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Jones, Scott, M .A. M ay 2002 M athem atical Sciences

O perations on graphs and matroids 

Advisor: Jennifer M cN ulty

Two graph operations, edge slides and Ag-moves, are defined and investigated. Un
der certain circumstances, it is possible to transform one graph into another by the 
repeated application of these operations. Investigating edge slides leads to a natural 
metric on the space of graphs. This distance measure is considered within the context 
of combinatorial Gray codes. Gray code enumerations of some small classes of trees 
are given. The Ag-move leads to a partial ordering, ■<, of graphs and later to a partial 
ordering of matroids when the operation is suitably generalized. The resulting posets 
are very diverse in the sense that any poset may be embedded in one of them. A 
fundamental question for two matroids G and H  is whether G < H. This question 
is considered from a number of different perspectives, and is shown to have some 
implications for the matroid dual operator.
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List o f  n otation

Pn the path on n  vertices

Sn the star on n  vertices

Cji the cycle on n vertices

Kn the complete graph on n  vertices

Km,n the complete bipartite graph with parts of size m and n

Wn-i the wheel on n  vertices (n — 1  spokes)

Ng{3:) the vertex neighborhood of a: € F  (G), the subscript omitted under 

clear context

An,e the isomorphism classes of connected graphs on n vertices and e edges

Qn the isomorphism classes of connected graphs on n vertices

M{G) the cycle matroid of the graph G

M* the dual of a matroid M

cIm  the closure operator of a matroid M

PG{r — 1, ç) the projective geometry of rank r  and order q

Um,n the rank-m uniform matroid on n elements

(^) for integers n  and m, the number of m  element subsets of an n element set

the collection of subsets of size m from a set A\TTl/
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Chapter 1

Introduction

Combinatorialists count discrete objects and investigate their structure. In this thesis, 

we do some counting, but mostly investigate structure. The objects of interest are 

graphs and matroids. Their structure is investigated to the extent that it sheds light 

on the relationship between the two. Questions like “how ‘far apart’ are two graphs?” 

or “does this matroid ‘come from’ this other matroid?” are investigated by defining 

meaningful metrics and meaningful partial orders on the objects.

The tools for building metrics and partial orders in this thesis are operations 

on graphs and matroids. Two operations in particular, the “/Cs-move” and “edge 

slide”, are refined versions of the common graph operations, edge deletion and edge 

transfer. Since operations allow the creation of new objects from old, we can indeed 

ask questions like the ones above. If one object is realized by an operation on some 

other object, then there must be something important and interesting about the 

structure of the two.

Consider the following graph operation, whereby a graph G is transformed into 

another graph O': given edges xy  and yz  of (?, put E' =  {E{G) \  xy) U xz  and put

G' =  (y (C ),E ') .
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K 3-m ove  
 >-

X *-

Edge slide 
 >

X»

Outcomes of the operation: K^-moves and edge slides

Clearly, the outcome of such an operation depends on whether the edge xz  is in 

G. If xz  € E{G), then the operation is referred to as a K^-move. Otherwise, it is 

referred to as an edge slide. Edge slides fall under a general category of operations 

known as edge transfers, whereas iiTa-moves are a type of edge deletion. As such, both 

operations are highly restrictive. Edge slides were introduced by Johnson in [11], and 

have been investigated by Zelinka [20], Jarrett [10], and Chartrand, et al. [4].

The definition of the edge slide operation may be recast solely in terms of K^- 

moves and their inverses. If G is obtained from H  by an edge slide, then there exists a 

graph K  such that G and H  can be obtained from % by a Kg-move. We can say that 

K  is obtained from G and H  by an inverse K^-move., where this inverse is defined in 

the natural way.
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K 3-m oveK3-move,

Edge slide

Edge slides recast in terms of K^-moves

In Chapter 2, the relationship between edge slides and %3 -moves is thoroughly 

investigated. Under certain circumstances, it is possible to transform one graph into 

another by means of edge slides and ÜTs-moves.

The remainder of the thesis is divided into two general lines of investigation, 

one exclusively in edge slides (Chapters 3 and 4) and one exclusively in Ks-moves 

(Chapter 5).

The discussion of edge slides focuses primarily on an associated metric for graphs. 

Here, we investigate distance between graphs and are led into the realm of combina

torial Gray codes. We exhibit lists of some small classes of trees, in which consecutive 

members differ by an edge slide.

The edge rotation is a generalization of the edge slide. Given a collection X  of 

graphs, the edge rotation distance graph D e r { X )  of X  is the graph with vertex set 

X , wherein two graphs are adjacent in D er{X )  if and only if they differ by an edge 

rotation. We show that every graph is homeomorphic to an edge rotation distance 

graph, giving a partial answer to a conjecture of Chartrand, et al.

The consideration of Ü'a-moves leads to a partial ordering, of graphs. The
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set Gn of connected graphs on n  vertices, equipped with the partial order X, is an 

interesting poset, and we take up several natural and attractive questions about its 

structure. It is shown that an arbitrary poset is isomorphic to a subposet of {Gn, d ), 

for n sufficiently large. Bounds on the minimum n  needed to do so are given.

An interesting problem is the identification of a graph G of minimum size such 

tha t T  < G for every tree T  on n vertices. These graphs are completely determined 

for small values of n.

In Section 5.5, the ATg-move operation is extended to an operation on matroids. 

Using this operation, the partial order previously defined for graphs is extended to 

matroids. For each matroid M, a property characterizing the subsets I  Ç  E{M )  

for which M  \  I  :< M  is given. It is conjectured tha t the collection of subsets of a 

matroid M  having this property are the independent sets of a matroid on E{M). This 

conjecture is verified for several classes of matroid and is shown to have a connection 

to the matroid dual operator.

Relevant background on graphs can be found in “Modern Graph Theory” , (Bol- 

lobas, [2]). For background on matroids, consult “Matroid Theory”, (Oxley, [14]). 

Stanley’s “Enumerative Combinatorics” provides a useful introduction to partially 

ordered sets (posets), (Stanley, [18]). All graphs are finite, simple, and connected, 

and all matroids are finite and simple, unless otherwise stated.

4
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Chapter 2

Prelim inary results

The purpose of this chapter is to investigate the close relationship between edge slides 

and iiTs-moves. Provided certain conditions are met, it is possible to transform one 

graph into another using these two operations. It should be worthwhile to exploit 

these properties as a general proof technique in graph theory.

2.1 E dge slides and ATg-moves: a num erical link

We have seen that edge slides and moves are both special cases of a more general 

operation on the edge set of a graph. Moreover, we have observed that while one is 

a restricted edge transfer, the other is a restricted edge deletion.

The two operations enjoy another, numerical relationship. An edge slide operates 

on a vertex induced subgraph isomorphic to P 3 , and a iCg-move operates on a vertex 

induced subgraph isomorphic to K^. Had the edge slide operation not already been 

proposed and named, we would have chosen to refer to it as a "Pg-move".

In an arbitrary graph G, we will count vertex induced subgraphs isomorphic to 

P 3 , and those isomorphic to K^. For each vertex x  e  V{G), let d{x) denote its degree 

and N{x)  denote its vertex neighborhood.

Let PsiG) and K^{G) denote the vertex induced subgraphs of G isomorphic to P 3
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and i^s, respectively. The following identities hold:

(1) |P3 (G )|=  (|[JV (x)U A r(ÿ)]\[iV W nA r(s/)l|-2)/2 ,and
xyÇE{G)

(2 ) |A-3 (G ) |=  y , \ m ^ ) n N ( y ) \ / 3 .
xyeE(G)

Technical note: As edges in a graph, xy  and yx  are indistinguishable.

The scale factor of 1/2 in item (1) adjusts for double counting contributed by the 

two edges in each F 3  of G. The factor of 1/3 in item (2 ) serves a similar purpose.

Although the computing formulas given for \Ps{G)\ and \K^{G)\ may not be very 

enlightening, they lead to a rather pleasant identity. Defining dP'\G) =  

the sum of squared degrees of G, we obtain the following identity.

