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Cripe, Greg M.S., July 2003 Computer Science
Bistability of the Needle F ctW/n the Presence of Truncation Selection
Director: Alden Wright

It is possible for a genetic algorithm (GA) to have two stable fixed points on a single-
peak fitness landscape. This paper studies a gene pool GA model with mutation and
the truncation selection operator. For the needle function, the fixed point equation
reduces to a single variable and the stability of the fixed points can be explicitly
determined. We show that bistability can occur for certain parameter values of the
model. When bistability does occur, it may happen that the GA will spend long
periods of time near the non-optimal fixed point.
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Introduction

This paper uses the gene pool GA model to investigate bistability. Bistability occurs
when the GA has two stable fixed points even though the fitness function has a single
peak. It is only known to occur when the GA includes recombination, mutation
and selecfion. When there is bistability, depending on the initial distribution of the
population, the infinite population GA model may converge to a distribution which
has a very low probability for the optimum string.

Bistability was first discovered by Boerlijst, Bonhoeffer, and Nowak [1] in the
context of viral quasi-species and the AIDS virus. Other papers on bistability include
Ochoa and Harvey [4], Wright, Rowe, Stephens,and Poli [10], and Wright [9]. The
last citation has a more complete review of the literature in the area.

For the needle fitness function, Wright, Rowe, Stephens and Poli [10] show how
the gene pool GA model can be reduced to a polynomial equation in a single variable.
The authors show that bistability can occur for certain parameter values.

This paper closely follows Wright et al [10]. We extend their work by showing
that bistability also exists when truncation selection is used instead of proportional
selection. The proof of existence of bistability is substantially different in the case of
truncation selection. The equation for bistability is derived and is analyzed to find
the fixed points and determine their stabilities. The regions of the parameter space
in which bistability can occur are described. Results for the gene pool recombination

are compared with a finite simulation of the two-parent recombination GA. As in
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Wright et al, we show the gene pool GA model to be a reasonable approximation for

the corresponding two parent GA.

Genetic Algorithms

A genetic algorithm (GA) searches for a solution by an approach that is loosely
based on simulated evolution. GAs search a space of hypotheses to identify the best
hypothesis. The best hypothesis is defined to be the one that optimizes a numerical
measure of the problem. This measure is referred to as the fitness.

In general, the search space is too large to perform an exhaustive search. The
GA guides the search process by starting with a collection of hypotheses, called a
population. The GA then iteratively generates successive populations until some
stopping criteria is met. Most GAs use a combination of three operators during this
iterative process.

Selection : On each iteration all of the current members of the population, called
individuals, are evaluated using the fitness function. Based on their fitness, a certain
number of individuals are selected as the basis for creating new individuals in the
population. The selection may be probabilistic or deterministic. Common selection
schemes include proportional, tournament, truncation, and ranking. Part or all of
the current generation will be replaced with the newly created individuals. There are
many choices for replacement schemes.

Mutation : With some low probability, the genotype of an individual is slightly
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altered. For example, if the representation of the hypothesis is a binary string, the
genotype is mutated by flipping some randomly chosen bits.

Crossover : Typically, the crossover operator produces two offspring, called chil-
dren, from two selected parents by copying portions of the genotype from each parent.
This process is often referred to as two parent recombination (TPR).

Common crossover schemes for binary strings, in order from the least mixing
of bits to the highest recombination of bits, include one-point crossover, two-point
crossover and uniform crossover.

Gene pool recombination (GPR) is an alternative to TPR used in genetic algo-
rithms. An individual created by gene pool recombination is chosen from the distri-
bution determined by the whole population rather than from two parents. In other
words, gene pool recombination produces an even greater recombination of bits than
uniform crossover since the “parents” are the entire population instead of only two in-
dividuals. Gene pool recombination was introduced to the evolutionary computation
community by Syswerda [5].

In order to simplify the computations performed in this paper, we use an infinite
population model to describe the random processes. An infinite population model
characterizes the GA as the population size goes to infinity. Instead of an actual
distribution as in the finite model, we now consider the limiting behavior of the
distribution as the population size goes to infinity.

