

larger than 0.5, unlike the OCN models in  Rodriguez-Iturbe, et. al. [6] (Chapter 4), 

which do not exceed 0.50. The exceedence here may be caused by fin ite  size effects 

in  the range of data chosen for the best-fit line. The larger areas steepen the slope 

as linea rity  o f the p lo t decays w ith  increasing lopioa, seen most dram atically in  the
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p lo t o f the m u lti-ou tle t OCN. The eflfect becomes especially obvious in  the ta ils o f the 

plots, as the sites w ith  large contribu ting  areas are few in  number and the cum ulative 

d is trib u tio n  frequency fa lls dram atica lly for each successively larger value of a.

W hile showing sim ilar slopes to  the OCN models in  the ir linear midsections, plots 

o f the SON models show a non-linear head and ta il, such th a t there is about 2 | orders

o f m agnitude o f linearity, as opposed to  3 to  4 orders in the OCN examples. The

SON examples also show a sporadic d is tribu tion  o f the largest sites, reflecting the 

consohdation o f flow from  most sites in to  few main channels, rather than in  the more 

balanced d is trib u tio n  in  the OCN structure.

3.3.2 Total C ontributing A rea o f D rainage B asins

M eakin, et. al. [7] measure the cum ulative d is tribu tion  o f the number o f drainage 

basins w ith  a given to ta l con tribu ting area. A  drainage basin is a network th a t drains 

in to  one ou tle t in  a m u lti-ou tle t model. As measured here for both OCN’s and SON’s 

in  Figure 3.17, the scaling relationship is,

N {A  >  a) oc a~^, (3.2)

w ith  N {A  >  a) as the number o f basins w ith  area greater than a.

Meakin, et. al. [7] found a slope o l (3 ^  0.51, compared to  the /? 0.55 shown

here, and notes th a t th is  indicates a power law d is tribu tion  o f the number o f basins 

o f size A  as,

N {A )  ~  A - \  (3.3)

w ith  T % 1.51 for results in  Meakin, et. al. [7], and in  th is study t  «  1.55, th is 

discrepancy possibly due to  different border schemes (discussed in  1.5).

A lthough Meakin, et. al. [7] reports no fie ld data measuring a collection of
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Figure 3.16 Cum ulative C ontribu ting  Area

Log, log p lo t o f the cum ulative p robab ility  for con tribu ting area versus contributing 
area size. The solid line has the slope o f the least-squares best f it  o i P \A  >  a] to  a 
range o f log^oa as indicated. The range was chosen by eye to  find the most 
Hnear-looking, contiguous 3 orders o f magnitude. The dashed line has slope —0.43, 
the index found in  real river basins (± 0.02).
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drainage-basins over a contiguous area, the slope {3 % 0.51 is close to  the 0.50 noted 

above in  3.3.1, the cum ulative d is tribu tio n  o f to ta l con tribu ting area found in  OCN 

models optim ized w ith  simulated anneahng to  obtain a global m inim um  (compared 

to  the 0.43 in  na tura l basins, which are mimiced by OCN models optim ized w ith  

h ill clim bing). I t  is interesting to  note th a t, fo r the OCN models, the cum ulative 

d is trib u tio n  o f drainage areas scales s im ila rly  to  the cum ulative d is tribu tion  o f areas 

for a single network, while, in  a single-outlet model, the fin ite  grid-size effects on the 

sub-basins o f size s im ilar to  drainage basins, do not scale in  line (see Figure 3.16).

In  stark contrast to  the OCN models, the SON model shows th a t the scahng-index 

optim ization has reduced border outlets to  only 4 sizes, other than than the main 

ou tle t th a t receives the bu lk o f the flow. The SON im perative o f m inim um  network 

mass on a ll scales would seem to  undermine the OCN im perative o f m inim um  energy 

dissipation in  the m u lti-ou tle t context: "op tim a l drainage structure o f an area tends 

to  have a few large river networks together w ith  a d is tribu tion  o f smaller networks 

covering the whole area” (M eakin, et. al. [7]).

