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NOTATION

Symbol Meaning
G is an element of
^ meet, in a Boolean algebra
^ join, in a Boolean algebra
A' or p' set theoretic or Boolean complement

of A or p
P the closure of P
P the complement of the closure of P
U set theoretic union
n set theoretic intersection
0 the empty set
«= is a subset of
p < q q dominates p

IV
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CHAPTER I 
INTRODUCTION AND PRELIMINARIES

In 1847» an English elementary school teacher 
named George Boole published a thin volume, entitled 
The Mathematica1 Analysis of Logic, in which he gave a 
mathematical formulation of the laws of logic. His 
book aroused the admiration of August de Morgan and 
Boole was soon appointed Professor of Mathematics at 
Queen's University in Cork, Six years later he pub­
lished a more comprehensive work » giving a more detailed 
development as well as many important applications. The 
algebraic system that grew out of this formulation has 
come to be called Boolean algebra.

This system also arises quite naturally in other 
ways. One of these is in lattice theory, a second is 
in ring theory. In this paper some of the theoretical 
aspects of Boolean algebras are developed after first 
giving a formulation of these algebras in ring-theoretic 
terms,

The year 1936 seems to have been a watershed in 
the development of the theory of Boolean algebras, for 
it was in that year that M, H, Stone, in his famous 
paper [53, opened a new era by showing that every Boolean 
algebra could be represented by a field of sets. Since

1
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that time the work of Halmos, Sikorski, Tarski and Stone 
himself, among others, has elucidated many dark corners 
of this field.

This paper begins with the exposition of certain 
ideas and facts which are necessary to the development 
of the subsequent chapters. Chapter II provides a de­
velopment of what has come to be called "the Stone repre­
sentation theorem" from the algebraic standpoint. Ring 
Theory per se is not used. A dual representation theorem, 
relating topological spaces to Boolean algebras, is then 
proved and the setting is provided for Chapter III which 
examines this topological duality in more detail.

Applications of Boolean algebras to other branches 
of mathematics are not considered. For a glimpse at 
such applications the reader is referred to Sikorski's 
five volume [4]. Nor are applications to such things 
as electrical circuit theory and logic touched upon.
For the reader who is interested in the role of Boolean 
algebras in applied mathematics Whitesitt's book would 
be very helpful [7].

Before discussing the general theory of Boolean 
algebras, it is well to recall certain facts. The fol­
lowing definitions, theorems, and other discussion are 
germane to the development of the material of the fol­
lowing chapters.
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Definition 0.1. A ring is a set  ̂E, ° J which
R is a collection of elements, and + and » are binary 
operations such that
(i) ^R, + j is an abelian group
(ii) [r , “I is an abelian group
(iii) a*(b+c) = a*b + a*c for every a, b, c e R 
Henceforth a ring will be denoted by the capital letter 
naming its set of elements.

Definition 0.2. A ring R is said to be a ring with
unit whenever ^R,» | Has an identity element, 1.

Definition 0.5. A Boolean ring is defined to be a
ring R with unit, such that every element is idempotent;

2that is X = X for every x e R.
The existence of Boolean rings is easy to establish.

The ring of integers, modulo 2, which shall hereafter be
denoted merely by the symbol 2, is clearly idempotent 
and has a unit.

A slightly more sophisticated example of a Boolean
Yring is 2 , the set of all functions from any non-empty

Yset X into 2, where 0 and 1 in 2 are the functions de­
fined by

0(x) = 0 for every x e X
l(x) = 1 for every x e X;

and the operations are defined pointwise„
Definition 0.4. A ring R is said to have characteristic
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2 if X + X = 0 for every x £ R.
Theorem 0.1. Every Boolean ring R has character­

istic 2 and is commutative,
p o pProof : (x-t-y) = (x+y) = x + xy + yx + y

= x + x y + y x + y .  Thus 
0 = xy + yx. Letring x = y, 
0 = x ^ + x ^ = x + x ,  Thus R 
has characteristic 2.

Since 0 = xy + yx, then -(xy) = yx. But R has 
characteristic 2, which implies that x = -x for every 
X  £ R, Therefore, -(xy) = xy = yx and thus R is com­
mutative ,

Definition 0.5. Three operations called meet, join, 
and complement, and denoted by A  » V » and ' respec­
tively, can be defined on a Boolean ring R as follows:
(i) a/\b = ab for every a and b in R
(ii) a V b = a + b + a b f o r  every a and b in R
(iii) a' = 1 + a for every a £ R„

It is easy to show that, given expressions be­
tween elements of a Boolean ring involving only the 
usual ring operations, these same expressions can be 
rewritten using meet join and complement. In fact, 

ab = a A b
a + b = (a A  b") V (a' A b),
If the defining conditions of a Boolean ring are
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expressed in terms of meet, join, and complement, a large 
set of conditions results. From this set a subset, larger 
than necessary to derive the remaining ones, can be ex-
tracted. This subset of conditions follows! o

Cl) O' = 1 1' = 0
(2) a A 0 = 0 a \/ 1 = 1
(3) a A 1 = a a V 0 = a
(4) a A a' = 0 a V a' = 1
(3) a" = a
(6) a A a = a a V a = a
(7) (aA b)' = a' V b' (a V b) ' = a”A b'
(8) a A b = b A a a V b = b V a
(9) a A (b A c) = (a A b) A c (a V b) V c = (a \/b) V c
(10) a A (b V c) = (aA b) V (a A c) a V (b1 A c) = (aV b)A
There are many subsets of the above 10 conditions 

which will imply all of the others. The independent sub­
set cited most often in the literature is (3), (4), (8), 
and (lO). Implicit in (5) and (4) is the existence of 
the distinguished elements 0 and 1.

Now the object of study in this paper can be de­
fined.

Definition 0.6. A Boolean algebra is a set A to­
gether with distinguished elements 0 and 1 (distinct), 
two binary operations A and V  , and a unary operation 

satisfying the identities (l) through (lO), given
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above. Clearly then, every Boolean ring can be con­
sidered a Boolean algebra and vice-versa.

Principle of Duality: If in the identities (l)-
(lO)j 0 and 1 are interchanged and if at the same time 
/\ and y are interchanged those identities are merely 

permuted among themselves. Thus the same is true for 
all the statements derived from (l)-(lO). As a con­
sequence, it is sufficient to state and prove only 
half of the theorems. For example the absorptive law 
is proven as follows :

a = 1 /\ a 
= (l Vb)A a 
= (l A a) V (b A a)
= a \/ (a A b) and dually 

a = a A (a \/ b) .
Since A and \/ are associative, it makes sense to 
write A P2  A -“• A ^^ich will hereafter be de­
noted by Pĵ > or in cases where no confusion is
possible, simply ^p^. Analogously p^ y Pg \/ ... y p  
may be written V i = i  P± \/

Definition 0.7. Let A be a class of subsets of a 
fixed space X such that A is closed with respect to the 
set-theoretic operations of finite union and intersection 
as well as complementation. Then A is said to be a field 
of sets. Clearly every field of sets is a Boolean algebra,

n
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3 ^Definition 0.8, A field of sets <r is said to be 
separating if, for every pair of distinct points x and 
y, there exists a set P belonging to ̂  such that x e P 
and y e P',

Definition 0.9. Let X be a set. P = X is said to 
be cofinite whenever P', relative to X, is finite.

It is easy to verify that the class of subsets of 
a nonempty set X, which are either finite or cofinite 
is a field of sets.

Definition 0.10. Let (X, ̂  ) be a topological space, 
An open set z J  is called regular open whenever P is 
the interior of its own closure.

