University of Montana

ScholarWorks at University of Montana

Graduate Student Theses, Dissertations, &

Professional Papers Graduate School

1998

Asymptotically good colorings of plane multigraphs

Yong Zhao
The University of Montana

Follow this and additional works at: https://scholarworks.umt.edu/etd

Let us know how access to this document benefits you.

Recommended Citation

Zhao, Yong, "Asymptotically good colorings of plane multigraphs” (1998). Graduate Student Theses,
Dissertations, & Professional Papers. 8187.
https://scholarworks.umt.edu/etd/8187

This Thesis is brought to you for free and open access by the Graduate School at ScholarWorks at University of
Montana. It has been accepted for inclusion in Graduate Student Theses, Dissertations, & Professional Papers by an
authorized administrator of ScholarWorks at University of Montana. For more information, please contact
scholarworks@mso.umt.edu.


https://scholarworks.umt.edu/
https://scholarworks.umt.edu/etd
https://scholarworks.umt.edu/etd
https://scholarworks.umt.edu/grad
https://scholarworks.umt.edu/etd?utm_source=scholarworks.umt.edu%2Fetd%2F8187&utm_medium=PDF&utm_campaign=PDFCoverPages
https://goo.gl/forms/s2rGfXOLzz71qgsB2
https://scholarworks.umt.edu/etd/8187?utm_source=scholarworks.umt.edu%2Fetd%2F8187&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:scholarworks@mso.umt.edu

?

.1
e
=)

Maureen and Mike

MANSFIELD LIBRARY

The University of MONTANA

Permission is granted by the author to reproduce this material in its entirety,
provided that this material is used for scholarly purposes and is properly cited in
published works and reports. :

** Please check "Yes" or "No" and provide signature **

Yes, I grant permission /
No, I do not grant permission

Author's Signature J/KO»Q:D/YJ)\ \( N & = ‘HA O
T =
Date 0577 < / 7£

Any copying for commercial purposes or financial gain may be undertaken only with
the author's explicit consent.

F Y

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



Asymptotically good colorings of plane multigraphs

by

Yong Zhao

Presented in partial fulfillment of the requirements
for the degree of
Master of Arts
in Mathematical Sciences
The University of Montana-Missoula

viay 1998

Approved by:

P .Ww? W

Chairpevson

VARG

Dean, Graduate School

S -l-9y

Date

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



UMI Number: EP38988

All rights reserved

INFORMATION TO ALL USERS
The quality of this reproduction is dependent upon the quality of the copy submitted.

In the unlikely event that the author did not send a complete manuscript
and there are missing pages, these will be noted. Also, if material had to be removed,
a note will indicate the deletion.

UMI

" Dissertation Publishing

UMI EP38988
Published by ProQuest LLC (2013). Copyright in the Dissertation held by the Author.

Microform Edition © ProQuest LLC.
All rights reserved. This work is protected against
unauthorized copying under Title 17, United States Code

ProQQuest

ProQuest LLC.

789 East Eisenhower Parkway
P.O. Box 1346

Ann Arbor, M| 48106 - 1346

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



Yong Zhao, M.A., May 1998 Mathematical Sciences

Asymptotically good colorings of plane multigraphs

Director: P. Mark Kayll PM‘K

A multigraph is a loopless graph with repeated edges allowed. Various chromatic
numbers can be formulated as solutions of integer programming problems, or IPs. A
specific chromatic number is asymptotically good, or a.g., if the solution of its IP ap-
proaches the solution of its linear relaxation when the relevant multigraph parameter
grows without bound. Formally, a multigraph invariant 3, which can be formulated
as the solution to an IP problein, is asymptotically good in case /8" — 1 as 8 — o0,
where 8* is the solution of the linear relaxation of the IP defining 5. The main goal
of this work is to investigate several conjectures on the asymptotics of coloring plane
multigraphs.
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CHAPTER I
INTRODUCTION

One of the most prominent graph-theoretic parameters, the chromatic number (defi-
nitions of terminology are deferred to §1.1) is often formulated as the solution of an
integer programming problem, or IP. This approach is computationally difficult when
the relevant coloring parameter is large (see [16]). In a 1996 paper [6], Kahn noticed
the asymptotic behavior of the chromatic index of a rmultigraph; i.e., the solution of
the IP defining the chromatic index can be approximated by the solution of the IP’s
linear relaxation, the computation of which may be completed in polynomial time
[10]. In a following paper [7], he established the asymptotics of the list-chromatic n-
dex of multigraphs (see also [8] for related research). Based on Kahn’s results, Kayll
[11, 12] proved similar results about the asymptotics of the total chromatic number
of a graph and of a multigraph. In this thesis we add two new parameters to the list,
namely, the entire chromatic number and the edge-face chromatic number of a plane
multigraph. The asymptotics of these two invariants were conjectured by Kayll [11]
in 1997.