The infinite population GPR model can serve as an approximation for the finite
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population GA. If the current population is p, we choose the next population by
sampling from the probability distribution resulting from applying one iteration of
the infinite gene pool recombination model GA to p. If the population is of size N,
we simply make N independent samples from this distribution.

For further reference, the reader should consult Vose [6]. Vose discusses his exact
Markov chain model and describes how the infinite population model relates to the

finite population model in an exact model.

Notation

The search space, 2, is the set of all binary length strings of length £. A popula-
tion (a multi-set of Q) is represented as a population vector of length 2° indexed
by €. For example, if £ = 2 and the population as a multi-set is {00,01,01,11},
then the corresponding population vector is [}, 3,0, 3. Each component of the pop-
ulation vector is a relative frequency and is therefore a natural representation for
infinite-population models. All population vectors are contained in the simplex
A={z:3 oz;=1and z; > 0 for all j}.

A schema is a type of subset of {2 denoted by a string from the alphabet {0,1,*}.
The symbol * represents a don’t care symbol. For example, the schema denoted by
1*0 represents the subset { 100, 110 }. The frequency of the schema 1*0 is the sum
of the frequencies of the strings { 100, 110 }.

The number of ones in a binary string j is denoted by #7. We define £ to be the
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set of strings 7 such that #j = 1. For a given string k, we define Ly to be the subset
of £ such that for j € £, the bitwise AND of j and k, denoted j ® k, is not the all
zero string.

Fork € ¢, mg“) is the frequency of the schema which has a zero in the bit associated
with k. Likewise zgk) is the frequency of the schema with a one in the bit associated

with k. For example with £ = 3, 29'° = 0,0 + Zo11 + Z110 + Z111 and z{° = zggo +

ZTop1r + Z100 + T101-

Linkage Equilibrium and the Walsh basis

The Walsh matrix W is a 2¢ by 2¢ matrix defined by W;; = (—1)#(®). The Walsh
matrix is symmetric and W1 = 27W. If z is a population vector, then the Walsh
transform of z is Wz and is denoted Z. Note that this definition is slightly different
than the Walsh transform given by Vose [6]. If A is a 2° by 2° matrix, then WAW is
the Walsh transform of A and is denoted by A.

A population is said to be in linkage equilibrium if the frequency of each string
is the product of the marginal distributions (1-schema averages) corresponding to
each allele of each locus. To calculate the frequency of any string for a population at
linkage equilibrium, simply take the product of the frequencies of the allele at each
bit. For example, if £ = 3, then z;01, the frequency of the string 101, is the product
of the frequencies of the schemas 1**, *0*, **1.

For the infinite population model, GPR transforms any population into a linkage
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equilibrium population. Geiringer’s [2] theorem relates GPR to linkage equilibrium
by showing that linkage equilibrium, in the infinite population model, is the limit of
repeated applications of two-parent recombination.

Using a linkage equilibrium assumption simplifies the model by allowing us to
track only the £ allele frequencies instead of all the 2¢ strings.

The following four lemmas are found in Wright, Rowe, Poli and Stephens [10].
Lemma 1. For any population vector x and any k € L,
z® = %(1 +44) and 2 = %(1 — ).
Proof. The lemma. can be proved by comparing the definition of x§k) with Zj. O

Lemma 2. If population z is in linkage equilibrium, then for any k € Q2

£k== Il jy.

JEL,

A similar result is proved as Theorem 10.9 of Vose [6] and Theorem 3.5 of Vose

and Wright [7].

Lemma 3. If population z is in linkage equilibrium, then

zo=2""[J(1+2;).

