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CHAPTER I
INTRODUCTION AND PRELIMINARIES

This paper is divided into three parts., In the first, necessary
and sufficient conditions are given for an element in an integral domain
to admit a unique factorization into a product of irreducible elements.
‘Rings in which every non-zero non-unit element admits such a factoriza-
tion are called unique factorization domains (U.F.D.). In this first
chapter, we consider the following spec;i.al classes of rings: JJ, the
class of integral domains with identity; ,R, the class of rings in &
'which have the ascending chain condition (4.C.C.) on principal ideals;
n ,'the class of Noetherian rings in &3 P, the class of principal
ideal domains (P.I.D.). It will be shown that the rings in P are unique
factorization doxpains. Rings in 'ﬂand R have the property that every
non-zero non-unit\ element admits a factorization into irreducibles, but
this factorization is not necessarily unique, Finally, examples will
be given to show that pﬁ WSR 9-3. '

The second section of the paper generalizes the notion of unique
factorization d-mna.in to a polynomial ring over a unique factorization
domain. We also generalize the Euler P-function to integral domains,
observing that @#(n) counts the number of units in z/(ﬂ)‘ . The final
consideration of the chapter is finite fields. We characterize the
structure of these fields, in that we show exactly how many elements
.they must possess and also that any iwo of them having the same number
of elements are isomorphic. .

The third section is a discussion of the Chinese Remainder
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Theorem and congruences. The Chinese Remainder Theorem is seen to be
a corollary of the major theorem of the section. Also, two special
classes of rings, Bézout domains and Prufer domains, are treated in
some detail.

Throughout the paper, R is assumed to be an integral domain,
An integral domain is a commutative ring with identity with no zero
divisors. An ideal I of R is principal if there is a € R such that
I = {ra: r € R} , denoted by I=(a). Note that since 1 €R, <a) is the
smallest ideal of R containing a. R is a principal ideal domain if
every ideal of R is principal. An ideal I of R is finitely generated
if there are a), ags +ess & € R such that I={Zria;: 5 € B}, denoted
by I ={ay, 8y soes ap. It is clear that a principal ideal of R is
Tinitely generated, though we shall see later that the converse is false,

If A and B are sets, ¥ :A—+»B, and if C €A, then K[C], the
image of C under ¥, is {#(c): c € 0}. Also, if D € B, then ¥-1[D],
the inverse image of D, is {g € A: %(a) € D}.

For RESH, I an ideal of R, and a €I, we denote I + a by a.
Also, i@‘ R has a finite }number of elements, then‘we denote the number

" of elements of R by IRl. Finally, we denote the identity of R by 1g,

or, if no confusion will result, simply by 1.
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CHAPTER II
FACTORIZATION IN INTEGRAL DOMAINS

The main consideration of this chapter is the factorization of
elements in an integral damain into products of irreducible elements.

Definition 1.1:

1) If a, b €R, a # 0, then a divides b (alb) if (P& {a).

2) a €Ris a unit of R if there is b €R such that ab ='1.
(equivalently, {a)={1)). We let U{R) denote the units of R.

3) a, b €R are associates (aab) if there is u € U(R) such
that a =ub (equivalently, {a)={1?).

L) If a, b € R, then a is'a proper factor of b if a]b and amb
(equivalently, &) G4a)).

5) a &R j\.s irreducible if a ¢ TAR) and if a = be, b, c€R, then

either b € Y(R) or ¢ € U(R).

6) a € Ris prime if a #0, a U(R) and if albe, b, ¢ €R, then
either alb or alec. ‘

Some results of the previous definition are given in the follow-

ing. o

Lemma 1.2:

1) If alb and blc, then alec.

2) alb iff b = ac for some c &R. _

3) a € UR) iff a~l € R. It follows that U(R) is a group under
multiplication,

l4) ~sis an equivalence relation, -

3
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5) a~b iff alb and bla.

6) a €R is irreducible iff a ¢ U(R) and bla implies b € U(R)

oT bea,

7) If a €R is prime, then a byb,...b, implies a|b; for some i.

8) if a is prime, then a is irreducible.

Proof: The proofs of properties (1) through (6) follow directly
from Definition l.1. The proof of property (8) also follows from the
definition by using induction.

To show (8), we suppose a = be, where b, ¢ € R. Then both bla
and cfa. Now {bcP &<a), so albc and hence either alb or aje. Thus
either amb or amc, and hence either b € U(R) or ¢ € U(R). Also, since

‘a is prime, note that a ¢ U(R). |

In general, the converse of Lemma 1.2 (8) is not true, as we
see in the following example. ‘

Example 1)3: Consider Z [I-S-J = fa +b{-5: a, bé Z}. Define
N(a+bJ-5) =(a+bJ=5)(a - bJ=5) = a®+ 5b%. Then if r, a €2 [J 5],
N(rs) = N{(r)N(s). Now 3 € Z [.FB']. If 3 = (a+ bJ-:g)(c + d,]':g), then
9 =N(3) = (a®+ 5b2)(c2 + 5d2), so a®+ 5b2 € {1, 3, 9}. If a2+ 502
= 1, then b = 0 and a = %1, so a+bJ:-5-= 1. If al+ 5b2 = 9, then

¢2+ 5d° = 1 and hence ¢ +d J=5 =21. Note that a®+ 5b2 = 3 has no
solution in 2., Thus 3 is an irreducible element of 2 [J:?J. Further,
3[(2+J5)(2 - J5) = 9. Nowif 2+ J5 =3(a + b.J-5), then 3a = 2
and 3b = 1, a system having no solution in Z. Likewise, 2 - =5

= 3(c +d J-5) leads to no solution. Thus 3}2 + J-5 and 3}2 - ,F.-s-, so
3 is not prime,

We now turm our atténtion to factorization in R.
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Definition 1.h:

1) a €R admits a factorization into irreducible elements if

there are irreducible elements 815 35y evey B € R such that
a =3 85eeedy.

