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CHAPTER I 
INTRODUCTION 

In this manuscript the general properties of the 
Borel sets and the Baire functions will be discussed, 
and several important relationships between the two 
will be shown.

The family of Borel sets is defined to be the 
collection of all sets of type and , for all
ordinals cy <_/! , where-/I is the smallest uncountable 
ordinal number. Sets of type are closed sets,
and sets of type are open sets. The sets of
type P^ and G^ , for any ordinal cK , are then 
defined by transfinite induction and discussed in 
general in Chapter II, The Hausdorff sets of type 
Pĝ  and are then defined by transfini te induction,
and the relationships between the family of Borel sets 
and the family of Hausdorff sets are shown. It is 
then proven that these two families of sets are 
identical.

In Chapter IV, the Baire functions of type ,
for all ordinals c< <yi. , are defined by transfini te 
induction where a function of type f^ is a cohtinuous 
function. Relationships between the Borel sets and the 
Baire functions are then shown. One of the more impor­
tant the9rems proved in the final chapter is ; If f 
is a Baire function defined on a complete metric space 
A, then

- 1-
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—2—
(1) f Is continuous on a subset S of A

relative to S,
(2) S is a countable intersection of open sets

in A,
(3) S is dense and of the second category in A,
(4) the complement of S is of the first category 

in A.
It will be assumed that the reader is familiar 

with basic topological concepts and with the fundamen­
tal properties of cardinal numbers and ordinal numbers*
We will now define some frequently used terms in order 
to facilitate the reading of the manuscript*

A set is any collection of objects which we shall 
call elements or points. If x is an element of the 
set E, we write z 6 E. If x is not an element of
the set E, we write x ̂  E. A set E is said to be
a subset of a set P if every element of E is an 
element of P, and we write E c  P.

The union of a collection of sets is understood 
to be the set of all elements which belong to at least 
one of the sets over which the union is extended. The
union of two sets E and P is denoted by E U P. The
union of a finite collection of sets E., 1 = 1,2@.*., n,

n
is denoted by The union of an infinite sequence
of sets  ̂ . g written , is denoted

oo
by . In general, let B be an arbitrary set,
and suppose that with each element b £ B, there is

5t E-̂ o This yields an indexed collection
Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



-3-
of sets. The union of the sets of this collection is
denoted by b W  B ^b "

The intersection of a collection of sets is under­
stood to be the set of all elements which belong to
each of the sets over which the intersection is ex­
tended, The intersection of two sets E and P is de­
noted by E /) P, where x £. |e if and only if x & E
and X & P. The intersection of a finite collection of 
sets E^, Eg,. . , is denoted by E^ and of an
infinite sequence 1 E^l by ^^E^, In a manner simi­
lar to that used for sin arbitrary union we denote the 
intersection of an arbitrary indexed collection of sets

by b &  •
Por two sets E and P, the difference of the two 

sets is the set of all elements belonging to P but 
not to E, and is written P-E»

The largest (smallest) number in a set E of real 
numbers will be denoted by max £̂ eJ (min ["eJ ), if one 
exists. The least upper bound (greatest lower bound) 
of a set E of real numbers will be denoted by l,u,b, 
(g.l.b. [Ê) ), if one exists,

A set A is a metric space if with any ordered 
pair of points x and y belonging to A there is 
associated a real number, called the distance between 
these points and denoted by d(x,y), with the following 
properties :

(1) d(x,y) > 0 for all x,y £ A,
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(2) d(x,y) - 0 If and only if x =y,
(3) d(x,y) = d(y,x) for all x , y A .
(4) d(xpz) < d(x,y) + d(y,z) for all x^y^z S A.
In a metric space A, the complement of a set

E C: A, denoted hy C(E), is the difference A-E .
A point X is said to he the limit of an infinite 

sequence ^ x ^  in a metric space A if for every £:>0 
there is some positive integer ÏÏ such that if n > U
then d (x,x^) < <S « If the sequence has a
limit X ,  the sequence is said to conver^e to x,
and we write _lim x„ = x * Given a metric space A, 
then x ^  is a Oauchy sequence in A if for every 
£■ > O  there exists some positive integer N such 

that if m,n > N then d(x^,x^) < (S , A metric space 
A is complete if every Oauchy sequence in A converges 
in A «

The set of all real numbers is a complete metric 
space, where d(x,y) = /x-y| for any real numbers 
X and Jo

The empty set is denoted by Sets E and P
are said to be disjoint if E O P = /o

If X & A, where A is any metric space, and if 
r is any real number, then the neighborhood of the 
point X with radius r is the set of all y £, A such 
that d(x,y) < r, and this neighborhood is denoted by 
E(x,r) • A point x is an interior point of a set E
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if and only if for some r ;> 0, HCxgrlc: E, A set E
is open if and only if every x & E is an interior
point of E,

In a metric space A, a point x is called a 
limit point of a set E if and only if for every r> Op 
H(x,r) f\ E contains at least one point different from 
X .  This is equivalent to saying N(x,r)/I E is an
infinite set for each r > 0, A set E is said to be
closed if and only if every limit point of E is con­
tained in E», The derived set E ’ of a set E is
the set of all limit points of E. The closure E of
a set E is the set E 1/ E' »

Given sets E and P in a metric space A such
that E c P cr Ap then E is closed in P (relative to P) 
if and only if (E’/l P)C. E* A set E d  P is open in P 
if and only if for every x£E there is some r >  0 
such that (N(xpr) /I P) C  E» Set E d  p is dense in P 
if and only if for every x £ P and every r > Op 
H(xj,r) /I E ^ /o A set E C P is nowhere dense in P 
if and only if for every x £ P and every <£ > O 
there is some y £ P and some > 0 such that 
(N(y, £ ) n P) C  (H(x, € ) n  F) and N(y, £  ) n E =

A set E is said to be of the first category in P 
if it is the union of a sequence of nowhere-
dense sets in P« If E is not of the first category 
in P, E is said to be of the second category in P«

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



It Will be assumed throughout that we are working 
with real-valued functions* A function f defined on 
a set S Is said to be continuous at a point a <g: S 
relative to S If and only If for every &  ̂  0 there
exists a ^ > 0  such that If x S and x ̂  N(ap )
then |f(x) - f(a)/ < * A function f Is said to
be continuous on a set S relative to S If and only 
If f Is continuous at every point x £, S relative to 
S • If f Is defined on a set 8, and P C  8  ̂ then f
Is continuous at a point a & 8 relative to F if and
only If for every > 0 there exists a ^  > 0 such 
that If X 6: jn(a, )/I ^  then |f(x) - f (a)| < S • 
A function f defined on a set 8 Is said to be con­
tinuous on a set E relative to P* where EC. 8 and 
P C  8j If and only If f Is continuous at every point
X & E relative to P *

A function f defined on a set 8 Is said to be 
uniformly continuous on 8 relative to 8 If for every 
£ > 0 there exists a ^ > 0 such that If Xny 6 8

and d(x,y) < <T then |f(x) - f(y)/ <  <S
If Is a sequence of functions^ where each

function f^ Is defined on a set 8, then the sequence 
of functions ff^ Is said to converge at a C  8 to 
a limit function f defined at a* and we write 
f(a) = 11m fj^ If and only if for every £: > 0 there 
exists an Integer H > 0 such that If n> H then
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I fĵ (a) - f(a) I < 6 . The sequence of functions {^nj 
converges on a set 2 c  S to a limit function f de­
fined on Eg and we write f = „lim f on E, if and

r  1only if the sequence ^f^\ converges to f at every 
point a ̂  Eo

The sequence of functions  ̂where each func­
tion f^ is defined on a set Sg is said to converge 
uniformly on the set S to a limit function f defined 
on Sg if and only if for every £1 ^ 0  there exists 
an integer N >  0 such that if n > E then 
) f^(x) - f (x) I < <S for all X 6- 8 o

Any set which is finite or which can be put into
one-to-one correspondence with the set of all positive 
integers is said to be countable. Any set which is not 
countable is said to be uneountable.

Two properties of ordinal numbers which will be 
relied upon heavily are :

(1) Por every set of ordinal numbers g there is 
an ordinal number which is greater than every ordinal 
number in the set, and which is less than any other 
ordinal number with this same property, i,e, there is 
a definite next larger ordinal number for any set of 
ordinal numbers,

(2) If E is a countable set of ordinal numbers 
of countable sets g the next larger ordinal number is 
also an ordinal number of a countable set.
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The ordinal number uü is the ordinal number of the 

set of sill positive integers ordered according to increas­
ing magnitude. cu is the smallest transfinite ordinal 
number* The set of all finite or countable ordinal 
numbers ordered according to increasing magnitude is a 
well-ordered set with ordinal number J\ * is the
smallest uncountable ordinal number.

The principle of transfinite induction will be 
relied upon heavily in the following work^ and is as 
follows Î

If M is any well-ordered set and if S is a 
subset of M such that

(1) if a is the first element of Mg then a S,
and

(2 ) for any element y £ Mj, if all elements 
X £. M preceding y are in 8, then y £ Sg 
then S = M.

The larger of two ordinal numbers o< and (S 
will be represented by max { c* g ^ ) «

A sequence of sets called nonincreas­
ing (nondecreasing) if ^  ^i+1 ^^i^^i+1 ^
every positive integer i *
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CHAPTER II 
BOREL SETS AM)

In this chapter we will define the Borel sets of 
type and Ĝ  ̂ , and will prove several important
properties of these sets. It will he assumed throughout 
that we are working within a metric space A, unless 
otherwise stated.

Each ordinal cK < jT will be designated as 
being either even or odd, but not both, by use of trans­
finite induction, in the following manner,

(1) G< = 0 is defined to be even, and not odd,
(2) Suppose that < J\ , and that every

ordinal (3 < cK has been designated as being either 
even or odd, but not both,

(a) If c< has no immediate predecessor, then
o< is designated as being even, and not odd,

(b) If cx has an immediate predecessor,
c< -1, then is designated as being even (odd),
and not odd (even), if cxf -1 is odd (even).

Definition: A set is a Borel set of type Pq (G@)
if and only if it is a closed (open) set. Suppose
that cxT c , and that Borel sets of type P ̂  and
G^ have been defined for all ^  < o( ,

(l) If <x is odd, a Borel set of type P^ (G^
is defined to be a countable union (intersection) of 
Borel sets, each of lower type P ̂  (G^ ) for some

-9-
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ordinal 0  <. o< » We note that the sets of the count­
able union (intersection) need not all be of the same 
type; we require only that they all be of lower type 
than (G^ ) «

(2) If cK is evenj, a Borel set of type 
Pq( (G^ ) is defined to be a countable intersection 
(union) of Borel setSj, each of lower type P^ (G^ ) , 
for some ordinal <0 < o< » The same remark applies 
as at the end of (1 ) .

We thus define Borel sets of type P^^ and G ̂
by transfinite induction for all oi <  _/% .

Theorem 2.1: Every Borel set of type P (G . )
is a set of type P ̂  (G^ ) if of, < 0  < JX,

Proof g Suppose set E is of type P fO<<0<j\^
ot>

If (0 is odd, E is of type P^ since E = E^,
where E = E for each n. If <3 is even, E is of

oo
type P^ since E = E^, where E^ = E for each n.

Suppose set E is of type G^ , cx < 3̂ < JT. •
oo

If 0  is odd, E is of type G^ since E E^,
where E^ = E for each n. If 0 is even, E is of

OO
type G^ since E = E^, where E^ = E for each n.

We will designate as being even since it has
no immediate predecessor. Sets of type and
G ^  will be defined to be countable intersections 
and countable unions of sets of type P^ and G^ ,
respectively, for <X <

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



Theorem 2.2: Every set of type Fj^ ) is
of type (G ̂  ) for some <=x < .

Proofs Suppose set E is of type P ̂  •
Then E = ®n , where for each n, Ê  ̂is of type 
P yL » Since for each is an ordi­
nal number of a countable set, the ordinal number <=< 
immediately succeeding the set of ordinals 
<s< , n = 1, 2,.. 0, is also an ordinal number of a
countable set. Therefore E is a Borel set of type
P ^  , <X < , if <X is even. If «=< is odd,

then o< +1 is even, and E is a Borel set of type
F o<+l»

It can be shown in a similar manner that no new 
sets are obtained by taking sets of type G ^  ,

Theorem 2.3 : The complement of every set of type
P ̂  (G^ ) is a set of type G ̂  (P ̂  ), for every

< -/I .
Proof; The theorem is true for = 0 since the 

complement of a closed set is an open set and the comple­
ment of an open set is a closed set. Now suppose the
theorem is true for all ordinals ^  < <X for some

< y i  .
Suppose «=*( is even. If set E is of type P ^  , 

oo
then E = (̂ll ®n® for each n, E^ is a Borel set
of type P • By our induction assumption,
each set 0 (En) is of type G ^  ,

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



-12-
Therefore 0(E) is a Borel set of type since
0(E) = 0 ( ^  E^) = O(E^) .

Suppose set E is of type 3 cx even. Then
oO

E = where for each n, E^ is a Borel set of type
G^ , o<^ < d>< , By our induction assumption, each set 
0 (E_ ) is of type , CX̂  < <p< , Therefore 0(E) is a
Borel set of type P ^  since 0(E) = C(^^^E^)

If cx is an odd ordinal, the induction process can 
be carried out in a similar manner.

Therefore, by transfinite induction, the theorem is 
true for every ordinal cx <’ _/L .

