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1,

INTRCDUCTICH

"Every damonstrative science,” says Aristotle,“must start from
indemonstirable principlaa;a(l) In mathematics thess "indemonstrables*
are called axioms, postuletes, or assumptions. Aristotle adds,
“otherwise, the steps of demonstration would be endless.® The body of
propositions representing s science constitutes a closed unit, and eny
offort to prove every proposition would result in a “vicious circle”,
Any of the propositions in a mathematig¢sl sclience can serve as the
foundetion so long as the rest of the propositions can be deduced
from them. For the beginner in any logical science it is necessary to
start with notions which he alresdy understands or cen essily acquire,
This was Duclid's policy in his "Elenents.” This was also Hilbert's
aim in his "Grundlagen der Geometrie¢,®™ On the other hand Veblen's
"Axioms for Geometiry" eesumes a tutored student wit' a developed
skill in logical deduction,

Kany sets of axioms have been worked out for geometry and analysis,
Only & few are listed here, and those with the primery purpose of

establishing the foundationa of +the mathematicel sciences and the

secondary purpose of dis: leying the variability of choice of foundations,

l. T. L, Leath, The Thirteen Books of fuclid (3 vols.,
London' 1908). I, p. 145,

»
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Pure muthemetics is sometimes classified into three brenches;
algebrea, geometry, and analysis. For the purpose of this paper
el-ebra dnd anslysis ere synonym~rus, There is no chenge in notation
involved in pessing from elgebre to enslysis, the introduction of the
theory of lirits being the chief distinction. We will therefore
treat pure mather&tics es only two sciences, geometry and snalysis.

To the atud;nt of enclysis even this distinction fades,
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GEOLEZTRY

History(l)

Like our number sysiem, geometry hed its origin before the dawn
of recorded history. The Rhind Papyrus of the sixtsenth century B, C,
contains formulas for the areas of the rectangle, triangle, trapezcid,
and eircle, Lgyptian preogress in geometry was due to a need for it
in surveying and architecture. Thales, a Creek, is reported to heve
learned ILgyptian geomstry snd teken it to Creece. To Thales (ebout
600 B.C.), likewise, geometry wes a precticel science., It onabled kim
to messure the distance of a ship from shore. Pythagoras (about 540
B. C.) and his followers added much to the kncwn sclience of geometry,
They stated and proved many theorema, the most femous of which was the
Fythagorean theorem. Hiprpoerates in his efforts to “square the circle®
stated and proved umeny theoremsa perteining to the circle., Flato sbout
400 B.C.), is credited with putting geometry om a sound logical bseis,
Archytas (about 350 B.C.), in his efforts to duplicate the cube,
developed and proved severel theorems pertaining mostly to mean propor-
tionals,.

Euclid (about 300 B.C,) wes the master mind who esssembled all the
known theorems of geomeiry, added some, and using the logic of Fleto,

constructed the science of geometry, That his work was good is evidenced

l. This historicel sketeh follows in a general way D. I, Smith,
History of L'ethematics (2 vols., Boston, 1325), II, Chep. V.
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by the fact that his book has been in use with very little change
for 2200 yeurs, He selected a fow of the propositions to be used
as fundamentsl statements without proof , and upon these built tle
whole science of geometry. Controversy centered on his f£ifth uxiom(l)
from the tiue of uclid until aimoast the present. Critiecs were
vaunimously o the opinian that the fifth asiiom could be proved a
consequence of tlhe other axioms. lodern mathematicians have further
established tne excellence of Tueclid's work by showing that complete
end consistent sciencea of geometry can be constructed asasuming a
different fifth sxioms,

ko important additions were made to Zuclid's geometry until
in the seventeenth century Fermat and Descartes invented the anslytiec
geometry., Analytic geometry, and later the applicution of the
ealculus to geometiry, épened up lsrge fields and added much to the
sclence of geometry. Finally, in the nineteenth and twentlieth centuries,
mathematicisns turned egeia to Tuclid's metlrod and established various
logical foumdations for the science of geometry,

Few substantial improvementsa were made in fuclid's exioms., The
essential difference being that modern geometers ciose to show that

there is no one foundation for geometry.

l, See page 6,
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EUCLID'S AXIl3 (1)

Buclid sssumass the existsace 5f various gesmetrical figures.
Ee sterts Ly defining them, probubly intending to show with what his
gecmetry shall deal. He hes txenty-three such definitions, Hs then
lists five postuletes. These are his sterting hypotheses for geometry.
They are followed by five axioms which he consicdered otvious truths,
true in any science. lodern philosorhers prefer to consider nothing
ebviously irme in any science. Axloms, like postulates, now serve
only es starting hypotheses for a science. Zuclid wmey then be seid to
have ten axioms &3 & foundestion for his "Zlements"™ and his fifth
postulste is customerily called his fifth axiom,

Definitions

l. A point is thet which has no part,

2. A line is breadthless length.

3. The extremities of a line are points.

4, A straight line is a line which lies evenly with the points
on itself.

Se¢ A surface is that which has length and breadth only.

6. The extremities of a surface are lines,

7. A plene surfece is a surfece which lies evenly with the
straight lines on itsslf,

8. A plene engle is the inclinetion to one enothsr of two lines
in a plane which meet one snother and do not 1ie in & straigkt line,

8. And when the lines containing the angle are stralght, the
engle is called rectilinesl.

10. when a straight line set up on a straight line makes the
adjacent angles equal to one enother, each of the equal sngles is right,
and the streight line stunding on the other is called a perpendiculrr to
that on whicekh it stands,

11, An gbtuse angle is en angle greeter thean a right angle.

2, AB egcute angle is an angle less then a right angle.
i e A boundery is that which is an extremity of anything.

1. T. L. Heath, The Thirteen Fooks of Zuclid, ( 3 vols.,
London, 1308), I, p. 153,
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14, A figure is that which is contained by eny boundary or
boundaries,

15. A gircle is a plune figure contained by one line such
that all the streight lines falling upon it from one point emong
those lying within the figure are ejurl to one erotrer,

16, And the point is called the centre of the circle.

17. A gdiermeter of the circle is eny strai-ht line drawn through
the centre and terminzted in both directions by the eirc.mference of
the circle, and such & streirht line slso bizects the circle.

18. A pemicircle is the figure contained by the diameter and
the eircumference cut off by it, And the centre of the semi-circle
is the seme as that of the circle.