2) Such a factorization is unique if whenever a = bib,...b, is
also a factorization of a into irreducibles, then m = n and
for some rearrangement bil;z...b;n of bibye..by, ai~b;. for
each i.

3) A ring R satisfying (1) and (2) for non-zero non-unit elements

is called a unique factorization domain (U.F.,D.).

Definition 1.5: A sequence of ideals {Ik reol-S an increasing

sequence if Iy < Ip + 1 for X Z 0.

Definition 1.6: R satisfies the ascending chain condition

(A.C.C.) if, given an increasing s‘equence of ideals {IkEo"f R, there is
M €2, M 20 such that I, = Iy fork z M,

The following theorem gives a sufficient condition for an element
a €R to admit a factorization into a product of irreducibles.

Theorem 1.7: If R G.R, then any non-zero non-unit element of R

admits a factorization into irreducibles.

Proof: Suppose that a € R, a #0, a¢ U(R), and that a is not
expressable as a product of irreducibles. Then a is not irreducible, so
& = a;b;, where both a; and by are proper factors of a and not both aq
and bl are expressable as a product of irreducibles, Choose ¢y to be
one of ay and 1?1, where ¢4 is not expressable as a product of irreduc-

ibles. Then ¢4 is not irreducible, so c, = 32b2’ where both a, and b

2 2
are proper factors of ¢, and not both of a, and b, are expressable as a
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product of irreducibles, Choose e, to be one of a, and b2 s where c,
is not expressable as a product of irreducibles, Now suppose that Co= @,
G1s Cps ***s Cp _ 4 have each been defined so that °j is a proper factor
of Cs -1 and so that ¢ -1 is not expressable as a product of irreduc-'
ibles, j =1, 2, ¢+-, k = 1. Then ¢  _ 4 is not irreducible, so S -1
= a,b,, where both a, and b, are proper factors of S -1 and not both
a, and bk are expressable as a product of irreducibles., Choose S to be
one of a,. and bk s wWhere C is not expressable as a product of irreduc-
ibles. Thus by induction we have a sequence Cg, Cj, Coy**®, Cyy°e°
where each °j is a proper factor of C35 - 1 =1, 2, e+, Further,
¢ # 0 for j =0, 1, 2, *«+. Thus PG Le?F - SLJF ooy a
contradiction.
We now point out a sufficient condition for elements of R to
have a unique factorization into a product of irreducibles,
Lemma 1.8: If every irreducible element of R is prime, and if
'a €R, a #0, a ¢ U(R) admits a factorization into irreducibles, then
the factorization is unique,
Proof: Suppose that a = PPyt P, = 939,709 where the Py
and Q4 are irreducible elements of R, 1 i <€m, 1 £ j<£ n, Since
G a0+ +q, €4p;) €a;9,¢¢+qPE{py) and hence there is L €%, 1 £ i< n such
that p,fq;. We suppose i =1. Then q; = w)p,, where u; € U(R). Note
that if u€ U(R) and q is irreducible, then uq is irreducible.
We now proceed by induction on m, If m =1, then by the above
argument, 1 & W,q,+++q . If n >1, then q & U(R), which is contrary to
q, being irreducible., Thus n = 1 and Pj~a, . Now assume_ that the theo-

rem is true for products with less than m factors. Then, by the above
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argument, pyeeepy = 0jQp*++Gy. By the induction hypothesis, m - 1
=n - 1, and for a suitable arrangement of factors, Py ~Y for i 22 and
P2~u1q2~q2. Therefore m = n and p;~q; for all i 2 1.

Theorem 1.7 and lLemma 1.8 tell us that R is a U.F.D. if R€.R
and if every irreducible element of R is prime. We now show t'he con-
verse to these results.

Theorem 1.9: If R is a U.F.D., then R € and every irreducible

element of R is prime,

Proof: Let i(ai)}:o be an increasing sequence of principal ideals.
If a & “U(R), then (ao)-"-(l) and hence (ai>=<l>=(ao> for all i. Now
suppose that a, # O, aoé'u(R), and that (a.O)S(a.l)s eeey a;€ R. Then
for each i, aj_¢1l(R). Now a; = b{i)béi)---b(?’), where the bgi) are all

irreducible. Further, there are irreducibles c{l), eft), ... (’” € R
i - 1)(4-1 i - 1) _ (1), (3 1 N
such that b(l )b( )"'blsx:; l) -(b(l)bél) b(l))(cll) ( ) ,céi)),

(.3

as a; _ 1lay. By unique factorization, m; _ ; = m; ¥ p; and hence
m <n 3, i =1, 2, +es, But there are only a finite number of
positive integers between n, and O, so there is a positive integer M
such that {a;> ={ay) for i Z M, a contradiction.