1.1 Terminology

In this thesis, graph means simple graph containing no loops or repeated edges; mult:-
graph is used when repeated edges are allowed. Thus, every graph is a multigraph,
but the converse is false. A graph is planar if it can be embedded in the plane. If
a planar graph is embedded in the plane, then it is called a plane graph. Unless

1
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specified, G will always denote a multigraph. For graphs and multigraphs, we use
V(G), E(G), and A (G) to denote the vertex set, edge set, and maximum degree of
G. If it is clear from the context, ‘(G)’ will be omitted. Two vertices are adjacent if
they are joined by an edge, two edges are adjacent if they share a common vertex, and
two faces are adjacent if their boundaries have at least one common edge. (Two faces
touching only at a vertex are not adjacent; similarly, an edge and a face touching only
at a vertex are not adjacent.) A vertex (or an edge) is incident to a face if it forms
part of the boundary of the face. Also, the vertices u and v are each incident to the
edge uv. See [3] for any omitted terminology.

In this work, we will be considering a variety of graph coloring parameters which
we now define. An assignment of k colors to the vertices of G so that adjacent vertices
receive different colors is called a (valid) coloring of G; when this is possible, G is
said to be k-colorable. The least number n for which G is n-colorable is called the
vertex chromatic number, or simply the chromatic number of G , and denoted by x.

- The chromatic index, X', of G is the least number of colors to ensure that the edge
set E admits a valid coloring. (Some authors, e.g. [15], prefer to use x, to denote
chromatic number and x, to denote chromatic index.) The total chromatic number,
X;, Of G is the least number of colors needed to color all the elements of V' U E such
that no two adjacent or incident elements in V U E receive the same color. The entire
chromatic number, x,.s, of a plane G is the least number of colors needed to color
the vertices, edges, and faces of G, where incident or adjacent elements are colored

differently (two faces touching only in a vertex may receive the same color; similarly,

EN
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a face and an edge touching in only one vertex may get the same color). The coupled
(edge-face) chromatic number, x,,; (X.s), is the least number of colors needed to color
the vertices (edges) and faces of G such that two incident or adjacent elements receive
different colors. The list-chromatic indez, x|, of G is the least number ¢, such that,
for any assignment of a list A(e) of size ¢ to every edge e € E (G), it is possible to
color E{G) so that every edge receives a color from its list. The case when all the
lists A (e) are identical of size x| implies that x| > x'.

For simple plane graphs with maximum degree A, a few important bounds on the
coloring parameters that we defined are the following: x <4, x,; < 6,and x, < A+1.
The first bound is the Four Color Theorem [1]. (See [15] for further discussion and
background on these bounds.) Recently, Sanders and Zhao [15] proved that, for a
simple plane graph, if A > 8, then x,.; < A + 2, and in general x,., < A + 3, which
was conjectured by Melnikov. Their proof partially relies on the Four Color Theorem.
Two main results of our work are the establishment of the asymptotic behavior of
Xves @0d X5 for plane multigraphs. Our arguments will use, but do not depend on,
the Four Color Theorem.

A stable set, S, of G is a subset of V such that the induced subgraph of G on S
is empty (contains no edges). A matching, M, of G is a subset of E such that no two
edges of M share the same end. We us¢ M to denote the family of matchings of G.
Let 6(S) be the set of edges with one end in S. A total stable set of G is defined to
be a subset of £ UV, denoted by M U S, where M(C E) is a matching, S(C V) is a

stable set and M N§(S) = B. We use 7 (= T (G)) to denote the family of total stable