19, Rectilirer}l ficures ere those vhich ere contained by
str: ight lines, trilsteral figures being those cntained by thres,
quadrileterel those contained by four, end pultilectersl those con-
tained by more thsn four streight lines,

20. Cf t#iletersl figures, an enuileteral irisngle is that
whieh has its thres sides equal, and isosceles triangle that which
has tuo of its sides slone equal, and a scalene trienzle that which
has its three sides unequal,

21, Further, of trilsternl figures, a rishteansled trianzle
is that which has a right engle, &n gbtuse~-sngled triimgle that
which has en obtuse angle, and en pgute-sncled trisngle that which
hus its three angles acute,

22+ 0f quadrilaotersl figures, a sjuare is thet whick is both
equilatersl and right-angledy an pblong that which is right-angled
but not equileteral; a rhombus thet which is equilaterel but not
right-ungled; sand a rhomboid that whiech has its opposite sides and
angles equal to one another but is neither equilsteral nor right-
angled. And let quadriletera.s other then these be called trapezia.

23e Perallsl straight lin<s are streight lines which, being in
the suxe plane and being produced indefinitely in both directions, do
not meet one snother in either direction,

Fostulates

Let the following be postulated:

l. To draw a streight line from sny point to any point.

2. Te produce s finite gstraight line continuously in a2 gtraight
line.

3. To desceribe a circle with any centre and distancs,

4. Theat all right angles are equal to one another,

5. That, if a straight line falling on two straight lines mrcke
the interior =ngles on the same sides less than two right angles, the
two streight lines, if produced indefinitely, meet on thet side on
which are the angles less than the two right angles,
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Axioms

1. Things which are equal to the same thing ere also equel
to one another.,
2. If equals be added to equels, the wholes are ejual,
3. If equals be subiracted from equals, the remainders ere squal,
4. Things which coincide with one ancther are ejual to one
another,
5. The whole is grester than the part,
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g.

HILRTRT'S A IS (1)

Hilbert leaves polnt, straight line, plsne, between and congruent
undefined., He relates them into a geometry by menns of sxiorsa, The
axioms he lists in five groups which he proves to be rutusally independent.

Group Cne he calls the mxioms of combinztion. Here he msserts the

existence of points, lines, plmnes, and solids, 7Aroup Two ha crlls the

exioms of order. Here he implies that the nnints of = straizht line

form e linearly ordered dense set, Group Three is Tuclid's perallel
exiom stated somewhat differently. Group Four he caells the axioms of
eongruence. They serve to extzblish the congruence of linear segmente.

Group Five he calls his axiom of eomntinuity., Here he lists the

Archimedien axiom end the axiom of completeness., Euelid stated the
Archimedian exliom: *“Two megnitudes sre snid to have = ratio, if they
sre such that z multiple of either may exceed the other.”™ The axiom
of completeness resiriets the validity of the other exloms to a systom
made up only of points, strajght linea end rlanes,

Hilbert has twenty-one axioms in all. He proves that they do not
contein contradietions by submiiting a geonmotry, known to bec wvalid,
that satisfies all of them. He proves thst each group of exiomo is
independent of the others by submitting a geometry thet fells to satisfy

only that group.

1. David Hilbert, “Crundlegen der Ceometrie," third edition, 1%0..
Quoted from the English translation bty 7. J. Townsend,
The Foundstion of Ceometry, Chicago, 1910.
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The Axioms
Group I

I, 1. Two distinct points A end B alwcys completely determine
& straight line a. Ve write AB-a or BA =-a.

Instead of “determine”, we may alsoc employ other forms of
ex; ression; for example, we moy say A "lies upon® a, A, “is a point of*
8y & "goes through"™ A “and through” B, a "joins" A "and” or “with"* B,
ete. If A lies upon & and et the semre tire upon annther straight line
b, we meke use also of the expressiont "The straight lines" a "and"

b heve the point A in comuon," etec.

I, 2. Any two distinct poinis of a straight line completely
determine that line; that is, if A3 -a and AC - &, where B #(, tlen is
also BC =a.

I, 3. Three points A, B, C not situated in the ssme straight line
elways completely determine a plane, <. We write ABC - «,

Ve .onploy also the expressions: A, B, C, “lle in"™ x 3 A, B, C,
“ere points of" x _, etec,

I, 4. Any three points §, B, € of a plane ¢, whieh do not lis in
the same straight line, completely determine that plane.

I, 5. If two points A, B of a streight line a 1ie in & plsne <X,
then every point of & lies incX.

In this case we say: "The stralght line g lies in tlre planecX,” etc.

I, 6. If two planescx, have a point A in common, then they have
at leest a second point B~in’ corrion,

I, 7 Upon every straight line thure exists at least two points,
in every plune at leosst three points not lying in the seme straight line,
and in space there exist at lesst four points not lying in a pl=ne.

Group IIX

The axioms cf this group define the idea expressed by the word
"betweon," end reke possible, upon the besis of this idea, &n order of
sequence of the points upon a straight line, in a plene, and in space,

The points of a straight line have & certain reletion to one another wh.ich
the word "between™ serves to describe. The axioms of this group ere as
followas

II, 1. If A, B,C amre points of a streight line and B lies between
A and C, thea 3 1liew &lso between G aud .

I, 2. If A snd € ere two points of a straight line, then there
oxists at least onme point E lying vetween A ead T and al lecast one
point D so situated thet C lles between A and D.

II, 3. Of any three points sltusted on = straight lire, there 1s
elweys one an? only one which lies between the other two,

I3, 4.(1 Any four points Ay By, Cy D of a straizht line can elways
be sc erranged thot B shell lie betwsen A and C and =lso beotween A and D,
end, furthermore, that ¢ shall lis between A and D and el3o between B and D,

1., This axiom was proved by . H. loore to be a consequence of
previously stated exioms. (Transsctions of the Americen
Mathemeticsl Society, vole III, 1302).
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10,

DZFINITICN: We will eall the system of two points A and B,
lying upon a straight line, a segment and denote it by A3 or E—_:._
The points lying between 4 and B are called the points of the segment
A3 or the points lying within the segment AB, All other points of the
straight line are referred to =23 the points lying cutside the segment
ABe The points A end B ere celled the extremities of thé segment AR.
II, 5« Let A, B, C be three points not lying in the same streight
line and let & be a straight line .lying in the plane ARC and nct pess-
ing through any of the points A, B, C. Then, if the stiraight line a
pesses through a point of the segment A3, it will also pass through
either a point of the segment 3BC or a point of the segment AC.

Group III

The introduction of this axiom simplifies greatly the fundamentel
principles of geometry and facilitates in no smoll degree its develop~
ment, This axiom may be expressed es follows: :

IZI. In a planecX there cen be drawn through eny point A, lying
outside of a straight line a, one and only one straight line which
does not intersect the line g.

