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lîJTRCDUCTICIÎ

"2v#ry dœoaatretlve aeienea,* aaya Arlatotla,"muat start froe 
iadamonatrabla princlplas*" In mathematics thesa “indeiaonstrables**
ara eallad axioms, postulates, or assumptions. Aristotle adds, 
"otherwise, the steps of demonstration would be endless." Iha body of 
propositions representing a science constitutes a closed unit, and any 
effort to prove every proposition would result in a "vicious circle".
Any of the propositions in a mathematical science can serve as the 
foundation so long as the rest of the propositions can be deduced 
from them. For the beginner in any logical science It is necessary to 
start with notions which he already understands or can easily acquire. 
This was 3uclid*s policy in his "Elements." 'Hiis was also Hilbert's 
aim in his "Grundlagen der Geometrie." On the other hand Veblen's 
"Axioms for Geometry" assumes a tutored student wlt̂  a developed 
skill in logical deduction,

Many sets of axi(ms have been worked out for geometry and analysis. 
Only a few are listed here, and those with the primary purpose of 
establishing the foundations of the mathematical sciences and the 
secondary purpose of dis•laying the variability of choice of foundations,

1. T. L. Heath, Ihe Thirteen Pooka of Ouclld (3 vols., 
London, 1308), I, p. 145.
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2.

Pure maihoa&tiee la sometimea clctaelfled into three branchea; 
algebra, geometry, and enalyaia. For the purpose of this paper 
algebra ànd anelyaia ere aynonymoua* There la no change In notation 
involved In peasing from algebra to analysis, the introduction of the 
theory of llnlta being the chief distinction* We will therefore 
treat pure mathamhtlcs as only two sciences, geometry and analysis*
To the student of analysis even this distinction fades*
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GSOLSTRY

History
Like our number system, geometry hed it# origin before the davn 

of recorded history* The Rliind Papyrus of the sixteenth century B. C* 
contains formulae for the areas of the rectangle, triangle, trapesoid, 
and circle* Egyptian progress in geometry was due to a need for it 
in surveying and architecture. Thales, a Creek, is reported to have 
learned Egyptian geometry and taken it to Greece* Th Thales (about 
600 6*0*), likewise, geometry was a practical science* It enabled him 
to measure the distance of a ship from shore. Pythagoras (about 540 
B. C«) and his followers added much to the known science of geometry*
They stated and proved many theorems, the most famous of which was the 
Pythagorean theorma* Hippocrates in his efforts to **square the circle* 
stated end proved many theorems pertaining to the circle, Plato about 
400 B.C*), is credited with putting geometry on a sound logical basis. 
Arehytas (about 350 B.C.), in his efforts to duplicate the cube, 
developed and proved several theorems pertaining mostly to mean propor­
tionals.

Euclid (about 300 B.C.) was the master mind who assembled all the 
known theorems of geometry, added some, and using the logic of Plato, 
constructed the science of geometry* That his work was good is evidenced

1, This historical sketch follows in a general way D. u. Smith,
History of I.'fthematics (2 vols., Boston, 1525), II, Chap. V,
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by the feet that hla book has been in use with very little change 
for 2200 years. He selected a few of the propositions to be used 
as fundamental statwaents without proof , and upon these built the 
whole science of geometry. Controversy centered on his fifth axiom^^^ 
from the tLuo of Duolld until aiWo^t the present. Critics were 
unanimously <£ the opinion that the fifth aaiiom could be proved a 
consequence of the other axioiaa, Modern mathematicians have further 
established the excellence of Euclid’s work by showing that complete 
and consistent sciences of geometry can be constructed esauming a 
different fifth axioms.

Ko important additions were made to Euclid’s geometry until 
in the seventeenth century Fermat and Descartes invented the analytic 
geometry. Analytic geometry, and later the application of the 
calculus to geometry, Apaned up large fields and added much to the 
science of geometry. Finally, in the nineteenth and twentieth centuries, 
mathematicians turned again to Euclid’s method and established various 
logical foundations for the science of geometry.

Few substantial, improvements were made in Euclid’s axioms. The 
essential difference being that modem geometers c^ose to show that 
there is no one foundation for geometry,

1, See page 6 ,

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



EUCLID'S AXi:2î3

Euclid aaauaaa the •xistsacc of various geometrical figures*
Ko starts by defining th^, probubly intending to show with what his 
geox&etry shall deal. He has twenty-three ouch definitions. He then 
lists five postulates, Ihese are bis starting hypotheses for geometry. 
They are followed by five axioms which he considered obvious truths, 
true in any science, lodern philosophers prefer to consider nothing 
obviously trwe in any science, Axicmie, like postulates, now serve 
only as starting hypotheses for a science, Euclid may then be said to 
have ten axioms ea a foundation for his "Elements" and his fifth 
postulate is customarily called his fifth axiom.

Definitions
1, A point is that which has no part*
2, A line is breadthlesa length,
3, The extremities of a line are points,
4, A straight line is a line which lies evenly with the points 

on itself.
5, A surface is that which has length and breadth only.
6 , The extremities of a surface are lines,
7, A Plane surface is a surface which lies evenly with the

straight lines on itself,
8 , A plane angle is the inclination to one another of two lines

in a plane which meet one another and do not lie in a straight line.
9, And when the lines containing the angle are straight, the 

angle is called rectilineal.
1 0. % e n  a straight line set up on a straight line makes the 

adjacent angles equal to one another, each of the equal angles is right,
and the straight line standing on the other is called a perpendicular to
that on which it stands,

11, An obtuse angle is an angle greater than a right angle,
^n acute angle is an angle less than a right angle,
A boinderv is that shich is an extremity of anything.ii:

1, T, L, Heath, The Thirteen Hooks of Euclid, ( 3 vole,, 
London, 1908), I, p. 153.
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6.

14» A figure is that which is contained by any boundary o p boundaries.
15, A circle is a plane figure contained by one line such 

that all the straight lines falling upon it from one point among 
those lying within the figure are equal to one Brother,

16, And the point is called the centre of the circle,
IT, A dianeter of the circle is any strairht line drawn through 

the centre and terminated in both directions by the circ mference of 
the circle, and such a straight line also bisects the circle,

18, A eemleircle is the figure contained by the diameter and 
the circumference cut off by it. And the centre of the eoai-circle 
is the same as that of the circle.

19, Rectjlineal figures are those which are contained by 
str'ight lines, trilateral figures being those contained by three, 
quadrileterel those contained by four, end multilateral those con­
tained by more than four straight lines,

20, Cf tMleterel figures, an er?uilp-ternl trimnnile la that 
whieh has its thres sides equal, and» isosceles triangle that which 
ÿes t o of its sides alone equal, and a seslene triangle that which 
has its three sides unequal.