0
Since the interior of P may be written as P ,

_  t _  C I
P is regular if and only if P = P . Hereafter P 
shall be denoted by P*̂  . Thus P is regular if and only 
if P^= P*̂

Under suitable definitions of the Boolean opera­
tions and the distinguished elements, the class of all 
regular open sets of a non-empty topological space be­
comes a Boolean algebra. This algebra will be defined 
and put to use in Chapter III.

It turns out that regular open algebras are not 
the only areas of discussion in this paper that re­
quire some of the basic tools of the topologist's trade, 
A few of the notions most often used are given below.
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8

Definition 0.11. A set P in a topological space 
is said to be nowhere dense if and only if the interior 
of its closure is empty.

Definition 0.12, A collection of subsets of a topo­
logical space is said to be a covering of a set A when­
ever A is contained in the union of that collection„

Definition 0.13. A topological space is compact 
if and only if each open cover has a finite subcover.
A subset A of a topological space X is compact if and 
only if every covering by sets which are open in X has 
a finite subcovering.

Definition 0.14. A topological space is a T^-space

if and only if each set which consists of a single point 
is closed.

Definition 0.15. A topological space is regular if 
for each point x and each closed set A such that x ^ A, 
there are disjoint open sets U and V such that x e U 
and A = Vo

Definition 0.16. A topological space X Is said to 
be a Hausdorff space if and only if for every pair of 
distinct points, x and y, belonging to X, there exist 
disjoint open sets A and B such that x e A and y e B. 
Obviously then, a regular T^-space is Hausdorff.

Theorem 0.2. Each compact subset A of a Hausdorff
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space X is closed.
Proof : Let x e A’. For every y e A pick open sets

M (x), W(y) such, that x e M (x), y e K(y) and M (x) H N(y) = 
0.  ̂N(y)J is an open cover for A. Thus there exists
an open subcover T N(y^)J . Then for each NCy^^) pick
the corresponding M (x) such that M (x) H U(y.) = 0.y -5 JA 1n n nThus [.n, M (x)] n [.U WCy.)] = 0 and . M (x) is-L-j. y ^  i = x  r  i = j -  y ^

nopen. Therefore [.H, H (x)] H A = 0. For each x e A' 
there exists such an open set containing it, and disjoint 
from A. Clearly, A' is the union of all such open sets. 
Hence A = (A')' is closed.

Definition 0,l7. A map from a topological space 
X into a topological space Y is continuous if and only 
if the inverse image of each open set is open.

The following well known and useful result is 
stated without proof. [2, p. 86]

Theorem 0.). If X and Y are topological spaces, 
and if f is a function on X to Y , then the following 
statements are equivalent,

(i) The function f is continuous
(ii) The inverse image of each closed set is closed

(iii) The inverse image of each member of a subbase
for the topology for Y is open,

(iv) For each x e X the inverse image of every
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10

neighborhood of f(x) is a neighborhood of x.
(v) For each x e X and each neighborhood U of f(x) 

there is a neighborhood V of x such that f(v) 
c U„

Definition Go 18. A homeomorphism is a continuous 
one-to-one map f of a topological space X onto a topo­
logical space Y such that f”  ̂is also continuous.

Using Theorem 0.2. the following useful result can 
be obtained [2, p. 14].

Theorem 0.4. Let f be a continuous function carry­
ing the compact topological space X onto the topological 
space Y. Then Y is compact and if Y is Hausdorff and f 
is one to one, then f is a homeomorphism.

Definition 0.19.1. Suppose X^, X^, ..., X^_^ are 
topological spaces. A base for the product topology for 
the cartesian product X^ x X^ x ... x X^_^ is the family
of all products U^ x U. x . , . x U_ -, where each U. iso 1 n—1 1

open in X . .

Such a definition, although sufficient for finite pro­
ducts, is inadequate for arbitrary products. Let 
X̂ĝ  J be an arbitrary family of topological spaces. 

Their cartesian product denoted by X ̂ X^^ } asA’ the 
set of all functions x on A such that x e X for each3. 3
a E A. The projection map of the product into the a-th 
coordinate space is given by P„(x) = .3 3
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Definition 0.19.2. Let U be an open subset of X„.■ Ml -- ». W. a- —   S.

Consider P^^[U3. The family of all sets of this form 81
is defined to be a subbase for the product topology for 
the cartesian product.

Definition 0,20. Let X be a topological space and 
let Y = Xo U belongs to the relative topology for Y 
if and only if U = V n Y where V is open in X.

Some of the most important results of the theory 
of Boolean algebras rely heavily on Zorn’s lemma, or on 
another statement equivalent to the axiom of choice.

Zorn's lemma. If each chain in a partially or­
dered set has an upper bound, then there is a maximal 
element in the set.

Axiom of Choice, Let C be any collection of non­
empty sets. Then there is a function F defined on C 
which assigns to each set A belonging to C an element 
p Ca )  in A,

In the context of the foregoing definitions the 
Axiom of Choice implies that the Cartesian product of 
a nonempty collection of nonempty sets is nonempty.
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CHAPTER II 
THE STORE REPRESENTATIOR THEOREM

Before discussing the famous Stone representation 
theorem it is well to develop some contiguous matter 
which elucidates much of the general theory.

Definition 1.1. A Boolean homomorphism is a mapping 
f from a Boolean algebra B, say, to a Boolean algebra A, 
such that

(1) f(pV q) = f(p)\/f(q),
(2) f(p A q) = f(p)Af(q),
(3) f(p') . (f(p))' 

whenever p and q are in B.
Special kinds of Boolean homomorphisms, namely 

monomorphisms, espmorphisms, and isomorphisms are de­
fined in the usual manner.

Rote that if f is a Boolean homomorphism, f(0) = 0 
since f(o) = f(p/\ p*) = f(p) A f(p*)

= f(p)A(f(p))' =0.
Dually then, f(l) = 1 and thus there is no "trival" 
homomorphism, i.e. a mapping that sends everything on­
to zero since 0 and 1 are distinct.

The existence of Boolean homomorphisms which are 
not merely the identity homomorphism is shown in the 
following example.

12
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Let X be a non-empty set. Let B be a field of sub­
sets of X„ Pick any element x e X and define f mapping 
B into 2 as follows: for P e B, set

ri. if X e P
f(P) = 1

I 0 if X è Pe
Note that f(PA %) = Cl if x e P fl Q

j and that
(,0 if X è P n Q 

( ^ l i f x e P H Q
f(P) A f(Q) = ) and thus f(PHQ) = f(p) f(Q).

( o i f x è p n q
Similarly, f(P U q) = f(p) f(Q) and f(P') = (f(P))'.

In some cases condition (5) of definition 1.1 is 
difficult to verify. In such cases the following theorem 
is often useful.

Theorem 1.1. A mapping f between Boolean algebras 
which preserves 0, 1, A , and V is a Boolean homomorphism.

Proof: Since f preserves /\ and 0, and since (pA p') =
0 it is clear that

f(p) A f(p’) = f(p/\p') = fCo) = 0.
And likewise since pyp' = 1,

f(p) y f(p' ) = f(pV p* ) = f(l) = 1.
Thus f(p') = (f(p))'.
Note that a mapping that preserves either A  and ' or y 
and ' is also a Boolean homomorphism since, for example.
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if, for all p, q, f(p \/q) = f(p) f(q) and f(p* ) = (f(p))‘, 
then

f q) = f((pA q.)' )' ) = (f (pA q) ' )'
= (f (p'y q' )) ' = (f (p')\/ f (q') ) '
= (f(p'))*A (f(q'))' = fCp)A f(q).