3.3 .3  Energy D issip ation  per U nit C hannel Link Length

Meakin, et. al. [7] note th a t “uniform  energy inpu t to  a dissipative system often 

results in  a power law d is trib u tio n  o f energy dissipation,” and tha t in  river basins the 

scaling index for the cum ulative d is trib u tio n  o f energy dissipation per u n it channel 

length, p, is given by

U{p >  p*) -  p*-^  (3.4)

where, in  natura l basins v  is between 0.90 and 0.93. p  is th is  case can be represented 

by the energy dissipation along a given lin k  i  (see equation 1.18), tha t is, the u n it 

lin k  o f outflow  from  site i  (recall th a t a ll sites in  the model are connected by finks of
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Figure 3.17 Cum ulative C ontribu ting  Area o f Drainage Basins

Log, log p lo t of the cum ulative d is trib u tion  o f the size o f drainage basins 
(sub-basins th a t em pty in to  a sink on the border). The line has the slope o f the 
least-squares best f it  o i P [A >  a] to  a range o f In a values as indicated. The range 
was chosen by eye to  f it  the most linear-looking section. Given its  paucity o f site 
sizes and non-linear arrangement, the SON m odel’s data was not f it  w ith  a line.
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length 1). Unlike a ll other sites, basin ou tle t sites, since they have no flow, do not 

represent a u n it channel link.

For th is  measure, in  th is  study, a ll o f the models exceed the expected values, w ith  

m u lti-ou tle t OCN showing v  fv 1.2, much larger than the expected and larger than its  

counterpart in  Meakin, et. al. [7]. The reason for th is  large discrepancy is unknown, 

bu t may reflect a binning procedure used in  Meakin, ef. al. [7], though it  is not 

described.

3.4  T ota l E nergy D issip a tion

Figure 3.19 shows the to ta l energy dissipation for each anneahng stage. The m u lti­

ou tle t OCN example replicates the overall character and flna l value for to ta l energy 

dissipation o f the p lo t shown in  Meakin, et. al. [7], whose model is the basis for th is 

example. One strik ing  difference between th is p lo t and th a t o f Meakin, et. al. [7] 

is seen in  the in itia l, large jum p in  energy dissipation from  the value o f the orig inal 

configuration in  th is example (common to  a ll the examples created for th is study), 

while the p lo t in  Meakin, et. al. [7] shows no such immediate rise. In  Meakin, et. al. 

[7] the in itia l value is shown to  be around 3.8 units, as opposed to  the in itia l value 

here o f about 2.5.

The fina l to ta l is higher in  the single-outlet OCN example, while its  reduction rela­

tive  to  the in itia l configuration, about 7%, is close to  the reduction in  the m u lti-ou tle t 

example, about 8%. This suggests th a t for a given area, m ultip le basins can achieve 

more optim al energetic configurations than possible w ith  a single outle t configuration.

The SON models show a higher to ta l energy dissipation than tha t in  the OCN 

networks. O ptim ization on the scaling index p la in ly  does not result in  m inim al (op ti­

m al) to ta l energy dissipation. T ha t both the m u lti-ou tle t and the single-outlet models
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Figure 3.18 Cum ulative Energy D issipation per U n it Channel L ink Length

Log, log p lo t of the cum ulative p robab ility  o f energy dissipation per u n it channel 
Unk length. The solid line has the slope o f the best-fit line to  a data-range of ln{a) 
as indicated. The range was chosen by eye to  find the most linear-looking portion  of 
the p lo t. The dashed line has slope —0.92, the approximate index found in  real river 
basins (M eakin, et. al. [7]).
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Figure 3.19 Tota l Energy D issipation over Annealing Stages

have the same fina l to ta l (w ith in  1% of each other) reflects the transform ation in  a ll 

examples o f the SON optim ization, in to  networks w ith  the same essential structure 

