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C ripe, Greg M.S., Ju ly  2003 

B is ta b ility  o f the Needle Fppcti/i 

D irector: A lden W righ t

Com puter Science

n in  the Presence o f T runcation Selection

I t  is possible for a genetic a lgorithm  (G A ) to  have two stable fixed points on a single­
peak fitness landscape. Th is paper studies a gene pool G A  model w ith  m uta tion  and 
the trunca tion  selection operator. For the needle function , the fixed p o in t equation 
reduces to  a single variable and the s ta b ility  o f the fixed points can be e xp lic itly  
determ ined. We show th a t b is ta b ility  can occur fo r certa in  param eter values o f the 
model. W hen b is ta b ility  does occur, i t  may happen th a t the G A  w ill spend long 
periods o f tim e near the non-optim al fixed po in t.
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In trod u ction

T h is  paper uses the gene pool G A model to  investigate b is ta b ility . B is ta b ility  occurs 

when the G A has two stable fixed points even though the fitness function  has a single 

peak. I t  is only known to  occur when the G A includes recom bination, m uta tion  

and selection. W hen there is b is ta b ility , depending on the in itia l d is trib u tio n  o f the 

popula tion, the in fin ite  population G A model may converge to  a d is trib u tio n  which 

has a very low p rob a b ility  for the optim um  string.

B is ta b ility  was firs t discovered by B oerlijs t, Bonhoeffer, and Nowak [1] in  the 

context o f v ira l quasi-species and the A ID S virus. O ther papers on b is ta b ility  include 

Ochoa and Harvey [4], W righ t, Rowe, Stephens,and P o li [10], and W right [9]. The 

last c ita tio n  has a more complete review o f the lite ra tu re  in  the area.

For the needle fitness function, W righ t, Rowe, Stephens and Poli [10] show how 

the gene pool G A m odel can be reduced to  a polynom ial equation in  a single variable. 

The authors show th a t b is ta b ility  can occur fo r certa in  param eter values.

Th is paper closely follows W right et al [10]. We extend th e ir work by showing 

th a t b is ta b ility  also exists when trunca tion  selection is used instead o f p roportiona l 

selection. The p roo f o f existence o f b is ta b ility  is substan tia lly  d ifferent in  the case o f 

trunca tion  selection. The equation for b is ta b ility  is derived and is analyzed to  find  

the fixed points and determ ine th e ir s tab ilities. The regions o f the param eter space 

in  w hich b is ta b ility  can occur are described. Results fo r the gene pool recom bination 

are compared w ith  a fin ite  sim ulation o f the tw o-parent recom bination G A. As in
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W righ t et al, we show the gene pool G A  model to  be a reasonable approxim ation fo r 

the corresponding two parent GA.

G en etic  A lgorith m s

A  genetic a lgorithm  (G A ) searches fo r a so lu tion by an approach th a t is loosely 

based on sim ulated evolution. G As search a space o f hypotheses to  id e n tify  the best 

hypothesis. The best hypothesis is defined to  be the  one th a t optim izes a num erical 

measure o f the problem . Th is measure is referred to  as the fitness.

In  general, the search space is too large to  perform  an exhaustive search. The 

G A guides the search process by s ta rting  w ith  a co llection o f hypotheses, called a 

population. The G A then ite ra tive ly  generates successive populations u n til some 

stopping c rite ria  is met. M ost G As use a com bination o f three operators during  th is  

ite ra tive  process.

S e le c tio n  : On each ite ra tio n  a ll o f the current members o f the popula tion, called 

ind ividua ls, are evaluated using the fitness function . Based on th e ir fitness, a certa in  

number o f ind ividua ls are selected as the basis for creating new ind iv idua ls in  the 

population. The selection may be p robab ilis tic  or determ in istic. Common selection 

schemes include p roportiona l, tournam ent, trunca tion , and ranking. P art or a ll o f 

the current generation w ill be replaced w ith  the new ly created ind iv idua ls. There are 

many choices fo r replacement schemes.

