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Balanced Graphs and Balanced M atroids 

Directors: Jennifer M cNulty and P. M ark Kay 11 ^

F

T he idea of “balance” in graph theory originated with the study of random  graphs. 
This idea was form ulated first for graphs and then  generalized to  m atroids. M atroids 
are useful in solving large problems often found in the  fields of civil, electrical, and 
m echanical engineering, as well as com puter science and m athem atics.

After exploring which classed of graphs or m atroids are balanced, a  connection 
between graph balance and m atroid balance is obtained. The m ain theorem s concern 
constructions of m atroids and the effect these constructions have on the  property  of 
balance.
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1 Introduction

The idea of balanced graphs originated w ith P. Erdos and A. Rényi in th e  la te  1950’s 

and early 1960’s. At this tim e these two m athem aticians wrote a series of papers [4, 

5, 6] on the  theory of random  graphs; it was this work which prom pted th e  study 

of balanced graphs. Since this tim e, the theory of random  graphs and th e  use of 

balanced graphs have undergone enormous growth. Balanced graphs are im portan t 

because of the  ‘nice’ properties they possess. To obtain  results on general graphs, it 

is often easier to find a  proof for the  balanced graph case and then  to  ex tend to  the  

general case.

Since m atroids are generalizations of graphs, it is natural to  see which results for 

graphs m ay be extended to  m atroids. In order to  m otivate the  research done in the  

field of m atroids, a quote from K. Truem per [20] is provided:

W ith  m atroids, one m ay form ulate ra ther com pactly and solve a  large 

num ber of interesting problems in diverse fields such as civil, electrical, 

and mechanical engineering, com puter science and m athem atics.

In the  early 1980’s, D. Kelly and J. Oxley began to exam ine which results from  the 

theory of random  graphs and balanced graphs would generalize to  m atroids [7, 8, 9, 

16]. M atroids are generalizations of graphs; therefore it is na tu ra l to  see which ideas 

form ulated for balanced graphs would also hold for balanced m atroids. The next step 

would be to  generalize these ideas to all m atroids, if possible. The work in th is area 

is generally new and quite sparse.

T he purpose of this research thesis is to  consider the  work th a t has been done in 

the  area of balanced graphs and balanced m atroids and to  see what generalizations 

and connections can be made. To begin with, we will find some families of graphs and 

m atroids which are balanced, strictly  balanced or can be shown to  be neither. We

1
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will then  consider the  connection between graph balance and m atroid  balance. N ext, 

we will look a t various operations and determ ine if they preserve balance. Finally, 

we will end with some suggestions on further research in th is area. Throughout all 

graphs will be nonem pty and simple; likewise, all m atroids will be nonem pty and 

loopless. The reader is referred to  [17, 24] for a  more thorough discussion on graph 

and m atroid  theory.

2 Background

The probabilistic m ethod, introduced by Erdos [3] in order to  prove a lower bound 

on Ram sey num bers, was form ulated in term s of a  random  graph. This is ju s t one of

the  m any m otivations for the  study of random  graphs; the  following quote from B.

Bollobas [2] provides further m otivation:

M athem aticians who are not interested in graphs for their own sake should 

view the theory of random  graphs as a m odest beginning from which we 

can learn a variety of techniques and can find out w hat kind of results we 

should try  to  prove about more complicated random  structures.

Random  graphs have become a powerful tool in Ramsey theory, and the  theory  of 

random  graphs itself has grown rapidly. A ra n d o m  g ra p h  G„,p is a  subgraph of the  

com plete graph Kn obtained by independent removal of each edge w ith probability  

1 — p, where p =  p(n) E (0,1). Let A be a fixed property which a graph m ay or 

m ay not possess and let Pr„,p(„)(A) denote the  probability th a t Gn,p has property  A. 

In [5], Erdos and Rényi studied the probable structure  of a  random  graph. I t has 

been shown for several properties A of graphs th a t there exists a  function t{n) such 

th a t

lim P r (A) =  I  °
/ A  /  I 1 i f  U m  ___

t (n)n,p(n) I 1 if lim„_»oo ^  =  OO.
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If such a  function exists, then it is called a  th r e s h o ld  fu n c t io n  for the  property  A.

Erdos and Rényi (4, 5, 6] set out to answer the following question abou t random  

graphs: W hat is the  probability th a t a random  graph on n vertices has a  particu 

lar subgraph? They originally proved th a t is a  threshold function for the

existence of a  given balanced graph as a  subgraph of Gn,p (here m (G ) denotes the  

m axim um  average degree of a  subgraph). In 1991, Bollobas [1] generalized th is result 

to  all graphs. The concept of balanced graphs is interesting in its own right and 

essential for certain distributional results; therefore, it is of great im portance th a t 

Erdos and Rényi introduced this notion.

Let G be a graph w ith \E{G)\ edges and |V (G )| vertices. A graph H  is a, s u b g ra p h  

of G if V { H)  Ç V{G ) and E { H)  C E {G ). A graph H  is a. p r o p e r  s u b g ra p h  of G if 

V { H)  Ç V {G ) and E { H )  C E {G ). Define the d e n s i ty  of G to  be

which is also called the  average degree of G. We say G is b a la n c e d  if

d'{H ) < d'(G) for all non-em pty subgraphs H  Ç G,

and s t r i c t ly  b a la n c e d  if

d'{H ) < d'{G) for all non-em pty proper subgraphs H  C G.

Balanced graph theory results originated w ith the following theorem  of Erdos and 

Rényi.

T h e o re m  1 ([5]) I f  G is balanced, then

lim Pr(G „p 3  G) =  I  “ i f A n ) n ^ >  0 05  n  oo,
I  1 i / p ( n ) n ^  ^  0 0  as n 0 0 .
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Bollobas [1] generalized this result to  all graphs. In contrast to  th e  existence problem s 

answered in the  theorem s of Erdos, Rényi and Bollobas, balanced graphs are essential 

for distributional results as is seen in the work of A. Rucinski and A. Vince [19].

Balanced m atroids will be defined in a sim ilar fashion. A short discussion on 

m atroid  terminology is provided to  assist the reader in developing an understanding 

of m atro id  theory. For a more complete discussion of m atroids the  reader is referred 

to  [17, 24].

T he theory of m atroids is an abstract theory of dependence. It originated w ith an 

article by H. W hitney [25]. In this article, W hitney established four “cryptom orphic” 

definitions of the  term  m atroid. There are now m any more equivalent ways to  define a 

m atroid, which is one interesting and useful characteristic of m atroids. Each m atro id  

definition has a sim ilar axiom atization which is generalized below [24]:

a l  a  nontriviality  or norm alization condition to rule out degeneracy; 

a2  description of the  general m athem atical structure; 

a3  the  characteristic axiom.