Now suppose that p € R, p is irreducible, and that p|ab, where
a, b € R. Then there is ¢ € R such that ab = pc. Since p¢ U(R), we
have that not both of a and b are units. Suppose that a € %/(R). If
b €U(R), then a spcb"l, so pla. If b4 UR), then a = aq85000@
b = b,byeeeb,, where the a, and bj are irreducible, 1 €£i < m,
1% jSn. Now (ajapeceap)(byboeeeby) = pc, so either paa; for some i
or p.vh:j for some j. Without loss of generality, suppose that ) LT

Then pla; and hence pla. .
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We now summarize the last three results,

Theorem 1.10: R is a U.F.D. iff R €R and every irreducible

element of R is prime.

In order that we might find other conditions equivalent to R.
being a U.F.D., we now introduce the notions of greatest common divisor
(g.c.d.) and least common multiple (l.c.m.).

Definition 1.11:

1) If a, b € R, then 4 € R is the greatest common divisor of

a and b (d~(a, b)) if dla and dib and whenever cla and ¢|b,
then cld.

2) If a, b €R, then m € R is the least common multiple of a and

b (m~[a, b]) if alm and blm and whenever aln and bln, then

m‘nc

T ee—

Remark 1.12: We note that the definition can be generalized to

the greatest common divisor and least common multiple of a non-empty
subset T of R.

The usual generalization from the iritegers of the notions of
g.c.d. and l.c.m. to an integral domain R is given in terms of the ideal
structure of R, If I and J are ideals of R, then g.c.d.(I, J) = I+ J

-and l.cm.(I, J) =X N J. Lermma 1.1k gives conditions under which these

definitions coincide with Definition 1.11. Observe that d~(a, b) iff
{d) is the smallest principal ideal containing {a)+<b). Also,
m ~fa, b] 1ff ) =4dN<v).

The notion of elements being '"relatively prime" differs in these
two generalizations. For example, using Definition 1.11 in Z[x] , the
elements 2, and x have g.c.d,l, while {2)+ &) # {1), as is shown in
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Example 1,30,

Remark 1.13: If a, b € R and if d~(a, b), ¢~(a, b), then
d~c., If (a, b)~u € U(R), then {a, b)~1. '

Lemma 1.1h4: If a, b € R, then

1) {ar+ <o) ={d> implies d~(a, b) and

2) d~(a, b) implies {2y + <b) ={d> iff {a, b) is principal.

Proof: 1) If a)+<{u?>=4{d), then a = 1l-a + 0-b&{d),so dla.
Likewise, dlb. If cla and clb, then &) €4c) and (PP S {). Hence
(a}+(b> €dc), so {a>cdc) and cld.

2) If d ~s(a, b) and if £ +4{b) = {d), then clearly () + {b) is
principal. On the other hand, if {a, b is principal, then there is
+ €R such that (o +<{b? ={t). But then (1) implies t ~(a, b), so twd.

Lemma 1.15: If a, b-€ R, then mafa, b] iff <) a &) N <b).

Proof: If {m) =d{a)N{b), then clearly alm and blm. If there
is x € R such that alx and blx, then x €{a) and x€&), so x&{m) and
hence mlx.

Conversely, if m~[a, b] , then alm and bln, so m€ ) N<b) and
hence Ye&YNEGY. If x€LaPN¢b), then alx and blx, so m|x and hence
x€m). Thus &) NS {m).

Lerma 1.16: If R is a U.F.D., then every pair of elements of R
not both zero have a greatest common divisor in R, and this element is
unique, up to associates, |

Proof: let a, b €R, where not both of a and b is zero. If
b =0, then ala and alb. Further, if cla and clb, then since cla we
have (a, b)ma. .

Suppose a $# 0 and b #0. If a €R), then afb and hence as
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10
above, (a, b)asa, Thus suppose that neither a nor b are units. Then
a= pf_lpg&..pﬁn, b= p§1p§2...p§ﬂ, where the p, are distinct irreduc-
ibles in Rand 0% f,, 0 £e; for 1 £3i S n. let g = min(e;, £;), and
let d = pglpg2...p§n. g; e and g; £ 'i'i implies dla and dib. If xla
and xlb, and if x =vp;lp32o--p‘rtnpzn+'fll...p‘;5, where v € UR), then
thenu _ ,® «cc ®u, 20andu; S e;, £ f; forl £41<n, as Ris

a U.F.D. But then w, s g;, so x/d. By Remark 1.13, (a, b) is unique,
Remark 1.17: More generally, if R is a U.F.D. and if S is a

finite non-empty subset of R, then an easy proof by induction shows that
the g.c.d. of S exists.

Lemma 1,18: If every pair of elements of R not both zerc has a
greatest common divisor, and if a, b, ¢ € R are non-zero, then

1) (a, (b, c))~((a, b), c)m~g.c.d.{a, b, c},

2) c(a, b)~(ca, cb),

3) if (a,\b)~1, (a, ¢c)w1, then (a, bc)m~l, and

4) if a €R is irreducible, then a is prime,

Proof: 1) Suppose dag.c.d. {a, b, cj, dlrv(b, c), d2~(a, b).
Since d|b and dle, we have dldl. If fla and fldl, then £Jb and flc, so
fld. Thus dada, (b, ¢)). Similarly, we obtain d~s((a, b), ¢).