M u ta t io n  : W ith  some low probab ility , the genotype o f an in d iv id u a l is s lig h tly
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altered. For example, i f  the representation o f the hypothesis is a b ina ry string , the 

genotype is m utated by flipp ing  some random ly chosen b its.

C ro sso ve r : Typ ica lly, the crossover operator produces tw o offspring, called ch il­

dren, from  tw o selected parents by copying portions o f the genotype from  each parent. 

This process is often referred to  as two parent recom bination (TP R ).

Common crossover schemes for b inary strings, in  order from  the least m ixing  

o f b its  to  the highest recom bination o f b its, include one-point crossover, tw o-po in t 

crossover and un ifo rm  crossover.

Gene pool recom bination (G PR) is an a lte rnative  to  T P R  used in  genetic algo­

rithm s. A n  in d iv id u a l created by gene pool recom bination is chosen from  the d is tri­

bu tion  determ ined by the  whole popula tion ra the r than  from  tw o parents. In  other 

words, gene pool recom bination produces an even greater recom bination o f b its  than  

un ifo rm  crossover since the “parents” are the entire popu la tion  instead o f on ly tw o in ­

dividuals. Gene pool recom bination was introduced to  the evo lu tionary com putation 

com m unity by Syswerda [5].

In  order to  s im p lify  the com putations perform ed in  th is  paper, we use an in fin ite  

popula tion model to  describe the random  processes. A n  in fin ite  popu la tion  model 

characterizes the G A  as the popula tion size goes to  in fin ity . Instead o f an actual 

d is trib u tio n  as in  the fin ite  model, we now consider the lim itin g  behavior o f the 

d is trib u tio n  as the popu la tion  size goes to  in fin ity .

The in fin ite  popula tion G PR model can serve as an approxim ation fo r the fin ite
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popu la tion  G A . I f  the current popula tion is p, we choose the next popu la tion  by 

sam pling from  the p rob a b ility  d is trib u tio n  resu lting  from  applying one ite ra tio n  o f 

the in fin ite  gene pool recom bination m odel G A  to  p. I f  the popu la tion  is o f size N ,  

we sim ply make N  independent samples from  th is  d is trib u tio n .

For fu rth e r reference, the reader should consult Vose [6]. Vose discusses his exact 

M arkov chain model and describes how the in fin ite  popu la tion  m odel relates to  the 

fin ite  popu la tion  model in  an exact model.

N o ta tio n

The search space, Q, is the set o f a ll b inary length strings o f length i .  A  popula­

tio n  (a m u lti-se t o f f i)  is represented as a popu la tion  vector o f length 2  ̂ indexed 

by For example, i f  ^ =  2 and the popula tion as a m u lti-se t is {00,01,01,11}, 

then the corresponding population vector is [ | ,  | ,0 ,  | ] .  Each component o f the  pop­

u la tion  vector is a re la tive  frequency and is therefore a n a tu ra l representation for 

in fin ité -popu la tion  models. A ll popula tion vectors are contained in  the sim plex 

A =  { i  : ^ 1 and X j> Q  fo r a ll j } .

A  schema is a type  o f subset o f Q denoted by a s tring  from  the alphabet {0 ,1 ,*}. 

The sym bol * represents a don’t  care symbol. For example, the schema denoted by 

1*0 represents the subset {  100, 110 }. The frequency o f the schema 1*0 is the sum 

o f the frequencies o f the strings {  100, 110 }.

The num ber o f ones in  a b inary s tring  j  is denoted by We define C to  be the
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set o f strings j  such th a t =  1. For a given string  k, we define Ck to  be the subset 

o f £  such th a t for j  E Ck the bitw ise A N D  o f j  and k, denoted j  ® k, is not the a ll 

zero string.

For k E i ,  is the frequency o f the schema which has a zero in  the b it associated 

w ith  k. Likewise is the frequency o f the schema w ith  a one in  the b it associated 

w ith  k. For example w ith  i  =  Z, =  Toio +  2 : 0 1 1  +  Xhq 4- X m  and =  æooo +  

2:001 +  x io o  4 -  2:101.