It is often necessary to  convert from one axiom system  to  another; to  do th is we 

shall use the  m atroid cryptom orphism s found in [24]. The m ajority  of m atro id  te r

minology will be given in term s of rank functions, circuits, and bases; “. . .  although 

(the rank function) has little  intuitive appeal, the  rank function gives straightforw ard 

descriptions for all o ther axiom atizations [24].” These axioms are described below.

A m a t r o id  Af, defined on the ground set E , is a pair (E , C), where C is a  collection 

of subsets of E  called c ir c u its  which obey the  following axioms:

c l  0 (Z C;

c2 for any two distinct C i,C 2 €  C, Cj is not a proper subset of C^;
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c3 for any two distinct (7i ,  C'a G C and any z e  (Ci n  C'a), there  is a set C3 G C where 

C3 Ç (Cl U Ca) — z.

We shall denote the  set of all circuits of M  by C{M)  or simply by C if the  context is 

clear.

The notion of rank is very useful in linear algebra and o ther areas of m athem atics. 

As it tu rns out it is also very im portant in the  theory of m atroids; thus we will refer 

to  the  rank function axioms quite frequently throughout th is thesis.

Let £  be a set. A function ,0 : 2̂  ̂ j? is the  r a n k  fu n c t io n  of a m atro id  on E  

if it satisfies the following three axioms:

r l  i f  X  C E,  then 0 <  p{X)  < |% |; 

r2 if X  Ç Y  Ç E ,  then p{X)  < p{Y);

r3  if X  and Y  are subsets of E^ then p {X  U T ) +  p {X  fl K) <  p{X)  +  p{Y ).

We will denote the  rank of a  m atroid M  by p(M) ,  ra ther than  p{E ), if the  context is 

clear.

B a se s  of a m atroid are defined as a collection of subsets of E  which satisfy the  

following axioms:

b l  B  is nonempty;

b 2  if B i ,B 2 G B , and x £ B i — B 2 , then there is an element y o f B 2 — B \  such th a t 

(J5i -  x ) \ J y  £B-,

b 3  if j? i, ^  and B \ Ç Bg, then B \ =  B2.

T he reader is referred to  [24] for a  proof th a t the above sets of axioms are equiv

alent.
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Two m atroids Mx =  {Ex.Ci), and M 2 =  (£ ’2 , ^ 2) are is o m o rp h ic  if there  is a  

bijection ^  from Ex to  E 2 such th a t, for all X  Ç Ex^ti>{X) is circuit of M 2 if and only 

if X  is a  circuit of M%. We will write Mx = M 2 if Mx is isom orphic to  M 2 .

Now th a t the  basic definitions for a  m atroid  have been given, we will look a t a  

construction which will allow us to  find “subm atroids.”

We will define a s u b m a tro id  i f  of M  as the  m atroid  on the  ground set E ' Ç E  

by defining its circuits:

C{H) = { C C E '  : C e  C{M)]  .

Such a m atroid  is often called a r e s t r ic te d  m a tro id .  The notation  for subm atroids 

to  be used throughout will be similar to th a t for graphs; e.g., we will write H  Q M  

if i f  is a subm atroid of M . A proper subm atroid is one for which E ' C E . Only 

nonem pty subm atroids will be considered.

It is possible to  extend the definition of balanced and strictly  balanced to  m atroids. 

Recall the  density of a graph d'{G) is equal to  twice the  num ber of edges divided by 

the  num ber of vertices. We would like to  find analogous m atroid  notions for edges 

and vertices of graphs. It is easy to  see how the num ber of edges in a  graph can be 

analogous to  the num ber of elements in a m atroid, since these sets are the  sam e size 

for graphic m atroids. As m atroids have no vertices, we will replace |y (G ) | by the  

rank of the m atroid. It is natural to  consider the rank of the  m atroid in th is role, as 

the  rank  of a  connected graph is |y (G ) | — 1. The d e n s i ty  of a  m atroid  M  =  (£ ,C )  

is

d( M)  : ' ^  '
p(M )’
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where \M\  is the  size of the ground set E  and p{M)  is the  rank of the  m atro id . We 

say M  is b a la n c e d  if

d{H)  < d{M)  for all non-em pty subm atroids H  Ç M,

and s t r i c t ly  b a la n c e d  if

d{H) < d{M)  for all non-em pty proper subm atroids H  C M .

The properties above are defined by H. Narayanan and M. V artak [15] as m o le c u la r  

and a to m ic  rather than  balanced and strictly balanced, respectively.

In [7, 8], Kelly and Oxley generalize some of the known results obtained for bal

anced graphs to  balanced m atroids. They begin w ith an analogue to  Theorem  1.

T h e o re m  2 ([8]) Let k and m be fixed positive integers with k  < m  and suppose 
that Bk,m denotes a non-em pty set o f balanced simple matroids each o f which has m  
elements and rank k and is representable over GF(q). Then a threshold function  fo r  
the property that u>r has a submatroid isomorphic to some member o f  Bk,m is

See page 11 for a  more thorough discussion of w^. In [8] the  following results are 

obtained from this theorem .

C o ro lla ry  3 I f  k is a fixed positive integer, then a threshold function fo r  the property 
that (jJr has a k-element independent set is q~^.

C o ro lla ry  4 I f  m  > 2 is a fixed integer, then a threshold function fo r  the property 
that ujr has an m-element circuit is

C o ro lla ry  5 Let k be a fixed positive integer. A threshold function fo r  the property 
that u>r contains a submatroid isomorphic to P G {k  — l , g )  is

C o ro lla ry  6 Let k be a fixed positive integer. A threshold function  fo r  the property 
that Wr contains a submatroid isomorphic to the cycle matroid o f the complete graph 
on A; -f 1 vertices is g~2r/(fc+i)
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8

To show th a t these results are valid, we are required to  check th a t the  appropriate  

subm atroids are balanced. For exam ple, in Corollary 3 the A;-element independent set 

m ust be balanced; th is will later be called a  free m atroid. Corollary 4 requires one to  

verify th a t an m -element circuit is balanced; this is precisely the  uniform  m atro id  of 

rank m  — 1 and size m. In Corollary 5, the projective geom etry P G {k  — l , g )  needs 

to  be balanced, while in Corollary 6 it is required th a t the  cycle m atro id  M (A '„) is 

shown to  be balanced. For a  more thorough discussion of th is m aterial, th e  reader is 

referred to  Propositions 11, 14, and 17.