Theorem 2,4 : If cK < _/L is odd, the union (inter­
section) of a countable number of sets of type P^ (G ^  is 
a set of type P^ (G^ ), If <_/! is even, the intersec­
tion (union ) of a countable number of sets of type 
ô< (̂ cx ) a set of type P^ (G^ ),

oo
Proofs Suppose cx'<_/l.is odd, and E E^, where

for each n, E^ is of type P̂  ̂ , Then for each
n, E^ = where for each m, E^ ^ is a set of type
P _ < cX , Therefore E is a Borel set of type

n.m 00 ,  _since B= ^  E , and the sets (E^ 1 oonstl-
tute a countable collection oC

If (X < is odd and E E^, where for each n,
E^ is a set of type G^ , then 0(E) = O(^^E^) = ^^^^^(E^), 
Each set 0(E^) is of type P^  by theorem 2.3, Therefore 
by the first part of the proof 0(E) is a Borel set of 
type P^ ,
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Therefore E is of type hy theorem 2.3.

The proof of the second part of the theorem where 
ĉ <JL, Is even is entirely analogous.

Theorem 2.5: If o<<Jl Is odd, the union (intersec­
tion) of a finite number of sets of type ( G ^ ) is a 
set of type (Ĝ  ̂). If <x <-/L is even, the intersection 
(union) of a finite number of sets of type P^ (G^) is a 
set of type P^ (G^ ).

Proof : This theorem is an immediate consequence 
of theorem 2,4 .

Theorem 2.6 : If o< < JÏ Is odd, the intersection
(union) of a finite number of sets of type is a
set of type P^y (Ĝ o< ) ' If is even, the union (inter­
section) of a finite number of sets of type P̂  ̂(G^ ) is a 
set of type P^ (Ĝ  ̂).

Proof: Suppose is odd, and the two sets A60
and B are of type P^ . Then A = for each n,

is of type < o< , and B where for each
m, B^ is of type . Then s ~ A /I B =

=ntl A  ^‘n.m
an even ordinal such that >  c>< , o<„ _ > (3 , andn,iu zi xi, XU — XU

for all indices n and m. Then each setxl ̂ IlL
A^/1 B^ is a Borel set of type *^n,m^
theorem 2.5. Therefore set S is of type P^^ .

Suppose o^</I is odd, and S = A U B where sets
A and B are both of type G^ . Then 0(8) = 0(A)00(B)
where 0(A) and 0(B) are sets of type P^ by theorem 2,3* 
Therefore by the first part of the proof 0(S) is a set of
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type „ Hence set S is of type G^^by theorem 2«3 o 
If o< < jX Is even, it can be proved in a similar man­
ner that the union of two sets of type P ^  is a set of 
type P^ , and the intersection of two sets of type 
is a set of type G^ .

We have shown the theorem is true for two sets.
The proof is completed by the use of finite induction.

The orem 2.7 : Por every ordinal oc<jX every set of
type P^ (G^ ) is a set of type

Proof ; Suppose E is a closed set. If E = then
cO jE = E^, where E^= p for each n, is of type G^ since

(f> is both open and closed. Suppose E is not empty.
Then let E^ = Since each neighborhood W(x,~)
is an open set, and the union of any collection of open
sets is an open set, for each positive integer n, E^ is

oo
an open set. Also, E = Ê ,̂ for if x & E, then x 6 E^

oo
n=l""n̂for each n, and hence x €:„OtE„-o. On the other hand.

oo
suppose X g E^ s then x e E^ for each n. Hence for each 
n there exists some x^g E such that d(x,x^)<i« There­
fore „lim x„ = X and xg E, which means xgE since E is aXI
closed set.

Por any ordinal cx<A $ assume every set of type P^
is of type for all 0  <

If cK <Jl is odd, and set E is of type P̂  ̂, then 
ooE = l̂/- [ , where for each n, E^ is of type P^ , o<̂  < .

By our induction assumption, each set E^ is of type
G +1* ^ 21“̂ 1 < <=<+1* Since o< + 1 is even, E is a set 
of “type
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Suppose cK < yL Is even, and set E is of

type , Then E = n=l®n * where for each n, E^
is of type P, , ck » By our induction assump-

n
tion, each set E„ is of type ^  ̂̂ wheren

1 < <x + 1 „ Since cK+ 1 is odd^ E is a set
of type + 1 .

Therefore 5 by transfinite induction, every set 
of type P^ is a set of type for all ordinals
cK < -/X o

Now consider E to be a set of type , for
any ordinal <x < jT , Then 0(E) is a set of type
Pĝ  by theorem 2»3 ® and by the proof above also a 
set of type » Therefore by theorem 2.3 E is
a set of type ^ 4.1»

Theorem 2*8 ; The family of all Borel sets forms 
the smallest system of sets such that :

(1 ) jftll closed sets are in the system,
(2) the union of any countable collection of

sets in the system is in the system,
(3 ) the intersection of any countable collec­

tion of sets in the system is in the system.
Proof g Condition (1) is satisfied by the 

system of Borel sets because of the definition of sets
OoOf type Pq . Suppose E = E^, where for each n, E^

is a Borel set. By our previous theorems, each E^
is of type P^ , for a certain ordinal c< < _/L

n
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There exists an odd oxdinal ex. such that cX < jTl and 
oi ̂  < cK for every n» Therefore E is a Borel set 
of type P ̂  » Hence condition (2) is satisfied*. 
Likewises any countable intersection of Borel sets is 
a Borel set.

To prove that the system of Borel sets is the 
smallest system satisfying these conditions^ we will 
show that any system satisfying these conditions con­
tains all the Borel sets.

Suppose S is any system of sets satisfying
the three conditions of the theorem. Every Borel set
of tjype pQ is in S because of condition (1).
Assume that all sets of type P g are in Sp for 
all ordinals 0 < cK < J\. . Suppose c< is oddp

OOand E is a Borel set of type P ^  . Then E = n-l^n'
where for each n, E^ is a Borel set of type ^ o<̂  s

cx̂  < . By our induction assumption each set
E^ is in S. Then E is in 8 since 8 satisfies
condition (2). On the other handp suppose c< is even
and E is a Borel set of type P^ . Then E = n=l^n
where for each n̂  E^ is a Borel set of type
P . , c cK . By our induction assumption each set E
n

is in 8. Then E is in 8 since 8 satisfies con­
dition (3 ) .

Therefore;, by transfinite inductionp all the Borel 
sets of type P ̂  p for any ordinal p belong
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to S* Since every Borel set is a Borel set of type g

for some ordinal ^  < JX g by theorem 2«7 £, 8
contains all the Borel sets»

We note that if in condition (1) of theorem 2.8g 
"closed” is replaced by "open'% the resulting theorem 
is also true»

Theorem 2.9g A Borel set of type is either
of the first category in a metric space A, or else 
contains a neighborhood»

Proofs Suppose E is any Borel set of type P̂  ̂ .
Then E = V,E p where for each np E is a closed

JX" ' I !■ xX XX

set in the metric space A » If each set E^ is
nowhere dense in Ap then E is of the first category
in A»

Suppose E is of type P^ and not of the first 
category in A» Then there exists some positive in­
teger W such that the set is not nowhere dense

oOin Ap where E = p each set E^ closed in A »
Then there is some r > 0 and some x^ £ A such that 
every nonempty open set R <= N(x^pr) contains points 
of Ejj , Hencep consider any x^ £ H(x^pr) » Then 
for every £ > Op H(x^p £ ) /I Ejj 0 * Therefore 

6 which implies H(x^pr) c » Hence 
WCx^pr) cr Ejj p since E^ is a closed setp and 
WCXqpt) C E »
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Definition g Given any bounded set Pj,

A  (F) = loUcb« /”d(Xj,y)J where x and y range over 
Fj, is called the diameter of set F«

Theorem 2ol0 (Cantor 7s Theorem) g Given a non­
increasing sequence of nonempty sets where
each F^ is a closed and bounded subset of the complete
metric space Ag with the additional requirement that 

= °» then ^ .
Proof: Suppose ^F^] is a nonincreasing

sequence of nonempty sets satisfying the conditons of 
the theorem. For each set F̂ j, choose E thus
obtaining a sequence of points . Since
„lim ^(F„) = Og given any £ ? Û there isCO ^
some n > 0 such that A (F^) < £

Since is a nonincreasing sequence of sets»
all n > Ho More over, A (F^) < £

and that d(x^gX^) < £ for all
n@m > Ho Therefore ^x^^ is a Cauchy sequence in 
Ag and since A is a complete space g there is some 
X E A such that ^lim x„ = x.XI -4» OO XL

Let M be any positive integer. If n > Mg
then x^ E ^n ^  ̂ M * Therefore x g F^ g and since
each set F^ is closedg x E F^ for any positive

ikO Iinteger M. Therefore x E F^ , ioe. ^ ̂  “
Theorem 2oil (Baire"s Theorem)g If H is a

nonempty Borel set of type G^ in a complete
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metric space Aj, then H is of the second category- 
relative to itself.

Proofs Suppose H is a nonempty Borel set of
oo

type then H = where for each n^ is
open in A, Suppose H is of the 1st category rela­
tive to itself, then H = n=l^^ where for each n̂  
is nowhere dense in H, ..

Suppose € He, then consider H(x^gl) /I H which 
is open relative to H, Since is nowhere dense
in Hp there exists a nonempty set P^c H open rela­
tive to H such that P^c ^H(x^gl) H ^  and
^l n Hi = ^ ,

Since P^ is open in Hj, there is some set 
open in the space A such that P^ = H. Suppose
Xi £ Pi o Since E^ is open in Â  there is some

> 0 such that N(x^p <T̂ ) c: E^ ,
Let = N(x^p n Ho Set is nonempty

since ^ %  * Also, since P^ /I H^ = ^ and
Qi c P^ c^(x^pi) n ^  , Qj_ n ^ o

Now x^ £ P^ c; H implies x^ & G^^ and since Ĝ  ̂
is open in A there is some 6 0 such that
N(x^p C G^ where < min  ̂̂ 1^&^ " Define
the set S^ = N(x^p /I H « Then <c[n(x̂ j, £ ̂ ) /I eJ
where N(x^g£ ̂  j C N(x^, Therefore
[sj n H^c [l(x̂ v n H n Hn
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c:£u(x^5 n eJ  = O H O  H^=/q^ O h J

i.e. ^  /9 Eĵ  c  Q% ̂  ^1 "Which implies /H 
since Q^ /I ^ * Also, c  H and
S^ = E(x^,£^) O  E imply £ S^, therefore 8^ is
nonempty» We also note
%  ^  £ n ^ 1 j €̂ l) n ^  C  Sj d

To summarize, we have the following situations 
S-j_ = W(x^, £ /I E is a nonempty bounded set, open 
in H, for which. 8^ c: G^ and H =r  ̂»

Since the set is nowhere dense in H, and
8^ was constructed to be a nonempty set open in H, 
there exists a nonempty set c: H open in H, such 
that F g CZ 8^ and F^ A  ̂»

Since Fg is open in H, there is some set
open in A such that F^ = Rg/1 H, Suppose x^ g Fg . 
Since Rg is open in A, there is some > 0,
where < 6^ - d(x^,Xg) , such that
E(Xg, I g) c  Rg » Let Qg = N(xg, f g) D H« Set Qg
is nonempty since Xg £  Qg . Also, since Fg /I Hg = ^
and Qg C  Fg d  Ŝ  ̂ , Qg A  Eg = / .

Now Xg £ Pg d  B Implies Xg 6. Gg , and since
set Gg is open in A there is some &  g ̂  0 such
that NlXg, e, g; C  Gg where 6 g < min *

( £ g  < <̂ 2 ^ *̂ 1 - ^(^1 " ^2 ?)
Define Sg=N(Xg, S g ) n H »  Then 

ÏÏg c(N(Xg, £  g)n ̂  where N(Xg, & g j c  N(Xg, ^ g) »
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Therefore n n H n H^=[lTx^7^) n

CZ^ix^, ^ 2 ) 0  H O H ^

= [^2 ^ ^2]“ ^ *
Also, Xg e Sgj 8^ c  /N(Xg, eg) /O ^  ^ ^  ̂  Gg 5
and c s^ , since £T g < £^-d(x^,Xg) implies
Sg C S^ .

Thus, for n = l ,  2, 3, ••* , we define nonempty 
sets S^ = E(x^, S^) n  H, where 0 < < min
and 0 < S < € -~ d(x„,x„ ^) , with the follow-

XI H ““JL XI XI— JL

ing properties : is nonempty, open in H, and
bounded; c  G^, n = JD , and c .

Furthermore, the ncnincreasing sequence { ^ 7
of nonempty-closed-bounded sets has the property that
„lim ^  (^} = 0 . This is because the diameter ^ “>00 ^
A  (^) £ 2-6^ , where 6 ^ < ̂  , implies that

n % ^  ^n ” ° •
Therefore, by theorem 2,10 , there is some point

00 _____ 00
X such that x C 0 which implies x £ H = n=l^n

since each c . But x £ *Ŝ  implies also that 
X ^ for each n, since " Therefore
^ 4- ̂  = •

Thus we have a contradiction, and we conclude
that our assumption that H is of the first category
relative to itself is false. Therefore H is of the 
second category relative to Itself,
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Theorem 2.12: If H is a Borel set of type

00
in a complete metric space A, where H = 
each open and dense in A, then H is also
dense in A*.

ao
Proof s Assume H = n-1^® where for each n, 

is open and dense in a complete metric space A.
To prove H is also dense in Ap we must show that
every neighborhood in A contains a point of H»

Oonsider any e A, and for any <5  ̂ > 0  
some neighborhood N(x^, E ̂ ) * Since is dense
in A, there is some x^ C ) such that
^1 £ %  • Since NCx^p ^o) 1.9: sn ppen set^ there
is some C ̂  > 0 such that N(x^p£:^) N(x^p £ ̂) .
Also since is open in A, there is some <T̂  > 0
such that N(x^P ̂ 1  ̂ ^ %  • Choose a 0< ^  <
min [e^s . Then E(x^, <r N(x^, £^) and
WTx][7Tp‘ C  .