Linkage E quilibrium  and th e  W alsh  basis

The W alsh m a trix  W  is a 2  ̂ by 2  ̂ m a trix  defined by W ij  =  (— The W alsh 

m a trix  is sym m etric and W~^ =  2“ ^W. I f  a: is a popu la tion  vector, then the W alsh 

transform  o f x  is Wa: and is denoted x. Note th a t th is  de fin ition  is s lig h tly  different 

than  the W alsh transform  given by Vose [6]. I f  A  is a 2  ̂ by 2  ̂m a trix , then W A W  is 

the W alsh transform  o f A  and is denoted by A.

A  popu la tion  is said to  be in  linkage equ ilib rium  i f  the  frequency o f each string  

is the product of the m arginal d is tribu tions (1-schema averages) corresponding to  

each allele o f each locus. To calculate the frequency o f any s tring  fo r a popula tion at 

linkage equ ilib rium , sim ply take the product o f the frequencies o f the allele a t each 

b it. For example, i f  f  =  3, then x io i, the frequency o f the s tring  101, is the product 

o f the  frequencies o f the schemas 1 **, *0 *, **1 .

For the in fin ite  population model, G PR transform s any popula tion in to  a linkage
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equ ilib rium  population. G eiringer’s [2] theorem  relates G PR to  linkage equ ilib rium  

by showing th a t Unkage equ ilib rium , in  the in fin ite  popu la tion  model, is the lim it o f 

repeated applications o f two-parent recom bination.

Using a linkage equ ilib rium  assum ption sim plifies the model by allow ing us to  

track only the £ allele frequencies instead o f a ll the 2  ̂ strings.

The fo llow ing four lemmas are found in  W righ t, Rowe, P o li and Stephens [10].

L e m m a  1. For any population vector x  and any k G C,

4*^  ̂ =  ^ ( 1 1  ^k) and x[^^ =  i ( l  -  %&).

Proof. The lemma can be proved by com paring the de fin ition  o f 4^^ w ith  % . □

L e m m a  2. I f  population x  is in  linkage equilibrium, then fo r  any k G f l

Xk =
j e u

A  s im ila r result is proved as Theorem 10.9 o f Vose [6] and Theorem 3.5 o f Vose 

and W righ t [7].

L e m m a  3. I f  population x  is in  linkage equilibrium, then

xo =  2-^ J J ( l  +  % ).
jec

Proof. T h is  sim ply rew rites Lemma 1 using the d e fin itio n  o f linkage equ ilib rium . □

L e m m a  4. I f  x  G A, then | |<  1 fo r  a ll k G Cl.
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Proof. The sim plex A is the convex h u ll o f the standard basis vectors o f The 

W alsh transform  o f these vectors form  the columns o f the W alsh m a trix  W  whose 

entries are ±1 . Therefore Xk is a convex com bination o f 1 and -1. □

T h e G ene P o o l M od el

We describe the in fin ite  popula tion gene pool G A. The string  length is assumed to  

be ê.

1. Choose a random  popula tion x.

2. Calculate the order-1 schemas x^^ fo r each k G C

3. C onstruct a new linkage equ ilib rium  popula tion w ith  the same order-1 schema

( k )averages Xq %

4. A p p ly  selection to  th is  population.

5. A p p ly  m uta tion  to  the resulting population.

6. R eturn to  step 2 i f  te rm ina tion  c rite ria  is not met.

The reader should note th a t step 3 represents gene pool recom bination.
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8

G ene p o o l recom bin ation  and M u ta tio n

Define the function  VW : A  —̂ A by

  I x * i f  A: e £  U {0 }
M (x)/^  =  <

I riieCfc % otherwise.

Lemma 0.2 shows th a t A4 models G PR and therefore A4(x)  is in  linkage equ ilib rium .

Let U  represent the m uta tion  operator. The fo llow ing lemma, taken from  W right, 

Rowe, P o li and Stephens [10], shows how to  com pute m u ta tion  in  the W alsh basis.

L e m m a  0 .5 . I4(x)^. =  (1 — 2/u)xk fo r  k €  C.

