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CHAPTER I
INTRODUCTION

In this manuscript the general properties of the
Borel sets and the Baire functions will be discussed,
and several important relationships between the two
will be shown.

The family of Borel sets 1s defined to be the
collection of all sets of type F, and Go( , for all
ordinals o </L , where ./l 1s the smallest uncountable
ordinal number, Sets of type F are closed sets,

o
and sets of type G, are open sets, The sets of
type F. and Go( , for any ordinal A </ , are then
defined by transfinite induction and discussed in
general 1n Chapter II., The Hausdorff sets of type

P and Qo( are then defined by transfinite induction,

o’
and the relationships between the family of Borel sets
and the family of Hausdorff sets are shown. It is

then proven that these two famllies of sets are
identical.

In Chapter IV, the Balre functions of type f_, ,
for all ordinals o <_fl , are defined by transfinite
induction where a function of type f° is a continuous
function. Relationships between the Borel sets and the
Baire functions are then shown. One of the more impor-
tant theorems proved in the final chapter is; If £

is a Balre function defined on a2 complete metric space

A, then
-1-
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-2-

(1) f 1s continuous on a subset S of A
relative to §,

(2) 8 is a countable intersection of open sets
in A4,

(3) S8 1is dense and of the second category in A,

(4) +the complement of S 1is. of the first category
in A,

It will be assumed that the reader is familiar
with basic topologlical concepts and with the fundamen-
tal properties of cardinal numbers and ordinal numbers.
We wlll now deflne some frequently used terms in order
to faclllitate the reading of the manuscript.

A set is any collectlon of objects which we shall
call elements or points., If x 1s an element of the
set E, we write x £ E. If x 1s not an element of
the set E, we write x‘¢ E. A set E is said to be
a subset of a set F 1if every element of E 1s an
element of P, and we write EC F.

The union of a collection of sets 1s understood
to be the set of all elements which belong to at least
one of the sets over which the union is extended. The
union of two sets E and F 1s denoted by E U F. The
union of a finite collection of sets Eis 1 =1,25000y N,
ls denoted by i§1E1° The union of an infinite sequence
of sets El’ E2, E3’°°‘ » Written [ﬁ;} » 1s denoted
by n;éEn s+ In general, let B be an arbltrary sgt,

and suppose that with each element b &€ B, there 1is
2t Eb° This yields an indexed collection
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-3
of sets., The union of the sets of this collection is
denoted by b g B Eb o

The intersection of a collection of sets 1s under-

stood to be the set of all elements which bélong to
each of the sets over which the intersection is ex-
tended. The intersection of two sets E and F is de-
noted by E/N F, where x¢g [Ef) F|] 1f and only if x £ E
and x & F., The intersection of a finite collection of
is denoted by R, E and of an

i=1 ~i

o0
infinite sequence {ﬁ;} by ﬁgl he In a menner simi-

lar to that used for an arbitrary union we denote the

sets El’ E2,..°,En,

intersection of an arbitrary indexed collection of sets

by s Ep -

For two sets E and F, the difference of the two

sets 1s the set of all elements belonging to F but
not to E, and is written F-=E,

The largest (smallest) number in a set E of real
numbers will be denoted by max [E]) (min [E] ), if one
exists. The least upper bound (greatest lower bound)
of a set E of real numbers will be denoted by l.uebo[@]
(gel.b. [E] ), 1if one exists.

A set A 1s a metric space 1f with any ordered

Palr of points =x and y Dbelonging to A there is
assoclated a real number, called the distance between
these points and denoted by d(x,y), with the following
properties:

(1) d(x,y) 2 0 for all x,y £ A,
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..
(2) da(x,y)
(3) d(x,y) = d(y,x) for all x,y& A.
(4) d(x,z) < d(x,y) + d(y,z) for all Xx,y,z2 & A.

0 if and only if x =y,

In 2 metric space A, the complement of a set

E C A, denoted by C(E), is the difference A-E ,

A point x 1is sald to be the limit of an infinite
sequence {xn.} in 2 metric space A if for every £2>0
there is some positive integer N such that if n> N
then d(x,xn) < &€ , If the sequence [xn_} has a
1limit x, the sequence {xn is saild to converge to x,
and we wrlte 1lim X = X . Given a metric space A,

then {xn} is a Cauchy sequence in A 1f for every

€ >0 there exists some positive integer N such

that if m,n > N then d(x,,x,) < & . A metric space
A 1s complete if every Cauchy sequence in A converges
in A .

The set of all real numbers is a complete metric
space, Wwhere d4d(x,y) = Ix—yl for any real numbers
x and Y.

The empty set is denoted by ¢o Sets E and F
are sald to be disjoint if EN F = f.

If x &€ A, where A 1s any metric space, and if

r 1is any real number, then the neighborhood of the

point x with radius r 1s the set of all Yy &£ A such
that d(x,y) < r, and this neighborhood is denoted by
N(x,r) . A point x is an interior point of a set E
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-5
if and only if for some r > 0, N(x,r)< E. A set E
is open if and only if every x & E 1s an interior
point of E,
In a metric space A, a point x 1is called a

limit point of a set E 1if and only if for every r2 O,

N(x,r) N E contains at least one point different from
X. This is equivalent to saying N(x,r)/N E is an
infinite set for each r > 0. A set E 1s said to be
closed if and only if every limit point of E is con-
tained in E.. The derived set E' of a set E 1is

the set of all limit points of E. The closure E of
a set E 1is the set E U E' .
Given sets E and F in a metric space A such

that E€ Pc A, then E is closed in P (relative to F)

if and only if (E'N F)C E, A set ECF 4is open in F

1f and only 1f for every x€ E +there is some r > 0
such that (N(x,r) N P)c E. Set EC F 4is dense in F

if and only if for every x & F and every r > 0O,

¥(x,r)N E {: ﬂ. A set EcC F is nowhere dense in F

if and only if for every x& F and every & > O

there is some yg& F and some § > O such that

(N(y, § )N F)< (N(x, £ )A F) and N(y, & )N E = 4.
A set E 1is sald to be of the first category in F

if it is the union of a sequence {Eﬁ} of nowhere-
dense sets in P, If E 1s not of the first category
in F, E is sald to be of the second category in F.
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It will be assumed throughout that we are working
with real-valued functions, A function f defined on

a set S 1is said to be continuous at a point a & S

relative to S if and only if for every & > O there

exists a &> 0 such that 1f x & S and x & N(a,d )
then [f(x) - £(a)] < & . A function £ 1is said to

be continuous on a set 8 relative to S§ 1f and only

if £ 3is continuous at every point x £ S relative to
S . If £ 4is defined on a set S, and FC S, then £

is continuous at a point a & 8§ relative to F if and

only if for every & » O +there exists a § > 0 such
that if x &[N(a, 5§ )n F] then )f(x) - i"(a)l< E .
A function f defined on a set S 1is said to be con=-

tinuous on a set E relative to F, where E< S and

FC 8, if and only if f is continuous at every point
x& E relative to F .
A function f defined on a set S is said to be

uniformly continuous on S relative to S if for every

€ > 0 there exists a & > 0 such that if x,y & S
and d(x,y) < § then |£(x) - £(y)] < & .

If {fn? is a sequence of functions, where each

funetion fn is defined on a set S, then the sequence

of functions [ffz is said to converge at a £ S to

a limit function f defined at a, and we write

f(a) = nl_.;‘i.;no ffa) 1f and only if for every & > O there
exists an integer N > 0 such that if n> N then
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Ifn(a) - f(a)l < £ . The sequence of functions é}n}
converges on a set EcC S to a 1limit function £ de-
fined on E, and we write f = _1im f on E, if and
only if the sequence {Eﬁ] converges to f at every
point a & E.

The sequence of functions [}#} » Where each func-
tion fn is defined on a set S, is said to converge
uniformly on the set S to a 1imit function f defined

on S, if and only if for every & 7 O +there exists
an integer N> O such that if n 2> N then
' :En(x) - f(x)' < & for all x & S .
Any set which is finite or which can be put into
one-to-one correspondence with the set of all positive

integers is said to be countable., Any set which is not

countable is said to be uncountable,

Two properties of ordinal numbers which will be
relied upon heavily are:

(1) PFor every set of ordinal numbers, there is
an ordinal number which is greater than every ordinal
number in the set, and which is less than any other
ordinal number with this same property, i.e. there is
a definite next larger ordinal number for any set of
ordinal numbers,

(2) If E 1is a countable set ¢f ordinal numbers
of countable sets, the next larger ordinal number is

also an ordinal number of a countable set,
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The ordinal number w) 1is the ordinal numbexr of the
set of all positive integers ordered according to increas-
ing magnitude. w 1s the smallest transfinlite ordinal
number. The set of all finite or countable ordinal
numbers ordered according to increasing magnitude 1is a
well-ordered set with ordinal number JQ. o L 1is the
smallest uncountable ordinal number,

The principle of transfinite induction will be
relied upon heavily in the following work, and is as
follows:

If M 1is any well-ordered set and if S 1is a
subset of M such that

(L) if a is the first element of M, then a £ S,

(2) for any element y & M, if all elements
x £EM preceding y are in S5, then y & S,
then S = M,

The larger of two ordinal numbers o and &
will be represented by max (& , 8 ) .

A sequence of sets {pﬁ} is called nonincreas-

ing (nondecreasing) if Ei oD Ei+1 (Eic:_ E for

i+1)
every positive integer 1 ,
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CHAPTER II
BOREL SETS F, AND G,

In this chapter we wlll define the Borel sets of
type P, and G, , and will prove several limportant
properties of these sets, It wlll be assumed throughout
that we are working within a metric space A, unless
otherwlse stated.

Each ordinal o( < _{L will be designated as
being either even or odd, but not both, by use of trans-
finite induction, in the following manner.

(1) o« =0 4is defined to be even, and not odd.

(2) Suppose that = £ () , and that every
ordinal A8< « has been designated as being either
even or odd, but not both,

(a) If <« has no immediate predecessor, then
X is designated as belng even, and not odd.

(bp) If & has an immediate predecessor,

o -1, then o<’ is designated as being even (odd),
and not odd (even), if o« -1 1is odd (even).

Definition: A set is a Borel set of type Fg (Gg)

if and only if it is a closed (open) set. Suppose
that o <) , and that Borel sets of type Fg and
Gg have been defined for all G <X

(G

(1) If o¢ 1s odd, a Borel set of type F

I I )

is defined to be a countable union (intersection) of

Borel sets, each of lower type FB (G(S ) for some

O
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ordinal B < o . We note that the sets of the count-
able union (intersection) need not all be of the same
type; we requlre only that they all be of lower type
than F (Gg ) o

(2) If ot is even, a Borel set of type
F x (G°< ) 1is defined to be a countable intersection
(union) of Borel sets, each of lower type Fa (G,¢3 ),
for some ordinal @B < o . The same remark applies
as at the end of (1) .

We thus define Borel sets of type F., and G o
by transfinite induction for all < < /0 -

Theorem 2,1: Every Borel set of type F (G )

=g} X
1s a set of type FG(GG) if x< @ < Sl °

Proof: Suppose set E 1s of type Fo( s <::<@<_n_ °
If @ is odd, E 1is of type F"3 since E = ngl E,»
where E = E for each aon, If @ is even, E 1is of
type Fgp since E = ngl E,, where E = E for each n.

Suppose set E 1s of type G, , %< 8 < (i o
If @ 1is odd, E 1is of type G‘S since E :n?‘:l Ez19
where E_ =E for eachn, If g is even, E 1is of

n

oD
type G‘s since E = n‘él En9 where EIl = E for each n.

We will designate _/) as belng even since it has
no immediate predecessor. Sets of type F, and

Gn

and countable unions of sets of type F and G oc ?

will be defined to be countable intersections

(o%
respectively, for x < /L °
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Theorem 2,23 Every set of type F, (G./L ) is

of type F (G )} for some x < S/l .

= =g

Proof: Suppose set E 1is of type F _p .
Then E = n?jl En , where for each n, E, is of type
F ooxpys %Xp< yaR » Since for each n, <, 1is an ordi-
nal number of a countable set, the ordinal number <
immedlately succeeding the set of ordinals
X s =1, 2,000y is also an ordinal number of =

countable set, Therefore E 1s a Borel set of type

Fe » X< /1l , if X is even, If e 1is odd,

then X+l 1is even, and E 1ls a Borel set of type
F oo+l

It can be shown in a similar manner that no new
sets are obtained by taking sets of type G..KL °

Theorem 2,3: The complement of every set of type

F_ (G ) is a set of type G (Fo{ ), for every

< S .
Proof: The theorem is true for o« = 0 since the

complement of a ¢closed set is an open set and the comple-
ment of an open set is a closed set. Now suppose the
theorem is true for all ordinals B < « for some
xX < 1)
Suppose < is even, If set E 1is of type Fo( ’
then E = 2‘:1 E s where for each n, Ep 1s a Borel set
of type F &,, *Xp < & . By our induction assumption,

each set C(Epn) 1is of type G <ps Fp <X,
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Therefore C(E) 1is a Borel set of type G, since
o0 [- =}

C(E) = C(, 0 B ) = U C(E)) .

Suppose set E 1is of type G , X even, Then

(4
o0
E = nglEn’ where for each n, En is a Borel set of type
G“ » o(n < e . By our induction assumption, each set
n
G(En) is of type F s X, <X . Therefore C(E) is a

*n

co oo
Borel set of type F since C(E) = c(nglEn) —‘:anC(En)o

X
If & is an odd ordinal, the induction process can
be carried out in a2 similar manner,
Therefore, by transfinite induction, the theorem 1is
true for every ordinal o < JSL .

Theorem 2.4: If &K <_) is odd, the union (inter-

section) of a countable number of sets of type Fo( (Gtx) is
a set of type F_ (G, ). If o </ is even, the intersec-
tion (union ) of a countable number of sets of type
Feq (Go<) is a set of type F_, (G-x)., -

Proof: Suppose o< /L is o0dd, and E :nglEn’ where

for each n, En is of type ch o Then for each
oo

n, B, = m"élEn,ms where for each m, Engm is a set of type
Fo( g ¢ < o, Therefore E is a Borel set of type
n,m \
n,m 00 oo
F, Since E= n‘:jl 4 Engm*‘ and the sets {Engm_} consti-
tute a2 countable collection,
o0
If < (] is odd and E =nQ1En9 where for each n,
o0 o0

E, is a set of type G_, , then C(E)} = c(nglEn) = nglc(En).