(see Figures 3.7 and 3.9). I t  also suggests th a t the optim ized SON network w ill yield 

the same to ta l dissipation from  many different in itia l configurations.
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3.5  M ean  D ista n ce  o f  S ite  to  O u tlet

Figure 3.20 shows the mean distance o f a site to  the ou tle t o f a sub-basin versus 

the size o f the outle t. As argued in  M aritan , et. al. [4], th is  relationship should be

{L ) oc (3.5)

where {L x )  is the mean distance from  site to  the ou tle t o f a sub-basin A x  is the to ta l 

con tribu ting  area o f the outle t, and h is Hack’s exponent, th a t relates the length of 

the longest stream L x  in  a sub-basin to  the to ta l con tribu ting  area.

M aritan , et. al. [4] assume th a t L x  oc {L^}, which leads'̂  to  a relationship between 

the mass-to-area scaling index a  and h, such tha t

a  — 1 +  h. (3.6)

Whereas a  and 1 +  h match w ith in  0.002 in  single-outlet OCN models in  M aritan, 

et. al. [4], models in  th is  study show a larger discrepancy between mass-to-area

scaling index a  and 1 +  h, w ith  h derived from  Equation 3.5. In  M aritan, et. al. [4]

h is computed d ire c tly  using the length L , the distance from  the outle t to  its  most 

d istant contribu ting source rather than the mean length, (L ).

Table 3.5 shows a comparison o f h as derived from  the scaling index a  and from  

the relationship o f Equation 3.5.

^The following proportionality, shown by M aritan, et. cd. [4], relates Hack’s exponent to the 
mass-to-area scaling index or through the mean distance value. Given a sub-basin w ith outlet at 
site X ,  w ith  a constant injection into the system (for example constant mean annual precipitation 
at all sites), then network mass Mx,  to tal contributing area A x ,  and mean-distance-to-outlet (Lx)  
are related by M x  cx A x ( L x ) .
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Figure 3.20 Mean Distance to  O utle t

Log, log p lo t o f the mean distance o f sites in  a sub-basin to  the outle t versus the 
ou tle t size (to ta l con tribu ting  area). The data has been binned as described for the 
mass-to-area scaling index (see Figure 3.14).
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M o d e l h =  a  — 1 E rro r h : (L ) oc E rro r
M u lti-o u tle t OCN 0.59 0.01 0.54 0.00
Single-outlet OCN 0.57 0.01 0.54 0.00
M u lti-o u tle t SON 0.52 0.02 0.47 0.02
Single-outlet SON 0.51 0.02 0.47 0.02

Table 3.1 Hack’s Exponent from  a  versus Mean Distance

3.6  Sum m ary o f  P ow er Laws

The table 3.6 summarizes the power-law scaling results discussed above, showing 

the indices for the models created here, as well as those for models published else­

where, and the indices for real river basins. Table entries w ithou t error estimates 

reflect the lack o f an error estimate in  the lite ra tu re  providing the index.

M ass-to -area
Scaling

C u m u la tive  
P ro b a b ility  

D is trib u tio n , 
B asin  A re a

C u m u lative
P ro b a b ility

D is trib u tio n ,
E nergy

D issipation
N e tw o rk M  ocA^ P [A  >  a] n[p >  p*]

M ulti-outlet OCN 1.59 ±0 .01 0.597 ±  0.002 1.198 ±  0.004
Single-outlet OCN 1.57 ± 0 .01 0.513 ±0 .001 0.962 ±  0.001
M ulti-outlet SON 1.52 ±  0.02 0.515 ±  0.001 0.949 ±  0.002

Single-outlet SON^ 1.51 ±  0.02 0.530 ±  0.001 0.979 ±  0.003
Published, M ulti-outlet OCN NA 0.50 0.92
Published, Single-outlet O CN 1.57 ±  0.02 0.50 NA

Real River Basins 1.50 to 1.59 ± 0 .0 2 0.43 ±  0.02 0.92

Table 3.2 Summary of the Scaling Indices of Power Laws
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C H A P T E R  4 D IS C U S S IO N

