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PART I

TWO_PROBLEMS WITH V. LE END..POINTS

Introduction

Suppose there has been specified a set of ares C, satisfying

certain conditions, such that along each of them the integral I(C) =

£(x,¥,2,¥.7) dx has a well determined value, The arcs of this set
will be called admissible arecs, A problem of the calculus of variations
associated with such admissible arcs and their integrals is that of
finding, in the class of admissible arcs joining two fixed points, one
which gives the integral I(C) its smallest value, The problem so
formulated is said to have fixed end-points, It may be modified by
specifying the class of arcs, in which a minimum is sought, to be the
class of admissible ares joining a fixed point and a fixed curve, or a
curve and a fixed surface, In these latter cases the problem is said
to have variable end-points,

For our purpose we will suppose that there is a regicn R of the
space of 5-tuples of real numbers (x,¥,z,¥,2) in which the integrand
funetion £(x,y,z,y.,Z) has continuous derivatives up to and including
those of the fourth order, A point (x,y,z,y:zﬁ interior to the region R
is called an admissible point., An arc C is called pregular if the func-
tions y(x), z(x) defining it are single-valued and have continuous
derivatives on the interval x,¢ x £ x,. The set of admissible arcs to
be considered here is the set of contimiocus arcs each of which consists
of a finite number of regular sub-arcs whose points (x,y,z,yii} are

admissible, We will now list some results of the problem with fixed
end=-points,
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I The First Necessary Condition
An admissible arc E is said to satisfy condition I if there

exist two constants ¢ and d such that the equations

fﬂ« = ixf%dx-!-cg and

fr0 = ’fi‘dx +4d
are identities along E., Every adm;lsible arc E which gives the inte-
gral I a minimum value must satisfy condition I.
Euler's Equations

On every sub-arc between corners of an admissible arc B which

satisfies the condition I the functions fy » £y’ have derivatives and
the equations

d (f,) =1£, , and
ax

ax Z

are satisfied,

The Weierstrass-Erdmann Corner Condition,
At each value x defining a corner of an admissible arc E that

satisfies condition I, the right and left limits of the funsctions £ -

L’
and £, are equal,

Hilbert's Differentiability Conditiocn,

Let E be an admissible arc satisfying condition I. Then near
every point (x,v,2,7,2) of E which is nct a corner, and at which the
determinant f., f3p - (fgz' )2 is different from zero, the functions
y(x) and z(x) defining E have continous nth derivatives when the inte-
grand function f has all partial derivatives of orders ¢ n osntinucus
near (X,y,z,¥.2).

A subwarc of E on which the determinant ﬁ{

¢ Tr = (fu )2 4s
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different from zerc will be called ponesingular,

An admissible arc defined by functicns y(x), and z{x) having =cn-
tinuous first and second derivatives, and satisfying the equaticns

fix 4Ly, ¥ 4Ly 2 +fyy T 4L 20 - fy =0, and

#”

fox *Twy Y +fwx 7 4 fpy Y 4Ly T - f2=0

will be called an extremal.

The above equations are the Euler differential equaticns in the
expanded form, These are satisfied by every sub-arc of E ( minimizing
arc ) along which the determinant f,, fy' -~ (f;x )° is different from
zero. Euler's equations can be expressed in the above form when it is
known that the functions y(x), and z(x) defining E have second deriva-
tives,

Lot E(X.V.2. V. ZuToZ) = £(x,7,2,Y,2) « £(x,¥,2,5,3) =
(Y - y”)fqﬂ(xay,z,y’; 2) w (Z « )y (%,7.2,702).

II The Necessary Condition of Weierstrass.

An admissible arc E is said to satisfy condition II <r the - o

dition of Weierstrass if at every point (x,¥y,z,¥,z) of E the ¢ naavion
E(X,¥.2.¥.2,Y,2) & O

is satisfied for every admissible point (xaygzgY;f) with (Yﬁi} 2 (i),

Every arc E which minimizes the integral I must satisfy conditicn II.

IITI Legendre's Necessary Conditicn.

An admissible arc E is said to satisfy condition III or the rcen-

dition of Legendre if at each point (x.y.z.y.Z) ¢f E the conditicn
Miyy +20EGp +  Fige 50

is satisfied for every pair of real wvalues 7(,} such that 7f+ ﬁL =i

the arguments of the derivatives of f being the ccordinates ﬁxgygzryﬁz)

of the point of E. Every arc E which minimizes the integral I muxt
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satisfy condition III,

In accordance with the symbolism used in Bliss, ([1]and [2])1,
we will denote by 1 and 2 the end-points [x, ,y(x,)Dz(x,),yfx,)nZZX,)]
and [x,,7(x,),2(x,),5(x.),2(x.)], respectively, of an extremal arc con-
necting these end-points, The extremal arc will then be represented by
the symbol E,;, . Analogous symbols will be used for other arés,

The terminology we will use will be consistent with that used in
Bliss ({1], [2]), with a few exceptions.

A contact point of an extremal arc E,, with an envelope D, is
said to be a point conjugate to 1 on the arc E,, .

IV  Jacobi's Necessary Condjition

A non-singular extremal arc E,, is said to satisfy condition IV
or the condition of Jacobi if it has on it between its end-points 1 and
2 no point conjugate to 1. Every non-singular minimizing arc E,, with-
out corners is an extremal arc satisfying this condition,

If an arc E,, gives 1 a minimum value relative to the class of
admissible arcs C,; in a sufficiently small neighborhood of the pcints
(x,¥,2,7.2) of E,, , then I(E,, ) is said to be a weak relative minimum,
A minimum provided by E,, relative to a class of admissible arcs C,; ,
restricted only to have their points (x,y,z) in a sufficiently small
neighborhood F or E,, in xyz-space, is called a strong relative minimum,

The symbols ;;f and III: are used to denote the necessary con-
ditions of Weierstrass and legendre, respectively, with the equality
signs excluded in their statements, Similarly, IV  denotes Jacobi's

condition (IV) strengthened to exclude points conjugate to 1 from the

1) The symbol [n] will refer to the nth entry in the list of
references at the end of this paper.
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5
end=point 2 of an extremal arc E,; as well as from the interior of the
arc,

Sufficient Conditions for a Weak Relative Minimum,
If an admissible arc E,, without corners satisfies conditicns
I, III'., and IV d, there exists a neighborhced Ry of the values
(x,7,2,¥,2) belonging to E,. such that the inequality
I(C,a ) > I(E,x )
holds for every admissible are C,, in R; and not identisal with E,, .
An arc E,; is said to satisfy condition IIy if there is a
neighborhood N of the elements (x,y,z,y’, z’) on E,, such that
E(x,7,2,7.2,Y.2) » O
holds for all sets (x,¥,2,V,2,Y,2) with (x,y,2,7.2) admissible and in
N and with (x, y,z,Y: Z’) admissible and having
(Y,2) + (o).
Condition ITy is this condition with the equality ex-luded,
The notation III. designates the property thnat the ineocualiry
o Lo+ 2£,5ME  + fyx B B O
holds for all admissible elements (x,y,z,y,z) with projecticns (x,y,2)
in a neighborhood F of the arc E,, and for all pairs Mo ¥ such that
/)'11 + F Y= 1. The notation III'F is used for this property with the
equality sign excluded.

sufficient Conditions for a Strong Relative Minimum

If an admissible arc E; without corners is non-singular and
satisfies conditions I, IIN s IV /, then there is a neighborhood F o
E,» in xyz-space such that the relation

I(Cz ) > I(E,. )

holds for every admissible arc C,; in F not identical with E,,
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Let summarize with the table below,

TABLE OF NECESSARY AND OF SUFFICIENT CONDITIONS APPLICABLE TO ADMISSIBLE

e of Minimum

Weak relative

Strong relative

Strong relative

Strong relative

For a detailed discussion of the preceeding

ARCS WITHOUT CORNERS
Necessary Conditions

I, III, v
I, II, III, Iv

I, II, III, Iv
I, II, III, Iv

Sufficient Conditions

1, oot ,

I, II,, IV and

E non=singular

I, IT,, IIr’, o’

/

I, IIT, , IV

results see Bliss,

"Lectures in the Calculus of Variations", chapters I and II ([1]).
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Section I

The problem to be studied in this section iz tha® of finding in a

certain class of admissible arcs Jjoining a fixed surface S to z fixed
Y

point 2 one which minimizes the integral I = J'f(x,y5zoy:£)dx in the
%

YA
space of Setuples (x,y,2,¥,27) of real numbers,
Let E,5 represent a particular admizsibtle zsre whaose minimizing

properties are tu be studied,

e |

E #
3 N
y:
T
Y
C D

Fig, 1.1

Consider the wariaticn »f the value of the integral I taken zleng a var-
iable arc¢ E whoze end-peints dessoribe two fixed currses € and D A3 shiwn
in fig, i1.1. B may be taken in the furm yix,2), 27x,6), Tie dizplia.e-
ment of E being caused by the variation of the walue of the parasmeter a,
If t is a parameter defiming *he positicn of the pdnt 3 -n G, “Xer he
coordinate x of the point 3 and the value of a defirding arc B through 3

are functicens o¢f t, and the fuonctions deficing C may e written in rhe
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parametric form,

(1.1) xz{t),
y[xs(tdalt)] = g3 (1),
z [Xi(t)oa(tﬂ = zg (b)),
(1.2) OR
 [athato] = 3,00,
z [xqit)oait)j = z,(t),

Since the puint 4 on D is alsc determined when t is given, and &y ine
same value of a as that corresponding t¢ 3 we have D writiten in the

parametric form (/.2),

Assume the functicms x4(t), x,{t), and a(t) definirg ire ar:- C
o o o o . 4 . ”
and D have continucus derivatives on an irderval (f <« t ¢ + ), Ass.me

fer the values {x,a) specified by the ceonaifions
I x50t} & x é.xq(t}j .