Each set C(En) is of type F,, by theorem 2,3, Therefore
by the first part of the proof C(E) is a Borel set of

type ch °
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Therefore E is of type G, by theorem 2.3.
The proof of the second part of the theorem where
A <N 1is even is entirely analogous,

Theorem 2.5: If &</ is odd, the unlon (intersec-

tion) of a finite number of sets of type F, (G“) is a
set of type F (Go‘). If o</l is even, the intersection
(union) of a finite number of sets of type F_, (Go() is a
set of type F (Ggc ).

Proof: This theorem l1s an immediate consequence
of theorem 2.4 .

Theorem 2.6: If <./l is odd, the intersection

(union) of a finite number of sets of type Fo( (Go() is a

set of type F., (G If < SLis even, the union (inter-

o)
section) of a finite number of sets of type Fo( (Go() is a
set of type F_, (G, ).

Proof: Suppose X</ is odd, and the two sets A

o)
and B are of type F, . Then & = n(élArN where for each n,
o0
A, 1s of type Fex,,0¢, < of , and B :mlzlle,, where for each
m,Bmisof’cypeF ,3m<o(. Then S = A NGB o=

U v. g O
(W80 (8,0 = pYy (4,2 By). Ohoose o, ., to be
an even ordinal such that O(n,,m 2°(n” dn,m > ﬁm, and
O(n,m< < for all indices n and m. Then each set
A NB, is a Borel set of type Fog, m"’(n,m<°( » Y

9
theorem 2,5, Therefore set S is of type F_ »

Suppose o¢<JSf] 1s odd, and S = A U B where sets
A and B are both of type G, . Then c(s) = ¢c(A)NC(B)

where C(A) and C(B) are sets of type F_, by theorem 2.3,
Therefore by the first part of the proof C(S) is a set of
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type Fo( » Hence set S is of type Go(by theorem 2.3 .
If X</ is even, it can be proved in a similar man-
ner that the union of two sets of type ch’ is a set of
type F°< s and the intersection of two sets of type G,
is a set of type G, .
We have shown the theorem 1s true for two sets,

The proof 1s completed by the use of finite induction.

Theorem 2,7: For every ordinal « </ every set of

type P (G“) is a set of type G _ . q (Fo(+1).

Proof: Suppose E is a closed set, If E = #,, then

)
E = an En’ Wwhere En: ﬂ for each n, is of type Gl since

¢ is both open and closed., Suppose E is not empty.

_ 1 1
Then let E_ = xlejEN(x”'ﬂ)" Since each neighborhood N(x,Z)
is an open set, and the union of any collection of open

sets 1s an open set, for each positive integer n, En is

Q0O
an open set, Also, E = n@lEn’ for if x&E, then x&€E,
o0
for each n, and hence xenﬂlEn‘ On the other hand,
L~ ]
suppose xenf_'llEn,, then x¢& En for each n, Hence for each

n there exists some xne E such that d(xgxn)<%l-., There-
fore ,1im x = x and xg E, which means xgE since E is a
200 1
closed set,
For any ordinal <</l , assume every set of type F6
is of type G6+1’ for all G < o
If &<Sl 1s o0dd, and set E is of type Fo » then
o0
E = nlélEng where for each n, E, 1s of type F“ns X, <X o
By our induction assumption, each set En is of type
G o +1° X,+ 1< oX+l., Since X+ 1 is even, E 1s a set

n
of “type Go&+ 1e
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Suppose o <AL 1s even, and set E 1is of
o0
typre F, . Then E = ﬁglEn , where for each n, En
is of type E X< X e By our induction assump-
n

tion, each set En is of type %h+ 10 where

0<n+ 1< A+1 ., Since K+ 1 1s odd, E 1is a set
of type Go(+ 1

Therefore, by transfinite induction, every set

of type Fo( 1s a set of type G for all ordinals

o 41
K < L)L .

Now consider E to be a set of type G, , for
any ordinal <« < /L , Then C(E) 1is a set of type
P, by theorem 2.3 , and by the proof above also a
set of type G 41 ° Therefore by theorem 2.3 E 1is

oA

a set of type €x+lo

Theorem 2,83 The family of all Borel sets forms

the smallest system of sets such that:

(1) A1l closed sets are in the systen,

(2) the union of any countable collection of
sets in the system is in the system,

(3) the intersection of any countable collec-
tion of sets in the system is in the system,

Proof: Condition (1) is satisfied by the
system of Borel sets because of the definition of sets

oo

of type F. . Suppose E = nglEng where for each n, E

0 n

is a Borel set, By our previous theorems, each En

is of type F, , for a certain ordinal x < /L .

n
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There exists an 0dd ordinal oK such that & <_fL and
o, < x for every n., Therefore E 1is a Borel set

of type F Hence condition (2) is satisfied..

o °
Likewise, any countable intersection of Borel sets is
a Borel set,

To prove that the system of Borel sets is the
smallest system satisfying these conditions, we will
show that any system satisfylng these conditions con-
talns all the Borel sets,

Suppose S 1is any system of sets satisfying
the three conditions of the theorem, ZEvery Borel set

of type P, is in S Dbecause of condition (1),

Assume that all sets of type Fg are in S, for
all ordinals G<x < /L » Suppose o< is odd,

and E 1s a Borel set of type F_ . Then E = ng;Eng

where for each n, En is a Borel set of type chng

Ry S X By our induction assumption each set

En is in S8, Then E 1is in 8 since S satisfies

condition (2)., On the other hand, suppose o is even

Then E = ﬂlE

and E 1is a Borel set of type F_ o -

n 9

Wwhere for each n, E is a Borel set of type

n

F qh < K « By our induction assumption each set En

o H
n

is in 8, Then E 1is in S since S satisfies con-

dition (3) .

Therefore, by transfinite induction, all the Borel

sets of type F_ , for any ordinal « <_ , belong
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to S. Since every Borel set is a Borel set of type P,
for some ordinal = <_f) , by theorem 2,7 , S
contains all the Borel sets.
We note that if in condition (1) of theorem 2.8,
Yclosed" is replaced by "open", the resulting theorem

ils also true,

Theorem 2,9 A Borel set of type Fl is either
of the first category in a metric space A, or else
contalns a neighborhood.

Proof: Suppose E 1s any Borel set of type Fl °

Then E = _U,E, , where for each n, E, is a closed

n=il"n n
set in the metric space A , If each set En is
nowhere dense in A, then E is of the first category
in A.
Suppose E 1is of type Fl and not of the first

category in A, Then there exists some positive in-

teger N such that the set EN‘ is not nowhere dense
o .
in A, where E = ngiEng each set En closed in A .

Then there is some r > O and some X, € A such that
every nonempty open set R C N(xogr) contains points
of Ey . Hence, consider any x,; & N(xegr) » Then
for every E > 0, N(xl,, E¥ N EN F § . Therefore
Xq £ EN which implies N(xogr){c E, . Hence
N(xo,r) < Ey » since Eg 1s a closed set, and
N(xogr) < E ,
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Definition: Given any bounded set F,

A (F) = 1.u.b, [d(xgy):] where x and Yy Trange over
F, is called the diameter of set F,

Theorem 2,10 (Cantor. 's Theorem): Given a non-

increasing sequence of nonempty sets {Fn} » Where
each Fn is a closed and bounded subset of the complete
metric space A, with the additional requirement that

o0
niim A(F ) = 0, then A.F ¢ ¢,

Proof: Suppose {Fn-f is a nonincreasing
sequence of nonempty sets satisfying the conditons of
the theorem., For each set Fn,, chocse X, € Fn,, thus
obtaining a sequence of points {xn} . Since
plim AP ) = 0, given any &E >0 there is

> o0 n
some N >0 such that 4 (Fyg) < & .

Since {Fn} is a nonincreasing sequence of sets,
x,€ F,€Fy for all n > N. Moreover, A (FN) < &£
and x ,X € Fy imply that d(xn,,xm) < & for all
ny,m > N. Therefore {xn} is a Cauchy sequence in
A, and since A 1is a complete sSpace, there is some
X £ A such that nl_z.li_ X, = %o

Let M be any positive integer. If n > M,
then X, € Fn < P, - Therefore xeFM , and since
each set FM is closed, x € FM for any positive

=0 [—acd
integer M. Therefore xe 0y Fooo i.e. ngl F + ¢ °
Theorem 2,11 (Baire's Theorem): If H 1is a

nonempty Borel set of type Gl in a complete
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metric space A, then H 4is of the second category
relative to itself,
Proof: Suppose H 1is a nonempty Borel set of

<O

type Gy, then H = nglGn9 where for each n, G, is
open in A, Suppose H 1is of the lst category rela-
tive to itself, then H = ng;Hng where for each n, Hn
is nowhere dense in H..

Suppose x,€H, then comsider N(x_,1)NH which
is open relative to H., Since H1 is nowhere dense
in H, there exists a nonempty set Flc:H open rela-
tive to H such that Fic [N(xogl) 4 @] and
F{NH = ¢ °

Since Fl is open in H, there is some set Rl
open in the space A such that F1 = R1 /Y H, Suppose

Xq € F1 o Since Rl is cpen in A, there is some

1 > O such that N(Xlg Jl)c Rl R
Let Q = N(xq,48,) 7 H. Set Q 1is nonempty
since X4y £ Q1 . Also, since Fl 1 He = ¢ and
Qe P Nz, 1) H , 0 NHE =¢.
Now Xq E Fl < H implies Xq é,Glg and since Gl
is open in A +there is some £ >0 such that

_ 1
W(%;, €,) € G, where £, < min [&,,5] . Define
the set Sl = N(xlg El) /Y H . Then S'l C[lelg 51) N H:I

where N(x,,&,] < N(xlg Sl)o Therefore

[§-i- f) Hac [N(Xlg El) f) I—‘I N H]]:Eg(xlp ‘513 4 H;]
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C[N(xl, 81) g HJ = [N(x 5 51) NnHDN Hllzlbl N Hy
i.e. ‘S*; NH << ¢ N H vwhich implies 5] N H; =

since Q; N Hy = ¢ o Also, x;& F,< H and
S, = N(xl,,el) N H imply x; & S, therefore S, 1is
nonempty. We also nocte
5, < [—(_N X, €] N 157 < [o,n Hj < Gy.

To summarize, we have the following situation:
Sl = N(xl, & l) /A H 1s a nonempty bounded set, open

in H, for which §] < 6, and § N H =§ .

Since the set H is nowhere dense in H, and

2

Sl was constructed to be a nonempty set open in H,

there exlsts a nonempty set F2c: H open in H, such

that F,C S, and anngzgé.

2 1

Since PF is open in H, there is some set R2

2
open In A such that F2 = Refl H., Suppose X, € F2 °

Since R, 1is open in A, there is some JE > 0,

2
where 52 < 81 - d(xlgxg) , such that
N(x,, §,) = Ry, o et Q, = N(x,, §,)N H Set Q,
is nonempty since X5 E Q2 . Also, since an H2 = ¢
and Q,C F, €8, , QN H, =g .

Now x,& F,< H implies x, &€ G, , and since

set G is open in A +{there 1is some &2> 0 such

, Where €, < min [529%;7 .
(e,< 6,¢ & - alxg, Xe))

Define 8§, = N(X29 E 2) N H. Then
§2 c[l\T(xe, 5,2)(\’1?13 where N(Xz, 52) c I\T(x2, 22) o

2
that W(x,, € ,) < G
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Therefore [ﬁ; 0N Hg:] cfﬁ"(?é—,e—ey NE n HQ:W) e Hg]
[N (x,, S2)nﬁgzﬁw(xg, §,)NE nH;_J

=[e; n =4 .
5, < (R, 0N E]<[e,n B = g, .
and 'S'Ec: '§I » slnce € ,< Ell-d(xl_.,xe) implies

S2 < Sl .

Also, X, € Sg,

Thus, for n = 1, 2, 3, ¢ee s We define nonempty

n

and 0< § < € .- dlx ,x, q)

ing properties: Sn is nonempty, cpen in H, and

= 1
sets S = N(xn, Sn)n H, where 0< &, < min Sn,-z-;i-j
» With the follow-

bounded: '§;CGH,—SZK)H _.¢ and S cSnl.
Furthermore, the ncnincreasing sequence { Sn‘}
of nonempty-closed-bounded sets has the property that
1im A(S5.) = 0O . This is because the diameter
n—) o0 n
= 1
A (Sn) < 2:€, », where 611 < -2-5 , implies that
nl}g 611 = 0 ¢
Therefore, by thec¢rem 2.10 , there is some point

(-~} o

x such that x & n{__":l?; , wWhich implies x £ H = nglen

since each 'S'I'l' G, . But x¢€ ’S—n implies also that
x ¢ H) for each n, since §_ N H = § . Therefore
x ¢ H= n_»l n °

Thus we have a contradiction, and we ccneclude
that cur assumption that H 1s of the first category
relative to itself is false., Therefore H 1is of the

second category relative to itself,
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Theorem 2,12: If H 4is a Borel set of type Gl

in a complete metric space A, where H = nE:lHn with
each Hn open and dense in A, then H 1is also
dense In A..

Proof: Assume H = n??__:ll'-gag where for each n,
Hn 1s open and dense in a complete metric space A.
To prove H 1is also dense in A, we must show that
every neighborhood in A contains a point of H.

Consider any X, & A, and for any o >0

some neighborhood N(xo,, Eo) . Since H; 1is dense

in A, there is some x, & N(xo, 80) such that

X € Hy o Since N(z,, £,) is an open set, there

is some €1 2> 0 such that N(xlgé:l) < N(xo,, 50) .