We proceed to define by induction in
the following manner» Assume , i = 1,. .. ,
n - 1 j have been defined such that there is some

6 lT(x̂ _̂ p ^i-1^ such that N(x^p ̂ C  N(x̂ __̂ j ̂ i-1^ 
and d  » Since is dense in A, for
each n, there is some x^ £ ^^^n-1® ^n-1  ̂ such that 
Xn £ . Since ^n-1^ 1^ open in A, there
is some £ ̂  > 0 such that W(x^g £ ̂ ) <S ^n-1 *̂
Also since is open in Ap there is some f^ > 0
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such that S C . Choose < min ^6^,
^ n' p]' «'n > ° • Then N(x^, V^)  <= ^n-1 ^

and N(z^, c .
Thus we obtain a nonincreasing sequence 

r ^n^l nonempty-closed-bounded sets
with the additional property that the diameter 
Zl which implies
„llm 4 0 .

Therefore5 by theorem 2.10, there is some x £ A
»o

such that X £ rSl^^^n® ̂ -q) " Therefore x & n(x^, 6 ^),
ooand since N(x^g c  for each n̂  x £ H  = «

40
Theorem 2*13: If H = nJl^n ^ complete

metric space where each is a Borel set of
type and dense in Â  then H is of type
and dense in A.

oO
Proof g Suppose H = where for each n^

is of type G^ and dense in the complete metric
«e

space Ao Then for each n, = nSl^ m'’ 'where
for each i&p 1% is open in Ao Furthermore ̂ since
each set is dense in A and C  ^ for
all mp each set H is dense in A* Also^ byn HI
theorem 2*4^ H is a Borel set of type G^« There­
fore, by theorem 2ol2, H is dense in A*

Theorem 2ol4g If E is a Borel set of type
Ĝ  ̂ and dense in a complete metric space A, then E 
is of the second category in A and 0(E) is of the
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first category in A«
Proof; Suppose E is any Borel set of type 
aud dense in the complete metric space A® By 

theorem 2.3 the set 0(E) is of type in A.
By theorem 2.9 0(E) is either of the first category 
in A, or else contains a neighborhood. But 0(E) 
cannot contain a neighborhood since E is dense in 
A. Therefore 0(E) is of the first category in Ap 
i.e. a countable union of nowhere dense sets in A.

Suppose E is also of the first category in A, 
i.e. a countable union of nowhere dense sets in A. 
Then the complete metric space A would be of the 
first category relative to itself since A = E U 0(E) 
implies A also is a countable union of nowhere dense 
sets in A. Therefore we have a contradiction since 
by Baire’s Theorem 2.11 the complete metric space A 
must be of the second category relative to itself.

Therefore set E is not of the first category 
in A, and hence is of the second category in A.

Theorem 2.15: In the space A of all real
numbersS» the set of all rational (irrational) numbers 
is a Borel set of type P^ (G^) p but is not a set of 
type (P^) ,

Proof ; Let R be the set of all rational 
numbers, then, 0(R) is the set of all irrational num­
bers. Since R is a countable set, and any countable
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set is of type p R is a Borel set of type P^ ,
(This is because each element of a countable set may 
be thought of as being a one-element set, which is 
closed*) Hence 0(R) is a Borel set of type , by
Theorem 2.3 .

Suppose R is also of type G^ * Since the 
set of all real numbers A constitutes a complete 
metric space, and since R is dense in A, by theorem 
2J.4 R is of the second category in A* But since 
R is of type P^ and does not contain a neighbor­
hood, by theorem 2*9» R is of the first category 
in A. Therefore we have a contradiction, and the 
set R of all rational numbers is not a Borel set of 
type G^ . Also, the set of all irrational numbers 
C(R) is not a Borel set of type P^ *
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CHAPTER III
HAÜSDORPP SETS AHD Q ̂

In this chapter we will define the Hausdorff sets 
of type P and , and will prove several impor­
tant properties of these sets, We will also show 
that the family of Borel sets and the family of Haus- 
dorff sets are identical. It will be assumed through­
out that we are working within a metric space A  ̂
unless otherwise stated,

Hausdorff sets of type P^ and are defined
by transfinite induction in the following manner. 

Definition; A set is of type P^ (Q̂  ) if
and only if it is an open (closed) set. Suppose that 
<X < JX and that Hausdorff sets of type P^ and 

Qg have been defined for all ordinals 0  < <=< »

Then by transfinite induction a set is of type
oo oo

) If If B = (E E„),
Where for each n, E^ is a set of type 
Q _ (P_ ), cx < We note that the sets of
the countable union (intersection) need not all be 
of the same type.

Theorem 3,1; For every o( < J \  , every set 
of type P ^  (Q^ ) is also a set of type (Q ̂  )
if (3 < cK

Proof; For 0 < (3 < <=< <  ̂ if set E is
- 26-
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of type , then E =^^^E^ , where for each n,

is of type ^ ̂  < (3 . But (2^< ^

implies ^  n ^ ^  * therefore E is of type 

*

Likewise, for 0 < (3 < c< < _/l_ , if set E
oo

is of type , then E * where for each
n, E is of type P _ , f3 < 0 „ Therefore

^ n
(3 ^ < o< and set E is of type

Suppose (3 = 0. A set E of type P^ is
an open set, and as such is a Borel set of type G-̂
Then by theorem 2.7, E is of type , i.e. a
countable union of closed sets. Therefore, by
definition, E is of type P^ . Likewise, if set
E is of type , i.e. a closed set, then E is
a Borel set of type , and hence of type by
theorem 2.7» Since E is a countable intersection 
of open sets, E is of type .

Now, if 0 < <x < _yL , then, since every 
set of type P^ (Q^) is of type P^ (Q^) , since
0 <  1 < o< < , and since 0 < ^ < «x*
implies that every set of type P ̂  (Q^ ) is of
type P^ (Q^ ) , it follows that every set of type 
Pq CQo  ̂ is of type P^ (Q^ ) .

This completes the proof of theorem 3.1 . 
Theorem 3.2: The complement of a set of type
(Qo< ) a set of type Q (P̂  ̂ ), for all
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ordinals ex' < _/%.

Proof : The theorem is true for o< = 0 since
the complement of a closed set is an open set, and 
the complement of an open set is a closed set.
Assume the theorem is true for all ordinals ^  <  <x 
where o< <  SL

Suppose set E is of type P^ . Then
oo

E = E^ 9 where each E^ is of type <, < <x'.
OO n

Therefore 0(E) = ĝ̂ Ô (B^) where each set G (Ê )
is of type P ^  , » by our induction

n
assumption. Therefore 0(E) is a set of type
Q ^  ^ "

Suppose set E is of type Q . Thenoo
E = E^ 9 where each E^ is of type P ^  , < 'V.
Therefore 0(E) = 0(E^)g where each set 0(E^)
is of type Q 9 cx^ < g by our induction
assumption. Therefore 0(E) is a set of type

, o< < -/I
Therefore the theorem follows by transfinite 

induction.
Theorem 3.3s For all ordinals ex' < JX , 

the union (intersection) of a finite or countable 
collection of sets of type P ^  (Q^^ ) is a set of 
type P ^  (Q^ ) .

Proofs The theorem is true for o< - 0 since 
the union of any collection of open sets is an open

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



-“29“
set and the intersection of any collection of closed 
sets is a closed set,

oo
Suppose 0 < o< < JL and E = U-, E_. wheren—1 n ̂oo

each set is of type , Then E^ = E^ ^ 99'‘"
where each set E_ _ is of type Q ̂   ̂ of _ < ,

« “’“.o n.mTherefore E = • Ike
same is true if E is a finite union of sets of type

!■,< • oCSuppose 0 < c< < _/l̂ and E =  ̂ where
”  oo

each set E^ is of type . Then E^ = ,
where each set E„ „ is of type , <=<„ „ < of ,

oô ^̂ oo n,m
Therefore E = nSl ^n,m type . The
same is true if E is a finite intersection of sets
of type .

Theorem 3.4g For any ordinal o( < _/!. @ the
union (intersection) of a finite number of sets of
type (P^ ) is a set of type Q ̂  (P^^ ) .

Proof : The theorem is true for o< = 0 since
the union of a finite collection of closed sets is a
closed set and the intersection of a finite collection
of open sets is an open set. Suppose ex' is any
ordinal number such that 0 < <=< < _/L

Suppose E and P are two sets of type P ^  ,€30
Then E = E^ , where each set E^ is of type
Q. ; < c* and F = U p where each setn m=l m
P^ is of type ^ ̂   ̂ ^  <• Then
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= ^ "'n,m= L°<n, ® m 7
then by theorem 3.1 both and are sets of type
^cx , of ,< (>f , and by theorem 3.3, E n P_

n,m ^ ^
is a set of type g =»<'„ _ < cX « Therefore

^n,m
E A F is a set of type .

Suppose E and F are two sets of type Q ̂  ,
Then by theorem 3.2g 0(E) and 0(F) are two sets
of type P ^  . Therefore fo(E) O 0 (F^ is a set
of type P ̂  by the proof above g and by theorem
3.2 again, 0 ^O(E) A 0(F)J = E 1/ F is a set of
type Q ̂  .

Now that the theorem has been shown true for 
two sets, the theorem can be proved for any finite 
number of sets by using finite induction.

Theorem 3.5: For all ordinals cx < ,
every set of type P ^  (Q ) is a set of type

Proof : Suppose cX <T VI and E is a set
o£>

of type P^ . Then E = E^, where E^= E for
each n, is of type Q . Likewise, if E is

«0a set of type Q ̂  , then E - E^, where E^= E
for each n, is of type P^ .

Theorem 3.6 g For cX <  VL 9 the difference
of two sets of type  ̂ Is both a set of
type ^cX+l ^ set of type .

Proofs Suppose S =; E - F, where E and F
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are sets of type P , <=̂ < XL » Then 
S = E O 0(P) where E is of type by theorem
3.1 and 0 (?) is of type by theorem 3.2.
But then 0(?) is of type by theorem 3.5g
and therefore S is of type theorem 3.4.
Also, E is of type by theorem 3.5s and 0(?)
is of type Q(x +1» theorem 3.1, since 0 (?)
was shown above to be of type . Therefore S
is also of type Q by theorem 3.3.

The same can be shown true for the difference
of two sets of type by taking set complements.

Theorem 3.7 : If o< <  is any even (odd)
ordinal, Borel sets of type ? ̂  are Identical to 
the Hausdorff sets of type ) » and Borel sets
of type G ^  are identical to the Hausdorff sets of
type (Q ̂  ).

Proof : The theorem is true for o< == 0 by
definition of the two families of sets. To prove
the theorem for o< < _/% , assume the theorem is
true for all ordinals  ̂ (3 < o<

Suppose cK is an even ordinal, and set S isoo
of type ?g^ . Then S = for each n, 8^
is of type ]?o< 9 <c%r . If cK̂  is even, 8^
will be of type Q ̂  by our induction assumption.

n
Therefore 8^ will be of type P +1 < o!" 9
by theorem 3.5 If is odd, 8^ will be of type
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, of < , by our Induction assumption. In

n
any case S is of type .

If o< is even, and T is of type , then
O O

T = where for each n, is of type
c<^ < e>< . If is even, will be of type

by our induction assumption. Therefore T
n

will be of type F (X +l < ex' , by theorem
n

2.7. If is odd, T^ will be of type ,
< cX , by our induction assumption. In any

case T is of type F ̂  .
Suppose o< is an odd ordinal, and set S is

oo
of type F ^  . Then S = where for each n,

is of type s ^  *̂ n odd,
S will be of type by our induction assump-

n
tion. Therefore 8^ will be of type +1» ^
by theorem 3.5 If is even, 8^ will be of
type Q cX » , by our induction assump-n
tion. In any case 8 is of type P^̂  .

A set of type P ^  is shown to be of type F̂  ̂ ,
if cx is an odd ordinal, by similar reasoning.

8uppose cx <  jTL is any even ordinal and 8
is a Borel set of type G ^  « Then by theorem 2.3,
0(8) is of type F ^  . By the first part of the 
proof 0(8) is of type Q ©< » Therefore by theorem 3.2
8 is of type Pcx » Likewise, a set of type P ^  is
shown to be a Borel set of type G ̂  , for any even
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ordinal o< <

Similarly, it can be shewn that the sets of type 
and the Borel sets of type G are identical * 

for any odd ordinal o< < J\ ,by taking complements, 
Hence the theorem is true for all ordinals 
< JX, by transfinite induction.
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CHAPTER IV 

BAIEE PUHCTIOHS

The Balre functions are a class of functions 
which are defined in an analogous manner to the Borel 
sets. It will be assumed throughout that we are work­
ing with real-valued functions defined on a metric 
space, unless otherwise stated.

Definition; A function is a Baire function of 
type f^ if and only if it is a continous function,
A function is a Baire function of type f^ if and 
only if it is the limit of a convergent sequence of 
continuous functions. Suppose that oc <  _/L , and
that Baire functions of type f ^  have been defined 
for all ordinals /3 < . Then a function is a
Baire function of type f ̂  if and only if it is the 
limit of a convergent sequence of functions, each of 
type f ̂  for some <<3 < cK . We note that all of
the functions of the convergent sequence need not be 
of the same type. By transfinite induction, this de­
fines Baire functions of type f c< ? for all ordinals
cK <  y i  .