a =alu}),

that the functions y{x,a), z(x,a) defining acmissible ar-: ave wirii.ut
corners, Alsc assume that in a neighbcrheod of (x,a} the functions
yi(x,2), z{x,a) and their derivatives yk(xga)n z, (X,8) have ntinic.s
first partial derivatives with respect to a,
The value of the integral I taken slong the ar: E 15 & function
I{t) defined by the equaticn
X
(i.3) I{t) = ’z'f[x,y(xga)oz{xoa)sy“ixga)gz'(xoajfdx
3
in which x;, x,, and a are fne fun ticng <X * jast described,
DEFINITION:
Consider twe peints 3 2nd 7 oen the courve € destribel abrove, Le’

the point 3 be given by © = t., and =imdlary leil 7 te given Lty "

L
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Then we say that the pcint 2 precedes the point 7 on C if
t < v, 41
£ 1:.3 . T;? Te
THEOREM (.12
The value of the integral I, itaken aleng a vwariatle ar. E wirh
the continuity properties described abcve and whase end-plirnt: @ ara &
describe two fixed rurves C and D, bas the differential
, u
(1.4) dI = [fdx + (dy - y dx)f, + (dz - 2'dx)fy [
at each position of the variable arc at which that arc satizfies Eulsr's
differential equations, In the expression for dI the values X,v.2,¥,2)
occurring in f and elsewhere are those belcnging t¢ E av the poinrts 3

and 4 and dx, dy, dz are differentials belenging tc C c¢r I,

Proof
X
I(t) = ‘1 f[qu(xga),z(xga),y”(xga)gzﬁ(xva) dx.,
3 v
Let u = x4, v = xg and write G{u,v.a) = { fdx. Then
\’\J
I (t) = 3G du + 4G v + 3G _ds
Ju k. R gt Ja 4dn
]4 {,Xﬁ ‘ o
= fdx +da S Ve 4 v, = v v £,20 0 it
lﬁg a?:é‘m/jﬁq 2 0 Yo L 7
; 3

At a point of arc E ah whicsh the Evler equatiomy are ssrusfieh,

a4 f - £, = 0, and
2y 4

dx

d fs = fz = 0. Then
dx

QJQ%}:%$%1+Q% = £,y + f,y . and
ax K
gm(fzfza) = z,d £y + fpzy + a2 + ,févz; .
dx dx
Therefore, for this particular arc E,

I(c) = [ fax + dalfey, + fyz M1,
dt dt

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



10

Now we have

v5(t) = y[x5(t), a(t)], and

z5(t) = z[x;(t), a(t)]. Therefore

dy: = y'dx; + y,da, and

dzz = z’dx; + 2zqda. Similarly

dy, = y’dx, + yzda, and

dz, = z’dx, + z,da. Thus

dI = [fdx + (dy - y'dx)f; + (dz - z’dx)fzf]:.,
This completes the proof.
COROLLARY (1.1

If the ends of a variable extremal arc E describe two curves C

and D, the difference between the values of I at two positions E,, and
E;; of E, as show in fig, (1.1), is given by the formula

I(Es ) = I(Eqg ) = I* Dy ) = I* (Cs7 ), where

¥ = j [fdx + (dy - y'dx)gt + (dz - z’dx)f;] .

The functions y(x,a), z(x,a) in the second member of 1.4 and
their derivatives y’(x,a), 2z’ (x,a) with respect to x are all functions
of t calculable with the help of equations 1,1. The differentials dx,
dy, dz are functions of t multiplied by dt, defined by the eguations

y'dx + Jpda, and

#

dy
dz = z’dx + z,da.
Thus, the expressions of the two sides of 1.4 are functions of t multi-
plied by dt and can be integrated with respect to t from a value t/
defining Eg¢ of E to a value t’ defining E,9 , as show in fig. (1. ").,
I(Es) - I;Eyg) = f [fax + (dy - y'dx)f,; + (dz - 2z dx)f;,;]

/[fdx + (dy‘f -y dx.,)f‘,! + (dz, - 2 dx,,)fz] -
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11

~

1'
l, [ fax; + (dy - y'dx;)E, + (dz; =~ 27°dxg) fp]

= I*(Dga ) - I* (Cs7 ).
This completes the proof.
let E,, represent a particular arc whose minimizing properties

are to be studied. let S be the fixed surface defined by the functions
(1.5 %A, 8)

ML 80,

5(L.8)

which have continuous derivatives of the third order near the values
(o, @,) which define the intersection point 1 of 5 and E,, .

Since every admissible arc joining the end-points 1 and 2 of E,,
also joins the surface S with 2, it is evident that E,, must satisfy
all the necessary conditions for a minimizing arc in the class of ares
Joining its end-points,

Let rr be an arbitrary curve on S through the point 1 defined by
the functions
(1.6) A (a),

@ (a),
which have continuous second derivatives near the parameter value a,,
defining the point 1.

The curve ’3/ can be joined to the point 2 by a one-parameter
family of admissible arcs containing E,, as a member, For example let
E,» be defined by the functions

y(x),
z(x);
(x,£x &x,).

Then such a family is defined by the functions

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



12
(1.7) y(x) + {?([a((a), @(a)] -y(?)} Q(x,a), and

(1.8) z(x) + {E[J\(a), @(a)] - z(?)} Q(x,a), where
(1.9) Qx,a) = - .

e X? IZXZa). gla)] -=x,
For

x = Fld(a), @(a)]
the arcs of this family intersect the curve and pass through the point

2, since

(1.10) Ax,a) = x =-x : = X = X, =1 , so that
?Ma). gla)] = x,

X = Xz
(1.11) y=y&x) + N[d@), §@] -3F)
yx) + q[dla),  f(a)] - y(x) =7fk(a),B(a)], ama
z(x) + S[dla), 8(a)] - 2(F)
=z2(x) + JFld@), B@] -a(x) =Fda), s)].

For x = x, we have

(1.12) z

a(x,a) = 0,
g = y(xl)! and
z = 2(x;).

For the parameter value a = a, we have,

(1.13) 3 =36) +{qfdla, ) B )] - ¥} alxa)
= y(x) +{%[da; ), Bz, )] - ¥ [d(a)), Bla)} Qlx.a,)
= y(x), and

(1.14) z = z(x) + {F[J(a. ), 8(a, )] - (%)} alx,a,)
= z(x),

DEF,.

An admissible arc E is said to satisfy the Iransversalitiy
Condition at its intersection point 1 with a surface S if the equation

(1.15) (f - y’i_;,, -2 £y Ydx + fy Ay + fydz = 0
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13
is satisfied by every direction dx: dy: dz tangent to S at the point 1,
the arguments (x,y,z, y: z’) in £ and its derivatives being those of the
arc E,, at 1,

The family defined by (1,7) and (1.8) satisfies the conditions of
theorem (1.1) and therefore the value of the integral I taken along a
curve of the family is a function of the parameter a, whose differential
at the value a, defining E,;, in the family is given by equation (1.4).
If I(E,, ) is to be a minimum, this differential must vanish, and since
'T is an arbitrary curve on S through the point 1, the following theo-
rem is established.

OREM (1,2
Every minimizing arc for the problem of this section must satisfy

the transversality condition.

DEF,
For differentiable functions y(x,A.0), 2(x, L.f), we let
Al 4,8) = y4 (x) ve (x) |
2, (x) z ¢ (x)
DEF.

Let E,; Dbe an extremal arc cut transverally by a non-singular
surface S at the point 1 and not tangent to S at 1, If A(x,d,¢) is
the determinant of the two parameter family of extremals

y =y d,8),

z = z2(x, o, 8)
cut transverally by the surface S and containing E,, for parameter
values J,, (?, , then the points determined on E,;, by the zeros of
A(x, 4,, @) are called focal points of $ on Ea. .

THEQ 1
Suppose E,, is a non-singular extremal arc cut transversally by
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14
the surface S at the point 1 and not tangent to S at the point 1, Also
suppose 3 in non-singular at the point 1. Then there exists a two=
parameter family of extremals

vz, d, @),

z(x,, @)
containing E,, for parameter values (<,, ¢ ) and having the properties
1) the members of the family are cut transversally at x = F({, 8 ),
2) the functions y(x,d,@ ), 2(x, d, §) and their first and second
derivatives with respect to x have continuous second partial deriva=-

tives for values (x,/{,f) in a neighborhood of those belonging to E,; ,

and
Y Z

3 alx L) = | “| #+ o
YQ Zg

identically along E,, .
Proof.

The surface S is defined by the functions
F(L. 6),
HC A, €
HEYNRE

If the two-parameter family of extremals exists it will be of the form
£(x,¥,2,7,2) where
7/

y= nx,A.¢) ¥ = 7fx. x,6) and

’ /
z= P(x, 4, 8), 27 = E(x,4.8).
Consider the integrand of the Hilbert integral of this familys

(1.15) (£ -y'g -2 £y)dx+fydy + fyde.
For x = F(, @ ) the function (1.15) takes the form
Pd A + Qd@ , where
(1.16) P=tF + (-7R)Ey + (& -FR)r. and

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



15

(1.17) Q=% + (M -TR5, + (& -FHtw .
Transversality implies
Pdd + @f =0

independent of d{ and d § .
Therefore P =0, and Q = 0, or
(1.18) £F + (-1REy  + (F-50ex =0, and
(1.19) tF + (e Rty + (F -3R)s =o.

Implicit function theorems assure us that solution's of 1,18, and

1.19 ) ’ P '3
y' = (A, g) 2z =JF(A,¢)

exists provided there exists an initial solution J,, (3, (B %, ., at the
point defined by (o(, ’ (\3, ) such that the element

[fCd 60 HCd. @) BCd )y, 2]
is admissible and makes the appiop.iate Jacobian different from zero at

the point (d,, B, ).