JjeL

Proof. This simply rewrites Lemma 1 using the definition of linkage equilibrium. [J

Lemma 4. Ifz € A, then | I |< 1 for all k € Q.
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Proof. The simplex A is the convex hull of the standard basis vectors of RY. The
Walsh transform of these vectors form the columns of the Walsh matrix W whose

entries are 1. Therefore ) is a convex combination of 1 and -1. O

The Gene Pool Model

We describe the infinite population gene pool GA. The string length is assumed to

be 4.
1. Choose a random population z.
2. Calculate the order-1 schemas :vék) foreachk € £

3. Construct a new linkage equilibrium population with the same order-1 schema

k
averages 338 )

4. Apply selection to this population.
5. Apply mutation to the resulting population.

6. Return to step 2 if termination criteria is not met.

The reader should note that step 3 represents gene pool recombination.
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Gene pool recombination and Mutation

Define the function M : A — A by

e Tk if ke LU{0}
M(m)k =

[ljec, £ otherwise.

Lemma 0.2 shows that M models GPR and therefore m is in linkage equilibrium.
Let U represent the mutation operator. The following lemma, taken from Wright,

Rowe, Poli and Stephens [10], shows how to compute mutation in the Walsh basis.

—————

Lemma 0.5. U(z), = (1 — 2u)ii for k € L.

Truncation Selection Method

In this paper we will use the truncation selection method. Truncation selection is a
rank-based elitist method. If the population size is of finite size N and the truncation
fraction is 0 < T < 1, we define a selection heuristic on the current population p as
follows. Without loss of generality, we assume that the search space is ordered so that
fo < fi < ... < foe_;, where f; denotes the fitness of individual j. The truncation

selection heuristic F is defined in Wright and Agapie [8] by

f

0 fT< Zk<j Pj

_ T— i Pi :
f(p)k—< ___&‘Elﬁ. 1f2k<jpj£T<szjpj

SR
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If the population is finite of size N, truncation selection is performed by taking NV
independent samples from the above distribution.

In the case that two or more distinct individuals have the same fitness, we consider
them to be members of one fitness class. The above selection heuristic is modified
as followed. After the distribution is calculated the fitness classes with more than
one member are split into separate classes by dividing their share of the distribution

proportionately.

Needle Function

The NEEDLE (needle in the haystack) fitness function assigns a fitness greater than
one to the string of all zeros and assigns a fitness of one to all other strings.

Let z = z(t) denote the current population, and let z = M(z). Then zp =
27 [1,ec(1+2;) is the probability of the all-zeros string in z. Let y = F(z) denote the
population produced after truncation selection is applied to z. The all-zeros string,
Yo, will then appear with frequency min(1, ), where T is the truncation fraction

selected from z. Any non-zero string, y;, with j > 0 will appear with frequency

=5 (52) - (125) 0 ). ok £y s = 9 (22).

1—zo 1—xz¢

We now define (G, the operator that represents steps 3,4 and 5 in our model.

G2 =U o F o M(2);
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10

Then

E?’(Bk = (1 —2u)J% by Lemma 0.5

= (1-2u)(1 — 2¢{) by Lemma 0.1

= (1-2p) (1 - 2" G;—-—%))
= (1—2p) (1—(1_3*) G::?ﬁ)) '

e —

If yo = 1 then G(z), = 1 — 2u. This will be a fixed point if zo > T, that is,

zo =27 J(1+ %)

JeL

=2 +1-2p)
jecl

=(1—pw

>T.

If o # 1 then

G(2), = (1 — 2u) (1— (1 2) (f%))
o T‘Hje (1+2j)/2
= (1-2p) (1 e (T(l - Hj:c(l + éj)/2))) |

In this case, the recurrence equation leads to the fixed point equations:

T—T1.cp(1+2;)/2
(1 —2u) (1 - (T<1-[ff:,;(1+5j)/2)))
T—I1;cc(142;)/2
1—(1—2p) (T(l—[fjec(1+2j)/2))

-

k=

The right hand side of this equation is the same for all k. Therefore, if Z is a fixed

point of G, then 2 is symmetric in the sense that all Z; for k € £ are equal.
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11

If the GA model is started with a symmetric population, symmetry will be main-
tained. In this case, the recurrence equation can be written in terms of the variable
w7

o (1 —2u) if T <27¢(1+w);
G(w) =

—2—¢ ur 4 .
(1= 2 (1= (1 ) ) otherwise.

e ——

The fixed points occur when G(w) = w, equivalently when

(1—2u) if T <271 +w)t;
w = (1)

—2=2(110)E .
(1—2u) (1 —(1—w) Tfl_22-,((11}13)£)) otherwise.