2) Since c(a, b) Jca and c(a, b)}cb, we have c(a, b)|(ca, cb).
Thus there is r € R such that (ca, cb) ~rc(a, b). Now rc(a, b)fca and
rc(a, b)lcb, so since ¢ % 0 we have r(a, b)ja and r{a, b)|b. Thus
r(a, b)}(a, b), and hence r &€ U(R).

3) Since (a, b) A1, note that (a, c)m(a, (a, b)ec). Thus, from
properties (1) and (2), we have 1asa, c)m(a, (a, b)c)~(a, (ac, be))

3

~((a, ac), be)ms(a, ba).
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11 -
L) let p € R, p irreducible, and suppose plab, where a, b € R.
Then either (p, a)ap or (p, a)as1 and either (p, b)~p or (p, b)a1.
If (p, a)~l and (p, b)~1l, then (p, ab)~1l. However, plab, so (p, ab)
~p and hence p~1, a contradiction,

Remark 1.19: Suppose finitely generated ideals of R are princi-

;;al. If alc, ble, and (a, b)~1, then able.

Sumnarizing the results of Lemma 1,16 and Lemma 1.18 (L4), we
now have the following necessary and sufficient conditions for R to be
a U.F.D.

Theorem 1,20: R is a U.F.D, iff ReR, and every pair of elements

of R not both zero has a greatest common divisor in R.

We now consider an example of a ring in which an element admits
a factorization into irreducibles which is not unique.

Example 1.21: Conéider once more 2 Iﬁ]: {a +bJS: a, b€ Z}.
In2[J=5], 9=33= (2+45)(2 -J=5). Recall that 3 is an irreduc-
ible element of Z [J:?]. If 2 +.r:§ = (a =+ b,f:-g)(c + 4 J_-;), then
9 = N2+ J-53) = (a2 + 50°)(c? + 5d2), so a + 502 € {1, 3, 9}. 1If
a2 4 562 = 1, then a + bJ5 =21, and if a2+ 5b2= 9, then ¢ +d.J=5

= tl1. Further, a?+ 5b®= 3 has no solution in Z. Thus 2 +J-5 is an

irreducible element of Z [,r-?], and in exactly the same manner, so is
2 - JIE'. Now by Example 1.3, 342 +J:§and 3m2 -J:—S-, 80 we have
exhibited two different factorizations of 9 into a product of irreducw.
ible elements of Z [[-5].

We now show that there are a, b € 2 [.r:S-], a0, bg 0 such
that (a, b) does not exist. In so doing, we will exhibit cases in which

Lemma 1.18 (2) and (3) does not hold.
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12
By the argument used above, it is easy to show that 9 € Z [J:S-J
factors as 9 = 33 = (-3)(=3) = (2 + J=5)(2 = J<8) = (-2 = JB)(~2 + {5).
Thus the possible values of (2, 3(2 +.|'-_5’)) are 1, 3, and 2+ J=5. How-
ever, 3}2 +.J=5 and 2 +,,[':§T3, as we have already seen, so (9, 3(2 +,,r-§))
does not exist. |
Now since 2 + J=5 is irreducible, (3, 2 +|=5)~1. However,
(33, 3(2 + J=5)) does not exist. Also, (3, 2« J=5)~1 and (3, 2 = J=5)
~1, but (3, (2 +J°5)(2 ~ J55))~3.
We now t.urn‘ c;ur attention to some special classes of rings, fi’rst
considering ,P » the class of principal “ideal domains. Recall that
R G,P if every ideal of R is principal.
Lerma 1.22; If Ref, a R, then the following statements are
equivalent,
1) a is irreducible.
- 2) {2) is\a non-zero maximal ideal
| R3)"R/(a) is a field.
L) R/@ared.
5) {a) is a proper prime ideal.
6) a is prime,

Proof: (1) implies (2): If a is irreducible, then a # 0 and

hence {a) # {Q¥. We suppose that there is b € R such that {a>g<b) € R.
Then bla, so either b €4(R) or a~b by Lemma 1.2 (6). Hence either
. oy =€1> = R or {&ay=<bd. Further, a ¢ U(R), so {3b # R.
(2) implies (3): Note that E/{a) is commutative and has an

" identity I = {a) + 1, as R has these properties. If b € B/&a), b £ 0,
then b ¢ £a) and hence (a) +<b) ={1), as &) is maximal. Thus there are
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r, s €R such that-l = ra + sb, so 5+ = I.
_‘\_\_-_ o . .
(3) implies (4): If R/¢a) is a field,-then in particular
R/¢d>el.

(L) implies (5): Let us suppose that ¢, d €R, ¢d € <a). Then

we have that ¢d =c.d a0, and since R/¢a)€dd, either ¢ = 0 or d = 0.

But then either ¢ €{a) or d € {a). Furthermore, {a) # R, since

I e/, | "
' (5) implies (6): We suppose that ¢, @ € R and that aled. Then

| cd € {a), and since {a) is prime, either ¢ € <a) or d € (3. Thus
either alc or ald. Moreover, a ¢Z((R), as {a) # R. .

(6) implies (1): This result follows from Lemma 1.2 (8).