4.1 A ssu m p tion s A b o u t th e  M od els

I f  the results in  Chapter 3 are to  be seen as relevant to  real river networks, these 

assumptions about the models are necessary:

1. Energy dissipation is correctly modeled by the Equation 1.18.

2. The scaling o f network mass to  flow rate, and hence the proxim ity to  the most 

efficient class o f networks as described in  Banavar, et. al. [2], is correctly 

measured by the slope o f the least-squares f it  line to  the log, log p lo t o f the 

quantities in  Equation 1.17, in  its  non-binned form. This is the measure used 

to  calculate the value o f the current configuration being optim ized by simulated 

annealing to  create a scaling-optim ized network (SON).

3. For the respective target functions (to ta l energy dissipation, scaling index), 

simulated annealing is find ing a local optim um  in  the solution space th a t is 

close to  the global optim um . In  the case o f m u lti-ou tle t OCN’s the fina l to ta l 

dissipation values m atch th a t in  the lite ra tu re  (M eakin, et. al. [7]), while aU 

other’s have no confirm ation from  other investigations.

4. The Eden model provides a sufficiently random configuration tha t annealing 

can properly search the configuration space.
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5. The random number generators used in  the models produce s ta tis tica lly  random 

series throughout a given simulated annealing session (see the Appendix fo r a 

discussion o f random number generators).

6. The calculations o f to ta l con tribu ting area and network mass are valid measure­

ments of th e ir counter parts in  real river basins.

7. The hexagonal grid  provides enough freedom o f direction to  emulate continuous 

space, fo r the purposes o f accurately measuring fluv ia l geometric properties.

8. The size o f the grid  is large enough th a t its  lim its  do not invalidate the data i t  

provides, so th a t the single flow direction behaves like m u lti directional flow.

9. The constant, uniform  in jection o f m aterial (the model o f precipitation, as noted 

in  2.1.1), and constant velocity throughout the network correctly model real 

rive r basins (see Rodriguez-Iturbe, et. al. [6], Section 4.3).

4.2  T h e S O N  M od el and th e  T h eoretica l Scaling L im it

This study’s SON networks are optim ized to  scale as closely as possible to  a  =  1.50 

(Equation 1.17), the theoretical lim it in  efficient transporta tion networks. They differ 

both qu a lita tive ly  and in  scaling properties from  the OCN models. Q ualitatively, as 

noted in  Section 3.1, they do not show the directed flow expected in  the class of 

most efficient networks (c.f. Banavar, et. al. [2]). Compared to  the OCN models, 

in  the double log plots o f cum ulative d istributions (Figures 3.16 and 3.16) the SON 

m odel’s apparent self-sim ilarity, as indicated by the most linear portion o f the plotted 

data, is restricted to  a com paratively narrow range o f scales. The double log^o p lo t of 

cum ulative d is trib u tio n  o f to ta l con tribu ting  area, fo r example (Figure 3.16), shows 

th is  narrow range to  be about 2 | orders o f m agnitude versus 3 or more for the OCN
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Figure 4.1 Scaling Index a  fo r Large Basin Areas, SON

The log, log p lo t of network mass versus to ta l con tribu ting area in  a single-outlet 
SON model. The data p lo tted  is fo r sub-basins w ith  area larger than 10  ̂®.

examples. This narrowed range is also seen in  the log, log plots giving a (Figures 3.14 

and 3.15), which show the same non-linear features over the same range o f small-area 

basins. Even though a  is closer to  the ideal lim it o f 1.50 in  the SON models, there 

is a d is tin c tly  steeper linear trend ind icating a larger value for a  on the small scale. 

Thus the remaining data, in  compensation, has an index smaller than the ideal, as 

seen in  Figure 4.1, w ith  o; ps 0.48.