Theorem 4.1; For every <x < _/% , every
function of type f ^ is also a function of type 
f ^  if (0 < c< ,

Proof; Suppose f(x) is of type f ^ , 0 < ^ < A
-34-
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Then f(x) Is of type f . since f(x) =_llm f„(x), 
■where f^(x) = f (x) for each n*

Theorem 4.2; For every o( <_/L , the sum
and product of two functions of type f^ are Balre 
functions of type f^ ,

Proof; The theorem Is true for cX = 0 since 
the sum and product of two continuous functions are 
continuous.

Oonsider cK < and assume the theorem Is
true for all ordinals (3 < o< . If f (x) and
g(x) are hoth of type f_ , then f(x) = 11m f^(x)n -̂ 00 n
and g(x) = „llm g_(x) where, for each n, f_(x) Is ofXI ̂ ^00 Xl XI

type fp̂  , <<21 cx p and g^(x) Is of type f^ ,
(3̂  < . Let - max( for each n«

Since <  cK for each n, "by our Induction
ass-umptlon each function f^(x) + g^(x) or

is of type f ̂  < o< .
Since f(x) + g(x) =^llm ^]f^(x) + g^(%T) and

f(x)*g(x) =„llm /f„(x)"g„(x)l s it follows that the n -̂ eo L n a j
functions f(x) + g(x) and f(x)*g(x) are both 
Balre functions of type f ^  , •

Thereforep by transfinite Induetionp the theorem 
Is true for all ordinals cK < _/X «

Theorem 4.3 : For every ordinal o< < _/L s
the difference of two functions of type f .  is acK
Balre function of type f^^ .
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Proof: The theorem is true for o< = 0 since the

difference of two continuous functions is a continuous
function. Consider any ordinal  ̂0 <  os' < VL .
Suppose f(x) and g(x) are both of type f ^  .
Since any constant function is continuous, -1 is of 
type f^ , By theorem 4,1, -1 is of type f ,
Hence -g(x) is of type f ^  by theorem 4,2 , It 
then follows that f(x) -g(x) is of type f by 
theorem 4,2 .

Theorem 4,4; For every ordinal cxf < VÏ. ,
if f(x) is of type f ^  then |f(x)/ is of type

^o( •
Proof ; Oonsider the Baire function f(x) of 

type f^ , o< <_/!, « If 0< = 0, f(x) is a contin­
uous function. By definition this means given any 
Xq and £1/^0 there exists some 0 such
that if d(x,z^) <  <T then /f(x) - f ( x ^ ) j  < &  •
Hence ||f(x)j - l f ( x ^ ) l j  <  j f ( x )  - f(x^)/ <
and the function /f(x)j is also a continuous 
function. Therefore the theorem is true for = 0 .

Assume the theorem is true for all ordinals (<3 < o<' 
If f (x) is of type f ̂  , then
f(x) = lim f (x) where for each n, f„(x) is of type n — XI n
f^, < cK • Then by our induction assumption
each function lf^(x)f is of type f^ , .
But /f(x)j = / limf (x)/ = lim |f^(x)/ , therefore11 11 " 11 -4̂ 0 n *
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I f(x) I is of type . Therefore by transfinite

induction, the theorem is true for all ordinals cK < 
Theorem 4.5: For every ordinal o< < _/L ,

if f(x) and g(x) are of type f̂  ̂ , then
max ff(x),g(x^ and min ^(x)pf(x)J are of type

Proof ; By theorems 4.2, 4.3, and 4.4 the func­
tions f(x) + g(x) and /f(x) - g(x)| are of type 
f ̂  , cK. < _/\_ . Hence the functions max |^f(x),g(x^ ;
1/2 [f (x) + g(x^ + 1/2 |f (x) - g(x)| and
min [f(x),g(x)J = 1/2 ff(x) + g(x^ - 1/2 | f (x)-g(x) |
are of type , by theorems 4.1, 4.2,
and 4.3.

Theorem 4.6s For every ex' < _/)_, , if f (x)
is of type f and never equal to 0 , then
is of type f^ «

Proof : The theorem is true for cX = 0, as the
reciprocal of a nonzero continuous function is a con­
tinuous function. Oonsider cK <  __/% , and suppose
the theorem is true for all ordinals 0  ^ «

Suppose f(x) is a Baire function of type f ^  , 
f(x) ^ 0 for all X .  Let Q(x) =  ^ ( x ^   ̂.  Since
f(x) ^ 0 for all X ,  Q(x) > 0 for all x. Also,
Q(x) is of type f ^  by theorem 4.2 . We shall

X Xshow that Q-ppy is of type f^ , and hence ^ ç-j 
is of type f^ , by theorem 4.2, since
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TJxJ - ' oT&T "

Since Q(x) Is of type f^ , Q(x)
where, for each n, f^(x) is of type f^ .
Let g^(x) = max ^^(x), ^ J, then g^(x) > 0 for
ail X and g^(x) is of type f ^  , < OC  ̂ hy

theorems 4.1 and 4.5 , Also, ^]Am g^(x) = max ̂ Q(x) ,
oj = Q(x) and = ^13g^ —  ̂ where, for each n,
gĵ (x) > 0 o But by our induction assumption each
function •• t is of type f , of < cK . There­

i n n  
fore the function q (x ) of type f^^ .

Hence Is of type f ̂  , and the theorem
is true for all ordinals o< < _/% by transfinite
induction.

The following lemma will be needed to prove 
theorem 4.7.

Lemma 4.1; For every ordinal Of <  _/L , if
f(x) is of type f on a metric space A and
|f(x)| < k for every x £. A, k > 0, then f(x) =
lim f (x), where each function f (x) is of type

XX OÔ XX XX

f , cx < C>f , and /f (x)/ < k for every x A.
n

Proof; If the function f(x) is of type
f^ , e*< < _/L 9 then f (x) = ^]Am g^(x) where for
each n, g^(x) is of type f , <?f̂  < «X .

For each n define h^(x) = min £g^(x), kĵ
and f^(x) = max {^h^Cx), - l£/ for k > 0. Then by
definition f^(x) <  k and f^(x) ^  -ks> therefore
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< k for every x £ Ao By theorems 4*1

and 4 o5 each function f (x) is of type f^ , of
n

Now f(x) = ^lim f„(x) if for every <£ > 0 and
zX oo Z1

every x^ £ A there exists some positive integer N 
depending upon x^, such that if n > N then

Suppose any £. >  0 is given. Then since
f(z) = ^Mm^g^Cx):, for any x=x^ there is some
N ̂  0, depending upon x^, such that if n >  N then 
/ ®n^^o^ - :̂ (%o) / <  6  o Therefore f (z^) - £ <  
g^(x^) <  f(x^) + £  or -k - £ <  ESil(3:0) <: k + £
since / f (x̂  ) ) < k.

Suppose that g^(x^) < k, then
by definition, and i ^  ^

Suppose instead that g^(X|^) > k, then by 
definition k.^(Xg ) = k , and since jf (x̂  ) j £ k ,
0 < - f(%o) < g^CZg) - f(%o) < <C

Hence f (%Q ) I for n > N and
for any value of „

Suppose ^ ( ^ q ) -k £. then by definition

^n(^o) =
f (][()) - fCs:̂ )/ = ! liii(:Co) - f (%o) j < ^

Suppose instead that h^(x^) < -k, then by
definition f]^(%o) = -k , and since jf (x^) j < k ,
0 > ) > -S •
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Therefore ~ ^ I ^ ^  for n > N

and for any value of » Therefore ^]Am^f^(z) :
f(x) at Xq j and therefore at any point x £ A 
since Xq was arbitrarily chosen»

Since the sequence ŵ as constructed so
that /f^(x)| < k for all x £  A , for each n, and 
each function f^(x) is of type f^  ̂ < o< ,
the lemma is proved*

Theorem 4*7: For every ordinal ,
the limit of a uniformly convergent sequence of func­
tions of type f^  J, on a metric space Ag is a Baire 
function of type f ^  .

Proof : Let ^ uniformly conver­
gent sequence of functions of type f^ , where
f(x) = „lim f^(x) « Let any £. > 0 be given,n -̂ oo u
Since is uniformly convergent g there
exists some IT >  0 such that for every n > Efg
I f (x) - f^(x) / < S/3 for every x £ A,

Suppose c< = 0 and n > N, ITow since each
function f^(x) is continuous on A, if a £ A there
exists a é > 0 such that if d(Xga) < <T then
I f^(x) - fjj(a) I < S/3 . Suppose d(Xga) < f  ,
then
jf(x) - f(a)/ < |f(x) - fjj(x)| + /f^(z) - fjj(a)j

+ I ’̂jj(a) - f(a) I 
< S/3 + S/3 + £/3 = £  ,
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Thls shows that f(x) is continuous at a £; A and
therefore continuous on the space A. Therefore the
theorem is true for oi = 0„

Now suppose 0 < o< < , and f(x) = „limu -»oo
f^(x) uniformlyp with f^(x) of type f forOO
each n. Choose a convergent series of
positive real numbers, say k^ = 1/2^, such that
k. < k., for all i« Then .lim k. = 0, Now,14*1 1 1 1
from the definition of uniform convergence, for each 
k^ > 0 there exists some m^ > 0 such that if 
n,m > m. then /f^(x) - f (x)|< k. for all x £. A,“ I u m X
or /f^(x) - f^ (x)/ < k^ for all n > m^ and
for all X £ Ap where m^ < all positive
integers i.

We thus define a uniformly convergent subsequence 

then f(x) = .lim g.(x).l-^6d 1 cO
How, f(x) - g^(x) = 

where, for every n and all x E A, /®n+l^*^ “ S ^ M j  <OO
k^ • Hencep by the Weierstrass M-testp since
was constructed to be a convergent series of positive

oo 1 I
constants, the series i ®n4-l̂ ^̂  “ g^(%) j
converges uniformly to f(x) - g^(x). Furthermore, 
since |̂ f̂  (x)j = ^g^(x^ , each function g^(x)
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Is of type p and the function " ^n of
type f ̂  for every n by theorem 4.3,

Therefore, by lemma 4,1, since -Sj^Cx) |
for every x £ A, there exists a sequence

{  ®n,m^^i? such that I ^ ^n every
m and x £ A, and g^+iCx) - g^(x) = ®n,m^^^
where each function g _(x) is of type f^ ,

n,m
-

Kow define h^(x) = g^ ^(x) and let 
«-m = mas * Ihen, by
theorem 4,2, for every value of m, h^(x) is of
type f ̂  , where o<' < CX .

m g
Let £ > 0 be given. Since k^ is a con­

vergent series there exists some M > 0 such that
00
n~M+l^ < 6/3. Therefore for every x £ A,

|f(x) - ĝ Ĉx) - I

= fnll fSji+i(x) - e ^ M j  - fSn+i(*) - Sn^^Û 1
^ Æ l + 1
^ n=M+l ^n ^

Now suppose m >  M, then since h^(x) =
1 ^ 1 ^ 1  i

-  nil SçL,m (3:>' 5  nlM+l len,mt^>l
^  ièl+1 - nêî+1 'Si ^
Also, for every x £ A,

, M M ,
'nil j[Sii+]L(3:) - S„(x)J - I
= U l  fSn+l'^) - Sn'^> - 8n,m<^!7/
i nil /Sn+l(^) - Sn(=) ' «n.m^^H .

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



-43-
Oonslder & A, then since for each n

- g^(z) = ^lim^ there exists some
c^ > 0 such that if m c^, then n — n'
/Sn+lf'^o) - (:%o) - 6n,m<^o)/<
n = 1, 2,,,, M. Let M' = max /c^, c^j ... , ]

9

then m > M* implies m > c^ for n=l, 2,..., M.— M — n y y »
Take m >M>, then ;gn+i(%) - ' Sn,m(^o> /
^  M * = —"y"- andM ^  5 M I
Lil fjBsLH.!(= ) - - nil 8%L,m(= >I ^

at Xq £. A.
Now, for Xq £ A, and M > 0 and M*> 0 de­

fined as above, if m >  max [MgUj] , then
|f(x^) - s^(x^) -

-  " I;]-(''o) ■ ^®n+l<^o> - I

* l Æ .  ZSn+l(^o^ - Sn^^oO " nil «n.m'^o^ I
+ I%.!(=0) - nil Sn.m^^oW 

<  E/3 + E/3 + E/3 = £ •
This implies f(x) - g,(x) = „lim h_(x)I m —y m

where each function h^(x) is of type ^ m  ^
m

Therefore f(x) - g^(x) is of type f ̂  , <X < YL , 
and by theorem 4.2, since g^(x) is of type f^  , 
f(x) is of type f^^ .
Definition: If a function f(x) is defined on a
set S, then f(x) is lower-semicontinuous at c £ S
relative to S if for every £ > 0 there is a S > 0
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such that If X £ S and d(x,c) < f then f(x)
> f(c) - £ , The function f(x) is upper-semi- 

continuous at c £ S relative to S if for every 
£ > 0 there is a > 0 such that if x £ S

and d(x,c) < <T then f(x) <  f(c) + £. .
Definition; The function f(x) is said to be lower- 
semicontinuous (upper-semioontinuous) on S relative 
to S if it is lower-semicontinuous (upper-semicon- 
tinuous) at every x £ S relative to 8.