3 C lasses o f B alanced Graphs

In th is section, we consider which classes of graphs are balanced, strictly  balanced or 

can be shown to be neither. There are m any different classes of graphs which can be 

considered; only a few were chosen. It can be shown th a t trees, com plete graphs, and 

cycles are strictly  balanced. We will include a  proof of these results for completeness. 

It can also be shown th a t com plete b ipartite  graphs are strictly  balanced and unicyclic 

graphs are balanced, bu t not strictly  balanced [21].

A short review of graph theory terminology is included in p a rt to  introduce no ta

tion which is used throughout. A cy c le  Cn is a  connected 2-regular graph, defined on 

n >  3 vertices. The graph has exactly n  edges, and consists of one cycle containing 

all edges. A c o m p le te  g ra p h  Kn on n vertices is a graph in which every vertex is 

incident w ith every other vertex. In a complete graph each vertex has degree n — 1 

and there  are edges. A t r e e  T„ is a connected graph on n vertices containing

no cycles. A u n ic y c lic  g ra p h  is a connected graph which contains exactly one cycle 

and has m inim um  degree one.

P r o p o s i t io n  7 A ll cycles are strictly balanced.
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Proof: Let G be a cycle defined on n vertices, hence having n  edges. It is easily seen 

th a t th e  density or average degree of G  is 2. We m ust show th a t the  density of all 

proper subgraphs H  oi G have density less than  2. It is triv ial to  see th a t all proper 

subgraphs of G  are forests; we will consider two cases.

Case one: Let H  he & tree defined on k < n  vertices. Since H  is a, tree  we know 

\E{H)\  = k — I, and thus

d'{H)  =  =  2 - y  < 2  =  d \G ).
k k

Hence d' {H) < d '(G).

Case two: Let H ‘ be a forest with p >  2 connected components. Let n,- be 

the  num ber of vertices in component i =  1 , 2 . .  .p; hence there  are n, — 1 edges in 

com ponent i. The density of H ' is

m g z £ ) = 2 - ( 2 p / Ç n , ) < 2 .

Thus G  is strictly  balanced. □

P ro p o s it io n  8 A ll complete graphs are strictly balanced.

Proof: Let G be a com plete graph Kn- The density of G is n  — 1, since th is is the  

average degree. We m ust show for all proper subgraphs H  we have d'{H ) < n — 1. 

We claim  th e  m any possible cases reduce to  th e  case where H  is a. com plete graph 

on k < n  vertices. Assuming th is claim is true, let H  he a com plete graph on k < n  

vertices. Then d'{H)  =  fc — 1, which is obviously less th an  n — 1. Thus Kn  is strictly  

balanced.

To show the  claim is true, let H'  be a graph on k vertices. I t is obvious th a t d' (H' )  

is less th an  d'{H)  since both  are defined on the  sam e num ber of vertices and since H  

has m ore edges. □
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P r o p o s it io n  9 All trees are strictly balanced.

Proof: Let G be a tree on n  vertices. The density of G  is . All subgraphs of 

trees are forests; thus we shall consider two cases.

Case one: Let H  he a. proper subgraph oi G on k < n  vertices such th a t #  is a 

tree. T he density of H  is which is strictly  less th an  .

Case two: Let IT be a forest w ith p >  2 com ponents. Denote the  num ber of 

vertices in each tree  of H  by n,- for i =  1,2, . . . , p ;  thus the  num ber of edges in 

com ponent i is n, — 1. The density of H  is We m ust show

2 ( ( E ? n . ) - p )  _ 2 ( n - l )
E Î  n. n  •

Notice th a t E i  rii < n < np  since 1 <  p. Therefore

p p
2 n ' ^ f i i  — 2np <  2 ^ n j ( n  — 1),

1 1

and the  result is im m ediate. □

4 C lasses o f B alanced M atroids

Next we consider classes of m atroids th a t are balanced, strictly  balanced, or neither. 

Of the  m any interesting classes of m atroids, a few of our “favorites” are chosen. Before 

delving into th is section, some additional m atroid term inology is needed. It will be 

shown th a t it is not necessary to check the  density of all subm atroids of M  in order to  

determ ine if M  is (strictly) balanced. We will describe subm atroids which are m ost 

dense; this is possible through the use of the  closure operator.

A m atroid  closu re  op erator , over the  finite set E , is an operator cl: 2® —* 2 ^  

satisfying the  following axioms:
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c i l  for every X  C E , X  C  cl(A');

cl2  for every X , Y  Q E . i f X  Q Y ,  then c\{X)  C  c l(F );

cl3  for every X  Ç E , cl[cl(%)] =  cl(%);

cl4  for every X  Ç. E  and for every y , z  ^  Ey lî y £ c l{X  U z) — cl(A'), then  z G

cl(X  U y) -  cl(%).

It is helpful to  describe the  closure operator in term s of the  rank function of a m atro id  

ÎOT X  Ç E  :

cl(%) = {x £ E  : p{X)  = p{X  U #)}.

A flat or c losed  se t  in a m atroid JW is a set AT Ç £  such th a t cl(A') =  X .  The 

closure of a set X  is often denoted X .  Closed sets of rank k  are called fc-flats

To show a  m atroid is balanced we need only show th a t the  density of closed sets 

satisfies the  inequality required for all subm atroids; this is suggested by the  rem arks 

below.

L em m a 10 Let M  be a matroid. For any submatroid H  Ç. M , we have d{H)  < d{H).  
Moreover i f  H  C H , then d{H)  < d{H).

Proof: Notice th a t d { H )  = =  d { H ) y  where the inequality is s tric t

if 1^1 <  |:F |. □

According to  Oxley [17], projective geometries “arise quite  frequently in m athe

m atics and are extrem ely natural to consider in m atroid theory, their position among 

representable m atroids being analogous to  th a t of complete graphs in graph theory.” 

Thus, it is natural to  define a random  m atro id  as a subm atroid of a  projec

tive geom etry P G {r — l , q)  obtained by independent removal of each elem ent w ith 

probability  1 — p. Here P G {r — l , g )  as usual denotes the projective geom etry of
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rank r  defined over the  Galois field GF{q)  for q a  prim e power. For a m ore com plete 

discussion of projective geometries, see [17].

P r o p o s it io n  11 The projective geometries P G {r  — l , ç )  are balanced.

Proof: T he num ber of elements of P G {r — l , q )  is Every A:-fiat of P G {r  — l , g )  is 

isom orphic to  P G {k — l ,g) .  Thus by Lem ma 10 we need to  show which

one can check is true  for g > 2 ,  l < A : < n .  □

Recall th a t Corollary 5 relied on the  fact th a t P G (r  — 1, q) is balanced. This condition 

has now been established.