21, Further, of trllateml figures, e ri;{ht-angled triangle 
i# that which has a right angle, an obtuse-angled trâWSKle that 
which has an obtuse angle, and on acute-angled triangle that which 
has its three angles acute.

22, Of quadrilateral figures, a square is that which is both 
equilateral and right-angled; an oblong that which Is right-angled 
but not equilateral; a rhombus that which is equilateral but not 
right-angled; and a rhmiboid that which has its opposite sides and 
angles equal to one another but is neither equilateral nor right-
angled. And let quadrilaterals other than these be celled trapssia.

23, Parallel straight lints are straight lines which, being in 
the same plane and being produced indefinitely in both directions, do 
not meet one another in either direction.

Postulates
Let the following be postulated*
1. To draw a straight line from any point to any point.
2. Te produce a finite straight line continuously in a straight

line.
3. To describe a circle with any centre and distance.
4. lhat all right angles are equal to one another.
5. That, if a straight line falling on two straight lines meke 

the interior angles on the same sides less than two right angles, the
two straight lines, if produced indefinitely, meet on thet side on
whieh are the angles less than the two right angles.
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Axioms
1 . TTiinga which ars squal to the gams thing ere slao equal 

to one another*
2* If equals be added to equals, the Tholes are equal.
3* If equals be subtracted from equals, the remainders are equal*
4* Üilngs which coincide with one another are equal to one

another*
5* % e  whole is grewter than the part*
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RILP"RT*3 A 1:1:3 (1)

Hilbert leave* point, etreight line, plane, between and congruent 
undefined* Ho relates theia into a geometry by mean* of exioiss. The 
axioms he lists in five groups which he proves to be mutually independent* 
Group One he calls the axioms of combination* Here he asserts the 
existence of points, lines, planes, and solids. Group Two ho cnlla the 
axioms of order. Here he implies that the points of a straight line 
form a linearly ordered dense set. Group Hires is E>iolid*s parallel 
axiom stated somewhat differently, Ghroup 5'our he calls the axioms of 
congruence. They serve to establish the congruence of linear segments. 
Croup Five he calls his axiom of continuity* Here he lists the 
Arehimedien axiom end the axiom of completeness, Euclid stated the 
Archimedian axiom; "Two magnitudes are said to have a ratio. If they 
are such that a multiple of either may exceed the other*" The axiom 
of completeness restricts the validity of the other exloms to a systom 
made up only of points, straight lines end planes,

Hilbert has twenty-one axioms in all. He proves that they do not 
eontetn contradictions by submitting a geometry, known to bo valid, 
that satisfies all of them. He proves thet each group of exiomo is 
independent of the others by submitting a geometry that fails to satisfy 
only that group.

1, Davj^d Hilbert, "Grundlcren der Geometrie. " third edition, 190^^ 
Quoted from the English translation by E* J, Townsend,
The Foundation of Geometry, Chicago, 1910*
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The Axioms 
Group I

If 1# IVo distinct points jA end B always completely determine
a straight line a. T.'e write A3 = a or~BA=a*

Instead of "determine", we may also employ other forms of
exi resslon; for example, we may say ^ "lies upon" a. A, "is a point of"
£» a "goes through" ^  "and through" B, a "joins" ^“ "and" or "With *
etc* If A lies upon a and at the same time upon another straight line
î f we make use also of the expression* "The straight lines" a "and"

have the point A in consaon," etc. *"
If 2. Any two distinct points of a straight line completely 

determine that line; that is, if A3 = a and AC = a, where B then is 
also BC =a.

If 3. Throe points A, B, C not situated In the same straight line 
always completely determine a plane, We write ABC = X.

We vomploy also the expressions* B, C, "lie in" ^ t A, B, C,"ere points of" -x . etc. — — — -
If 4. Any three points A, B, Ç of a plm:e which do not lie in 

the same straight line, completely determine that plane.
If 5. If two points A, B of a straight line a lie in a plane C< «

then every point of g  lies in CK .
In this case we say* "The straight line a lies in the p i a n e " etc.
I, 6 . If two planesCXf^ have a point A in coiorion, then they have 

at least a second point B-in^oîamon*
If 7. Upon every straight line thure exists at least two points, 

in every plane at least three points not lying in the some straight line, 
and in space there exist at least four points not lying in a pl«ne.

Group II
The axioms of this group define the idea expressed by the word 

"between," and £«Jce possible, upon the bonis of this idea, an order of 
sequence of the points upon a straight line, in a plane, and in space.
The points of a straight line have a certain rslation to one another wi.ich
the word "between" serves to describe. The axioms of this group ere as 
follows *

II, 1. If A, B,C are points of a straight line and ^ lies between 
^  and C, then 3 liea also between ^ A.

II, 2. If and C are two points of a straight line, then there 
exists at least one point ^ lying between A and C and at least one 
point 2 so situated that £  lies between A and D.

II, 3. Of any three points sltuetod on a straight line, there is 
always one end only one which lies between the other two.

II, 4.(1) Any four points A, B, 2, £ of a straight line can always 
be so arranged that B shall lisTbetween ̂  and C and also between A and JD, 
end, furthermore, that C shall lie between A and g and oloo between B and D,

1, This axiom was proved by H« tbore to be a consequence of 
previously stated axioms. (Transactions of the Aircrlc^n 
Mathematical Society, vol. Ill, 1302),
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10.

DSFIHITIÛNi We will call the eystem of two points A and B,
lying upon a straight line, a segment and denote it by ^  or gA.
The points lying between ^ and B ere celled the points of the seront 
^  or the points lying within the segment All other points of the
strsLight line are referred to as the points lying outside the segment

Ihe points end B are called the extremities of the segment AB»
II, 5* Let JB, £ be three points not lying in the same straight

line and let be a straight line lying in the plane /JC end net pass­
ing through ai%r of the points A, B, £. Then, if the straight line 
passes through a point of the segment it will also pass through 
either a point of the segment gC or a point of the segment AC.

Group III
The introduction of this axiom simplifies greatly the fundamental 

principles of geometry and facilitates in no small degree its develop­
ment* Ihls axiom may be expressed as follows >

III, In a pltmedX there can be drawn through any point A, lying 
outside of a straight line a, one and only one straight line whieh 
does not intersect the line a.

Ihis straight line is celled the parallel to a through the given 
point £-.