T h eo rem  2.1 In a graph G,

|P3(G)| +  3|p-3(G)| =  d<">(G)/2 -  |B (G )|.

Proof.

|P3(G)| =  Y  | l ( J V W u J V ( ÿ ) ) \ ( i v ( x ) n J V ( ÿ ) ) | - i
xyeE{G)

=  Y  l i M x ) \  + \ N ( y ) \ - 2 \ N { x ) n m y ) \ ) - l
2

xy€E(G)

= Y  + l̂ fe)l) -  Y , |A "M nJV (!/)|-|£:(G )|
xy£E[ G)  xy£E{G)

xy&E{G)

—  “ 2̂ -̂------3 |A '3 (G )| — |F (G ) |
x^V{G)

□
Theorem 2.1 gives an alternate proof that the number of odd vertices in a graph is 

even.
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2.2 Transform ing one graph in to  another

We desire to characterize the circumstances in which one graph may be transformed, 

by means of edge slides and Ks-moves, into another graph. After introducing the 

edge slide in [11], Johnson answered a similar question. At the time, he was dealing 

with only edge slides; thus, his proof applies to the case where the graphs in question 

are of the same order and size. With the addition of ATa-moves to the toolbox, we can 

answer a broader question. As in Johnson’s first proof, it turns out that only the most 

obvious necessary conditions are also sufficient for one graph to be transformable into 

another.

The results that follow re-prove Johnsons result in slightly more general terms 

and suggest an algorithm for constructing the desired sequence of operations. The 

original proof has a different flavor and may be of independent interest to the reader 

(see [1 1 ]).

The most useful property of edge slides and A'a-moves is expressed in terms of 

connectivity.

L em m a 2.2 1 -connectivity is preserved by edge slides and K^-moves.

Proof. Let E  = E{G) and let u and v be vertices connected by a path P  in G.

Case 1: An edge slide is performed using edges xy  and yz  so that E' = { E \  xy) U xz. 

If xy  0  P , then P  is a path in G' connecting u and v. If xy  € P , then either 

(P  \  xy) U {xz, yz}  or (P  \  {xy, yz}) U æz is a path in G' connecting u and v.

Case 2: A K^-move is perfomed so that E' = E \ e \  where ei, 6 2  , and 6 3  form a 

triangle in G. If e\ ^  P , then P  is a path in G' connecting u and v. If 6 % G P , then 

one of (P  \  ei) U {ea, 6 3 }, (P  \  {ei, 6 2 } )  U 6 3 , and (P  \  {ei, 6 3 }) U 6 2  is a path in G' 

connecting u and v. □

In contrast, 2-connectivity is not preserved under edge slides and A^s-moves. For 

example, perform any edge slide on G4  and any K^-move on K^. In general, if G
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is /î-connected, then the graph G' obtained from G by any edge slide or j^a-move is 

m ax(l, k — l)-connected.

The following result shows that the girth of a graph can be easily manipulated by 

edge slides.

Lemma 2.3 I f  G has girth p > 4, then there is a edge slide on G which will decrease 

the girth to g — 1.

Proof Let C be a cycle in G with \C\ = g. If xy  and yz  are adjacent edges in 

C, then X ^  z  and xz  0 E{G) (since G is triangle-free). Now the subgraph of G 

induced by vertices x, y , and z is isomorphic to P 3 . The edge slide resulting in the 

addition of xz  and the deletion of xy  gives a graph G' with a cycle O' satisfying 

JE'(C') =  {E{C) \  {xy ,yz})  U xz. Clearly, \C'\ =  jC| — 1 and G' has girth at most 

g — 1. Moreover, this bound is tight, since a cycle in G' of size less than g — 1 implies 

that there is a cycle of size less than g in G. □

Suppose that Gi, G2 , . . . ,  G* is a sequence of graphs so that for each % =  2,3, 

the graph Gi is obtained from Gi-i by an edge slide or a Ü’s-move. We say that Gk is 

obtained from Gi by a sequence of moves, and tha t the sequence of moves associated 

with the graph sequence starts with G\ and ends with Gk- The main theorem may 

now be addressed. The result is stated and proven for connected labelled graphs, but 

the reader will find it easy to extend it to unlabelled graphs or graphs with more than 

one component.

Theorem  2.4 Given two connected labelled graphs, G and H, on the same vertex 

set, there is a sequence of moves starting with G and ending with H  if  and only if  

|£ (G )| >  \E(H)\.

To complete the proof, we need three lemmas.

Lemm a 2.5 I f  G contains a cycle, then there is a sequence of moves starting with 

G and ending with a graph G' such that |P (G ')| =  |P (G )| — 1 .

8
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Proof. Let g be the girth of G. l i  g = 3, then G contains a triangle, which can be 

broken by a ATg-move. Suppose tha t g > 3. By invoking Lemma 2.3 g — 3 times, the 

girth of G may be reduced to 3 by edge slides. A well placed Ks-move does the trick. 

□
We need a tool which is an easy generalization of the edge slide.

Lemma 2.6 Let P  = xyiy 2  ' “ yq be a path in a graph G such that for every i € 

{2,3,.... ,g}, xyi 0  E{G). Then there is a sequence of q — 1 edge slides starting with 

G and ending with a graph G' such that E{G') = {E{G) \  xyi)  U xyq. □

Lemma 2.7 Let G be a connected graph with vertices x, y, u, v such that xy  € E{G) 

and uv ^  E{G). I f

(1) xy cuts G into two components gi and g^, each of which contains an endpoint of 

uv, or

(2 ) xy is not a cut edge,

then there is a finite sequence of edge slides starting with G and ending with the graph 

H  such that E{H)  =  {E{G) \  xy) U uv.

Proof There are two cases.

Case 1: (1) holds. We may assume that x ,u  G V{gi) and y ,v  G V{g2 ). By construc

tion, gi U xy  and g2  U uy are connected. Hence, there is a path P(i) in gi U xy  with 

endpoints u and y. Since xy  is a cut of G, it is necessary that uses xy. The 

application of Lemma 2.6 yields a sequence of edge slides starting with G and ending 

with the graph G' where E{G') = {E{G) \  xy) U uy (perhaps x = u, in which case 

the null sequence suffices). Now pa U uy is a connected subgraph of (?'. If y =  u, 

then there is nothing more to show. Otherwise, there is a path P(2 ) in 5 2  U uy with 

endpoints u and v. Once again, P(2 ) is required to use uy. By Lemma 2.6, there 

is a sequence of edge slides starting with G' and ending with the graph G" where 

E{G") = {E{G) \  uy) U uv. Clearly, G" is H.

Case 2: xy  is not a cut edge.
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Subcase 1 : xy  and uv are adjacent, in which case we may assume that x  u. Since 

xy  is not a cut, there is a path yz\Z2  • • * ZgV which does not use the edge xy. Let P  

be the path xyz\Z 2  • • • ZqV and let S  = {zsi, , . . . ,  be the collection of vertices

in V{P) \  y  adjacent to x. If n = 0, then the application of Lemma 2.6 gives a 

sequence of edge slides starting with G and ending with H. Assume n > 0 and 

consider the paths P(o) =  xyziZ 2  * • • Zsi and P(n) =  ■ ZqV together with

the paths =  a:Zs^Z(g.+i) • • • for each 1  < i <  n. All such paths are in G. 

We may repeatedly apply Lemma 2.6 to the paths, provided we progress in order of 

decreasing subscript, to procure by means of edge slides a graph G' such that E{G') =  

P(G)\xZg„Ua:t>\xZg(^_jjUa;Zg„ • " \x zs^  Uzz,, \xy\JxZg^ = {E {G )\xy)U xv  = E{H).