A nother interesting and closely related m atroid to  P G {r  — l , ç )  is the  affine ge

om etry. Affine geometries do not play the same role in m atroid  theory as projective 

geom etries, but they are interesting in their own right because they form an im por

tan t class of highly sym m etric m atroids. The affine geometry A G {r  — 1, g) is obtained 

from P G {r — l , ç )  by deleting from the la tte r all the  points of a  rank r  — 1 fiat, also 

known as a  hyperplane.

P r o p o s it io n  12 The affine geometries A G {r — l , g )  are balanced.

Proof: The num ber of elements of A G {r — 1, ç) is Every fc-flat of A G {r  — 1, ç) is 

isomorphic to AG {k — l ,g) .  Thus by Lem m a 10 we need to show which

one can check is true  for q > 2, 1 < k < n.

We now define another class of interesting m atroids known as uniform  m atroids. 

These m atroids are “uniform ” because all of their circuits are the same size and every 

subset of th is cardinality is a  circuit. Let r , n be nonnegative integers w ith r < n. 

T he u n ifo rm  m a tr o id  Ur,n is defined to  be a  rank r  m atroid defined on th e  ground 

set P ,  an n-elem ent set, whose circuits are described by:
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C(Ur.„) =  I 0 if r  =  n,
{ X  Ç jE? : | J f |  =  r  +  l}  otherwise.

Uniform m atroids Un,n are precisely those m atroids having no dependent sets, 

hence no circuits; they are called f re e  m a tro id s .  The m atro id  U\,n is a  m ultiple 

point. T he uniform m atroid U2,n is an n-point line. The uniform m atroid  Um,m+i is 

precisely the  rank m m atroid  w ith exactly one circuit which contains all m  4 -1  points. 

For exam ple, I7 i ,2 is a double point; f/2,3 is three points on a line, no two on a  point; 

and C / 3 , 4  represents four points in a  plane, no three on a  line, no two on a  point.

T he following result allows us to  classify the subm atroids of uniform m atroids.

P r o p o s i t io n  13 Submatroids o f uniform matroids are uniform; furtherm ore, these 
matroids are either fu ll rank or free.

Proof: Let H  he a, nonem pty subm atroid of Ur,n, defined on the  ground set E ' Ç E . 

If C { H)  =  0, then H  is a. free m atroid; so suppose C { H)  ^  0. Recall the  definition 

of circuits of H  : C{ H)  =  {C Ç E ' : C  G C{Ur,n)}- If % E C{ H) ,  then X  e  C{Ur,n) 

and |% | =  r  +  1. Conversely, i{ X  Q E ' w ith |X | =  r  +  1, then since X  Ç E , vre get 

X  £  C{Ur,n) and by definition, X  £  C{ H) .  Hence H  is a. uniform m atroid of rank r.

□

Using Proposition 13, one can classify uniform m atroids as balanced or strictly 

balanced under certain  conditions.

P ro p o s i t io n  14 The class o f uniform matroids Ur,n is strictly balanced when r < n, 
and balanced but not strictly balanced when r = n.

Proof: Consider the  m atroid Ur,n for r < n .  The density of Ur,n is n / r  which is strictly  

greater th an  1. Let /C be a  proper subm atroid of Ut,ti- By Proposition 13 we know
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H  is e ither a free m atroid or a uniform  rank r  m atroid. If H  is free, then  th e  density 

of i f  is 1, which is strictly  less than  d{Ur,n)- On th e  o ther hand, if i f  is a  proper 

subm atro id  of full rank, then  the  size of i f  is a t m ost n  — 1. Hence the density is a t 

m ost which is strictly  less than  d{Ur,n)-

Consider the  free m atroid Un,n- From Proposition 13 we know all non-em pty sub

m atroids K  of Un,n are free. Hence d{K ) =  1 =  d(f/„,„); therefore Un,n is balanced, 

bu t not stric tly  balanced. □

Recall in Corollaries 3 and 4 it was required th a t we show free m atroids and 

uniform  m atroids of the form Ur,r+i are balanced; this has now been shown.

5 C onnections B etw een  G raph and M atroid  B al
ance

In th is section we explore the  relationship between a balanced m atroid and th e  graph 

associated w ith th a t m atroid. A m atroid th a t is isomorphic to  the  cycle m atro id  of 

a graph is called g ra p h ic . The cycle m atroid of a  graph G is denoted M {G ). We 

will answer the  following question: if the m atroid M {G ) is (strictly) balanced, does 

th is im ply th a t the  graph G associated with M {G ) is (strictly) balanced? In order 

to  answer th is question it is im portant to  fully understand the  concepts behind the  

question.

If G  is a graph, then adding isolated vertices to  G  will not alter the  cycle m atro id  

of G. For this reason, we shall assume all graphs have no isolated vertices. A graph 

H  is 2 - iso m o rp h ic  to  the graph G if G can be transform ed in to  i ï  by a  sequence of 

operations of the  types described below:

V e r te x  Id e n tif ic a t io n  Let v and v' be vertices of distinct com ponents of G. G is 

modified by identifying v and u' as a  new vertex v.
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V e r te x  C le a v in g  This is the  reverse operation of vertex identification.

T w is t in g  T he graph G  is obtained from the disjoint graphs Gi and G2 by identifying 

th e  vertices of G\ and V2 of G2 as the  vertex u of G, and identifying vertices 

vi of Gi and «2  of G2 as the vertex v of G; i.e. there is a  tw is t in g  about {u, u}.

Since none of these operations a lter the  edge sets of the  cycles, if G  is 2-isomorphic to  

then  M {G ) =  M {H ). Also, every graph w ithout isolated vertices is 2-isomorphic 

to a connected graph. We now sta te  Oxley’s [17] version of the  theorem  which is 

needed to  show the  connection between graph and m atroid  balance.

T h e o re m  15 ( W h i tn e y ’s 2 - Iso m o rp h ism  T h e o re m )  Let G and H  be graphs hav
ing no isolated vertices. Then M {G ) and M { H )  are isomorphic i f  and only i f  G and 
H  are 2-isomorphic.

If Af is a graphic m atroid, then W hitney’s 2-Isomorphism Theorem  assures us 

M  =  M{G)  for some connected graph G. Thus we will assume our graphs G  are 

connected. We are now ready to  show the relationship between graph density and 

m atroid  density.

P r o p o s i t io n  IQ I f  G is a connected graph and the cycle matroid M{G)  is (strictly) 
balanced, then G is (strictly) balanced.