This Jacobian is

QP JP
, o2y’ oz
P = o
2% y:, z'; -29 -9
2y 27
We find that
2E = R+ Ou-r Ry - RS+ (A= 8 R0%y .
_%5’_ = i\fi’ + (7(* -"(’i)fﬂ'}' - i‘fi' + ( (F;( - F’a)fzrzl .
gyg = oy + (7 AR - ol + (% -,}"f;,)figjr , and
2e = et (e ARLe - f G E R
Therefore,
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16
(Ma =15 (&% -39 £ e

H
.
<

2( P, Q)

2(y’,2")

Oty =71 %) (% -5% L2y’ fz#
For o = o, and =@, the family defines the arc E,, which by assump-

tion is non-singular., Thus

f ‘11 ‘1: f“!lz_l
#0
fz"‘f‘ fzazl

at the point (,, § ).

By assumption E,, is not tangent to S at the point 1. Therefore

(I (e =%§) (& -¥8
?J\ ?(J\ :"4 = = Q,
o n| oy (% ¥R

The existence of the family is thus assured. The determinant alx, oo @’)

of the family is different from zerc at the point 1 on E,, » since the
identities
NCA-B8) = y(F.4,6) and
PlA. ) = 2(F.4.8)
show that
x = Flds 6)
7{& = -Vf?a\ + ¥ = Y’ig +y, » and
W= whe +v =vl +w%.
Therefore
Yy = MNa o= y'f; , and
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Similarly
g ="t -2f . am
2, =% -7dh .
Therefore
A Ve | O =5 f) (% -7 fe )
z, 2¢ =0

(B -2F) (F5-2T)

by the previous argument.
The focal points of the surface S, are independent of the para-

metric representation chosen for S, For if, in the equations
f =504 8
N =L, @) am
F= 2504, 8)

defining S, the parameters A+ @ are replaced by functions

A= d(~v, §), and
g =6(vy, §)
of two new parameters, the family
y(x, o, 8 )
2(x, [ € )

with the original parameters [, ¢ will go into a second family

yx,v, $) =7y,

z(xX,v, § ) =2
with similar properties, The determinants A(x,d, 8 ) and a(x,v, $)
of the two families will differ only by a non-vanishing factor indepen-
dent of x, The non~vanishing factor is JY&-ASQT. This factor is the
Jacobian of the transformation and therefore it is non=-vanishing.

DEF.

A non-singular extremal arc E,; cut transversally by a
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non-singular surface S at the point 1, and not tangent to S at 1, is
said to satisfy the focal-point cendition if there exists no focal point

of S on E;; bétween 1 and 2,

Fig, 1.2

THEOREM (1,4) ( The Envelope Theorem )

Assume there exists a one-parameter family of extremal arcs with
an envelope D touching the extremal arc E,, at the conjugate point 6,
as shown in fig, 1.2. Then the equation
(1.20) I(E,, ) = I(E,y, ) + I(Dy,)
holds for every position of the point 4 preceding the point 6 on D,
Proof.

By Corollary 1.1 we have

I(Ery ) - IEgy) = IT(Dyy ) = I* (Cxs).

In the special case when the curve C is a fixed point 1 and the variable
extremal arc E is, in every position, tangent to the curve D, as shown

in fig. 1.2, we have
I(EIG ) o I(E!L' ) = I(Dqé )
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since
I" (Cgr) = O
because C degenerates to a point in this case.
The term I™ (Dye ) is equal to I(Dy, ) because the direction dx:
dy: dz of the curve D coincides with the direction 1: y': 2’ of the

variable extremal arc E at their intersection.

This completes the proof.
C E D

Fig. 1.3

THEOREM (1

If each arc E of a one=parameter family of extremals is cut
transversally by a curve C and if the family has further an envelope D,
as shown in fig., 1.3, then the equation
(1.21) I(Ee,) = I(Egy) + I(Dy, )
holds for every position of the point 4 preceding the point 6 on D,
Proof.

The proof is the same as for Theorem (1.4) except I*(ng)
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vanishes because of the transversality ard not because C degenerates t=
a point,

THEOREM (1,6

Every non-singular minimizing arc for the protlem cf this section
must be an extremal and satisfy the focal pcint c¢conditicn if we assume
OL%g v s @) is different frem zero where 6 is a point conjugate to
1 on E,, defined by a zero xg of the determinant Alx ,«, @ ).
Proof

let the extremal B,, be contained in a two-parameter family of
extremals
(1.22) y=5(x,d,8)s
z2{X, o s ? )
for parameter values ,, @, o A1l the extremals of this family pusse

i

Z

through the point 2,

£
Y Ve Yy T
A, = + ¢ Q at
z, zg z; z%
X = Xg,
& = Jl 9 a-nd

6=26 .

Therefore y,, Yoo Zs Zg do not all vanish at (x,,d,, & ). If ¥, 0,

for example, the first two of the differential equations

(1.23) Adx + A dd + Lgdg = 0,
(1.24) Vo A +7de =0,
(1.25) Z 4 dgL + ZQd€ = O”

can be solved for dx, dd_ and determine a unique solutior x( @ ¥, J‘(@)
dg dé |

through the initial peint (xg, d,, ¢, ). For we have
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Acde. +oaddl + Qg =0,
dé ag¢

y,,( u.. + y = 0-
dg ¢

and the determinant of this pair of equations is
Ay 4y
= Ax ¥y + 0,

0 Va4

Equation (1,25) is also satisfied identically by x(e ), o @ ), as

we see bjr considering the two cases which may occur,

Case I: By 3+ 0, Then
dd, = - R
d@ A

from equation 1.24, Also
4 = yzg - 3, % = 0, so that

Ze_ = N2 ; but then

Za AR
dd.  + 7z = 2,(- Yo )+zq,and
da¢ Y
zp((-gg__)+z€ = -z, + 3, =0,
24
Case II: 2y = 0. Then from
V25 =% T = 0 we have

L 2g = 0. Then
y, #0, and necessarily
= 0, so that
equation 1,25 is trivially satisfied,

In any case three functions, x(t), 4 (t), and g(t) are deter-
mined, t being 4 or e ., which take the initial values X,, J,, § for
the value t = t, .

We now have one~parameter family of extremals
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v(x,t),

z(x,t),

(1.26)  yx, 4 (t), g(t)]
a(x, {(t), @ (t)]
Let D be a curve defined as follows:
(1.27) x(t),
y[x(t), ¢]
z[x(t), t] = z(t).
The fact that D is tangent at each of its points to one of the

1l

T(t),

extremals 1,26 is expressed by the equations
(1.28)  x"(t) = A,
WX +¥ = Aw,
X + 2, = )z,
where A 1is a factor of proportionality and where the arguments of the
derivatives of y and z are x(t), t.
The curve D satisfies equations 1.28 since the equations 1.23 and
1,24 show that the derivatives e o Zg vanish identically along it.
It follows that the family 1.26 is a one-parameter family of extremals
with an envelope D touching the extremal arc E, at the conjugate point
6.
The envelope theorem then is applicable to the family and the
theorem follows,
DEF,
By condition ;I_'we shall mean the first necessary condition plus
the transversality condition.
DEF.
The symbol ;g:::_'will be used to denote the focal-point condition
strengthened so as to exclude the point 2 on E,, from being a focal

point of S.
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DEF,
Let

y=y(x d 8
z(xocksﬁ)

be a two-parameter family of extremals, containing a particular arc E,,

']

for values

Xi £X£€X; 5 oo o
and such that the functions y, z, y,, 2z, belonging to the family have
continuous partial derivatives of at least the second order in a neigh-
borhood of the values (x,d , 8) belonging to E. Such a family is said
to simply cover a region F of xyz-space for values (x,., £ ) satisfying
conditions of the form

X, ~€ $§X & X+ €

| =do|& €,
le -¢ls €
if through each point (x,y,z) of F there passes one and only one of the
extremals,
DEF,
Let
y=y(xds8)0
2z =z2(x,d, 6)

be a two parameter family of extremals that simply cover a field F,
The functions
p(%,7,2) = v, [x, L (x¥oz)s @(x,7,2)] , and
a(x,3.2) = 2z, [x, L(x,¥,2)s 6 (x7,2)]
are called the slope functions of the family in F.
DEF,
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A field 1s a region F of xyz-space with a pair of slope functions
p(x,¥y,2),
a(x,y,2)
having the following properties:
1) They are single valued and have continuous first partial derivatives
in F;
2) The elements [x, ¥, 2, p(X,¥,2), q(x,y,z)] defined by points
(x,¥,2) in F are all admissible, and
3) The Hilbert integral
j [fax + (dy - y’dx)i‘ﬂz + (dz = 2'dx)fy]
is independent of the path in F, i.e. if the arguments y’ and z’ are
replaced by the slope functions p and q, the integral has the same value
on all arecs ng in F having suitable continuity properties and the same
end-points 3 and &,
THEOREM {1
If for a family of extremals
y{x, L, €)s
z(x, L, )
containing a particular arc E,, the determinant A(x,L,¢ ) is differ-

y

ent from zero along E,, , then there is a region

X, =€ 4£xX4x+¢€
of points (x,., 8) and a neighborhood F of E,, in xyz-space such that
F is simply covered by the extremals for values (x,.,8) in

X, —€£x<€x,+¢€
and further, such that in F the slope functions p(x,y,z), q(x,y,2) of
the family, as well as the functions J((x,y,2z) and @(x,y,2z), have

continuous partial derivatives of the second order.
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THEQ 1,8
If a two-parameter family
yix, oL, 8)s 2z(x,4, @)
is cut by a surface S defined by the functions
(1.29) TCL. 8)
L B)=yLFCA, €0 L, 8]
etdsBr=2lFCL, 60 d, 8]
and if on S the integral I*' ,» formed with the slope functions
T (Foks oz (T, &y E)
of the intersecting extremals, is independent of the path, then every
region F of xyz-space which is simply covered by the extremals is a
field with the slope functions of the family, provided that the deter-
minant A(x, 4 , ¢ ) of the family is different from zero at each set of
values Xx, d, , € corresponding to a point on F.
THEOREM (1
If the condition
My + 2N Egyy + Ftew > 0
is valid at every element (x,y,2z,¥,2Z) of an arc E,, for all values 7{,5
such that
-7{1 + 35 =1,
then the inequality
E(x,7,2,5,2,Y,2) D 0
will be satisfied at least for all elements (x,y,z,¥,z) and (x,y,z,Y:Z3
lying in a sufficiently small neighborhood N of those on B,, and having
(1,2) + (3.2).
The proofs of Theorems 1.7, 1.8, and 1.9 can be found in Bliss®