The orem 4.8: If Is a nondecreasing
sequence of continuous functions on a metric space A, 
and if for each x^ £  A , ^ sequence
which is bounded above, then the sequence 
converges to a function f(x) which is lower-semi- 
continuous on A*

Proof ; Suppose Is a sequence satis­
fying the conditions of the theorem. Then, for any 
c £ A, ^ ^ °  ̂  is a nondecreasing sequence of real
numbers,bounded above, and f(c) = lim f_(c) exists .n.̂  otf n

Now, to show f(x) is lower-semicontinous at 
c £, A, let £. > 0 be given, then there is some
N > 0 such that for all n > N, | f^(c ) _f (c ) | <  ,&/2, 
so that fjj(c) > f(c) - <S/2 since f(c) = ^n^° ̂
Since f ̂^̂(x) is continuous on A, there is a ^ > 0 
such that if d(x,c) < <T then
/fjj(x) - fjj(c)/< 6 /2, i.e. fjj(x) > fjj(c) - 6 /2.
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Hence, for any C > 0 there exists some

^ > 0 and some N > 0 such that if d(x,c) ^  <T 
then fjj(x) >  fjj(c) - 6/2 > f (c) - 6/2 - 6/2 =
f (o ) - ^  , But since Is a nondeoreasing
sequence, f(x) >  f^(x) and f(x) > f(o) - £ for
all X 6 A such that d(3^c) < ^ . Therefore f (x)
is lower-semicontinuous at o ^ A, and therefore 
lower-semicontinuous on A.

The orem 4.9: Every lower-semicontinuous function
f(x) defined on a metric space A and bounded below, 
is the limit of a nondecreasing sequence of continuous 
functions on A.

Proof; Suppose f(x) is bounded below and lower- 
semicontinuouè on a metric space A« Define 
g^(x) = g.l.b. /f(y) + n-d(x,yÿ for every positive
integer n, where y varies over the entire space A.

To show that each g^(x) is uniformly continuous, 
consider any two points x^,Xg 6 A. Then 
g^(x^) =: g.l.b. /f(y) + n*d(x^,y)J

< g.l.b. £f(y) + n'd(x^,Xg) + n"d(Xg,y^
= g.l.b. £f(y) + n"d(Xg,y^ + n'd(x^,Xg)
= + n"d(x^,Xg) .

By interchanging x^ and Xg, we obtain 

Therefore

I Sn^^l^ - ^**^^^1*^2^ for each n.
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Let £ > 0 be given, then choose <T = £ /n.

Now, if d(z^,Zg) < f  , then I

< n r = £ . Therefore for each n each function 
g^(x) is uniformly continuous on A, and therefore 
continuous on A.

Next, we note that ^ nondecreasing
sequence, i.e. g^^^(x)>  g^(x) for all n, since
^n+l(^) “ g.l.b, £f(y) + (n+D* d(x,y)J

= g.l.b. £i(y) + n*d(x,y) + d(x,y)J
> g.l.b. [f(y) + n“d(x,y)J
= .

finally, we must show that f(x) = ^limg_(x).wo ^
This will be done by showing the following :
(1) f(x) > _lim g„(x) for all x £ A, and
(2) f(x) < _lim g„(x) for all x £  A,*“ n->c>o

Proof of (1): For every n, g^(x) = g.l.b. £f(y) +
n’d(x,y^< f(x). Therefore f(x) > ^]Am g^(x).

Proof of {2)t Suppose <£^0 is given.
Since f(x) is lower-semicontinuous on A, for any 
Xq £ A there exists some <f > 0 such that if

d(%Q,y) < «T then f(y) > f(x^) - £ .
Hence g.l.b, (y) + n*d(x^,y)J > f (ẑ ) - £.
if d(x^,y) < f  . Since f(x) is bounded below,
there exists some real number M such that f(x)> M
for every x £ A. Now, there exists some N > 0 such
that M + n<T > f(x^) -£ for all n > N,
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Hence if n > N and d(x„,y) ^ S thenV

f (y) + n*d(x^,y) > M + n <T > f (x^) - £, . Hence 
g.l.b. /f(y) + n.d(x^j,yj] > f(x^) -£ if 

d(x^,y) > £  and n > N.
Therefore g^(x^) =g.l.b. ĵ f (y) + n.dCx^^y^

2 f (x^ ) - £ if n > N, Therefore g^(x) > f(x)
for all X £ A.

It follows then that f(x) = lim g„(x),n ^
Definition; Por any real valued function f(x) 

defined on a metric space A@ the set 
(E [f (x) < kQ ) is the set of all x £  A such that
f(x) > k (f(x) < k).

The orem 4,10(a); The function f(x) defined on a 
metric space A is lower-semicontinuous on A rela­
tive to A if and only if, for every real number k,
the set E ĵ f(x) > 1^ (E £f (x) < ^  ) is open
(closed) relative to A«

Proof; Suppose f(x) is lower-semicontinuous on 
A relative to A. Let k be any real number and 
suppose c £, A, with f(c)^ k. There is some £ > 0
such that f(c) - £ > k. Since f(x) is lower-
semicontinuous at c £ A relative to A, there is some 
i > 0 such that if dCx^c) < <T then f(x)>f(c) -£ 

Hence there is a neighborhood N(Cp iT ) such that for 
every x Ê H(c, f ), f(x) > f(c) - <£ > k« Thus
E £̂ f (x) > is open relative to A.
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Suppose the set E ^ ^  is open relative

to Ar for every real number k. Let o £ A and 
£1 ^  0 be given. Then since E ^(x) > f(c) - £j/

is open relative to A, there is some <T > 0 such 
that for every x C N(c, <f ), f(x) /> f(c) - &  .
Therefore f(x) is lower-semicontinuous at c A 
relative to A, and therefore lower-semicontinuous 
on A relative to A.

Since E £̂ f (x) < ^  = 0(E £f(x)>]^ ), and
the complement of an open set is a closed set, it 
follows that f(x) is lower-semicontinuous on ^ 
if and only if for every real number k the set 
E £f(x)^k^ is closed relative to A,

Definition: For any real vlaued function f(x)
defined on a metric space A, the set E £f(x) < ^
(E £f (x) > ) is the set of all x A such that
f (x) <  k (f (x) > k).

Theorem 4,10 (b); The function f(x) defined 
on a metric space A is upper-semicontinuous on A 
relative to A if and only if, for every real number 
k, the set E £f (x) < (E £f (x) ^ iQ ) is open
(closed) relative to A.

Proof ; The proof of this theorem is similar to 
that of theorem 4,10 (a).

Theorem 4.10 (c); A function f(x) is con­
tinuous on a metric space A relative to A if and 
only if, for every real number k, the sets E £f(x) > ^
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(E £f(x) < k7 ) and E [t(x) < (E[f(x) > kj )
are open (closed) relative to A,

Proof; The proof of this theorem is an immediate 
consequence of theorems 4,10 (a) and 4,10 (b) since 
a continuous function is one which is at the same 
time lower-semicontinuous Etnd upper-semicontinuous.

The following theorem is a generalization of 
theorem 4,9,

Theorem 4,11 : Every lower-semicontinuous func­
tion f(x) defined on a metric space A (bounded 
or not) is the limit of a nondecreasing sequence of 
continuous functions on A,

Proof ; Suppose f(x) is unbounded and lower- 
semicontinuous on A.

Define Q(x) = j ■ . Then |q (x )| < 1,
E fQ(x) ^ ^  is empty if k > 1* and E £q (x ) > ^  =
A if k < -1, Nowg for 0 < k < 1»
E ĵ Q(x) > ^  = E /f (x) >  k + k*/ f ( x ) / J

= E ]^(x) - k-f (x) > kj

since k > 0 implies Q(x) > 0 and f(x)>0,
Por -1 < k < Og and -1 < Q(x) <  Og 
E [q(x) > k] = E [f(x) + k'f(x) > k]

= E ĵf (x) > Y I g3 since Q(x) < 0
implies f(x)< 0, Therefore, for -1 < k < Og and
/q (x )| < 1 , E £ Q ( x ) > i g  = Z (f(z) >
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8luce f(x) > 0 if Q(x)>  0, by definition.

But since f(x) is lower-semicontinuous on A,
E £ q (x ) > ^  = E{f (x) >  open relative to
A, for 0 < k < 1, and E £q (x ) > k^ = E{f(x) >

^ ^ J is open relative to A, for -1 < k <  0, by 
theorem 4.10 (a). Therefore E £q(x) ̂  ^  is open 
relative to A for all real numbers k. Therefore, 
by theorem 4,10 (a), Q(x) is lowersemicontinuous 
on A.

Now, by theorem 4.9, since Q(x) is a bounded
lower-semicontinuous function on A, Q(x) is the
limit of a nondecreasing sequence £gjj(x)̂  of 
continuous functions on A, i.e. Q(x) = „lim g„(x). 
Where for each n, g^(x) is continuous on A, and
gn+i(^) t all X <S A.

Since Is a nondecreasing sequence,
g^(x) < Q(x) < 1 for each n. Define f^(x) = 
max £g^(x), - l/ for each n. Then for each n, 
f^(x) is continuous on A and -1 < f^(x) < 1.
Also, by definition, for all n, f^(x) >  g^(x),
f^(x) <  Q(x), and |^f^(xÿ is a nondecreasing 
sequence since la a nondecreasing sequence,
for all X £ A.

Since Q(x) = ^lAm g^(x), for any given £, > 0 
and Xq £. A there exists some N > 0 such that If 
n >  N then Ig^(x^) - Q(x^)/ < ^  . But since
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g^(z) <  f^(z) < Q(x) for all x&A,
Q(z:o) - & <  < f^(Zo) <  Q(Zo) + 6 , if n > N,
Therefore / ^  ^  for n > Nj and
Q(x) = lim f^(x) for all x & A.

^ oo ^
Now define v^(ï) = .

/ r b ï ï + i 5  ;i=n+r 1 = “'eo 1 2n + 1, and  Is a convergent series of
positive constants9 then by the Weierstrass M-testp 
the series defining v^(x) converges uniformly on A. 
Therefore v^(x) is continuous on A for all n, 
since each function v^(x) is the sum of a uni­
formly convergent series of continuous functions on 
A.

Since jf^(x^ is a nondecreasing sequence 
and since = Is we have for all n and all

x £ A ,  >  itn g l L + 1  ' 1 &  =
f^(z) . But v^(x) < î n-fl ' = Q(x) for all n
and X £ A* Therefore Q(x) = „lim v^(x) , sincen
f^(x) < v^(x) < Q(x) for all n and all
X £ A, and ^lim f_ (x) = Q(x),n^oo ^ oo  ̂ oo

Also, = 1^+1 ^TZn'^i(^) == iSn gl-n+1 '
fi^l(x). Therefore ^ v^(x) for all n, i.e.
since ^fn(̂ ^  is a nondecreasing sequence9 so is
(vn(x)} .

Suppose for some x^ & A, v^(x^) = -1. Then 
ffCx^) = -1 for i = n, n+lg ..., which implies
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Q (x  ) =  -  1  s i n c e  _ l l m  f _ ( z )  =  Q ( x )  f o r  a l l  z  &  A .  

o n  n

Th us  we h a v e  a  c o n t r a d i c t i o n  s i n c e  / q ( z ] ^  <  1  f o r  a l l

X &  A .  T h e r e f o r e  v ^ ( x )  ^  - 1  f o r  a l l  n  an d  a l l  x  £ ,  A .  

A l s o ,  v ^ ( x )  <  Q ( x )  <  1  f o r  a l l  n  and  a l l  x  Ê - A; t h e r e ­

f o r e  f V  ( z )  j  K, 1  f o r  a l l  n  and  a l l  z  &  A*
V ( z )

D e f i n e  F ^ ( x )  =  1  _ y y  (x)j '  T h en  P ^ ( z )  i s

c o n t i n u o u s  on A s i n c e  v ^ ( z )  i s  c o n t i n u o u s  on A ,  

f o r  a l l  n .  F u r t h e r m o r e , ^  n o n d e c r e a s in g

s e q u e n c e .  C o n s i d e r  t h e  f o l l o w i n g  c a s e s  :

( 1 ) S up po se  v ^ ( z )  >  0 , t h e n  — 0 and

• / V n ^ l ( x ) /  =  I ' • T h e r e f o r e

= 1 - I v;^£(x)-7 ^  1 - Ivjx) I = -
( 2 ) S u pp ose  v ^ ( z )  <  0  an d  v ^ ^ ^ ( z )  >  0 ,  t h e n

V i ( x )  V  ( x )

= 1 - I ^ 1 - / v^U) I = •
( 3 ) S up po se  <  0  an d  <  0 , t h e n

j >  0 , s i n c e  ^ v ^ ( x ) ^  i s  a  n o n d e c r e a s i n g  s e q u e n c e .  

T h e r e f o r e

1 ^ 1 s
^ - 1  - 1 - ~

1 - |v^(x)| < 0-

T h e r e f o r e ,  s i n c e  ^  i s  a  n o n d e o r e a s in g

s e q u e n c e ,  F ^ ^ ^ ( z )  =
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^ 1 - /■^n+l'^^/ - 1 - /Vjj(x>/ -
Where v^(z) < 0 and ^ 0«

Therefore, Is a nondecreasing se­
quence»

Finally, ^l^P„(x) = 1
(Vĵ (x)/ < 1, Henoe ^:Um F^(x) = since

„lim v„(x) = Q(x), Since by definition Q(x) =XL̂  OO ■“■
TTji^l) I ® :̂ (%) = Q(x)*[l + lf(x)[l = Q(x) +
Q(x)*|f(x)| = Q(x) + /Q(x)/'f(x) where Q(x}-/f(x)| =
|Q(x)|»f(x) since Q(x) and f(x) have the same
sign for all x 6 A. Therefore
Q(x) =  f(x) - |Q(x)/-f(x) ™ f(x)*fl - / q ( x ) | J

and f(x) = 1 -^Jq (x )I all x C A»
Therefore _lim F_(x) = f(x), where /p„(x)f n^oo n t- n —•

is a nondecreasing sequence of continuous functions 
on A, and f(x) is our original unbounded-1 ower- 
semlcontinuous function defined on the metric space A.
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CHAPTER V

RELATION BETWEEN BOREL SETS AND BAIRE PUNCTIONS

In this final chapter some of the important 
relationships between Borel sets and Baire functions 
will be discussed* It will be assumed throughout 
that we are working in a metric space, unless other­
wise stated* It will be convenient to make the 
following definition*

Definitions For every ordinal c/ < _/2 j, 
a set S is of type A ̂   ̂ and only if
there is some Baire function of type f ^  and some 
real number k such that S = E [f(^) ̂
(S = E jf (x) > k^ ) „

Theorem 5.1 : For every c/ < _/L , the com­
plement of a set of type A ̂  (B^ ) is a set of type

Proof ; Suppose o< < VI. and S is a set of
type . Then there is a Baire function f(x)
of type f^ and a real number k such that 
8 = E ^f (x) > iQ . But 8 = E jT-f (x) < -iQ and 
0(8) =E£*-f(x)> -1^ o By theorems 4.1 and 4.2, 
since f(x) is of type f^ , -f(x) is a Baire func­
tion of type f^ „ Therefore 0(8) is a set of type

Likewise, the complement of a set of type B^^
-54-
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is a set of type =

The following lenuna will be of use in the proof
of theorem 5.2*

Lemma 5.1 : If f(x) = _lim f„(z) on A. then
E [f(x) > > k + 1 ; .