The existence of Boolean homomorphisms naturally 
motivates the following definitions.

Definition 1.2. If f is a Boolean homomorphism 
from B to A, the kernel of f is the set of all elements
in B that f maps onto 0 in A.

Definition 1,3. A Boolean ideal in a Boolean alge­
bra B is a subset M of B such that
(1) 0 e M
(2) if p e M and q e M, then p\/ q e M,
(3) if p e M and q e B, then p/\ q e M.
Condition (3) can be changed to an equivalent condition 
that is often more useful, if an order relation <, moti­
vated by the concept of set inclusion, is introduced in­
to every Boolean algebra A. Consider first the follow­
ing simple result, where p e A and q c A.

Theorem 1.2. p q = p if and only if p q = q.
Proof: p A q = P (pA q) \/ q = p y q => p \/q = q

by the law of absorption. Interchanging \/ and a  » and 
forming duals gives the converse.

Definition 1.4. Let p and q belong to Boolean

Reproduced with permission o f the copyright owner. Further reproduction prohibited w ithout permission.



15

algebra A, Then, it is said that q dominates p (denoted 
by P < q) whenever p/\ q = p, or, equivalently, whenever
Pv/'i = q-

It is easy to show that < is a partial order, i ,e., 
it is reflexive, antisymmetric, and transitive. Con­
tinuing to work in a fixed but arbitrary Boolean alge­
bra A, the following theorem follows trivially.

Theorem 1.5, Let p, q, r, s be elements of A„ Then
(1) 0 < p and p < 1.
(2) If p < q and r < s, then py r < q^ s and p/\ r <
q/\8.
(3) If P < q, then q* < p'.
(4) p < q if and only if p-q = 0 where p-q is defined
to be p/\ q' e A.
Note that (4) implies that a Boolean homomorphism is 
order preserving since

p < q => p-q = 0 => f (p/\ q' ) = 0 
=> f(p)Af(q') = 0 =,*' f(p)/\ (f(q))' = 0 
=> fCp) - f(q) = 0 => f(p) < f(q).

Now condition (3) of definition 1.3. can be replaced by 
(3‘ ) p e M ,  q < p = > q e M ,
for if p E M and q e B, then p/̂  q E M and since q < p 

P A q = q It follows that q E M,
Definition 1.5. An ideal N of a Boolean algebra 

B is proper if N / B. A Boolean ideal is maximal if it
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is a proper ideal that is not properly included in any 
other proper ideal.

The following theorem characterizes maximal ideals. 
Theorem 1.4. An ideal M in a Boolean algebra B is 

maximal if and only if either p e M or p* e M but not 
both, for each p e B.

Proof: Assume that for some p^ e B, neither p^ e M
nor Pq ' e M (it will be shown that this implies M is not 
maximal.) Let N be the set of all elements of the form 
p ^ q  where P < Pq and q e M. IT is an ideal since,
(1) 0 < p^, 0 E M => O v O  = 0 e N,
(2) p ^\/q^ G N, P 2 \ / q 2  ^ IT => ( p ^ V  ^  (P2 v q g )

= (p^y (̂ 2. G since I>2 —  ^o
and q^y q^ s M, and

(3) p yq £ IT, r e B => (pv q)A r = (p/\ r)y Cq/\r) e N
since p/̂  r < p < p^ and q £ M, r £ B => q/\ r £ M,

Since 0 < p , M = IT. Also p £ IT and therefore M / N,—  ̂o o
It remains only to prove that IT is properly contained 
in B. To prove this, assume p^* £ IT. Then, p^' = p y q 
for some p < p^, q e M, so that p'/\ p^' = P*/\ (p\/ q).
But p < Pq => P q ' < p' (by theorem 1.3), Therefore
p 'A Pq ' = Pq * and thus p^' = p*A (p yq) = (p'/A p)v(p*/\ q)
Oy(p*A q)« But q £ M, p' £ B => p'/\ q e M .  Thus p^' £ M 
which contradicts the original assumption. Thus p^* N 
and hence M is not maximal.
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To prove the converse assume that always either p or 
p' e M, and suppose W is an ideal properly containing M. 
It follows that N is not proper; for if N / M, there 
exists p e N - M, Then p' e M so that p' e N. But N 
is an ideal. Therefore pyp' = 1 is in IT. Thus N = B,

It is helpful to notice, and not difficult to prove, 
that a subset M of a Boolean algebra B is a Boolean ideal 
if and only if it is an ideal in the Boolean ring. This 
fact makes the following theorem routine to prove by 
appealing to ring theory and using the usual canonical 
mapping.

Theorem 1.5. Every proper ideal is the kernel of 
some epimorphism.

Proof : Consider B as a Boolean ring. Let M be a
proper ideal. Define the natural map h:B ■— > B/K by 
h(b) = b + M for every b e B. Thus h ^(o) = M,

The representation theorem relates Boolean algebras 
to fields of sets. To get a clear description of these 
fields and the sets involved a special category of topo­
logical spaces is introduced.

Definition 1.6. A simultaneously open and closed 
subset of a topological space X is called a clopen set, 

Definition 1.7. A compact Hausdorff space is said 
to be totally disconnected if every open set is the union 
of those clopen sets which it happens to include; i.e..
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the clopen sets form a base.
Definition 1.8. A Boolean space is a totally dis­

connected compact Hausdorff space.
It is obvious that the collection of all clopen sets 
of any topological space X constitute a field. Earlier 
(chapter l) the algebraic Principle of Duality was for­
mulated. How the notion of a topological type of duality 
is introduced.

Definition 1.9. The field of all clopen sets in a 
Boolean space X is called the dual algebra of X.
Consider 2 with the discrete topology. Let I be an 
arbitrary set and let 2^ = ^ x  I x:I — > 2J (equiva­
lently the cartesian product of as many copies of 2 as 
there are elements of l), 2 with its product topology
is Hausdorff and compact, by the well known theorem of
Tychonoff [2, p. 143). The sets of the form U. c =

?^ X 6 2^ : x(i) = 6 j where i e I and 6 e 2 constitute 
a subbase, i.e., finite intersections of them constitute 
a base. Hote that the complements of sets of this form 
are also sets of this form and thus each such set is

Tclopen. Clearly then 2 is a Boolean space.
Definition 1.10. The Boolean space 2^, where I is 

an arbitrary set and 2 has the discrete topology is 
called a Cantor space.
As will be seen shortly. Cantor spaces give rise to
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other Boolean spaces which can he used to shed light on 
various aspects of the theory of the topological duality 
mentioned above, as well as having a direct application 
in the proof of the representation theorem. First, how­
ever, note the following result, which is a useful tool 
in the study of Boolean spaces.

Theorem 1.6. If X is a compact Hausdorff space, 
and if A is a separating field of clopen subsets of X, 
then X is a Boolean space, and A is the field of all 
clopen subsets of X,

Proof: The proof of this theorem is dependent upon
the fact that since A separates points, it also separates 
points and closed sets. To verify this assertion, let 
F be closed in X, F / X, and suppose ^ F. A separates 
points in X, so that for each point y e F, there exist 
disjoint clopen sets Cy, y e Cy, and Dy, x^ e Dy. The 
collection  ̂Cy covers F so that by compactness
there exists a finite subcover made up of members of 
^CyJ The union C of this subcollection contains
F and, being a finite union, is clopen. Each member 
Cy of this subcollection corresponds to some Dy and 
Cy n Dy = 0. Therefore, if the intersection D of the 
finite collection of Dy's corresponding to the Cy" s 
in the subcover of F is considered, D is clearly clopen 
and disjoint from C. Thus A separates points and closed
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sets.
Now since every open set is the complement of a 

closed one, the preceding paragraph implies that A is 
a base for Z, and thus Z is Boolean. Let G be an ar­
bitrary clopen set in Z. Since G is both compact and 
open it is a finite union of members of A. But A is 
closed under finite unions. Hence G is in A.