Subcase 2: xy  and uv are vertex disjoint. Since xy  is not a cut, there is a path P  

with endpoints u and y which containts xy. Assume that P  is of minimal length with 

respect to these constraints. Evidently, yi 0 E{G) for alH  G F  (P) \  x. By Lemma 

2 .6 , there is a sequence of edge slides starting with G and ending with a graph G' 

where E{G') = {E{G) \  xy) U uy. Setting x' =  u, the graph G' and the choice of 

vertices x', y, u, v satisfy the hypothesis whose conclusion is assured in Case 2  Subcase 

1 . Appending the sequence of edge slides needed to pass from G' to H  to the sequence 

used to pass from G to G' gives the desired sequence. □

Properties (1) and (2) from Lemma 2.7 characterize the situation in which we may 

delete an edge and add a new edge through a sequence of edge slides. Indeed, the 

invariance of 1 -connectivity makes it impossible to remove a cut edge without adding 

a cut edge.

We are now sufficiently equipped to prove the main result of this section.

Proof of Theorem 2.4- The necessity follows from the fact that edge slides and K 3 - 

moves certainly to not increase the size of a graph. In proving the sufficiency, we 

assume |P(G )| > |P (i7 )| and show that there is a sequence of moves starting at G 

and ending at H. By repeatedly applying Lemma 2.5, we may find a sequence of 

moves starting with G and ending with a graph G' such that |P (G ')| =  \E{H)\. We

1 0
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claim that we may now pass from G '  to H \  using induction on n =  \ E { G ' )  \  E { H ) \ ,  

we show that there is a sequence of edge slides starting with G '  and ending with H . 

Assuming, for the moment, tha t this claim is true, then appending the sequence used 

to pass from G '  to H  to the sequence used to pass from G  to G '  yeilds a sequence 

starting with G  and ending with H ,  thus proving the theorem. Clearly, we are done 

if n =  0 for then E { G ' )  =  E { H ) .  Let n > 0. Then there is an edge Cg €  E { G ' ) \ E { H )  

and an edge e* E E { H )  \  E { G ' ) .  If eg  is a cut edge in G \  then it follows from the 

connectivity of H  tha t eh  can be chosen so that it has an endpoint in each of the 

components of G ' \ c g .  By Lemma 2.7 there is a sequence of edge slides starting with 

G '  and ending with the graph G "  = ( G '  \  Cg) UCh- If eg  is not a cut edge in G ' ,  then 

the same conclusion follows from Lemma 2.7. Now \ E { G " )  \ =  \ E { H )  \ since only edge 

slides were used and \ E { G " )  \  E { H ) \  =  n — 1. By Lemma 2 .2 , G "  is connected. The 

result follows by induction. □

An examination of the proof technique shows that it is no more difficult to proceed 

from G to i f  in the critical case where \E{G)\ = |E (Ü )| than when the size of G is 

much larger than the size of H. Moreover, the process of deleting edges can be 

done haphazardly and the process of “edge exchange” in the critical case needs to be 

performed with only slight judiciousness.

We believe that Æg-moves and edge slides may provide a valuable tool for proving 

graph theorems. An application may look like the following: if II is a property of Kn 

for all n  and II is preserved under edge slides and A'3 -moves, then every connected 

graph has property II.

11
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Chapter 3

Edge slide distance

W hat does it mean for two graphs to be “close” together? Several metrics for spaces 

of graphs have been proposed, including the greatest common subgraph metric, edge 

jump distance, and edge rotation distance (resp. [19], [5], and [3]). The edge slide 

distance was introduced by Johnson in [1 1 ]. Consider two connected graphs G and 

H  in and write d,Es{G, H) for the minimum number of edge slides needed to 

transform G into H. The analogous distance function can be defined for other types 

of edge transfers.

The “edge rotation” , formulated by Chartrand, et al. is a closely related operation, 

one which will play an important part in our discussions. We say that H  is obtained 

from G by an edge rotation if there exist distinct vertices x , y , z  E V{G) such that 

xy  G E{G), xz  0 E{G), and H  is isomorphic to {G \  xy) U xz. We write H)

for the minimum number of edge rotations needed to transform G into H. Both 

functions, dss  and dsR, are metrics.

An edge slide is an edge rotation, but not every edge rotation is an edge slide. 

Hence,

for all graphs G ,H  e  An,e-

For arbitrary graphs, g and h, the decision problem, “Is dEsig,h) < A:?,” is not

12
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easy. The corresponding decision problem for the edge rotation metric d^R was shown 

in [12] to be NP-hard. Note that the k = 0 cases of both problems are equivalent to a 

classic NP-complete decision problem: Is g isomorphic to h7 For more on complexity 

theory, consult [7j.

The quest for a closed form expression for the edge slide distance between two 

arbitrary graphs is quixotic. Researchers have, instead, settled for crude bounds on 

these distances for general graphs; when seeking more refined results, however, the 

space of trees has attracted the most attention. The following bounds are immediate 

but very useful.

Lemma 3.1 (Degree bound) (Goddard and Swart, [8 ]) Let G and H  he graphs in 

An,e with degree sequences Ui < • • • < a„ and b\ <• ■■< bn, respectively. Then

d E s { G , H ) > l Y ^ \ a , - b i \ .
i = l

Lemma 3.2 (D iam eter bound) (Zelinka, [20]) Let G and H  be graphs in An,e with 

diameters do and dn, respectively. Then dEs{G, H) > \dc — dn\.

Lemma 3.3 (G irth and circum ference bound) Let G and H  be graphs in An,e, 

each of which contains a cycle. I f  go and gh  are the respective girths of G and H  and 

i f  Cg  and c h  are the respective circumferences of G and H, then

d E s { G ,  H )  >  m a x ( | ^ G  — g u \ ,  \ c c  —  c h \ ) .

Proof. An edge slide increases the size of a cycle by one, decreases it by one, or leaves 

it the same. □

The numerical results for the space of trees are summarized by the following 

theorem.

Theorem  3.4 (Zelinka, [20]) For every n > 3, fe(-5n ,F n ) =  n -  3. I f  T  is a tree 

on n  > 3 vertices with diameter dr and maximum degree Ôt, then

13
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•  d ^ s i T ,  Pn) = n — d x  — 1, a n d

•  dssiT , Sn) = n — 6 t  — I-

Proof. The necessary lower bounds are implied by the degree bound and the diameter 

bound (Lemmas 3.1 and 3.2). If P  is a maximal path in a tree T  and there is an edge 

e of T  not contained in P  but nevertheless meeting P  at a common vertex, then T  

can be transformed by an edge slide into a new tree having a maximal path with size 

exactly one larger than the size of P . It follows that dssiT .Pn) < n — dr — I- If a; 

is a vertex of a tree T tha t is not adjacent to every other vertex in T, then T  can be 

transformed by an edge slide into a new tree, in which the degree of x is increased by 

one. It follows that dgg(T, 6 ' )̂ < n ~  Ôt  — I- The value of dEs{Sn,Pn) now follows 

from either of these results. □

A sequence of three edge slides realizing the transformation of S q into Pe is given 

below.

 >-
Edge slide

------------
Edge slideEdge slide

The edge slide distance between Sq and Pg is three

How “far apart” can two trees on n  vertices be? A simple application of the 

triangle inequality for metrics gives 2n — 6  as an upper bound. A significantly tighter 

bound has so far been illusive to researchers. Based on anecdotal evidence, however, 

we are confident in the following significant improvement.

C o n jec tu re  3.5 I fT i  and Tg are trees on n > 3  vertices, then Tg) < n — 3.

Equality holds if and only i f  T\ and Tg are the star and the path.

This conjecture has been verified for all trees on up to 8  vertices. The reader may 

observe in Section 4.2 the girth of certain “distance graphs” . These computations 

verify Conjecture 3.5 for all trees on up to 8  vertices.

14
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Goddard and Swart showed in [8 ] that dER{T\, T2 ) <  n — 3 holds under the same 

hypothesis. In this light, Conjecture 3.5 suggests tha t the restriction of edge rotations 

to edge slides does not dramatically inhibit transformability of trees.