Proofs Suppose x_ £ A and f(x) > k*—  o o
There exists a positive integer m such that 
f (Xg) >  k + 1 . S in c e  ^(^o > =  > »

for each £. = f (x^) - k - i > 0 there is some u;> 0 
such that if n > N then j f (x^) - ,
implying f^(x^) > f (x^) - = k + g . Therefore,
i f  X^ £ B £f (2 ) > ^  ,  then x^ £ %

+ 1 ] • «  ^  ̂

Suppose that x g nWi n?IT ® n<^) 2: ^ + - J
where f(x) = _llm f (x) . Then» for some m >  0» oo oo n
^  ^  N^l rSlsr ® t ^ + % ]  an d  f o r  some N >  0»
X C E p^(x) > k + o This means x g E [f^(x) >
k + for all n > N o and since f (x) = lim f (x)»

1Ü ™" Xx O O  -IX

then X Ê E £f (x) > k + C  E £f (x) > ]^ «
T h e r e f o r e  E £f(x) > ^  h S  n ü lf  T^n^^' -

Theorem 5.2s Por every finite even (odd) 
ordinal oi » every set of type A^^ is a Borel set 
of type (P ̂  ) and every set of type is
a Borel set of type P ^  (G .

Proof g The theorem is true for ox - 0. since
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by theorem 4,10 (c), a function f(x) is continuous 
if and only if for every real number k, the set of 
type Aq is openj, and the set of type is closed,
i^sume the theorem is true for all ordinals 0 <  ,
where is any finite ordinal.

Suppose first that is some finite odd
ordinal. Let S be any set of type A . There
is then a function f(x) of type f ^  and a real
number k such that S = E £f (x) >  ̂where f (x) =
lim f (x) , where for each n, f (x) is of type

AA 6%  JLL XX

f^ , «K < c< , By lemma 5.1, 
n

 ̂= i„Wl «-ML i S f  > k 4. 1 ] . Since 1
for all n, each f^(x) is a Baire function of type 
^<X-1* by our induction assumption, since dK - 1
is even, each set E [f^(x) > k + of type B^ 
is a Borel set of type By theorem 2,4 the inter­
section of a countable number of Borel sets of type

is a set of type where o< -1 is even.
Therefore set S, as a countable union of Borel sets 
of type where o< is odd, is a Borel set of
type P^ ,

Suppose S is any set of type B^  where o< 
is some finite odd ordinal. By theorem 5,1, 0(S) is
of type A^ . Therefore by the first part of the 
proof, 0(8) is a Borel set of type P , Then by
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theorem 2.5, S is a Borel set of type .

Suppose that û< Is some finite even ordinal
and 8 is a set of type • Then, as in the first
part of the proof, for f(x) = „lim f_(x) of type 

^  ^  ^  ^ “

f^ (x) is of type _i* But now -1 is odd and
each set E ^ k + ^^7 type B^ is a
Borel set of type G ^ b y  our induction assump­
tion. By theorem 2.4 the countable intersection of 
Borel sets of type G^ is a Borel set of type 
G^_^, since -1 is odd. Therefore set S, as
a countable union of sets of type G^ where
is even, is a Borel set of type G ^  .

Suppose S is a set of type where
is some finite even ordinal. Then by theorem 5.1,
0(8) is of type . Therefore, by the above part
of the proof, 0(8) is a Borel set of type Gg^ .
Therefore 8 is a Borel set of type by
the orem 2.5 .

Therefore the theorem is true for all finite 
ordinals (X by finite induction.

The following lemma will be needed for the proof 
of the converse of theorem 5.2 .

Lemma 5.2: For every ordinal c< < VÏ. ,
if 8 is a set of type A ^  or B^^ , there is a 
Baire function L(x) of type f^ in a metric space A,
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such that L(x) = 1 for every x <fT S and L(x) = 0 
for every x & 0 (8).

Proof ; Suppose CK < _A. and S is a set 
of type . Then there is a function f(x) of
type f^ and a real number k such that
S = E jTf(x)>]^ , Define g(x) = f(x) -k. Since 
f(x) is of type f^ g so is g(x) by theorems 
4,1 and 4,3, Furthermore, S = E ^  =
E fg(x) > (̂  , How define h(x) = max ^(x)p 0_7 ,
Then by theorems 4,1 and 4,5^ h(x) is also a Baire 
function of type f^ , Finally, define f^(x) = 
min l^nTh(x),3^ , Then f^(x) is a Baire function
of type f ̂  for each n, and L(x) = ^lim f„(x) 
is a Baire function of type ^©<+1’ for all x <£T A.

Consider x g S, then g(x) >  Q, h(x) = g(x) ,
and f^(x) = min £n,g(x),3j , Therefore
L(x) = _llm f„(x) = 1 for all x £ S, On the other n
hand, consider x £ C(S) . Then g(x) < 0, h(x) = 0,
and f^(x) = min ̂ 0,ljf = 0, Therefore
D(x) = f^(x) = 0 for all x 6 C(S) .

Suppose now that S is a set of type B̂  ̂ ,
where c< < « Then by theorem 5.1, C(S) is of
type A^ . Therefore, by the preceding part of the
proof, there is some function g(x) of type 
such that g(x) = 1 for all x £.0(S) and g(x) = 0 
for all X & S. Hence L(x) = 1 - g(x), which is also
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of type f^ is 1 for all x £. S and 0 for
all X 6: 0(S).

Theorem 5.3? For every finite even (odd) 
ordinal c< , every Borel set of type (P^ )
is of type A ̂  and every Borel set of type P^ (G^ )
is of type B^  .

ProofÎ The theorem is true for ex' = 0, for
consider any open set E in a metric space
A. For any x A, define f(x) = g»l«b. ^d(x,y)J
for all y £ 0(E), where f (y) = 0 for all y £ 0(E)
and f(x) > 0 for all x £, E* Therefore E = E^f(x)>^*
How for any given £ > * 0 and x^ <£ A, choose f .
If X £ H(x^p S )s then d(x,x^) < J = & . There­
fore f(x) = 0 and 0 < f(x^)< &  if x <*; 0(E)
and x^£, E, f (x^) = 0 and 0 < f(x) < €, if 
X 6 E and x^ & 0(E), and f (x^) = 0 and f(x) = 0
if X £ 0(B) and x^ & 0(E)* For x & E and
Xq £, E, we have f(x) < f (x^) + <S since 
d(x,y) < d(x,x^) + d(x^,y) < C  + d(x^,y) for all
y e 0(E). Also, if X & E and x^ & E, f (x) >  f (x^) - £,
since d(x,y) > d(x^,y) - d(x,x^) >  d(x^,y) - S  
for all y £, 0(E). Therefore, f(x) is continuous 
on A since for any ^ 0 and any x^ £, A if
X  Ê N(Xq, f ) where J = 6  then |f (x) - f(x^)| < €1 „

Therefore, every Borel set of type G^ is of 
type Aq , and by talcing complements it can be shown
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that every Borel set of type Is of type
with the use of theorems 2*3 and 5.1» Assume the
theorem is true for all ordinals 0  <  o< , where
(X is a finite ordinal»

Suppose o< is a finite odd ordinal» let S
oobe any Borel set of type P ̂  , then 8 = ,

where for each n, T^is of type P^ _^» By our induc­
tion assumption, each set is also of type
since o<-1 is a finite even ordinal» Therefore, 
by lemma 5.2, for each n there is some function 
f (x) of type f , such that f_ (x) = for
H  XI gXi

every x £ T^, and f^(x) = 0 for every x 0 ( T^ ) .OO
let f(x) = ^^f^(x), i»e» f(x) = ^1̂  s^(x)

where s (x) = f. (x)« Now. for any x ^  A,
XL »L JL .X O O

|f„(x)l < i—  for all n, where is a con-* XI f — . g%i XI— L gXl

vergent geometric series of positive constants. 
Therefore, by the Weierstrass M-test, f(x) is a 
uniformly convergent series for all x £. A« There­
fore the sequence of partial sums Is
uniformly convergent on A. Since each f (x) is 
a Baire function of type f^ , and s^(x) = 
each s^(x) is a Baire function of type f^ by
theorem 4»2. Therefore, by theorem 4»7, f(x) is a
Baire function of type f ^  since it is the limit of
a uniformly convergent sequence of Baire functions of 
type f^ , Pinally, S = E £f(x) > ^  since
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oo g

s = 21̂ 1̂ 21 f (%) “ where each f^(z) >  0
for ail z s T^s and each f^(z) = 0 for ail 
z Ê O(Tĵ ) . Therefore the Borel set S of type

, where o< is a finite odd ordinal^ is a set of 
type A ̂  .

Suppose S is a Borel set of type where CK
is a finite odd ordinal» Then 0(8) is a Borel set
of type P^ 5 and by the first part of the proof 
also of type » Therefore S is of type B ^
by theorem 5*1.

Suppose nezt that cx is a finite even ordinal.
oo

Let S be a Borel set of type G^^ | then S = 
where each 8^ is of type now proceeds
as before to show that every Borel set of type G ̂  
is of type A ^  and every Borel set of type P ^
is of type B^ , if o< is a finite even ordinal.

Therefore the theorem is true for all finite 
ordinals cX by finite induction»

Theorem 5.4: Por any finite even (odd) ordinal
cX , a set is of type A ^  if and only if it is
a Borel set of type G ̂  (P^ ) g and a set is of type
B ̂  if and only if it is a Borel set of type

^ cX <x ̂ *
Proof : This theorem is a combination of

theorems 5.3 and 5,2 »
The orem 5.5 : If f(z) is any Baire function
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of type f^ , where (X is any finite even (odd) 
ordinal, then for every real number k the sets 
Ej|^f(x)> and E ^ are Borel sets
of type (P^ ) and P^ (G^ ) respectively»

Proof; Suppose c< is any finite even (odd)
ordinal, and f(x) is any Baire function of type f ̂  . 
Then for every real number k the sets E |Tf(x)> ^
and E ||f(x) >  ^  are of type and B ̂
respectively» But by theorem 5o2, this means that 
for every real number k the sets E [fix) > ̂  and 
E £f(x) ^ ^  are of type G ^  (P^ ) and 
P (G^ ) respectively.

The following lemma will be needed for the 
proof of the converse of theorem 5«5«

Lemma 5«3 : Por cx <  _/l , if E and P
are disjoint sets of type B ^  in a metric space A,
then there is a Baire function g(x) of type f ^
such that g(x) = 1 on E, g(x) = 0 on P, and
0 < g(x) < 1 for all other x £: A.

Proof ; Suppose cX <“ JTl. , and E and P
are two disjoint sets of type B^ » Then there 
are Baire functions f^(x) and f^ (x) of type f ^
such that E = E < oj and P = E ^g(x) < ^  »
The reason for this is that if a set S is of type 
B^ , then there is some Baire function f(x) of 
type f , and some real number k such thatOn
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S = E /~f(x) . Then 8 = E (z) - k > ÿ  =
E - f (x) < 0^ where k -f (x) is a Baire function 
of type f^ by theorems 4*1 and 4*3.

Let g^(x) = max ̂ f^(x),<^ and gg(x) =
max . If x g E, then x e.O(F), and
g^(x) = 0 and gg(x) ;> 0 . If x £, E, then x C  0(E),
and gg(x) = 0 and g^(x) >  0. If x ̂  E and 
X ^ F, then X e{c(E) O  0 (F^ and g^(x) > 0 and 
gglz) > 0. The function g^(x) + g^(x) > 0 for

all X £ A. Let g(x) = =
Baire function of type f b y  theorems 4,1, 4,2,
4.5, and 4,6 . We note that g(x) = 1 for all 
z 6 B, g(x) = 0 for all x £; P, and 
0 < g(x) < 1 for dll other x ^ A.

We are now ready to prove the converse of 
theorem 5.5 .

Theorem 5.6; If c< is a finite even (odd) 
ordinal and the function f(x) is such that for
every real number k the sets E ff(z) > ^  and
E ff(x) > ̂  are of type (P^^ ) and P^ (G ̂  ),
respectively, then f (x) is a Baire function of 
type f^ .

Proof : Suppose the sets E /̂ f(x) > and
E jf (x) > are of type G^ (P^ ) and P^ (G^ ),
respectively, for every real number k and for 
some finite even (odd) ordinal (X . Then by theorem
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5.3 the sets E [f(x) > 10 and E ^(z) > 0/ are
of type A ̂  and respectively^ for every
real number k. The sets E £f(x) <  1^ for every
real number k, as complements of sets of type ,
are of type by theorem 5.1.