T runcation  S e lection  M eth o d

In  th is  paper we w ill use the trunca tion  selection m ethod. T runcation  selection is a 

rank-based e litis t m ethod. I f  the popula tion size is o f fin ite  size N  and the trunca tion  

frac tion  is 0 <  T  <  1, we define a selection heuristic on the current popu la tion  p  as 

follows. W ith o u t loss o f generality, we assume th a t the search space is ordered so th a t 

/o  <  / i  <  • • • <  / 2 ^ - i)  where f j  denotes the fitness o f in d iv id u a l j .  The trunca tion  

selection heuristic .F  is defined in  W right and Agapie [8] by

if  Pi < T <  E . < , Pi 

i i E k < i P i < T .
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I f  the popula tion is fin ite  o f size N, trunca tion  selection is perform ed by tak ing  N  

independent samples from  the above d is trib u tio n .

In  the case th a t tw o or more d is tin c t ind iv idua ls have the  same fitness, we consider 

them  to  be members o f one fitness class. The above selection heuristic is m odified 

as followed. A fte r the d is trib u tio n  is calculated the fitness classes w ith  more than 

one member are sp lit in to  separate classes by d iv id ing  th e ir share o f the d is trib u tio n  

proportionate ly.

N eed le  F unction

The N E E D LE  (needle in  the haystack) fitness function  assigns a fitness greater than 

one to  the s tring  o f a ll zeros and assigns a fitness o f one to  a ll o ther strings.

Let z =  z(t)  denote the current population, and le t x  =  Ad{z). Then xq =  

2~^ r ijg £ (H "% ) is the p rob a b ility  of the all-zeros s tring  in  x. Let y =  J^{x) denote the 

popu la tion  produced after trunca tion  selection is applied to  x. The all-zeros string, 

t/o, w ill then appear w ith  frequency m in (l, ^ ) ,  where T  is the trunca tion  fraction  

selected from  x. A ny non-zero string, %, w ith  >  0 w ill appear w ith  frequency 

% =  ( î T ^ )  =  ( î ^ )  (1 -  î/o). For & e  r ,  we see =  x f^  -

We now define G, the operator th a t represents steps 3,4 and 5 in  our model.

G{z)k =  U o T  o M{z)k
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Then

G(z)k =  (1 -  2/i)ÿfc by Lemma 0.5

=  (1 — 2^)(1  — 2yf"^) by Lemma 0.1

=  ( I  -  2 .,)  ( l  -  ( 1  -  2 . )  ( 7 3 ^ ) )

I f  2 / 0  =  1 then G{z)^ =  I  — 2fj,. Th is w ill be a fixed p o in t i f  xq >  T, th a t is ,

Xo =  2 -'% % (! +  %)
jec

=  2 - ‘ J \ ( \  + 1 - 2 ) 1 )
j€C 

=  (1 -  

>  T.

I f  2 / 0  1 then

   /  /  1 _  m
G(z)^ =  (1 -  2m) 1 -  (1 -  zO ' ^

=  (1 -  2m) 1 -  (1 -  h )

( l - Xa ) J  J

r - n i E £ ( l  +  %)/2

Zk =

In  th is  case, the recurrence equation leads to  the fixed po in t equations:

(1 2/i) 1̂1 (^T(i-n,62:(i+%)/2)j j
1   (1  Oij\ (  \

The rig h t hand side o f th is  equation is the same fo r a ll k. Therefore, i f  z is a fixed 

p o in t o f G, then z is sym m etric in  the sense th a t a ll % iov k E C are equal.
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I f  the G A m odel is started w ith  a sym m etric popu la tion , sym m etry w ill be m ain­

tained. In  th is  case, the recurrence equation can be w ritte n  in  term s o f the  variable 

w,

G {w ) =  i
(1 -  2fj) i f  T  <  2-^(1 -I- w Y  ;

( 1  -  2 m) ( l  -  ( 1  -  otherwise.

The fixed points occur when G{w) =  w, equivalently when

w (1)
( 1 - 2 /i)  i f  r <  2 -^ ( 1 + w )^  ;

 ̂( 1  -  2 / i)  ( l  -  ( 1  -  otherwise.