Group IV
The axioms of this group define the idea of congruence or 

displacement•
Sogmonts stand in a certain relation to one another which is 

described by the word "congruent."
IV, 1. If B are two points on a straight line a, end If A* 

is a point upon the same or another straight line a*, then, upon a 
given side of on the straight line a', we cen elvn^ s find ono and 
only one point B* so that the segment AB (or BÆ) is congruent to the 
segment A*B* . ITe indicate this relation by writing

A3 —  A'B*. ,
Zvory segment ie congruent to itself; thatla, we always havo

AB = A B
T,’e can state tl.e above axiom briefly by saying that every segment cam be laid off upon a given side of a given point of a given straight 

lina in one and only one way.
IV, 2» If a segment is congruent to the segment A*B* end also 

to the aogi-iunt A"B". than the sa^m»nt A*B* is con^i'uont to the segment 
A"B"i that is, if AB =  A'B* and A3 =A"B", then A*B*=A"B".

IV, 3. Let and be two segments of a straight li **e a which 
have no points in common aside from the point B, and furthermore, let 
A#g* làjnd 3*C* be two segments of the same or of another straight line 

having, likewise, no point other than B* in coisnon. then, if 
^A*D* m  d EC — B*C*, *o have AC =A*C*.
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DEFIIIITIûNSi L#t qç be eiiy arbitrary rlane and h, k ony two 
distinct half-reys lying iaQj. end emanating frraa the point 0 so es 
to form a part of two different straight linos, TTe call the system 
formed by these two half-rays in h, k an angle and repreoent it by the 
symbolZ(h. k) or Z(k. h). From axions II, 1-5, it follows readily 
that the half-rays ^ and k. taken together with the point Ç, divide 
the roncinlng points of the plono into t',ro regions having the 
following property I If A is a point of one region end ̂  a point of the 
other* then every broken lino joining k and B either passes through 0 
or has a point in coimr.on with one of the half-rays fc. If, however*
A, A* both lie within the seme region, then it is always possible to 
join these two points by a broken line which neither passes th'»~'̂ vorh O 
nor has a point in coEanon vfith either of the holf-rays h* k* of these
two regions is distinguished from the other in that the""segment joining 
any two points of this region lies entirely Tithin the region. Ihe region 
so characterised is celled the interior of the angle (b# k). lb dis­
tinguish the ether region from this, we call it the exterior of the angle 
(hm k,)« The half rays h and k are called the sides of the angle, and
the point £ is called the vertex of the angle,

IV, 4. Let an angle (h« k) be given in the plane and let a 
straight line a* be given in a ple.ne<^*. Suppose also that, in the
planecx*, a definite side of the straight line a* be assigned. Denote
by h* a half-rey of the straight line e* emanating from a point 0 * of 
this line. Then in the plane cx* there is one and only one half-rey 
k* such that the angle (h. or (kf h). is congruent to the angle
Th*, k*) and at the same time all interior points of the angle (h*.k*) 
lie upon the given side of a* , We express this relation by means of the 
notation *”

Z(h, k) 5  /(h',k').
Every angle is congruent to itself; that is,

Z (h* k ) ^
or

Z(h* k) 3  /.(k, h).
We say, briefly, that every angle in a given plane con be laid 

off upon a given side of a given helf-ruy in one end only one way,
IV, 5, If the angle (h. k> is congruent to the angle (h*. k M  

end to the angle (h*, k**); that le to say, if /. (h, k) =  L  ̂ h*, k ') 
and Z_ (h, k)= Z.(h-,k-), then Z. (h', k»)= yC(h",k").

Suppose we hove given a triangle ABC, Denote by h, fc the two 
half-rays emanating from A end passing respectively through B end Ç,
Ttie angle (h, k) is then said to be the angle included by the sides 
AB end or the one opposite to the side PC in the triangle ABC, It 
contains all of the interior points of the trisu^gle and is represent­
ed by the symbolZ. BAG, or by ^  A.

IV, 6 . If, in the two triangles and A'B'C*. the congruences
A B ^ A ’B*, A C ^ A ' C ,  / b a g hold, then the congruences
/_ Z-A*B*C* and Z a C B ^  ZA*C* B*also hold.
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12.

Group V
(1)^.aIiIu axi-cna makes possible the introduction into geometrj' of the 

idee of continuity* In order to state this axiom, uo must first 
establish a convention concerning the equality of twn segmenta. For this 
purpose, we cen either base our idea of equality upon the axioms relating 
to the congruence of sog; ents and define us "equcl" the eorrespondirgly 
congruent eegioents, or upon the basis of gr ups I and II, we may determine 
bow, by suitable constructions, (a segr^nt is to be In'd off from e. point 
of a given etreight line so that a new, definite segment is obtained 
*equal** to it* In conformity \Tith such a convention, the axiom of 
Archimedes may be stated aa follows;

V, 1, Let be eny point upon a straight line between the
arbitrarily chos¥a points and 3. Take the points A2 , A3* A^,  ........
so that lies bet^^een A cu d Ag between Ap AglEetweon Ag
end etc. Moreover, let the segments AAl, i^A2 , A2A3, A3 A4 , *...... .
be equal to one another. Then among this series of points, there 
always exists a certain point such that 3 lies between A and An.

V, 2* To a system of points, straight lines, end planes, it is 
Impossible to add other elements in such a manner that the system thus 
generalised shall form a new geometry obeying all of th© five groups 
of axioms* In ether words, ths elements of geometry form a system 
which is not susceptible of extension, if we regard the five groups of 
axioms as valid*

1, Axiom V, 1 introduces a week type of continuity. A line
must xlI s o  satisfy the Dedlkind Cut to be continuous. See 
page 26.
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13.

FISRI’S AXIOMS (1)

1@8V 8B only point end i&otiou undeflnod. Fîô groups points 
Into a set ̂  and postulatos th® results of various motions. Having 
defined the straight line in terms of motion and points he defines the 
plane as the set of all lines Joining sides and points of the triangle 
formed by three non-oollinear lines. He defines the sphere as the class 
of all points jP shich can be tranafoimed into a point g by all the 
motions which leave A fixed. ^ Is defined as the center of the sphere. 
From this definition the circle, midpoint of a straight line and distance 
can be defined. Adiom eleven defines perpendicular and asserts the 
uniqueness of a perpendicular from a point to a line. The first thirteen 
axioms define betweenness and line segments. Axiom sixteen is the 
triangle-transversal axiom. Axiom seventeen is a restatement of the 
Archimedean axiom.