An obvious corollary follows.
Corollary 1.6.1. If a field of clopen sets of a  ̂

compact Hausdorff space is a base, then the space is 
Boolean and the field contains all the clopen sets.

It has been shown (in the section following defi­
nition 1.1.) that if a Boolean algebra A is a field of 
subsets of a set Z, the points of Z define 2-valued 
homomorphisms on A. Therefore, if A is to be repre­
sented as the dual algebra of some Boolean space Z it is 
reasonable to search for points from which to construct 
Z among the 2-valued homomorphisms on A. That there is 
an overabundance of such points follows from the follow­
ing theorem.

Theorem 1.7. For every non-zero element p of every 
Boolean algebra A, there exists a 2-valued homomorphism 
X on A such that x(p) = 1.

Proof: Let [AoJ be a chain of proper ideals
containing p'. That such a chain exists follows from the
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fact that J q e Alq < p'  ̂ is an ideal. Let A = U A

since 1 è A^ for each o, it follows that A is a proper 
ideal and an upper bound for the above chain. Therefore, 
by Zorn’s lemma, there exists a maximal element M con­
taining p ’ . Clearly p M for then p ’y p = 1 s M and M
would not be proper. Thus for every p e A, there exists
a maximal ideal that does not contain p. Hence there 
exists a mapping x from A to 2 defined by

fl if q / M 
x(q) = <

[ 0 if q e M
It is routine to show that x is a homomorphism.

Theorem 1.8. Let A be a Boolean algebra. Then M
is a maximal ideal of A if and only if M is the kernel
of a 2-valued homomorphism.

Proof : Let M be a maximal ideal and define x : A — >2

as in the previous theorem. Obviously M is the kernel 
of X,

Conversely let M = ^p s A;x(p) = oj where x is
a 2-valued homomorphism on A. If this is not a maximal 
ideal then there exists a maximal ideal M* properly con­
taining M. This implies the existence of an element 
q e M* such that x(q) = 1. But then x(q') = 0 so that 
qi e M «= M* while, by theorem 1.4, q' ^ M*, which is a 
contradiction. Therefore M is a maximal ideal.
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Theorem 1.9. The set X of all 2-valued homomorphisms 
on a Boolean algebra A is a closed subset of 2'̂ ,

Proof: Let p be a fixed element of A. Let x G X.
Then x(p) g 2„ By the definition of the topology for 2"̂ , 
the set Q = ̂  y e 2"̂  I y(p) = x(p)^ is a basic open set» 
Considering p as a function of x, it turns out that p is 
continuous » To show this, note that p:2^ — > 2 » Consider 
P an open subset of 2 and recall that 2 has the discrete 
topology. If P = 2 or P = 0 the inverse image of P under 
p is clearly open and hence p is continuous. If P = [6  ̂, 
6 G 2, the inverse image of P under p is  ̂x e 2'^lxCp) = 6 j 
which is a set of the same form as Q, and therefore open. 
Hence p is continuous.

Therefore, since the set of points where two con­
tinuous functions are equal is always closed, the set
P = T xlx(p‘) = (x(p))' I is closed in 2"̂ . Thus n P 

 ̂ psA
is closed, and hence the set of 2-valued functions on A 
that preserve complementation is closed, A similar argu­
ment involving such sets as xlxCp/ q) = x(p)]/x(qjj 
justifies the same conclusion for join-preserving func­
tions . Since the intersection of these two sets of 
operation preserving 2-valued functions is the set of 
2-valued homomorphisms X, it is clear that X is a closed 
subset of 2^.
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As the following theorem indicates, X, the set of 
all 2-valued homomorphisms on A takes on the structure 
of a Boolean space in a natural way. First the following 
definition is made.

Definition 1.11. The set X of all 2-valued homo­
morphisms on a Boolean algebra A is called the dual space 
of A.

Theorem 1.10. Every closed subset T of a Boolean 
space X is a Boolean space with respect to the relative 
topology. Also, every clopen set in Y is the intersec­
tion of Y with some clopen set of X,

Proof : (i) If the clopen sets form a base for X,
their intersections with Y do the same for Y. Then by 
Corollary 1,6.1, Y is a Boolean space.

(ii) If Q is clopen in Y, then Q is open in Y and 
Q is closed in Y, Therefore there exists an open set U 
in X, such that Q = Y H U. Also there exists a closed
set F in X such that Q = Y fl F, Thus Q, as a subset of
X, is closed and hence compact. The clopen subsets of U 
in X cover Q and thus, by the compactness of Q as a sub­
set of X, there exists a finite collection of clopen sub­
sets of U whose union, P say, covers Q. Then Q c: p <= u
and, as we have seen, Y PI U = Q, Hence Y H P = Q where
P is clopen.

The path to the Stone representation theorem has
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now been cleared. Its statement and proof follow.
Theorem 1,11. Let A be a Boolean algebra. If B 

is the dual algebra of the dual space X of A, then A 
is isomorphic to B.

Proof : Define f : A — > B  by f(p) = ^ x e X^x(p) = 1 | .
Note that x(p) continuous in X => f(p) clopen for every 
p e A, and thus f maps A into B. The verification that 
f is a homomorphism is routine.
f(pvq) = ̂ x:x(pvq) = l| = ^x:x(p)v' x(q) = 1 j

= [ x;x(p) = l| U ^x:x(q) = 1^ = f(p) U f(q}
also f(p’) = ^x:x(p‘) = 1 j = ^x:(x(p))' = ij

= ^ x;x(p) = o j  = (f(p;j"<,
To show f is a monomorphism assume f(p) = T x:x(p) = ij = 0.
If p / 0, theorem 1.7. tells us that f(p) / 0. Hence p = 0.
To show f is an epimorphism, note that since the range of 
a Boolean homomorphism is always a Boolean algebra, the 
clopen sets of the form  ̂x:x(p) = 1 J constitute a field. 
Since two distinct homomorphisms must disagree on some 
element of A, the field is separating and thus by theorem 
1.6, this field is B. Hence f maps A onto B.

Corollary 1.11.1. Every Boolean algebra is isomor­
phic to a field of sets.

The isomorphism of the previous theorem existing 
between two algebras suggests the following theorem con­
cerning the topological equivalence between certain Boolean
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spaces» This theorem has been called the dual represen­
tation theorem [2].