Proof: Let M{G)  =  Af be the  cycle m atroid of the  connected graph G. Let N  be 

a proper subm atroid of Af. It is well-known (see e.g. [17]) th a t N  is graphic and, 

furtherm ore, N  = M { H )  for some subgraph H  of G. We know th a t d{N)  < d{M)  

because Af is balanced; equivalently, we can write

I M  ^  \ M \

p ( N)  -  p { M Y

T he graph density of G  is and the  graph density of H  is where k is the

num ber of connected components of H.
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T he com m ents preceding this proof imply it is sufficient to  show

i f  1^1 <  1 ^ 1  ,h ^ n  ^ 1 ^ 1  <  ^ 1 ^ 1
p ( N)  -  p { M ) ’ p{N)  + k -  p ( M)  +  r

Now

IJVWM) <  \ M\ p( N)

implies th a t

\N\p{M)  +  \N\ < \M\p(N)  +  \N\ < \M\p{N)  +  \M\ < |M |p (# )  +  k \M \,

since |7V| <  \M \ and A: >  1. Therefore

2|iV| ^  2\M \
p { N ) ^ k  -  p(M ) +  l ’ 

and we have established the  im plication needed to show th a t G  is balanced.

If M{G)  is strictly  balanced then the  fact th a t G  is strictly  balanced follows 

im m ediately from the argum ent above sim ply by replacing the  inequalities w ith strict 

inequalities. □

T he converse of the  proposition above is not true. In general, if G  is balanced, 

then  M{G)  is not necessarily balanced. An exam ple of th is is found in Figure 1.

- e — #

M<G)

Figure 1: G is balanced; M{G)  is not balanced.

It is na tu ra l to  ask w hat, if any, conditions can be imposed on G  to  yield a  partial 

converse for Proposition 16. For example, one could consider two-connectedness of a 

graph G  which forces M{G)  to be connected.
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C o n jec tu re  1 I f  G  is a two-connected (strictly) balanced graph, then M{G)  is (strictly) 
balanced.

Now th a t  we have introduced the  class of graphic m atroids, we are able to  rely on 

th e  work of N arayanan and V artak [15] to  establish the  following result.

P r o p o s it io n  17 The matroid M {Kn )  is balanced.

Before giving the  proof we need a theorem  which characterizes balanced m atroids 

in term s of their bases.

T h eo r em  18 ([15]) Let M  be a matroid defined on the ground set E . Then M  is 
balanced i f  and only i f  there exist bases . . . , B n  o f E  such that each element o f
E  belongs to precisely q o f these bases.

Now we are able to  prove Proposition 17 and also satisfy the  requirem ent needed 

to  establish Corollary 6.

Proof of Proposition 17: If we consider the  spanning trees of K n, we can see because 

of th e  sym m etry of the  complete graph each edge is in precisely the  sam e num ber 

of spanning trees. Spanning trees of a  graph are equivalent to  bases in the  related 

cycle m atroid; hence we can see th a t each elem ent of M {K n )  is in the  sam e num ber 

of bases. Theorem  18 now implies the class of m atroids M [K n )  Is balanced. □

6 G raph and M atroid  O perations

In th is section, we explore how certain  operations applied to  graphs or m atroids 

affect the  property  of balance. We will s ta rt by considering the  results obtained by 

Veerapandiyan and Arum ugam  for graphs. These authors provide some necessary 

and sufficient conditions for graphs to  be balanced. To begin w ith they characterize 

when a  graph w ith more than  one com ponent is balanced.
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T h e o r e m  19 ([21]) A graph G is balanced i f  and only i f  each component H  o f G is 
balanced and d'{H) = d'{G).

It is na tu ra l to  ask if this result can be generalized to m atroids; this leads to  the 

following conjecture.

C o n je c tu re  2 A matroid M  is balanced i f  and only i f  each component H  o f M  is 
balanced and d(H)  =  d{M).

T he following theorem  is more specific th an  Theorem  19; when it is generalized 

it leads to  interesting results. Recall th a t a  unicyclic graph is a connected graph 

containing exactly one cycle and having m inim um  degree one.

T h e o re m  20 ([21]) Let G be a connected graph with m inim um  degree 1 . Then G is 
balanced i f  and only i f  G is either a tree or a unicyclic graph.

It is not possible to  find a direct m atroidal analogue to  the  theorem  above because 

there is no m atroid notion analogous to  degree. Consider the  following assertion which 

is a m atroidal statem ent of Theorem  20: The m atroid  M  is balanced if and only if 

M  is a free m atroid or M  contains exactly one cycle. It is clearly false, as seen in the 

exam ple found in Figure 2; this m atroid contains exactly one cycle {A, B, C ). This 

exam ple will be generalized in Proposition 26.

p

e

Figure 2: A m atroid containing exactly one cycle which is not balanced.

Veerapandiyan and Arum ugam  [21] provided necessary and sufficient conditions 

for a  graph with k  components to be balanced. This is a  generalization of Theorem  20.
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T h e o r e m  21 ([21]) Let G be a graph with n vertices, k  components and m inim um  
degree 1 . Then G is balanced i f  and only i f  each component o f G is either a tree o f  
order n f k  or a unicyclic graph.

Finally, Veerapandiyan and Arum ugam  established the  following result on the  

effect of subdividing the  edges of G  to obtain  the  graph S{G).

T h e o re m  22 ([21]) A subdivision graph S{G) is balanced i f  and only i f  G is bal
anced.

We also consider which m atroid  constructions preserve balance. N arayanan and 

V artak [15] considered the  union of two m atroids and the  dual of a  m atroid  and 

showed th a t these constructions preserve balance.

T he union of two m atroids on the same ground set is a  generalization of direct 

sum , discussed on page 22. Let M i = {E,Ci)  and M 2 =  { £ , € 2 ) be m atroids defined 

on the  same ground set E.  The m a tro id  u n io n  Mi  V M 2 = {E,C)  is a  m atro id  on E  

w ith circuits in the  set C which are m inim al m em bers of the  set: (C  : A fl C  contains 

a circuit of Mi ,  or C — A contains a  circuit of M 2 , for all A Ç C}.

T h e o re m  23 ([15]) Let M i, M 2 be matroids defined on the ground set E .

•  I f  M l, M 2 are balanced, then M i V M 2 is balanced.

•  I f  M l, M 2 are strictly balanced and M i V M 2 contains a circuit, then M i V M 2 
is strictly balanced.

Narayanan and V artak also considered the operation of dualizing a m atroid  and 

its effect on balance. Let M  be a m atroid on the  ground set E  w ith rank function p. 

The d u a l M*{E)  of M  is a m atroid on the  set E  w ith rank function pM* where

Pm*(A) =  p{E  -  A) +  |A | — p{E),  

and whose set of bases 12* is the set of all com plem ents of the  bases of M.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



20

T h e o r e m  24 ([15]) I f  M  is a (strictly) balanced matroid, without coloops, then M* 
is (strictly) balanced.