Ihe Axioms
1 . "Oie class ^ contains at least two distinct points.
2. Given any motionwhich establishes a correspondence between 

every point P end a point there exists another motior^"*, which 
makes every point P' correspond to jP. Ihe motion/^f^ is called the 
inverse of%|^

3. Ihe resultant of two motions^ and performed successively 
is equivalent to a single motion.

4. Given any two distinct points A and there exists an 
effective motion which leaves A and B fixed.

5 . If there exists an effective motion which leaves fixed three 
points A, B, C, then every notion which leaves A and £ fixed leaves
£  fixed.

1. L'ario Fieri, Della Geometrie ele^entare come si at era ipotetica- 
deduttivei monografia del punto e del mote. Memorie della R, 
Academia delle Soienxa di Torino, (1899). The axioms are 
from J. 1sr. Young, Fundamental Concepts of Alirebra and 
Geometry. (New York, 1934), p. 155-163,
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14.

6 . If £ are three non-colllaear pointe and ^ is a point of
the line Bg distinct from the plane ABD is contained in the plane ABC»

7* If ̂  end B ore two distinct points, there exists a motion which
leaves ^  fixed and transforms ̂  into another point of the straight line

8 » If ̂  and jB are distinct points, and if two motions exist whieh 
leaves A fixed and transfona B into another point of the line AB, the 
latter point Is the same for both motions.

9. If and Jg- are two distinct points, there exists a motion 
udiieh transforms ̂  into ̂  and which leaves fixed a point of the line
£ë-

1 0. If A, B, g are 'Uiree non-collinear points, there exists a 
motion which leaves A end g fixed end which transforms C into another 
point of the plane ABC. ""

11. If Jl, g, g are three non^collinoar points end D and 3 are
points of the plane ABC conmon to the sphere £ 4 and Cg,""and distinct 
from g, the two points g end K coincide.

12. If A, B, g are non-collinear points, there exists at least 
one point not in the plane ABC.

13. If A, g, g, g are four points not in the 8ai«e plane, there 
exists a motion which leaves A end g fixed and which trensforma g  into 
a point of the plane ABC.

14. If A, B, C, g are four distinct collinear points, the point
g isnot a point of one and only one of the intervals J^, EC,

15. If it, B, g are three collinear points, and C is between A and
g, no point can be between g  and C and between g and g at the same time.

16. If A, B, C are three non-collinear points, every straight line
of the plane ABC idiioh has a point in cocmon v.ith the interval ig must 
also have a point in common with the interval AC or the interval BC» 
provided the straight line does not pass through eny of the points
A# 2» £•17. If g is any class of points contai ed in the interval AB. 
there exists in this interval a point ̂  such that no point of g is 
between X and g, and auch that for every point % between g and ]g, there 
is a point of C between % end jg or coincident with X.
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V2BK3N*3 AXIOrS

V#ble%% has twslvs axioms based on the undefined terms point and 
ardor. Ihs definitions given along with the axioms serve to show 
the manner in which the various concepts are introduced. Veblen has 
fewer axioms than Hilbert but the geometry is correspondingly BK>re 
difficult to derive.

Ihe Axioms
(1 ). 'fhere exist at least two distinct points,
(2), If points k, B, C are in the order C, they are in

the order C, jB,
(3). If points B, Ç, are in the order ABC, they are not in 

the order BOA.
(4). If points B, Ç are in the order fiBC. then ̂  is distinct 

from C.
%̂ 5), If A and B are any two distinct points, there exists a 

point such ^ a t  B, £, are in the order ABC.
Dof* lé Ihe line ^  consists of A and B and all points ^  in 

one of the possible orders ABX. AXBf XAB. The points X in the order 
AXB constitute the segment and B are the end points of the
segmenté

(6). If C and 2  (C ̂ D )  lie on the line then ̂  lies on
the line CD.

(7) If there exist three distinct points, there exist three 
points A, B, C, not in the orders ABC. PCA. or CAB.

Def. 2. Three distinct points not lying on the saxtio line are
the vertices of a triangle ABC, udiose sides are the segc.ents AS.
EC. CA, and whose boundary consists of its vertices and the points 
of its sides.

(8 ). If three distinct points C, do not lie on the same
line, and 2  end ̂  are two points in the orders BCD and CSA. then a 
point F exists in the order AFB end such that D, S, F, lie on the 
same line.Def. 5. A point 0 is in the interior of a triangle if it lies 
on a segment, the end points of wliich tare points of different sides 
of the triangle. The set of such points 0 is the interior of the 
triangle.Def. 6 . If A, C form a triangle, the plane ABC consists of 
all points collinear with any two points of the sides of the triangle,

1. Oswold Veblen, Axioms for Ceometry. In Transactions of the
American Mathematical Society, Vol. 5 (1904) p. 346.
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(9). If ther* exist three points not lying in the seme line, 
there exists & plane ABC such thet there is a point D not lying in 
the plane, ADC. “

Def, 7, If B, C, and £ are four points not lying in the 
same plane, they form a tetrahedron ^ C D  ose faces are the interiors 
of the triangles ABC, BCD, CD A, DAB {if the triangle exist) whose 
vertices are the four points A, B, g, and g and whose edges are the 
segments AB, BC, CD. DA. AG. BD« The points of faces, edges, and 
vertices constitute the surface of the tetrahedron,

Def. 8 . If Jif B, Qf and Q  are the vertices of a tetrahedron, 
the space ABCD consists of all points collinear with eny two points 
of the faces of the tetrahedron,

(10). If there exist four points neither lying in the same 
line nor lying in the same plane, there exists a space A^CD such that 
there is no point E not collinear witli two points of the space, A^CD*

(11), If there exists an infinitude of points, there exists a 
certain pair of points A, G such that if is any infinite set of
segments of the line having the property that each point which is 
A, C or a point of the segment AG is a point of a segment , then
there is a finite subset   with the seme
property,

(12), If a is any line of any plene<^ there is some point 2 sf 
through idiich*”there is not more than one line of the plane*^ which

doBss not intersect a.
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Comparison
Euclid defines a point (Dof. 1) but builds his geometry without 

postulating its existenee or eny quality it tdght possess. Modem 
geometers prefer to leave the notion of point undefined but postulate 
Its existence.

Euclid defines a straight line (Def. 4) and then postulates its 
existence. (Ax. 1). Hilbert considers it a fundamental notion, but 
postulates its uniqueness. Fieri postulates the existence of a 
plenary motion which leaves two points fixed (Ax. 4) end defines a 
line 88 the set of all points that remain fixed in auch a motion.
Veblen postulates the existence of an ordered set of points (Ax. 5) 
and defines a line as such a set.

A plane surface is defined by Euclid but considered fundamental 
enough to not warrant postulating. Hilbert, assuming the existence 
of points, postulates the uniqueness of the plane determined by three 
non-collinear points (Ax. I. 3). Fieri and Veblen establish the 
existence of non-collinear points by axioms and define the plane in 
terms of three such points (After Ax. 6 end Ax. 8 respectively).