Solving (1) numerically using =8, pu=.1, and T=.4, we find w = .02869 and
w = .7222. A third equilibrium occurs at w = 1 — 2u = .8. A graph of G(w) = w is
shown is figure 1. We see the three fixed points; the first and third fixed points are
stable and the middle fixed point is unstable.

We now investigate the stability of the fixed points. If g : RY — R¥ is any

differentiable function, the differential of g is the N x N matrix defined by

dg:(x)
(dgx)i,' = .
J B:x:j

It is well known for a discrete model that if all of the eigenvalues of dg,, have modulus
less than 1, then z is an asymptotically stable fixed point of g. We will show that the
maximum modulus eigenvalue of dG is equal to the derivative of the single-variable
function G defined in equation 1. Therefore the fixed points can not only be found by
solving a single-variable polynomial but additionally their stability can be determined

by taking a single variable derivative.
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12

Lemma 0.6. Let P = 27‘[[,.,(1 + 2), P; = 27 [Liep\(j3(1 + %). Then forj # k

and o < T,
0G(), (1 —2m1-2) (% a pj)
8z (1— P)2
08G), _ (1-20(1-2) (B =F) (1-2w)(1-F)
0% (1= Py 5

Furthermore both partial derivatives are nonnegative for 0 < p < 1/2 and 2 in the

simplex.

Proof. Note that 637?: = P; and that z¢ = P < T. The computation of the partial
derivatives is straightforward. For £ in the simplex, —1 < 2; < 1, showing P and P}

are nonnegative. O

Lemma 0.7. Let P = 27%(1 + w)t, P’ = 27%(1 4+ w)*~!. Then the derivative of the

symmetric G is given by

de 0 if T < 271 + w)t ;

= . (2)
1~24) (1—w) ( B~ P’ —2u)(1-B
(=20 -w)(§ ¢ 2{‘1(; ) otherwise.

i=P)" +

The following lemma comes from Wright, Rowe, Poli and Stephens [10].

Lemma 0.8. Let A be an £ x £ matriz where all of the diagonal entries are equal to
d and all of the off-diagonal entries are equal to e. Then the eigenvalues of A are

d+(2-1)e with multiplicity 1 and d-e with multiplicity £-1.

Theorem 0.9. At a symmetric point 2 where 2, = w for all k € L,

dG _ 9G(), 0G(2),
dw = on TV
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Thus the largest modulus eigenvalue of G5 is equal to gg—.

Proof. When zg > T all of the derivatives are zero. The theorem follows by comparing
the formulas in Lemma 0.6 and Lemma 0.7. Lemma 0.6 shows that the entries of
G; are nonnegative, and Lemma 0.8 shows that its largest eigenvalue is the one with

multiplicity 1 given by the right hand side of the formula in Theorem 0.9. |

Since the largest modulus eigenvalue of dé@ is equal to the derivative of the
single variable function G, the stability of the fixed points in the cube [—1,1]¢ is
the same as the stability of the fixed points in the one variable space of symmetric
populations.

We have shown that we can find the fixed points of the model by solving a single
variable polynomial of degree £ + 1 and furthermore, the stability of the fixed points

can be determined from this equation.

Explorations of Parameter Space

We begin to explore the parameter space by finding a relationship between T, and w,
when w is a fixed point. Solving equation 1 for T, in the case T' > 2~¢(1 + w)*,we find

—(1 = 26)(1 — )
(w—1+4+2u~ 255‘5)

T(w) = (3)

That is, we define T(w) to be the value of T for which w is a fixed point.

Lemma 0.10. 2o = 2741+ w)t < T(w) for 0 < w < 1 — 2u and zo > T(w) for

1>w>1—2u
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Proof.

zo(1l — w — 2u + 2uw) + 3 (w — 1 + 2u + 2uw)
—wTy + To — 2uzo + 2uw ’

T(w) —xo =
0 <w<1-—2u, the denominator,
zo{l — w) — 2u(ze — w) > zo2u — 2uzg + 2uw = 2uw > 0.