Also since Hl is open in A, there is some 6'1> 0

such that N(xl,, 51) € H, . Choose a b"l, 0« &"1<
1

min [61, §4 s3] - Then N(x;, &) < N(x, 50) and
L 3

lel, b‘lJ C Hl

We proceed to define I\I(xn9 b‘“n) by induction in

the following manner., Assume N(Ii,, 6‘17 o 1 = 1,000,

n - 1 , have been defined such that there 1is some

and lei, b"i) < Hy . Since H, 1s dense in A, for
each n, there is some x, & N(xnmlg b"n__l) such that
x, €H, . Since N(x_ _q,%, )
is some & > O such that N(xrLD é_‘n) < N(xn_l, b“n_l).

is open in A, there

Also since H, 1s open in A, there is some £n> 0
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such that N(an [n) < H, . Choose X‘n < min [£n,,
1
ns ——]9 £y > 0« Then WIE, ¥, < Wix, 1, 557)
and NZx 5 Hn
Thus we obtain a nonincreasing sequence
( mxns 'gin)} of nonempty-closed-bounded sets
with the additional property that the diameter
1
A E(KI).” b"n) < -g—n-:-:I which implies
—_
nl}fb 4 N]xnsi?n)
Therefore, by theorem 2,10, there 1s stme =X EA
such that x & O le 5 Therefore xalﬂr(x09 60),
L=
and since Eﬂxn,, ?‘n) < H, forooeach n, xgd = 0. H .
Theorem 2,133 If H= N .H in a complete

n=1l"n
metric space A, where each Hn is a Borel set of

type Gl and dense in A, then H 1s of type Gl
and dense in A,
o

Proof: Suppose H = ﬂgl H,, where for each n,

Hn 1s of type G1 and dense in the complete metric
[~ ]
space A, Then for each n, Hn = ﬁglﬂn9m° where
for each m, Hh m is open in A. Furthermore, since
2
h t d C f
each se Hn is dense in A an Hh Hngm or
all m, each set H, is dense in A, Also, by
o;m

theorem 2,4, H 1is a Borel set of type Gl° There-

fore, by theorem 2.12, H 1is dense in A,

Theorem 2,14: If E 4is a Borel set of type

G and dense in a complete metric space A, then E

1
is of the second category in A and C(E) is of the
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first category in A.
Proof: ©Suppose E 1s any Borel set of type
Gl and dense in the complete metric space A. By
theorem 2.3 the set C(E) 1is of type P

1
By theorem 2,9 C(E) is either of the first category

in A,

in A, or else contains a neighborhoed, But C(E)
cannot contain a neighborhood since E 1is dense in
A. Therefore C(E) is of the first category in A,
i.e. a countable unlon of nowhere dense sets in A,

Suppose E 1ls also of the first category in A,
l.e. a countable union of nowhere dense sets in A,
Then the complete metric space A would be of the
first category relative to itself since A = E U C(E)
Implies A also l1ls a countable unlon of nowhere dense
sets In A. Therefore we have a contradiction since
by Baire's Theorem 2.11 the complete metric space A
must be of the second category relative to itself,

Therefore set E is not of the first category
in A, and hence is of the second category in A,

Theorem 2,153 In the space A of all real

numbers, the set of all rational (irrational) numbers
ls a Borel set of type Fl (Gl) , but 1s not a set of
type Gy (Fl) o

Proof: Let R ©be the set of 2ll rational
numbers, then C(R) 1s the set of all irrational nunm-

bers, Since R 1is a countable set, and any countable
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set is of type Fl » R 1s a Borel set of type F1 °
(This is because each element of a countable set may
be thought of as being a one-element set, which is
closed.) Hence O(R) 1s a Borel set of type Gy , by
Theorem 2.3 .

Suppose R 1is also of type G1 o Since the
set of all real numbers A constitutes a complete
metric space, and since R 1is dense in A, by theorem
204 R is of the second category in A. But since
R is of type Fl and does not contain a neighbor-
hood, by theorem 2,9, R 1is of +the first category
in A. Therefore we have a contradiction, and the
set R of all rational numbers is not a Borel set of
type Gl . Also, the set of all irrational numbers

C(R) 1is not a Borel set of type Fi -
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CHAPTER IIT
HAUSDORFF SETS P_, AND Q o

In this chapter we will define the Hausdorff sets
of type P_, and Qo » and will prove several impor-
tant properties of these sets. We will also show
that the family of Borel sets and the family of Haus-
dorff sets are identical., It will be assumed through-
out that we are working within a metric space A ,
unless otherwlse stated.

Hausdorff sets of type P and Q_, are deflined

o
by transfinite induction in the following manner,

Definition: A set is of type P, (Qo ) if

and only if it is an open (closed) set, Suppose that
o < 1. and that Hausdorff sets of type Pg and
Qg have been defined for all ordinals @ < e .

Then by transfinite inductlon a set is of type

o0 o0
P, (@, ) if and only if E = U.E (E ;ngl En?9
where for each n, En 1s a set of type
Qe (P )» o, < &X . We note that the sets of

n n
the countable union (intersection) need not all be

of the same type.

Theorem 3.,1: For every X< [l , every set

of type P g (Q‘3 ) 1is also a set of type P, (W, )
if G < o
Proof: TFor 0< @ <& < [ , if set E is

w06
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of type P& s, then F znglEn , Where for each n,
En is of type an, < @ . But 6n<(3
implies @n < o , therefore E is of type
P°< .

Likewise, for 0 < @ € &« < /1 s 1f set E
)

is of type Q6 , then E "—"'anEn , Where for each
n, E, 1is of type ]?‘s . Gn < @ . Therefore
n
@n<0( and set E 1is of type Qo< o
Suppose (E = 0. A set E of type P, 1is

an open set, and as such is a Borel set of type Go
Then by theorem 2.7, E 1s of type Fl » 1l.e. a
countable union of closed sets. Therefore, by
definition, E 1s of type Pl o Likewise, if set
E 1s of type Qo », 1,e, a closedset, then E 1is
a Borel set of type Fo , and hence of type Gl by
theorem 2.7. Since E 1is a countable intersection
of open sets, E 1is of type Ql o

Now, if 0 < e¢ < _f1 ,» then, since every
set of type P, (Qo) 1s of type Py (Ql) , Since
0<1< &« <_{) , and since 0 < @ < o <_/)
implies that every set of type Pg (Q6 ) 1is of
type P_ (Qo( } , it follows that every set of type
P,(Q,) 1is of type P_ (Q.p ) -

This completes the proof of theorem 3.1 .

Theorem 3,.2: The complement of a set of type

P (ch ) 1is a set of type Q o¢ (Poe ), for all
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ordinals o < _/l o
Proof: The theorem is true for o( = O since
the complement of a closed set 1s an open set, and
the complement of an open set is a closed set,
Assume the theorem is true for all ordinals B < o

where < < [l o

Suppose set E 1is of type P o Then

(-3
E = ngl En 0 wherec:ach En is of type Q«ns o(n<0(.
Therefore C(E) = anO(En)9 where each set C?(En)

is of type Pol s o(n < & s by our induction
n
assumption. Therefore OC(E) 1is a set of type

Qd b J o( <J1 °
Suppose set E 1s of type Qo . Then
o
E= 0 E , where each E_ 1is of type Pdnﬂ e, < ed,

n=
Therefore C(E) = ngl G(En)9 where each set C(En)
1s of type Q. x, < & by our induction
assumption. 'I‘hlelrefore C(E) 4is a set of type
Py » <L .

Therefore the theorem follows by transfinite

induction.

Theorem 3,3:¢ For all ordinals ol < /l o

the union (intersection) of a finite or countable

collection of sets of type P, (Qo( ) is a set of

type P (Q, ) .
Proof: The theorem is true for o = 0 since

the union of any collection of open sets 1s an open
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set and the intersectlon of any collection of closed
sets 1s a c¢losed set.
oD
Suppose 0 < o¢ <./L and E = Yy E,, where
- co

each set En is of type P, . Then En = mgl En,m 0

Where each set Ensm is of type Q o R qngm < o
o) [ n,m
Therefore E = ngl mgl Ensm is of type Po( o The

same is true 1f E 1s a finite union of sets of type

Suppose 0 < o¢ < _/L and E = ngl E, ;owhere
each set E, 1is of type Q. . Then E = mgl Ensm .
Where each set Ensm is of type ch 5 o(nsm < ot o
7, B t tyad
Therefore E = A Engm is of type Q°< » The

same is true if E is a finite intersection of sets
of type Qo -
Theorem 3.4 For any ordinal < < /1. - the

union (intersection) of a finite number of sets of
tyre Q (P_, ) 1s a set of type Q , (P ) .

Proof: The theorem is true for o = 0 since
the union of a finite collection of closed sets is a
closed set and the intersection of a finite collection
of open sets is an open set. Suppose o 1s any
ordinal number such that 0 < « < /L .

Suppose E and P are two sets of type P_, -

o0
Then E = ".—{1 B, , where each set E, 1s of type
o

n

Q,,(n s Xy <, and F = mgl F, » Where each set
Fm i1s of type Q‘3 0 em < o Then
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o0

00
ENF = U pth (By NF) o Let X p,n= WaX [O(ns 61&17’

then by theorem 3.1 both ZFJn and Fm are sets of type

Qo(n m’ °(n9m < & , and by theorem 3.3, En N Fm
»

is a set of type Q‘xngmg anm < o Therefore
ENTF 1is a set of type ch o

Suppose E and P are two sets of type QO( R
Then by theorem 3.2, C(E) and C(F) are two sets
of type P_, . Therefore [G(E) N G(F)j is a set
of type P_ by the proof above, and by theorem
3.2 again, C [C(E) N G(Fﬂ =EBE UP 1is a set of
type Q. -

Now that the theorem has been shown true for
two sets;, the theorem can be proved for any finite
number of sets by using finite induction.,

Theorem 3.5 For all ordinals o < (1L o

every set of type P, (Q, ) 1s a set of type

Q a1 (Pocga)e

Proof : Suppose < < /L and E 1is a set
[~ -]
of type P, . Then E = nQ1 E,, where E = E for

each n, 1s of type Qo(+1 » Likewise, if E 1is
ol

a set of type Q_ , then E = ngl E,, where E = E

for each n, is of type PO( 1 °

Theorem 3,63 For << /L. , the difference

of two sets of type P is both a set of

type Pc(-n-l and a set of type Qo&-s-l °

Proof: Suppose S = E - P, where E and F
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are sets of type P_ , ¢ <L . Then

S=E NC(F) where E is of type P by theorem

AR 41
3.1 and C(F) is of type Q. by theorem 3.2.

But then C(F) 1is of type Pesl

and therefore S 1is of type R, 4

Also, E 1is of type Qu41 DY theorem 3.5, and C(F)

by theorem 3.5,
by theorem 3.4,

is of type by theorem 3.1, since C(F)

Qot-:»l’

was shown above to be of type Therefore S

Qo -

1s also of type by theorem 3.3.

Qo<+1
The same can be shown true for the difference

of two sets of type by taking set complements.

QO(
Theorem 3,73 If o < /). is any even (o0dd)

ordinal, Borel sets of type F _ are identical to
the Hausdorff sets of type Q_ (P_ ), and Borel sets

of type G are identical to the Hausdorff sets of

X
type P, (Q, ).

Proof: The theorem is true for o< = 0 by
definition of the two families of sets. To prove
the theorem for x < ] . assume the theorem is
true for all ordinals \ 3 < << o

Suppose e is an even ordinal, and set S 1is
<0
of type P, - Then § = nglsn’ where for each n, S
is of type Fo(ng o(n < ¢ . If o<n is even, S
will be of type Q ¢ by our induction assumption.
n

n
n

Therefore Sn will be of type Potneenl”

by theorem 3.5 If o(n is odd, Sy, will be of type

o, L < X
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°<n’ a(n < s by our induction assumption. In
any case S 1s of type

P

Qo -

If o 1s even, and T is of type then

Qo >

o
T = nngn’ where for each n, T is of type P"'\n’

n

°<n < o o If °<n is even, Tn will be of type

Go( by our induction assumption. Therefore T
n

will be of type PF

n

o_+1° o+l < o , by theorem
2.7, If O(n is odd, Tn wlll be of type Fo(n,
°<n < o« , by our inductlion assumption., In any

case T 1is of type F

d -1
Suppose e 1is an odd ordinal, and set S 1s
o0
of tyre F_, . Then S = n":jl ne Where for each n,
S, 1s of type Fo(n,, 0<n< x ., If <, 18 odd,
Sn will be of type P, by our induction assump-
n
tion. Therefore S, will be of type chn*l, o, +1 < e,
by theorem 3.5 If O(n is even, Sh will be of

type Q < * o(n < o s Dby our induction assump-
tion. Innany case S 1is of type Po( °
A set of type PD( is shown to be of type F,, »
if exX 1is an odd ordinal, by similar reasoning.
Suppose = < S is any even ordinal and S
1s a Borel set of type G, . Then by theorem 2.3,
C(S) 1is of type Fo¢ + By the first part of the
proof C(S) 1s of type Q¢ . Therefore by theorem 3.2
S is of type Poe o Likewise, a set of type P, is

shown to be a Borel set of type Ggoe o for any even
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ordinal o< < S .
Similarly, it can be shown that the sets of type
Qo( - and _the Borel sets of type G°< are identical,
for any odd ordinal o < [l ,by taking complements.
Hence the theorem is true for all ordinals

=< < [fL by transfinite induction.
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CHAPTER IV

BAIRE FUNCTIONS

The Balre functions are a class of functions
which are defined in an analogous manner to the Borel
sets., It will be assumed throughout that we are work-
ing with real-valued functions defined on a metric
space, unless otherwise stated.

Definition: A function 1s a Balre function of

type fo if and only if it is a continous function,

A function is a Baire functlion of type £ if and

1
only 1f it is the 1imit of a convergent sequence of
continuous functions. Suppose that o< /L , and
that Baire functions of type fé? have been defined
for all ordinals @B < e , Then a function is a
Baire function of type £, 1Iif and only if it 1s the
limit of a convergent sequence of functions, each of
type f@ for some S £ X . We note that all of
the functions of the convergent sequence need not be
of the same type. By transfinite induction, this de-

fines Balre functions of type £ for all ordlnals

= < SL .