Angles are defined by Euclid (Def. 8 ) end the equality of all 
right angles is postulated (Ax. 4). He further establishes the con­
gruence of identical figures in axiom 9. Hilbert defines angle as the 
system of two half-lines emanating from one point end postulates their 
congruence (Ax. IV. 4). Fieri and Veblen define angles and their con­
gruence in terms of point relations that have been established by exioms.
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Euclid in hi# postulate 3 established the continuity of space 
by saying "any crater and distance**. This is his nearest approach 
to the continuity of a line. Hilbert in V, 1 and Fieri in 17 present 
e type of continuity, Veblen in 11 states his axiom of continuity in 
the form usually known as the Heine»Borel proposition,

Euclid’s postulate 5» the parallel axiom, has hed an interesting 
h i s t o r y , , E u c l i d  was apparently apprehensive of it for he avoided 
using it until the 2 ->th theorem when it could no longer be avoided. 
Several Greek cocmentators attacked the propriety of using it as an 
axiom and tried to deduce it from the other postulates and axl ms. In 
the eighteenth century an Italian, Saccheri, attacked its independence 
by assuming the axiom false and developing a gecxnotry that would con­
tradict itself somewhere. Hu never succeeded in showing a contradiction 
but thought he did. In the nineteenth century Bolyai and Lobatchevsky 
working independently made the assumption that there is an infinite 
number of lines through a point parallel to a line. On this hypothesis 
they built a complete logical science of geometry, of v-hich Euclidean 
geometry was a liiulting case. This established the independence of 
Euclid’s 5th axiom. Later Reimann built a geometry on the assumption 
that there exists no line through a point not on a given line parallel 
to the given line. All these geometries satisfy our perception of specs 
as nearly as we are able to observe. Therefore, there is no question as 
to which is true. But Euclidean geometry admits of easier development

1. This paragraph follows in a general way J. Young, Fundamental 
Concepts of Algebra and Geometry. (New York, 1934), chep III,
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•o all modern gecaetera have Inoluded '^clld’a 5th postulate In 
•ome form in their axicmskor geometry.

Euclid said Hilbert postulate the congruence of figures regard­
less of their continuity. Fieri end Veblen postulate the existence 
of coincident points and define congruence in terms of order among 
these points.

Euclid proves in his geometry that the diagonals of a parallelogram 
bisect each other, tacidly assuming that they meet. Hilbert in II, 5, 
Fieri in 16, and Veblen in 8 present the so-called triangle-tranversal 
axiom from which Euclids assumption can be proved.

Euclid has only ten axioms, but he assumes some things, sub rose, 
which are now preferably stated explicitly. Hilbert has twenty-one 
axioms not all of which are entirely independent. Fieri has seventeen 
axioms, probably independent of each other. Veblen has only twelve 
axioms, and they are mutually independent. His approach aemss the 
most logical from the standpoint of primitiveness of concept. Add a 
few axions to simplify some of the proofs, end Veblen's set would afford 
the best method for building upon known concepts. Compare for example 
Hilbert's undefined terms point, line, plane, between, and congruent; 
Fieri*s undefined terme point and motion and Veblen*a undefined terms 
of point and order. Obviously Veblen has selected the simplest 
fundamental notions upon which to base his axioms.
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ANALYSIS
Hivtorleal

err
Analyaim ia purely aa arithmetle method ̂ operation, finding lie 

Justification in the science of numbers. However, the first approach 
to the method of analysis was made in the field of geometry long before 
numbers, as then understood, could handle the method. The Greeks 
invented the method of exhaustion in the fifth century B. C. As an 
exemple, they found the area of a circle by inscribing a polygon then 
enlarging the inscribed figure by successive doubling of the nusber 
of sides until a limit had been sufficiently approached. In principle 
they set up an infinite converging bounded sequence and assumed its 
sum had a definite limit. It .̂as consistent in the Greeks to Maime 
that such a series had a limit because they naturally believed that 
space was continuous. They never adequately explained how one was to 
completely exhaust an area with a variable sum that approached that 
area as a limit but never quite reached that limit. Archimedes in 
225 B. C. proved rigorously by the method of exhaustion, that the 
area of a parabolic segment is four thirds of the triangle with the 
same base and vertex or two-thirds of the circumscribed parallelogram.
In each ease he proved that the area could be neither more nor less than 
the area vdiich thet formula gives. Therefore, the area given by thet 
formula is the true area.

In the seventeenth century Kepler and Cavalieri made the next 
approach toward the method of analysis. Iheir theory was that sp^ce 
end lines were made up of "indivisibles", A surface, for instance, is
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Bad* up of lines (the Indivisibles). An infinite number of these 
lines are summed to obtain the area of the surface. Cavalieri showed 
that the area of a triangle vas one-half the area of a parallelogram 
vith the same base end altitude as f o l l o w s C a l l i n g  the smallest 
indivisible element of the triangle 1 , the next larger 2, the next 3, 
and so on to n the base. Ihe area of the triangle is therefore 
1 +3 . «, . .. ...fn, or ̂  n(n ̂ 1). But each element of the parallel­
ogram is n, esM there are n of them as in the triangle, and so the area 
is tfim Then the ratio of the area of the triangle to the area of the 
parallelogram is ^  (nf l)i = ^(1 / l/n). But ^ 1  l/n)-^ as
B — ^ CK», The method of indivisibles provided a shorthand treatment 
for the method of exhaustion but still lacked definite proof that the 
limit sought existed. Neither vas it shownthat the indivisibles 
existed. There were also certain other naive assumptions that we need 
not describe here.

Leibnis Invented the notation that is used today. He indicated 
the sum of Cavalieri* s indivisibles by the integral signj,^^ , and the 
Inverse operation by d. In 1676 he published a manuscript containing 
such statements as dx^ = 3x^, d"V x~

Newtons works, published in 1687 end 1704, show two methods used 
for analysis. He first used the method of indivisibles. In order to 
show that his infinitesimals existed he changed from the method of 
indivisibles to that of fluxions. This method can be pictured 
geometrically as a point flowing along a curve. He finds the ratio 
of its X velocity to its x velocity at any point on the curve, assuming

1. Smith, History of i'athematics. Ginn and Co., Vol. II, p. 6 7
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'ttïet a moving body has a definite velocity at every instant of time. He 
thus avoided an existence proof for hie two infinitésimale. He inter­
preted the ratio geometrically like modern mathematicians do as the 
limiting slope of a secant through two points on a curve as the distance 
between the point# becomes smell. Newton called integration the 
method of quadrature, end the solution of differential equations he 
called the inverse method of tangents.