Solving ( 1 ) num erically using £=8, / i= . l ,  and T = .4 , we find  w =  .02869 and

w =  .7222. A  th ird  equ ilib rium  occurs a t w =  1  — 2 / i =  .8 . A  graph o f G {w ) =  u; is

shown is figure 1 . We see the three fixed points; the firs t and th ird  fixed points are

stable and the m iddle fixed po in t is unstable.

We now investigate the s ta b ility  o f the fixed points. I f  g : is any

differentiable function, the d iffe ren tia l o f g is the N  x  N  m a trix  defined by

dg i{x)
{dgx)i,j d x j

I t  is w ell known for a discrete model th a t i f  a ll o f the eigenvalues o f dg -̂, have m odulus 

less than  1, then x  is an asym pto tica lly stable fixed po in t o f g. We w ill show th a t the 

m axim um  m odulus eigenvalue o f dG  is equal to  the derivative o f the single-variable 

function  G  defined in  equation 1 . Therefore the fixed points can no t on ly be found by 

solving a single-variable polynom ial b u t add itio n a lly  th e ir s ta b ility  can be determ ined 

by ta k in g  a single variable derivative.
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L e m m a  0.6 . Let P  =  2 ~ ^n ie z :(l +  =  2"^ +  %). Then fo r  j  ^  k

and Xq <  T,

( ÿ  ~  ^ j )
~ d è ~ ~  ( 1  -  p y

dG {z)^ _  ( 1  — 2 /x )( l — Zk) — Pk) ( 1  — 2 / i ) ( l  — y ) 
dzk ~  (1 -  f  1 - P

Furthermore both p a rtia l derivatives are nonnegative fo r  0 <  p  <  1/2 and z in  the 

simplex.

P roo f Note th a t ^  =  Pj and th a t xq =  P  <  T. The com putation o f the p a rtia l 

derivatives is stra ightforw ard. For z in  the sim plex, — 1 <  i i  <  1, showing P  and Pj 

are nonnegative. □

L e m m a  0 .7 . Let P  =  2“ ^(1 +  wY, P ' — 2 ~ ^ i{ l +  Then the derivative o f the

symmetric Q is given by

dm
- pj _ ^  otherwise.

(2)

The fo llow ing lemma comes from  W righ t, Rowe, Poli and Stephens [10].

L e m m a  0 .8 . Let A  be an £ x £ m atrix  where a ll o f the diagonal entries are equal to 

d and a ll o f the off-diagonal entries are equal to e. Then the eigenvalues o f A are 

d-h(£-l)e w ith m u ltip lic ity  1 and d-e w ith m u ltip lic ity  £-1.

T h e o re m  0 .9 . A t a symmetric po in t z where Zk =  w fo r  a ll k E C,

+  { £ - 1)-
dw dzk dzi
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Thus the largest modulus eigenvalue o f G  ̂ is equal to

Proof. W hen x q >  T  a ll o f the derivatives are zero. The theorem  follows by com paring 

the form ulas in  Lemma 0 . 6  and Lemma 0.7. Lemma 0 . 6  shows th a t the entries o f 

Qè are nonnegative, and Lemma 0.8 shows th a t its  largest eigenvalue is the one w ith  

m u ltip h c ity  1 given by the rig h t hand side o f the form ula in  Theorem  0.9. □

Since the largest m odulus eigenvalue o f dO{z) is equal to  the derivative o f the 

single variable function  G, the s ta b ility  o f the fixed po ints in  the cube [—1 , 1 ]^ is 

the same as the s ta b ility  o f the fixed points in  the one variable space o f sym m etric 

populations.

We have shown th a t we can find  the fixed points o f the m odel by solving a single 

variable po lynom ia l o f degree ^ +  1  and furtherm ore, the s ta b ility  o f the fixed points 

can be determ ined from  th is  equation.

E xp loration s o f  P aram eter Space

We begin to  explore the param eter space by find ing  a re la tionsh ip  between T, and w, 

when w is a fixed po in t. Solving equation 1  fo r T, in  the  case T  >  2 “ ^ ( 1  +  iu)^,we find

< » >

T h a t is, we define T {w )  to  be the value o f T  fo r w hich w is a fixed po in t.