This straight line is celled the perallel to a through the given

poeint A,
Croup 1V

The exioms of this group define the idea of congruence or
displacement,

Segments stend in & certsin relstion to one another which is
desoribed by the word “congruent.”

IV, 1. If 4y B are two points on & siruight line g, end if A
ie a point upon the same or enother straight line &', then, upon a
given side of A' on tke streight line u', we cen alwgys find one and
only one point B' so that the segrient A3 (or Bi) is congruent to the
seguent A'B', Ve indicale this relulion Ly writing

AB = A*'B'. |
Evory seguent is congrueni to ilself; thutias, we olways heve
AB=AB

7o cwia stute the wbove axiom briefly by ssying that every segment
can be laid off upon a given side of a given point of a given straight
lins in one aund only one wuye

IV, 2. If a segment AB is congruent to the segment A'B' end also
to the sezrcnt A"B®, thon the segwent A'D' is congruent to the sepment
A"B*; thet is, if AB= A'B® and AB =A"B", then A'B' = A"R",

IV, 3. Let AB und JC be two segnenis of a slraight live a which
have no points in conmon sside from the point B, end furthermorae, let
A'B' end B'C* be two segments of the same or of encther straight line
a' having, likewise, no point other than B' 4m comon. Then, if
AB =A'B' md BC=B"'C'y, wo huve AC =A'C’.
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DEFINITIONSs Let o be eny erbitrery rlsne and h, k eny two
distinct half-reys lying incX end emsnating from the point 0 so as
to form a part of two different streizht lines. Te call the system
formed by these two half-resys in h, k an sangle end represent it by the
symbol £ {h, k) or £{(k, B}, From sxioms IY, 1-5, it followa rsedily
that the half-reys b end k, taken togetker with the point 0, divide
the rancining points of the plrne <A into twn recions having tre
following propertys If A is & point of one region and B a point of the
other, then every broken line joining & end 3 either posszes through O
or hes & point in common with one of the helf-rzys hy k. If, however,
Ay A" bolh lie within the sere rezion, then it is elways possitle to
Join these two points by a broken line which neither pmsses thr~uch O
ror hus a roint in common with either of tke halferays h, k. Fne of thesp
two regions is distinguished from the other in that the segment Jeoining
any two points of this region lies entirely =ittin the regicn., 7The region
8o cherscterized 1s celled the interior of the angle (b, k). To dis-
tinguish the cther region from this, wa call it the exterior of the angle
(h, k). The kelf rays h and k are called the gides of the angle, and
the point O is cclled the vertex of the angle,

IV, 4. Let an angle (h, k) be given in the plane <X and let a
streight line g' be given in e plenecX*, Suppose elsc thet, in the
planecx’, a definite side of the straight line a' be essigned, Denote
by h' a healf-ray of the streight line g' emanating from a point 0' of
this line, Then in the plane Cx' there is one znd only one halferay
k' such that the angle (h, k®), or (kf h), is congruent to the angle
Th', ') and at the sane time all interior points of the angle (h',k')
lie upon the given side of p'. Ve exprress this reletion by means of the
notation

L{ky XY= L(h*,k*).
Svery sngle is congruent to itaelf; thet is,
L(hy k)= /(¥',k).

L(hy, k)= [(k, h).

%e mey, briefly, thet every engle in a given plene ¢en be leid
off vpon 2 given side of a given heli=rny in one end only one way,

IV, 5. If the angle (h, k) is congruent to the angle (h', k')
end to the engle (h", k")3 that is to sey, if /Z (h, k)= L (h', k')
end /. (R, k)= /. (h*,k"), then £ (h*, k*)= /[ (h*,k").

Suppose we heve given a triengle APC. Dencte by h, k the two
helf-rays emsmating from A end passing respectively through B =nd C.
The enzle (hy k) is then said to be the engle included by the sides
AB end AC, or the one opposite to the slde PC in the triencsle ARC. It
conteins mll of the interior points of the triasrgle ARC end is represent-
ed by the symbol/ BAC, or by < A.

IV, 6. If, in the two trisngles AC and A'B!C', the congruences
AB ==A*B*, AC=—"A'C', / BAC ==/B'A'C* hold, then the congruences
/. ARC= LA'B'C* end ZACB= ZA'C*' B'also hold.

or
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1z2.

Group V
(1) .

ihiv axiom mekes rossible the introduction into geometry of the
idea of continuity. In order to state this exiom, we must first
estublish a convention cuncerning the ejuzlity of teo aesments. For this
purpose, we can either buse our idea of ejguality upon the axioms releting
to the congrucnce of sep ents end define us "equrl" tre correspondirely
congruent segmentis, or upon the busis of groups I end TI, we may determine
how, by suitable constructl.ons, {a segrent is to be 1laid off from e point
of a given etreight line so that a new, definite ssegment is obteined
Yequal" to it. In conformity with such a eonvention, the axiom of
Archimedes nay be stuted as follows:

Vs 1 Lot 4] be eny point upon a siraipht line hetween the
arbitrarily chos®7 points A end 3, Take the points Ap, A3y Agy seecrcecee
so tiat Ay lies betweon A wd A2, A2 betwesn L) enT A3y A3 betwcen Ag
end A4, etc. Ioreover, let the segments AAl, AjA2, A2A3, A3A4, escececcss
be equal to one snother. Then amonz this series of points, there
alweys exists & certein point A, such thet B lies between A and An.

Vs, 2. To a system of points, straight lines, end planes, it is
dmpossible to sdd other elements in such e manner that the syster. thus
generalized shall form e new geometry obeying all of the five groups
of exioms, In cther words, ths elements of geocmetrv form a system
which is not susceptible of extension, if we regerd the five groups of
exioms as valid.

