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Y ong Zhao, M .A ., M ay 1998 M a th e m a tica l Sciences

A s y m p to tic a lly  good colorings o f plane m u ltig raphs 

D ire c to r: P. M a rk  K a y ll 1 ^ ^ ^

A  m u ltig ra p h  is a loopless graph w ith  repeated edges allowed. V arious ch rom a tic  
num bers can be fo rm u la ted  as so lu tions o f in teger program m ing problem s, o r IPs. A  
specific ch rom a tic  num ber is asym ptotica lly good, o r a.g., i f  the  so lu tio n  o f its  IP  ap­
proaches th e  so lu tio n  o f its  linea r re la xa tio n  when the  re levant m u ltig ra p h  param eter 
grows w ith o u t bound. Form ally, a m u ltig ra p h  in va ria n t (3, w h ich  can be fo rm u la ted  
as th e  so lu tio n  to  an IP  problem , is a sym p to tica lly  good in  case 13 f  j3* la s /? * ^ o o ,  
where /)* is th e  so lu tio n  o f the  lin e a r re la xa tio n  o f th e  IP  de fin ing  /5. T he  m a in  goal 
o f th is  w o rk  is to  investiga te  several conjectures on the  asym ptotics o f co lo ring  plane 
m u ltig rap hs.
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C H A P T E R  I  
IN T R O D U C T IO N

One o f the  m ost p rom ine n t g raph -theore tic  param eters, th e  ch rom a tic  num ber (deh- 

n itio n s  o f te rm in o lo g y  axe deferred to  §1 .1 ) is o ften  fo rm u la te d  as the  so lu tio n  o f an 

in teger program m ing  problem , or IP . T h is  approach is co m p u ta tio n a lly  d iffic u lt when 

th e  re levan t co lo ring  param eter is large (see [16]). In  a 1996 paper [6 ], K ahn  no ticed 

th e  a sym p to tic  behavio r o f the  chrom atic index  o f a m ultig raph; i.e ., th e  s o lu tio n  o f 

th e  IP  de fin ing  th e  ch rom atic  index can be approxim ated by th e  so lu tio n  o f the  IP ’s 

lin e a r re la xa tio n , th e  com pu ta tion  o f w h ich  m ay be com pleted in  p o lyn o m ia l tim e

[10]. In  a fo llo w in g  paper [7], he established the  asym pto tics o f th e  lis t-ch rom a tic  in ­

dex o f m u ltig ra p hs  (see also [8 ] fo r re la ted research). Based on K a h n ’s resu lts, K a y ll 

[1 1 , 1 2 ] proved s im ila r resu lts abou t the  asym ptotics o f the  to ta l chrom atic num ber 

o f a g raph  and o f a m u ltig ra p h . In  th is  thesis we add tw o  new param eters to  th e  lis t, 

nam ely, the  entire chrom atic number and the  edge-face chrom atic num ber o f a plane 

m u ltig ra p h . The asym pto tics o f these tw o  inva rian ts  were con jectured by K a y ll [11] 

in  1997.

1.1  T e rm in o lo g y

In  th is  thesis, graph means sim ple graph con ta in in g  no loops o r repeated edges; mMlti- 

graph  is used when repeated edges are allowed. Thus, every graph is a m u ltig ra p h , 

b u t th e  converse is false. A  graph is p la na r  i f  i t  can be em bedded in  th e  plane. I f  

a p la n a r graph is em bedded in  th e  plane, the n  i t  is called a plane  graph. Unless
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specified, G  w ill always denote a m u ltig ra p h . For graphs and m u ltig rap hs, we use 

V  (G ) , E  { G ) , and A  {G ) to  denote the  ve rtex  set, edge set, and m axim um  degree o f 

G . I f  i t  is c lear fro m  th e  con text, ‘ (G )’ w ill be o m itte d . T w o  vertices are adjacent i f  

th e y  are jo in e d  by an edge, tw o  edges are adjacent i f  th e y  share a com m on vertex, and 

tw o  faces are adjacent i f  th e ir boundaries have a t least one com m on edge. (T w o  faces 

to u ch in g  o n ly  a t a ve rtex  are n o t adjacent; s im ila rly , an edge and a face tou ch ing  on ly  

a t a ve rte x  are no t ad jacent.) A  ve rtex  (o r an edge) is in c ide n t to  a face i f  i t  form s 

p a rt o f th e  boundary o f the  face. A lso, the  vertices u  and v are each in c ide n t to  th e  

edge uv. See [3] fo r any o m itte d  term ino logy.