1f ReP , then from Lemma 1.1l we note that every pair of elements
of R, not both of which are zero, has a greatest coummon divisor.. The -
following lemma, which shows that P ER s Will enable us to say that

' Ris a U.F.D.  \ |

Lemma 1.23: If R €, then RER.

Proof: Let {Ik}: Je an increasing sequence of ideals of R, and
let I =:|§°Ik. Note that I ¢f, as 0 €I, & I. If a, b € I, then there
are p, @ €2 such that a éIp and b é.Iq. Letting r = max(p, q), we
have a, P €1I,, soa~b €l.gl. If r€R, s €1, then there is p € 2
such that s € Ip,r__so rs &€ I, & I. Thus I is an ideal of R, and hence
there is d €R such that I =<d). Now d € I for some t, so I = (&

| =l A = 15 & I for all § 2 t. Therefore I; = Iy for j Z¢.

Theorem 1.2h: If R€L, then R is a U.F.D.

Proof: Theorem 1.10, Lemma 1.22, and Lemma 1.23,

Let us now consider 77 » the class of Noetherian rings, and some

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



‘conditions which are equivalent to Noetherian.

Definition 1.25: A ring R is Noetherian if the A.C.C. holds in R.

Definition 1.26: R satisfies the maximal condition if, for any

non-empty set ,‘gvof jdeals of R, there is IGJ‘ such that if J é.vg' and

I&J, thenI =J. I is called a maxunal element of ,&.

Theorem 1.27: The following are equivalent.

1) R is Noetherian,
2) R satisfies the maximal condition.
3} Every ideal of R is finitely generated.

Proof: (1) implies (2): Suppose s¥is a non-empty set of ideals

of R, and suppose that no member of } is maximal. Since Jis non-empty,

there is Ip€ a¥ . I, is not maximal, so there is I &y such that

IoG I;. I, is not maximal, so there is I, € such that I, & I,.

Suppose I,, I, °*+, I, have been defined so that I,& I, 4+ 1» where I,
~ is not maximal, 0£Ln< k - 1. Then I is not maximal, so there is

b
Ic » 16.‘3 such that I, & I, , ;. Hence we have a sequence {Ik}nosuch
that L G ;& +-- S I & -+, a contradiction.

(2) implies (3): Suppose I is an ideal of R, 'and let xd be the

set of all finitely generated ideals contained in I. ) & N , 50 23 # P
Let I® = {ay, ag,+++, a ) be a maximal ideal in s, Note that I¥g I.

If I" 3 I, then there is a €I such that a ¢ I*. Now I* + (a) =

{ays 3ps°e*y ay, a)é;gr, and ;‘.* € 1¥+ {a). However, a € I¥ + {apand

a ¢ 1%, so I*qf I*-l- <ad, a contradiction, so I = I, |

(3) implies (1): Suppose {Ik}' is an increasing sequence of

ideals of R. Letting I = UIk, I is an ideal of R, By hypothesis,

there are &;,a35s <) an/é R such that I= <al, ass u-, a.n). Moreover,

1
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since a; € I for each i, 1 £i < n, there is m;y € Z such that a; € Imi.
Let m =max (my, my, «--, m ). Then a;, € I for eachi, 1£1i<n, so

| I<cI;. Thus I, €I, _éIk for k Zm, and hence I} = I, for k 2 m.

If R €4, then note that by Lemma 1.23, R€7 and hence < 7.

Further, if R €77, then R certainly has the A.C.C. on principal ideals,
so R EaR and hence ﬂS;R. Theorem 1.2l tells us that if R is a
P.I.D., then Ris a U,F.D. Finally, if R is a U.F.D., then from
Theorem 1.20 we have that R G.R . This situation is clearly described

in the following diagram.

- Figure 1
Relationship between the Classes of Rings
P> N, R, and o and the Class of
Uni.que Factorization Domains

We end this chapter with examples which show that the arrows in
Figure 1 cannot be reversed nor can other arrows be added. We shall
first show that P &7, In so doing, we shall need to prove the
Hilbert Basis Theorem, and to "bhis end we first p:éove a lemma,

Lemma 1.28: Suppose & is an ideal of Rlx], 1 € 2, i Z 0, and
let I,i(a) = {r € R: r = 0 or r is the leading coefficient of p(x)€d,

. b
deg p(x) = i}. Then {1 i(a)}-.ois an increasing sequence of ideals of
S 4
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R, and if M is an ideal of R[x] such that ascB ana L;(a) =d;(8),
i=0,1, 2, «¢., then a=8.
| Proof: O €R, so 0€d,(A) and hence I (d) # #. Suppose
-r, s G.I.i(a). If one or both of r and s is zero, it is clear that

r-3s éli(d). If v # 0, s # O, then there are p(x), q(x) € & such

that p(x) = a i

ot vt tay _gx =1y ad, q(x) = by + eco +b; _ 1::1"1
+ s, Now p(x) - q(x) =(aO =Dbg) + eee + (a.i _ 1-bi_1)xi -1
+(r-s)xt, sor-s ed;(aq) 1tr€L,(d), m€ER, and if r = 0,
then ™ € I.i(a). If r # 0, then there is p(x) € a, px) = ag + oo
-o-ai_lxi'ld- -, andm-p(x)smao+...+ma.i_lxi'l+mrxi
€a, sorn €J,(A). Thus we have that I;(d) is an ideal of R.