1., Axiom V, 1 introduces a weszk tyre of continuity. A line
must slso aatisfy the Dedikind Cut to be continuous., See

page 26.
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13,

PIZRI'S Axrass (1)

Pieri leaves only point mnd motion undefined, IHe groups points
into a set 3 and postulates the results of various motions. Heving
defined the sireight line in terms of motion and points he defines the
plene as the set of all lines Joining sides snd points of the triangle
formed by three non-collinear lines., He defines the sphere as the cless
of all points P which ean be transformed into = point B by all the
motions which leave A fixed. A 1s defined as the center of the sphere.
From this definitlion the circle, midpoint of & straight line and distance
can be defined., Axiom eleven defines perpendicular end asserts the
uniqueness of a perpendiecular from a point to a line., The first thirteen
exioms defi?o betweenness and line segments, Axlom sixteen is the
triangle~transversal axiom., Axiom seventeen is a restrtement of the
Archimedean exiom,

The Axioms

l. The class 3 contains at least two distinet points,

2. Given any motion # which establishes a correspondence between
every point P and e point P*, there exists another motion ', which
mukes every point P' correspond to P. The motionA(™ is culled the
inverse of AL,

3. The resultsnt of two motions ¢ end Yy performed succsssively
is equivslent to & single motion.

4, Given any two distinct points A snd B, there exlsts an
effective motion which leaves A and 3 fixed,

5 If there exists an effective motion which leuves fixed three
points A, B, C, then every notion which leaves A and B fixed leaves

L fixed,

l. liaric Fieri, Della Geometris elementare come sistera ipotetics~
deduttivo; monogrefia del punto e del mote, Memorie della R,
Academia delle Sciensze di Torino, (1899)., The axioms ere
from J. W. Younz, Fundamental Concepts of Alc~ebra end
Geometry, (New York, 1934), p. 155-163,
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6. If A, B, C are three non-collinear pointe and D is a point of
the line BC distinct from B, the plane ARD is contained in the plans ARC

7. If A end B are two distinet points, there exiasts a motion which
leaves A fixed and trensforms 3 4ato another point of the straight line

8. If A and B are distinct yoints, and if two notions exist whieh
leaves A fixed and transform B into enother point of the line A3y the
latter point is the same for both motions.

9. If £, &and E-are two distinect points, there exists a motion
which transforms A iuto B and which leaves fixed a point of the line

AS.

10. If A, B, £ are three non~collinear points, there exists e
motion which leaves A end B fixed exd which transforms C into another
point of the plane AEC. *

11. If A, 2, £ are thres non~collinear points end D and T sre
points of the plene ABC common to the sphere Cj and Cp, end distinct
from C, the two points D end E eoincide.

12, If A, By C ere non-collinear points, there exists at least
ons point not in the plane ADC.

13. If Ay By €y D are four points not in the saue plene, there
existes a motion which leaves J end B fixed and whieh trensforms D into
a point of the plene ARC.

142, If Ay By C» D are four distinet collinear points, the point
D isnot a point of one and only one of the intervels AR, AC, EC,

15« If Ay By C ara three collinear points, and C 1s between A and
By no point can be dbetwesn A and C and between B and | C at the same time.

16, If Ay By C are three non-collineer points, every straight line
of the plane ARC which has a point in cormon vith the intervel A3 must
also have a point in eormon with the intervel AC or the interval 2C,
provided the straight line does not pass through sny of the points
£ By C.

17, If G is any eclass of points contiai ed in the intefval AB,
there exists in this interval a point X such ihat no point of C ie
between X and B, and such that for every point Y between A and X, there
is & point of C between Y end X or coincident with X.
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vIsLin's axrars (1)

Veblen hes twelve axioms based on the undefined terms point and
grder. The definitions given along with the exioms serve to show
the menner in which the warious concepts ere introduced, Veblen has
fewer oxioms than Hilbert but the geomeiry is correspondingly more
difficult to derive.:

The Axioms

(1) There exist at least two distinct points,

(2). 1If points 4, By C are in the order A, B, C, they are in
the order C, B, A.

(3)e. If points A, B, C, are in the order ABC, they ere not in
the order 2CA.

(4). If points A, B, C are in the order ARC, then j is distinct
from C.

5)e If A #nd B are any two distinct points, there exists a
point C, such that A, B, C, are in the order ARC,

Def. 1: The line AR consists of A and B and all points X in
one of the possible orders ARX, AXE, XAB, The points X in the order
AXB constitute the segument 4B, 4 end B are the end points of the
segment,

(6)e If C and D (C #D) 1ie on the line AB, then A lies on
the line CD.

(7) If there exist three distinet points, there exist three
points A, B, Cy not in the orders AZC, DFCA, or CAB,

Defs 2. Three dis-inct points not lying on the sarze line are
the vertices of a triengle ANC, whose sides are the ssgments A3,
BC, Ciy and whose boundery consists of its vertices and the points
of its sides,

(8). If three distimet points A, B, C, do not lie on the sare
line, end D end E are two points in the orders LCD and (IA, then a
point ¥ exists in the order A3 end such that D, Z, F, lie on the
same line,

Def. 5. A point 0 is in the interior of a trisngle if it lies
on m segment, the end points of which are points of different sides
of the triengle. The set of such points O is the interior of the

triengle.
Def. 6. If A, By C form a triangle, the plane A"C consisis of

ell points ¢ollinear with any two points of the sides of the triengle,

1. Oswold Veblen, Axioms for Geometry, in Transactions of the
Awericen Mathematicel Socisty, Vol. 5 (1904) p. 346,
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(9). If there exist three points not lying in the seme line,
there exists a plane ADC such thet there is a point D not lying in
the plene, ARC.

Def. 7, If Ay By Cs &nd D are four points not lying in the
same plane, they form & tetreshedron ARCD whose faces anre the interiors
of the triangles ABC, BCD, CDA, DABR (if the triangle exist) whose
vertices are the four points 2, 3, C, and D end whose edges are the
segments AB, BC, CD, DA, AC, BD. The points of faces, edges, and
vertices constitute the surfsce of the tetrshedron.

Def. 8. If Ay By, Cy 8and D sre the vertices of a tetrahedron,
the space ABCD consists of all points collinear with eny two points
of the faces of the tetrshedron.

(10). If there exist four points neither lying in the same
line nor lying in the same plene, there exists s spmce A™CD such that
there is no point E not collinear with two points of the space, AYCD.

(11). If there exists an infinitude of points, there exists a
certain pair of points A, C such thet if [ ] is eny infinite set of
segments of the line AC, hsving the property thet each point which is
Ay C or a point of the segment AC is a point of a segment < , then
there 1is a finite subset O 1, F2, ccceveveceeses @y with the sane
propertye.

(12). If g is any line of any plane<x there is some point  of
<X through which there is not more thsn one line of the planeck which
dees not intersect a.
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Comparison

Euclid defines a point (Def. 1) but builds his geometry without
postulating its existence or eny quelity it right posseas, lodern
goometers prefer to leave the notion of point undefined but postulate
its existence.

Buclid defines a straight line (Def. 4) and then postulates its
existence. (Ax. 1). Hilbert econsicers it a fundemental notion, but
postulates its uniqueness, Pleri postulates the existence of e
planery motion which leaves two points fixed ( Ax, 4) =nd defines a
line &8s the set of sll points that remain fixed in such a motion,
Veblen postulates the existence of an ordered set of points (Ax. 5)
and defines = line 28 such a set,

A plane surface is defined by Fuclid but considered fundamental
enough to not warrant postulating, FKEilbert, asauming the existence
of points, postuletes the uniqueness of the plene determined by three
non-collinear points (Ax. I, 3), Pierli and Veblen establish the
existence of non-collinear points by axioms and define the plane in.
terms of three such points (After Ax. 6 and Ax. 8 respectively).