McGuinness has proposed studying the degree sequences of trees, rather than 

the isomorphism classes of trees themselves [13]. It is well known that every degree 

sequence can be realized by a tree (see [1 ]); that is, for every non-decreasing sequence 

of positive integers ai <  0 2  <  • ■ • <  Op there is a tree with +  1  vertices

having degree sequence ai < 0 2  < • ■ • < Op.

The next two conjectures are subsumed by Conjecture 3.5; yet, they possess a 

distinct flavor, and so are included here.

C onjecture 3.6 I f  two trees, Ti and T2 , on n vertices have the same degree sequence, 

then dEs{T\,T 2 ) < n  — o(n).

Conjecture 3.7 I f  T\ is a tree on n vertices and D is a degree sequence of a tree 

on n vertices, then there exists another tree T2  having degree sequence D such that 

dEs{Tx,T2 ) < n -  o(n).

Perhaps these conjectures can be more easily proven if we restrict our attention to 

caterpillars. Indeed, every degree sequence can be realized by a caterpillar (see [I]). 

W hat can be said for graphs that are not trees? Here is an accessible result.

Theorem  3.8 Let G 6  An,n have girth g. Then dgg(G, C„) = n — g.

Proof. By the girth and circumference bound (Lemma 3.3), we have dEs{G,Cn) > 

n — g. The graph G has exactly one cycle, C. Suppose tha t e is an edge of G not 

contained in C, but nevertheless having a common vertex with C. There is an edge 

slide transformation of C  U e into C g + \ .  Therefore, the girth of G can be increased 

by one, and dssiG, Gn) < n  — g. □

This proof is very similar to the one verifying that dgg(T, P^) = n -  dr ~  1 from 

Lemma 3.4. There is no coincidence; in some sense, cycles are to 2-connected graphs

15
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what paths are to 1 -connected graphs. Similarly, the graphs i^ 2 ,n serve as 2-connected 

analogues to stars. The investigation of dssiG , i^2 ,n) for arbitrary graphs G € ^n+ 2 ,2 n 

is likely to be fruitful.

16
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Chapter 4

D istance graphs

If {X, d) is a metric space and d is an integer valued metric, then it is sometimes 

possible to associate the metric space with a graph G  having vertex set X  such that 

for all x ,y  E X ,  the length of the shortest path in G with endpoints x  and y is d{x, y). 

A graph can be viewed as a metric space, so in this sense G and {X, d) are isomorphic 

as metric spaces. The graph is referred to as a distance graph and it abstracts the 

essential structure of the metric space.

4.1 H am ilton ian  d istance graphs

In [6 ], Cummins, an electrical engineer, considered a metric on the set of spanning 

trees of a graph. Two spanning trees Ti and T2  of a graph G differ by basis exchange 

if there is an edge e E Ti and an edge b E T 2  such that T2  — (Ti \  e) U 6 . A distance 

dsE can be defined on the space of spanning trees of a graph. Here, dj5 E(î i»^ 2 ) is 

the minimum number of basis exchanges required to transform one spanning tree Ti 

into another There is an associated distance graph for this metric space, called 

the tree graph of G and denoted T{G). In his paper, Cummins proved an amazing 

fact about tree graphs.

T h eo rem  4.1 The tree graph of any graph is Hamiltonian.
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This result was later generalized to matroids by Harary and Holzmann in [9]. The 

tree graph of a matroid is defined analogously on the bases of a matroid.

T h eo rem  4.2 The tree graph of any matroid is Hamiltonian.

Why are Hamiltonian distance graphs interesting? Suppose that we desire to 

generate the members of some combinatorial family -  trees, permutations, partitions, 

and subsets, for example. If an operation on members of the family leads to a natural 

metric space, whose associated distance graph is Hamiltonian (or at least contains a 

Hamilton path), then we get a natural and efficient way to list the members of the 

family. Very few interesting combinatorial families have an obvious ordering. For 

example, there is no natural way to totally order graphs on the basis of common 

graph parameters, such as size, order, girth, circumference, diameter, and chromatic 

number.

When a combinatorial family is listed such that consecutive members of the list 

are in some sense “close together” , we call the list a Gray code (see [17] for an 

excellent survey on the topic). Thus, Theorem 4.1 asserts the existence of a Gray 

code enumeration of spanning trees of a graph, in which consecutive trees differ by 

basis exchange. These types of results can have significant implications for data 

storage and combinatorial simulation.

Every edge slide transformation of a tree is a basis exchange. Thus, dgg(Ti, T^) < 

dEs{Ti,T 2 ). Can the edge slide operation lead to a new Gray code listing of trees? 

We take this up in the next section.

4.2 Edge slide d istance graphs and G ray codes

Given a collection of graphs X ,  define the edge slide distance graph D e s { ^ )  of X  to 

be the graph with vertex set X ,  where g and h are adjacent as vertices in D e s { X )  if 

and only if g can be transformed into h by an edge slide. Thus, for each set of graphs
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we may generate the associated edge slide distance graph. The following result can 

be found in [4].

Theorem  4.3 Every graph is an edge slide distance graph.

Outline of proof. Let G be a graph on vertex set {ui, U2 , . . . ,  u„} and G' be the graph 

obtained from G by adding, for each i =  1, 2, . . .  ,n,  an additional 2i vertices, each 

adjacent only to Vi. For each i, define Hi to be the graph obtained from G' by adding 

an additional vertex, adjacent only to One can show that Des{{Hi, H 2 , . Hn}) 

is isomorphic to G . □

Recall tha t is the collection of trees on n  vertices. A natural question is

whether DEsi^n,n-i) has a Hamilton path. This is equivalent to asking if there is 

a Gray code of trees on n  vertices, where consecutive trees in the code differ by an 

edge slide. Hamilton paths (Gray codes) have been found for all n < 8 . The only 

interesting cases are for n > 5 and are listed below. Trees are identified using the 

system in [15].

T7T8 T6

T14

Trees with 5 vertices (listed as a Gray code)

V

12 T13 T il

Trees with 6  vertices (listed as a Gray code)

TIO T9
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T25 T22 T23 T24 T19 T21

T20 T18T17 T18 T16

Trees with 7 vertices (listed as a Gray code)

T15

T48 T44 T40 T35 T39 T47

T45 T46 T36 T33 T32 T29

A

T28 T30 T37 T34 T43 T41

T42 T31T38 T31 T27

Trees with 8  vertices (listed as a Gray code)

T26
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Each Gray code above corresponds to a Hamilton path in the corresponding edge 

slide distance graph. The graphs DEs{^n,n-i) (for n =  5 , 6 , 7 ,8 ) are exhibited below.

T8 T7

D e s {A^,4)

T6

r i4 T13

TIO
# T 9

T i l

T25 T22 T18

De s {At q̂)

21

T16 T lf

►T19T23' T17T20

T24 T21
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T 48 T 4 4 T 36 T 3 0 T 27 T 2 6

T29

140

De s {M,6)

In each graph above, there is a Hamilton path starting at P„ and ending at 

We believe that this can always be done; that is, we are confident in the following 

conjecture.

C o n jec tu re  4.4 has a Hamilton path with endpoints and Sn-

Since Cummins was considering the spanning trees of a graph, he was essentially 

looking at labelled trees. Thus, if we consider the edge slide distance graph of labelled 

trees on n  vertices, we are essentially looking at a spanning subgraph of T{Kn), the 

tree graph of Kn- Indeed, the edge slide is a restricted basis exchange. This subgraph 

is depicted below for n =  4.
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The edge slide distance graph of labelled trees on 4 vertices

The graph is not only Hamiltonian but is also Hamiltonian laceable, meaning that 

for every pair of vertices the graph has a Hamilton path having the pair as endpoints. 

We are naturally led to ask, for which values of n is the edge slide distance graph of 

labelled trees on n  vertices Hamiltonian? The edge slide is a highly restictive basis 

exchange, and so an affirmative answer for all n would be surprising indeed. Whatever 

comes of these questions, the graph above will provide a fertile base case.