"Lectures in the Calculus of Variations™", ([1]) pages 38, 47, and 23
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respectively.
THEQ 1,10
let E,, be an admissible arc without corners cut at a single
point 1 by a surface S which is non-singular and not tangent to the arc
E, at 1, If E,, satisfies the conditions Ir, III/, IVN there is a
neighborhood R, of the values (X,y,z,¥,z) belonging to E,, such that
the inequality
I(C3, ) > I(B,, )
holds for every admissible arc Cz, in R joining S with 2 and not iden-
tical with E;, ,
If E,, is non-singular and satisfies the conditions I', II,,
Iv ’, then there exists a neighborhood F of the values (x,y,z) on E,,;
such that the inequality
I(Cs,) ) IE, )
holds for every admissible arc Cz, in F joining S with 2 and not iden-
tical with E,, .
Proof
Conditions I and III imply that E,, is a non-singular extremal
arc and hence belongs to a two-parameter family
v, oo B8)s 2(x, o, §)
of extremals cut transversally by the surface S by theorem 1.6, The
determinant A(x,.,, € ) of this family is different from zero, not only
at the point 1 but at every point of E,, , since the surface S has no
focal point on E,, , by condition IVH . For € small enough the
extremal arcs defined in the family by values x, 4 , § satisfying the
conditions

X, ~-€{x{x, + €,

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



27

4 - o] <€,

| - 6l<€
will simply cover an open region F of xyz-space by theorem 1,7, there-
fore no two members of the family can intersect when € is sufficiently
small, By the usual implicit function theorems [1] applied to the
equations

y=y(x,d,6) 2z2=2(xd,8)
every point (x,y,z) which is covered by the extremals, has a neighbor-
hood which is also covered, so that F is an open region. By theorem
1.8, the region F is a field with the slope functions of the family,
since the extremals of the family are cut transversally by the surface
S. The value of the Hilbert integral I"r with the slope functions

r(x,y,2), a(x,y,2)
of the field is zero along every arc L in F on the transversal surface
S by definition of transversality.

The equation
I(Cg, ) =~ I(E,, ) = [E(x,7,2,p,q,7)2)dx

holds for every admissible arc Cz, in F joining the surface 8 with the
point 2, For, if L,; is an arc on S in F joining the points 1 ard 3,
then,

I(Cgy ) = I(B,x ) = TCsx ) = TEsy ) = TCsz ) - TLys + Cap )
because the Hilbert integral with p,q is independent of path in a field.
Choose R, so small that all its elements (x,y,z,y,Z) and associated
elements [x,y,z,p(x,¥,2), q(x,7,2z)] are in the neighborhood N of
theorem 1.9, Then

E > 0 unless

y, = p, and
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z° =q
at every point of C,, . But the differential equations

y/

p(x.y,2) and
z = q(x,y,2)
have only one solution through the point 2 which is E,, . This com-
pletes the proof for the case ITD III: IV*I. For the case where II,,
IV,, I+ hold choose a neighborhood F so small that the cordition
(x,¥,2,p,q) a member of F
implies
(x,¥,2,p,q) a member of N

where N is defined as in the definition of II,. By the same reasoning

as above
I(Cz2) - I(E,, ) DO
unless
v’ = p, and
2’ = q,
But then

Cz2 =5, -«

This completes the proof.
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Section II

The problem to be studied in this section is tha®t of finding in
a certain class of admissible arcs joining a fixed line L to a fixed
point 2 one which mig%@izes the integral

I = é’f(x,y,z,y:iﬁdx
in the space of 5-tu;les (X,¥,2,¥,2) of real numbers.,

We will show that through a line L in three space it is possible
to construct a surface S of the type discussed in section I, Conse=
quently, this will reduce the problem of this section tc that of section
I.

It is obvious that for a minimizing arc E,; the conditions I,
II, III must be satisfied, The transversality condition follows from
theorem 1.2 if in the proof and statement of this theorem we replace
the surface S by the curve L,

DEF,

If the determinant A, 4, 8) is not identically zero along

E,.,» a point defined on E,, by
A, dos 8.) =0
and such that x # x, is called a fgecal point of the curve L on F., .,

DEF,

A non-singular extremal arc BE,, cut transversally by a noa-
singular curve L at the point 1, and nct tangent to L at 1, is =zaid
to satisfy the focal point conditicn if there exists nc focal peint of
L onE,; between 1 and 2,

Let the curve L be defined by the functions
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(2.1) HES]
NCL ), am
TCA)
(L5 L &4
which have continuous third order derivatives, and suppose that L dces
not intersect itself and has on it no singular points,

To formulate a necessary condition IV for this problem assume
that the arc E;, whose minimizing properties are to be studied is a
non-singular extremal arc cut transversally by L so that at the inter-
section point 1 of E,, and L the condition
(2.2) (£ -3'8, =28 )f + L% *eE =0
is satisfied. Also assume that the function f is not zero at the ele-
ment (x,y,%,¥,%) belonging to the point 1 on E,, . This implies L is
not tangent to E,;, at the point 1 since (2.2) and the equality of the
directions 1: y : 2 and iﬁ Na :E& imply £ = 0 at 1,

THEQ 2,1

Every non-singular minimizing arc for the problem of this secticn
must be an extremal and satisfy the focal point condition,

If in the proof of Theorem 1.6 we replace the statement, "the
surface S", by, "the curve L", the proof of this theorem is immediate,
DEF.

When the variables x, y, z, y: z are replaced by the new set
X, ¥, 2, u, v for which u and v are defined by the equations
(2.3) u = £, (%,7,2,¥52),

v = £y (x,5,2,5.2),
then the new variables x, y, z, u, v are called canonical variables,

and the equations of the extremals in terms of them are called
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canonjcal eguations,

We will assume that the region R consists only of interiosr peints
(X,¥+2,7>2) at which the determinant

2
f-'-‘]’ ql Z’Z’ - (f“}’z’ )

4

is different from zero, and that the equations 2,3 define a i «~ % sepa=
respondence between the points (x,7,2,72) of R and the points
(x,¥,2,u,v) of the region S into which R is transformed by means cf

equations 2,3, The equations 2,3 then have a single-valned sclutizn [{]

’

(204) y = P(xoy'ozouov)s

s

2

Ux,7,2,u,v)
which also relate corresponding points of R and S.

This is a result of existence theorem's for implicit funsticns,
the proofs of which can be found in Bliss "lectures in the Calsulus of
Variations", p. 269,

DEF,

A function H(x,¥,2,u,v), the Hamjltorian Function, is defined by

the equation

Y, +2'fy = f

(2.5) H(X,¥,2,u,V)
=Pa + Qv - f(XBY9Z9P9Q)n where y/= | z’: Q.

Taking partials of H we have

(2.6) H, =P=y', and
H,=Q=12,
Let
(2.7) TCLs B2

NCA, 8 )
G4, 8)

define a surface S, such that the points
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(2.8) [0, 8.7 8]
are admissible, Also assume the five funcitions E{,'I‘( R F ? 7(' ’ ;50 ’
have continmuous partial derivatives of the third crder, The Hiibert
Integral

f [fdx + (dy - y’dx)f,d' +{dz - z"dx)fif]

then has the form

s o+ qp )

When we let
x= T4, €)
y= MCA, ), and
z= 504, @)
then

dx = §dhk 4 %}d@ ,
dy = MudA  +  Hedf , am
s Fak v Fag .
The Hilbert Integral is then
f [£Fdd + £5de + makty + %dety - ffllf, - 46t + Gk gy +
Sdbty - Ffaddty - ZFfdefs],
= [ TR + (7 =7 + (& -Fred an «
[§ Te + ¢ % -7¥% ixy + F@ “;;iﬁ)fl'] a¢ .
Therefore we have
(2.9) B=ff + (% ~7A&)E, +( 2 ~355)x ,and
W=tf ¢ (g ARy G - TR
If there is a function
Wik, 8)
with continuous partial derivatives of the third order and such that

E:,-—."Wo(, and
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Q=W ,
then the Hilbert Integral is the integral of dW and is independent cf
the path in S, By theorem 1,8, the two parameter family of extremals
with the initial elements 2.8 will form a field in every region F which
it simply covers, If the surface S of 2,7 and the function W( -{ , @ )
are arbitrarily selected in advance in such a way that the surface is
non-singular and the functions 7’,’7 . ’? » W have continuous partial
derivatives of the third order, then the points 2.8 can be determined by
solving for 71’ and 5/ , as funtions of J and @ , in the equations
(2.10) T ?&. + ( Na "”}Ilﬁ)fq' + ( 2‘1 - f"fi)fz’ = Wy »
(2.11) T + (e -7 f) + (5 .,;c"fg)f?_, =W, .

Implicit function theorems assure us that solutions

neL. 8

T, 8)
exist, provided the egquations 2.10 and 2,11 have an initial soluticn
(oo s @ » % »3) and that the point 2.8 is admissible and makes the
functional determinant different from zero [1, . 269] o

Let us return to the problem of constructing a suitable surface,
Consider a two-parameter family of extremals
(2.12) v, o, 8)s 2w, A . 6)
containing the arc E,; for values x, J , g satisfying conditions of
the form
X, % X % X,, L =do 6= &

and such that each extremal of the family is cut transversally by the
curve L at the point defined on the extremal by the value

x=F(L).