Figure 4.2 isolates the structure o f the small sub-basins, corresponding to  the non- 

linear-trending small-scale portion o f power-law plots, and the midsize sub-basins 

corresponding to  the linearly trending portion  o f the power law plots o f the single­

ou tle t SON models. For camparison the sub-basins o f corresponding size are shown 

for the single-outlet OCN. The largest sub-basins, corresponding to  the ta ils  o f the 

power-law plots, clearly the effect o f fin ite  grid  size in  both OCN and SON networks, 

are not shown.

The small sub-basins in  the OCN model are re la tive ly stra ight channels. The small 

sub-basins in  the SON model have the sinuous character o f a whole network in  a “hot” 

phase (characterized by high energy dissipation) of the simulated annealing process

52

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



(Figures 3.11 and 3.12). Besides high energy dissipation, sinuosity also indicates mass- 

heavy scaling (a  > >  1.50), as indicated by the theoretical upper lim it of a  =  2.00 

seen in  a single spira l flow path fillin g  an entire area, and accounts for the steep linear 

trend o f the small area data in  the SON p lo t for a. D uring the optim ization, grid 

size, or the method by which a  (the slope o f the least-squares f it  line) is calculated, 

may be forcing the 2-phase scaling and structure. W hatever the cause, the consistant 

structure and measurements for a ll the SON models created for the study indicates 

th a t th is  pa rticu la r optim ization scheme m ight stubbornly disfavor self-sim ilar scaling 

across a ll basin-sizes, w hile the OCN models show no such division in  the plots of a. 

There may be a tem perature reduction schedule, or change in  the way the optim ization 

procedure measures a, th a t would allow  a “straightening” o f the small-area basins, 

and a smoother a llom etric p lo t. Depending on the fina l overall structure, such a 

correction could also sign ificantly lower the to ta l energy dissipation, bringing the 

SON model closer to  the m inim al energy dissipation condition common to  the OCN’s 

and real rive r basins.

For the (larger) po rtion  o f the SON plots whose trend attenuates a , the differences 

in  network strutcure o f the 2 models are less pronounced (Figure 4.2), though the 

SON model lacks the regular, elongated main channels fed by short sub-channels, 

seen in  the OCN.

Overall, the SON model scales closer to  the ideal a  =  1.50 than does the OCN 

model, w hile the index in  real river basins shows more varia tion between ind ividual 

networks. In  a summary o f scaling in  15 river networks, M aritan, et. al. [4] show 

O' ranging from  1.50 to  1.59, w ith  litt le  “noise” in  the plots o f the ind iv idua l basins. 

P lo ttin g  a  using ensemble averaging o f many rive r basins gives an a “s ta tis tica lly  

indistinguishable” from  1.50. M aritan , et. al. [4] conclude tha t there is a “robust 

central tendancy” o f allom etric scaling in  network structures toward the lim it, while
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ind iv id ua l variations, given th a t the ir scaling is not “noisy” , are “sensitive probes o f 

the network structure” . The meaning o f such va ria b ility  may be inform ed by the SON 

niodel. I t  acheives a scaling index o; close to  1.50, bu t shows a high (sub-optim al) 

energy dissipation, and an unnatural network structure. Though the d iscon tinu ity  

in  the scaling trend o f its  power law measurements suggests the small-area basins 

could be made more energetically efficient in  the SON model, the extent to  which 

allom etric scaling is achieved w ithou t m in im al to ta l energy dissipation suggests th a t 

the im perative o f m inim ized network mass in  a llom etric scaling is not a sufficient 

cause o f natura l transporta tion  network structure.

W hile there is no certain form ulation provid ing fo r the d riv in g  forces behind na t­

ural rive r basin structure, the O CN ’s scaling sim ilarities, paired w ith  principles of 

least energy expenditure provides, as noted in  Rodriguez-Iturbe, et. al. [6], a “com­

prehensive theoretical framework supporting the like lihood” o f rive r basins as na tu ra l 

O CN’s. Though im perfectly realized by the SON model in  th is  work, a thorough 

exploration o f non-energetic optim ization according to  the theorem th a t establishes 

allom etric scaling as an observed condition o f rive r basin networks, could, depend­

ing on the re lative energy dissipation o f the resulting network, suggest a tie  between 

the SON and OCN im peratives, w ith  im plications for the form ation o f other trans­

po rta tion  networks, like anim al c ircu la tory systems, for which the m in im ization of 

transported m ateria l is prim a facia  advantageous.