In  th is  w ork, we w ill be considering a va rie ty  o f g raph co lo ring  param eters w h ich 

we now  define. A n  assignm ent o f k  colors to  the  vertices o f G  so th a t ad jacent vertices 

receive d iffe re n t colors is called a (va lid ) coloring  o f G] when th is  is possible, G  is 

sa id  to  be k-colorable. The least num ber n  fo r w h ich  G  is n -co lo rab le  is ca lled  the  

v e rte x  ch ro m a tic  num ber, o r s im p ly  the  ch ro m a tic  num ber o f G  , and denoted by %. 

T he c h ro m a tic  index, o f G is the  least num ber o f colors to  ensure th a t th e  edge 

set E  ad m its  a va lid  co lo ring . (Some au thors, e.g. [15], prefer to  use Xv denote 

ch rom a tic  num ber and Xe to  denote chrom atic  index.) The to ta l chrom atic number, 

o f G is th e  least num ber o f colors needed to  co lor a ll the  elements a iV  U E  such 

th a t no tw o  ad jacent o r inc ide n t elem ents in  F U  receive the  same color. The  entire  

chrom atic  number, X-uefi o f a plane G is th e  least num ber o f colors needed to  color 

th e  vertices, edges, and faces o f G , where inc ide n t o r adjacent elements are colored 

d iffe re n tly  (tw o  faces touch ing  o n ly  in  a ve rtex  m ay receive the  same co lo r; s im ila rly ,
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a face and an edge tou ch ing  in  o n ly  one ve rtex  m ay get the  same co lo r). The coupled 

(edge-face) chrom atic number^ Xvf (Xe/)> is the  least num ber o f colors needed to  co lo r 

the  vertices (edges) and faces o f G  such th a t tw o inc ide n t or ad jacent elem ents receive 

d iffe re n t colors. The lis t-chrom M ic index, o f G is the  least num ber t, such th a t, 

fo r any assignm ent o f a lis t A (e) o f size t  to  every edge e e  E { G ) ,  i t  is possible to  

co lo r E  {G)  so th a t every edge receives a co lo r fro m  its  lis t. The case when a ll the  

lis ts  A  (e) are id e n tica l o f size im plies th a t

F or s im ple  plane graphs w ith  m axim um  degree A , a few  im p o rta n t bounds on the  

co lo ring  param eters th a t we defined are th e  fo llow ing : % <  4, Xvf ^  6 , and Xe ^  A + 1 . 

The firs t bound is the  Four C olor Theorem  [1 ]. (See [15] fo r fu rth e r discussion and 

background on these bounds.) Recently, Sanders and Zhao [15] proved th a t, fo r a 

s im ple  plane graph, i f  A  >  8 , then  Xef <  A  +  2 , and in  general Xef <  A  +  3, w h ich  

was con jectu red  by M e ln ikov. T h e ir p ro o f p a rtia lly  relies on the  Four C o lo r Theorem . 

Tw o m a in  resu lts o f ou r w ork are the  establishm ent o f th e  asym p to tic  behavio r o f 

Xvef Xef fo r p lane m u ltig raphs. O ur argum ents w ill use, b u t do n o t depend on, 

th e  Four C o lo r Theorem .

A  stable set, S, o f G  is a subset o f V  such th a t the  induced subgraph o f G on S' 

is em p ty  (contains no edges). A  mM,taking, M ,  o f G is a subset o f E  such th a t no tw o 

edges o f M  share th e  same end. W e use M . to  denote th e  fa m ily  o f m atch ings o f G. 