L e m m a  0 .10 . xq =  2“ ^(1 +  wY <  T {w ) fo r  0 <  w  <  1 — 2u and xq >  T {w ) fo r

1 >  w >  1 — 2fi.
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Proof.

—, . 2 :0 ( 1  - w  — 2u-\- 2uw) +  X q ( w  — 1 +  2w 4- 2uw)
1 ( w )  —  2q =  ------------------------------------------------------------------     .

—WXo +  X q  —  2uXo 4- 2uw

I f  0 <  w <  1  — 2u, the denom inator,

2 o (l — w) — 2u(xo — w) >  x q 2 u  — 2 u 2 q 4 - 2uw =  2uw >  0 .

( 1  — 2u) >  w  im plies ( 1  — tü — 2u) >  0. The num erator is therefore also greater than 

zero since 2 0  <  1 .

F o r t , ; > ( l - 2 M ) ,  S > 2 ^ > £ .  □

L e m m a  0 .11 . T {w ) >  0 fo r  0 <  w <  1 — 2u.

Proof. The num erator and the denom inator are bo th  negative for w in  th is  range. □  

Lemmas 0.10 and 0.11 show th a t the fixed points can occur in  the region 0 <  w <

1  -  2fi.

Recall th a t i f  T  <  (1 — /u)^, then one fixed p o in t occurs at w =  1 — 2/i. In  order fo r 

b is ta b ility  to  exist, there m ust be two add itiona l fixed points, bo th  less than  1  — 2 /i. 

These are solutions to  equation 3. Figure 2 shows the p lots o f T {w )  for various values 

o f /i. B is ta b ility  occurs for a fixed value o f T  i f  a horizon ta l line  drawn at height 

T  intersects the curve three times. The p lo t o f T {w )  ends w ith  a ve rtica l line at 

w =  1 — 2 /i.

F igure 3 shows the progression from  three fixed po in ts to  one fixed po in t when T  

is increased. A  b ifu rca tion  occurs when T  is approxim ate ly .43. W hen T  =  .4 there

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



15

are three fixed points, one near zero, one a t approxim ate ly w  =  .5, and one a t the 

c ritic a l value o f u; =  1 — == .8 . W hen T  =  .43 the m iddle fixed po in t merges w ith

the fixed po in t at w =  .8 . W hen T  is fu rth e r increased to  .45, the last fixed po in t has 

disappeared completely, leaving only the fixed po in t near w =  0.

To aid in  the understanding o f T (w )  we d iffe ren tia te  equation 3 and set the  result 

equal to  zero. Th is gives

0 =  —£w^ +  (^ +  Xq — l)tU  +  (xq — 1). (4)

The reader should note th a t since equation 4 is independent o f jU, the m inim um s in  

figure 2  a ll occur a t the same value o f w.

O ur next task is to  show the conditions under w hich T  has a local m inim um  in  

the region 0  <  iü <  1  — 2fj..

Lem m a 0.12. For equation 4, w =  1 is a root o f m u ltip lic ity  at least 2.

Proof. S ubstitu ting  in  w =  1 , equivalently xo =  1, in to  the equation, we see th a t 

w =  1 is a root. D iffe ren tia ting  the equation gives

-2 £ w  +  £ +  2 ~ \ l  +  w Y  +  w2~^£{l 4- w f~ ^  - 1 4 -  2~H2^~'^ =  0 .

S ubstitu ting  in  it; =  1 gives the desired result. □

Lem m a 0.13. ^  =  0 has exactly one solution between 0 and 1 — 2/i when 

1 -  e p {l - 2 f j . ) - / j , - { l -  pY+^ <  0.
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Proof. The rig h t hand side o f the equation 4 can be w ritte n  as 

— +  iw  +  2~^ +  w  ^ 2  — w

t=3

+  ^ 2 -"^  - i  +

+  (^ +  2“  ̂ -  1 +  2-^e)w + 2~̂  ~ 1.