Suppose first that 0 < f(x) <  1 for all x

In the metric space A» We will refer to this as
case (l). For any positive integer Wj, the disjoint
sets E jf{x) < and E jf(x) > are
of type B ^  for every m = 0, 1  ̂ 2po..j, H-l .
By lemma 5.3, for each m there is a Baire function

of type f ^  such that = 1 for
all X e E £*f(x) > = 0 for all
X 6 E [f(x) < 9 and 0 < ĝ ĵj(x) < 1 for all

, N-1
other X &  A. let h^(x) = £|q which,
as a finite sum of Baire functions of type f^ ,
is of type f^ . Suppose S < f (x) <  Sÿ: . Then

jj(̂ ) = 1 for 1 = Og 1 , .o. 3 m-1 s “ 0
for i = m+1 , m+2p E-l, and 0 < g^^^(x) < 1.
Therefore, for | <  f (x) < ,

|f(x)-h^ (x) j ̂  for all x £ A, since
hjjC*) = i + Oj
implies S < hjj(x)< ,

Since j f(x) - h^(x) j < ^ for all n Z  N and
for all X (S A, ^h^(x)} is a uniformly convergent
sequence of Baire functions of type f , where
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f (%) = y, 11m 11 (x). Therefore f (x) is also a Baire 
function of type f ^  by theorem 4,7, where
0 < f ( x ) <  1 for all X ^  Ac This completes the 
proof of case (1). We extend this to the general 
case by considering the additional three cases :

(2) 0 <f(x) < Mj, where M is any positive
real number,

(3) < f(x) <T Mg, where are posi­
tive real numbers, and

(4) f(x) unbounded.
Proof of case (2); Assume 0 < f (x) <  M for all 

X A, where M is any positive real number. Define 
Q(x) = ) . Then 0 <  Q(x) < 1 for all x & A,
Suppose Ajj.= E [̂ Q(x) > ^  and = E £q (x ) >

where k is any real number. Then A^ = E ^ —
= E ^(x) > k]^ which is by assumption of type A ^  
for all real numbers k and M, and = E ^ ^
= E £f (x) > which is by assumption of type B^
for all real numbers k and M. Since 0 < Q(x)< 1 
for all X £ A, by case (1) we have that Q(x) is 
of type f^ . But f(x) = M«Q(x), therefore f(x) 
is a Baire function of type f^ , by theorems 4,1 
and 4.2.

Proof of case (3): Assume <  f(x) < Mg
on A, where and Mg are any positive real
numbers. Define Q(x) =.■ f (x) + M^, Then
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0 < Q(x) <  + Mg = M for all x <£, A„ Suppose
= E j[q(x) > ^  and \  ^ ^ ( x ) ^  k J  where

k is any real number® Then
Ajj. =  E £ f ( x )  + ^  =  E ^ ( x ) >  k  -  mJ  and
Bjj. = E £ f  ( x )  >  k  -  M^27 w h ic h  a re  by assum ption o f  
ty p e  A ^  and s r e s p e c t i v e l y ^  f o r  a l l  r e a l

numbers k and M^® Since 0 <T Q(x) < M for all
X ̂  A, by case (2) we have that Q(x) is a Barre
function of type f ^  . But f(x) = Q(x} - ,
therefore f(x) is of type f ^  by theorems 4®1
and 4.3®

Proof of case (4) g Assume f(x) is unbounded 
on A. Define Q(x) = • Then /q(x)/ < 1
for X £■ A® We will now show that Q(x) is of type 
f(>< * Suppose Ajj. - E £q(x) > :^ and B̂  ̂= E ^(x) > ̂  
where 0 < k < 1 ® Then A^ = E £f(x) > k + k-/f(x)/J = 
E £f(x) - k*|f(x)| > ^  , Since k>0 and Q(x) k, 

f (x) >  0 which implies |f(x)| = f (x). Then 
A]̂  = E [fix) >  and Bĵ = E [f (x) > which
are by assumption of type A and , respective­
ly, for all real numbers k jfc 1.

Now suppose Ajj. = E £q(x) > and Bĵ. = E [ q (x )

> ̂  where -1 <  k < 0 and Q(x) 0. Then
> ^  = E /f(x) - k-|f(x)| >  kJ .

Since k <  0 and Q(x) <  0, f (x) < 0 which
implies /f(x)| = -f(x). Then Â  ̂= E ^f(x) + k*f(x)
>  k] = E £f(x)> Y ^ J a n d  B^= E [fix) > which

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



-67-
are by assumption of type A ̂  and , respective­
ly, for all real numbers k ^ -1»

Now suppose Ajj. = E [q {x )>'^ and 
Bjj, = E [q (̂ ) ^  ^  where -1< k < 0  and Q(x) 0*
Then Aĵ. = E jj:{x)̂ ls. + k*/f(x)/^ = s£f (x)-k/f (x)J>^ ,
Since Q(x) > 0, f (x) >  0, which implies /f(x)/ = f(x).
Then A^ = E £f (x) - k*f (x)>]^ = E £f (x) >  J
and = E ]jc(x) > I'Zk ̂  * But since -1 < k < 0
implies <  ldi” ̂  0, it is sufficient to say
Ajj. = E and Bĵ. = E /f(x) >
are by assumption of type A ^  and B ̂  j, respectively, 
for all real numbers k -1 *

Therefore E £q (x ) ^ i£7 and E £ q (x ) > are
of type A ^  and B ^  , respectively, for all real
numbers k and all x £, A« We note that e [q (x )>]^= A
for all k < -1 and E £q (x )> ̂  ^ for all k >  1»
Since -1 <Q(x)< 1 for all x &  A, by case (3) we have
that Q(x) is a Baire function of type f^ « But
f (x) = I for all X £, A since by definition
Q(x) = which implies
f(x) = Q(x)*£i + /f(x)/j = Q(x) + Q(x). jf(x)j= Q(x) + |Q(x^'f(x),
which implies
Q(x) = f(x) - / q { x ) ) ' f(x) = f(x)£^l - /q(x)^
Therefore f(x) = Q(x)-  ^777— r-r- , where the secondX- f f
factor is a Baire function of type f^ by theorems 4,1,
4,3» 4,4 and 4.6, Therefore f(x) is of type f^ by theorem 4,2
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Theorem 5,7: For any real valued function f(x)
defined on a metric space A, the set D of all 
points where f(z) is discontinuous on A is a Borel 
set of type and the set 0 of all points where
f(x) is continuous on A is a Borel set of type

Proof Î Given the function f(x) defined on
the metric space A, we first define sets such
that a point z if and only if for every ^

there are at least two distinct points x and y 
such that x,y £ H(Zj, f ) and jf(x) - f (y ) j «
Let L he the set of all points where f(x) is
discontinuous on A, and 0 = 0 (D) the set of all 
points where f(x) is continuous on A. To prove
that D is a Borel set of type P^, we will show
the following;

(1 ) = M l  \
(2) each D^ is a Borel set of type P^ o 
Proof of (1); Choose any n = N and suppose

z £ Djjo Then for any <f > 0 there are two points
x^ and y^ such that x ̂  $y^ £, U(z->^) and
I f (x ̂  ) - f (y ̂  ) I ^  % »

We would like to show that z £ D« Therefore 
assume z ^ D, Then f(x) is continuous at x = z, 
and for £  = there is some ^ 0 such that if
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^ d  S  ) then /f(x)-f(z)/< S  = ^  .
Hence, for the chosen points xj &  N(z,/ )
we have / f (x^ ) - f{z)j <  ^  and
h(y ^  ) - f (z) j < 3I- . Then
|f(x^) - f(y,)| < jf (x^) - f(z)| + jf(z) - f (y ) j

. 1 ^ 1  2 / 1  ^< 3H + 3n =51 •
But this is impossible since x ̂  and y^ were
chosen to be points such that |f (x ̂  ) - f (ŷ . ) )

^ • Therefore z £ B.
On the other hand, suppose z £, D. Then for 

some >  0 and every ^ 0, /f(x) - f(z)/ >
for some x£,H(z, f )• Choose some positive integer
^ ^  &o ' ^0 ^ 1  /f(x) - f(z)/> do > I
for every >  0 and some x£.N(z,<T )• There-

00fore z £, Djj and hence z <£ .
Proof of (2); For any positive integer N,

suppose z is a limit point of • Then for any 
<Ç ̂  0 there is a point a. jz z such that a & H(z, f )
and a £, Djj. • Choose ^  0 such that
0 < d <  f  - d(z,a) . Then since a & there
are two' points x and y such that x,y£,H(a, <S ) 
and I f (i) - f (y)| > % « But x,y &  N(z, <T ) since 
H(a, 6  ̂ ) <= E(z, f ) . Therefore z £ since <T> 0
was arbitrarily chosen, and each set is closed.

Therefore D is a Borel set of type F^ and
0 = 0(D) is a Borel set of type ty theorem 2.3 .
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The following definition and theorem will be 

needed for the proof of theorem 5*9.
Definition: Given f(x) = „lim f„(x) on a' -ti— oo n

metric space A, the sequence Is
uniformly convergent at a single point a £ A if for 
every ^ 0 there exists a S' > 0 and some
positive integer U such that if x & N(a, «T ) then 
/ fjj(x) - f (x)j < <£ .

Theorem 5.8: Given f(x) = „lim f„(x) on a
metric space A where for each n, f^(x) is con­
tinuous at a &  A, then f(x) is continuous at 
a if and only if the sequence uniform­
ly convergent at a ^  A.

Proof: Suppose f(x) is continuous at a <£. A.
Then for every > 0 there exists a > 0
such that jf(x) - f(a)/ ^  & if x £, U(a, <T̂ ) .
Since f(a) = lim f (a), there exists a positiveH —̂  oO XI
integer E such that / ^̂  ̂ ^
n >  N. Since each f^(x) is continuous at a, for 
n = N there exists a S 2 ̂  0 such that 
/ fjj(x) - fjj(a)/ < E if X <£ N(a, Jg) . Choose 
S  = min C ; then for x & N(a, <T ) ,
/fjj(x) - f(x)/ < |fjj(x)-fjj(a)| + |fjj(a)-f(a}| + |f(a)-f(x)|

< & +  6 + & = .

Therefore the sequence Is uniformly con­
vergent at a £. A.
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On the other hand, suppose is uniform­

ly convergent at x = a* Then^ by definition, for 
every &  > 0 there exists a > 0 and some
positive Integer H such that J f^(x) - f(x)/ < <5 
if X &  N(a, f  . Since each f^(x) is continuous 
at X = a, for n = U there exists a  ̂> 0
such that / fjj(x) - ĵj(a)/ < £• if x &  E(a, cT g).
Choose <r = min <T̂ , *̂ 2^ * then for x C Î (a, f )
I f(x) - f(a)| <  /f(x) - f^(z)| + /%(x) - fjj(a)/

+ I ̂ jj(a) - f (a) I 
5  & + 6 + 6  = 3£ .

Therefore f(x) Is continuous at a 6 A.
Theorem 5*9: If f(x) is a Baire function of

type f^ on a complete metric space A, the set of
its points of continuity is dense in A.

Proof; Suppose f(x) is a Baire function of
type f^ on a complete metric space A, then ^
f(x) = ^lim f^(x) where for each n, f_ (x) is contin- n n n
uous on A. Suppose H is any nonempty open set 
in A.

We now define for each m, a set G(^) by the
condition that a £G{“ ) if and only if a £ H
and there exists a <T > 0 and some positive 
integer N such that if
X e£w(a, S ) n ^  then / f^(x) - f (x)| < | .

Let E be the set of all points in H at which
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f(x) is continuous relative to Then hy theorem
5*8 E is the set of all points in H at which the
sequence f f (x)j is uniformly convergent relative  ̂ ^ oo
to H. Moreover, E = n2l^^n^ by definition of the
sets G(g). Also, for each n, G(^) is open in H,
for suppose a Then there is a <5"> 0
and some E ̂  0 such that if x Ê^£N(a, J ) /) îÿ
then /fjj(x) - f(x)/ < g . Consider h£[’N(a, ^ ) f)
and choose é* ~ S ~ d(a,b) . Then 
I f^(x) - f(x)j < i for all X 6 flT(b, S  ̂) O e )

since £N(h, f ' ) /) <= ̂ (a, S  ) n h]. Hence if
h &  |j(a, S ) /) ^  , then b 6  i.e.
[H(a, ^ ) n eJ ^  G(i) • Therefore G(i) is open 
in H for all values of n.

Since each set G(^) is open in H, G(^) =
H/I where each set is open in A. Since
H is open in A, each G(~) as the intersection
of two open sets is also open in A«

We now define for each m, a set K(g) by the 
condition that a £ K(i) if and only if there is 
some ^ ^  0 and some positive integer H such
that if X N(a, f ) then /f^(x) - f(x)/ < ̂  .

Let S be the set of all points in A at which 
f(x) is continuous relative to A* Then by 
theorem 5.8, 8 is also the set of all points in A
at which the sequence uniformly
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CX> -

convergent* Therefore S = where each set
K(i) Is open in A, Each set K(̂ ) is seen to be
open in A in the same way that G(^) was seen to
be open in H»

We now have the following two relationships to show î
(1) K(i) n  H = G(|), and
(2) G(^) ^ ^ for all positive integers n.