Theorem 4.1: For every ot < JSfL , every

o< ?

function of type £ e is also a function of type

:E"__J< if G < X ,

Proof: Suppose f(x) 4is of type f@ , B <</,
—34_
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Then f(x) 1s of type f°< since f(x) =n%§Ebfn(x)’
where fn(x) = f(x) for each n,

Theorem 4,2: For every o <_/) , the sum

and product of two functions of type £ A are Balre
functicns of type fd °

Proof': The theorem 1is true for o = O since
the sum and product of two continuous functlons are
continuous.

Consider X< _{)] =and assume the theorem is
true for all ordinals B<x . If f(x) =and
g(x) are both of type fy » then f(x) =ngi&fn(x)
and g(x) = n:L}g gn(x) where, for each n, fn(x) is of
type fmn, o, <X , and gn(x) is of type fﬁn,

@n< = , Let 5\31 = max( X5 (:)’n) for each n,.

Since U‘n < = for each n, by our induction

assumption each function i‘n(x) + gn(x) or
£ (x)°g, (x) 1is of type £ B 0 P, < A .

Since f(x) + g(x) =nj;;g1° Efn(x) + gn(xﬂ and
f(x)°g(x) =nJ£_g [fn(x)"gn(xﬂ , 1t follows that the
functions £(x) + g(x) and f£(x)°g(x) are both
Baire functlons of type f_, , X <_1) .

Therefore, by transfinite induction, the theorem
is true for all ordinals o < _/L °

Theorem 4.,3: For every ordinal o <_/L

the difference of two functions of type fa( is a

Baire functlion of type fo( o
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Froof: The theorem is true for o = 0 since the
difference of two continuous functlions is a continuous
function., Consider any ordinal <X , 0 < e < ./ ,
Suppose f(x) and g(x) are both of type £ _ .
Since any constant funetion 1s contlnuous, -1 1is of
type fo o By theorem 4.1, -1 1is of type fc( o
Hence -g(x) is of type f, by theorem 4.2 ., It
then follows that f(x) -g(x) 1is of type £, by
theorem 4,2 .,

Theorem 4,4 For every ordinal o < /L ,

if f£(x) 1is of type £_, then Jex)] 15 of tyve
Lo o
Proof: Consider the Baire function f(x) of

tyre £, x<_{] . If =0, £(x) 1is a contin-

uous function., By definition this means given any

x, and & 7 0 there exists some d > 0 such

that if d(x,x,) < 4 then [£(x) - i‘(xo)l < & .

Hence “i‘(x)) - ]f(xo)” < If(x) - f(xo), < &

and the function If(x)' is also a continuous

function. Therefore the théorem is true for o = 0 ,
Assume the theorem is true for all ordinals G <X .

If f(x) 1is of type f_ , o¢ < _(). , then

f(x) =n%3£gfn(x) where for each n, fn(x) is of type

%%n; &, < KX . Then by our inductlion assumption

each function ’fn(x)‘ is of type f, , X, < X .

But ,f(X)l = ln%igafn(x)l = plim 'fi(x)l , therefore
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| f(x)’ is of type fd . Therefore by transfinite

induction, the theorem is true for all ordinals & <_f) .

Theorem 4.5: For every ordinal o < _f1 ’

if f£(x) and g(x) are of type f_ , then
max [f(x),g(x_)] and min [g(x),f(x)_] are of type
fo( .

Proof: By theorems 4,2, 4,3, and 4.4 the func-
tions f£(x) + g(x) and [f(x) - e(x)] are of type
fo,\ , A< . . Hence the functions max [f(x)gg(x)j =
1/2 [f(x) + g(xﬂ + 1/2 ,f(x) - g(x), and
min [f(x),g(x)] = 1/2 [f(x) + g(x_)] -1/2 I i‘(x)-g(x)l
are of type f_, , X <_f] , by theorems 4,1, 4.2,

and 4.3.
Theorem 4,63 For every ox < _/L , 1f f(x)
is of type foc and never equal to 0 , then -fg('ﬂ

is of type f_, .

FProof: The theorem 1s true for o = 0, as the
reciprocal of a nonzero continuocus function is a con-
tinuous function. Consider o < _/] , and suppose
the theorem is true for all ordinals B < o

Suppose f(x) 1s a Baire function of type foe s
f(x) ;& 0 for all x. ZITet Q(x) = [f(x)] 2 | Since
f(x) # 0 for all x, Q(x) > 0 for all x., Also,

Q(x) 1is of type £ o by theorem 4.2 . We shall
show that fz}(-i'f is of type I">< » and hence T:TLE')'

is of type £, , by theorem 4.2, since
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Since Q(x) 1is of type foe » QUx) =nJ:>i1;10fn(x)

where, for each n, fn(x) is of type f_, , o < o
n
Let gn(x) = max Eﬁ‘n(x),, %jg then gn(x) > 0 for
all x and gn(x) is of type f_, ,o¢, < ¢ , by
n
theorems 4.1 and 4.i . A4lso, il];}& gn(x) = max [Q(x) .
OJ = Q{(x) and oET = n&%m) Wwhere, for each n,
gn(x) 2 0., But by our induction assumption each

1
funection m is of type fo(n, o(n < o , There-
fore the function ?,2_(%)' is of type f°< °

Hence T'é_)' is of type f_ , and the theorem

is true for all ordinals x < L by transfinite
induction,

The following lemma will be needed to prove
theorem 4.7.

Lemma 4,1: For every ordinal o¢ < /L , if

f(x) 1is of type £ o on a metric space A and

If(x)l <k for every x & A, k> 0, then f(x) =
n];)i]él‘ fn(x), where each function fn(x) is of type
fx s, <o , and [f (x)] £k for every x € A.

n
Proof: If the function f(x) 1is of type

o
each n, gn(x) is of type f , o, < X ,

f , x < L , then f(x) = n];:’lg gn(x) where for

n

For each n define hn(x) = min [gn(x)9 k]
and fn(x) = max Ehn(x)9 - kj for k > 0., Then by
definition fn(x) < k and fn(x) 2 =k, therefore
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Ifn(x)’ < k for every x £ A. By theorems 4,1

and 4.5 each function fn(x) is of type f s X, <X
n

Now f(x) = n]_.i.rgo fn(x) if for every £ > 0 and

(- 4

every X, € A there exists some positive integer XN
depending upon Xyo such that 1f n > N +then
[ £.(x) - 2(x)] < € .

Suppose any £ > 0 1is given, Then since
f(x) = n]_.é.xgo gn(x), for any x=x, there is some

N > 0, depending upon x such that if n > N then

o?
/gn(xo) - f(xo)/ < £ . Therefore i‘(xo) - £ &
g,(%,) < f(x,) + £ or -k -g < g (x,)< k + &
since /f(xo), < k.

Suppose that gn(xo) < k, then hn(xo) = gn(xo)
by definition, and [h_(x)) - £(x )/ < € .

Suppose instead that gn(xo) > k, then by
definition hn(xo) = k , and since If(xo)' <k,
0 S h (x)) - £(x,) < g,(x,) - f(x,) < & o

Hence Ihn(xo) - f(xo)l < &£ for n > N and
for any value of gn(xo) R

Suppose hn(xo) 2 -k , then by definition
fn(xo) = hn(xo) , and
lfn(xo) - f(xo)l = ’hn(xo) - f(xo)' < & .

Suppose instead that hn(xo) < -k, then by
definition f_(x,) = -k , and since [f(x )| <k,

0 2 f,(x)) -~ £(x,) >n (x;) - £(x,) > -& -

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



=40~

Therefore li‘n(xo) - f(xo)l < £ for n >N
and for any value of hn(xo) . Therefore nJ;,i..xgofn(x) =
f(x) at X, s and therefore at any point x € A
since X, Wwas arbitrarily chosen,

Since the sequence {fn(x)} was constructed so
that Ifn(x)l < k for all x £ A , for each n, and
each function f_(x) 1is of type f‘,(n9 x, <X ,
the lemma is proved.

Theorem 4,7: For every ordinal o < /) 5

the 1limit of a uniformly convergent sequence of func-
tlons of type fcx. s, on a metric space A, 1is a Balre
function of type f,>< R

Proof: TLet {fn(xﬂ be a uniformly conver-
gent sequence of functions of type fd , Where
f(x) = nl.}& fn(xJ « Let any E > O Dbe glven,
Since {fn(x)} is uniformly convergent, there
exists some N > 0 such that for every n 2 N,
| £(z) - fn(x) I < E/3 for every x € A,

Suppose o = 0 and n 2> N, DNow since each
function fn(x) is continuous on A, if a £ A there
exists a & > 0 such that if d(x,a) < d then
IfN(x) - fN(a)l < €&/3 . sSuppose d(x,a) < s,
then
If(x) - f(a)l < | £(x) - fN(X), + IfN(x) - fN(a),

+ [£y(a) - £(a) |
< &/3+ &/3+ E/3= & ,
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This shows that f£(x) 1is continuous at a g A and
therefore continuous on the space 4., Therefore the
theorem is true for & = 0,
Now suppose O < o < _Q , and f(x) = plim
-»> 0
fn(x) uniformly, with fn(x) of 'type f o for

each n., Choose a convergent series Zl k, of

positive real numbers, say k; = 1/2 , such that

Ky 41 < k;, for all i. Then j_11m ky = 0, Now,

from the definition of uniform convergence, for each
k; > O there exists some m, > 0 such that if

n,m 2 m, then Ii‘n(x) - fm(x)l< k, for all =x&A,

or /fn(x) - fmi(x)l < ky; for all n 2 m, and

for all x £ A, where < My for all positive

Ty
integers 1.

We thus define a uniformly convergent subsequence
[fmi(x)} of (i‘n(x)} where j_Zl..»i&;’ £ (x)
lim £(x) = £(x). Let {fmi(x)} - [gi(x)} ,

then f(x) = i:!._’ilélo gi(x). -

Now, f£(x) - g(x) =& [gy,(x) - gn(XD
where, for every . n and all x E 4, Ign+1(x) - gn(x)’ <

kn « Hence, by the Welerstrass M-test, since 5:1 ki

was constructed to be a convergent series of positive
[~

constants, the series n;_-l ]gn+1(x) - gn(x),

converges uniformly to f(x) - gl(x), Furthermore,

since {fmi(x)} = [gi(x)} , each function gi(x)
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is of type £ , and the function gn+1(x)- g, (x) 1is of

oA

type £ for every n by theorem 4.3.

ok
Therefore, by lemma 4.1, since lgn+1(x) -gn(x) ,

< Ky
{gn’m(x)} such that lgngm(x)l < k, for every

m and x £ A, and gn+1(x) - gn(x) = m];i'lf,logn,m(x)

for every x £ A, there exists a sequence

where each function g (x) 1is of type £ ’
O(n,m < X o "

Now define h.m(x) = nél 8, m(x) and let
- 2

o -
m = Bax [‘xl,m,.’ °<2,m A O(m,m] - Then, by
theorem 4.2, for every value of m, hm(x) is of

type £, , where & < X .
m

(- -]
Let £ > 0 be given., Since ifl ki is a con-

vergent series there exists some M > 0 such that
o0
§M+1k‘n < &/3. Therefore for every x & A,

M
l£(x) - &y (x) - & Loy (x) - g, (x| ‘_
Lnél [gy 41 (x) - gnf")] - 2y [8,,7(x) - g, (x)] ,
< rZMel lgn+1(x) - 8n(X)I.

<nfma Bn < E/3.

m
Now suppose m > M, then since h (x) = 3, gn’m(x),

M m
lhm 11(1X) - nél g&,m(x)' Sn§M+1 lgn,m(x),
E/3 for all x € A.

< n§M+1 k:n S n‘-_?-M-l-l kn <

Also, for every x £ A,
M

M
'nél [gn+1(x) - gn(x)J - nél gngm(x)l
='n2_1 [E041(x) - gy(x) - gn,m(x)]I
< n‘g Ign+1(x) - gy(x) - gn,m(x)’ .
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Consider X, & A, ‘then since for each n
gn+1(x) - gn(x) = ml.;',l,na gn’m(x), there exists some

¢, > O such that if m 2 c,, then

[€041(%o) = 8,(x,) = & n(x)[< €/3M zor
A =1, 2,06y M. ILet M' = max [cl, Cphs eoe s ch’

then m 2 M' implies m zcn for n=l, 2,ce.5 M.
M
Teke m > M', then 2 Jg,,1(%) - gy(x,) - &y p(x.)]
< M= = € and
' M M T 73 M
21 [ega ) - gy(x)] - &) g, n(0)] < €/
at X, E A.
Now, for x & A, and M > O and M'> O de-
fined as above, 1f m > max [M,Mﬂ s then
|£(x,) - gy (x4) - hm(ﬁo)l
= If(x ) = ey (xy) - nél [gn-;-l(xo) - g’a(xo)]l
+ln-1 [gn+1(x ) - gn (%, )—7 - 121 gn,m(xo)’
"',h (X) n-l nm(x),
L &3+ E/3+ E&/3= E.
This implies f(x) - g‘(x) = mJ:}I&hm(X)

where each function hm(x) is of type £ ,
m

Therefore f(x) - gl(x) is of type fogx , X< ,

o(m<0( .

and by theorem 4.2, since gl(x) 1s of type f_,

f(x) is of type fote »

Definition: If a function f(x) is defined on a

set S, then f(x) 1is lower-semjcontinuous at ¢ £ S

relative to S 1f for every &£ > 0 there is a >0
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such that if x € S and d(x,c) < & then f(x)
> f(e¢) - £€ . The function f(x) 1s upper-semi-

continuous at ¢ € S relative to S if for every

& > 0 there isa § > 0 such that if x £ S
and d(x,c) < & then f(x) < f(c) + & .
Definition: The function f(x) is said to be lower-

semicontinuous (upper-semicontinuous) on § relative

to S if it is lower-semicontinuous {(upper-semicon-

tinuous) at every x £ S relative to 8.