Angles are defined by Zuelid (Def, 8) end the equality of ell
right engles is postulated (Ax., 4). He further establishes the con-
gruence of identical figures in axiom 9. HKilbert defines engle as the
system of two half-lines emsnating from one point end postulstes their

congruence (Ax. IV, 4)., Pleri and Veblen define angles and their cone

gruence in terms of point relations that hsve been estsblished by exioms,
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Euclid in his postulate 3 esteblished the continuity of spsce
by saying "eny center and distance®, This is his nearest approach
to the continuity of a line. Hilbert in V, 1 and Pieri in 17 present
& type of continuity. Veblen in 11 states his exiom of continuity in
the form usuelly known as the Heine-Borel proposition.

Euclid®s postulate 5, the parallel eaxiom, has hasd an interesting

hi-tory.(l)

Euclid was appearently smpprehensive of it for he aevoided
using it until the 2Jth theorem when it could no longer be avoided,
Several Greek commentators sttacked the propriety of using it es an
exiom and tried to deduce it from the other postulrtes end axi ms, 1In
the eighteenth century en Itelian, Saccheri, attacked its independence
by assuming the axiom fslse and developing a geometry that would con-
tradict 1itself somewhers. !¢ never succeeded in showing a eontrsdiction
but thought he did. In the nineteenth century Bolyal and lLobatchevsky
warking independently made the sssumption that there is an infinite
numb>er of lines through a point parallel to & line. On this hypothesis
they built a complete logical science of geometry, of vhich Fuelidean
geometry was a lirniting esse, This established the independence of
Euelid®s 5th axiom, Leater Reimann built a geometiry on the assumption
that there exists no line through a point not on & given line parallel
to the given line. All these geometries setisfy our perception of space
es nearly es we are able to observe. Therefore, there is no question es

to which is true. DBut 7Tuclidean geometry admitis of easier development

1. This paragraph follows in a generel way J. V. Young, Fundsmentel
Concepts of Algebra and Ceometry, (New York, 1934), chep III.
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80 all mocdern gecmeters have inecluded Tuclid's 5th postulste in
some form in their sxiomsfor geonetry,.

Euclid end Hilbert postulete the congruence eof figures regard-
less of their continuity. Pieri and Veblen postulete the existence
of coincident points and define eongruence in terms of order among
these points,

Euclid proves in his geomeiry that the diagonals of a parellelogrsm
bisect each other, tacidly essuming that they meet., Hilbert in II, 5,
Pieri in 16, and Veblen in 8 present the so-celled trisngle-tranversal
axiom from which Euclids assumption can be proved,

Euclid has only ten exioms, but he essumes some things, sub ross,
which are now preferably stated explicitly. Hilbert has twenty-one
axiors not all of which sre entirely independent, Plierl has seventsen
axioms, probably inderendent of each otheér., Veblen has only twelve
axioms, end they are mutuelly independent. His approsch seems the
most logical from the standpoint of primitiveness of concept. Add a
fow eaxioms to simplify some of the proofs, and Veblen's set would afferd
the best method for building upon known concepts, Compeare for exemrple
Hilbert's undefined terms point, line, plane, between, and congruentj
Pleri's undefined terme point and wmotion end Veblen's undefined terms
of point and order. Obviously Veblen has selected the simplest

fundemental notions upon which to base his sxioms,
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ANALYSIS
Historicel
Analysis is purely an arithmetie nothod:;poration. finding its
Justification in the secience of numbers, However, the first approach
to the method of analysis was made in the field of geometry long bsfore
numbers, as then understood, could handle the method, The Creeks
invented the method of exhsustion in the fifth century B, C. As an
example, they found the area of a circle by inseribing a polygon then
enlarging the inscribed figure by successive doubling of the number
of sides until a limit had been sufficiently approached., In principle
they set up en infinite converging bounded ssjuence snd assumed its
sun had a definite limit. It sas consistent in the Greeks tc asaume
that such a series had e limit because thsy naturally believed that
space was continuous. They never adequately explained how one was to
completely exhaust en arca with a variable sum that approsched that
area as a limit but never quite reachsed that iimit. Archimedes in
225 B; C. proved rigorously by the method of sxhaustion, that the
eren of a parabolic segment is four thirds of the triangle with the

same base mnd vertex or two~thirds of ths circumscrired psrallielogrem.

In each case he proved that the area could be neither more nor less than

the ares which thet formule gives. Therefore, the erea given by that
formula is the true ares,

In the seventesnth century Kepler and Cavalieri made the next
approach toward the method of anslysis. Their theory was that sp-cce

end lines were made up of "indivisibles”, A surface, for instance, 1is
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made up of lines (the indivisibles). An infinite number of these
lines sre summed to obtain the area of the surface. Cavalieri showed
that the area of a triangle was one~half the srea of a parsllelogram
with the same base end sltitude as followsx(l) Calling the smallest
indivisible element of the triangle 1, the next larger 2, the next 3,
and 8o on to n the base. The area of the triengle is therefore
1#+2+3 eevecccenrny or # n{n +1). PBEut each element of the parellel-
ogram is n, axd there are n of them as in the triangle, and so the area
is n2, Then the ratio of the area of the triangle to the ares of the
parallelogram is #n (n+1): n? = #1+ 3/n). But 1 # 3/n)=1% es
n-— oo, The method of indivisibles provided a shorthsnd treatment
for the method of exhaustion but still lacked definite proof that the
limit sought existed, Nelther was it shownthat the indivisibles
existed. There were also certain other nsive assumptions that we need
not describe here,

Leibnisz invented the notation that is used today. He indicated
the sum of Cavalieri's indivisibles by the integrel sign:/”. and the
inverse operation by de In 1676 he published a manuscript containing
such statements as dx3 - 322, AV E = AvE

Newtons works, publishad‘in 1687 and 1704, show two methods used
for anslysis. He first used the method of indivisibles, In order to
show that his infinitesimals existed he changed from the method of
indivisibles to that of fluxions. This method can be pictured

‘eamotrically as a point flowing elong a curve, He finds the ratio

of its Y velocity to its x velocity at any point on the curve, assuming

1. 3mith, History of lathematics, Ginn and Co., Vol., II, p. £:7
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that a moving body has e definite velocity at every instant of time. He
thus avoided an .¥1stonco proof for his two infinitesimsls, He inter=-
preted the ratio geometrically like modern mathematicians do as the
limiting slope of a secant through two points on a curve as the distance
between the points becomes small. Newton called integration the

method of quadrature, end the solution of differential equations he
cnlled the inverse method of tangents,

Newton and Leibnisz devised an enalysis that worked in most cases,
Their method was week in that no one had shown thet the number system
was sontinuous, a necessary property of the domein of the veriable.