To prove the existence of the family 2.12 consider a direction
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1: m: n transversal to E,;, at the point 1 and not in the plane deter.-

mined by the tangent to L and E,, at the point 1, Consider the equa-

tions
(2.13) -H fi +u,  +vEg =0,
-HL + um + vn = €~ &
where @, (constant) is selected arbitrarily, The arguments of H are
(r,302,502) = [TCL ) H(LD) BCL) u, 0]
We have
—H?; + u'}(_g + vé\ = 0, or
YR 2R tIf v +Tg =0
and thus
(2.14) £f. + (Y =Y fu+ (& -=}’}’§Z)v=0,
Similarly
~HlL + um + vn = @"@ .
¥l -2 5l +fl +um+vn = g-6
(2.15) fl+(m=-y1lu+(n-21)v= 8- B. , and thus
(2.16) fl+ (m-21u+(n-F1l)v=p-¢.

Equations 2.13 are similar to equations 2,10 and 2.11 with the
variables x,y,z,¥,2 replaced by the canonical variables x,y,z,u,v. They
have the special solution

- (J\,g,u,v)=(o(,,,g;,u,,v,)
where u, and v are the values of féjf and fyp respectively at the
point 1 on E,, ., At the intersection point ! of E,, and L the trans-
versality condition is satisfied and therefore we have
(£ -y't, ~2'ty )+ t}?p\ +*§3.a =0
at the point 1, Then

f‘fl uy’ua az’vf_,\ +uffy +v% =0, or
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£5 + O =N+ (F -SEv =0, Mso

i [

(fa-y'f‘!o - 2 £ )1+§l.m+fzn=0

at the point 1 and therefore
fl+(m=-7«('l)u+(n_-<‘5"il)v50= 8- &

at the point 1 on E,, .

The functional determinant of equations 2.13 with respect tc u

and v is

(2.17) ( Y = Tuth) C & - Gl
(m - AH,) (7m = fH)
( M -4 F) C X - £R)| _
Com =y d) (»n _24)

(R 7 y
.Lj' ‘7(& m

2’ éi n

because on E 1 e have

/

y o=He

2 =H, .

The last determinant is different from zero at the point 1 because at
that point the three ratios (1 : y': 2 ), (ﬁ: a8 }Q), (l:mzsn)
determine lines which are not coplanar, according to our hypothesis,

Then, according to theorem 1.7 equations 2,12 have continuous second

order partial derivatives near the values (0(0 . @D) ard such that
u( clau 6,—,) -

v( (10 9 @0 ) = vt °
The family of extremals obtained by substituting the initial values

|
=
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TCL) LD FCLD) ulols ), (AL, F)
into the solutions of equation 2.6 is a two-parameter family 2.12 cut
transversally by the arc L at the value

= Y(d).
IHEOREM (2.2

If the Legendre condition IIT holds at the initial point 1 of the

non-singular extremal arc E,, , then the family 2.12 has a determinant
Ax, do s @, ) which vanishes at X, but is different from zero near x, ,
so that there is no focal point of the curve L determined by this
family on E,; near the point 1.
Proof

Note that the equations
NAA) =y [§(L ) oL, @] and
F(h)=2[FCd ) o - 6]

hold aleong the curve defined by the functions 2.1. By differentiation

with respect to o( and 8 these equations evidently imply that at the

po:_i.nt 1

M =Yf»f,g + ¥y i = 0=y s P::sz +z, é = 0=z , or
(2.18) W= Ta - /.1;,?;-\ =¢ . Y = 0, and
(2019) ZA = z( b 2r7& = cl a Zé =0,

Therefore at the point 1 we have

Tt %
A(Xs‘c(gs 60) = 6 = Oa
Za(o Z?o

By an application of Taylor's formula to the column y@ . Zg of Al%, L . ¢ )

Y*(X) YG(X) _ y*(X) yé(x) + ¥ [x + Q,(x ~ x, ) (x - x,)
z&(x) zg(x} zu(-(x) (x) + ZQ[X + Qx - x,) (x - x, )
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‘A Vo Ix + Q,(x - x,)]
+ (x -x,) .

zZ, zg[x + Q (x - x, )|

pA 5
(2.20) . ¢

Z, Z

Then we have at the point (x,,.,,» & ),

v lx,)  velx,) % % ¥
(2.21) * N NN | EN RS R IS
2,(x,)  ze(x,) . % ¢ %

If we differentiate equations 2,13 with respect to § we see

'-Hf'ﬁ -Hf;(g +ugn +ud + v - +v(3:t.g = 0 and
B=H[F(L LNCL D) FL D), v, v] , therefore

I - = v’ _
-He = -Hu, vae Y U, 2V, .
We now have
_y'ue TUL - z’ve?; + ué'}’(‘k + x‘,-(3 FJ\ =0, or
/ / _
( ’7& =4 ?&)ue + ( }:& -2 i)vg = 0, ard thus
(2-22) c, 1.1.(3 + ca_ve = 0,

Similarly, we have

-H€,1-Hle +u6m+um€ +v€n + ¥n, =1, or
(m - y’l)ue + (n - z’l)v? = 1

and we see that the derivatives Ug and v€ are not both zero and that

the determinant 2,21 is
/ ’

Ug Vg + Vp2g
except for a non-vanishing factor. If both ¢, and c, are zero, then
Na -q’ﬂ = 0, and
C2 T Z4 f& - zlﬁt
%_ =y, and B =1z

A it

Then (1, y', z’ ), the direction of E,, , is the same as ( 1, '?, _é’; ),
A

A,
the direction of L but this contradicts the hypothesis that L is not

C, = ¥a

0, or

tangent to E,, . Therefore ¢, and ¢, are not both zero at the point 1,
We will now show 2.21 is uy yé + v zé except for a non-vanishing
factor. Let us consider the different cases which can occur,

Case I. ( ug $0, ¢ #0),
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This implies c, # 0 and Y # 0. Then

’ ¢ ’ _ / 7
¢,z - &Y, =c,fl '%'; )zg =¥, ) = -cl[(_jg_)vé +y, )

= ( ..7%___ )( z’ev? + y‘;u6 ).
Case IT, ( 7 #0, ¢ #0 ).

This implies ¢, # 0 and u, # 0, We then have the same argument as in

¢

case I,

Case III, ( u #0, ¢, #0 )

¢
Then we have

i / / ’ - ’ 4
C, 2y = Cu¥f c, [(..2:.)25 ~ ¥ ) = ey |=( ”v& Jzg - v, )

= =¢, ( v g + vy, ).
u
¢
Case IV, ( Vg #0, ¢, #0),
Then we have
f 7 4 / / ;
7 Z‘g - c;y'(; = ¢ [Z€ - (—g’a)ye] = C,[ Zg + (-l.]i-)yf:,
cl

e
=_'_g:‘__(z'€v€ +u€yé ).

Vs
We have

(2.22)  w=gTCA)HCL ), BCL ), 37y 2], where
y =y [§(L) o, 8], and
2 =2 [T(A)d.8].
Also we have
(2.23) v = g TCA)HCA D BCL), 5s 2 ], vimere
v =y [TCL ) o, 8], and
2 = [FCL) o]

Taking the partials with respect to @ we see

/

? ¢
ve = Ly ye' + 3z 2¢ , and then

(2.24) uy = £y Ve + L 2 and
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/ Y, P 2 4 ) o ., L2
(2.25) ug 3 + Vg 24 = L0 ¥ + 2820y, + Ly zg .
By the Legendre condition, i.e., condition III,
2. , 2
fq, Y yel + 2Ly Zg Yy tfypzg 2 0, or

’ 2 P
£y (&z" ) + 26,y () *+fzy 20
g ¢

Because equation 2,25 is linear on the left in (x;/ ), it is seen that
Z¢

the roots must be equal., But then

£, =

‘112/ - f«q“'f’ f Efz" = o
and this implies that E,, 1is not non-singular which is a contradiction.
Therefore we have

Cowvz, =L,y 420 2yl + 7l 0

e e Ye% T Yy 4E 2% 2% D
and evidently A (X.d,, (é’o ) vanishes at X, but is different from zero
near x, .
DEF.

A surface S is said to be non-singular at a point
TCL.8) = FTldos fo )
7‘((&96) !),((40950)9
S04 .8) 20 dos B )

if the matrix iﬂ ??J‘ ;J‘

Te % %

If a non-singular arc E,, is cut transversally by L at the point

i

is of rank two at the point (J[,,f, ).

THEOREM (2

1 and contains no focal point of L, then through the curve L there is a
non-singular surface S transversal and not tangent to E,, at the point 1,
and such that on E,; there is no focal peint of 3.

Proof.

Consider the functions A( J , € ), B, ). G(d, § ) defined
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by the equations

(2.26) A=1- 6-6 |
f
B“—'mmﬂq g'go
f
Czanv Q"QD
f

in which 1, m, n are the values appearing in equations 2,13, and the
arguments of H,, , H, , and f are those associated with the solutions

u( L , 6 )o v( oL s @ ) of equations 2,13, The surface defined by the

functions

(2.27) L. 8. €)= F(Lh)+ €jA(o§ g g ,
Ul @)=L+ €jB(.A g )ag .
LAd.g.€e)= 3L+ c};cu g )

has contimuous derivatives of at least the second order in . , 6 , €
and contains the curve L for
8 = 6.
Also this surface i5 non-singular along the curve L, provided
€+ 0,
We have
L= T+ é (L. §)dg .
s T+ € gw A 6)ag
Fe= EAL. Q)
o= €A AR R
Fe - /w 8 )ag .
=0,
M= WL+ tfso\( A, 88 ,
Tok= H(A)+ € B“(x g dag .
o= 3o+ efb0d, g a6
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4 é

;5;&&'—‘ Bld) + Eéc‘“( Ao BB,
Te = E.B(o(a?)’

7{065: 683(&96)9

Toe = gB(oc,(z)de,
"%ee'—' 0,

(56: EC(O(»@)Q
e = Ece;viﬂ?)»

e = B( A , dg , and

A [3(4. @ag . an
Zee = 0.