4.3 E dge rota tion  d istance graphs

Recall tha t for any distinct vertices x^y ,z  of a graph G such tha t xy  € E{G) and 

xz  0 E{G), the graph H  obtained from G by deleting xy  and adding xz  is said to 

have been obtained from G by an edge rotation. We require that yz € E{G) in order 

for H  to be obtained from G by an edge slide; edge slides are restricted edge rotations. 

For any collection of graphs Ç, we define the edge rotation distance graph, D e r { G ) ,  

of Ç by taking the vertices of D e r { Q )  to be the members of Ç, with two ver

tices being adjacent if and only if they differ by an edge rotation. In other words,
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gh € E{D e r {Q)) if and only Si dEuig^h) = 1 . The graph D e s {Q) is a subgraph of 

De r {G) saturating every vertex. Moreover, it follows from Theorem 2.4 that D e s {Q) 

is connected.

In [4], Chartrand et al. conjectured that every graph is an edge rotation distance 

graph. They observed the following:

•  Kn, Cn, and are edge rotation distance graphs,

•  If G and H  are edge rotation distance graphs, then so are G U H  and G x H, 

and

•  Every tree is an edge rotation distance graph; in particular, if G and H  are edge 

rotation distance graphs and u G V{G) and v € V{H), then the graph obtained 

from G and H  by identifying u and v is an edge rotation distance graph.

In [10], Jarrett added the following:

•  Wheels are edge rotation distance graphs, and

•  Complete bipartite graphs are edge rotation distance graphs.

Every graph is an edge slide distance graph, and the necessary construction is 

given in the previous section. The refined nature of edge slides is readily exploited to 

prove this result. The flexibility of edge rotations, however, stands in the way of our 

efforts to prove Chartrand’s conjecture. We settle for a weaker version, which asserts 

that the conjecture is true in a topological sense.

Theorem  4.5 Every graph is homeomorphic to an edge rotation distance graph.

The proof requires the construction of a collection of graphs G, whose edge rotation 

distance graph has the desired properties. The remainder of this section contains the 

body of this involved proof. It is somewhat of a departure from the main thrust of 

the thesis and may be omitted without loss of continuity.
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Let G be a graph. It is sufficient to prove the result for connected graphs, and 

so G is assumed to be connected. We will exhibit a collection of graphs, Q, and a 

homeomorphic mapping of G into D e r {G)-

For simplicity of notation, D e r {*)  will be denoted D(*). Recall that for each 

graph G, the edge set E{G) is a subset of

The proof is by induction and is motivated by the following result about connected 

graphs:

Lemma 4.6 I f  G is a connected graph, then there is a permutation of its vertex set 

{v\,V2 , . . . ,  Vn) such that for every i = 1 , 2 , . . . ,  n, the vertex n, is adjacent in G to a 

member of {vi,V 2 ,

Proof. Let T  be a spanning tree of G and let (%i,n2 , . be the visiting order of

some depth first search of T  beginning at Ui. This permutation satisfies the conclusion 

of the lemma. □

Theorem 4.5 holds when G is a single vertex, in which case G is isomorphic to the 

edge rotation distance graph of the collection containing the single graph, P2 . Let G 

have n > 1  vertices. Our induction hypothesis is as follows: Every connected graph 

with n — X vertices is homeomorphic to an edge rotation distance graph, whose vertices 

are connected graphs with at least one edge.

In light of Lemma 4.6, there is a vertex Vq € V{G) that is adjacent to vertices 

in the vertex-induced subgraph H  of G, induced by y (G ) \  vq. By the induction 

hypothesis, there is a collection H  of connected graphs, all with at least one edge, 

and a homeomorphic mapping,

xf : V{H)^V{D{n)) .

Consider the collection of graphs,

{hi, /i2 , . . . ,  hk} = 'i/j{N{vo)), 

and let m =  |Æ^(hi)|. The induction hypothesis allows us to assume that m > 0.
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We now outline the construction of an edge rotation distance graph homeomorphic 

to G. We do so by augmenting each member of H  and adding new graphs to the 

collection. This new collection will be denoted by Ç. The mapping ijj is then extended 

to a homeomorphic mapping from G to D{Q).

For each graph h E H, we will construct a graph such that there is an

isomorphism from D{'H) to : h E 91}) which maps h to g ^ \  for every h £91.

For each z =  1 ,2 , . . . ,  A: and each j  — 1 , 2 , . . . ,  2m +  1 we will define graphs g\^\ along

with a graph ^(2 m+2 ) collection

^  ^  ■.hE9L]yj : i E [k],j E [2m +  1]} U

will have the following properties:

For every h ^  {hi,/i 2 , . . . ,  hfc},

^D{g){9h^) = : h' E A^o(w)(h)}. (4.1)

For every z =  1 ,2 , . . . ,  h,

^D{ç){9h-) =  {9h^ : h' E Ni,{'H){hi)} U g f \  (4.2)

ND{Q){gf^) = and (4.3)

== {j?!'" '), g (2 ,"+ 2)} (4  4 )

For every z =  1 ,2 , . . . ,  A: and j  =  2, 3 , . . . ,  2m,

=  (4.5)

Finally,

: < =  1 , 2 . . . . ,  A}. (4.6)

Suppose that the collection G can be constructed and the properties above can be 

verified. Then it follows that the map

: vi^G)-^V{D{g))
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defined by

f { v )
g { 2 m + 2 )  y  =  U q

si(l) " e V(H)
is a homeomorphic mapping, thus completing the proof.

We will now give the promised construction of Q and verify (4.1), (4.2), (4.3), 

(4.4), (4.5), and (4.6). First, we construct the graphs for every h E'H.

Let V  = V{hi) and define A4 to be the collection of subsets of size m  from ( 2 ); 

tha t is.

Define K, to be the collection of subsets of size k from A4; that is,

K ,

Fix a bijective mapping 4>h ' y (h i)—>y(h) for every h £11. The map may be 

taken to be the identity automorphism.

For each h make the following augmentation of h for each K  € JC.

•  Let E i ,E 2 , ■ ■ ■ ,Ek be the elements of K ,  which are viewed as edge sets of size 

m  on V{h) via the mapping 0/i.

•  For every i = and every edge xy  E Ei, add a vertex VK,i,xy to ^ (^ )

and edges VK,i,xyX and VK,i,xyV to E{h).

•  For every i =  1,2, . . . ,&, add a vertex VK,i,i to V{h) and edges {vK,i,iVK,i,xy ■ 

xy  E Ei} to E{h).

• For each i = 1 ,2 , . . .  ,k ,  add vertices {vK,i,j : j  = 2 ,3 , . . .  ,2k + 1} U vk  to V{h) 

and edges {vK,ijVK,i,j+i . j  = 1 ,2 , . . . ,  2k} U VK,i,2 k+iVK to E{h).

•  Add vertices : j  = l , 2 , . . . ,m } t o V { h )  and edges : j  = 1 ,2 , . . .  m —

1} U Vk Vjc to E{h).
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The augmentation defined above is now referred to as the graph . Recall that this 

augmentation was performed for each K  € IC, so the graphs have significantly 

more edges and vertices than the original graphs in H. However, since the augmenta

tion is performed in such a symmetric way, two graphs h,h' Ç.'H will differ by an edge 

rotation if and only if the corresponding augmentations and differ by an edge 

rotation. Hence, Property 4.1 holds for every graph ĝ °̂  with h 0  (hi, A^,... ,/ia:}.

Our next step is to define the graphs for each i =  1 ,2 , . . .  ,k. The elaborate 

construction that we have just undertaken was designed to ensure that some Kq E K 

will allow us to single out the graphs h i ,h 2 , ■ ■ ■ ,hk- Recall tha t m — \E{hi)\ > 0. For 

each i = 1,2,. let F"* = E  {hi). Define E[ to be the edges in V  x V  corresponding 

to Ei via the map .. Define

— { ^ 1 ) - 2̂ » ■ ■ • ’ •

The set K q £ JC has some special properties. For each i =  1,2 ,..  . ,k ,  the edges E[

correspond (via precisely to the edges of hi.