EY
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4

sets of G and T (= M U S) to denote a member of 7. Let I be the set of all faces
of G, N be a subset of F' such that no two elements of N share the same edge and
v (V) be the set of vertices and edges that are incident to N. An entire stable set is
a subset of EUV U F of the form M US U N, where M U S is a total stable set, V
is described as above, and (M U S) niy(N) = 0. We use R(= R (G)) to denote the
family of entire stable sets of G'and R (= M U .S U N) to denote a member of R. It is
easy to see that 7 C R. Finally, edge-face stable sets are defined in the natural way:

we use U for the family of those sets and U (= M U N) to denote a member of U/.
1.2 Fractional coloring and asymptotically good invariants

All the chromatic numbers defined in the preceding section can be defined as solutions
of IP problems (see [4] for omitted LP and IP termiinology). For example, if f :
R — {0, 1}, then the entire chromatic number, x,.;, of G can be formulated as the

optimal solution of the IP problem:

Xvey = min 3 f(R)
RER

subject to > f(R)=1,foreachae EUV UF.
acRER

The idea is that the members of f~! ({1}) form the color classes of the entire coloring.
The linear functional Rgﬂ f (R) counts the number of colors used, while the equality
constraints ensure that each vertex, edge and face appears in exactly one color class.

The linear relaxation of the problem above is formulated accordingly. If f :

R —[0, 1], then the fractional entire chromatic number, x;.s, is the optimal solution

kY
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of the LP:

X'Ze_f = min Z f(R)

ReR

subjectto Y. f(R)=1,foreacha€e EUV UF.
acReER

Clearly, Xjc5 < Xyes- Following the same routine, we can define x, X', X/, X1» Xos>
Xef,» @nd their fractional partners x*,x™, X/, Xi» Xos: Xos- A useful observation is
that X', X,es, X; and their fractional counterparts x'*, x;.;, x; are at least A, since all
edges incident to a vertex of maximum degree have to be colored differently.

Kahn introduced the notion of asymptotically good, or a.g., behavior for multi-
graph coloring parameters (see e.g. [6, 8]). Let # be a multigraph invariant, such
as Xyes, that can be formulated as the optimal solution of an IP problem and let 3
be the optimal solution of the linear relaxation of the IP. We say @ is asymptotically
good if 8/8" — 1 as 8% — oo; that is, for each € > 0 there exists B = B (¢) such that
if 8 > B, then (1 +¢)™ ! < 3/8* < 1+¢. We often abbreviate 8/8” — 1 by 8 ~ "

In this thesis, we are concerned with establishing which coloring parameters are

a.g.

h Y
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CHAPTER II
PRECURSORS TO OUR RESULTS

In this chapter, we will consider the asymptotics of x', x}, and x,. For multigraphs,
Kahn [6, 7] proved that x’ and x| are a.g. and asymptotic to each other.

Theorem 1 [Kahn/ For multigraphs, x' is a.g.

The proof of this theoren appeared in [G].

Theorem 2 [Kahn] For multigraphs,

xi~ xX* as x™* — oo,

Since x™ = xi* (see [6]), Theorem 2 is really an assertion that x} is a.g. The
proof, to appear in [7], uses a method based on “hard-core” probability distributions
(see [9]); this 30-page paper (7], together with Theorem 1, built a solid foundation
for further research in the asymptotically good behavior of several other chromatic
numbers.

In 1997, Kayll [11, 12] proved the following result, based on Theorem 2. We will
use his strategy in establishing the a.g. behavior of x,.; and x.; The idea of the
proof is to find a bridge, such that we can relate x™*, x7, x; and x; in a “chain” ordered
by “ < 7. If we know that x; — oo implies x™* — oo, then, by Theorem 2, we will be

able to conclude that X, is a.g.

Theorem 3 [Kayll] For multigraphs, x, is a.9. That is, for each € > 0, there erists
C = C (g) such that every multigraph G with x; (G) > C satisfies
6
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(1+e) <X c14e (2.1)

Xt

To begin a sketch of Kayll’s proof, it is easy to see that (1 +¢)~' < x,/x from
the fact that x; < x,. Thus, we only need to establish the right-hand inequality of
(2.1). By a mapping from 7 to M, it can be shown that x™ < x}. Construction of
such a mapping is the key to the proof. (We will see more details of such mappings
in establishing the asymptotics of x,.; and x.;.) It is well-known that x, < x; + 2
(see e.g. [B] p. 87). Thus, we have x* < x! < x;, < x; + 2. Kostochka proved
that x, < |3A/2] (see eg. [5] p. 86). By the fact x> > A , we then see that
Xx; — oo forces x'* — oo, which gives us x; ~ x, by Theorem 2. From another point
of view, the proof is to make a “sandwich” with x; and x™* as “bread”, x; and x, as
ingredients, and use Theorem 2 to push them together.