L e t 5(5 ') be th e  set o f edges w ith  one end in  S. A  to ta l stable set o f G is defined to  

be a subset o i E U V ,  denoted by M  U S', where M (C  E )  is a m atch ing , S (C  V )  is a 

s tab le  set and M  C\6{S) =  0. We use T { =  T  (G )) to  denote th e  fa m ily  o f to ta l s tab le

%
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sets o f G  and T  (=  M  U 5*) to  denote a m em ber o f T . L e t F  be the  set o f a ll faces 

o f G , iV  be a subset o f F  such th a t no tw o elem ents o f N  share the  same edge and 

7  {N )  be th e  set o f vertices and edges th a t are inc ide n t to  N .  A n  entire  stable set is 

a subset o f jE U V" U F  o f the  fo rm  M  U S U N ,  where M  U 5  is a to ta l stab le  set, N  

is described as above, and (M  U 5 ) n  7  (N )  — 0. We use 7Z (G) )  to  denote the  

fa m ily  o f e n tire  stab le sets o f G  and R { — M  U S U N )  to  denote a m em ber o f TZ. I t  is 

easy to  see th a t F  Ç.7Z. F in a lly , edge-face stable sets are defined in  the  n a tu ra l way; 

we use Li fo r th e  fa m ily  o f those sets and U {=  M  U N )  to  denote a m em ber o f L i.

1 .2  F ra c tio n a l c o lo r in g  a n d  a s y m p to t ic a lly  g o o d  in v a r ia n ts

A ll th e  ch rom a tic  num bers defined in  the  preceding section can be defined as so lu tions 

o f IP  problem s (see [4] fo r o m itte d  LP  and IP  te rm in o lo g y). For exam ple, i f  /  ; 

TZ —+ {0 ,1 } , the n  th e  en tire  ch rom atic  num ber, Xvef^ o f G  can be fo rm u la ted  as the  

o p tim a l so lu tio n  o f th e  IP  problem :

Xvef =  m in E  f ( R )
R e n

sub ject to  E  /  (R ) =  1 , fo r each a ^  E U V  U F.
a^R£n

The idea is th a t the  mem bers o f f~ ^  ( {1 } )  fo rm  the  co lo r classes o f the  e n tire  co lo ring .

T he  lin e a r fu n c tio n a l E  f  (R ) counts the  num ber o f colors used, w h ile  the  e q u a lity
R e n

co n stra in ts  ensure th a t each vertex, edge and face appears in  exa ctly  one co lo r class.

T he  lin e a r re la xa tio n  o f the  prob lem  above is fo rm u la ted  accordingly. I f  /  : 

TZ —>[0,1], th e n  t\ ie  fra c tio n a l entire chrom atic number, Xvef-> is the  o p tim a l so lu tio n

%
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o f th e  L P :

X v e f  =  m in  E  /  { R )
Ren

sub ject to  E  /  {R ) =  1 , fo r each a e E U V  U F.
aeRen

C learly , x le f  ^  X v e f  - Fo llow ing  the  same ro u tin e , we can define %, Xt^  Xvf->

Xef,  and th e ir fra c tio n a l pa rtne rs %*,%'*, x'l*, X t, X l f ,  Xl f -  A  useful observation is 

th a t x', X v e f ,  X t  and th e ir fra c tio n a l counte rparts x ' * , X t e f ,  X t  are a t least A , since a ll 

edges in c id e n t to  a ve rtex  o f m axim um  degree have to  be colored d iffe ren tly .

K a h n  in tro d u ce d  the  n o tio n  o f asym ptotica lly good, o r a.g., behavior fo r m u lti­

g raph  co lo ring  param eters (see e.g. [6 , 8 ]). L e t be a m u ltig ra p h  in va ria n t, such 

as Xvef, th a t can be fo rm u la ted  as the  o p tim a l so lu tio n  o f an IP  prob lem  and le t (F  

be the  o p tim a l so lu tio n  o f th e  linea r re la xa tio n  o f the  IP . W e say j3 is a sym p to tica lly  

good i f  /?//?* - ^  1 as ^  g o ;  th a t is, fo r each s >  0 there  exists B  — B  {e) such th a t 

i f  j3* >  B,  th e n  (1 - f  <  fd /{3* < 1 +  e. We o ften  abbrevia te  0/(3*  1 by /3 ~  .