Now suppose T (= I.i(a). If r = 0, then r éJ.i + 16 ay. if
r #0, then there is p(x)Ga such that p(x) = ag + e +ay 1xi -1
+ re-. But x €R[x], so x-p(x) = agX + eer b 8y _ lzr.i-i- e tlea ,
and hence rGJ_i\_r 1(6(). Thus .I.i(a)sli + 1.-(4)’ so {I.i(a)}:o

K is an increasing sequence of ideals.

Now suppose. Bis a.n ideal of R[x], A< B, .Ii(a.) = Ii(ﬁ)
for all i, and suppose g(x) eB, e(x) # 0, deg g(x) = i. Then g(x)
= ag+ ees + ai'xi, and sinée a; € Ii(,ﬁ), a; € Ii(a.). Then there is
fi(x) € d such that _fi(x) = b, + --; +b; _ 1:6'.' -1, &ixi. Note that
either g(x) - £;(x) = O or deg (g(x) -~ £5(x)) €1 « 1. If g(x) - fi(x)
s O, then since fi(x) 6_3, g(x) = fi(x) 6.3. Now if a _q- b, _ 1
= 0, define £f; 1(3‘).= 0; otherwise define fi - l(x) = Cy o ses
ey o TP (e -0 )¢ T Ted. s either £, , (x)
= Oordegf; , l(x) = i - 1. Moreover, either g(x) - f;(x) - £, 4 1(x)

= 0 or deg (g(x) - £;(x) = £ 41(x)) =1 - 2. By induction, we obtain
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a sequence {f. j(x)} 0<j£i, £ j(x) € L, such that each
£ - J(x) is either O or of degree i - j and such that g(x) ~ £, (x)
L (%) = eee o £y, 5(x) = 0 or deg (g(x) - f3(x) = «-v - £5 4 3(x))
L£i-J=1,085<i-2 Ifg(x)==(x)=cce =L _q(x)#0,
" then deg (g(x) = £5(x) = vor = £, - 1{x)) = 0. But then g(x) - fi(x)
- eee - S l(x) - f2i(x) = 0, and so g(x) = £. (x)+ £; +l(x)
+ oo+ £, (x), where 0 £k i, Thus g(x) €, so ach.
With this result, it is easy to prove the Hilbert Basis Theorem.
Theorem 1.29: If R €71, then R[x]el'” (and by induction,
Rley, s +oes %] € 70D,
Proof: ILet us suppose that {as }:ois an increasing sequence of

ideals of R[], We consider the double sequence {d.((l j)} of ideals
of R. If i is fixed, then for r €J, (@) there is p(x) = ag+ +--
+ ay _ "1+rxi€dj_a l,sorél (aa_'_l
{1i(a .‘j)} is increasing. If j is fixed, then {li(d j)} is increasing

) and hence

" by Lemma 1.28, R is Noetherian, so let 1p(aq) be a maximal element of
the double sequence. ai(aj)}' Note th;t .I_p(ao) _C;lp( dl)g_. cve
Sd(@g -l (d)E s so L(Ay) =L (Ay) for j 2a.

But J.p( aj) S‘Li(_aj) for i Z p, so .I.p(aq) Eli( aj) for i Z Ps
3 Za. Then by the maxisality of L (d ), L (@) = L;(dy) for
i2p, Jza. ) :
Case (1): Suppose i & p. Then li(aq) =I.p(aq). However,
I.p( dq) =I.i(dj) for j 2 q, so I.i(aj) = J.i(aq) for 3 Z q.
Case (2): Suppose 0 £i <p, Then there is n(i) € Z such that
f J’_i'(aj) “‘li(an(i)) for j Zn(i), as R is Noetherian,
Now let M = max (n(é), n(l), ecey, n(p = 1)_, q). Then for i € 2,
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i >0, we have 'Ii(a;j) = ,Li(am) for j 2 M, But then by Lerma 1.28,
a-j =aMfOI'JZM. . |
Example 1.30: Let us note that since Z € W, we have z{x]€N

by the Hilbert Basis.Theorem. However, consider {x, 2, and suppose
that there is p(x) € Z[x] such that {x, 22 = {p(x)>. Let us recall that
{x, 2> = {x-m(x) + 2n(x)s n(x), n(x) € 2x] . 2 € &, 2, so there is
q(x) € Z[x] such that p(x)q(x) = 2. Thus deg p(x) = deg q(x) = 0, so
p(x) = my, q(x) = n, where m, n €2, But then mn = 2, som=2o0orm=1.
If m = 2, then {x, 2> = {2), so x € {2). Then there is q(x) € Z[x] such
that x = 2q(x), so 2q; = 1, where q; € Z, a contradiction. Ifm =1,
then <x, 22> =41, so 1 € {x, 2) and hence there are m(x), n(x) € Z[x]
such that 1 = x.m(x) + 2n(x). But then 2n; = 1, where n, € 2, a contra- .
diction. Thus {x, 22 is not principal, and hence Z[',x]{,p .
We shall now exhibit a ring R which has the A,C.C. on principal

ideals yet which ‘is not Noetherian. It will follow that the A.C.C.
holding on principal ideals of a ring does not imply that it holds on

_ arbitrary increasing sequences of the ring.