Likewise, it would be interesting to see if dualizing a  p lanar balanced graph pre

serves balance.

C o n je c tu re  3 Let G be a planar graph containing no cut edge. I f  G is balanced, 
then G* is balanced.

We expand on the ideas previously presented and determ ine if there  are other 

operations which preserve graph or m atroid  balance. There are m any interesting 

operations for both graphs and m atroids; and, of course, there  is m uch room for 

fu rther research in th is area.

T he operation of deletion is probably the  m ost basic operation in m atro id  theory. 

This operation was briefly discussed earlier, when we described subm atroids; we will 

expand on it now. One can th ink of deletion simply as “erasure” of an element 

or subset of the ground set E . Let M  = (E,C)  and suppose th a t X  C E.  The 

r e s t r ic t io n  of M  to  X ,  denoted M \ X ,  is the  m atroid  { X ,C { M \X ) ) ,  where C (M |X ) =  

{C Ç X  : C € C{M)}.  We also refer to this as the  d e le t io n  oi E  — X  from  M ,  which 

is denoted M { E  — X ) .  The following exam ple shows balance is not always preserved 

under deletion. The original m atroid M  is balanced bu t M  — P  is not.

D P

e #

B

M

Figure 3; A balanced m atroid w ith a subm atroid  which is not balanced.
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We also consider how the operation of deletion affects balanced graphs. We ask the 

following question: If a m atroid (graph) is balanced, are all submatroids (subgraphs) 

balanced? Obviously, from the example above we know this question is not always 

answered in the affirmative for balanced matroids and now show tha t the same holds 

for balanced graphs. We have shown that the complete graph Ks  is balanced, and 

the following example shows that not all subgraphs of K 5 are balanced.

Figure 4: A subgraph of K$ which is not balanced.

If deletion is viewed as erasure of elements, then the converse operation can be 

viewed as “adding” elements to  a m atroid. This operation is formally known as 

m atroid extension. Let M  be a m atroid defined on the ground set E  with rank 

function pM- If is a m atroid defined on the ground set E U  E ' with rank function 

PN,  then N  is an e x te n s io n  of M  by a subset E ' i f  N  — E ' =  Mand/>A/(Af) =  p n { N ) .  

If the size of E* is one, then this is called a s in g le -e lem en t e x te n s io n . The set /C 

of all flats of M  can be partitioned into three types:

fCi= { K  
)C2 = { K  
K 3 -  { K

K  and K  U {p} are both flats of N } 
A' is a flat of iV, but K  U {p} is not} 
K  U {p} is a  flat of N,  but K  is not}.

If N  is an extension of M, then N  may be viewed as the result of a series of single

element extensions. We will consider the case when the element {p} of extension 

is neither a loop nor an isthmus; otherwise the resulting m atroid is isomorphic to 

M  © I/o.i and M  ©I7i,i, respectively. After the operation © is defined below, we show 

tha t if M  is balanced, then M  © Ui^i is not balanced.

P ro b le m  4 Find hypotheses on a matroid M  to ensure that i f  M  is a balanced, then 
any extension N  o f M  is balanced.
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Perhaps when N  is a, free extension of M , no additional hypothesis on M  are required; 

in any case, more thorough consideration of Problem 4 is needed.

Matroids may also be constructed through an operation known as the p a ra lle l 

e x te n s io n . This can be defined briefly as adding elements in parallel to some existing 

element or, less formally, as doubling one or more elements. Parallel elements refer to 

multiple points of a matroid; hence the resulting m atroid is a m ultiple point matroid. 

Theorem 25 is a m atroidal analogue to Theorem 22.

T h e o re m  25 ([15]) Let M  be a matroid. The matroid M{k)  obtained by replacing 
each element of M  by k parallel elements is balanced i f  and only i f  M  is balanced.

Another m atroid construction is tha t of direct sums. Let M i = {Ei,Ct)  and 

M 2 =  {£ 2 ,0 2 ) be matroids. The d ire c t  su m  Mi © M 2 =  {Ei  U E 2,C) is a matroid 

defined on the disjoint union of the ground sets E i and E 2 , whose circuit family C is 

described by

0 M2 =  {C  : C  € Cl or C € C2} 

and whose rank function, denoted is defined for A Q  E \\à  E 2 as:

(̂Mi©a/2)(̂ ) = PMi(A n j5̂ i) + pm2(A n E2).

If two matroids are balanced, their direct sum is not necessarily balanced. This is 

demonstrated by example found in Figure 5. Mi =  U2,s is balanced M 2 = f/i,i is also 

balanced, but the direct sum of Mi © M 2 is not balanced. In this example, we could 

have substituted any balanced m atroid M  for C/2,3? as seen in the result found below.

P ro p o s itio n  26 I f  M  is a balanced matroid with rank r and size n, where r < n, 
then M  © C/1,1 is not balanced; thus direct sum does not in general preserve balance.

Proof: Let M  be a balanced m atroid and let S  denote the direct sum M  © C/1,1. 

Then d{S)  is Suppose S  is balanced; then for all submatroids iC Ç S', we have
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M l ®  Ms

Figure 5: The direct sum of C/2,3 and C/1,1 is not balanced.

d{H) < d{S).  If i f  =  iVf, then d{H)  =  j  which by our assumption must be at most 

This leads to  a  contradiction and hence proves the result. □

W ith some restrictions we can find cases when direct sum preserves balance.

T h e o re m  27 The direct sum o f the uniform matroids Uk,n and Ur,m is balanced i f  
and only i f  d{Uk,n) = d(C/r,m).

Before we prove Theorem 27, it will be necessary to characterize the closed sets of 

Ml 0  M 2 , which are the members of {K \ U K 2 ■ is closed in Mi and is closed 

in M2}.

L e m m a  28 The closed sets ofUk,n®Ur,m are o f the following forms: Uij f o r i  < k+ r;  
U s , ,  0  U r ,m  fo r  s < k; U t , t  0 U k ,n  for t < r; and U k ,n  0  U r ,m -

Proof: Let M \ =  Uk,n, M2 =  C/r,m, and S  = M \ 0  M2 . Let K  = K \ \ à  K 2 be closed 

in 5, where Ç Mi for z =  1,2. Thus K i is closed in M i, and K 2 is closed in 

M 2. Proposition 13 implies tha t K \ is isomorphic either to Uk,n or to U,,, for s < k] 

likewise, K 2 is isomorphic either to  Ur,m or to Ut,t for t < r.