4 .3  F uture D irectio n s w ith  N ew  M od els

W hen th is  thesis was presented orally, members o f the thesis committee suggested 

th a t the discontinu ity in  the scaling trend o f the SON model m ight be remedied by a 

ta rget function in  the sim ulated annealing process th a t m inim ized the sum over each
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site X  o f the squared difference,

A M  =  J 2  (M x  -  k A i y , (4.1)

where M x  is the mass (amount o f transported m aterial) associated w ith  site X ,  and 

A x  the to ta l con tribu ting  area o f site X .  k  is the constant o f p roportiona lity th a t 

defines the mass-to-area power law (see Equation 1.17) as the equivalence:

M x  =  kA% (4.2)

W ith  k  known the difference in  Equation 4.1 is the difference between each site ’s 

mass and the m ost-efficient mass fo r the area given by th a t site in  the most-efficient 

mass-to-area scaling relationship. I f  the sum of the square o f the difference over a ll 

sites could be sufficiently m inim ized w ith  simulated annealing the resulting network 

would closely approximate the allom etric mass-to-area scaling, the same goal sought 

fo r the SON. I t  was hoped th a t th is  new way o f calculating the relative op tim a lity  

would elim inate the discontinu ity discussed above in  Section 4.2.

Because the value of k  in  Equation 4.2 is not known for the grid, i t  was suggested

th a t hnear regression could be used to  obtain k  for a given configuration. During

simulated annealing, when the network is perturbed and a new configuration is to  be 

tested fo r its  op tim ality, an approxim ation of k  could be obtained from  find ing the 

y-intercept h of the least squares linear f it  of log^o M x , IoqiqA x , for a ll sites X .  The 

surrogate k can then be computed as 10 .̂ D uring the early stages th is value would 

reflect a log-space linear f it  to  data far from  the desired values. However, the exact 

exponent, | ,  w ill have the greater influence on values o f A M , so tha t reductions in 

A M  m ight produce values for k closer and closer to  the actual value of k for exact
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allom etric scaling on the grid.

The hope was th a t th is  target function, by avoiding the least-squares calculations, 

m ight avoid the discontinu ity in  the mass-to-area scaling between the large-area and 

small-area basins (discussed above in  Section 4.2).

T im e did not allow  fo r the program changes needed to  efficiently optim ize a 256 x  

256 grid. A  smaller version on a 64 x  64 grid  was created to  see i f  the allom etric 

scaling was smoother, and to  have a look at the topology o f the resulting network. 

Figure 4.3 shows the structure o f a single-outlet model optim ized to  Equation 4.1. 

Figure 4.4 shows various metrics, including area-to-mass scahng.

Im m ediately s trik ing  is the more direct flow paths than those exhibited in  the SON 

structures (see Figures 3.7 and 3.9 ). Its  mass-to-area scaling is farther from  the 

theoretical m ost-efficient scaling index, a =  1.50, than is th a t seen in  the SON, in  

both raw and binned measurements. Compared to  the OCN’s, however, the raw data 

p lo t is closer to  the target and for the binned plots about the same (see Figures 3.15 

and 3.14).

The model also displays a discontinuity in  the area-to-mass scaling sim ilar to  th a t 

in  the SON model. Further, a linear data trend is missing in  the log, log plots o f the 

cum ulative probab ility  d istributions for area and energy dissipation, ind icating th a t 

the model shows less self-s im ilarity than do the OCN and SON models (see Figures 

3.16 and 3.18). Th is may be caused by a com bination o f the smaller grid  size and 

the short tim e spent tun ing  the simulated annealing algorithm , resulting in  a network 

reflecting a local optim um  w ith  a sign ificantly higher A M  (see Equation 4.1) than 

the global m inim um.