The w'^ term s, k >  2, have positive coefficients. The coefficient o f the te rm  is 

negative. Th is can be seen, fo r example, by p lo ttin g  the coefficient w ith  £ as the 

independent variable. The coefficient o f the w  te rm  is positive and the constant te rm  

is negative. B y Descartes rule o f signs there are three or one positive roots o f the 

equation. We have already seen th a t tw o o f the roots are w =  1. Therefore there is 

another positive roo t. We now show th a t th is  roo t is less than  1 — 2/i.

^  _  2 ^ ( 1  -  2 0  

dw^  ̂ 1 - 2 / i

which is less than  zero when ^

_  9 ,,^ _  - 1 W  -  + 1  -  m)( i  -  -  ( 1  -
dw^ 2 / i ( l - 2 / i ) ( l - / i )

w hich is greater than  zero when 1  — ^ / i( l — 2 /i)  — / i — ( 1  — <  0 .
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In  th is  case, a solution to  ^  =  0 and likewise a roo t to  equation 4, exists for

0 <  w <  1 — 2̂ 1 □

Le t Wc be the c ritic a l po in t o f T  between 0 and 1 — 2fi. Then T{wc) is a m inim um  

since the firs t derivative o f T  passes from  negative to  positive. Since Wc is the only 

c ritica l po in t, i t  m ust be a global m inim um  in  the in te rva l 0 <  ly <  I  — 2^.

For the param eter values in  figure 2 , we calculate th a t Wc =  .1758. I f  .1758 <

1 — 2/i, or / i >  .4121 then T  w ill not have an in te rio r local m inim um . We check th a t

the hypothesis in  Lemma 0.13 is not satisfied. 1 — ^(1 — 2 /i) — / i — (1 — /i)^+^ >  0

when / i >  .4121. We also should note th a t the m in im um  string  length th a t satisfies 

the hypothesis is ^ =  4.

L e m m a  0 .14 . In  the case T  <  (1 — /i)^, i f  Wc <  1 ~  2 /i, equivalently i f

1  — ^ / i( l — 2 /i)  — / i — ( 1  — /i)^^^ <  0 , 

then there exists a value o fT  that gives bistability.

Proof. B y Lemma 0.13 there exists horizonta l lines th a t w ill cross the graph o f T{w)

more than  once. Each place o f intersection represents a fixed po in t. A nother fixed

po in t o f G  exists a t w =  1  — 2 /i. □

We also note th a t b is ta b ility  exists i f  T{wc) < T  <  (1 — /i)^.

I t  rem ains to  determ ine the s ta b ility  o f the fixed points.

Lem m a 0.15. G{w)  >  0 f o r  0 < w  <  1.
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Proof. ï f T > x o

0.

I f  T  <  Xq then G (0) =  1 — 2fj,. By Lemma 0.6, ^  >  0, and the conclusion follows. □

T h e o re m  0 .16 . I f O < f j , <  1 /2, then there can be at most three fixed points fo r  G. 

When there are three fixed points, they are stable, unstable and stable when ordered 

by w values. I f  there are two fixed points, then a sm all perturbation o f either T  o r p  

can give one fixed point.

Proof. Since ^  >  0 then at a fixed po in t where the graph crosses from  above to  

below the slope m ust be less than one and therefore m ust be stable. A  fixed po in t 

where the graph crosses from  below to  above m ust have slope greater than  one and 

is unstable.

Since G (0) >  0, when there are three fixed points, the graph must cross the 

diagonal from  above to  below, then below to  above.

□

We have exactly characterized the fixed po ints fo r the gene pool m odel on the 

N E E D LE  fitness function . For fixed values o f T  and p  the loca tion  of the fixed points 

can be found using equation 1 .
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For a fixed value o f u  the range o f values o f T  which give b is ta b ility  can be found. 

For example see figure 4. The area between the  tw o curves is the region in  (/if, T ) 

space where b is ta b ility  occurs. The to p  curve is T  =  ( 1  — f iY  and the lower curve is 

found by solving ^  =  0  to  fin d  Wc and then tak ing  T{wc).