Since the disjoint union of two m atroids is simply their direct sum, the closed sets 

described above can be combined in the following ways:

•  Us,s W Ut,t = f/j+t.s+t ÎOX s < k and t <  r;

•  U s ,s  U  U r ,m  =  U s ,s  0  t / r , m  f o r  S  <  k ]
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•  Ut,t U Uk,n =  Ut,t ® Uk,n for < <  r;

• Uk,n^Ur,m=Uk,n®Ur,m- □

Proof of Theorem 27: Let M i =  Uk,n and M 2 = Ur,m- Let 5  =  Mi 0  Mg; note that 

d(Uk,n) = d{UT,m) is equivalent to the condition km  =  rn. The density of S  is 

For the “only if” direction, assume 5  is balanced. We know tha t for all submatroids 

H  of 5 ,  d{H) < d{S).  In particular, d{Mi)  =  f  <  d { 5 ) ,  implying rn < km.  Also, 

d(Mg) = y  < d{S),  implying km  < rn.

For the “if” direction, we will appeal to both Lemmas 10 and 28 to show tha t the 

density of any closed set of S  is at most the density of S.  Let A' be a closed set of S. 

We will consider each possible form of K  separately.

Case sl: K  = Uij ïot I < r + k. Since d{K)  =  1, it is sufficient to show 1 <

To see this is the case, notice k < n  and r < m ,  implying

/fc +  r < n  +  r < n  +  m,

and the condition is satisfied.

Case b: K  = Us,s © Ur,m for s < k. Thus d{K) = The assumption km  = rn

and the facts that k < n  and r < m  imply

km  +  rm  ks rs < rn + rm  +  ns +  ms,

or

{k +  r){m +  s) <  (r +  s){n +  m).

Hence the desired inequality is immediate.

Case c: K  = Ut,t © Uk,n for t < r. The proof here is left to the reader, as it is

similar to the argument in Case b.

Case d: Here K  = S  and the desired inequality is obvious.
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Therefore the direct sum of M \ and M 2 is balanced if and only if their densities 

are equal. □

The next operations to be considered are the parallel and series connections of 

two graphs or matroids. To describe these operations, it is perhaps easiest first to 

consider graphs and then to generalize to matroids. Let p, be an arbitrary edge of 

the graph G,, for i =  1,2. Arbitrarily assign a  direction to p, and label its tail m, 

and its head V{. To form the p a ra lle l c o n n ec tio n  oî Gi and G2 with respect to the 

directed edges pi and p^, begin by deleting the edge pi from Gi and the edge pg from 

G2] then identify the vertices « i, Ug as the vertex u and vi, V2 as the vertex v. The 

parallel connection is then completed by adding the new edge p joining the vertices u 

and V .  To obtain the se ries  c o n n ec tio n , begin by deleting the edge pi from Gi and 

the edge pa from G2 ’, then identify and U2 as the vertex u. The series connection is 

completed by adding a new edge p joining ui and V2 . To illustrate these definitions, 

we offer the following examples.

BG1

p

E F

P(G .̂ ) S(G^. G2 )

Figure 6: Parallel and series connections of graphs.
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The graphs of the parallel and series connections of Gi and G2 with respect 

to the edges pi and p2 will be denoted respectively by P{{Gi;pi ) , {G2;p2)) and 

5 ((G i;p i) , (G2;P2))- The connecting edges are usually arbitrary and so an abuse of 

notation allows us to write f  (G i,G 2) and S{Gi ,G 2)-

It is easy to  see tha t the series connection of two cycles remains balanced. This 

result is immediate from the description of series connection.

P rop osition  29 The series connection o f On and Cm is balanced.

Proof: From the definition of series connection of two graphs, it is obvious that 

S{Cn,Cm) is isomorphic to Cn+m-i- Hence the series connection is balanced, □

A base poin ted  m atroid  M  is a pair (M{E) ,p)  with p Ç. E.  The parallel 

con n ection  of two base pointed m atroids may be described cryptomorphically in 

term s of their circuits or closed sets.

P rop osition  30 ([24]) Let and (M2 ,p2 ) be two matroids defined on the
ground sets E{, i = 1,2, neither o f whose basepoints p, is an isthmus. Then the 
parallel connection o f Mi and M 2 can be specified in the following ways:

•  Circuits o f the parallel connection:

{C  : C  is a circuit o f M i or M 2} U {Cj U C2 ’ Ci p is a circuit o f M i, and 
<?2 W p is a circuit 0/ M 2 }.

•  Closed sets o f the parallel connection:

{K  : K  r\ E l is closed in M i and K  fl E 2 is closed in M 2}.

•  Rank function o f the parallel connection fo r  A, Ç Mi, i = \ or2:

{  PM,  (Ai Up) + PM2(^2 u p) -  1 i f  P M i  (Ai Up) = p M i i A i )  

pp{Ai  U A2) =  I f or i  = I o r 2
[ Pm,{Ai) + pM2{A2) otherwise.

(In particular, for any closed set K  o f the parallel connection,

p p { E )  = p m , { e  n  E l )  p m 2 { K  n E 2 )  — p p { E  n {p}).
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If M \ and M 2 are two matroids whose ground sets meet in a single element p, 

then it is convenient to  denote the parallel connection by f  (Mgipz)) and

the series connection, which is defined below, by 5 ((M i;p i) , (M 2;P2)). If the context is 

clear or if the choice of p  is arbitrary we will use the notation P (M i, M 2) or 5 (M i, M 2).

Series and parallel connections are dual operations, related by the following the

orem.

T h e o re m  31 ([17]) Let Mi and M 2 be matroids with basepoint p. Then

5(Mi,M2) = [P(M;,M*)r

and
F(Mi,M2) = [5(M;,M*)r.

The operation of parallel connection does not always preserve balance. To see this 

the reader is asked to show tha t P{U2,7,U 2,z) is not balanced. We begin to explore 

when balance can be preserved by considering uniform matroids.

T h e o re m  32 The parallel connection o f two free matroids is balanced.

Proof: We will show that the parallel connection of two free matroids is free; once 

this has been accomplished, Proposition 14 will give the theorem. Let M% and M2 be 

free matroids; hence the parallel connection P (M i,M 2) contains no circuits. □

The next result generalizes when the parallel connection of two balanced matroids 

preserves balance.

T h e o re m  33 Let r < n < m-̂  then the parallel connection P(I/r,n, f^r.m) is balanced 
i f  and only i f  m  < ;£j-(n — 1).
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To see th a t Theorem 33 is not trivial, the reader should try  showing tha t the parallel 

connection of two n-point lines is balanced.

The proof of the Theorem 33 relies heavily on the characteristics of closed sets of 

parallel connection.