We are now ready to define the graphs Thankfully, our subsequent construc

tions will be defined in terms of edge rotation operations, and not in terms of further 

augmentations. For each i = 1 ,2 , . . .  ,k , define by and

=  {E{g^hi) \  '^Ko,i,iVKo,i,i+l) U VKo,i,iVKo,2 i+l-

Now gi^  ̂ differs from ĝ ^̂  by an edge rotation. If some graph gl^  ̂ differs from another 

gl^  ̂ by an edge rotation, then it follows tha t hi is isomorphic to h. Hence, Property 

4.2 holds.

We will now construct the graphs gj^̂  for each i = 1 ,2 , . . . ,  k and j  = 2 ,3 , . . . ,  2m+

1 :

Step (0): Fix i, let j  =  2, and initiate B E G I N  = E[ and E N D  =  0 .

Step (1): Suppose that we have constructed g\^ Then there is an edge xy  €
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B E G IN .  Define by V { g f )  =  V{g\^-^'^) and

^ ( # )  =  {Eigi'^'^) \  xy) U xvÇ^.

Finally, put B E G I N  =  B E G I N  \  xy  and put E N D  = E N D  U

Step (2): If /  =  J < m +  1, then put j  =  j '  +  1  and repeat Step (1). Otherwise, let 

E N D i  =  E N D  and stop.

After this process has been repeated for each i, we will have constructed the 

graphs for j  =  2 , 3 , . . . ,  m +  1. We now use a similar procedure to construct the 

remaining graphs, g\^  ̂ for j  =  m +  2, m +  3 , . . . ,  2m +  1.

Step (0): Fix let j  =  m +  2, and initiate B E G I N  =  END i.

Step (1): Suppose tha t we have constructed Then there is an edge of the form

€ B E G IN .  Define g f  by V{g\^^) = V{g\^-^^) and

Finally, put B E G IN  = B E G IN  \

Step (2): If f  — j  < 2m +  1 , then put j  =  /  +  1  and repeat Step (1 ). Otherwise, 

stop.

We have now defined all but one member of §•> namely y(2 m+2 ) ggfore we do so, 

now is a good time to assess the graphs of the form for each i. The edge

rotation performed in the construction of gf^ from 5 °̂̂  is now the only difference 

between the graphs None of these graphs differ by an edge rotation, due to

this difference. In fact, for all j , f  E [2m +  1] and every i ^  i' E [A;], the graphs

and pjf  ̂ do not differ by an edge rotation. However, for each i =  1 ,2 , . . . ,  fc and each 

j  =  1 , 2 , . . .  , 2 m, the construction of from the perspective of ensures that

these graphs differ by an edge rotation. Therefore, Properties 4.3 and 4.5 hold.

The graph g(^^+^) is defined by taking V{g^^^+ '̂>) = and
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This construction ensures that ^(2 m+2 ) (jjffers from by an edge rotation. In fact,

gi2 m+2 ) (jjffgpg by an edge rotation from precisely the graphs ^  ^(2 m+i)

Properties 4.4 and 4.6 now follow and the proof is complete.
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Chapter 5

^3-m oves

Our discussion of -moves is devoted entirely to the question of whether one graph 

(or matroid) can be transformed into another using f^g-moves. The operation lends 

itself naturally to the partial ordering of graphs and of matroids.

5.1 T he p oset Gn

Define a relation :< on the set of graphs by the rule:

G < H  if and only if G is obtained from H  by a sequence of Ks-moves.

Clearly, is partial order. Consider the set of connected graphs on n  vertices, 

which we will denote by Qn- It is natural to think of Çn as the poset {Qn, d)- Hasse 

diagrams for Qs, Ga, and Gs are given below. The members of Gn are shown with 

their identification numbers (see [15]) to provide cross-reference with the each Hasse 

diagram.
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G6 G7

G7

G6

The poset

013 014 015 016 017 018

018

017

016

013 014

The poset Ç4
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X  n  X  A
G29 030 031 034 035 036

X o  <>
037 038 040 041

044

050

«

046045

042 043

047 048 049

051 052

052

051

049 050

048045 046 047

043044 040 041 042

034

029

038

030

The poset

031

A few easy observations are in order. First, Gn is a connected poset, whose minimal 

elements are the triangle-free connected graphs on n  vertices. There is exactly one

33

R eproduced  with perm ission of the copyright owner. Further reproduction prohibited without perm ission.



maximal element, namely Kn- The sets of the form An,e, where e € {n — 1, n , . . . ,  Q)} 

are antichains of Ç^. The poset of connected graphs on n  vertices, ordered by edge 

size, is a subposet of Qn-

For every n >  5, the poset Gn is not a lattice. Two members do not necessarily 

have a unique least upper bound nor a unique greatest lower bound, as the following 

example shows.

For n >  5, the poset Gn is not a lattice

The decision problem to determine iî G :< H, is at least as hard as the classic de

cision problem, “Determine if G is isomorphic to Ff” . An obvious necessary condition 

îox G :< H  is that G be a connected spanning subgraph of H. However, this property 

is not sufficient. Triangle-free graphs and their connected spanning proper subgraphs 

provide easy counterexamples to sufficiency. Another example is given below.

G H

G spans H  but G ^  H  
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The next three results give sufficient conditions for G ^  H. Their proofs are more 

or less immediate and are left to the reader.

P ro p o s itio n  5 . 1  Suppose that G is a connected planar graph and H  is a triangula

tion or a near-triangulation of G. Then G -< H. □

P ro p o s itio n  5.2 Suppose that G is a connected graph on n vertices having more 

than (2 ) — Then Sn d^G. □

This bound is best possible. For example, if n is even and G is obtained from Kn 

by the deletion of a perfect matching, then Sn ^  G. In fact, we can say more about 

stars.

P ro p o s itio n  5.3 I f  G is a graph on n vertices, then the following are equivalent:

•  Sn d  G

•  G has a vertex of degree n — 1

•  Sn is isomorphic to a subgraph of G □

There are a number of other immediate sufficient conditions, but we will save the 

discussion for Section 5.4. For now, we will delve a little deeper into the structure of

Qn-

5.2 E m bedding p o sets  in Gn

If X  is a collection of graphs, then the poset (X, X) is identified as a K^-move poset. 

Is every poset isomorphic to a K^-move poset? The answer is “yes” . Every finite 

poset is embeddable in Qn, for n sufficiently large. In fact, we can say a little more.

T h eo rem  5.4 I f  (X, <) is a finite nonempty poset and n = 2(|X | +  1), then (X, <) 

is isomorphic to an induced subposet of Qn- I f  (X, <) has a 1, then X  is isomorphic 

to an induced subposet ofQn-2 -
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A poset (A, X) is an induced subposet of a poset (-B, if A Ç B and a i , a 2  E A 

satisfy Oi X if and only if ai X' og. The element Î of a poset (A, X), if it exists, 

satisfies ar Î for every x  £ A.

In completing the proof, it becomes necessary to introduce a family of labelled

graphs. For X  =  {a:i, xg,.. •, Xk},  define a graph Px  on vertex set

V(Px) = {xuX2,. . . ,Xk}u{yo,yu.. . ,yk+i}

and with edge set

E{Px) = {xiyi, Xiyi+i,yiyi+i : i = 1 , 2 , . . .  ,k }  U yoVi-

Proof of  Theorem 5.4- Let X  = {xi, z g , z & } .  For each x  £ X ,  let Ux denote the set

of edges {xiyi x < x î\, and consider the graph Px\Ux- We will show that {{Px\Ux • 

a: € A} U Px, i<) and {X, <) U Î are isomorphic as posets. If Px  \  d  Px  \  Uyj for 

some x ,w  e X ,  then 11̂ , Q Ux and { z  e X  : z  < w} Ç {z  e X  : z  < x}. Therefore, 

X < w. Suppose conversely, that x  < w. Then {z  € X  : z  < w} C {z  € X  : z  < x}  

and P x \U x  d  Px \Uyj. Hence, the two posets are isomorphic. All of the graphs 

Px \  Ux have n vertices, and so live in Qn- Therefore (%, <) is isomorphic to an 

induced subposet of Qn- The graph Px  acts as the Î in {X, <) U Î. Moreover, if 

{X, <) has a Î, then we could have taken the poset A ' =  A  \  Î in the hypothesis of 

the theorem. In this case, A ' U Î =  A  is isomorphic to an induced subposet of Qn-2 - 

□

5.3 U pper b oun ds for th e  trees

TVees are as fundamental to connected graphs as prime numbers are to integers. The 

stars and paths are exceptional trees, and the wheel, Wn-i, has the property tha t 

Sn d  Wn-i and P„ d  Wn-\. However, for n sufficiently large, there can be arbitrarily 

many trees T  on n  vertices such that T  ^  Wn-i- For example, if T  is a tree on n
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vertices having two vertices of degree at least 4, then T  W n - i ,  since the wheel has 

at most one vertex of degree greater than three, namely the center vertex.