The orem 4,8: If [fn(x)} is a nondecreasing
sequence of continuous functions on a metric space A,
and 1f for each =x & 4, {fn(xo)} is a sequence
which is bounded above, then the sequence {;‘n(x)}
converges to a function f(x) which is lower-semi-
continuous on A,

Proof: Suppose {fn(:x:)} is a sequence satis-
fying the conditions of the theorem. Then, for any
c £ A, {i‘n(c)} is a nondecreasing sequence of real
numbers,bounded above, and f(c) =nZ_L_’i21‘fn(c) exists .

Now, to show f(x) is lower-semicontinous at
¢c & A, let € > 0 be given, then there is :some
N > O such that for all n > N, 'i‘n(c)-f(c)l,‘( &/2,
so that fN(c) > f(c)} - & /2 since £f(c) =n3:g.210fn(0)-
Since fN(X) is continuous on A, there is a é > 0
such that if d(x,c) < §  +then |
’fN(x) - fyle) | < €2, 1.e. fo(x) > fyle) - &/2.
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Hence, for any & » O there exists some
§> 0 and some N > O such that if d(x,c) < S

then fy(x) > fy(c) - E/2 > f(e) - E&/2 - &/2 =
f(e) - £€. But since {fn(x)} is a2 nondecreasing
sequence, f(x) Zi‘N(x) and f(x) > f(e) - & for
all x £ A such that d(xec)< §. Therefore f£(x)
is lower-semicontinuous at ¢ & A, and therefore
lower-semicontinuous on A,

Theorem 4.9: Every lower-semicontinuous function

f(x) defined on a metric space A and bounded below,
1s the 1limit of a nondecreaslng sequence of continuous
funetions on A.

Proof: Suppose f(x) 1is bounded below and lower-
semlicontinuous on a metric space A, Define
gn(x) = g.1l.b. [f(y) + néd(x,yi] for every positive
integer n, where Yy varles over the entire space A,

To show that each gn(x) is uniformly continuous,
consider any two points xl,x2 &€ A. Then
8,(%;) = g.1.b, [}(y) + n’d(xl,y{7

< g.l.b. [}(y) + n*d(x,,x,) + n‘d(xg,y27

= g.1l.b. [f(y) + n“d(x29y) + n’d(xl,xe)

= g, (x5) + nd(xy,x,) .

By interchanging X, and Xny WE obtain
By (%5) € 8, (x7) + n®d(xy,x,)

Therefore

| g, (%q) - sn(xg)lf nd(x,,x,) for each n.
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Let & > O be given, then choose 4 = & /n.
Now, if d(xl,xg) < § , then Ign(xl) - gn(x2)/
€ n§ = &. Therefore for each n each function
gn(x) is uniformly continuous on A, and therefore
continuous on A.
Next, we note that [gn(x)} is a nondecreasing
sequence, 1l.e. gn_l_l(x)e_ gn(x) for 2all n, since
Bn4y (X) = g.1.0, [£(y) + (n+1)°d(x,y)j
= g.1l.D. [_-f(y) + n°d(x,y) + d(x,y)j
2 g.l,b, [f(y) + n"d(x,y)]
= gn(x) .
Finally, we must show that f£(x) = _1lim g_(x).
This will be done by showing the following:
(r) £(x) 2 n]_‘)ifé gn(x) for all x € A, and
(2) f(x) < n]_.;.g gn(x) for all x & A,
Proof of (1): For every n, gn(x) = g.l.b. [f(y) +

nfd(x,y_)]_f f(x). Therefore f(x) 2 plizm g, (x)e
Proof of (2): Suppose £ 2 0 1is given.

Since | f(x) 1is lower-semicontinuous on A, for any

X, € A there exlsts some 4 > O such that if
a(x,,y) < & then £(y) > f(x,) - & .
Hence g.1.b, [f(y) + n'd(xo,y)] 2 fr(xo) - &
if d(xo,y) < § . since f(x) 1is bounded below,
there exists some real number M such that f(x)p M
for every x £ A. Now, there exists some N > O such

that M +nd > f(x,) -& for all n > N,
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Hence if n > N and d(x,,¥) > § then
£(y) + n*d(x,,y) > M + nd > f(x,) - £ . Hence
gl.be [£(y) + moa(x,,y)] 2 f£(x,) -& 1f

d(x,,y) 2 § and n > N.

Therefore gn(xo) =g.l.b. [f(Y) + n-d(XOJﬂ
2 f(xo) - & if n > N. Therefore n:g}i g, (x) > £(x)
for all x £ A.

It follows then that f£f(x) = n];}g gn(x),

Definlition: For any real valued function f£(x)

defined on a metric space A, the set E[f(x)>1§]
(E[£(x) < k] ) 1s the set of all x £ A such that
f(x) > k (£f(x) < k).

Theorem_ 4.,10{(a): The function f£(x) defined on a

nmetric space A 1is lower-semicontinuous on A rela-
tive to A I1f and only if, for every real number k,
the set E [f(x)> k] (E [£(x) < k] ) is open
(closed) relative to A.

M: Suppose f(x) 1s lower-semicontinuous on
A relative to A. Let k be any real number and
suppose c £ A, with f(c)_ > k. There is some £ 2 O
such that f(¢) - €& > k. Since f(x) 1is lower-
semicontinuous at ¢ £ A relative to A, there 1s some

§ > 0 such that if d(x,c) € 4 then f£(x)> f(c) -&.

Hence there 1s a neighborhood N(c, & ) such that for
every x £ N(c, § ), £(x) > f(¢) - & > k., Thus
E [i‘(x) > kj is open rela“;.ive to A,
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Suppose the set E [f(x)) 19 is open relative

to A. for every real number k. Let ¢ £ A and

£ > O bve glven. Then since E [f(x) P f(e) _gj
is open relative to A, there 1s some d > 0 such
that for every =x € N(c, d ), f(x) 2 f(c) - £ .
Therefore f(x) is lower-semicontinuous at ¢ £ A
relative to A, and therefore lower-semicontinuous
on A relative to A,

Since E[f(x) < k| =0(E [£(x)>k] ), and
the complement of an open set 1s a closed set, it
follows that f(x) 1is lower-semicontinuous on A
if and only if for every real number k the set
B [f(x)S.kj is closed relative to A.

Definition: For any real vlaued function f(x)

defined on a metric space A, the set BE [f(x) < kj
(B [£(x) > k] ) 1s the set of all x £ A such that
£f(x) <k (£(x) 2 k).

Theorem 4,10 (b): The function f(x) defined

on a metric space A 1is upper-semicontinuous on A
relative to A 1if and only if, for every real number
k, the set E [f(x) < lgj (E [i'(x) > k.j } 4is open
(c losed) relative to A.

Proof: The proof of this theorem is similar to
that of theorem 4,10 (a).

Theorem 4,10 (c): A function f(x) 4is con-

tinuous on a2 metric space A relative to A if and

only if, for every real number k, the sets E [f(X) ’ Q
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(B [£(x) <k]) and E [f(x)< k] (E[f(x) 2x] )
are open (closed) relative to A,

Proof: The proof of this theorem is an immediate
consequence of theorems 4,10 (a) and 4.10 (b) since
a contlnuous function is one which is at the same
time lower-semicontinuous and upper-semicontinuous.

The following theorem is a generalization of
theorem 4.9.

Theorem 4,11: Every lower-semicontinuous func-

tion f(x) defined on a metric space A (bounded
or not) 1s the 1limit of a nondecreasing sequence of
continuous functions on A.

Proof: Suppose f(x) is unbounded and lower-
semicontinuous on A,
f(f%(x), . Then lQ(X)|< 1,
£ [a(x) > k| 1s empty if k > 1, and E [Q(x)>k] =
A if k £ -1, Now, for 0 < k<1,

Elox) >x] =& [Fx) >k +x-[2(x)]]
= E [£(x) - k*£(x) > k]
= E [f(x)>—I—1f—E]
since k 2 O implies Q(x) > 0 and £(x)>0.
For -1< k<0, and -1 <€ Q(x) <0,
E[a(x) >X] =E [£(x) + kr£(x) > x]
= B [f(x) >-i——fi—E__| since Q(x)< O
implies f(x) < O. Therefore, for -1< k < 0, and

la)l <1, Efe®) > K] =B [rx) > —5g]

Define Q(x) = T
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since f(x) > 0 if Q(x) 2> 0, by definition,

But since f(x) 1is lower-semicontinuocus on A,
E [Q(x) > g = E[f(x) > ]_—]’_C—Ej is open relative to
A, for 0< k<1, and E [Q(x)> k] = E[f(x) >
T—E—E] is open relative to A, for -1< k< 0, by
theorem 4,10 (a). Therefore E [Q(x) 2 Iﬂ is open
relative to A for all real numbers k. Therefore,
by theorem 4,10 (a), Q(x) 1is lowersemicontinuous
on A.

Now, by theorem 4.9, since Q{(x) 1s a bounded
lower-semicontinuous function on A, Q(x) 1is the
limit of a nondecreasing sequence [gn(x)j of
continuous functions on A, i.e. Q(x) = n:hig gn(x),
where for each n, gn(x) is continuous on A, and
gn+1(x) 2 gn(x) for all x & A,

Since {gn(x)} l1s a nondecreasing sequence,
gn(x) < Q(x)< 1 for each n. Define fn(x) =
max [gn(x), - Zg for each n. Then for each n,
fn(x) is continuous on A and -1 < fn(x) < 1.
Also, by definition, for all n, fn(x) > gn(x),
fn(x) < Q(x), and {fn(x?} is a nondecreasing
sequence since {gn(x)} is a nondecreasing sequence,
for all x €& A.

Since Q(x) = plim g,(x), for any given & 2 0
and x, € A there exists some N> O such that if
n> N then Ign(xo) - Q(xo)’ < £ , But since
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gn(x) < fn(x) < Q(x) for a8ll x€aA,

AUx,) - & < gu(x )< £ (x ) <Qx,) + &€, if n ) N
Therefore /fn(xo) - Q(xo)l < £ for n > N, and
Q(x) = ni&ﬁ fn(x) for all x £ A.

co
— 1 L ]
Now define Vi (x) = 1¢=Zn 2_1--11_4:]_. fi(x)
Since 'T_n_-l-I e f (X)/ S T%-I-I—-I-I for 1 =
2
n+1l, ooy and igh —I—E—I is a convergent series of

positive constants, then by the Weierstrass M-test,
the series defining vn(x) converges uniformly on A,
Therefore vn(x) 1s continuous on A for all n,
since each function vn(x) is the sum of a uni--
formly convergent serlies of continuous functions on
A.

Since {fn(x)} is a nondecreasing sequence

1 _
and since 151 —1 =1, we have for all n ma.nd all

1
& & vp(x) 2 43, "rl—'_r'f (x) = £,(x) * 4 & 57 =
1 —
fn(x) . But v, (x) < n 21 —vs) e Q(x)= Q(x) for a1l =n
and x & A, Therefore Q(x) = n]_:ég vn(x) , Since
fn(x) < vn(x) < Q(x) for all n =and all

X £4, and 1im fn(x) -;Q(x).. -

— l q — 1 L ]
also, v, 4(x) = 1§n+l SI-1 £y(x) = 42, 2{-n+I
fi-o-l(x)‘ Therefore vn+1(x) > vn(x) for all n, i.e.

since an(x)} 1s a nondecreasing sequence, so 1s

Suppose for some x_ £ A, vn(xo) = ~}, Then

fy(x,) = -1 for 1 =n, n+l, ..., which implies
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Q(xo) = - 1 since n:':;'gl., fn(x) = Q(x) for all x & A.
Thus we have a contradiction since IQ(x)/ < 1 for all
x € A. Therefore vn(x) > =1 for all n and 211 x & A,
Also, vn(x) < Q(x)< 1 for all n and all x £ A; there-
fore  |v (x)] <€ 1 for 811 n and a1l x £ 4.

Define Fn(x) = o

1l - /vn(x)l ’
continuous on A since vn(x) 1s continuous on A,

Then Fn(x) is

for all n. Furthermore, {Fn(x)} is a nondecreasing
sequence, Conslder the following cases:

> >
(1) sSuppose vn(x) 2 0, then vn+1(x) 2 0 and

vn(x) . Ivn_._l(x)l = lvn(x)I . vn+1(x). Therefore
Vna (%) - /vn(x), Vg1 (X) 2 v (x) - v (x) 'vn-c-l(x)l ’
v l(x) v, (x)
and Py (x) = 1= ln;m_l(x) [ =1 -n]vn(x)[ = Fplx) .
(2) Suppose vn(x) £ 0 and vn+l(x) > 0, then
v 1(x) v, (x)
Fra(X) = 1= ?;n_'_l(x)] 202 0 }nvn(x)] = Fp(x) .

(3) Suppose v, (x)< O and v, (%) < O, then
,vn.(x)l 2 'vn_‘_l(x)l and 1~ )vn+l(x)l 21- lvn(x)}

> 0, since {vn(xﬂ is a nondecreasing sequence.,

Therefore
1 < 1 vn(x)
L= ’vn+1(x)l -TI- ]vn(x)' and L- 'vn-!-l(x)[ Z
v, (x)

T = v, (x]] since v (x) < 0.

Therefore, since {vn(x)} is a nondecreasing

sequence, Fn+1(x) =
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vn+1(x) vn(x) vn(x)
T = [v, 1 (%7} Z 1= TVaal (X7 ] 2 = v 7 Fo(x),
where vn(x)‘< 0 and vn+l(x) < 0,

Therefore, {Fn(x)} is a nondecreasing se-

quence,

v, (x)
T ’Vn(x)' where

- Q(x)
[vn(x)l < 1. Hence n%}g,Fn(x) = T lé(x)l since

nﬁ}ﬁ vn(x) = Q(x). Since by definition Q(x) =

T3 ,f ’f._,){,T ; f(x) = Qx)-[1+ Jex)l] = a(x) +

Q(x)+}£(x)] = @(x) + lo(x)- £(x) where a(x!-|f(x)]=
’Q(x)’-f(x) since Q(x) and f(x) have the same

Finally, n%gﬂan(x) = naag

sign for all x & A. Therefore
a(x) = £(x) - le@)]-£(x) = £(x)-[1 - Ja(x)]]
and f(x) = ¢ 9(7%1x)’ for all x € A

Therefore  1im F (x) = £(x), where {Fn(x)}
is a nondecreasing sequence of continuocus functions
on A, and f£(x) is our original unbounded-lower-

semicontinuous function defined on the metric space A.
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CHAPTER V

RELATION BETWEEN BOREL SETS AND BAIRE FUNCTIONS

In this final chapter some of the important
relatlonships between Borel sets and Baire functions
will be discussed., It will be assumed throughout
that we are working in a metric space, unless other-
Wise stated. It will be convenient to make the
following definition.