The suggestive find ing is the com bination o f the directed, eflicient-looking structure 

(also reflected in  the mass-to-area scahng index m atching th a t in  the OCN) w ith  

h igher-than-optim al energy dissipation (about 15,000 in  th is  model, and 9,000 for
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an OCN o f the same size). This suggests th a t a efficient structure (none o f the 

ind irection o f flow seen in  the SON), w ith  a condition o f efficient mass-to-area scaling 

and inefficient energy expenditure. A rguing against draw ing any conclusions are the 

discontinu ity in  the mass-to-area scaling and the lack o f se lf-sim ilarity in  the other 

scaling measurements. These speak to  the need for fu rthe r refinement in  the model.

Suggestions for an improved model based on Equation 4.1 include the addition 

o f binning during the annealing process. A t each step the site to  perturb is chosen 

random ly from  w ith in  a bin, the bin itse lf chosen according to  a random number
/  3  \  2

weighted by its  value for iM x  — j  , where A  is a bin, and M x , A x  the average 

mass and area, respectively, o f the sites w ith in  the bin. Such a scheme m ight allow a 

more uniform  adjustm ent across a ll sites during simulated anneahng, ehm inating the 

d iscontinu ity in  the fina l model th a t inh ib its  smooth allom etric mass-to-area scaling 

across a ll sub-basins.
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(a) Small Sub-basins, SON (b) Midsize Sub-basins, SON

(c) Small Sub-basins, O CN (d) Midsize Sub-basins O CN

Figure 4.2 Sub-basins Extracted by Size in  S ingle-outlet Models

In  these sub-basins o f single-outlet models, small sub-basins X  have to ta l 
con tribu ting  areas A x  <  10^^. M idsize sub-basins X  shown here have areas in  the 
range 10 '̂® <  A x  <  10^. The midsize range corresponds to  the most linear looking 
portions o f the log, log plots o f the cum ulative d is trib u tio n  o f to ta l contribu ting 
area in  SON models. The small size range corresponds to  the SON’s sinuous data 
trend over small scales in  the log, log plots.
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Figure 4.3 New Model S tructure 

S tructure o f the M odel O ptim ized to  the Squared Difference (Equation 4 .1)
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Figure 4.4 P re lim inary Results fo r Proposed New Model, Scaling Measure­
ments. The dashed lines in  the cum ulative area and dissipation 
plots show the slopes th a t gives the scaling indicies for each dis­
trib u tio n  in  real river basins.
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A P P E N D IX  A  T able o f  M ost-U sed  V ariables

V a ria b le D e fin it io n
L Linear size o f a basin area
D The number of dimensions o f the network
B Rate o f transport, or, proportionately, the number o f transport sites.
A Tota l con tribu ting area.
M Network mass, or to ta l m aterial transported.
a Scaling index in  the allom etric relationship, M  oc w ith  A  B

Table A . l Most-used Variables
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A P P E N D IX  B  R an d om  N u m b er G eneration

The simulated annealing a lgorithm  used to  generate these models relied on a pseudo 

random number generator to  provide uniform  random deviates for the stepwise perter- 

bation o f the network configuration (see Section 2.2.2, item  3), as well as fo r evaluating 

the Boltzm ann p robab ility  (Section 2.2.2, item  7). The number generator used here 

is th a t given by Press, et. al. [5], Section 7.,, called ran2. In itia lly  the ra n i was used, 

about which the authors advise "we do not know o f any sta tistica l test th a t ra n i fails 

to  pass, except when the number o f calls starts to  become on the order of the period 

m, say >  10®” . I t  was discovered th a t the OCN models approach the period o f ra n i, 

w hile the SON models surpass the period. Tests were performed comparing results 

from  the 2 generators.