Newton and Leibnis devised an analysis that worked in most cases. 
Their method was week in that no one had shown that the number system 
was eontinuous, a necessary property of the domain of the variable.

Since the time of Newton and Leibnis the number system has been 
enlarged to include all its possible limits. % e  very small constant, 
as Leibnis conceived the infinitesimal, has gone into disrepute to be 
replaced with Newton* s theory of limits. Newton* s theory is still 
held that as two variables approach limiting aalues, if the ratio of 
their rates of change approaches a limit, this limit has a definite 
value.
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Development
Following 1# a list of définitions wherein the fundsmental notions 

of analysis are developed. Ihe system of real numbers so far as needed 
is built up by the "genetic" method.

A set (class, assemblage, body) we will leave undefined. It 
represents a fundamental idea. All things possessing a comon 
characteristic are said to constitute a set.

One-to-one correspondence also represents a fundamental notion. 
Counting objects is the process of establishing a one-to-one corres­
pondence between the obj cte and the system of positive integers.

Counting con not be logically defined in more fundamental termes 
Its validity must be granted to afford a starting point in mathematics.

%hen an element belongs to a set it possesses the characteristic 
necessary to define it as a mmnber of that set.

A subset.  ̂of a set £ a^ is a set such that every element,
a^, of £»i”l belongs to the set [ a] .

If set [ a] can be put into one-to-one correspondence with set [ b] 
then the sets £ * 3  [ b j  are said to be equivalent.

The set £ s l  of all equivalent sets is symbolised by n which is 
called the cardinal number of every one of the equivalent sets.

Of two sets £al and £bl , If every element of £a] can be put into 
one-to-one correspondence with elements of £ b 3 but every element of [b ] 

can not be put into one-to-one correspondence with elements of ^a ̂  then the

1. The symbol a to represent the set a%, a2, 03, ••••.* ®n
due to Veblen and Lennes, Infinitesimal Anrlyais. (New York, 
1907).
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cardinal number of 1# said to be lesa than that of • Set £aj 
ie said to be equivalent to a pert of £ h j  •

Designating the cardinal niaabers of setsj^ a^ end ĵ b] by a and b, 
the relation g less than b la Indicated a <. b.

If # e t s a j a n d f b l  ere equivalent then a - b i otherwise a ?/b.
The definition given here for "less than" precludes more than one

of the relations, a ~ b « b ■< a. end a ^  b being true*
The set of cardinal numbers [ aj can now be put into one-to-one 

correspondence with the positive integers [n*J in such a way that of 
any two elements of [ aJ d in the relation o <  d the corresponding 
elements of numbers £*, d* of £ n * J  are in the relation c* <L d*.

A set such that of any two of its elmaents a and b, n r b* a <  b* 
or b <T a is said to be an ordered set.

Given two sets £ a J and Lb 7 * form a set £ e ^  such that every element
of L & ] and[b] is an element of ̂ o J and every element of£cJis an 
el «sent of £ a^ or £b J . Then of their cardinal numbers, at- b — e*

The eet£ ojis obviously unique regardless of order of elements. 
Then a f b — b a.

Given two setsL * ]end [b ] , form a set £ c] by associating each
element of£ a] with every elwnent of £ b 7 • 'Kien of their cardinel
numbers, eb — c.

Associating each element of £ b J with every element off a7 obviously 
brings the elements together in the same pairs as associating each 
element of £ a J with every element o f £ b J .  Therefore, eb - ba.
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Glv#n three eets|^aj » f # f« 7 # form a fourth «et [_d^8uch 
that every elwoeat of £ a ̂  ] , or £ * 3 i# an element of [ d j  end
every element of £ d] la an element of £al * j[b7 » or [e ] . Then the 
eardlnal number of set£ d] ie uni que regardless of the order in which 
they were combined» Therefore, (a t b) ^  c ̂  a (b f e) = a ^ b ^ e.

Given three seta £a J , [ bJ , £cj , form the set£abj then 
associate each element of £abj with every element of £cj • A brief 
inspection will show that the same triples will appear had the set 
£ be 3 been formed and each element of £ a J associated with every 
element of £bcj • Therefore (ab)c — aCbcK

Given three sets ̂ a j ,  J^bJ, £o7 , form a new set [d7 such that 
each element ef£ aJ is associated with every element of ĵ b 3 and £c 3 .
The set£ dj is evidently unique. Stated in cardinal numbers 
ab¥- ac =- d - a(b ^ c).

These definitions have established a system of positive integers 
and the primary rules of operation. Any set which can be put into one- 
to-one correspondence with the sot of positive integers is said to be 
denumerable or simply numerable.

Two integers a and b may be said to constitute the rational 
fraction e/b when properly associated.

Of two rational fractions a/b and a*/b* if eb* —  a*b then 
a/b — a*/b*. if eb* <1 a*b then e/b e*/b*, if e*b eb* then e/b.
qbe set of retional fractions is thus by definition on ordered set. It 
can be easily shown that the set of rational fractions is numerable.
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From our rules of operation if a/b <  e*/b*« then my/b ̂  b ^  n*/b* 
Therefore, between every pair of rational fractions those is another 
ni#ber# An ordered set possessing this property is said to be dense,

Hie rule of operation a b —  o defines negative numbers end *ero. 
b is negative when c <2 a. and b Is zero when a — c,

TSTe have here built up rougMy the system of rational numbers as 
it is known and used, TJhon the Greeks finallly admitted fractions 
they hed the positive part of this system as their arithmetic. Because 
a number existed between every pair of numbers the system would admit 
of very small numbers and thus appeared to correspond with the pro­
perties of space. Unlike space, however, this system of numbers is not 
continuous.

Given a set [ a^divided into two (non-empty) subsets ([a^l and 
Og] such that for every element ^  of £ai7 and eg of [ ag^ , ®1 <̂  «2 and 
such that every element of ̂  a] is an element of [ a%] or (̂ ag J , Then 
there is an element ^ which divides the two subsets. This statement 
is celled the Dedekind Cut, A dense set which satisfies the Dedekind 
Cut is continuous. The element X is called the upper limit of subset 

, Applied to the set of rational numbers the Dedekind Cut addd 
an indefinitely large sat of numbers to the system, for the number need 
not be a rational number. This continuous set is celled the real number 
system.
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^k variable i# a aymbol that represent» any one of a set of
A variable in analysis ia a symbol representing any one of 

a set of numbers*
A constant is a symbol that represents a set of only one element.