Definition: For every ordinal o < _f1 5

a set S 1s of type 4 (th)

there is some Baire function of type fo( and some

real number k such that S = E [£(x) > k]
(=t [rx)2x] ).
Theorem 5,13 For every o¢<_/) , the com-

if and only if

plement of a set of type Ao( (Bo( ) is a set of type

o )
Proof: Suppose o < flL and S 1s a set of

tyre A_ . Then there is a Baire function f(x)
of type f“ and a real number k such that
S=E[f(x)>K] . But S=E[-f(x)<-k] and
c(s) = E[-f(x) > -kj . By theorems 4.1 and 4.2,

since f(x) 1is of type foo o -f(x) 1s a Bailre func-

tion of type f_, . Therefore c(s) is a set of type

Bo('

Likewlse, the complement of a set of type Bo(

w5l
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is a set of type Aoy =
The following lemma will be of use in the proof
of theorem 5.2,
Lemma 5,1: If f(x) = lim £, (x) on A, then

L d

E[f(x)> x] = lNglnNE[f(x)>k+-3=J
Proof s Suppose x_ £ A and f(xo) > k.

There exlsts a positive Integer m such that
1 -
f (xo) >k # £ . Since f(xo) = nj:,i%lofn(xo>
for each & = f(xo) - k - % > 0 there is some N2> O
such that 1f n > N then If(xo) - fn(xo), < &,

= 1
implying fn(xo) 2 f(xo) -& =k + = e Therefore,

o0 P o
1f x, & E [£(x) > k[ , then x_ & Y14 .
1
Elf,(x) 2k +2] . R

1
Suppose that =x & UlNlnNEEE (x)_{k«n--ﬁ]

where f(x) = lim £, (x} « Then, for some m > 0,
o 00

X&N!'_'ln,_NE[f(x)>k*lj and for some N > O,
°° 1

x & N E [f (x) 2 k +=] . This means x g E [£,(x) 2

k + —] for all n > N , and since f(x) = n]:}& fn(x),,
1
then x e E [f(x) 2k +2] < E[f(x))k_]

Therefore E [f(x) > g &1 ¥ 2 NE[f (x) 2

k“l‘%]o

Theorem 5.2: For every finite even (odd)

ordinal &X , every set of type A, is a Borel set
of type G, (F_ ) and every set of type B, 1is
a Borel set of type F_ (G, ) .

Prooef: The thecrem is true for o¢ =2 0, since
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by theorem 4,10 (¢), a function f£(x) 4is continuous
if and only 1f for every real number k, the set of
type AO is open, and the set of type Bo is closed.
Assume the theorem is true for all ordinals @B < o¢
where & 1s any finite ordinal.

Suppose flrst that X 1is some finite odd
ordinal. Iet S be any set of type A, . There
is then a function f(x) of type £ x and a real
number k such that § = E [f(x) > k] , where f£(x) =

n]_:’ig fn(x) , Where for each n, fn(x) is of type

fi s fxn < e ., By lemma 5.1,

n
v U . L <
s=, U W OF[r (x)2>2k+3] . since X <x-1

for 211 n, each fn(x) is a Baire function of type

£ Then by our inductlion assumption, since & - 1

A -1"

1
is even, each set E [fn(x) >k + -ﬁ] of type Bo( _1°

is a Borel set of type Fe1 * By theorem 2.4 the inter-

section of a countable number of Borel sets of type

Fo( -1 ls a set of type F where o< -1 is even,

< -1
Therefore set S, as a countable union of Borel sets
of type Fo&—l” where ¢ 1s o0dd, is a Borel set of
type F_ -

Suppose S 1s any set of type B, where o
is some finite odd ordinal., By theorem 5.1, C(S) is

of type A Therefore by the first part of the

N <

proof, C(S) 4is a Borel set of type Fo( o Then by
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theorem 2,3, § 1s a Borel set of type Goe o

Suppose that o« is some finite even ordinal

and S 1s a set of type A Then, as in the first

“ L 3
part of the proof, for f(x) = n%iﬂ fn(x) of type

o o o0

1
foe » 85 = Ui % ngNE [fn(x) >k + Ej , Where each

Qn(x) is of type f But now & -1 1is odd and

X -1°

each set E [fn(x) >k + %j of type B is a

K -1’

Borel set of type G by our induction assump-

X -1
tion., By theorem 2.4 the countable intersection of
Borel sets of type Gb(—l is a Borel set of type

G since &X-1 1is odd. Therefore set S, as

A-1?
a countable unlon of sets of type Gb(-l’ where X
is even, is a Borel set of type Gc< o

Suppose S 1s a set of type B where <
1s some finite even ordinal. Then by theorem 5.1,
C(S) is of type Ay - Therefore, by the above part
of the proof, C(S) is a B;rel set of type Gge o
Therefore S 1s a Borel set of type Fe( by
theorem 2.3 .

Therefore the theorem is true for all finite
ordinals o¢¢ Dby finite induction.
The following lemma will be needed for the proof

of the converse of theorem 5.2 .

Lemma 5,23 For every ordinal o < /L ’

i1f S 1is a set of type A or B there 1s a

0( o
in a metric space A,

(-4

Balre function IL(x) of type Tl
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such that L(x) =1 for every x &£ S8 and L(x) = 0
for every x & 0(S).

Proof: Suppose x < /L and S 1is a set

of type A Then there is a function f(x) of

o °
type f“ and a real number k such that

S =E [f(x)> kj . Define g(x) = f£(x) -k. Since
£f(x) 1s of type f, » SO is g(x) by theorems
4,1 and 4.3, Purthermore, S = E [f(x)) l_g =

E [g(x) > CD o HNow define h(x) = max [g(:v:.)9 0_7 o
Then by theorems 4.1 and 4.5, h(x) 1is also a Baire
function of type £, . Finally, define fn(x) =
min [neh(x),lj . Then fn(x) is a Baire function
of type £ o for each n, and I(x) = n]_._;tg fn(x)
is a Balre function of type £ for all x & A.

o< +17?

Consider x g S, then g(x) > 0, h(x) = g(x) ,
and fn(x) = min En,g(x),l] o Therefore
L(x) = n];):l.exg fn(x) =1 for all x & S. On the other
hand, consider x & C(S) . Then g(x) € 0, h(x) = 0,
and :t‘n(x) = min [Ogl] = 0. Therefore
L(x) = n:l_.’:l.g’nQ fn(x) = 0 for all x & C(sS) .

Suppose now that S 1s a set of type B,
where o < 1. . Then by theorem 5.1, C(S) is of
type 4, - Therefore, by the preceding part of the
proof, there is some function g(x) of type fg g
such that g(x) =1 for all =x £C€(s) and g(x) =0

for all x £ S. Hence IL(x) =1 - g(x), which is also
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of type ¢ is 1 for all x££ S and 0 for

o +1°
all =x £ 0(8).

Theorem 5,3: For every finite even (o0dd)

ordinal o , every Borel set of type G, (Fo( )
is of type A and every Borel set of type P (G“)
is of type ZB,>< o
Froof: The theorem is true for o = 0, for
consider any open set E 1in a metric space
A. For any x & A, define f£f(x) = gol.b. [d(xgyﬂ
for all y & CG(E), where f(y) = 0 for all y g C(E)
and f(x) > O for 2ll x £ E. Therefore E = E[f(x)) (i].,
Now for any given & >*0 and X, & A, choose S =€,
If x & N(xo,, $§ ), then d(x,xo)< § = £, There-
fore f(x) =0 and 0< f(xo)< E if x & C(E)
and x & E, f(xo) =0 and 0 < f(x)< & if
x€& E and x, & C(E), and f(xo) = 0 and f(x) =0
if x £ O(E) and X, & C(E)s For x& E and
X, & E, we have f(x) ¢ f(xo) + & since
d(x,y) < d(x,xo) + d(x ,¥y) < & =+ d(x,,y) for all
y € 6(E). Also, if x& E and x & E, f(x)> £(x,) - &
since d(x,y) 2> d(xo,y) - d(xgxo) > d(xos,;Y) - &
for all y & C(E). Therefore, f(x) 4is continuous
on A since for any £ 2 0 and any x & A if
x € N(x_,, § ) where § = & then |f(x) - f(Xo)) <E&,
Therefore, every Borel set of type G is of

o)

typre A

o» and by taking complements it can be shown
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that every Borel set of type Fo 1s of type Bo’

with the use of theorems 2,3 and 5.1, Assume the
theorem is true for all ordinals G < o¢ , where
K 1s a finite ordinal,
Suppose X 1ls a finite odd ordinal., ILet S
be any Borel set of type Py 5 then S = °Uo T
Wwhere for each n, Tnis of type FD(_1° By our induc-

tion assumption, each set Tn is also of type B°< ~10

since A -1 1s a finite even ordinal, Therefore,

by lemma 5.2, for each n there is some function

- 1
- such that fn(x) =% for
every x £ T, and fn(x) = 0 for every x &C(Tn) .

o0

Let f(X) =nn§1fn

where sn(x) = i;:“.l.fi(x)° Now for acr;y x & A,

i’n(x) of type £
(x), L1.e. f(x) = piin s, (x)

lfn(x)l < :ELT for all n, where nézl -i-ﬁ— is a con-
vergent geometric series of positive constants.
Therefore, by the Welerstrass M-test, f(x) is a
uniformly convergent series for all x &€ A, There-
fore the sequence of partlial sums Esn(x)} is
uniformly convergent on A, Since each fn(x) is

n
a Balre function of type f_, , and sn(x) = izzlfi(x)”

each sn(x) is a Baire function of type f£f_ by
theorem 4.2. Therefore, by theorem 4.7, f(x) 1is a
Baire function of type fo( since it is the limit of

a uniformly convergent sequence of Baire functions of

type f,, . Finally, s =E[f(x) > _o:] since
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S = nngn and f(x) = nélfn(x) where each fn(x) >0

for all x £ T, and each fn(x) = 0 for all
X € G(Tn) o« Therefore the Borel set S of type

Fo‘ s Where o is a finite odd ordinal, is a set of

type Ao( .
Suppose S 1s a Borel set of type Go( where ox
is a finite o0dd ordinal. Then C(S) is a Borel set

of type Fo( s and by the first part of the proof

also of type Ao( o Therefore & 1s of typs B

by theorem 5.1.

o

Suppose next that o 1s a finite even ordinal.

[~ -]
Let S Dbe a Borel set of type G°< : then S = nU:lSn
where each s11 is of type Ga(-l" One now proceeds
as before teo show that every Borel set cf type G‘><
is of type Ao‘, and every Borel set of type Fo(

is of type By » if o is a finite even ordinal.
Therefore the theorem is true for all finite
ordinals X by finite inductioen,
Theorem S5.4: For any finite even (o0dd) ordinal

X , a set is of type Ao( if and enly if it is
a Borel set of type G, (Fo( ), and a set is of type
B if and only if it is a Borel set of type

¢
Fo (Go )o
Proof: This theorem is a combination of

theorems 5.3 and 5,2 .

Theorem 5.5 If f(x) 4is any Baire function
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of type f_ , where o< 1is any finite even (o0dd)
ordinal, then for every real number k the sets
E[f(x) D 1_:7 and E [f(x) > 19 are Borel sets
of type G,, (Fo( ) and F (Go( ) respectively,

Proof: Suppose e is any finite even (0dd)
ordinal, and f(x) 4is any Bailre function of type fox o
Then for every real number k the sets E [f(x) > g
and E [f(x)%_ 1E7 are of type A_, and B,
respectively. But by theorem 5.2, this means that
for every real number k the sets E [f(x) > kj and
E Ef(x) _>_ kJ are of type G, (Fo( ) and
F (G“ ) respectively.

The following lemma will be needed for the

proof of the converse of theorem 5.5,

Lemma 5,3: For o< /) , if E and F

are disjoint sets of type ch in a metric space A,

then there 1s a Baire function g(x) of type £
such that g(x) =1 on E, g(x) = 0 on F, and
0 €g{x) €1 for all other x & A.
Proof: Suppose o <L , and E and F
are two disjoint sets of type Bo( o Then there
are Balre functions fl(x) and fg(x) of type f“
such that B =E [f,(x) < 0/ and F=E [£,(x) £ o/ .
The reason for this ig that if a set S 1is of type

B then there is some Baire functicn f£(x) of

d L4

type £ ol and some real number k such that
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S=E [f(x)2k] . Then S=E[f(x)-k>0] =
E [k - f(x) < Cﬂ where k -f(x) 1is a Baire function

of type £, by theorems 4.1 and 4.3,

Let gl(x) = max [fl(x),oj and ge(x) =
max [:f2(x),(ﬂ . If X gE, then x & C(P), and
gl(x) = 0 and gz(x)> 0. If xg F, then x & C(E),

and ge(x) = 0 and gl(x) > 0. If x¢ E and

X éF, then x QEJ(E) 7} C(Fﬂ and gl(x) > 0 and

gz(x') > 0. The function gl(x) + gg(x) > 0 for
85 (x)

gl(x) + 82(X)

by theorems 4.1, 4.2,

8ll x ¢ A. Let g(x) = , which is a

Baire function of type 1,
4.5, and 4.6 . We note that g(x) = 1 for all
x& B, g(x) =0 for 2all x g F, and
0 < g(x)< 1 for gll other =x &£ A.

We are now ready to prove the converse of

theorem 5.5 .
Theorem 5,6: If o is a finlte even (o0dd)

ordinal and the function f(x) is such that for
every real number k the sets E [f(x) > Ia and
E [f(x) 2}_57 are of type G, (Fo( ) and F o (GD( ),
respectively, then f(x) is a Baire function of
type fb( .