L e m m a  34 The closed sets o f P{Uk,n, Ur,m) are Uij fo r I < k + r —2, Ur,m © f/i,/ fo r  
I < k — 2, Uk,n © Ui,i fo r  Ü <  r  — 2, and the entire parallel connection.

Proof: Let M \ =  Uk,n and Mg =  Ur,m and P  =  P{Mi ,  M 2). Let K  = K ^ U  K 2 be a 

closed set in P  such tha t K i = K  D M \ and K 2 = K  C\ Mg. Throughout this proof 

we assume t  < k and s <  r. By Proposition 13 we know K i is isomorphic to either 

Ut,t or Uk,n', likewise K 2 is isomorphic to  either Us,s or Ur,m.

l{ p ^  K  then it is obvious tha t K i =  Ut,t and K 2 =  Ua,a- Hence the union of 

K i  and K 2 is disjoint and equivalent to the direct sum; therefore K  =  Uij for some 

I < r + k — 2.

On the other hand, let p E K; then there are four case to consider, arising from 

the following: K i =  Ut,t or Uk,n, and K 2 — Ua,a or Ur,m.

Case a: If K i =  Ut,t and K 2 =  Ua,s, then the union of K i and K 2 is isomorphic 

to Uij for some / <  r  +  ^ — 2.

Case b: If K i  =  Uk,n and K 2 =  f/r.m, then K  =  P.

Case c: If K i = Ut,t, K 2 — and K i fl Ü'g =  p, then K  can be written as the 

disjoint union {K\ — p) Ü K 2 . Since K \  is free and closed in M i, we know K i — p is 

also free and closed in M i. Thus K  =  © Ur,m) for t < k.

Case d: Let K \ =  Uk,n and ÜTg =  The proof of this case is left to the reader 

to check since it is similar to the argument in case c. O
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Now we have the necessary tools to prove Theorem 33.

Proof of Theorem 33: The result is almost immediate in the “only i f ’ direction. Let 

P  =  P{Ur,n, Ur,m) he balanced. From Proposition 30 it is easy to see the density of P  

is • The assumption tha t P  is balanced implies that all submatroids H  oi P  have

density at most ^ 2 7 ^  • Consider the subm atroid Ur,m'i the density of this subm atroid 

m ust satisfy d{Ur,m) =  y  <  Expressing this inequality as an upper bound for

m gives the desired inequality:

m <  1).

For the converse, we rely on Lemmas 34 and 10; therefore it is only required tha t 

we show the closed sets have density at most • Let K  he a. closed set of P. We

will consider the four possible forms of closed sets described in Lemma 34.

Case a: Let K  = Ui,i for I <  2r — 2; Since d{K) = 1, it is necessary to show 

1 <  Since r  <  n <  m, we have 2r <  n +  m. Thus 2r — 1 < n  +  m — I, as

needed.

Case b: In this situation we have K  = P  and the inequality is obvious.

Case c: Let K  =  ® Ur,m) for / <  r  — 2. It will suffice to show d{K) = <

"Ir"-!"- T^be assumption gives

rm  — m  < rn — r

and

rm  — m +  rm  +  2rl — I < rn — r -{■ rm  +  ml  + nl — I 

since r < n < m.  Thus, by observing

2r(m  +  /) — (m +  /) <  r(m  +  n — 1) +  /(n +  m — 1)
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we see th a t

(2r — l)(m  + I) < {r + l){m +  n — 1), 

and the  desired inequality is obtained.

Case d: Let K  = (Ur,n ® t//,/) for / < r  -  2. The proof is left to the reader since it 

is similar to the one in case c.

This completes the proof of Theorem 33. □

Recall tha t the operations of taking series and parallel connections are dual to 

one another; also the dual of a balanced m atroid is balanced. Using these facts we 

are able to establish the following result.

C o ro lla ry  35 Let r < n  < m; the series connection o f Un-r,n and Ujn-r,m is balanced 
i f  and only i fm  < ^ { n  — 1).

Before Corollary 35 can be proved, we need to establish a fact about duals of 

uniform matroids.

P ro p o s it io n  36 The dual o f the uniform matroid U r,n  is the uniform matroid U n -T ,n -

Proof: Consider Ur,n- The bases of Ur,n are all the r-element subsets of an n-element 

set E .  Hence, B * { U r , n )  consists of all the (n — r)-element subsets of E .  Thus, =  

U n - r , n .  □

Now using Theorem 31 and Theorem 24, the proof of Corollary 35 is immediate 

from Theorem 33.

7 Final Remarks

The theory of balanced m atroids is relatively new and provides the researcher with 

many interesting facets to consider. A few conjectures and problems have been men-
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tioned in the exposition (see pages 16, 18 20 21). We would like to conclude with 

some remarks which lead to interesting areas which could point to  further research.

We were particularly interested in finding classes of m atroids which are balanced 

or strictly balanced. Of course, there are many classes of matroids which were not 

considered. For example, the interested reader might consider M (W „), the rank-n 

wheel, W ", the rank-n whirl, or the Pappus and non-Pappus matroids, to suggest a 

few.

We were also interested in determining how specific constructions or operations 

affect the balance of a m atroid. There is a wealth of unanswered questions in this 

area.

The various articles cited in this thesis can be used to find direction to a  variety 

of research opportunities focusing on the probabilistic method, threshold functions 

and their relationship to  balanced matroids.

The main focus of this thesis is m atroid theory; for those interested in graph 

theory, similar questions can be asked and explored for balanced graphs. There are 

also many closely related topics which were not discussed. Slight variations of the 

definition of balanced graphs lead to closely related ideas which have been considered 

by various authors.

Strongly balanced graphs have been researched by Rucinski and Vince [18] as 

well as Veerapandiyan and P. Ramachandran in [22]. For a  nonempty graph G, 

define d*{G) = Such a G is s tro n g ly  b a la n c e d  if d*{H) < d*{G) for every

nonempty subgraph H  of G. It has been shown tha t the following classes of graphs 

are strongly balanced: maximal planar graphs, maximal outerplanar graphs, and 

maximal acyclic graphs.

Another closely related idea is tha t of A:-balanced graphs. The concept of k- 

balanced graphs was introduced by Veerapandiyan, Ramachandran and Arumugam [23].
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Let & be a nonnegative integer. For any graph G with |V(G)j >  k, let dk{G) =  

The graph G is fc-balanced if |F (G )| > M ÿ li and dk{H) < 4 (G )  for every 

subgraph H  oi G with \V{H)\ > k. Thus, a 0-baIanced graph is simply a balanced 

graph and a 1-balanced graph is a strongly balanced graph.

There is an abundance of potential research problems in the area of balanced 

graphs and balanced matroids. The concepts introduced above will provide a natural 

launchpad for the interested reader.
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