Theorem 1 » 12 » Let X be a Boolean space » If Y is 
the dual space of the dual algebra A of X, and if y (%)
is the 2-valued homomorphism that sends each element P
of A onto 1 or 0, according as x e P or x ^ P, then
is a homeomorphism from X onto Y»

Proof : According to theorem 0,4» it is only neces­
sary to show that If is continuous, onto and one-to-one. 
Since the dual space is a Boolean space, If can be shown 
to be continuous by demonstrating that the inverse image 
under of every clopen set in Y is clopen in X, Note 
that a subbasic clopen subset of Y is of the form 
f y:y(P) = 1, P e aJ (see preceding theorem). The in­
verse image under if this set is precisely P, which is
clopen. To show f is onto, first note that if the 
clopen set y :y(p) = ij is non-empty so is its in­
verse image, since if not, there would exist a 2-valued 
homomorphism h such that h.(0) = 1, which is impossible 
for homomorphisms. Now since the clopen sets form a 
base for Y, and since the inverse images of the non­
empty ones of these are never empty, the range of if 
is dense; i, e,, ( if (x))" = Y, Therefore if ip (,X) =
( f (X)) it follows that f is onto, To show that
this is indeed the case, consider f open
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covering for \f (z). Then (x) <= U © , and
aer “

X <= U © ) = U But ip is con-aer “ aer ®
tinuous so that (̂ ""̂ (9̂ )̂ is open for each a e  P

Therefore U ^  ^(© ) is an open covering for X, But aer ®
X is compact so that there exists an open subcovering 
[ i!i “ d X =

and f  (X) <= ^  ( f or (x) = ©^

and hence ^  (x) is compact. Then by theorem 0.2, ^ (x)
is also closed, and therefore Ÿ  = C ^ (x)) = Y,

Since X is a Boolean space, the clopen sets separate
points. Thus distinct points of X will determine distinct 
2-valued homomorphisms (points of Y) on A. Therefore 
is one-to-one.
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CHAPTER III 
DUALITY AND BOOLEAN SPACES

The notion of topological duality introduced in 
the last chapter suggests the possibility of gaining 
information about Boolean algebras through the study of 
Boolean spaces, and vice-versa. As Stone has shown [63? 
it is possible to dualize each Boolean algebraic concept„ 
This dualization provides many helpful insights into the 
general theory of Boolean algebras. In this chapter some 
of the more far-reaching results of such dualization are 
examined. Before this examination proceeds, however, a 
few more fundamental facts and concepts about Boolean alge­
bras must be introduced.

Definition 2,1, An element q of a Boolean algebra 
A is an upper bound of a subset E of that Boolean alge­
bra whenever p < q for every p e E„ If there exists an 
element q^ in the set P of upper bounds for E, such that 
q^ < q for every q e E, q^ is called the supremum of E,
The lower bound and infimum of E are defined analogously, 

Theorem 2,1, For each p and q in a Boolean algebra 
A, the set ̂ P» q J has supremum p \/q and iniimum p/̂  q.

Proof: pv (pVq) = Pv ÇL- Therefore p < p y q. Like­
wise q V (p vq) = p \/ q so that q < p y q. Hence
p y q  is an upper bound for  ̂p, qj , To show that p V q

27
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is the least upper bound, i.e. the supremum, let r be 
any other upper bound of  ̂p , q ̂ . Then by theorem 1.3 

p < r ,  q < r P V q  < r y r  = r, 
a dual argument shows that p/\ q is the infimum.
This theorem generalizes to arbitrary finite subsets of 
A, and the infimum and supremum are denoted by /\ E and 
\/ E respectively. In the infinite case the inf.lma or 
supreme may not exist. For example, consider the finite- 
cofinite algebra of integers and observe that the collec­
tion of singletons of all even integers has no supremum 
since in this case it would contain the set-theoretic 
union which is the set of all even integers an.d there 
is no minimal cofinite set with this property. In general, 
if ^ Pj_| ieP Is an arbitrary collection of elements of a 
Boolean algebra, the notation \ / i s  used for the 
supremum and /\ ^p^ is used for the infimum wherever 
they exist.

Definition 2.2. A Boolean algebra with the property 
that every subset has both an infimum and a supremum is 
called a complete Boolean algebra. The simplest example 
of a complete Boolean algebra is the field of all sub­
sets of a set. A more intricate example of a. complete 
Boolean algebra is given by the following two theorems.

Theorem 2.2. The class A of all regular open sets 
of a non-empty topological space X is a Boolean algebra
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with respect to the distinguished elements and Boolean 
operations defined by
(1) 0 = 0
(2) 1 = X
(3 ) P A Q  = p n Q
(4) P V Q  = (P
(5) P' = P “̂

Proof ; There are two parts to the proof. It must 
be shown that (a) the right sides of (l) - (5) are regu­
lar open sets, and (b) the Boolean axioms are satisfied 
by this definition. The proof employs several lemmas 
which are important in their own right, (a) The fact 
that 0 and X are regular open sets is obvious,

Lemma 2,2,1, p c= q q"̂  <= p"̂  ,
Proof : Closure preserves set inclusion while com­

plementation reverses it,
J. _LLemma 2,2,2, If P is open, then P  c p

Proof: Let P be an open set. Since P P , taking
pi

J .

suit is obtained, i ,e,, P

complements gives P*̂  «= P' , But P' is closed so that
P*̂  <= P* , Taking complements again, the desired re-

__1JL

Lemma 2,2,3, If P is open, then P “̂  = ,
Proof: By lemma 2.2,2, p c: p-̂ *̂  , Therefore, by

lemma 2,2,1 P c= p , Also by lemma 2.2,2, , if P is 
substituted for P"^ , then P“̂ *= P"^ Thus P~^ =
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Lemma 2.2.5 verifies that the right side of (5) is a 
regular open set, since implies that P
is regular. That the right side of (4) is regular open 
can be shown by noting that (P U Q)"̂  = [(P U
= [(P U Q)-L -L ^ [(p u „

To demonstrate that P H Q is regular the follow­
ing lemma is employed.

Lemma 2.2.4. If P and Q are open, then (P n Q,J~̂
= p-^ n Q-^ .

Proof : Since P n Q <= P and P H Q <= Q, lemma 2.2,. 1.
implies that (P n = P a n d  (P n = Q ^ ”*~ .
Thus P n Q <= p-^-^ fl . To show the reverse inclusion
note that since P is open P n Q“ <= (P n Q)". Applying 
complementation, (P D «= P' U Q"̂  s o  that since P ”
is closed (P H Q)"̂  = P' U . Therefore,

M  P n c (p n .
Since is also open it follows that P may be re­
placed by P'^- in (*) so that n
= (Q n p-̂ -̂ )-̂ -̂  . But by (*), (Q n <= (q. ri

However since lemma 2.2.5 implies that (Q, H P) '̂ '̂ = '< F n QT^ 
it follows that P”̂ "" fl Q,"̂ (P n Q) . This lemma
implies directly that the intersection of two regular 
open sets is regular and hence the right side of (5J is 
a regular open set.
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(b) The verification of the Boolean axioms is trivial 
except for p y  p' =1, i.e., ( P U P  = To verify
this, the following lemma may be employed.

Lemma 2.2.5. The boundary of an open set is a no­
where dense closed set.

Proof: Let P be open. The boundary of P = P”n P'~.
Since it is the intersection of two closed sets, it is 
obviously closed. To show P” n P'" is nowhere dense 
assume there exists an open set Q such that Q = P”n P"",
Q / 0. Then Q fH P“ / 0. But since Q is contained in the 
boundary of P, Q H P = 0. But this contradicts the defi­
nition of closure (x e P” if and only if every open set 
containing x intersects p). Therefore Q = 0 and the 
boundary of P is nowhere dense,
Fow it can easily be shown that (P U P'^)'^'^ = x. Since 
the boundary of P is a nowhere dense closed set, (P HP* )' 
= P “̂ U P'-̂  = P“̂ U P is a dense open set. Therefore
(p U P “̂ ) = X, which implies (P U P~^ )"*' = 0  finally ,
(P U P-^)-^-^ = 0 = X,

Theorem 2.3. The regular open algebra of a topo­
logical space is a complete Boolean algebra. The supre­
mum and infimum of a family \ P. > of regular open sets 
are ^̂ p̂ ) and (n^P^) respectively.