Since the time of Newton end Leibnis the number system has been
enlarged to include all its possible limits, The very small constant,
es Leibnis conceived the infinitesimal, hes gone into disrepute to be
replaced with Newton's theory of limits. Newton's theory is still
held that as two variables epproach limiting walues, if the ratio of

their rates of change approaches a limit, this limit has a definite

value,
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Genetiec Development
Following £s = list of definitions whersin the fundamental notions
of mnalysis are developed., The system of real numbers so far as needed
is built up by the "genetic” method, i
A set (class, assemblage, body) we will leave undefined. It
represents a fundemental idea, A4ll things possessing s common

cheracteristic are seid to constitute a set,

Cne-to~one gorresapondencs also represents a fundamental notion,

Counting oblects is the process of establishing a one-to-one corres-
pondence between the obj.cte and the system of positive integers.

Counting can not be logically defined in more fundamental terms:

Its validity must be granted to afford a starting point in mathematics,

When an element belongs to a set it possesies the charscteristic
necessary to define it as a member of that set,

A subset, [al]g(l) of a set [ a] is = set such that every element,

2y» of [ 811 belongs to the set [a] .

If set [ a] can be put into one-to-one correspondence with set [vl]
then the sets [a] and [b] are said to be gguivalent.

The set Lg] of all ejuivelent sets is symboliged by n which is
called the cardinsl number of every one of the equivalent sets.

Of two eots [a]end [b] , if every element of [a7] can be put into
one-to-one correspondence with elements of [ b ] but every element of [b ]
ean not be put into one~-to-one correspondence with elements of [_u Jthen the

1. The symbol [ a Jto represent the set aj, 82, 83 ecs+ee 8 18

due to Veblen snd Lennes, Infinitesimal Anclysis, (New York,
1907).
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cardinal number of [&7is seid to be less tran that of [b] . Set [a]
is seid to be eguivelent to a part ef[b] .

Designating the eardinal numbers of -at-[ a’) and [b] by a end b,
the relation s less than b is indicated a { b,

If éots[ a Jend [ b] ere equivalent then a = by otherwise s #b.

The definition given here for "less than" precludes more than one
of the relations, a —b, b <=2, and g <b being true,

The set of cardinal numbers [ n] ¢an now be put into one-to-one
correspondence with the positive integers [n*'] in such a wey that of
eny two elements of [ a] ,g, 4 in the relation ¢ < d the corresponding
elements of numbers g', d' of [ n' | are in the relation ¢' < d'.

A set such that of eny two of its elements @ end b, 2 = b, 2 < b,

or b< a is s2id to be an ordered set.

Given two sets/ a Jand [b], form e set[ ¢ ] such that every element
of [ « Jand[b] is an element of [ 0] and every element of [¢ ]4is an
element of [ ajor[b]. Then of their cardinal numbcrs, o+ b = e.

The set [ ¢ ] 1s obviously unique regerdless of order of elements,

Then a + b = b / a.

Given two sets| a Jand [b], form a set[ c¢] by mssociating each
element of [ & J with every element of [ b] . Then of their cardinsl
numbers, &b = ¢,

Aessociating esch element of [ b ] with every element of [ a | obviously

brings the eleuwents together in the same pairs as associating each

element of [ a Jwith every element of [b]. Therefore, &b .= ba.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



25,

Given three sets [u] . [bj » [e]l, form a fourth set [ d Jsuch
that every elemeat of[aT], Lb] s or[ 6] is an element of [d]end
every element of [ d] is en element of [a],[d], or[e]. Then the
eardinal number of set]| d ] is unijue regardless of the order in which

they were combined. Therefore, (8 +b) + e~ a+ (b+e)=9a+b +e.

Given three sets[a], [b], [e], form the set[ ab] then
associnte each element of [ ab] with every element of [¢] . A brief
inspection will show thet the seme triples will appear had the set
[ be] been formed and each element of [ a ] associated with every
elemont of [ be [+ Therefore {sble = a(be).

Given three sets|a |, [b], [e], form a new set [d] such that
each element of[ aJis associated with every element of Lb] end [e].

The set| d ] is evidently unique. Stated in cerdinal numbers

gby ac = d = ab + ).

These definitions huve esteblished a system of positive integers
and the primery rules of opersticn. Any set which can be put into one-
to-one correspondencs with: the set of positive integers is ssid to be
denumerable or simply numerabvle, |

Two integers a and b mey ba said to constitute the retional
frection s/b when properly essocieted.

Of two rational fractions a/b and /b’ if #b' = a'b then

a/b = a'/b*, 4if eb'< a'b then g/b < a'/b, if 2'b < eb' then afbt < a/b.

The set of rational fructions is thus by definition en ordersd set, It

cen be easily shown that the set of retionnl fractions is numersble,
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From our rules of operstion if a/b < e°/b', then /b ¢ %-i.'.%:.< a'/b°,

Therefore, between every peir of rational fractions theee is another
nupber, An ordered set possessing this property is scid to be dense,
The rule of operation a + b - ¢ dofines peguctive numbers and gers.
b is negative when ¢ < 8y and b is zero when a = c.
we have hare built up rougily the system of rational numbers as
it is known and used., %hen the Grecks finsllly edmitted fractions
they hed the positive part of this system as their arithmetic. Recsuse
a number existed betweon every ;air of numbers the system would admit
of very small numbers snd thus appeared to correspond with the proe
perties of space. Unlike space, however, this system of numbers is not
eontinuous,
Given a set | a ]divided into two (non-empty) subsets ([s,] and
[ ep]such that for every olement a1 of [21] end s of [ ap], &7 < ap end
such that every element of [ @] is an element of [ 8] or [a2] . Then
there is an element X which divides the two subsets., This statement
is celled the Dedekind Cut, A dense set which satisfies the Dedekind
Cut is continuous, The element X is called the upper limit of subset
[ &3] . Applied to the set of rationsl numbers the Dedekind Cut addd
an indefinitely large sat of numbers to the system, for the number X need

not be a rational number. This continuous set is celled the real number

system.
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(1

)A yariasble is & synbol that represents any one of a set of
elements, A variable in annlysis 13 & symbol representing any one of
a set of numdbers,

A constent is a symbol that represents m set of only one element.
A constant in snulysis is & nuuwber,

Any one element of a sst represented by a varieble is called a
yzlue of the vuriable,

Given two variables x and y. If to esch velue of x there
corresponds one and only one velue of y then y is said to be & one-
yelued funetion of x.