(1 — 2u) > w implies (1 — w — 2u) > 0. The numerator is therefore also greater than

zero since o < 1.

For w > (1 —2y), &0 > 2¢ > 4L, O
Lemma 0.11. T(w) > 0 for O < w < 1 — 2u.
Proof. The numerator and the denominator are both negative for w in this range. O

Lemmas 0.10 and 0.11 show that the fixed points can occur in the region 0 < w <
1—-2u.

Recall that if T < (1 — u)*, then one fixed point occurs at w = 1 — 2. In order for
bistability to exist, there must be two additional fixed points, both less than 1 — 2u.
These are solutions to equation 3. Figure 2 shows the plots of T'(w) for various values
of u. Bistability occurs for a fixed value of T if a horizontal line drawn at height
T intersects the curve three times. The plot of T(w) ends with a vertical line at
w=1-—2u.

Figure 3 shows the progression from three fixed points to one fixed point when T

is increased. A bifurcation occurs when T is approximately .43. When T = .4 there
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are three fixed points, one near zero, one at approximately w = .5, and one at the
critical value of w = 1 — 2u = .8. When T" = .43 the middle fixed point merges with
the. fixed point at w = .8. When T is further increased to .45, the last fixed point has

disappeared completely, leaving only the fixed point near w = 0.

To aid in the understanding of T'(w) we differentiate equation 3 and set the result

equal to zero. This gives
0= —fw?+ (f+ 10— Dw+ (z0—1). (4)

The reader should note that since equation 4 is independent of y, the minimums in

figure 2 all occur at the same value of w.

Our next task is to show the conditions under which 7T has a local minimum in

the region 0 < w < 1 — 2.
Lemma 0.12. For equation 4, w = 1 s a root of multiplicity at least 2.

Proof. Substituting in w = 1, equivalently z¢ = 1, into the equation, we see that

w =1 is a root. Differentiating the equation gives
— 2w+ L+ 271+ w) + w2 (1 +w) - 142725 = 0.
Substituting in w = 1 gives the desired result. O

Lemma 0.13. -j—TJ = 0 has ezactly one solution between 0 and 1 — 2u when

1—p(1—2p) —p—(1-p)t <o
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Proof. The right hand side of the equation 4 can be written as

¢
4
~tw? + tw+27¢ (w+f’w2+wz (k)wk) —w

k=2
_ e —1) Ny
e 2 kY _
+ 2 (1+€w+—-—————-—-——2 w+g(k)w) 1
£ V4
o=t k -e k
2ty (w42t Y ()
k=2 k=3
+(2-*’e I 1)) 2

++27 —14+27%w+ 270 - 1.

The w* terms, k > 2, have positive coefficients. The coefficient of the w? term is
negative. This cé.n be seen, for example, by plotting the coefficient with ¢ as the
independent variable. The coefficient of the w term is positive and the constant term
is negative. By Descartes rule of signs there are three or one positive roots of the
equation. We have already seen that two of the roots are w = 1. Therefore there is

another positive root. We now show that this root is less than 1 — 2u.

dT (1 — 2
750 = pi( 2 :
~ 2p

which is less than zero when p < %

—1(20p% — 8+ 1— p)(1 — p)f — (1 — p)+!
2 #(1~2p)(1 = p)

ar
w12 =

which is greater than zero when 1 — (1 — 2u) — u — (1 — pw)**! < 0.
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In this case, a solution to % = 0 and likewise a root to equation 4, exists for

O<w<1l-—-2u .

Let w, be the critical point of T’ between 0 and 1 — 2. Then T'(w,) is a minimum
since the first derivative of T passes from negative to positive. Since w, is the only
critical pdint, it must be a global minimum in the interval 0 < w < 1 — 2u.