Proof: Let (U^P^)"^ = P. Since for each i,
Pj_ ^i^i» lemma 2,2.2 implies that Pĵ  <= P. Thus P is
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an upper bound. To show it is the supremum, let Q. be 
any other upper bound. Then <= Q for each i. Thus

<= Q which by lemma 2,2,1, implies that = Q
= Q, With the aid of the following lemma, which comprises 
infinite versions of the DeMorgan laws, the assertion 
about infima proceeds dually.

Lemma 2,3.1. If ^ p^ ̂ is a family of elements in 
a Boolean algebra then,
( y = / \ i P i ’ Eund. (/\ ^p^)' = \ / ± P ±  ^

These equations are to be interpreted in the sense that 
if either term in either equation exists, then so does 
the other term of that equation, and the two terms are 
equal,

Proof : Let p = \/ ̂ p^„ Then since p . < p for every
i, it follows that p' < Pj_' for every i, ,% p' < ,p^' ,
Let q = î î* * ^ti^n q < P̂ _' for each i and hence
p^ < q' for each i which by the definition of supremum 
implies that p < q', and hence q < p' or ,p.' < p',' ' \ X -i.
The second equality follows from a dual argument.

A useful fact, which follows directly from lemma 
2,31, is the following:

Corollary 2.3,1, If every subset of a Boolean 
algebra has a supremum (or else if every subset has 
an infimum), then the algebra is complete.
Regular open algebras are often useful in the verification
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of conjectures concerning completenesso Two further 
notions useful in the consideration of topological 
duality are the concepts of free Boolean algebras and 
atomicity.

Definition 2.5. A subset E of a Boolean algebra 
A is said to generate A, if A is the smallest algebra 
that contains E.

Definition 2.4. The set E of generators of a 
Boolean algebra B is called free if every mapping from 
E to an arbitrary Boolean algebra A can be extended ro 
a homomorphism on B.
This means that for every mapping g, such that g:E — > A 
there exists a homomorphism f such that f(p) = gCp) for 
every p e E. The following commutative diagram illus­
trates the situation, h is the identity mapping.

6 (f o h)p = g(p)

The phrases "E freely generates B” and "B is free on 
E,” are used in this setting. It is easy to show that 
f is uniquely determined by h and g.

To show that such objects actually exists, let 
E = 0. If B = 2, define f by f(o) = 0, f(l) = 1. 
Clearly 2 is freely generated by 0. A less trivial
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example is considered toward the end of this chapter„ 
Definition 2.5. An element q of a Boolean alge­

bra A is said to be an atom of A if q 0 and if there 
are only two elements p such that p < q> namely 0 and q. 
An example of an atom is a singleton in a field of sets. 

Definition 2,6„ A Boolean algebra A is atomic if 
every non-zero element dominates at least one atom, A 
is said to be non-atomic if it has no atoms.

Theorem 2,4. In an atomic algebra every element 
is the supremum of the elements it dominates.

Proof: Clearly each element p is an upper bound
of the atoms it dominates. Let r be any upper bound of 
these atoms. To show p < r assume it is not, Then 
p - r / 0 and, since the algebra is atomic, there exists 
an atom q such that q <_ p - r. But p - r < p. Thus 
q < r. But then q - q. d r < (p-r) r = 0, Thus q £ 0 
and hence q is not an atom, a contradiction. There­
fore the assumption is false and p < r.

Theorem 2,^, Every finite Boolean algebra A is 
atomic,

Proof: Let p e A, Assume p is not an atom. Con­
sider the maximal descending chain from p to 0, Since 
this chain must be finite, there is a least non-zero 
element q such that 0 < q < p , Clearly q is an atom, 
and A is atomic.
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It has been shown that every Boolean algebra is 
isomorphic to a field of sets » One might wonder whether 
such an isomorphism preserves completeness. Surprisingly 
enough it doesn't in general. The following result is 
helpful in searching for a counter-example.

Theorem 2.6. A complete field of sets is atomic.
Proof : Let A be a nonempty member of a complet e

field of sets. Let x^ e A. Let be the collection
of all members of the field which contain x . Complete­
ness implies that A_ = H B. exists. Assume A_ is noti
an atom. Then there exists non-empty A^ = A^, A^ é A . 

Since x^ X A. , x^ s A. ' . Therefore e A_ A A %  which
O J- O ±  O O X ■

is properly contained in A^, contrary to the definition 
of A_. Hence A„ is an atom. Clearly A„ = A, and thus

O O * ^ 0

the field is atomic.
Taking up the search for a counter-example, note 

that since an isomorphism between two Boolean algebras 
is order-preserving and one-to-one, atomicity is obviously 
preserved. Thus a complete Boolean algebra which Is not 
atomic will, as a result of theorem 2.6., be isomorphic 
to a non-complete field of sets. Therefore the search 
for a counter-example reduces to a search for a complete 
Boolean algebra which is not atomic. As has been shewn, 
the regular open algebra of a topological space is complete
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If the real line, with the usual topology, is chosen 
for that space, the fact that any open interval is regular 
and dominates no atom indicates that such a regular open 
algebra is not atomico In fact it is non-atomic.

Returning to a consideration of topological duality 
note the following result.

Theorem 2.7. A Boolean algebra A is finite if and 
only if it is the dual of a discrete space Zo

Proof". Suppose A is finite. Let x s Z. Let 
y e Z - ^ X I e Then there exists Û . e A such that 
X e U , y e U “. Clearly, H U = T x ^. But sincey y ysz ^ J
A is finite there are only finitely many distinct 
and thus ^ x  J is open. Therefore Z is discrete. Con­
versely is Z is discrete compactness implies that Z is 
finite and the dual algebra is easily seen to be finite 
also.

The dual concept for atomicity is not quite so 
obvious o

Theorem 2.8. Let Z be a Boolean space and A its 
dual algebra. Then A is atomic if and only if the isolated 
points of Z are dense.

Proof : Recall that an isolated point of Z is a
point X e Z such that ^ x  J is open. An atom of A is a 
nonempty clopen set in Z and, being the supremum of the
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atoms it dominates, it is a singleton and thus an iso­
lated point in X, Since the clopen sets form a base 
for X, then A is atomic if and only if the isolated 
points are dense»

Theorem 2.9» A is non-atomic if and only if its 
dual space X has no isolated points »

Proof : As was shown in the previous theorem,
every atom in A is an isolated point in X, Therefore 
if A is not non-atomic X has at least one isolated 
point. Conversely, assume A is non-atomic and that X 
has an isolated point x, say, then ^ x j would be clopen. 
Thus j”x j e A and has a copious supply of sub-elements » 
In X, ^x J is the union of these sub-elements as clopen 
sets, and thus can’t be a singleton.

The dual space of a finite algebra has been shown 
to be a discrete space. Next the dual space of a coun­
table algebra is examined.

Theorem 2.10. A dual algebra A of a Boolean space 
X is countable if and only if X is metrizable.

Proof: The proof makes use of the well known
metrization theorem due to Urysohn which is stated as 
a lemma.

Lemma 2.10.1. A regular T^ space X has a countable 
base if and only if it is metrizable and separable. [2, 
p. 125.]
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Since a Boolean space X is compact and Hausdorff it 
follows that it is regular and Therefore since the
dual algebra may be considered a basis for X half of the 
theorem follows directly from lemma 2,10.1. To prove the 
converse, assume that X is metrizable. If it can be 
shown that X is also separable it will follow from the 
lemma that X has a countable base.