In  th is  thesis, we are concerned w ith  estab lish ing w h ich  co lo ring  param eters a ie

a.g.
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C H A P T E R  I I  
P R E C U R S O R S  T O  O U R  R E S U L T S

In  th is  chapte r, we w ill consider th e  asym ptotics o f y j, and Xt- For m u ltig ra p h s, 

K a h n  [6 , 7] proved th a t and are a.g. and asym pto tic  to  each o ther.

T h e o re m  1 [K a h n ]  F o r mu,ltigraph,s, x ' 7s a.g.

T h e  p ro o f o f th is  theorem  appeared in  [ü]. 

T h e o re m  2 [K a h n ]  F o r multigraphs,

X'* os —» oo.

Since x '*  =  xT  (see [6 ]), Theorem  2 is re a lly  an assertion th a t x'l is a.g. The 

p roo f, to  appear in  [7], uses a m ethod based on “hard-core” p ro b a b ility  d is trib u tio n s  

(see [9]); th is  30-page paper [7], toge ther w ith  Theorem  1, b u ilt a so lid  fo u n d a tio n  

fo r fu rth e r research in  the  a sym p to tica lly  good behavior o f several o th e r ch rom a tic  

num bers.

In  1997, K a y ll [11, 12] proved the  fo llo w in g  re su lt, based on Theorem  2. W e w ill 

use h is s tra te g y  in  estab lish ing  th e  a.g. behavior o f Xvef &nd Xef The  idea o f the  

p ro o f is to  fin d  a b ridge , such th a t we can re la te  x '*  ■> X h  Xt and x'l in  a “ cha in”  ordered 

by “  <  ” . I f  we know  th a t y * —> oo im p lies y '*  —̂  oo, then , by  Theorem  2, we w ill be 

able to  conclude th a t Xt is a.g.

T h e o re m  3 [ K a y l l ]  F o r m.ultigraphs, Xt 7s a.g. That is, fo r  each e >  0, there exists 

C  =  C  (e) such tha t every m ultig raph G w ith  x l  (G ) >  C  satisfies

\
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7

( l  +  E ) - ^ < ^ < l  +  e. (2 .1 )

To beg in  a sketch o f K a y ll’s p roo f, i t  is easy to  see th a t (1 +  <  X tlx*. fro m

th e  fa c t th a t X t  ^  X t -  Thus, we o n ly  need to  estab lish the  rig h t-h a n d  in e q u a lity  o f 

(2 .1). B y  a m apping fro m  T  to  vW, i t  can be shown th a t x '*  <  X * -  C o n stru c tio n  o f 

such a m app ing  is th e  key to  th e  proo f. (W e w ill see m ore de ta ils  o f such m appings 

in  estab lish ing  the  asym ptotics o f X v e f  &^^d X e f - )  I t  is w e ll-know n th a t X t  <  4- 2

(see e.g. [5] p. 87). Thus, we have <  X t  ^  X t  <  4- 2. K ostochka proved

th a t Xt — [3 A /2 J  (see e.g. [5] p. 8 6 ). B y  the  fac t >  A  , we the n  see th a t 

X t  oo forces ^  oo, w h ich  gives us x t  ~  X t  by Theorem  2. From  another p o in t 

o f v iew , th e  p ro o f is to  make a “ sandw ich” w ith  Xi &nd x '*  as “bread” , Xt &nd Xt as 

ing red ien ts, and use Theorem  2 to  push them  together.

Theorem s 1, 2, and 3 begin a lis t o f a.g. co lo ring  param eters. In  chapter I I I ,  we 

add Xvef and Xef to  th is  lis t.
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C H A P T E R  I I I  
A S Y M P T O T IC S  O F  T H E  E N T IR E  C H R O M A T IC  N U M B E R  A N D  

T H E  E D G E -F A C E  C H R O M A T IC  N U M B E R

The m ost im p o rta n t theorem  on p lana r graphs is p roba b ly  the  Four C o lo r Theorem , 

w h ich  had been know n as the  Four C olor C on jecture  (4C C ) fo r a lm ost a hundred 

years.