Example 1,313 Suppose F is a field and consider F[xl, Xoy *eey

X, eee]. let X ={x1, Koy *°°5 Xy ---}. Since F€ £J , we have
Flx]le O, F[X] being the union of integral domains. Note that F[X]

= U{F[x]: Y is a finite subset of X . Now 1et{(fi) :i=1, 2, eee}
be an increasing sequence of principal ideals, where f; ¢ 0. For each
P, choose Y, such that £ € F[Ip] and such that ¥ is minimal. Let

p
X U(T) # 0. Now fplfl, so there is g, € F[x] such that £, = gp.fp,

x €Y,. Write f = U(T)x + V(T’), where x ¢ T'. By the minimality of

We write g, = U’(S)x +V'(s’), where x ¢5’. Then £, = U/(S)U(T)a?
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+ U (S)V(T')x + V' (8)U(T)x + V'(S')V(T’) = 0. Since g, # 0, we have
either U'(S) # 0 or V'(S’') # O. But then x € Y;, and hence ¥ € .

Thus F[Yp] c F[II] for each p, and so fp € F[Xl] for each p.

But by the Hilbert Basis Theorem, F[Y;] is Noetherian, so there is M€ N
such that whenever n Z N, {£? = {fiy. Thus F[X] has the 4.C.C. on
principal ideals, so F[X]€R.

However, note that <x1>§ (Il, x2>$ oo & (xl’ Xos *°%» xn>
G +es, Forif £ G(xl, Xy5 +00s ;S‘), then £ = £ + «ov +f
+ 0uxy 7 € <Xy X,y cemy Xy X .,.1>. MoTeover, X , 7 = 0X;
ot e w0 Lx oy €00, Ty cees Ko X 1hs BUE K g
i ¢ $Xp5 Xyy ooy xk). Thus we have F[x] ¢,

In Chapter II, we shall show that if R is a U.F.D,, then so is
Ri{x]. Using this fact, we observe that F[X] is a U.F.D., so no arrow
can be drawn from U.F.D. to .

Before considering our next example, we remind the reader of some
of the concepts of extension fields, If F and K are fields, then K is
an extension of F if K contains a subfield which is isomérphic to F.

We shall write F &K, Note that K is then a vector space over F, so we
denote the dimension of K over F by [K : F]. K is a finite extension
of Fif [K : F]<eo . An element a € K is algebraic over F if there are
elements bo, bl, <y bn € F, not all zero, such that bo + bla + ees

+ b a® = 0. Otherwise, a is transcendental over F. K is an algebraic
extension of F if every element of K is algebraic over F. A basic
result is that if K is an extension of F, then the set of all algebraic
el'ements of K over F is a subfield of K. We shall use this result in

the construction of our next example, which illustrates a ring R without
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the A.C.C. on principal ideals. We assume it is lmown that the natural
logarithm base, e, is transcendental over Q.

Lemma 1,323 em,/n is transcendental over Q, where m, n € Z,
m >0, n #0. ‘ _
Proof: If n €Z, n #0, and if el/n jg algebraic over Q, then

(el/n)n = e is algebraic over Q. Hence e1/n

is transcendental over Q.
If em/n is algebraic over Q, then there are a;, a;, +++, & € Q not all
zero such that aj -+ al(el/n)m + a2(el/n)2"‘1 F oo .,.ak(el/n)hn =0, a
contradiction.
Lemma 1,33: If Ty, Ty, ++, Xy €Q, then {erl, er2, ces, ern}
is independent over Q.
Proof: Suppose there are a;, a,, +++, &, € Q such that alerl .
+ azerz + see o+ a.nern = 0, Then a.lepl/q + azePZ/q + oo +anepn/q = 0,
where q is a common denominator for Iy, Tp, e+, Fp. Thus al(e]'/q)pl
+ a, (e /q)p2 + o -o-a.n(el/q)Pn =0, and by Lemma 1.32, a; = &, = «c-
;= ey =0
Example 1,3l Cons:;Lder ;iem—i = (e)(elo-l)(e]'o-a) cee (elo-k)

-1 -2, -k
cee mot 10T 20T 4 cee #2107 | 10/9
~1

sider Q[Y], where ¥ = {e2° 1 i 2 0, 1, 2, ...} U {(19%)/( T 2O “)e
n = 1, 2, ---} U {e1°/9} We note that Q[I] is an integral doma:m with
1. Nowpy = (/%)/( T, e 10%) ¢ ], ana b, = (py 4 1)(e1° )

l(-O

Further, let us con-

is=1, 2, +++, Thus p, lpi, and hence <pi) ..(pi +1 s 1 =1, 2, eee,

i+1
If there is g € Q[Y] such that Py + 1= &Py then g.elo = 1, Now
' -1
g’z- klekz...e , so Z‘ k1+ ese *kn +10
fimite (kpy +e0s k) e (ky, oeey )

-1=0,3a contradn.ct.ion by Lemma 1. 33. Tous p; . 1¢ {p;d, 1 =1,

2, oo+, and s9 <pl>$ (Pz)S sos §<pk>§ ses, Hence Q[Y]¢'ﬂ‘
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Next we exhibit a ring R which is Noetherian yet which is not a
U.F.D, Feferring to Figure 1, this will tell us that no arrow can be
drawn from 77 to U.F.D., and hence none from either R or o to U.F.D.
Example 1.35: Recalling that Z[x] € M, we define ¥: Z{x] —21J55)

by ¥(p(x)) = p(J<5). It is clear that ¥ is an onto homomorphism. Now
if I is an ideal of Z [N=5], then $~1[1] is an ideal of Z[x], and since
z[x] €71, there are a1, @gy *evs a.n-€ z[x] such that 4 -1[1] = {2y, a,,
cony an). Since ¥ is onto, I =V'[$""1[I]] ='<‘f(a1), ‘f(aa), ceey V‘(a.n)),
so Z[d=51€7. We have seen in Example 1.21, however, that factoriza-
tion in Z [J:-SJ is not unique, so 2 [J'-Ts] is not a U.F.D.