To show X is separable, let n be a positive in­
teger. Then for each x e X, there exists an open neigh­
borhood of radius less than ~ containing x. Since this 
collection of open neighborhoods covers X, and since X 
is compact, there exists a finite subcollection of these 
open neighborhoods which covers X„ From each neighbor­
hood in this subcollection pick a point and call this
set of points S^. Thus for every positive integer n

1there exists a finite set 8^ such that dix, S^j < —
00for every x e X. Let S = . Then S is countable.n=i n

Pick any x e X. Let e > 0. Then there exists a post-
1tive integer N such that n > N implies that — < c.

Hence there exists a y^ e such that d(x, ŷ ." ' ‘S.
Thus X e S“so that X = 8"and X is separable. There­
fore, by the lemma, X has a countable base.

If X has a countable base, then every base con­
tains a countable subclass which is itself a base. 
Therefore, since the dual algebra is a base it contains
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a comitable subclass E which itself is a base. Consider 
B, the gield of sets generated by E. Clearly B <= A.
But then by Corollary 1,6.1., B = A, If it can be 
shown that B is countable, the theorem will have been 
proven. The following lemma provides such a result.

Lemma 2.10,2, If E is a countable class of sets, 
then B, the field of sets generated by E, is countable.

Proof: For any class of sets C, let C* denote the
collection of all finite unions of differences of members 
of C, If C is countable, it is obvious that C* is coun­
table .

Without loss of generality it may be assumed that
E contains the empty set. Let E^ = E, E^ = E^_^ for
n = 1, 2, ... . Clearly then E <= E^ = B, and

E^, being a countable union of countable sets, 
is countable, Note that E^ <= E^ "= Eg <= . ̂ . . There­
fore if P e _ E and Q e » E , there exists an=u n n=u n
positive integer K such that P s E^ and Q 6 E^. Thus 
P-Q e since P U Q = (P-0) U (Q-0) it follows
that P Ü Q e E^^^. Also 0 - Q = Q* e %+l° Thus
P n Q = (P' UQ')'. e Therefore U ^ Q  Epf+i is
closed under finite unions, intersections and comple­
mentation and thus is a field of sets. Since B is the 
smallest field containing E, E^ = B and the proof
of the lemma is complete.
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The duality theory for ideals is an outgrowth of 
the following definition.

Definition 2.7. If X is a Boolean space with dual 
algebra A, the dual of an ideal M in A is the union of 
the clopen sets belonging to M; and the dual of an open 
subset U of X is the class of all clopen subsets contained 
in U,
The following theorem follows directly from this defi­
nition.

Theorem 2.11. The dual of every ideal is an open 
set and the dual of every open set is an ideal. If M 
and U are ideals with duals U and V respectively, then 
a necessary and sufficient condition that M <= N is that 
U <= V,

Definition 2.8. Let p e A, A a Boolean algebra.
The ideal M = :q E A, q < p j is called a principal
ideal, p is said to generate
Note that if M is a principal ideal \/ M is its gen­
erator p. Thus the dual of M, being the union of the 
clopen sets belonging to M, is p, which is clopen.
Theorem 2.10 also implies that the dual of a maximal 
ideal is a maximal open set, i.e., the complement of a 
singleton. Thus the dualization of the assertion that 
every proper ideal is contained in a maximal ideal be­
comes a triviality.
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Theorem 2.12. A Boolean algebra A is finite if 
and only if every ideal M is a principal ideal.

Proof : Assume A is finite. Suppose M is generated
by ^p^, p2 » o ■> <■ » j o Then p = Pi exists and
p generates Conversely, assume every ideal is princi­
pal <, Then the complement of every singleton in the dual 
space X is the dual of a principal ideal and is there­
fore clopen. Thus every singleton is open and X is 
discrete. Then by theorem 2.7. A is finite.

Theorem 1.12. suggests a dual correspondence be­
tween 2-valued homomorphisms on Boolean algebras and 
continuous 2-valued functions on Boolean spaces. The 
following terminology and notation facilitates the in­
vestigation of this correspondence.

Definition 2.9. A pairing of a Boolean algebra 
A and a Boolean space X is a function that associates 
with every pair (p, x), where p e A, x e X an element 
of 2 in the following manner. Denote the value of the 
function by <^p, x ̂  } then the requirements on the
function can be expressed as follows : (l) p, x
is continuous in x, and by suitable choice of p, every 
2-valued continuous function on X has this form; (2j 

p, x ^  determines a homomorphism in p, and, by a 
suitable choice of x, every 2-valued homomorphism on 
A has this form.
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Suppose now that A is a Boolean algebra and X is 
a Boolean space and suppose that ^  p, x ̂  represents 
all continuous 2-valued functions on X and all 2-valued 
homomorphisms on A, In addition, suppose B and T are 
similarly paired.

Theorem 2.13. There is a one-to-one correspondence 
between all continuous mappings from X into Y and all 
homomorphisms f from B into A such that 
(*) q, ^(x) ^  = <^f(q),
identically for all q e B and all x e X. Each of
and f is called the dual of the other.

Proof: Eix I/) and consider q, (x) . As
a function of q for fixed x, it corresponds to an element
of Y, namely (x). This yields nothing new. Uext con­
sider ^  q, ^ (x) ^  as a function of x for fixed q.
Note that this is a composite of two continuous func­
tions namely x — > ip (x) and y — > <^q, y ^  where 
(^(x) = Jo Hence it is continuous and 2-valued. Since 

this is true, it is given by a unique element p e A so 
that

<^q, (x) ^  = <^ P» xj^
identically in x. Denoting the passage from q to p by 
f it is easy to show that f is a Boolean homomorphism,

<^f(q\/r), X ̂  = <^q\/r, ^ ( x ^  =<^q, 'pCx)^\/<^r, Y’ (x)^
= <;^f(q), x^ V<Cf(r), x]> = (f(q)\/f(r), x^ j
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so that f preserves \/ . Also, f preserves complemen­
tation since,

f Cq' ) , X  ^  = <^ q' , (x)^  q, lf> (x) ')> '

= f (q) , X .
To make this more intuitive, if the pairings are 

given by evaluating the characteristic function of the 
first coordinate at the second coordinate, (*) can be 
expressed as follows;

^(x) e Q if and only if x s ^  «
This means that f is the restriction of ^ to the
class of clopen subsets of X,

Now fix f and consider f (q), x ^  . As a func­
tion of X  for fixed q, it is an element of A, namely 
f(q). This yields nothing new. Next consider <^f(q), xj^ 
as a function of q for fixed x. The result is a com­
posite of two homomorphisms: q — > f (q) — > f (qj , x ̂  ,
and as such is a 2-valued homomorphism on B. Therefore
it is given by a unique member of Y, y say, so that

<^f(q), X  ̂  = <fq, y ^
identically in q. Denote the passage from x to y by |P ^
To show ip is continuous, note that the definition of ^  
implies

f [ y: j'y = 1 } ) = <^f(q), x ^  = ij
Since every clopen subset of Y is given by some q £ B, 
and since the clopen sets form a basis for Y, ^ Y • <^ q» Y ̂  ^
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is a basic set in Y, In theorem l=llo it was pointed 
out that the right side of the above equality is clopen. 
Therefore is continuous.

The definition of ^  can be made more intuitive 
by considering and evaluating the second coordinate
at the first coordinate. The result is 

( ^  (x))q = x(f(q))o 
Since this is true for all q e B it follows that 
Ÿ  (x) = X  0 f.

To verify that this correspondence Is one-to-one 
let and 0 both be duals of f . Then

^  q, (x)J\> = f(q)» X ̂  = <(̂ q, 0(x) ̂  . Thus ip
= 0. Let f and g be duals of „ Then

f (q) , X ^  = <^q> p  (x) ̂  = <^ g(q) , X ̂  and there­
fore f = g. And finally the theorem is proved [1, pp. 
85-8].