For
g = & , we have
Fold, Bo€)= FCL )
Wl s 62 €)= N(L ), and
20, 8. €)= FCd).
Assume < s EN\J
(2.28) ?og Yoo ;;6

is not of rank two, Then
i&%ﬁ = ig' oo, =0,
Fufe - Tedu =0, am
s log - 7@5,& = 0, Thus
(§ed )+ E[AAd(s]es - ealo) + %{B agl = o,
Y E EéA&de]éC - €al%L) + ejec&d@] =0, and
[Hs) + %B agJec - eB[;ﬁ’(,,() ¥ Efc&de]- 0, or

e[ Y ~ay + €(B/A°<d6 v-A[BAd(B)] = o,

€[cf-43 + € }éi&d@ mA[c‘,\dg)] = 0, and
efen-8% + el {B&d@ —chd,\d@)] = 0,
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We have

€ # 0;
therefore

/ 7

Bf -A% =0
at

€= 6.
Similarly we have

f /

c§ - 4%

¢y’ X

i

0, and

it
<

at
6 = 6.
Then by substituting into equations 2,26 we see
m?l @17/ = 0,
n?, u=15,
n7( =an15'

0, and

i
o

at

This implies N

/ y
§ 71 ¢
A m N
is not of rank two, But then we see that the direction i1¢ m: n is in
“he plane determined by the tangents to L and B, at @= B . This
is a contradiction and therefore the matrix 2,28 is of rank two,
The equations

(2.29) ~Hfed +ufs + vEy
-HA + uB + vG = Q

I

0, and

with the arguments
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(X,57,2,u,v) = ( %Z Yo » ;; y By V)
are equivalent to equations 2,13 when & = 0 and therefore have the
initial solutions

(de Bo€r wmv)=[d, @, 0 uld, @) vlcdo8)]
en which the functional determinant of their first member with respect
to uwand v is 2,17 and is different from zero near the values {J{,, 60),
We have

. ¢ ¢ ¢

H[E + E{A‘Adg] fuly + eéa&dq] +v{% +efcap]=o,

and similarly we have *

mH[lm §;go]+u[m‘=f;‘§}60‘}+V[n=Hv E‘fgno] = 0,

For
€ =0,
6 =6 ,an
= oly
we have
~H +ul, v vE = 0, and
~HL + um + vn = 0,

Equations 2,29 have solutions

ulch, @: €D

o @s €)
with continuisus derivarives of the second order and reducing to the
solutions

al L, 8 )

vid, 8)
of equations 2,13 for

€ =0

When substituted with T, , % , o from 2.27 as initial values
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in the functions

(2-30) Y(X » 8, b, €, d)s
z{(x , a, b, ¢, d).
u(x , a, b, ¢, d), and

vw(ix , a, b, ¢, d),

which have the form of the sclutions of the differential equations

dy = H,

dx

dz = H,

dx

du = -H, and
dx

Q.‘L:‘”Hn
dx

these solutions define a three-parameter family of extremals,
(2.31) x, ol » 8- €D,
Z(x, L . @5 €.
When € # 0 this family is cut transversally at
x= J(d, g, E)
by the surface 2,27. To see this, note that

?"@ = & A,
e = €B, and
ﬁe = € C,

and that
-Hdx + udy + vdz = 0
is the transversality condition. Using equations 2,29 we have
ciiig +ule. + vy =0, and
~HAE +uB€ +vCE = -HT%g +uly +vd; =0, or

B Fou + Top )+ ulTon + Wog )+ (o + Bpg ) =0
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and then
=Hdx + uwdy + wdz = 0,
When € = 0, the three parameter family of extremals 2,31 contains the

family 2.12 cut transversally at

x= FCL)

by the curve L, It can now be seen that

(2.32) Feold g.€)= WL, .6
(T, hs @, €)= HL L. B8, €D

(2.33) Tx o hy By 0= ylx Ak, B ) and
z(x, » A B, 0= zlx, L, B

The determinant

(2.34) Al . 8. €)= L2y =TI,

for the family 2,3! has the expansion

(2.35) A L dos B €) = MK dooBer 0) +EALX, 1 do: Bo» ), Where

(o<Ce <),

The first term on the right in 2,35 is the corresponding determinant for
the family 2.12 and consequently is different from zero in the interval
X, £ X £ X, because ¢f the condition IV/° By differentiating equations

2.32 and using equaticns 2.27 we see

(2.36) o= TR I =T

Y, = LR +Y  =The o and
(2.37) 2,0= LY + 2 = s

Zg = ZeYop *Z¢ = Bpo

We now have

Acxggtggse}:
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CTERAN (he - 1)
(?0"" = Z%?:’ok) (?"? - Z};ﬁp}
[+ Ef%@“%‘i + €fAd€ )l {eB -~  xva€]
[5*'*’5[0‘1?“2('71"'@{!\616 )] [ec - zae]

Therefore
AT A6, A+ nae - 1T+ ¢f/yap] [€3 - v
:;%[5 ]C‘,gdé‘ - Ze(q + €[na8)] [ec - Zp 4]
LD+ fuae - (s efnae T ks - exd]
[ &+ /C«td? - 2.0 R+ €fnae | pfc - ez
_ |[Re v [Biap - ek - B - /aa6] fer - exa]
[Be+ fouap - ZeHh - Zgfe - [8,96] [ec - €z.4]
o | [+ efmae R+ eaaed] (B -ar)
[Z 0+ €fcag - z(f + efAAdQﬂ [c-az] |
and thus

(M ~4'%) (A -2

T wo,
(m -y d) (m - J=z)

Alx, d,0p,.0) =

because of 2,17,
Therefore there exist positive constants h, k, such that

Aé(xa Ao s 8. 6.) is different from zerc for

Xy £ X £Xx, +h,

o < €l < k.
Hence, for

0 < €l € x

and giving €4, the same sign as A%, A, . 6,, O) on the interval

x, < x < x  +h,
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the expression 2,35 will be different from zero on
X, € x £ x, +h,
and it will alsc be different from zero on the whole interval
X, %X £X,
if € is still further restricted so that on the interval
X, +hgxe6x,
the second term in 2,35 has absclute value less then that of the first
term,
This completes the proof.
THEQOREM (2 .4)

Let E,;, be an admissible arc without corners in xyz-space, cut
at a single point 1 by a non-singular curve L and such that the inte-
grand function f is different from zero at the point 1 on E,; . Then
for the problem of this section the conditions I, IIII9 IVl are suffic-
ient for I(E,, ) to be a relative weak minimum, and the conditions I,
IL,, IV’ with the non-singularity of E, are sufficient for I(E,, ) to
be a strong relative minimum,

Proof,

This theorem is a consequence of Theorem 1,10 and Theorem 2.3,
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PART II

Section I

Functions Spaces
In the ordinary theory of maxima or minima, the existence of a

greatest or smallest value of a function in a closed domain is assured
by the Bolzano-Weierstirass convergence theorem: a bourded set of points
always contains a covergent sequence, This fact, together with the
continuity of the function, serves to secure the existence of an extreme
value,

In the calculus of variations the contimuity of the function
often has to be replaced by a weaker property, semi~-continuity, Another
difficulty in the calecvlus of variations arises from the fact that the
Bolzanc=Weierstrass convergence theorem does not hold if the elements of
the set are no longer points on a line or in a n-dimensional space, but
are functions, curves or surfaces,

There exists a remedy which very often proves sufficient in the
direct methods of the calculus of variations, By a suitable restrictive
condition imposed on the functions of a set, one can again obtain a
theorem analogous to the Bolzano-Weierstrauss theorem, namely, Arzela's
theorem, which will be considered in this section,

We will be concerned with the existence of a minimum of a funec-
tional on a function space, In particular our interest will be directed
toward an arc length functional., Considering topological characteris-
tics we will see what restrictions placed on a subset of the function

space will assure that the functional assumes an extreme value on the

subset,
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DEF,

A set M in the metric space R is said to be relatively compact if
every sequence of elements in M contains a subsequence which converges
to some x in R,

DEF.

A set M in the metric space R is said to be compact if every
sequence of elements in M contains a subsequence which converges to some
X in M,

DEF,

Let M be any set in the metric space R and let € be a positive
number, Then the set A in R is said to be an _€ =net with respect to M
if for an arbitrary point x in M at least one point a, an element in A,
can be found such that

e( a, x) <€,
DEF,

A subset M of R is said to be totally bounded if R contains a
finite € -net with respect to M for every € > 0, DNote that the
points of the € ~net are required only to be in R, not necessarily in M.
DEF,

A sequence {x&} of points of a metric space R is a fundamental
sequence if it satisfies the Cauchy criterion, that is for arbitrary

€ ) 0 there exists an interger N. such that
el %, x, ) <€
for all

DEF,

If every fundamental sequence in the space R converges to an
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element in R, then R is said to be complete,
THEOREM 3.1

A necessary and sufficient condition that a subset M of a com-
pPlete metric space R be relatively compact is that M be totally bounded,
Proof, ( Necessity ).