T h e o re m  4  [T h e  F o u r  C o lo r  T h eo rem ] Every p la n a r graph is 4-colorable.

U sing p lanar d u a lity , Theorem  4 is easily seen to  app ly  b o th  to  ve rte x  colorings 

and to  face colorings. Here is a b rie f h is to ry  o f th is  fam ous theorem . The 4CC was 

firs t ra ised by  G u th rie  in  1852 and i t  became w ell-know n d u rin g  th e  1860’s due to  the  

in te re s t o f several fam ous m athem atic ians, such as D eM organ and Cayley. In  1879, 

K em pe published a “p ro o f” o f th e  4CC. I t  stood fo r about 10 years before Heawood 

discovered an e rro r. U sing K em pe’s techniques, Heawood proved th a t every p la na r 

g raph  is 5-color able. Heawood’s re su lt stood  fo r abou t 8 6  years u n til A p p e l and 

H aken [1], w ith  the  a id  o f K och, used about 1200 hours o f com puter tim e  to  check a ll 

o f 1936 special cases. For a m ore com prehensive discussion on th is  theorem , please 

re fe r to  [14].

T h e  firs t o f our tw o  m a in  resu lts is the  fo llo w in g  theorem , w h ich  settles con jecture

5.2 fro m  [11]. The p ro o f fo llow s K a y ll’s stra tegy, b u t uses Xt ^^^d Xt “ sandw ich 

bread” and Theorem  3 to  push them  tow ard  each other.

8
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9

T h e o re m  5 F o r plane m ultigraphs, Xvef ^-9- That is, fo r  each £■ >  0, there exists

D  =  D  (e) such tha t every plane m ultig raph G w ith  x le f  ( ^ )  >  satisfies

( l  +  g)-" <  ^  <  14-6.

P ro o f. Since x le f  is the  o p tim a l so lu tio n  o f the  linea r re la xa tio n  o f th e  IP  de fin ing  

Xvef-: we see th a t

x L / <  Xrey- (3.1)

In  lig h t o f Theorem  4, every v a lid  to ta l co lo ring  can be expanded to  a va lid  en tire  

co lo ring  using (a t m ost) 4 a d d itio n a l colors fo r the  faces; thus,

X v e f  ^  Xt 4- 4. (3-2)

A n  o p tim a l fra c tio n a l e n tire  co lo ring , f  [0 ,1 ], can be “sh ifte d ” to  a va lid

fra c tio n a l to ta l co lo ring , h \ T  —> [0 ,1 ], as follow s. G iven T  — M  U S' 6  T , le t

h ( T ) =  E  / ( i t ) ,
ü=ruAi

w here th e  sum  is taken  over a ll i?  6  7^ o f the  specified fo rm . I t  is easy to  check th a t 

X) h  {T)  =  1 , fo r each a G E U V ,  so h gives us a va lid  fra c tio n a l to ta l co lo ring
oeTer

w ith

/i(g)=E ' * ( r ) = E  ( E  /(it):iîs7î|=E/ ( i î )  =  /(G) =  C.„
Ter Ter Lk=tu7v J nen

and i t  fo llow s th a t

'k
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x :  <  (3.3)

For o u r fin a l p re lim in a ry  step, we w ill need a bound o f the  fo rm  x le f  — XÎ +

(c is a constan t). For large A  , th is  is easy, since, e.g., B o ro d in  (see e.g. [5] p. 47 )

proved Xvef <  A  +  4 when A  >  7. Since y* >  A  +  1 , w ith  (3.1) we o b ta in

x le f  ^  X v e f  <  (A  H- 1) +  3 <  Xt +  3,

p rov ided  A  >  7. As we prefer to  avoid dependence on large A  in  ou r p roo f, we w ill 

instead o b ta in  x le f  ^  X* +  c m ore d ire c tly .