Two important theorems which are helpful in the 
determination of whether or not a given algebra has a 
free set of generators follow.

Theorem 2,14, For every set I, the dual algebra
Tof the Cantor space 2 is freely generated by a set of 

the same power as I,
TProof: Let Y = 2 , and suppose B is the dual

algebra of Y, Define a function h:I -— >B by h(ij 
= £ y  e Y:y^ = 1 j , As was pointed out in definition
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1.9. such sets are clopen. h is one-to-one for if 
h(i) = h(j), i = j. Therefore h(l) has the same power 
as I, Since the field generated by hClJ is a base for 
Y, it follows from corollary 1.6.1 that h(l) generates 
B. It remains to show that B is free on h(l).

Let A be an arbitrary h
Boolean algebra. Let g be z

g /
an arbitrary mapping from 
I into A. Let X be the
dual space of A and for 2
each X e X write (x)
= X  o g. Then ^(x) : I — > 2  or ̂  (x) e 2^ for every
X s X, so that ip maps X into Y. Recall that

tp”^(h(i)) = ^ x:x g e h(i) j = ^ x: (xo gXi) = ij. 
Then since the elements of h(l) and their complements 
form a subbase for Y, it follows that p is continuous, 
Then by the previous theorem there exists a unique dual 
homomorphism from B into A, Therefore (^(x) £ h(i) if 
and only if x(f(h(i))) = 1. But by (x) e h(i)
if and only if x(g(i)) = 1 and hence x(f(h(i)).) = x(g(i),) 
for all X  e X. Thus f o h = g, or f is the homomorphic
extension required for B to be freely generated by I .

Theorem 2.13. Let I be a countably infinite set.
Then the Cantor space 2^ is homeomorphic to the Cantor 
middle-third set C.
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Proof : Recall that the Cantor middle-third set
(3D C.is the set of all numbers of the form where

= 0 or 2o
Define f:2^ — >by: oo 2a,

f ( * ^2 * » » * » 1 n̂̂ "l ̂ « » « ) — i^l »

Det X = Ca^y a^ y @  ̂a^ y ^n^ 1 * * ̂ o D ; fCx) ~ jp » Pick
any neighborhood N of p in C, Then there exists a posi­
tive integer n such that p e (p - -~-y , p + ^ -, .) n C «= W,j jn 1 ^n-l
Le t A. = y s 2  ,y = (b̂ f̂ b^ * « » « * b^ * ^n+1* « « ° ̂ > ^i ~ ^i 
for i < i < n . By the definition of the product topology 
on 2^, A is open. Now consider f(A), Since the first n 
terms in the expansions of two members of f(A) agree, the
distance from p to any member of f(A) is less than or equal

1 00 2a. 2 1 1to o This follows from the fact that. 2.. — ^ -jr.^n i=n+x — ^n c
Therefore f(A) <= ^(p - , p + ĵ) 0 cj and by

theorem 0,3., f is continuous. Since f is obviously one- 
to-one and onto, theorem 0,4, implies that f is a homeo- 
morphism.

Theorem 2,l6. A finite Boolean algebra A is free 
if and only if the number of its atoms is a power of 2,

Proof: Let A be a free, finite Boolean algebra.
Then by theorem 2,14,,there exists a Cantor space 2^ 
such that A is freely generated by a set with the same 
power, n, say, as Q. Without loss of generality let
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this set he Q. There are 2^ elements in 2^ and each of 
these is clopen and thus an isolated point, and hence an 
atom of

The proof of sufficiency requires the following 
lemma.

Lemma 2,1$, If a finite (and therefore atomic)
kBoolean algebra A has k atoms, it has 2 elements.

Proof: Let Q = ^ â ,̂ ag, â  ̂J be the set of
all atoms. Consider CQ)» the power set of Q, Let M 
and N be distinct members of (^(Q), By theorem 2,4 ,,
\/M e A and \/N e A, Suppose \/m  = \/N, Without 
loss of generality, suppose a^ s M and a^ ^ E, Then

\/m . I/h = 0,
which is a contradiction, Thus \/ H / \/IT and thus there
are as many elements (suprema of atoms) in A as there are
subsets of the set of atoms, i,e,, 2^,

Continuing the proof of the theorem, suppose there
are 2^ elements in the set of atoms, Q, Then the algebra

2^generated by Q has 2 elements. Consider the Cantor
space 2*̂ 0 Being finite 2^ is discrete and thus every

2^subset is clopen and hence its dual algebra has 2 ele­
ments, This is obviously A and by theorem 2,14,, A is 
free,

Theorem 2,17, A countable non-atomic Boolean alge­
bra is free,
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Proof : Let A be a countable non-atomic Boolean
algebrac Let X be the dual space of A. By lemma 2,10.1j 
X is metrizable, for A is a countable basis for X^ Also, 
by theorem 2.9., X has no isolated points. Now consider 
the Cantor middle-third set C. It is well known that
0 is metric and compact and has no isolated points.
Since G is homeomorphic to the Boolean space 2^, where
1 is countably infinite, then clopen sets separate points 
in 0. Thus C is totally disconnected. A topological 
lemma is now invoked to show that X is homeomorphic to C.

Lemma 2.17.1. All metrizable, totally disconnected 
compact spaces without isolated points are homeomorphic 
[5, p. 58]=. Thus by theorem 2.15. all dual spaces of 
countable Boolean algebras are homeomorphic to the Cantor 
space 2^ so that their dual algebras are isomorphic to 
a freely generated one.

Finally, to round out the discussion in this chapter, 
the dualization of the concept of a complete Boolean alge­
bra will be examined.

Theorem 2,18, If |^P^ J is a family of elements 
in the dual algebra A of Boolean space X, and if U = ,
then a necessary and sufficient condition that ^ P̂  ̂J have 
a supremum in A is that U'be open. If the condition is 
satisfied, then V  ̂ P̂  ̂ = U"" .

Proof : (necessity) Let = P, i.e., suppose
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the supremum exists and is equal to P* Since P is closed 
(clopen) and includes each of the P^, U <= P„ P - V i s  
open since it is the intersection of an open set with P 
(also open). If P - U ^ 0, it includes a non-empty 
clopen set Q, Then P - Q is clopen and includes all the 
Pĵ ° 8 and is properly contained in P, This contradicts 
the fact that P was a supremum, (Sufficiency) Let TJ 
be open, then it is clopen and includes all the P^"s,
If P is a clopen set that contains all of the P̂ '̂s, then 
U *= P, But P is closed so that V  = P, But P was an 
arbitrary clopen set containing all of the P ' s ̂ There­
fore 1f“is ,

Corollary 2,18,1, If a family of elements in the 
dual algebra of a Boolean space has a supremum, then 
that supremum differs from the set-theoretic union by a 
nowhere dense closed set.

Proof: V  - Ü = boundary of U, By lemma 2,2,5.,
the boundary of an open set is a nowhere dense closed set.

Definition 2,10, A Hausdorff space is extremally 
disconnected if and only if every open set has open 
closure,

Theorem 2,19. The dual algebra A of a Boolean space 
X is complete if and only if X is extremally disconnected, 

Proof: Assume A is complete and let U be an open
set in X, Next consider all of the clopen subsets P,
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contained in U. Then = U”is open.
Conversely suppose the closure of every open subset 

of X is clopen. Let £ f J be a family of elements of A. 
Then if U = U , it follows that U “is open which by 
theorem 2,l7, implies that V exists.
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