For the parameter values in figure 2, we calculate that w, = .1758. If .1758 <
1—2u, or u > .4121 then T will not have an interior local minimum. We check that
the hypothesis in Lemma 0.13 is not satisfied. 1 —&(1 —2u) —pu— (1 —p)**1 >0

when u > .4121. We also should note that the minimum string length that satisfies

the hypothesis is £ = 4.

Lemma 0.14. In the case T < (1 — p)t, if we < 1 — 24, equivalently if
1—fu(l—2p) —p—(1- ) <0,
then there exists a value of T that gives bistability.

Proof. By Lemma. 0.13 there exists horizontal lines that will cross the graph of T'(w)

more than once. Each place of intersection represents a fixed point. Another fixed

point of G exists at w =1 — 2u. O

We also note that bistability exists if T'(w.) < T < (1 — u)’.

It remains to determine the stability of the fixed points.

Lemma 0.15. G(w) >0 for0 <w <1.
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Proof. If T > x4

o=ty _ —£
G(0) = (1 — 2u) (1 - at T2(1 )_ 2—7;)+ 2 )
2-¢(1 - T)
27¢(1 — 2~
> (1 — 2u) (1 — 2_£E1 — 2_1_,;)
=0.

If T < zo then G(0) = 1—2u. By Lemma 0.6, g > 0, and the conclusion follows. [J

Theorem 0.16. If0 < u < 1/2, then there can be at most three fized points for G.
When there are three fized points, they are stable, unstable and stable when ordered
by w values. If there are two fized points, then a small perturbation of either T or u

can give one fized point.

Proof. Since -j—-g > 0 then at a fixed point where the graph crosses from above to
below the slope must be less than one and therefore must be stable. A fixed point
where the graph crosses from below to above must have slope greater than one and
is unstable.

Since G(0) > 0, when there are three fixed points, the graph must cross the

diagonal from above to below, then below to above.

O

We have exactly characterized the fixed points for the gene pool model on the
NEEDLE fitness function. For fixed values of T" and u the location of the fixed points

can be found using equation 1.
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For a fixed value of u the range of values of T" which give bistability can be found.
For example see figure 4. The area between the two curves is the region in (4, T)
space where bistability occurs. The top curve is T = (1 — u)® and the lower curve is
found by solving -j_% = 0 to find w, and then taking T(w,).

For a fixed value of T and ¢ the range of i which give bistability can be found. This
can be seen in figure 5. This figure shows the region in (¢, 1) space for which bistability
occurs. As noted before, a string length of 4 or more is needed for bistability. The
top curve of each pair in this figureis g = 1 — Tt The bottom curve of each pair was
found for each £ by solving T(w,.) =T for u for T = .1,.3, .5, .7.

Likewise for a fixed value of 1 and ¢ the range of T" which give bistability can be
found. This can be seen in figure 6. The top curve of each pair is T = (1 — u)%. The

bottom curve of each pair is found by finding T'(w.)-

Empirical Results

Simulations were performed to see if the fixed points predicted by the infinite gene
pool model occur in finite populations GA runs. The simulations were run using
a program written by Dr. Alden Wright, J.D. Zeiler, and Jennifer Parham. The
results are given in the table below. In the simulations we used truncation selection,
the needle fitness function, and a string length of 15. The simulations were run for
twenty generations. The average zy were calculated by taking the mean of the last

10 generations. The initial population was generated by using an allele probability
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equal to the predicted steady state allele distribution. The populations did stay close

to the predicted value of zq for all 20 generations. We also note that the averages are

close to the predicted values even when the population size is relatively small.