Proof: Suppose the sets E Cf(x) > g and
E [f(x) 21_:7 are of type G ) and F,, (G

(F )a

T~ o (-4

respectively, for every real number k and for

some finite even (o0dd) ordinal ¢ . Then by theorem
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5.3 the sets BE [f(x) > lﬂ and E [—f(x) > 1_c7 are
of type Aa( and B“ respectively, for every
real number kX, The sets E [f(x) < kj for every
real number k, as complements of sets of type A, s
are of type B o¢ by theorem 5.1,

Suppose first that 0 < f(x) € 1 for all x
in the metric space A. We wlll refer to this as
case (1), For any positive integer N, the disjoint
sets E [i‘(x) < %] and E [f(x) >m+1_7 are
of type Bd for every m = 0, 1, 2500, N=1 ,

By lemma 5.3, for each m there is a Balre function
gm’N(x) of type £ such that gmgN(x) =1 for
all =g ® [e(x) 28] , g y(x) =0 for all

x & E [f(x) < %J , and 0 < gm,N(X) <1l for all

other x & A, et hN(X) = ']I'\T:° éo gigN(x) which,
as a finite sum of Baire functions of type f,, »
is of type f_, . Suppose %— < fix)< E-i%:'-'- . Then
gi’N(x) =1 for 1i=0,1, s0o , m=1 | gi,N(x) =0
for 1 = m+l, m42, ..., N-1, and 0 <X gm‘DN(x) <1,

Therefore, for % f( ) < ,I;l;tl_ 5
If(x)-—hN (x) ,( for all x g A, since

p(®) = § [et () + ]
m m+41
implies 3 < he(x)< == -
Since lf(x) - hn(x)} Z % for all n2 N and
for all Xx £ A, {hn(x)} is a uniformly convergent

sequence of Baire functions of type f.,, , where
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f(x) = n},i& hn(x). Therefore f(x) is also a Baire
function of type £, by theorem 4.7, where
0 < f(x)< 1 for all x £ A. This completes the
proof of case (1). We extend this to the general
case by considering the additional three cases:

(2) 0 <f(x) < M, where M 1is any positive
real number,

(3) -M < f(x) <M2, where M;, M, are posi-
tive real numbers, and

(4) f(x) unbounded.

Proof of case (2): Assume 0 < f(x)< M for all

x £ A, where M 1is any positive real number., Define
Q(x) = %&_x_l . Then 0 < Q(x)< 1 for all x &£ A,
suppose A= E [Q(zx) > k)]  and B = E [a(x) 2 k]
where k 1s any real number, Then Ak = E —-:ﬁle> kj
= 2 [£(x) > k4]  which is by assumption of type A&,
for all real numbers k and M, and B, = E[i%z—l 2 g
=B [f(x) > khg which is by assumption of type B
for all real numbers k and M. Since 0<Q(x)< 1
for all x & A, by case (1) we have that Q(x) 1is

of type f, . But f(x) = M:Q(x), therefore f(x)

1s a Balre function of type f , by theorems 4.1

o
and 4.2.

Proof of case (3): Assume -M; < f(x) < M,

on A, vwhere M, and M are any positive real

2
numbers. Define Q(x) = f(x) + M;. Then
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0 < Q(x) <L M, + M, =M for all x & A, Suppose
= B [Q(x) > kj and B = E [Q(x)) k] where
k 1s any real number., Then
o =E[f£(x) + ¥4 > k] =E [£f(x)> x - M]  and

B = E [£(x) >k - Ml_'] which are by assumption of
type A and B » Trespectively, for all rezl

numbers k and M. Since 0< Q(x; < M for all
X £ A, by case (2) we have that Q(x) 4is a Baire

function of type f_, . But £(x) = Q(x) - M ,

therefore f(x) 1s of type f_¢ by thecrems 4,1

and 4.3,

Proof of case (4): Assume f(x) is unbounded

on A. Define Q(x) :ii(;ti)‘(x)l . Then [Q(x)] < 1

for x £ A. We will now show that Q{(x) is of type
f + Suppose 4 =E [Q(x) > lg and B = E [Q(x) 2 Ig
where 0<%k <1 . Then A& =E[f(x)>k +k-|£(x)]] =
E[f(x) - k-]e(x)] > k] . since k0 and Q(x) >k,

f(x) > 0 which implies 'f(x), = f(x). Then

k k
= E [f(x) > 'i—:E] and Bk—_- E [f(x) 2 T:'E—] which

are by assumptlion of type AD( and B“ s Trespective-
1y, for all real numbers k # 1.

Now suppose A, = E EQ(X) > 157 and By = E [Q(X)
> lg where -1 < k <0 and Q(x) € 0. Then

Y f( N k] = B [£(x) - x-]t(x)] > k_7
Since k€ 0 and Q(x) < O, f{x) € 0 which
implies [f(x)| = -f£(x). Then & = E [f(x) + k-f(x)

>k]=¢E [f(x)} £ Jend B =E [£(x) 2 T}fk—j which
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are by assumption of type A¢>< and B°< s respective-~
1y, for all real numbers k # -1,

Now suppose A = E [Q(x))k] and
B, = E [Q(x) > k] where -1<k <0 and Q(x)> O,
Then A, = E [f(x))k + k~'f,(x)0 = E[f(x)-k’f(x),>g,
Since Q(x) > 0, f(x) > 0, which implies [f(x)] = £(x).
Then & =E [£(x) - k-£(xDk] =E [£(x) > gt ]
and B, = E [f(x)_}_ I%E—j . But since -1<k<0
implies 1o~ < T < 0, it 1s sufficient to say
b = E [£(x)>5—] ana B, = E [f(x) > & ] wnicn
are by assumption of type Au( and B°< » respectively,
for all real numbers k‘ﬁ -1 .

Therefore E[Q(x)}k_j and E[Q(x)z 13:] are
of type A1X and B, , respectively, for all real
numbers k and all x £ A. We note that E[Q(x)) IQ: A
for all k< -1 and E [Q(x)>k] = f for all k> 1.
Since -1<Q(x)< 1 for all x £ A, by case (3) we have
that Q(x) 1s a Baire function of type £, . 3But

£(x) = 1__%52}(” for all x g A since by definition
Q(x) = 1+f’(§(x” which implies

£(x) = Q(X)-[l + If(x)!] = Q(x) + Q(x) |£(x)| = a(x)+]a(=x) £(x),
which implies

a(x) = £(x) - Jax)] £(x) = £(x)[1 - Jax)]] .

Therefore f(x) = Q(x)- T :,L-Q(X), , Where the second

factor is a Balre function of type fo( by theorems 4.1,

4,3, 4.4 and 4.6, Therefore f(x) is of type fu by theorem 4,2,

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



-68~

Theorem 5.7 For any real valued function f(x)

defined on a metric space A, the set D of all
points where f(x) 1s discontinuous on A 1is a Borel
set of type Fl’ and the set € of all points where
f(x) 1s continuous on A 1s a Borel set of type Gl“

Proof: Given the function f(x) defined on
the metric space A, we first define sets Dn such
that a point 2z £ D, 1if and only if for every d>0
there are at least two distinct points x and Yy
such that =x,y & N(z, & ) and If(x) - f(y)l 2;% o
Let D be the set of all points where f(x) 1is
discontinuous on A, and C = C(D) the set of all
points where <f£(x) 1s continuous on A. To prove
that D 4is a Borel set of type Flg we will show
the following:

(1) D= ?? D and

n=1 "n °*

(2) each D, 1s a Borel set of type Fj .

Proof of (1): Choose any n = N and suppose

z £ Dy. Then for any § > 0 there are two points
Xg and  y, such that xp ,y, & ¥z, § ) and
1
[ 2xg ) - £rg )| 25 -
We would like to show that 2z £ D. Therefore
assume 2 ¢ D, Then f(x) 4is continuous at x = zZ,

and for & = 3y ‘there is some S > 0 such that if
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X & N(z, § ) then /f(x) - f(z)_/( £ = %ﬁ .
Hence, for the chosen points x£ 2T £ E N(z, § )
we have /f(x ) - f(z)/ < 3'57 and

'f(y{) -f(Z))<3— Then

l2(xg) - £05;)] < 1f<x;) - f<z>l [f(z) - £y )]

<3+ 37 < F -

But this is impossible since x; and yJ. were
chosen to be points such that lf(x; ) - f(yJ )’
3 % « Therefore 2z & D.

On the other hand, suppose 2z £ D. Then for
some & > O and every d>0, [£(x)- 2(2)]> &
for some x & N(z, § ). Choose some positive integer
N> £, , then £ 2% ana [£(x) - £(z2)]> & >3
for every & >0 and some x & N(z, & ). There-

o0

fore z & Dy and hence z & U, D .

Proof of (2): For any positive integer N,

suppose 2z 1is a 1limit point of DN e« Then for any

& > 0 there is a point a # z such that a& N(z, &)
and a & Dy .+ Choose & 7 0 such that
0<cE < § - d(z,a) « Then since a £ Dy ‘there
are two points x and y such that x,y £ N(a, & )
and lf(x) - f(y)' 2% . But x,y & N(z, & ) since
N(a, £ )= N(z, &£ ) . Therefore =z £ Dy since d>o
was arbitrarily chosen, and each set Dn is closed,

Therefore D 1is a Borel set of type Fl and
= 0(D) 1s a Borel set of type G, by theorem 2.3 .
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The following definition and theorem will be
needed for the proof of theorem 5.9.

Definition: Given f(x) = n},igé fn(x) on a
metric space A, the sequence {fn(le is
uniformly convergent at a single point a g A if for

every £ > 0 there exists a &> 0 and some
positive integer N such that if x & N(a,d ) then
[ £5(x) - £(x)|< € .

Theorem 5,.8: Given f(x) = n].-.*i].l; i‘n(x) on a

metric space A +where for each n, fn(x) is con-
tinuous at a £ A, then f£(x) 4is continuous at
a 1f and only if the sequence {%n(xi} is uniform-
ly convergent at a & A.

Proof: Suppose f(x) is continuous at a £ A.
Then for every & > 0 there exists a £l> 0
such that [f(x) - £f(a)] £ &€ 1if x g N(a, &) .
Since f(a) = ni}ﬂ,fn(a)’ there exists a positive
integer N such that Ii‘n(a) - f(a),f £ for all
n > N, Since each fn(x) is continuous at a, for
n = N there exists a 52 2 0 such that
/fN(x) - fN(a)l < g if x & N(a, 52) . Choose
§ =min [ Sl, 527 ; then for x €& N(a, § ),
IfN(X) - i‘(X)I < IfN(XJ-fN(a)] + ’fN(a)-f(a),+ If(a)-f(x)

 E+E+E =3E .

Therefore the sequence {fn(xﬂ is uniformly con-
vergent at a £ A,
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On the other hand, suppose ffn(x)} is uniform-
1y convergent at x = a. Then,by definition, for
every & > 0 there exists a Jl> 0 and some
positive integer N such that 'fN(x) - f(x)l < &
if x & N(a, J'l). Since each fn(x) is continuous
at x = a, for n =N there exists a £2> 0
such that [fy(x) - £ (a)l € € if x & N(a, § ).
Choose d = min L‘rl’ 527 , then for x € N(a, & )
| £(x) - £(a)] & J£(x) - £(x)] + Jeg(x) - £4(2)]

+ | £y(a) - £(a)|
< €+ E+ &€ =3 .
Therefore f(x) 1s continuous at a &£ A.

Theorem 5,.9: If f(x) is a Baire function of

type :f:‘l on a complete metric space A, the set of
its points of continulty 1s dense in A,

Proof: Suppose f(x) 1is a Baire function of
type fl on a complete metric space A, then @
f(x) = n];}l:}, fn(x) where for each n, fn(x) Ii’s contin-
uous on A, Suppose H 1is any nonenpty open set
in A. )

We now define for each m, g set G(%i) by the
condition that a EG(%) if and only if a £ H
and there exists a d > 0 and some positive
integer N such that if
x e[N(a, § ) n H] then  [f£.(x) - f(x)] <=.

Let E ©be the set of all points in H at which
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f(x) 4is continuous relative to H. Then by theorem
5.8 E 1is the set of all points in H at which the
sequence { fn(x)} isoouniformly convergent relative
to H., Moreover, E = anG(z'Ji') by definition of the
sets G(%‘-l-). Also, for each n, G(%) is open in H,
for suppose a EG(%). Then there is a 5> o0

and some N> O such that if x £[N(a, § ) N HJ

then IfN(x) - f(x), 5% . Consider be[N(a, § )n }_I7
and choose §'= & - d(a,b) . Then

| £4(x) - f(x)[ <% for all x € [N(b, §') N H]

since [N(v, § ') N H] < [N(a, £ ) A H]. Eence if

b £ [Na, § )0 H] , then b & &), 1.e.

[N(a, § )Yn Ig < G(%l-) . Therefore G(%) is open

in H for all values of n,

Since each set G(%) is open in H, G(%l-) =
HnN R‘n where each set R, is open in A. Since
H 4is open in A, each G(%) as the intersection
of two open sets is also open in A,

We now define for each m, a set K(%) by the
condition that a F,K(%) if and only if there is
some é-) 0 and some positive integer N such
that if x £ N(a, § ) then /fN(x) - £(x)] E%ﬁ o

Let S ©be the set of all points in A at which
£f(x) 4is continuous relative to A, Then by
theorem 5.8, S 1s also the set of all points in A
at which the sequence {fn(x)} is uniformly
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convergent. Therefore S = ﬂglK(E) where each set
K(%) is open in A. Each set Id%) is seen to be
open in A in the same way that G(%) was seen to
be open in H.

We now have the followling two relationships to show:

1 |

(1) k(3) N HE =6(3), and
(2) &(F) # § for all positive integers n.