5 program runs showed th a t the procedure th a t produces the OCN models makes, 

on average, 2.1696® calls  ̂per run, on the upper end o f the period, bu t s till w ith in  the 

stated range for s ta tis tica lly  effective random number generation. The SON models, 

however, often surpass the period of the generator: the best SON results  ̂make calls 

numbering about 1.5 x 10®. New models, created w ith  the ranS generator, w ith  its  

period on the order o f 10 ®̂ were created to  compare w ith  the former results, for both 

O CN’s and SON’s. Comparisons o f 7 OCN models generated using ran2 showed 

an average to ta l energy dissipation o f 195,620, and a standard deviation o f 231.86,

^The standard deviation of this 5-run sample is about 1.6 x 10^.
^Models w ith a scaling index, in raw data terms, of 1.50 and an error less than 10“ ^
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compared to  an average o f 195,718 fo r 25 runs w ith  ran i, and a standard deviation of 

307. 3 SON models (2 m u lti-ou tle t, 1 single-outlet) were run w ith  rau2 and compared 

w ith  3 models o f the same type run w ith  ran i. A ll 6 models had a scaling index of 

1.500 ±  .001. The ran2 models had an average to ta l energy dissipation o f 332,400, 

w ith  a standard deviation o f 1433. The ra n i models had an average to ta l energy 

dissipation o f 337,700, w ith  a standard deviation o f 7.0123e-h03. Q ualita tive ly a ll 

the networks looked sim ilar by type.

One possible effect o f the misuse of ra n i can be seen in  the to ta l energy dissipation 

o f the SON models, which were about 1.5 % higher in  the (sm all) sample tested, and 

had a much higher va ria b ility  between models, when ra n i was used. W hile the small 

samples do not allow  a defin itive connection w ith  the random number generator, the 

variab ih ty in  energy dissipation between the ra n i and rau2 SON models, versus the 

un iform  slope index reached in  a ll the models testifies to  the variety of dissipative 

states th a t provide the “correct”  scaling relationship, a find ing th a t should be seen 

in  the lig h t o f the m odel’s constraints: fin ite  size, the square grid  boundary, the 

triangu la r la ttice , and the in itia l eden growth model from  which the result is derived.

A ll models pictured and measured in  th is  work, when not otherwise stated, were 

created w ith  the ran2 generator.
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A P P E N D IX  C A  N o te  on  Perform ance w ith  D ifferent C  

C om pilers

The simulated annealing program was w ritte n  in  the C programming language. 

One version of the program makes many calls to  the pow function, w hile another 

uses the sqrt instead, both functions declared in  the standard C lib ra ry ’s math.h file. 

The gcc version 3.4.5 proved to  have a slow im plem entation o f the pow functions, 

compared to  the In te l icc com piler version 9.0.

A  program run th a t took 1700 seconds w ith  a gcc compiled version took about 

87 seconds on the In te l compiler. The running-tim e profile r gprof showed th a t the 

bottleneck was the loop shown below. The function th a t contains the loop takes up 

over 89% o f to ta l running tim e, as sampled by the profile r (the test ran for 1 anneal­

ing stage o f 2,562 steps). These are the offending lines, as shown by the pro file r’s 

breakdown;

for( i = 0; i < i_n_squared; i ++ )>
{
d_returned_diss = d_returned_diss

+ pow( (double) pi_flow[ i ], DISS_EXP);
> /*end "for each site"*/

The pow function seems to  contribute significantly to  th is difference. A  simple 

program th a t computes the pow function 600 x  10® times, in  six loops o f 100 x 10®
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iterations, took less than a m illisecond using icc, bu t 111.930 seconds w ith  gcc. When 

the pow calls were replaced by sqrt, gcc took 9.717 seconds, and icc less than a 

m illisecond. When the body o f the loop contained no line o f code at a ll the gcc 

compiled program ran in  about ha lf a second (as expected, the icc program in  less 

than a m illisecond), suggesting th a t the com pilation o f loop-intensive code is done 

better by icc A ll the executables were compiled w ith  the optim ization given by the 

-0 2  flag.
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