W e w ill define a fra c tio n a l en tire  co lo ring  /  : 77. ^  [0,1] s ta rtin g  from  an o p tim a l 

fra c tio n a l to ta l co lo ring  h : T  — [ 0, 1] and using Theorem  4, w h ich  guarantees th a t 

th e  faces o f G  m ay be p ro p e rly  colored using a t m ost 4 colors. D enote the  face co lo r 

classes b y  (■5 — 4); no tw o faces w ith in  an N i share a com m on edge. We are

ready to  expand to  a fra c tio n a l en tire  co lo ring . D efine /  : 77. —> [0 ,1 ] by

f { R )  =  {

h { R ) ,  i f  7? e r  , i.e. 77 =  M u g

1, i f  7? =  A(j, 1 <  i  <  s

0 , otherw ise.

C le a rly  /  is a fra c tio n a l en tire  co lo ring; m oreover,

/  ( ^ )  — /  {R)  — X ] ^  ^R)  +  ■5 — ^  (G ) +  -5 — Xt +  -5 <  Xt +  4.
RÇ.U R&r

Thus,
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<  x : + 4 , (3.4)

as desired.

To com plete th e  p roo f, we need to  establish

( l  +  e ) - " < ^ < l + 6  (3 .5)
A. lie/

fo r any given £ >  0, p rovided x le f  su ffic ie n tly  large. B y  (3 .1), the  le ft-h a n d  

in e q u a lity  in  (3.5) is clear, so we w ill w ork to  o b ta in  the  rig h t-h a n d  in e q u a lity .

G iven  e >  0 , le t 7  =  s / 2  and choose C  large enough so th a t (accord ing to  

Theorem  3) i f  >  C , then  Xt / Xt  <  (1 +  7 ) • I f  X le f >  D  :=  m ax {C  -f- 4, S /£ -b 4 } , 

th e n  since x le f  ~  ^  ̂  Xt (by (3 .4 )), we see th a t Xt exceeds b o th  C  and 8 /e  =  4 / 7 .

Thus, p rov ide d  x le f  >  D , we have

X v e f  <  X t  +  4  <  (1 - f  7 )%* +  7 X t  =  (1  +  e )  X t  ^  ( I  +  ^ ) x l e f ^

ju s tify in g  the  inequahty, respective ly, by (3 .2), the  preceding tw o  sentences, and (3 .3). 

C om paring  th e  extrem es o f the  las t cha in  o f inequa lities y ie lds the  rig h t-h a n d  bound 

in  (3 .5). ■

R e m a rk . W e d id  n o t re a lly  need the  fu ll power o f Theorem  4 fo r ou r proo f. I f  

th e  constan t 4 in  th e  bounds (3 .2), (3.4) were replaced by another constan t, our 

a sym p to tic  argum ents w ou ld  s t ill be va lid . Thus, fo r exam ple, th e  s im p le r F ive  C o lo r 

Theorem  o f Heawood (m entioned a t the  s ta rt o f th is  chapter) w ou ld  suffice fo r ou i' 

purposes.

k
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O u r second m a in  re su lt is an analogue fo r Xef and p a rtia lly  settles C on jectu re  5.3 

fro m  [1 1 ].

T h e o re m  6  F o r plane m ultigraphs, Xef ^  That is, fo r  each e >  0, there exists 

D  =  D  {e) such tha t every plane m ultig raph G w ith  x l f  {G ) >  D  satisfies

(1  +  E )-^ <  ^  <  1 +  e.

T he  p ro o f is s im ila r to  th a t o f Theorem  5, b u t changes th e  “ bread” to  x'* and 

and use Theorem  1 to  push instead o f Theorem  3.

P ro o f. Since x l f  is th e  o p tim a l so lu tion  o f th e  lin ea r re la xa tio n  o f the  IP  de fin ing  

Xef', we have

x l, <  X e f  (3.6)

A g a in  using Theorem  4, every va lid  edge co lo ring  can be expanded to  a va lid  

edge-face co lo ring  using (a t m ost) 4 a d d itio n a l colors fo r the  faces; thus,

Xej G x! +  4. (3.7)