The wheel is an upper bound on the star and path. We want more than that. 

If { H , G i , G 2 ,  ■. ■ , G k }  are members of Qn-, then we say that H  is an upper bound 

of minimal size on {Gi, Gg,. . . , Gjfc} if G, X for a lH =  1 , 2 , . . . ,  /c and for every 

graph H '  with \ E { H ' ) \  <  \ E { H ) \  there is some i such that G* H ' .  Notice that this 

definition contrasts the common notion of a least upper bounds in general posets.

Certainly, such graphs exist, for K n  is an upper bound on every tree. We are 

interested in graphs with this property but which are as small (in edge size) as possible. 

We are led to the following tantalizing problem.

Problem  5.5 For each n > 3, find an upper hound of minimal size on the collection 

of trees, A n ,n —i-

We have solved the problem for n = 3 , 4 , . . . ,  7. The following theorem summarizes 

the findings.

Theorem  5.6

• The upper bound of minimal size on ^ 3 , 2  has size 2 and is the graph, G 6 .

The upper bound of minimal size on ^ 4 , 3  has size 4 and is the graph, G15.

A
G15

•  The upper bounds of minimal size on have size 6  and are the graphs, G40 
and G42,
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G40 G42

• The upper bounds of minimal size on have size 8  and are the graphs, G136 

and G144.

G136 G144

The upper hounds of minimal size on have size 11 and are the graphs, G747, 

G7b2, G79b, G796, and G813.

0747 0752 0795 0796 G813

The proof of Theorem 5.6 requires the manual checking of a number of candidates; 

however, most cases are dealt with handily using the following necessary condition.

L em m a 5.7 I f  G is an upper bound on the collection of trees on n vertices, An,n-\,

then

•  G has a Hamilton path and

• G has a vertex of degree n — 1 .

Proof In general, G must have every tree on n vertices as a spanning subgraph. In 

particular, G contains a copy of and 5„. □
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It is left to the reader to verify that the graphs given in Theorem 5.6 are upper 

bounds on the specified class of trees. We will now discuss why these are in fact the 

only graphs of minimal size having this property.

n =  3 case: It is clear that G6  is the upper bound of minimal size on ^ 3 ,3 . It is the 

only tree on 3 vertices and is an upper bound on itself!

n =  4 case: Of all graphs on 4 vertices and 4 edges, the graph G15 is the only graph 

which does not violate the conclusion of Lemma 5.7 and no graph with strictly fewer 

edges can be an upper cound on .^4 ,3 .

n =  5 case: Lemma 5.7 rules out all graphs with 5 vertices and 5 edges. The only 

graphs on 5 vertices and 6  edges not ruled out by Lemma 5.7 are G40 and G42.

n = 6  case: The method of argument is identical to the previous two cases.

n = 7 case: The situation gets a little more interesting in this final case because 

Lemma 5.7 fails to rule out some of the graphs which are not upper bounds on 

Three graphs on 1 0  edges and five graphs on 1 1  edges must be ruled out by some 

other means. For each such graph G we give a counterexample by exhibiting a tree 

T  for which T  G. The only two counterexamples needed, the trees T20 and T24, 

are shown below.

T20

The final eight graphs may now be ruled out.
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T20 i G618 G671 T20 ^  G671

T24 GQ12 G672 G753 T24 G753

T 2 0  G775 G775 G794 T24 ^  G794

T24 7  ̂ G814 G814 G815 T20 i  G815

We are not hopeful that a complete answer to Problem 5.5 will be found. However, 

an investigation into the asymptotic size of these special graphs may bear fruit.

Several of the graphs in Theorem 5.6 have interesting chromatic polynomials, 

which are given below in “tree form”. The tree form  of a polynomial in A is found by 

factoring the polynomial into terms of the type A(A — 1 )” , for n — 0 , 1 , __
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G6:

G15:

G40 and G42:

G136 and G144:

A(A- 1)'

A(A — l)^ — A(A — 1)'“

A(A — l)^ — 2A(A — 1)  ̂+  A(A — 1)'"

A(A — 1)® — 3A(A — 1)^ +  3A(A — 1)  ̂— A(A — 1)^

G795 and G813:

A(A — 1)  ̂— 5A(A — l)^ +  10A(A — 1)  ̂— 10A(A — 1)  ̂+  5A(A — 1)^ — A(A — 1)

Observe tha t the absolute values of the coefficients are binomial coefficients. In par

ticular, they are of the form

k= 0

for some n. In other words, they appear as a line in Pascal’s triangle. If a chromatic 

polynomial (expressed in tree form) has this property, we refer to it as Pascal.

There is an easy method for constructing graphs with Pascal chromatic poly

nomials of every order. All trees have Pascal chromatic polynomials. Indeed, the 

chromatic polynomial of any tree on n vertices is A(A — 1)"“ .̂ If G has a Pascal 

chromatic polynomial and xy  is an edge of G, then by adding a vertex z to V{G) 

and edges xz  and yz  to E{G), we obtain another graph having a Pascal chromatic 

polynomial.

Read recognized this construction and conjectured tha t every graph with a Pascal 

chromatic polynomial can be constructed in this way [16]. It is not surprising that 

they should appear in the discussion of upper bounds on trees. Indeed, they have 

everything to do with triangles and trees.
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5.4  A -good sets

Suppose tha t C? is a connected graph and i /  is a spanning subgraph of G. Is H  :< G? 

We desire to characterize the subgraphs for which the relation is true.

We are entering an investigation of subgraphs, and the graph G serves as an 

important point of reference. It is understood, therefore, tha t a subgraph H  satisfies 

H  -< G only if there is a sequence of %3 -moves starting with G and ending with H. It 

is not enough for H  to be isomorphic to such a subgraph of G. Consider, for example, 

the spanning subgraphs Hi and H 2  of the graph G below.

G HI H2

Observe that Hi ■< G and Hi is isomorphic to i / 2 , yet H 2  G. There is no 

sequence of edges of G that can be successively deleted by ÜTa-moves to get H 2 - 

Clearly, we can not look to {Gn, :<), poset of isomorphism classes, for answers to 

these questions; rather, we need to distinguish the subgraphs of G more carefully.

For each edge e € ^{G ),  define A(e) to be the collection of triangles of G tha t 

contain e. Suppose that the sequence (ei, 6 2 , . . . ,  e^) consists of some edges of G. We 

say that (ei, 6 2 , ,  e&) is A-good in G if

for all % == 1 , 2 , . . . ,  jk, A(e^) g  I J j l l  A(ej). (5.1)

We say that a subset /  Ç  E{G) is A-good in G if there is a A-good sequence consisting 

of the elements of / .  The empty set is proclaimed to be A-good.

T h eo rem  5.8 For every I  Ç  E{G), the relation G \  I  A G holds if and only if I  is 
A-good in G.
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Proof. Let I  = {ei, 6 2 , -. •, e*} Ç E{G) be A-good. Then the elements of I  can 

be arranged in a sequence, say (ei, 6 2 , . .  •, e^) such tha t (5.1) holds. For each i = 

1 , 2 , t he edge is contained in a triangle of G \  {ej : 1  <  i  <  *}, whence 

G \  {ej : 1  < j  < i} ^  G \  {cj : 1 < j  < i}. By the transitivity of we have 

G \ I  d: G.