Theorems 1, 2, and 3 begin a list of a.g. coloring parameters. In chapter III, we

add x,.s and X, to this list.
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CHAPTER III
ASYMPTOTICS OF THE ENTIRE CHROMATIC NUMBER AND
THE EDGE-FACE CHROMATIC NUMBER

The most important theorem on planar graphs is probably the Four Color Theorem,
which had been known as the Four Color Conjecture (4CC) for almost a hundred

years.

Theorem 4 [The Four Color Theorem] Every planar graph is 4-colorable.

Using planar duality, Theorem 4 is easily seen to apply both to vertex colorings
and to face colorings. Here is a brief history of this famous theorem. The 4CC was
first raised by Guthrie in 1852 and it became well-known during the 1860’s due to the
interest of several famous mathematicians, such as DeMorgan and Cayley. In 1879,
Kempe published a “proof” of the 4CC. It stood for about 10 years before Heawood
discovered an error. Using Kempe’s techniques, Heawood proved that every planar
graph is 5-colorable. Heawood’s result stood for about 86 years until Appel and
Haken [1], with the aid of Koch, used about 1200 hours of computer time to check all
of 1936 special cases. For a more comprehensive discussion on this theorem, please

refer to [14].

The first of our two main results is the following theorem, which settles conjecture
5.2 from [11]. The proof follows Kayll’s strategy, but uses x; and X, as “sandwich
bread” and Theorem 3 to push them toward each other.
8
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Theorem 5 For plane multigraphs, X,.; is a.g. That s, for each € > 0, there exists

D = D (e) such that every plane multigraph G with x}.; (G) > D satisfies

(1+£)_1<—>5—'55f—<1+5.

Xv‘ne_f
Proof. Since x;,, is the optimal solution of the linear relaxation of the IP defining

Xuvef> We see that

X:e_f £ Xvef‘ (31)

In light of Theorem 4, every valid total coloring can be expanded to a valid entire

coloring using {at most) 4 additional colors for the faces; thus,

Xvef E Xt + 4. (32)

An optimal fractional entire coloring, f :R — [0, 1], can be “shifted” to a valid
fractional total coloring, h: 7 — [0, 1], as follows. Given T =M U S € 7. let
hWTy= > f(R),
R=TUN
where the sum is taken over all R € R of the specified form. It is easy to check that

> h(I)=1,foreacha € EUV, so h gives us a valid fractional total coloring
a€TeT

with

R(G) =Y h(T) =Y { > f(R):ReR}———Z F(R) = £(G) = xiup.

TeT TeT \R=TUN ReR

and it follows that

Y
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X: S X:ef' (33)

For our final preliminary step, we will need a bound of the form x., < x; + ¢
(c is a constant). For large A , this is easy, since, e.g., Borodin (see e.g. [5] p. 47 )

proved X,.; < A +4 when A > 7. Since x; > A + 1, with (3.1) we obtain

X:efSXvefS(A+1)+3SX:+37

provided A > 7. As we prefer to avoid dependence on large A in our proof, we will
instead obtain x;., < x; + ¢ more directly.

We will define a fractional entire coloring f : R — [0, 1] starting from an optimal
fractional total coloring h : 7 — [0, 1] and using Theorem 4, which guarantees that
the faces of G may be properly colored using at most 4 colors. Denote the face color
classes by {IV;};_; (s < 4); no two faces within an V; share a common edge. We are

ready to expand A to a fractional entire coloring. Define f : R — [0, 1] by

4

h(R), fReT , iee. R=MUS

f(R)=14 1, fR=N;,1<i<s

O, otherwise.

\

Clearly f is a fractional entire coloring; moreover,

FG) =3 f(R)=> h(R)+s=h(G)+s=x;+s<x; +4
RER ReT

Thus,

Y
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X:ef S X: + 4: (‘54)
as desired.

To complete the proof, we need to establish

(1+e)t <Xl g 4e (3.5)

X'uef

for any given € > 0, provided x;.; is sufficiently large. By (3.1), the left-hand
inequality in (3.5) is clear, so we will work to obtain the right-hand inequality.
Given € > 0, let v = /2 and choose C large enough so that (according to
Theorem 3) if x; > C, then x,/x; < (1+7). If xj.; > D = max{C +4,8/¢ + 4},
then since xj.; — 4 < x; (by (3.4)), we see that x; exceeds both C and 8/ = 4/~.