Iet us assume that M is not totally bounded, Then, by definition,
for some €20 a finite net N, cannot be found in M, Iet us take an
arbitrary point Xps in M, By our assumption, a point x, in M can be

2
found such that

e(x, x,) > €,
Similarly, a point x3 in M can be found such that

e(xl” X3) > &€ , and

¢(xz0 x3) 2 €,
for otherwise the points x; and x, would form an € -net in M, If we
continue this process we obtain a sequence

Xl’ x2900°o¢aooeg an coocooo

of points in R such that
e(xn, xm) *» € , for

m # n,
But then it is impossible to select any convergent subsequence from such
a sequence and M could not be relatively compact., This is a contradic-
tion anicnn‘aséumﬁtion is wrong. Therefore M is totally bounded.
(Sufficiency)

Let R be complete and M totally bounded, Let { xn}- be a

sequence of points in M, Let us set

&=1/3
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caccone
cossoso
€k = 1A<
oo

and construct for every £x a corresponding € -net in M, say

{2 oy
ly a‘zfo e o000 cepd ank o

Describe about each of the points which form a l-net in M a sphere of
radius 1, Since these spheres cover M and are finite in number at least

one of them, say Sl’ contains an infinite subsequence

1 1
le XZ’ 60 0OCY )c]-ng 6800
of the sequence {jxn} .  PFurther, about each of the points which form

a l-net in R we describe a sphere of radius %, Since the number of
2

spheres in finite, at least one of them, say SZ’ contains an infinite

subsequence
ng Xzy ng DOOOQXZQ ¢ ¢ 00
1 2 n
of the sequence { xi-% . Similarly, we find a sphere S3 of radius 1

containing an infinite subsequence
3 %3 3
ang ouaoox ceoo
1" "2 n’
of the sequence { xi } . We continue this process and obltain an

infinte set of sequences,

)cl,’ Jc]-g o0 8800
1l 2

2 2
Xla xz') @9 Q00809

)cl‘g L
n
2
X
n

] LI
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e ¢ 9® $ eo0o0oOCceOsP & fH ©0O0a

We now choose from the above sequences the sequence

2 3 n
x X ¢ 6 000 x v 9 Qe
)%9 29 39 b nﬁ

This sequence is fundamental because all of its terms beginning with x%

n

lie in the interior of a sphere Sn of radius 1. Since R is complete,
n

this sequence has a limit point x in R, Then by definition M is rela-
tively compact.
DEF.

Let ¢[a,b] denote the set of all contimuous functions defined

on the segment [a,b] with distance function
p(£,g) = sup {]g(t) - f(t)l} ; a4tsb} .

The space C[a,b] forms a metric space. A sequence in C[a,tﬂ
is convergent if and only if it is uniformly convergent in the usual
terminology.

DEF,

A family {Q(x)} of functions defined on a closed interval is

said to be uniformly bounded if there exists a number M such that
lax)) < M

for all x and for all Q belonging to the given family.,

DEF.

A family of functions on [a,b] is said to be eguicontinuous
if for every € >0 there is a A >0 such that

’Q(Xl) - Q(Xg)’ < €

for all x), X, in [a,b] satisfying
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) X - 2‘( A , simultaneously
for all Q in the given family.
DEF,

Let CXY denote the set of all continuous mappings

y = £(x)
of a compact set X into a compact set Y(a metric space) and let
p(f.e) = sup {p[f(x), g(x)] ; x a member of X} .
It is readily verified that
(1) p(f.g) = 0 if and only if f= g,
(2) p(f.9) = ¢(q,%), and
(3) ptf,9) + p(q.A) > o(5.4).

Thus CXY is a metric space.

THEOREM 3,2

If £ is a sequence of continuous functions on a metric space X
to a metric space Y such that

limf =1
n n 0

uniformly on X, then fo is continuous,
Proof. { ref. "Measure and Integration Theory", Munroce p. 43 ),
This theorem, together with the completeness of the reals,
implies C [a,b] is complete,
THEOREM 3,3 ( Generalized Theorem of Arzela ),
A necessary and sufficient condition that a set D contained in

CXY be relatively compact in CXY is that the family of functions D be

equicontinuous,

Proof. (Sufficiency).
let us embed CXY in Myv. where MXY is the space of all mappings
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of the compact space X into the compact space Y with its metric defined
in the same way as that of ny. Then, by theorem 3,2, we see that Cyy
is closed in Myvy, and therefore relative compactness of D in M__ will

XY
imply relative compactness of D in C

XY
let € ) 0 be chosen arbitrarily and choose A such that
(J(x', x")< a s x, x in X
implies
eleG), £(x)]<€
for all £ in D, Let the points

xlp ng seo0vey xn

form a (A)=net in X, Then X can be represented as the union of non-
2

intersecting sets €; such that if x and y are members of €; then
e(x,y) { A . For example we can take

€ = S(xl, _24.”) =Jg S(xj, ?A_), where

s(x, €)= {yex l e(x,37)< €}
We now consider in the compact set Y a finite € -net

ylﬂ ng ceens ey Ym.
Denote by L the totality of functions g(x) in Myy which assume the
values y; (constants) on the sets €;, The number of such functions is
finite, Let f be a member of D, For every point Xx; among

xlo x2’ (X EEE] xn
we can find a point y;, ~among

i

yl’ yZ’ osas ym

such that
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Let g(x), a member of L, be chosen such that

g(x;) = T3 for each i, Then

(’[f(x)’ g(x)]

(1

ple), £6)] + pletx;), e(x)]
+ plex;), g(x)]
eleGa, £Ge)] + plety), 3] < 2¢

because

(J[g(X). g(x3)] =o0
if i is chosen such that x is a member of €;., Then

e(f.g) < 2¢
for at least one g, a member of L, and L is then a 2 € -net for D in
M,y and consequently forms a 2€ -net in ny.
totally bounded., Using theorem 3,1, D is thus relatively compact.

By definition D is then

(Necessity)
Let D, a subset of CXY' be relatively compact in CXY’ Then there

exists a finite ( & )-net in D and if f is a member of D.

3
E(ft fi) < __36__

for at least one fi where

f

fzy adey fn

19
is the ( € )=net in D. Each of the functions f is continuous and

3

therefore uniformly continuous on the compact set X. Then for each i,
1i=1, 2, caay I,
there is a 45 > 0 such that
!i‘i(x') - fi(x”)l < ___3§__ if

‘X’ o= X”’ < Ai'
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‘Let & = min 4 5. Then if x93, x, are members of D and

% - x| < 4,

1£Ge) - £l = |2xy) - 2369} + [5505) - £5(x)]
+ 185 0x0) - £(xp)]
< € + € + _€ = €&,
3 3 3

Then by definition the set D is equicontinuous.
DEF,
A function £(x) is said to be lower (upper) semicontinuous at the
point X if for arbitrary € > O there exists a  A-neighborhood of X,
in which
£(x) > f(x) - € :
(£(x) < f(x)+ € ).
DEF,
Denote by M the space of all bounded real-valued functions of a
real variable with metric
p(f,g) = sup {lf(x) - g(X)l} .
DEF,
A curve in a topological space X is a contlinuous function
%: Ja,b]l— X
DEF,

We shall define the length of the curve

y = f(x), (a<x<b ) in the plane
as the functional
N )/
b S 2 2
La(f) = sup {g[(xl - Xi-]_) + (f(Xi) - f(xi-l)) ] }'
where the least upper bound is taken over all possible subdivisions

[a=x,< x4 oo (K%, = b] of the closed interval [a,b] .
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For contimuous functions it coincides with the value of the 1limit

lin 5[0 - %y 30 + (20x) - £0eq 1)) ]

N >p oy

as J:ﬁﬁfy {"Xi = Ximl‘} goes to 0, For functions with con-

tinuous derivatives it can be written in the form

jb [1+2%)7> ax

a
THEOREM 3.4
The functional L:(f) is lower semicontinuous in M.
Proof.
Let us choose a subdivision of [a,b] such that
N 2 5. b b
(3.1) 2Ll =y e (e - £ )] D 220 - e
Let A=z, -x5),
B = [f(xi) - f(xi_l)], and
C = [g(xi) - g(xiﬂl)]-
Then
2 ¥ Y
,(A +BZ)L - (A2 + Cz);l

L2 =Y. 2 s eef) [ g2 e (2 42 1_'
[(a2 +52$“ + (a2 +025/2]
(42 +PB?) - (42 +c2)

e
2 + B+ (22 +c2)

+ B> . G2

—

2, 2% 2, ot
(A= + B<) + (A® + C*)

(B ~C)B +C) .
(42 + BZ)%' + (A% + CZ)VL
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It is obvious that

% Y
B+Cc <K (AZ +Bz)2 + (A‘2 + Cz)l . Therefore

B+C 'Y 1, and then

V y
(42 + B2) + (42 + cRY

(B - C)(B + C) < |B-cl .
(82 + 13.2f1 + (A2 4 02)'/1

Let
IB-c| < 4,
and then let

A = _€ ., Then
2n

[) f
|(A2 F 2P - (2 +cz)/“| < _E
2n

Substituting for A, B, and C we see that
[y = %39)% + (£0x,) = £(x3.9))?]

- [(Xi - X-i_l)z + (g(Xi) - g(Xi_l))z]Y1 < ZE .
n

Y

If we sum from n = 1 to N we see

Ya
i[()ﬁ_ - xi_l)z + (£(x;) - f(x.l_l))?"]

- ﬁ [(Xi - Xi_l)z + (8(Xi) - g(xi_l))z:(a( neE = __%_, or

n

™

.
L:(g) 2 i[(xi - i-'l)z + (g(xi) - g(xi_l))z]

> i[(xi - xi_1)2 + (f(xi) - f(’ﬁi_l))zfl" __g___
A=

D1 - € - £ = 8- €,
a > > a

provided g is chosen such that

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



59

e(f,g) { _€_. This follows from inequality 3.1.
. H n

Hence we choose A = € .,

n

Theorems 3.5 and 3.6 are standard elementary results, and will

be stated without proof.
THEOREM 3. 5
A real valued function which is lower (upper) semicontinuous on

a compact set K is bounded below (above) on K,

Proof. [3, P. 66 ]
THEOREM 2.6

A lower (upper) semicontinuous function defined on a compact set
K attains its greatest lower ( least upper ) bound on K.
Proof. [3, p. 66]

Iet K be a compact metric space and let CK be the space of con=-

timuous real functions defined on K with distance function

p(f,g) = sup {lto - ewl}.

THEOREM 3.7

A necessary and sufficient condition that a subset D of CK be
relatively compact is that the family of functions D be uniformly
bounded and eguicontinuous,
Proof, ( Sufficiency )

Assume the family of functions D is uniformly bounded and equi-
continuous., Then by theorem 3.2 D is relatively compact.

( Necessity )
Let the set D be relatively compact in CK, Then, by theorem 3.1

for each € > 0 there exists a finite (_E )-net
3
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qlo qu soceyp qk
in D. Each of the functions qi’ being 2 continumous function on a

compact set, is bounded, i,e.