For a fixed value o f T  and t  the range o f (jl which give b is ta b ility  can be found. This 

can be seen in  figure 5. Th is figure shows the region in  (£, yu) space for which b is tab ih ty  

occurs. As noted before, a s tring  length o f 4 or more is needed fo r b is ta b ility . The 

top  curve o f each pa ir in  th is  figure is /̂  =  1 — T? The bo ttom  curve o f each pa ir was 

found fo r each ^ by solving T{wc)  =  T  fo r yu fo r T  =  .1, .3, .5, .7.

Likewise fo r a fixed value o f ^  and ^ the range o f T  which give b is ta b ility  can be 

found. Th is can be seen in  figure 6 . The top  curve o f each p a ir is T  =  (1 — The 

bo ttom  curve o f each pa ir is found by find ing  T{wc).

E m pirical R esu lts

Sim ulations were perform ed to  see i f  the  fixed points predicted by the in fin ite  gene 

pool m odel occur in  fin ite  populations G A runs. The sim ulations were run using 

a program  w ritte n  by D r. A lden W righ t, J.D . Zeiler, and Jennifer Parham. The 

results are given in  the table below. In  the sim ulations we used trunca tion  selection, 

the needle fitness function, and a s tring  length o f 15. The sim ulations were run for 

tw enty generations. The average xq were calculated by ta k in g  the mean o f the last 

10 generations. The in itia l popula tion was generated by using an allele p rob a b ility
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equal to  the predicted steady state allele d is trib u tio n . The populations d id  stay close 

to  the predicted value o f zo for a ll 20 generations. We also note th a t the averages are 

close to  the predicted values even when the popu la tion  size is re la tive ly  small.

T Crossover Population Size average xq M odel P rediction

. 1 .15 uniform 1 0 0 0 0 .00003, .20571 .000031, .20589

. 1 .15 un ifo rm 1 0 0 .000, .235 .000031, .20589

. 1 .15 genepool 1 0 0 0 0 .00003, .20551 .000031, .20589

. 1 .15 genepool 1 0 0 .000, .192 .000031, .20589

.05 .15 uniform 1 0 0 0 0 .00003, .46335 .000031, .46329

.05 .15 uniform 1 0 0 .000, .451 .000031, .46329

.05 .15 genepool 1 0 0 0 0 .00006, .46093 .000031, .46329

.05 .15 genepool 1 0 0 .000, .473 .000031, .46329

.05 . 2 uniform 1 0 0 0 0 .00002, .46117 .000031, .46329

.05 . 2 uniform 1 0 0 .000, .445 .000031, .46329

.05 . 2 genepool 1 0 0 0 0 .00001, .46451 .000031,.46329

.05 . 2 genepool 1 0 0 .000, .442 .000031, .46329

C onclusion

In  th is  paper we have shown th a t an in fin ite  popu la tion  GPR model closely ap­

proxim ates the fin ite  popula tion tw o-parent un ifo rm  crossover G A  when the fitness 

function  exh ib its a single peak. Under the  recom bination model, the com plicated
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dynam ical system o f the fin ite  popu la tion  G A becomes tractab le . In  p a rticu la r, we 

can e xp lic itly  calculate the fixed points and determ ine th e ir s ta b ility  by exam ining a 

single variable polynom ia l function. F in ite  popu la tion  sim ulations suggest th a t T P R  

and G PR produce b is ta b ility . The fixed points produced in  the sim ulations closely 

m atch those predicted by the model.

Furtherm ore, we have dem onstrated th a t the in fin ite  popu la tion  GPR model cor­

re c tly  predicts the presence o f b is ta b ility  in  the fin ite  popu la tion  G A. We have derived 

e xp lic it form ulas th a t relate the param eter values under which the  b is ta b ility  phe­

nomena occurs.
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Figure 1: G raph o f G{w)  and 45° line fo r =  .1, ^ =  8  and T  =  A.
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Figure 2: P lots o f T  fo r various /z w ith  ^ =  8
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Figure 3: P lots o f G fo r various T  w ith  /i  =  .1 and ^ =  8
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