A constant in analysis is a number.
Any one element of a set represented by a variable is called a 

value of the variable.
Given two variables x and jr. If to each value of x there 

corresponds one and only one value of %  then % is said to be a one- 
valued function of jj.

Given two variables x and %. If to each value of g there 
corresponds a set of values of jj; then % is said to be a meny-velued 
function of g.

In analysis, if to every number represented by the variable x 
there corresponds one or more numbers represented by the variable jt, then 
2  Is said to be a single-or many-valued function respectively of g.

If to any value of x end any value of % there correspond one end 
only one value of jt then % la said to be a single-valued functinn of 

at and %.
A segment ab is the setfxlof all elements such that a ^ x b.
A neighborhood of an element a is the segment 1571 such that c < a < d.
The element £ is said to be a limit of the set £c ] if there are 

elements of £ e 7  other than a in every neighborhood of a.

1. First stated in this form by Vdien and Lennes, in Infinltealrnwl 
Analysis. (New York, 1907) p. 44.
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Hi» >«t of rational number* together with the irrationals defined 
by the Dedekind Cut constitute* a set which contains all its limit points, 

If &  is a limit of the set represented by the variable x, then x 
is said approach a upon the set.

If the number is the limit of a function of as £ approaches ^  

that function Is on infinitesimal.
The fundamental notions of analysis have been developed historically 

and intuitionolly thus far. How after a brief historical sketch we 
shall give a rigorous development of the number system by David Hilbert 
and E. V. Huntington.
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ARITKîSnC
Historical

Stbckology of prlmitivo culture* indicate* that the poeitire 
integer* were the first number* to appear in civilisation. ITae more 
backward race* show more or lea* ability to count though that may be 
the extent of their arithmetic ability. At the dawn of written 
history, there were several system* of symbols for the positive integers 
in existence. Cur system originated with the Hindus, all ten digits 
appearing for the first time in the year 876,

Fractions, also, had appeared by the dawn of recorded history, 
doubtless growing out of a need for them in commerce. Early writings 
of the Babylonians, Egyptians, Chinese, and May ans show frequent use 
of the fraction. In the third century B, C. they first come to be 
regarded as true numbers. Our own method of writing fractions, 
excepting the bar between numerator and denominator, probably originated 
with the Hindus, about the fourth century A. D.

IncOEaoenSurable ratios were noticed by the Greeks in their studies 
of geometry. The Pythagoreans supposedly proved the inconaaensurability 
of "jlSr Our present notation, the radical sign appeared first in France 
in 1494. The trencendental number ih was met in e fort* to express the 
length of the circumference of a circle. Approximations for# are given 
in the early writings of the four civilisations mentioned above* 
Babylonian, Egyptian, Chinese and Mayan. The trancendence of 'ft was 
first proved in 1682 by F. Llndamann of Gerrrany.
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N#gatlv# mmb#r# pr«seat«dL themaelv#* to tho lot# Greeks in 
the solution of slgebrale equations. The Hindus in the seventh eentury 
were first to reeognise them as numbers. The minus sign originated with 
Tÿeho Brahe of Denmark in 1598.

The operations addition and subtraction are fundamental to the 
system of positive integers, synonymous with bounting. Lfultiplication 
end division, though less fundamental, were recognized in the earliest 
writings of civilisation. The extraction of roots appeared as stated 
before, among the Greek geometers. The relations "equals** and "less 
than** are fundamental notions necessary to the system of positive 
integers and granted, consciously or unconsciously, whenever numb ere»- 
are used. As the number system expanded from positive integers to the 
system now in use, the various operations and relations were applied 
to each new branch. Their symbols, as used today, were invented in 
Europe in the fifteenth, sixteenth and seventeenth centuries.
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HiLBliRT'S AXIOZa(l)
Hilbert* axioms for the real number system contain the undefined 

terms number, j- » » and ̂ . There are seventeen in all. Ik> effort
was ma.de to obtain a minimum number of them so they were not mutually 
independent.

TIEORJIIS C? COMCCTTON (1-12).
1. From the number a end the number b, there is obtained by 

“addition** a definite number £, which we express by writing a Y- b = c 
or * = a r b.

2. There exists a definite number, which we call 0, such that, 
for every moabsr a, we have a + 0 = a and 0 -f a = a.~

3. If a and b ere two given numbers, there exists one end only
one number g# and also one and only one number such that we have
respectively a + % = b, y-#-a^b.

4. From the number a and the number b, there may be obtained in 
another way, namely, by “multiplication**, a definite number £, which 
we express by writing ab = c or c - eb.

5. There exists a definite number, called 1, such that, for every 
number a, we have a • 1 = a and 1 • a - a.

6 . If a end b are any arbitrarily given numbers, where a is
different from £, then there exists one and only one number x and also
one and only one number % such that we have respectively ax = b, ya = b.

If a, b, c are arbitrary numbers, the following laws of operation 
always hold#

7. a + (b w c) = (a-f b) c.
8. a-fb = b ^ a
9 . a(be) = (ab)c

1 0 . a(b + c) rL ab ae
1 1 . (a + b)c - ac + bo
1 2 . ab - ba.

THî20Ra1Î3 o f ORDER (13 - 16)
13. If a, b are any two distinct numbers, one of these, say a, is

always greater *( 7 ) than the other. The other number is said to be the
smaller of the two. %e express this relation by writing a > b end b < a.

14. If a >  b and b c, then is also a >  o.
15. If a > b, then is also a c b -r c and c + a >  o -f- b.
16. If a > b and c >  0 , then is also ao > bo and ca > cb.

1. David Hilbert, grundlagen
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ITîSORIiîS Œ  ARCFIt!SDi:S (17)
. V IT* If j&* b ar« any two arbitrary number#, #uoh that a > O and
7 .-̂ It la alvaya posslbla to add a to itaelf a sufficient number of 
time# ao that tha reaulting sum shall have the property that a /- a /-aV~ •••••••+a^b.
JIUOTIIJGfTON* S A X IC 13 ( ^ )

Huntington has prepared sets of axiom# for various systems* His 
set for the real number system consists of only fourteen which he proves 
are mutually independent. The set given here is for the system of real 
and complex nund&ers. This set vas ehosos because it offers a complete 
foundation for the number system of which the science of analysis treats. 
Huntington calls the complete number system the set of complex numbers 
and classifies the real number system as a subset of the complex numbers. 
The set of complex numbers admits of the operations of addition and 
multiplication. iTie subset of real ntambera admits of the relation of 
order. The undefined terms K, C, Î-# ^  correspond respectively to the 
complex numbers, the real numbers and the relations X, ^  a# ordinarily 
understood.