Given two varisbles x and y. If to each value of x there

corresponds a set of values of y then y is said to be a many-velusd
functicn of x.

In analysis, if to every number represented by the veriable x
there corresionds one or wore numbers represented by the yeriabls x, then
Y is seid to be a single-or meny-valued function respectively of x.

If to ary velue of x end eny value of y there correspond one end
only one value of 3 then z is seid to be a single-valued functicn of
x ond Y.

A segment sb is the set [ x Jof 21l elements such that g  x <b.

A nelghborhoocd of an element a is the segument 3 such that e< & { d,

The element g is seid to be a limit of the set [e ]Jif there are

elements of [ ¢ ] other than a in every neighborhood of a.

1. First stated in this form by Veélen md Lennes, in Infinitesimal
Analysis, (New York, 1907) p. 44,
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The set of rational numbers together with the irrationsls defined
by the Dedekind Cut econstitutes a set which contsins all its limit points.
If g is & limit of the set represzented by the varisble x, then x
is said to approach & upon the set,
If the number Q is ths limit of a function of x as x spprosches n,
that function i3 en infinitesimal,
The fundamentel notions of analysis hove been developed historically
and intuitionally thus far, lNow after a brief historical sketch we
shall give a rigorous development of the number system by David Filbert
and E, V. Huntington.
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ARITHVETIC
Historicel

Ethnology of primitive cultures indicates that the positive
integers were the first numbers to eppear in civilization. The more
backward resces show more or less sbility to cowunt though thet may be
the extent of their arithmetic ability., At the dawn of written
history, there were several systems of symbols for the positive integers
in existence. Cur system originmted with the Lindus, 211 ten digits
appearing for the first time in the year 876,

Fractions, also, had appeared by the dawn of recorded history,
doubtless growing ocut of a need for them in commerces. ZLarly writings
of the RBabylonisns, Egyptiens, Chinese, and liayans show frequent use
of the fraction. In the third century B. C. they first come to be
regarded as true numbers. Cur own method of writing fractions,
excepting the bar between numerator and denominator, probably originated

with the Eindus, about the fourth sentury A. D,

Incormensurable ratios were noticed by the Greeks 1n their studiles
of geometry. The Fythagoreans supposedly proved the incommensurability
of 2. Our present notstion, the radical sign eppeared first in France
in 1494, The trencendental number 7 was met in e forts to express the
length of the circumference of a circle. Approximations for 7 are given
in the early writings of the four civilizations mentioned aboves
Babylonian, Egyptian, Chinese =nd Mayan, The trancendence of 7 was

first proved in 1682 by F. Lindemann of Gerrany,

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



Negative numbers presented themselves to the late Greeks in
the solution of elgebraie equations. The Hindus in the seventh century
were first to resognize them es numbers. The minus sign originated with
Tycho Brahe of Demmark in 1598,

The operations addition and subtraction are fundamsntsl to the
system of positive integers, synonymous with tounting, Hultipliéation
end division, though less fundamental, were recognized in the earlisst
writings of eciviligation. The extraction of roots eppeared as stated
before, smong the Greek geomoters. The relations "equals” and "less
than® are fundamentsal notions necessary to the system of positive
integers and granted, consciously or unconse¢iously, whenever numbersc
are used., As the number system expanded from positive integers to the
system now in use, the various operetions and relations were spplied
to each new branch. Their symbols, as used today, were invented in

Burope in the fifteenth, sixteenth and seventeenth centuries,
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HILBiRT's  axzons(d)
Hilberts sxioms for the real number system contain the undefined
terns nuczbery, 4 5 + 3 8and 7, There are seventeen in all. 1l effort

wes made to obtein a minimm number of them so they were not mutuelly

independent,
THIORZIS CF CONNZCTTION (1-12).

1. From the number & &nd the number b, there is obtained by
“addition® a definite number g, which we express by writing a+ b= ¢
or ¢ = a +b,

2. There exists e definite number, which we c¢all O, such thet,
for every nuber 8, we have a+ O - a and O+ a = a.

3. If 2 end b are two given numbers, there exists one end only
one number x, and also one and only one number yy such that we have
respectively a+ x =b, y—+ a = b,

4. From the number a end the number b, there may be obtained in
another way, namely, by “multiplicetion”, a definite number g, which
wo express by writing ab = ¢ or o = ab.

5. There exists a definite number, called 1, such that, for every
number a8, we have a « 1 - a end 1 - a = a.

6. If a end b are any arbitrarily given numbers, where a is
different from Q, then there exists one and only one number x and also
one snd only one number y such that we have respectively ax = b, ya= Db,

If 2y b, ¢ are arbitrary numbers, the following lews of operation -
always holds

7. a+{b+e)=(a+ b)+ e.

8. a+ b = b+a
9. a(be) = (ad)e
10. af{b + ¢) = ab + ac
11. (a + b)e = se + bo

1z2. adb = bea.
THEORE}S OF ORDZR (13 - 16)

13. If By b ere any two distinct numbers, one of these, say 8, is
slways greater ( 7 ) than the other. The other number 1s said to be the
smaller of the two. We express this reletion by writing a > b snd b £ a,

14, If a>b and b > e, then is also a > c.

15, If a> b, then is also s + ¢ >b + ¢ and ¢ + a , 0+ b,

16. If a> b and ¢ > 0, then is also 86 > be end ca > cb.

l. David Hilbert, (rundlasgen
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THEORIL'S F ARCFIVEDIS (17)

17. If a, b are any two arbitrery numbers, such that a >0 =nd

21> Oy it is always possible to add & to itself a sufficient number of
mes so tg?: the resulting sum shall have the property that a £ a #a+
LE R R ¥ 3 °

HUNTINGTON'S axzois(d)

Huntington has prepared sets of axioms for various systems, His
set for the real number system consists of only fourteen which he proves
are mutually independent, The set given here is for the systex of real
and conplex numbers., This set vas chosen because it offers a complete
foundation for the number system of which the science of enalysis treats.
Huntington calls the corplete nurber system the set of complex mumbers
end classifies the real number system as & subset of the complex numbers.
The set of complex numbers admits of the operetions of addition end
multiplication. The subset of resl numbers admits of the relation of
order. The undefined terms ¥, C, £, = £ correspond respectively to the
complex numbers, the real numbers and the relations %, X, < &8 ordinarily
understood,

DUFINITIONS
Definition 1. If there is a unijuely determined element 3 such that

a +3 =%, the x 1s called the sero-element, or zerc.
- Definition 2. If there is = unique zero-element z (ses definition 1),
end if there is a uniquely determined element y, different from sero, and
such that u + u = u, the u is called the unit~element, or unity.

pefinition 3. If there is a unique zero-element 3 (definition 1), and
if a given olenent a determines uniquely an element g' such thet a + a' = 8,
then @' is called the negstive of a, and is denoted by_-sa.