A  v a lid  fra c tio n a l edge co lo ring  5  ̂ : A4 ^  [0 , 1 ] can be ob ta ined from  an o p tim a l

fra c tio n a l edge-face co lo ring  h : U  [0,1] hy  de fin ing , fo r M  G A4,

g { M ) =  y  h (U ),
U = M U N

-k
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w here th e  sum  is taken  over a ll (7 E ZY o f the  specified fo rm . T h a t ^  is a fra c tio n a l 

edge co lo rin g  is easy to  check; m oreover,

s ( G ) = E 9 W = E |  E  h(U) - .U ( ^ u \ = Y . h { U ) = h ( G ) = x : , ,
M ^ M  M ^ M  K U = M U N  )  UOÀ

SO t h a t

<  % :/. (3.8)

U sing an argum ent analogous to  th a t leading to  (3.4), we m ay o b ta in

X.*/ <  x "  +  4. (3.9)

W e are now  equipped to  com plete the  proo f, fo r w h ich  we need to  estabhsh

( l + e ) - ^ < ^ < l + e  (3.10)

fo r a rb itra ry  e >  0. B y  (3 .6), i t  is clear th a t (1 +  e )“  ̂ <  X e f lx l f  when e >  0, so we 

focus on  th e  rig h t-h a n d  in e q u a lity  in  (3,10).

G iven £ >  0, le t 7  =  e /2 , and choose C  large enough (accord ing to  Theorem  1) to

ensure th a t i f  x '*  >  C", the n  x 'I x '*  <  (1 4- 7 ) .  I f  Xef >  D  m ax {C  -t- 4, 8 /e  4- 4 } .

th e n  since x l f  ~  ^  ^  x '*  (by (3 .9 )), we see th a t exceeds b o th  C  and 8 /e  =  4 / 7 . 

Thus, as long  a s  >  D , we have

Xe/ <  x ' +  4 <  (1 7)x '* +  7x'* =  (1 +  ^) x'* <  (1 +  e)Xe/i
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w here th e  ine qua litie s  are ju s tifie d , respective ly, by (3 .7), the  tw o  preceding sentences, 

and (3 .8 ). T h is  cha in  o f inequa lities  y ie lds th e  rig h t-h a n d  in e q u a lity  in  (3 .10), as 

desired. ■

As no ted p rio r to  th e  statem ent o f Theorem  6 , the  re su lt p a rtia lly  settles Con­

je c tu re  5.3 fro m  [11]. T h a t con jecture also concerned the  asym ptotics o f the  coupled 

ch rom a tic  num ber, Xvf-> o f & plane m u ltig ra p h . Observe th a t Theorem  4 im p lies th a t 

X v f  ^  8 ; thus, X v f  a^nd x l f  never grow  w ith o u t bound, so th a t p a rt o f the  con jecture 

is n o t in te re s tin g  to  investigate .
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C H A P T E R  IV  
C O N C L U S IO N

W e have p rov ided  background on and investiga ted various chrom atic  num bers. P rio r 

to  th is  w o rk , i t  was know n th a t fo r m u ltig raphs, x'l and Xt are each a.g. In  

th is  thesis, we have added Xvej  and Xef  plane m u ltig rap hs to  th is  lis t o f a.g. 

param eters. W e also po in ted  o u t th a t since Xvf  is bounded by an absolute constan t, 

we are n o t in te rested in  considering th e  a.g. behavior o f th is  param eter. Since b o th  

X and X f  (defined in  the  n a tu ra l way) fo r plane m u ltig rap hs are bounded by 4 (by 

Theorem  4), we also need n o t consider th e  a.g. behavior o f these param eters. Thus, 

th e  in ve s tig a tio n  o f the  a.g. behavior o f chrom atic  num bers o f plane rn u ltig ia p h s  is 

com plete . T h is  o f course leaves open the general question (fo r m u ltig ra p h s); when 

does X  e x h ib it asym p to tica lly  good behavior? O ur w ork provides several p a rtia l 

answers to  th is  question. We offer the  prob lem  o f com ple te ly answ ering i t  to  fu tu re  

researchers. W e also believe the  results on plane m u ltig rap hs can be generalized to  

m u ltig ra p h s  em bedded on smfaces o f h igher genus, as discussed, e.g., in  [13].

15
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