DEFINITIONS
Definition 1. If there is a uniquely determined element such that 

a + # =.*, the je is called the sero-element, or zero.
” Definltion"3. If there is a unique zero-element * (see definition 1), 
end if there is a uniquely determined element g, different from sero, and 
such that tt • u = u, the u is called the unit-element, or unity.

Definition 3. If there is a unique sero-el ament % (definition 1), end 
if a given element a determines uniquely an element a* such that a ^ a* ^ s, 
then ji* is called the negative of ^  and is denoted by_rs«

1 . B. V. Huntington, Set of Postulates for OrdinErv Complex Algebra, 
in Tranaactiona of the American iathemetical Society, 6 
(1905) p. 222.
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Definition 4. If thoro is s unique sero-element jt end a unique 
element jj- (see definition 1 end 2), and if a given element a,

^  ̂feront from _£, determines uniquely on element a"* such that **
• * a* a=u# then is eailed the reciprocal of and is denoted by l/a.

AXIQKS
. ^Iret seven postulates, giving the general laws of operation 

in the system, are to be understood to hold only la so far as the 
elements, sums and products involved are elm&ents of K,

POSTULATE I, 1. a b ^ b + a.
POSTULATE i, 2. (a+• b) + e a (b + c).
POSTULf.TE I, 3. If a + b ^ a ̂  b*, then b ^ b*.
POSTULATE I, 4. a b - b a.
POSTULf.TE I, S. (a . b) . c . a • (b ♦ c).
POSTULATE 1, 6 . If a - b - a ' b*, and a a  ÿ^a, then b = b*.
POSTÜL T3 I, 7. a . (b ^ c) (a • b) -/-(a - c).
POSTULATE I, 6 . If a and b are elements of K, then a b is anelement of —  —  —
POSTULATE I, 9. There is an element g in JK such that x ̂ x  - %.
POSTULATE 1,10* If there is a unique mero-el ament j| in K (see

definition 1 ), then for every element a in K there is an element a* in 
K, such that a -f- a* =. s. ”

P O S T U L A 1,11. If a and b are elements of K, then a » b is an 
element of jÇ. ***

POSTULATE I, 12. If there is a unique sero-element, 2* K (see 
definition 1 ), then tliere is an element ^ in î̂, different from end 
such that y y :: y.

POSTULATE 1,13. If there is a unique sero-element, jt, and a unique 
unity-element, u, different from jt, in g (see definition 1 and 2 ), then 
for every element a in K, provided a m, there is an element a" in K 
such that a • a** = u.

The Postulates Is 1 - 13 moke the class K a field with respect to* 
emd -h .

POSTULATE II, 1. If a is an element of C, then a is an element of K,
POSTULATE II, 2. The"class C contains at least one element.
POSTULATE II, 3. If a is an” element of C, then there is an element

in C, such that a ̂  b.
POCSULVTS II, 4. If a and b are elements of C, then a f b, if it 

exists in at all, is an elmnent of jg.
POSTULATE II, 5. If a is an element of C, then its negative,

(see definition 3 ), if it exists in jg at all is an element of
POSTULATE II, 6 . If a and b are el«nents of Ç, then a b, if it

exists in £  at all, is an el «cent of C.
POSTULATE II, 7. If a is an element of C, then ito reciprocol 1/a

(see definition 4), if it exists in K at ell, is an element of Ç*
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Oi.ka Postulates H i  1 - 7 ,  taken with the postulates Ii 1 - 13,
— * like the class K, a field with respect to -#■ fud • .OuTüLfiTj:* III, 1. If a and Tb are elements of C, and a ^ b ,  then•ither a < b or else a >  b.

POSTULATS III, 2 . If a < b, then a ft b.
III* 3. If a# b, and c are elements of and if a band b < c, then a < o«

P0.:,iLLAT3 III, 4. If Is a non-empty subdlass in Ç, tand if
‘̂ •**0 lo an element b in ^ such thetot ̂  b for every el «sent cx of
then there is an element 2Ç in ̂  having the following tvro properties with
regard to the eub-elass y2  *

1®) if qt ie an element of /2t thencx C X ox<K —  X; while
2®) if 3|* is any element of C such that x* <  X, there is an

element ^  in ̂  such that5 >  **•
Die Postulates III; 1 - 4  and lit 2 - 3, taken with the redundant 

postulate III, 5 (which is here omitted), make the sub-class C a one- 
dimensional eontintsa with respect to ^  , in the sense defined by 
Dedekind.

POSTULATS IV, 1. If £f 2t £» a x. and a -t- v are elements of C,
and X <  y* then a x <  a -#- y, whenever a / x ^  a y.

POSTULATE IV, 2, If a, jfe, and a * b are elements of C, and a > g
and b ^  then a * b x Twhere is the aero-element of Definition 1),

Die twenty-Bix postulat as of groups I - IV make the sub-class C 
equivalent to the class of all real numbers with respect to -h § • , —
and

POGTl:LfiTE V, 1. If jC is a field with respect to end _/ , then 
there is an element J. in K such that J ‘ J =■ -u, where -u is the 
negative of the unit-element of the field (see Definitions Z end 3).

POSTULATE V, 2. If K and also C are fields with respect to ±  and 
and if there is an element j. such“"that i ' i - -u (see Postulate V, 1), 

l&ien for every element £  in K there are elements x and £ in Ç  such that
X + (i ' y) =  a.Diese twenty-eight postulates make the class K equivalent to the 
class of all (ordinary) complex numbers with respect to +_, end ^  .
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GEOMETRY k m  ANALYSIS 
Asaumo that va have a complete system built up for the analysis 

®f real maabers. Suppose ve define any set of three such numbers as 
a point- and the set ef all sets of three numbers that satisfy an 
equation of the form ax f- by -hem -t d — o as a plane. a M  the set of 
all sets which satisfy two such equations as lines. Further» suppose 
we describe the relation that exists when no numbers satisfy the two 
equations as parallel planes, and define the set of all sets that 
satisfy an equation of the form (x - a)* ^ (y * b)^ + (* • c)^^ d = o 

as a sphere. Ihe set of sets of numbers that satisfy both the 
equation for a plane and the equation for a sphere we can define as 
a circle. It is obvious that we can obtain a complete geometry 
from our analysis structure merely by definition. Furtheremore, the 
operations in analysis remin valid in geometry. Linear order can be 
defined in the geometry in such a way that the relations of order of 
analysis hold without change in geometry.

©> construct a geometry for restricted relativity it Is only 
necessary to define a point as any set of four numbers. To extend the 
geometry to mechanics the point is defined as a set of n numbers*
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