1. E. V. Huntington, Set of Postuletes for Crdinery Complex Algebra,
in Transmctions of the Americun Lethemetical Society, 6
(1205) p. 222.
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Definition 4., If there is a unigue zero~element 3 eand a unique
Unit-element y~ (see definition 1 end 2), end if a given slement e,
different from z, determines uniquely un element &" such that -

@ - a" =u, then a” is called the reciprocal of &, &nd is denoted by 1/a.

AXICONS

in th:h:y:i:;f ;::o:opg:t:igz::i giving the general lsws of orperation
] _ 0od to hold only in 8o fer as the
elements, sums and products involved are elements of K.

POSTULATE ;. l. a +b =b + a.

POSTULATE Y, 2. (a+ b)t+ ¢ —a + (b+ e).

POSTULATE I, 3¢ If a+ b= a+ b*, then b = b',

POSTULATE Iy 4 @ - D =D - a.

POSTULLTE I. Se (.. [} b) 8 . 8 (b . e).

POSTULATZ: Iy 6o If @ - b= & -b', snd a+ a Za, then b = b*,

POSTUL'TEZ I, 7¢ &+ (b +¢) =(a - B) +(a -0).

POSTUL'TS Iy B¢ If a and b are elerents of ¥, then a +b is an
element of K.

POSTULATS I, 9. There is an element x in K such that x +x = x.

POSTULATZ I,10., If there is & unijue zero-slement 3 in X (see
definition 1), then for every element & imn K there is an elemsnt a' in
K' such thet s+ a' = Be

POSTULATE I,11le If & and b are elements of ¥, thena - b is en
elenent of K.

POSTULATZ I, 12, If there is a unijue zero-element, 3, in X (see
definition 1), then there is an element y in X, differert from g, end
such thet y - y = y.

POSTUL!TE X,13. If there is a unique zero-slement, z, and a unijue
unity-element, u, different from g, in K (sce definition 1 and 2), then
for every element a in I, provided a £ s, there is an element 2" in K
such that a . a" - u.

The Postulutes It 1 = 13 moke the cless K a field with respect to~

and + .

POSTULATE II, 1« If & is en element of C, then a is en element of K.

POSTULATZ II, 2. The class C contains at least one element,

FOSTULATE II, 3. If s is an element of C, then there is an element
b in C, such that & # b,

POCSULATE IX, 4o If & and b are elements of Cy then a + b, 1f it
exists in K et all, is an element of C.

POSTULATs I, 5. If @& is an elenent of Cp then ita negative, -8
(see definition 3), if it exists in K at sll is an element of C.

POSTULATE IX, 6 If s mnd b sre elements of C, then a b, if it
exists in K at all, is an element of C,

POSTULATE XX, 7« If & is an element of G, then its reciprocal Mg
(see definition 4), if it exists in X at all, is en element of C,
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ke 'g:e Postulates IIs 1 ~ 7, taken with the postulctes Is 1 - 13,
® sub-clase C, 1ike the class K, a field with respect to + sud » .

FOSTULATE I11, 1 If a end b are
ol * a 2 elements of \
ther o < b or else a b, Cs end a #b, tren

-+ POBIVLAIR IYI, 3., 1If b
and b < ¢, thea a.% C. 2y by and ¢ are elements of C, and if a < ®

POLTULATZ XII, 4. If /"1is & non-empty sub2lass in C, wund if

:g;:oti:riniglemont b in C such thatX < b for every slement <X of /7,
an element X in C having the following two properties with
regard to the sube-class /7 3

1%) 1f OX 1s an element of [, then { X or<X = X; while

2°) 4f x' 1s eny olement of C such thet x' < X, there is an
element £ in {:_' such that§ > x'.

The Postulates III: 1 ~ 4 and IIs 2 = 3, taken with the redundent
postulate III, 5 (which is here omitted), make the sub-class C a onee
dimensional continum with respect to ( , in the sense defined by
Dedekind.

POSTULATE IV, 1. If By X9 Yo 2+ X, and & + y ere elements of C,
end X T yy thenm a +x { & +y, whenever a + x 2 & + Y.

POSTULATE IV, 2, If a, hy, and &2 _+ h are elements of C, and a , ¢
end b > 8, then a - b >z (where g is the zsro-element of Definitien 1).

The twenty-sixpostulates of groups I - IV make the sub-clmss
squivalent to the claas of all real nuwbers with respect to+ , - 5 —
and ®

<P03T12LATS Vs 1« If X is a field with resysct to £+ end _-, then
there is an element ] in K such that § * § = -u, where -u 1is the
negative of the unit-element of the fiel!d {see Definitions = end 3).

 POSTULATS V, 2. If K end also C are fields with respect to 1 and
, &nd if there is an eleuent 1 such thst i -1 = -u (see rostulate V, 1),
then for m;ary element g in K there ure elements x end y in C such that
x+ (i- = B
(‘I‘hss{s twenty-eight postulates mske the cless X equivalent to the
elesa of all {ordinary) complex numbers with respect to 4, -, and £ .
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GEOKLTRY AND ANALYSIS

Assume that we have a complete system built up for the analysis
of real numbers. Suppose we define any set of three such numbers es
a point, and the set of all sets of three numbers thet setisfy an
squation of the form ex+ by +¢x + d e as & plune, and the set of
ell sets which satisfy two such equations as lines, Further, suppose
we describe the relation that exists when no numbers satisfy the two
equations as perallel plsnes, and define the sei of all sets that
satisfy an equation of the form (x = )2 +(y = b)? + (s - c)z4 d =o
es a sphere, The set of seits of numbers that satisfy both the
ejquation for a plane end the ejuation for a sphere we can define as
a circle, It is obvious that we czn obtein a complete geometry
from our anelysis structure merely by definition, Furtheremcre, the
operations in enalysis remain valid in geometry. Linear order can be
defined in the geomeiry in such a way that the relations of order of
anslysis hold without change in geometry.,

Co construct a geometry for restricted relativity it is only
necessary to define a point es any set of four numbers. To extend the

geometry to mechanice the point is defined as e set of n numbers,
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