Suppose that G \ I  :< G. Then there is a sequence of A'g-moves starting with G 

and ending with G \ I .  Suppose the deleted edges, in the order of their deletion, are 

6 1 , 6 2 , . . . ,  6 k. For each i = 1 ,2 , . . . ,  /c, A(e,) is nonempty in G \  {cj : I < j  < i] 

because the edge Ci can be deleted from G \ { e j  : 1 < j  < i}. Therefore, in G, we 

have A(ei) 0  U}=i Now I  is A-good in G. □

In the next section, we will investigate A-good sets in more detail. Our approach 

will be from the perspective of matroids; however, the discussion simplifies unam

biguously to graphs, as is always the case with matroids!

5.5 N ew  m atroids from  old

The fundamental question of this section is the combinatorics of A-good subsets of 

matroids. Before going on, we are reminded that all matroids in this thesis are finite 

and simple, unless otherwise stated.

The reader may have realized by now that the Kg-move, defined as an operation 

for graphs, is easily generalized to an operation for matroids. If an element of a 

matroid is contained in a circuit of size three, then the deletion of the element is 

referred to as a JTg-move. The notions of A-good sequences and sets are defined for 

matroids in the natural way.

The partial order, •<, extends to matroids as well. For a submatroid AT of a 

matroid M, we write N  :< M  if E{M ) \  E{N )  is A-good in M. We do not merely 

mean tha t N  is isomorphic to a submatroid N' of M  such that E{M) \  E{N ')  is 

A-good in M.
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In Lemma 2.2, we noted the fundamental property of Ks-moves (for graphs); that 

is, 1-connectivity is preserved under 7 ^3 -moves. From the perspective of matroids, we 

can distill the essentials of this result. The fundamental property of iï'3 -moves (for 

matroids) is that rank is preserved by i f 3 -moves.

L em m a 5.9 I f  M  is a matroid, e G E{M ), and M \ e  -< M , then the rank of M \ e  

is equal to the rank of M .

Proof M  \  e ■< M  implies tha t e is in a circuit of M. □

C oro lla ry  5.10 I f  M  is a matroid and N  is a submatroid of M , then N  :< M  only 

i f  N  spans M; that is, cIm { E { N ) )  — M. □

Let X^(M )  denote the A-good subsets of E{M )  and define

Ma (M) =  (E(M ),X a (M)).

We are led to ask the following question for each matroid, M:

Q uestion  5.11 Is M ^{M ) a matroid?

Of course, if M  has no circuits of size three, then X^{M)  is empty and M a ( M )  

consists entirely of loops. We will now answer the question in the affirmative for a 

few classes of matroids. The following result will be helpful in doing so.

L em m a 5.12 I f  M  is a matroid and K  ■< M  for every spanning submatroid K  of 

M , then M a(M ) =  M*.

Proof. Under the hypothesis of the lemma, it follows by the necessary condition 

supplied in Corollary 5.10 that the A-good subsets of M  are precisely the complements 

of the spanning subsets of M. Therefore, the maximal A-good sets are precisely the 

complements of bases of M, whence M a(M ) =  M*. □
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T h eo rem  5.13 M^^{M{Kn)) is a matroid and is equal to M*{Kn)-

Proof. Let Lf be a connected spanning subgraph of Kn- The poset {Çn, d ) has a 

unique maximal element, namely Kn- Therefore, H  d  Kn- The result follows from 

Lemma 5.12. O

In some sense, the projective geometries PG{r — l,q )  are the matroid analogues 

of complete graphs. It is not surprising, therefore, that a similar result holds for this 

class of matroids.

T h eo rem  5.14 M ^{PG{r — l ,g)) is a matroid and is equal to PG{r — l,g)*.

Proof. Let i f  be a spanning submatroid of PG{r — l ,g).  We will show that H  d  

PG{r — l,q). If i f  =  PG{r — l,q), then we are done. Assume inductively that 

H ' d  PG{r — l, q) for all spanning submatroids i f ' of PG{r — l, q) with [if| =  jif'j — 1 . 

There is an element v € PG{r — l ,g) \  if . Since i f  is spanning, there exist elements 

/ii, /i2 , . . . ,  hfc in E{H) such tha t C = {u, hi, hg,. . . ,  hk} is a circuit of PG{r — 1, q). 

Since PG{r — 1, g) is a simple matroid, k is greater than one. We assume that v and 

hi, /i2 , . . . ,  hfe are chosen so tha t k is minimal. Two cases may be distinguished.

Case k = 2: In this case, {u, hi, hg} is a circuit of i f  U u, whence H  < H  VJ v. It 

follows by induction and the transitivity of d  tha t i f  d  PG{r — l,q).

Case h > 3: We show by contradiction tha t this case cannot occur. It is a property of 

projective geometries that for every pair of elements a and b, there is a third element 

c in the span of {a, &}; that is, {a, 6 , c} is a circuit of size three. Thus there exists an 

element h' of PG {r—l, q) such that {h', hi, h2 } is a circuit of size three. If h' € P G {r— 

1, g) \  if , then we arrive at a contradiction with the minimality of k. The alternative 

is tha t h' € if . Now C \ v  is independent; therefore, h' E i f  \  {hi, h2 , . . . ,  h&}. Using 

strong circuit elimination, we find a circuit C" Ç C U {hi, h2 , h'} such that u E C" 

and hi 0  C . If \C'\ <  |C|, then the minimality of k is contradicted. The only 

alternative is that C ' =  {u, h', h2 , h^, . . . ,  h^}. If this is the case, then the symmetric 

difference of C  and C  is the pair {h', h j ,  a contradiction, because PG{r -  l ,g) is
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simple. We conclude, therefore, that h' € PG{r -  I, q ) \ H ,  in which case it follows 

tha t H  ]< PG[t — 1 ,ç).

H  was chosen arbitrarily; thus, H  X PG{r -  l ,ç)  for every spanning matroid H. 

The conclusion of the theorem now follows by Lemma 5.12. □

The only property of the projective geometries used in the proof is that every pair 

of elements is contained in a circuit of size three. In light of this, the following result 

is self-evident.

T h eo rem  5.15 MA(£/2 ,n) w a matroid and is equal to 

We conclude the list of examples with the wheels.

T h eo rem  5.16 M^{M{Wn)) is a matroid and is equal to M*{Wn).

Proof, Let i f  be a connected spanning subgraph of Then either H  =  or 

there is an edge e E \  H  such that e is contained in a triangle of H. Therefore, 

H  :< HUe. By induction and transitivity, we have H  ■< Wn. Therefore, H  :< M{Wn) 

for every spanning submatroid H  of M(W„). The result now follows from Lemma 

5.12. □

Admittedly, we have answered Question 5.11 in the affirmative only for some well- 

behaved classes of matroids. A systematic assessment of all matroids has proven to 

be difficult; yet, we believe that the following will be shown in further research.

C o n jec tu re  5.17 For every matroid M , M ^{M ) is a matroid.

It will not be the case, however, that M a(M ) is always the dual of M . We 

illustrate this fact with the following graph G.
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G:

/

M a ( M ( G ) )  #  M {GY

The cocircuit of M{G) indicated in the diagram does not correspond to a minimal 

non-A-good subset. Thus, M^{G) ^  M*{G). However, M a ( G )  is isomorphic to the 

direct sum, M*{K 3 ) 0  0  0  M*{KY), a fact which is left to the reader

to verify.

There are non-isomorphic matroids M\ and M 2  for which the constructions Ma{M\) 

and M a (M2 ) are isomorphic matroids. Consider the following example.

G W 7

The matroids M{G) and M{Wj) are non-isomorphic; however, M a ( M ( G ) )  is 

isomorphic to Ma{M{W-j)).

This line of investigation appears to have a ways to go. The thesis, however, ends 

here.
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