Proof of (1): Suppose first that

a 5[1{(%) N H] . Then a ax(%) which implies there
is some £ > 0 and N> O such that if x £ N(a, § )
then Ii‘N(x) - f(x)l S%—l . If =x C[N(a, §)n Iﬂ ’
then x & N(a, § ) and ,fN(x) - f(x)' _<_%Lﬁ .
Hence since a £ H, a E.G(%) o

On the other hand, suppose a & G(«]:-L'E-)9 then a £ H
and there 1s some §,> 0 and N2 0 such that if
x F,[N(a, Eo) N H] then Ii‘N(x) - f(x)' f% .
Also, since H 1is open in A, for a £ H +there 1s
some Jl > 0 such that N(a, & 1) < H., Choose
§ = min [So, Jlj o Then IfN(x) - :E'(x)l ﬁ%
if x& N(a, § ) » Therefore a,E,KK%) and
ae[xk@)n x| .

Therefore [k(%) N éﬂ = G(%) for all n.

Proof of (2): To show G(%) %‘ﬁ’ for all n,

define sets Fm(%{:) by requiring that x & Fm(%f')
1
if and only 1f x & H and [f_(x) - £(x)] <§

for all n2m .
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Suppose a & H. Since f(x) = n%}%gfn(x) on H,
for £ = ':éL'E there i1s some m> O such that if n>m
then /fn(a) - f(a)/ <E= %E . Hence
[a(2) - £.(2)] < [e(2) - 2a)| + [e(a) - £ (a)] <

2& :% s for all n »>m ., Therefore a £ H implies

that a g Fm(%) . Therefore H = :U_:lpn(%)

But each function £ (x) is continuous on H
relative to H since each funetion fn(x) is con-
tinuous on A, Hence for x & H it follows from
theorems 4.4 and 4.3 that lfm(x) - fn(x)/ is a
continuous function on H relative to H, for all
values of n and m, Therefore by theorem 4.10 (c)
each set Fm n(ljf) E [lf (x) - (x)/ < 7/‘) H is

closed in H, and F (E) = is closed

AN P, n(E)
relative to H,

Since H 1is a nonempty set of type G1 in A,
H 1s of the second category relative to l1tself, by
Baire's theorem 2,11 . Therefore there is some
positive integer t such that Ft(%) 1s not no-
where dense relative to H.

Since Ft(%) is both closed and not nowhere
dense in H, Ft(%) contains a nonempty neigh-
borhood relative to H, i.,e, for some b & H and
some o > 0,

[xb, $)YnHE € p.}) . 1t x e[N(p, § )0 H]
then x £,Ft(%) and lft(x) - fn(x)' < % for all
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n > t, Therefore Ift(x) - f(x)}. -Sl]'é for all
x E[N(b, 5)n 117 since f(x) = nl_;.xanofn(x) on H.,
Therefore b & G(%) and G('xli') ;é,d for all n.

Since K(%l-) N H= G(%) # ﬂ , for each n, and
slnce H 1is an arbitrary open set in A, each set
K(%) is dense 1in A. Therefore set § is dense
in A by theorem 2.12, since S = éilK(%) is a
Borel set of type Gl” where each set K(%) is open
and dense in A,

It is of interest to note that theorem 5.9 is
also true if the metric space A 1is merely locally
complete, l.e. 1f for each poilnt p & A there is an
open set G containing p, GC A, such that G 1is
a complete metric space.,

Theorem 5,10: For any ordinal & <_fL, if

£f(x) is a Bailre function of type £ on a complete
metric space A, there is a Borel set S of type

Gl’ dense and of the second category relative to A4,
whose complement C(S) 1s of the first category
relative to A, such that f£(x) is continuous on §
relative to S,

Proof: Suppose f(x) is a Baire function of
type fo( on a complete metric space A, x <AL .
If < = 0, then f(x) is continuous on A. Then
S

A, where A 1s of type G,, dense, and of the
second category relative to 1tsé1f,, and C(S) = F{
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s of the first category relative to A, Assume the

theorem is true for all ordinals B < & ,
If f£(x) 4is a Baire function of type £ e on

A, then f(x) = n%}ﬁofn(x) where for each n, fn(x)

is of type f"‘np X, < X o By our induction assump~

tion, each fn(x) is continuous on some set C

relative to C where each Cn is of type G

n’ 1°?
dense, and of the second category relative to A, and

where each set D, =4A-C, is of the first wategory
relative to A, Also, since each set cn is of type
Gy in A and each set D = G(Cn) » then each D

is of type F in A by theorem 2.3,

1
oo
Consider DO = A{lD then Do is of the first

category relative to A, and, by theorem 2.4, is a
Borel set of type F

ool o Let Co = A = DOo Then
C, = c(nul n) = n_l o ¢ Therefore C_ 1is a Borel
set of type Gl and dense 1in A by theorem 2.13 .
[ -]
=N
We have Go cC Cn for each n since Co —n=10n°

Therefore each function fn(x) is continuous on OC,

relative to C and f(x) = n]:};‘; i‘n(x) on C,e.

09
Let S Dbe the set of pouints in Co at which

f(x) is continuous relative to O, - By theorem 5.7,

S is a Borel set of type G in C,, which implies

1
= n—lKh s Where for each n, K, is open in C, .
Thls means that for each Kh there is some set M,

open in A such that Kn = corq Mh“ Therefore

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



-

Co o
S = nO__l(con M,) = C,N M, where M = ngan is a
Borel set of type Gl in A, Since Oo is a Borel
set of type Gl in A, S 1s a Borel set of type
Gl in A by theorem 2.5,

Suppose H C C, 1s any nonempty set open in Cos
then H = con Q where Q 1is some open set in A.
Since Q is of type Gl in A, by theorem 2.1, and
C!o i1s of type G‘l in A, H 4is a Borel set
of type Gl in A by theorem 2.5. Also, since
Ha Cy, f(x) = n]ﬁ&fn(x) on H since f(x) =
n].g'énofn(x) on C, .

We now define for each m, a set G(%—l-) by the
condition that a g G(%) if and only if a & H and
there exists a d 7> 0 and some positive integer N
such that if X € [(a, & )0 I-Q then /i‘N(x) -
1x)] £% .

ILet E be the set of all points in H at which
f(x) 1is continuous relative to H. Then, by theorem
5.8, E 1is the set of all points in H at which the
sequence {fn(x)} is uniformly convergent relative
to H. Moreover, E = nofjle(%) by definition of the
sets G(%i) . Also, for each n, G(%) is open in H .
(This is shown in exactly the same way as in the proof
of theorem 5.9.)

Since each set G(%) is open in H, G(%) =
HN R, where each set R, 1s open in 4. Since each
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set P&l is of type Gl in A, by theorem 2.1, and
H 1is of type G; in A4, each set G(%) is
of type Gl in A by theorem 2.5 o We now define
for each m, a set K(z) by the condition that
a & K(%) if and only if a £ O, and there is some
§ > 0 and some positive integer N such that 1if
x& [N(a, § )nc,]  then [rg(x) - £(x)] <.
Since 8 1is the set of all points in CO at
which f(x) is continuous relative to C, » 2gain by
the use of theorem 5.8 , we have that S is also the
set of all points in Co at which the sequence
{fn(x)} is uniformly convergent relative to Co.
Therefore S = néolK(%l') where each set K(%) is open
in G, . Each set K(%) 1s seen to be open in C
in the same way that G(%) was seen to be open in H .
Since K(-l:l'l-) is open in C_ , K(%) = 0, N S, where
each set Sn is open in A, Since each set Sn is
of type Gl in A, by theorem 2.1, and Oo is of
type G, in A, then each set K(F) 1s of type G,
in A by theorem 2.5.
We now have the following two relationships to
show:
(1) K(F) N E=G(E), end
(2) G(%—) ;é f for all positive integers n.
Proof of (1): Suppose first that a E[K(%‘l-) N Hj o
Then a E;K(% ) which implies there is some >0
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and N> 0 such that if x & [N(a, § )N O ) then
| £4(x) - £(x)] €L . also, ag ® and
[N(a,, S yn H]C [N(a,,[ Y N 007 since He C .
Therefore, if x & [N(ag §)nN {1] » then
x £ [N(a,{ )O Co-j and lfN(x) - f(x), <
Therefore a E,G(-%) o

i+

On the other hand suppose a £ G(%—) , then
a & H and there is some 50>0 and N 2> O such
that if x € [N(a,, Jo)n I:ﬂ then ,fN(x) - f(x)l S_%l- °
Also, since H is open in Oo , for a& H there
is some &§,> 0 such that [-N(a,, §.)0 cojc: H .,
Choose § =min [§_, 517 . If
x&[ﬂ(a,{ } 2 OJ s then xel:N(a,, Jl)()c;’cH
and x¢& [1\1’(3.D é-o) N I_i-) o Then IfN(x) - f(x)’ <
where aE HC O, , 1if x&[N(agg )0 Coj o
Therefore a &£ K(%) and a & EK(%) 0 I_Ij °

1 1
Therefore [K(TI) N H:] = G(H) for all n.
Proof of (2): To show G(%) £ ﬂ for all n, we

8l

proceed exactly the same as we did in the same part
of the proof of theorem 5,9 , with the only differ-
ence being that each function fn(x) is continuous
on H relative to H since each function fn(x)
is continuous on CO relative to C‘oo This is because
HCC, .

Since K(%) N H = G(%) /,ﬂ , for each n, and

since H 1s an arbitrary open set in Co , each set
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K(%) is dense in C, » But C, is dense in A,

therefore each set K(X) is demse in A,

Thus set S 4is of type G1 and dense in A Dby
theorem 2,13 , since § = éﬁ;K(%) » Where each set
K(%) is of type G, and dense in A,

By theorem 2,14 , S is of the second categery
relative to A and C(S) is of the first category
relative to A . Since f(x) 4is continuous on S

relative to C_ , where S&C then f(x) is

(o) b2
continuous on 8§ relative to S .

Therefore the theorem is true for all o < S
by transfinite induction,

Theorem 5,113 If the set of points of discon-

tinuity of f£(x) defined on a metric space A is
countable, then £(x) 1is a Baire function of type
fl on A .

Proof: TLet D be the set of all points where
f(x) is discontinuous on a metric space A, and
suppose D 1is a ccuntable set. Let C ©be the set of
all points where £(x) is continuous on A; then
C =C(D) =A-D.

Since any countable set is a Borel set of type
Fq» D is a Borel set of type Fyo (This 1s be-
cause each point of a countable set may be thought of

as being a one-point set, which is closed. Then any

countable set is the union of a countable number of
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closed sets, and therefore a Borel set of type Fy »)

For any real number k, consider B = BltJ B2
where B:E[f(x) > 1_:7 , By =BA D, and
B, =Bn C . Suppose a € B, ; ‘then f(a) > k¥ and
agC. But ag C implies that f(x) 4is continuous
at x = a. Therefore, let & = f(a) - k > 0 ;3 then
there is some & > O such that if x & N(a, § )
then /f(x) - f(a)/( £ , i.e. f(x) > f(a) - =k
for all x & N(a, § ) . Therefore N(a, § )€ B .

Let H = _ ngl\T(a9 éd ). Then H 1is open in
A and B2!: HC B,

Now consider B = H { (B - H) . Since B,S HE B,
then (B - H) <« (B - B2) = By o Since By < D, then
(B-H) & D, But D is a countable set, therefore
(B-H) 1is at most countable and hence a Borel set of
type Fl o Also, H, belng an open set in A4, 1is
of type Go , and hence by theorem 2,7 1s of type
F1 o

Therefore, by theorem 2.5, B = H U (B-H) as the
union of two sets of type Fl is also of type Fl
for any real number k, 1i.e. E[f(x) > lg is a
Borel set of type F1 for every real number K.

Likewise, a similar argument shows E [f(x)*< g]
1s a Borel set of type F, for every real number k .
Therefore 1its complement, E [}(X) 2 E] s 1s a Borel

set of type Gl for every real number k, Dby theorem
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Hence f£(x) 1s a Baire function of type fl

by theorem 5.6,

Theorem 5,12: If B 1is a countable set in

a metric space A, and f(x) defined on A 1is
continuous on A-B relative to A~-B, then f(x)
is a Baire function of type f2 on A .

Froof: If B 1s a countable set, it is a
Borel set of type F, . Suppose f(x) is -zontin-
uous on A-B 1relative to A-B , where A is some
metric space,

For any real number k, consider M = Mi v M2
where M = E [£(x)> k] , M, =MAN B, and M,
M/~ (A-B) . The set M, is open relative to A-B,

P

by theorem 4,10 (¢) , since f(x) 1is continuous on
A-B relative to A-B o Hence M, = (A-B) M H for
some open set H in A. Since B 1is of type Fl 9

A~-B 1s of type G by theorem 2.3 ., Also since H

1

is open in A, H 1is of type Gy s and hence of type

G, o Therefore by theorem 2.5 , M, = (A-B) /) H as
the intersection of two Borel sets of type G1 is
also of type Gl , and hence of type 62 .

Since M

1
is at most countable and hence a Borel set of type Fl o

c B, and B 1s a countable set, M;

Therefore by theorem 2.7, M; 1is a Borel set of type

G2 -
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Therefore M = E [f(x)) g is a Borel set of
type Gg, by theorem 2,5 , since M 1is the union of
two sets of type G2 o A similar argument shows
E [f(x)‘i E] is a Borel set of type G, for every
real number k. Therefore its complement,

E [ﬁ(x) 2.@] » 1s a Borel set of type F., for

2
every real number k, by theorem 2.3 .,

Hence f(x) 1s a Baire function of type £y 5
by theorem 5.6 .,

It 1s of interest to note the following example
of a function satisfying the conditions of the last
theorem, which is therefore a Baire function of type

f2 s but is not of type £

1 e
Choose the space A to be the set of all real
numbers , Define f(x) = 0 if x 4is an irrational
number, and f(x) =1 if x 1is a rational number.
Then f(x) 4is discontinuous at every point of A .
Moreover, f(x) 1is continuous on the irrationals
relative to the irrationals , where the rationals
constitute a countable set. Therefore by the last
theorem, f(x) 1s a Baire functlon of type f, on A.
If f£(x) were also of type £f; , its points of
continuity would be dense in A by theorem 5.9 .

But f(x) 4is discontinuous everywhere on A4,

hence f(x) is not of type f; en A.
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