7 T | Crossover | Population Size average T Model Prediction
1 .15 | uniform 10000 .00003, .20571 | .000031, .20589
1 .15 | uniform 100 .000, .235 .000031, .20589
1 .15 | genepool 10000 .00003, .20551 | .000031, .20589
1 .15 | genepool 100 .000, .192 000031, .20589
.05 .15 | uniform 10000 .00003, .46335 | .000031, .46329
.05 .15 uniform 100 .000, .451 .000031, .46329
.05 .15 | genepool 10000 .00006, .46093 | .000031, .46329
.05 .15 | genepool 100 .000, .473 .000031, .46329
.05 2 uniform 10000 .00002, .46117 | .000031, .46329
.05 2 uniform 100 .000, .445 .000031, .46329
.05 .2 | genepool 10000 .00001, .46451 | .000031, .46329
.05 2 genepool 100 .000, .442 .000031, .46329
Conclusion

In this paper we have shown that an infinite population GPR model closely ap-

proximates the finite population two-parent uniform crossover GA when the fitness

function exhibits a single peak. Under the recombination model, the complicated
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dynamical system of the finite population GA becomes tractable. In particular, we
can explicitly calculate the fixed points and determine their stability by examining a
single variable polynomial function. Finite population simulations suggest that TPR
and GPR produce bistability. The fixed points produced in the simulations closely
match those predicted by the model.

Furthermore, we have demonstrated that the infinite population GPR model cor-
rectly predicts the presence of bistability in the finite population GA. We have derived

explicit formulas that relate the parameter values under which the bistability phe-

nomena occurs.
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Figure 2: Plots of T for various u with £ = 8
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Figure 3: Plots of G for various T with p=.1land £=8
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Figure 4: Region of bistability in (u,T) space for £ = 8
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Figure 5: Upper and lower critical mutation rates for different T values.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

24



— u=.05

string length

Figure 6: Region of bistability for different (¢,7) space.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

25



Bibliography

[1] Boerlijst, M.C., S. Bonhoeffer, and M.A. Nowak, 1996. Viral quasi-species and

recombination. Proc. Royal Society London B 263, 1577-1584.

[2] Geiringer, H., 1944, On the probability of linkage in medelian heredity. Annals

of Mathematical Statistics 15,25-27.

[3] Miihlenbein, H. and H.M. Voight. Genepool recombination in genetic algorithms.
In LH. Osman and J.P. Kelly (Eds), Meta Heuristics: Theory and Applica-

tions,Boston, London, Dordrecht, 1996. Kluwer Academic Publications. 53-62.

[4] Ochoa, G. and I. Harvey, 1997. Recombination and error thresholds in finite
populations. Foundations of Genetic Algorithms 5 San Mateo, 245-264. Morgan

Kauffman.

[5] Syswerda, G., 1993. Simulated Crossover in genetic algorithms. Foundations of

Genetic Algorithms 2, San Mateo. Morgan Kaufmann.

[6] Vose, M.D., 1999. The Simple Genetic Algorithm: Foundations and Theory.

Cambridge, MA: MIT Press.

26

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



[7]

[9]

[10]

27

Vose, M.D. and A.H. Wright 1998. The simple genetic algorithm and the Walsh

transform: Part II, the inverse Evolutionary Computation6(3),275-289.

Wright, A.H., and Alexandru Agapie, 2001. Cyclic and Chaotic Behavior in Ge-
netic Algorithms. In Lee Spector, Erik D. Goodman, Annie Wu, W. B. Langdon,
Hans;Michael Voight, Mitsuo Gen, Sandip Sen, Marco Dorigo, Shahram Pezeshk,
Max H. Garzon, Edmund Burke(Eds), Proceedings of the Genetic and Evolution-
ary Computation Conference (GECCO 2001), San Mateo: Morgan Kauffman,

718-724.

Wright, A. H., J.E. Rowe, and J.R. Neil, 2002. Analysis of the simple genetic
algorithm on the single-peak and double-peak landscapes. Proceedings of the

Congress on Evolutionary Computation 2002. http://www.cs.umt.edu/u/wright

Wright, A. H., J.E. Rowe, R. Poli, and C.R. Stephens, 2003. Bistability in a Gene
Pool GA with Mutation. In J. E. Rowe, K. DeJong, R. Poli(Eds), Foundations

of genetic algorithms 7 (FOGA-7), San Mateo: Morgan Kauffman.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.


http://www.es.umt.edu/u/wright

	Bistability of the needle function in the presence of truncation selection
	Let us know how access to this document benefits you.
	Recommended Citation

	tmp.1459884606.pdf.u6qUO