Proof of (1); Suppose first that
a£^(i)/n iQ . Then a £, K(^) which implies there 
is some ^  > 0 and N > 0 such that if x £; H(a, <T ) 
then /fjj(x) - f (x)/ < i . If X C[w(a, <T ) n ^  , 
then X S W(a, <T ) and |f^(x) - f(x)j < ^ .
Hence since a & H, a &  G(— ) *

On the other hand, suppose a &  G(g)g then a H
and there is some > 0 and H ̂  0 such that if
% f g) n  iQ then f(x)| 5 5 •
Also, since H is open in A, for a £, H there is
some > 0 such that H(a, ^  ̂ H» Choose
<T = min . Then /fjj(x) - f(x)j
if X 6 N(a, S ) o Therefore a S E(^) and
a & [k(|) n hJ ,

Therefore /I h ) = G (̂ ) for all n*
Proof of (2): To show G(^) ^ ̂  for all n,

define sets P^(^) by requiring that x <£: P^(g)
if and only if x £, H and /f^(x) - ^
for all n > m *
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Suppose a £: H* Since f(x) = „lim f (z) on E,II 06 n

for ^  there Is some m > 0 such that if n >  m
then f f^(a) -  f(a)/ $ ^ • Hence
/fj^(a) - f^(aY  5 “ i’(a)/ + /f(a) - f^(a)/ <

2 & = ^ , for all n > m c Therefore a £. H implies 
that a £, . Therefore H = .

But each function f„(x) is continuous on H 
relative to H since each function f^(x) is con­
tinuous on A» Hence for x £; H it follows from 
theorems 4,4 and 4,3 that jf^(x) - f^(x)/ is a 
continuous function on H relative to Eg for all 
values of n and m. Therefore by theorem 4,10 (c) 
each set (̂ ) = E < 0  /O H is
Closed in E, and F^(^) = is closed ,1 \ _ %'T, ,1
relative to E,

Since H is a nonempty set of type in A,
H is of the second category relative to itself, by 
Baire's theorem 2.11 . Therefore there is some 
positive integer t such that is not no­
where dense relative to E,

Since is both closed and not nowhere
dense in E, (̂ ) contains a nonempty neigh­
borhood relative to E, i.e. for some b <£. H and 
some > Op
rE(bp ^ ) r\ ^  a p̂ (|) . If X e£N(bp  ̂) n eJ
then X and jf^(x) - f^(x)| < ^ for all
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n > t. Therefore /f^(x) - f(x)/ < ̂  for all
2 &^(b, ^ ) n  ^  since f(x) = E.
Therefore b £ G(^) and G(i) ^ /  for all n.

Since E(^) /) H = G(^) ^  , for each n, and
since H is an arbitrary open set in Ag each set 
K(— ) is dense in A. Therefore set S is dense

Tin A by theorem 2*12p since S = is a
Borel set of type where each set E(^) is open
and dense in A»

It is of interest to note that theorem 5o9 is 
also true if the metric space A is merely locally 
complete. i.e. if for each point p £ A there is an 
open set G containing p, G c. Ag such that G is 
a complete metric space.

Theorem 5.10: For any ordinal <  _/L , if
f(x) is a Baire function of type f o n  a complete
metric space A, there is a Borel set S of type 
G^, dense and of the second category relative to A, 
whose complement 0(S) is of the first category 
relative to A, such that f(x) is continuous on S 
relative to S.

Proof ; Suppose f(x) is a Baire function of
type f ̂  on a complete metric space Ag < -/\ •
If c/ = 0, then f(x) is continuous on A. Then 
S = A, where A is of type G^, dense, and of the 
second category relative to itselfp and 0(S) = /

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



■“7 6““
Is of the first category relative to A« Assume the
theorem is true for all ordinals <<3 <  <=< ,

If f(x) is a Baire function of type f ^  on
A, then f(x) = 11m f (x) where for each n^ f (x)n n n
is of type fw p cx <  o< • By our induction assump-
tion, each f^(x) is continuous on some set 0^
relative to Ô j, where each 0^ is of type
dense, and of the second category relative to Ag and
where each set = A - 0̂  ̂is of the first category
relative to A» Also g since each set is of type
G|̂ in A and each set D^= 0 (0^) g then each
is of type P, in A by theorem 2o3<.

oo
Consider then I)„ is of the firsto n~1 n o

category relative to Ag andg by theorem 2*4, is a
Borel set of type P̂  ̂* Let 0^ = A - Then

oo oo
0^ = QiJJ-, 0^ « Therefore is a Borelo 'n=l n' n=l n o
set of type G, and dense in A by theorem 2*13 *oe

We have 0^ CZ 0^ for each n since 0^ =nQl^n®
Therefore each function f^(x) is continuous on 0^
relative to 0 ,̂ and f (x) = f^(x) on 0 *̂

Let S be the set of points in at which
f(x) is continuous relative to C^ * By theorem 5o7p
S is a Borel set of type G^ in 0^, which implies 

oo
S = 9 where for each n, is open in 0^ .
This means that for each there is some set
open in A such that Therefore
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S = 1^1 (Og /I M^) = 0^/1 Mg where M = Is a
Borel set of type in A» Since 0^ is a Borel
set of type G^ in Ag S is a Borel set of type 
G^ in A by theorem 2«5.

Suppose H c: Oq is any nonempty set open in 
then H = 0^ A Q where Q is some open set in A. 
Since Q is of type G^ in A, by theorem 2.1, and 
Og is of type G^ in A, H is a Borel set
of type G^ in A by theorem 2»5* Also g since 
H C  0 g f (z) = _lim f (%) on H since f(x) =

°o ” "LWe now define for each m^ a set G(— ) by the
condition that a £, G-(̂ ) if and only if a £. H and 
there exists a > 0 and some positive integer N
such that if x £. ̂ (a, S ) D ^  then /f^(x) -
(̂̂ 1̂ 5 I »

Let E be the set of all points in H at which
f (z) is continuous relative to H» Then g by theorem
5o8, E is the set of all points in H at which the
sequence ff (x)j is uniformly convergent relative 

 ̂ oo _
to H* Moreover, E = ) by definition of the
sets G(g) « Also, for each n, G(^) is open in H *
(This is shown in exactly the same way as in the proof
of theorem 5*9*)

Since each set G(^) is open in H, G(^) =
E A where each set is open in A* Since each
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set is of type In A, by theorem 2.1, and
H is of type G^ in A, each set G(^) is
of type G^ in A by theorem 2.5 . We now define 
for each m, a set K(^) by the condition that 
a &  K(g) if and only if a £, 0  ̂ and there is some 
f  ^  0 and some positive integer W such that if

X £ £u(a, f ) n 0^  then /f^(x) - f (x)/ < i .
Since S is the set of all points in at

which f(x) is continuous relative to 0  ̂ , again by 
the use of theorem 5*8 , we have that S is also the 
set of all points in at which the sequence
Tf (x)f is uniformly convergent relative to 0_.

1 1Therefore S = %(%) where each set K(~) is openill ill XI XX
in 0^ o Each set IC(— ) is seen to be open in 0^ 
in the same way that G(^) was seen to be open in H *
Since K(— ) is open in 0^ , E(^) =0^/1 S^ where
each set S^ is open in A* Since each set 8^ is 
of type G^ in A, by theorem 2.1, and 0^ is of
type G^ in A, then each set K(~) is of type G^
in A by theorem 2.5»

We now have the following two relationships to
show;

(1) K(i) n  H = G(l), and
(2) G(i) / for all positive integers n*
Proof of (l); Suppose first that a ^  ^

Then a G. K(^ ) which implies there is some £  ̂  ^
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and ïï > 0 such, that If x [^ia^ ) /) then
/ S m ® AlsOj a £: H and
fîl(as, ^ )/9 CT ^(a, ̂  ) /I oJJ since H c 0^ « 
Therefore j if x £ £k(a, T ) 0 ^  s then 
X £ Jj îâ  f  ) (9 0 ^  and j f^(x) - f (x)j < i , 
Therefore a £, G(i) <>

On the other hand suppose a <£, G(^)  ̂ then 
a Ê, H and there is some > 0 and N > 0 such
that if X £ £k(a, S(^)n ̂  then /fjj(x)  ̂ f(x)j < |
llsoj, since H is open in 0^ , for a £  H there
is some ^ ^ > 0  such that [B(a^ <T̂ ) H O ^ C  H *
Choose = min [Sqp » If
X Bjjia, f  ) n 0 ^  , then x £ £ir(a, 0 o j c  H
and X£ {n(a, n « Then /f^(x) - f (x)| < |
where a &  E C  0^ , if x £ £lT(a, f  ) /3 .
Therefore a C  E(g) and a e, £c(g) O ^  »

Therefore f) ^  = G(^) for all n.
Proof of (2) g To show G(^) ^ / for all n, we 

proceed exactly the same as we did in the same part 
of the proof of theorem 5*9 9 with the only differ­
ence being that each function f^(x) is continuous 
on H relative to H since each function f^(x) 
is continuous on 0^ relative to 0^» This is because 
H C C ^  .

Since K(i) A  H = G(^) / /f 9 for each n, and
since H is an arbitrary open set in 9 each set
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K(i) is dense in . But 0^ is dense in A,
therefore each set K(i) is dense in A,

Thus set S is of type and dense in A by
oo 1theorem 2*13 p since S =  ̂ where each set

K(i) is of type G^ and dense in A«
By theorem 2»14  ̂ 8 is of the second category

relative to A and 0(8) is of the first category
relative to A « Since f(x) is continuous on 8
relative to 0  ̂  ̂where 8 c  0  ̂ , then f (z) is
continuous on 8 relative to 8 „

Therefore the theorem is true for all
by transfinite induction*

Theorem 5o 11 s If the set of points of discon­
tinuity of f(z) defined on a metric space A is
countables then f(x) is a Baire function of type 
f^ on A ,

Proof : Let D be the set of all points where
f(z) is discontinuous on a metric space A, and 
suppose D is a countable set* Let C be the set of
all points where f(x) is continuous on A; then
C = 0(B) = A - D *

Since any countable set is a Borel set of type 
P̂ !> B is a Borel set of type (This is be­
cause each point of a countable set may be thought of 
as being a one-point set,, which is closed* Then any 
countable set is the union of a countable number of

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



—8l—
closed setsg and therefore a Borel set of type „)

For any real number k, consider B = B^ U B^
where B = E £ f ( x ) >  B^ = B A Dp and
Bg = B n 0 . Suppose a & Bg ; then f(a) > k and
a 0 tt But a g. 0 implies that f (%) is continuous
at X = a» Thereforep let &  = f(a) - k > 0  ; then
there is some ^ >  0 such that if x ^ H(ap £ )
then /f(x) - f(a)/ < <S  ̂ i.e« f(x) >  f(a) = k
for all X <S N(ap £ ) » Therefore N(ap <f } C  B »
Let H = V  _ N(ap £ ) o Then H is open in
A and Bg C  H c B .

Now consider B = H U (B - H) « Since B^C Ec B,
then (B - H) c: (B - Bg) = « Since B^ C  D, then
(B-H) C  D e But D is a countable set, therefore 
(B-H) is at most countable and hence a Borel set of 
type P^ . Also5 Hp being an open set in Ag is
of type Gq p and hence by theorem 2.7 is of type

Thereforep by theorem 2»5g B = H V (B-H) as the
union of two sets of type P^ is also of type P^ 
for any real number k, ioe. 'E (x) ̂  kj is a 
Borel set of type P^ for every real number k.

Likewise p a similar argument shows E £f(x) < k^
is a Borel set of type P^ for every real number k „
Therefore its complement, E £f(x) ^ kj , is a Borel 
set of type for every real number k, by theorem
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2.3 .

Hence f(%) is a Baire function of type f^ 
by theorem 506,

Theorem 5.12; If B is a countable set in 
a metric space A, and f(x) defined on A is 
continuous on A-B relative to A-B, then f(x) 
is a Baire function of type f^ on A .

Proof; If B is a countable set, it is a 
Borel set of type , Suppose f(x) is contin­
uous on A-B relative to A-B , •where A is some 
metric space.

For any real number k, consider M = V Mg 
where M = E £f (x) > = M /I B, and Mg =
M n (A-B) . The set Mg is open relative to A-B , 
by theorem 4.10 (c) , since f(x) is continuous on 
A-B relative to A-B . Hence Mg = (A-B) A  H for
some open set H in A. Since B is of type F^ ,
A-B is of type by theorem 2.3 » Also since H
is open in A, H is of type G^ , and hence of type
G^ . Therefore by theorem 2.5 , Mg = (A-B) /I H as
the intersection of two Borel sets of type G^ is
also of type G^ , and hence of type Gg .

Since M^ c B, and B is a countable set, M^ 
is at most countable and hence a Borel set of type F̂^
Therefore by theorem 2.7, is a Borel set of type
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Therefore M = E [f (z)> ̂  is a Borel set of 

type Ggÿ by theorem 2.5 , since M is the union of 
two sets of type Gg . A similar argument shows 
E ^f(x) ^ 1^ is a Borel set of type Gg for every 
real number k. Therefore its complement^
E ĵ f(x) > , is a Borel set of type Pg for
every real number k, by theorem 2.3 .

Hence f(x) is a Baire function of type fg  ̂
by theorem 5.6 ,

It is of interest to note the following example 
of a function satisfying the conditions of the last 
theorem, which is therefore a Baire function of type 
fg , but is not of type f^ .

Choose the space A to be the set of all real 
numbers , Define f(x) = 0 if x is an irrational 
number, and f(x)=l if x is a rational number. 
Then f(x) is discontinuous at every point of A . 
Moreover, f(x) is continuous on the irrationals
relative to the irrationals , where the rationale 
constitute a countable set. Therefore by the last 
theorem, f(x) is a Baire function of type fg .on A. 
If f(x) were also of type f^ , its points of 
continuity would be dense in A by theorem 5.9 «
But f(x) is discontinuous everywhere on A, 
hence f(x) is not of type f^ on A.
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