Thus, provided x;.; > D, we have

Xveg S Xe T4 <(L+7)xi+oxi = (1 +e)x; < (1+8)Xpes

justifying the inequality, respectively, by (3.2), the preceding two sentences, and (3.3).
Comparing the extremes of the last chain of inequalities yields the right-hand bound
in (3.5). &

Remark. We did not really need the full power of Theorem 4 for our proof. If
the constant 4 in the bounds (3.2), (3.4) were replaced by another constant, our
asymptotic arguments would still be valid. Thus, for example, the simpler Five Color
Theorem of Heawood (mentioned at the start of this chapter) would suffice for our

purposes.

1Y
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Our second main result is an analogue for x,; and partially settles Conjecture 5.3

from [11].

Theorem 6 For plane multigraphs, x.; is a.g. That is, for each € > 0, there exists

D = D () such that every plane multigraph G with x;; (G) > D satisfies

L+e) <22l <146

Xef
The proof is similar to that of Theorem 5, but changes the “bread” to x™ and yx/,
and use Theorem 1 to push instead of Theorem 3.
Proof. Since x;; is the optimal solution of the linear relaxation of the IP defining

Xef» We have

X;f S Xef‘ (36)

Again using Theorem 4, every valid edge coloring can be expanded to a valid

edge-face coloring using (at most) 4 additional colors for the faces; thus,

Xef < X'+ 4. (3.7)

A valid fractional edge coloring g : M — [0, 1] can be obtained from an optimal

fractional edge-face coloring h : &/ — [0, 1] by defining, for M € M,

g(M)= > h(U),

U=MUN

Y
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where the sum is taken over all U € U of the specified form. That g is a fractional
edge coloring is easy to check; moreover,

9@ =% gM) =3 { > h(U):Ueu}=z h(U) = h(C) = 12,

MeM MeM \U=MuN vel

so that

1%

X" < xey (3.8)

Using an argument analogous to that leading to (3.4), we may obtain

Xop S X+ 4 (3.9)

We are now equipped to complete the proof, for which we need to establish

Q+e) < XL o146 (3.10)

*

Xef

for arbitrary £ > 0. By (3.6), it is clear that (1+¢)”" < Xes/Xs; when € > 0, so we
focus on the right-hand inequality in (3.10).

Given € > 0, let v = £/2, and choose C' large enough (according to Theorem 1) to
ensure that if x* > C, then x'/x™ < (1 +v). If x}; > D := max{C +4,8/¢ + 4} .
then since x;; — 4 < X’ (by (3.9)), we see that x™ exceeds both C' and 8/ = 4/~.

Thus, as long as x;; > D, we have
Xef SX A<+ "+ =Q+e) X" < (1+e)xip

)
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where the inequalities are justified, respectively, by (3.7}, the two preceding sentences,
and (3.8). This chain of inequalities yields the right-hand inequality in (3.10), as
desired. B

As noted prior to the statement of Theorem 6, the result partially settles Con-
jecture 5.3 from [11]. That conjecture also concerned the asymptotics of the coupled
chromatic number, X, s, of a plane multigraph. Observe that Theorem 4 implies that
Xof < 8; thus, x,; and X;; never grow without bound, so that part of the conjecture

i1s not interesting to investigate.

A
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CHAPTER IV
CONCLUSION

We have provided background on and investigated various chromatic numbers. Prior
to this work, it was known that for multigraphs, x’, x} and x, are each a.g. In
this thesis, we have added x,.; and x.; for plane multigraphs to this list of a.g.
parameters. We also pointed out that since x, is bounded by an absolute constant,
we are not interested in considering the a.g. behavior of this parameter. Since both
x and x; (defined in the natural way) for plane multigraphs are bounded by 4 (by
Theorem 4), we also need not consider the a.g. behavior of these parameters. Thus,
the investigation of the a.g. behavior of chromatic numbers of plane multigraphs is
complete. This of course leaves open the general question (for multigraphs): when
does x exhibit asymptotically good behavior? Our work provides several partial
answers to this question. We offer the problem of completely answering it to future
researchers. We also believe the results on plane multigraphs can be generalized to

multigraphs embedded on surfaces of higher genus, as discussed, e.g., in [13].
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