€ M.,
9] i
Let
M=max M, + _€ .
3
By definition of an (_€ )-net, for every g in C, we have at least one
3

Qs such that

pla.q,) =sup  |alx) - qi(x}i 4 _35_
Consequently

jal gl v & Cmo+ g Lom

Thus, D is uniformly bounded,
Each of the functions 9y is continucus and consequently uniformly

continuous on the compact set K. Then for a given _€ there exists a

3
Ai such that

fas (5)) = a3 ()| ¢ ,,%, if

|x =% < By

Set

A :,",1:_"3, A 50
Then for

'Xl = le ( AN

and for any q in D, taking qq So that

e(QnQi) £ _%,, , We have

latxy) =~ a(xy) = Jaley) = q; () + q, () = g, (x))
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+ qi(xz) = Q(XZ)‘
= Jabs) - a )|+ o (1) - g, (=)

+ gy () - alx)|
€ + € 4+ € = € "
< 3 3 3

Thus D is equicontinuous,

Theorem 3,7 is Arzela's theorem for continuous functions defined
on an arbitrary compact set,
DEF,

Two continuous functions

P

fl(t ) and

P=rf,(t)

defined, respectively, on the closed intervals

£

ad 4tebd and
al/ P t £ b//
are said to be equivalent if there exist two non-decreasing functions

t = q(t), and
t' = g(t)
defined on a closed interval

as£t<£<b

and possessing the properties

qa) =2 ,
Q) =1
Q,(a) = a
Q,(b) =b ; and

£, [qe)] =1, [o,(t)]

for all t contained in [aab} o
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For an arbitrary function
P=1(t)
defined on a closed interval [a ,b) we can find a function which is
equivalent to it and which is defined on the closed interval
[a ,b] = [O,l °
It is sufficient to set

/ 7
(b -2a)t+a ,

1l

v = qt)

v = gy(t)

We will assume a £ b.

tn

Thus, we will consider the space CIR of continuous mappings of
the closed interval
1= [o0,1]
into the space R (reals) with the metric
g(fse) = sup el £(t), g(t)] .

We say that the sequence of curves

I-llg L geoacoanyono

converges to the curve L if the curve Ln can be represented paramet-

rically in the form

and the curve L in the form
P =1(t);

(0 ¢t «1),
so that

1im e(f;fn) =0,
n
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THEOREM 3,8

If the sequence of curves

Ll! LzsoocogLngoo

lying in the relatively compact subset K of a complete metric space can
be represented parametrically by means of equicontinuous functions
defined on the closed interval [0,1] , then this sequence contains

a convergent subsequence,

Proof,
This is a direct result of Theorem 3,3.
The length of a curve given parametrically by means of the func-
tion
P = £(t),
attsh,

is the least upper bound of sums of the form
N
t £(t
X pletty ), 20e))]

where

a= to < tl €,0000% tn = b,

It is easy to see that the length of a curve does not depend on the
choice of its parametric representation,
THEOREM 3.9

If the sequence of curves Ln’ represented parametrically by
fanctions defined on [0,1] , converges to the curve L, then the length
of L is not greater than the 1lim inf, of the sequence of lengths of
the curves L.

Proof,

The proof of this is similar to that of theorem 3.4,
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Let us now consider curves of finite length or rectifiable

curves, Consider a curve defined parametrically by means of the func-
tion

P = £(t),

a4tehb,
The function f, considered only on the closed interval [a,T] , Where

a<Ts4hb,

defines an "initial segment® of the curve from the point

P = £(a)
to the point

Pp = £(T).
Let

s = Q(t)

be its length, Then

P=g(s)=f [Qgs)]
is a new parametric representation of the same curve., Let s run
through the closed interval

0 £s £ 5,
where S is the length of the entire curve. This representation satis-
fies the requirement

e[g(sl), els,)] < |s, -5 |

( the length of the curve is not less than the length of the chord ).

Going over to the closed interval [0,1] we obtain the parametric

representation
p=rT)=cgls),
T=25 .,
S
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which satisfies the following Lipschitz Condition
[F(5), R =8 {7 -T | .
Thus for all curves of length S such that
S £ M,

where M is a constant, a parametric representation on the closed
interval [0,1] by means of equicontinuous functions is possible,
T 10

If two points A and B in the relatively compact set K can be
connected by a continuous curve of finite length, then among all such
curves there exists one of minimal length,
Proof,

Let Y be the greatest lower bound of the lengths of curves which

connect A and B in K, Let the lengths of the curves
I.j_' nguoo,Ln’ooo

connecting A with B tend to Y. By theorem 3.8 it is possible to select
a convergent subsequence from the sequence {'L }- . By theorem 3.9

n
the limit curve of this subsequence cannot have length greater than Y.

This completes the proof,
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PART II
Section II

Direct Methods of the Calculus of Variations

The direct methods in the calculus of Variations represent a
relatively modern trend which has established the calculus of variations
in a dominating position in mathematical analysis,

The general points of view in the calculus of variations are
relevant for various domains of mathematics, namely the formation of
invariants and covariants in function spaces, and the characterization
of mathematical entities by extremum properties, We shall concentrate
on the second topic.

In the mathematical treatment of physical phenomena it is often
expedient to use formulations by means of which the quantities under
consideration appear as extrema, An example of that is Fermat'’s Prin-
ciple in optics,

The classical methods of the calculus of variations can be con-
sidered as indirect methods, in contrast to the modern direct methods,

Generally speaking the direct methods aim at solving boundary
value problems of differential equations by reducing them to equivalent
extremum problems of the calculus of variations, and then attacking
these problems directly.

The most notable example of the direct apprcach goes back to

Gauss and William Thompson., They considered the boundary value problem

of the Laplace equation.

2
(401) Au = aiu R a'll = 0
X 4™
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for a domain G in the xy~plane, under the condition that the function
u be defined in G and be equal to a prescribed continmuous function on
the boundary. The classical formalism of the calculus of variations

for the integral
(4.2) p[d] = ﬂ( O+ ¢ )axdy
G

shows that if u(x,y) furnishes the minimum of the integral when all
functions @ which are continuous in G and on its boundary, attain
the prescribed boundary values, and possess continuous first and second
derivatives in G are admitted to competition, then u(x,y) is the
solution of the boundary value problem

A, =01inG ,,,u(P)=f(P) for p on the boundary of G,

Gauss and Thompson thought that, since the integral D[;¢)] is
positive, it must have a minimum, This reasoning was later resumed by
Dirichlet, and a decisive use of it, under the name of Dirichlet's
Principle was made by Bernhard Riemann. To make Dirichlet’s Principle
true the existence of a minirum, rather than a greatest lower bound,
has to be established., Let us look at some examples where we have a
greatest lower bound but a minimum does not exist,

a) Find the shortest curve from A to B with the condition that

it be perpendicular to AB at A and B.

Fig, 4.1
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The length of the admissible curves has a greatest lower bound,
namely AB ; however, no shortest curve exists.
b) Find a function (p (x)} continuous, having a piecewise

continuous derivative, for which the integral
1 2 ’ 2
1=[l x* [ @ ()] “ax

attains the smallest possible value, with the boundary conditions

D(-1) = -1 ;
GCr)= 1.
Y
Q'(é’i’) (,')')
(o) |---- b
- ; X
j }
)
i
|
b S (0 -l)
AGFY  PEEN) ﬁ
Fig, 4.2

The integral is always positive and has a greatest lower bound,

namely, 0. Let (D (x) be the function whose graph is APQB in fig. 4.2

We have
O&x) =1 x for € X & €
€
o) =1 for € <X < | and
P(x) = -1 for -1 {(x <{-€ .
Therefore
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(D'(X) = _1 for ~€EL{XLE and
€
Px)= o for €< x4l and ~1< X <-€ ,
Hence
y ¢ 2 €
I-= fxz O (x)ax = szdx = 2€ .
—-| —E €?- 3

and it can be made arbitrarily small. But the only function for which
I=20 is
Q) = e,
and it is obvious that this does not satisfy the given boundary condi-
tions,

Three related goals are envisaged by direct methods of caleculus
of variations.

1) Existence proofs for solutions of boundary value problems,

2) Analysis of the properties of these solutions, and

3) MNumerical procedures for calculating the soclutions,

Let us consider the following problem:

Among all continuous, cleosed curves C having a given length L,
find one which makes the enclosed area A(C) a maximum,

By the classical methods of calculus of variations it can be
shown that if a solution exists it is a circle, We will be concerned
with proving the existence of the solution.

Any admissible curve C can be enclosed completely in a circle of

radius . Thus we have

L
2

alc) ¢ 1 L2 .

so that a least upper bound M exists for all the areas, and a maximizing

sequence
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Clg CZ’ o0 80P Cn9 LA

of admissible curves exists such that

An(Cn) —> M as n —» 2o

Each curve Cn can be assumed to be a convex curve, for if not,
it could be replaced by a convex admissible curve of larger area, i,.e.
C, can be replaced by its "convex hull" denoted by E; ( the least
convex polygon and its interior peints that contain Gn ). Then 5%,
whose length may be less than L, is magnified into a similar admissible
curve of length L, denoted by C,o We now have

ac) < AG) <A

We make the assumption that all the curves Cn be within a single circle

of radius smaller than _L . Thus we have a sequence of convex curves
2

C, lving in a closed domain, so that (by theorem 3,8) there is a sub-
sequence which converges to a closed curve C, Since the area of a
sequence of convex curves depends continuously on the curves, and the
areas Ah of Cn converge to M, we have
A(C) = M,
It Cn converges to C, then
lim L(C,) > L(C)
by the lower semi-contimuity of length, In the present. case, we have
L(c) =« L.
The equality sign, however, must hold, since, if
L(c) < L,
C could be magnified into a curve of length L, whose area would then

exceed M, Thus the existence of a curve of length L and enclcsing

maximum area is established.
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