Finally, we consider an example of a ring R which is a U.F.D.
but not a P.I.D. We .knvow that 2 is a U.F.D., as ze.P, so by our
earlier remark Z[x]is a U.F.D. However, in Example 1.30, we showed that
z[x] € . Thus we have that the arrow from {7 to U.F.D. cannot be

reversed, and hence we have considered all possibilities.
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CHAPTER IIT

POLYNCMIAL RINGS AND FINLITE FIELDS

.-

~—

—

This chapter is primarily concerned with finite fields and

——
S ———
— —————

polynomial rings over fields.

Iemma 2.1: An element a € R is irreducible (or a unit) in R]x]
iff it is irreducible (or a unit) in R.

Proof: Suppose first that a € U(R[x]). Then there is b(x) € R[x]

 such that a.b(x) = 1, and since deg b(x) = 0, b(x) € R and hence a € UR).

On the other hand, if a € U(R), then there is ¢ € R such that

_aec = 1, and since a, ¢ € R[x], a € U(R[x]).

Now if a is irreducible in R]x], and if a = pq, where p, q € R,
then since p, q € R[x], either p € U(R[x]) or q € U(R[x]). Thus either '
p €EU(R) or q €U(R), so a is irreducible in R.

Conversel;r, if a is irreducible in R, and if a njr(x)s(x), where
r(x), s(x) € R[x], then since deg r(x) = deg s(x) = O, we have r(x),

s(x) € R. But then either r(x) € U(R) or s(x) € ZR), so either
r(x) € U(R[x]) or s(x) € A(R[x])), and hence a is irveducible in R{x].

In the following definition, we shall assume that (a, b) exists
vhenever a, b € R are not both zero,

Definition 2.2: p(x) = aj+ a;x + .. +a x" € R[x]is primitive
if (ao, 815 °*%y a )€ UR).

Remark 2.3: If p(x) = a +a

X eee +anxn € R[x], then we can
write p(x) = d.q(x), where d € R and q(x) is primitive. Note that
d ~(ay, aj, ++5 85). dis called the content of p(x) and is denoted

22
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by c¢(p). Note further that p(x) is primitive iff ¢(p) € U(R).

Theorem 2.4: R is a U.F.D. iff R[x] is a U,F.D.

Proof: We first suppose that R[x] is a U.F.D, and that a € R is
a non-zero non-unit. Then a € R[x] and a € UR[x]), so there are pl(x) R
pz(x), cee, pn(x) € Rix], pi(x) irreducible for 1 £ i £ n, such that
a = py(x)py (x)eeep,(x). But deg p; (%) = 0, so ps(x) is irreducible in R .
for 1 £3i £ n. Now each factorization of a in R is also a factorization
in R[x], a U.F.D., so the factorization is unique.

Conversely, suppose R is a U.F.D. and let p(x) € R[x], p(x)
¢ URR[x]). We induct on deg p(x). If deg p(x) = 0, then p(x) factors
uniquely as a product of irreducibles in R, as R is a U.F,D., and so
likewise in R[x]. Now let us suppose that every non-unit polynomial of
R[x] of degree less than n can be factored uniquely as a product of
irreducibles in R[x]. Let deg p(x) = n, and write p(x) = c(p)a(x),
where q(x) is primitive. ¢(p) € R, so either c(p) € U(R[x]) or c(p)
can be factored uniquely as a product of irreducibles in R[x]. If q(x)
‘is irreducible, we are through. Otherwise, q(x) = r(x)s(x), where r(x),
s(x) ¢ U(R[x]) and where deg r(x) < n, deg s(x) < n, the latter since
q(x) is primitive, But then both r(x) and s(x) can be factored uniquely
as a product of irreducibles in R[x], and hence so can q(x).

Remark 2.5: Since Z is a U.F.D., we have that Z[x]}is a U.F.D.

We now turn our attention to the generalization of the Euler
g-function.

Definition 2.6: For n€ N, let #(1) = 1 and let #(n) denote the

number of positive integers less than n and relatively prime to n for
n>1. @(n) is called the Euler g-function. We shall let J(R) stand
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for the number of units in R.
Remark 2.7: If R=2 @A, then £ € U(R) iff £ = (uy, Wy, *-2,
—— ket
. . <3i<n, 'ﬁ“ F
um)’ where u; € 'L((L‘L) for 1< i< m. Thus P(R) =k"W(Ak) whenever each
Ak has finitely many units,

Theorem 2.8: If every finitely generated ideal of R is princi-

pal, and if p € R, where p = qlelqzezu -ql,u":’m is a factorization of p

/ into irreducibles, then R/ , o é" oR/<qkek 3.

' Proof: We define ¥ : R/¢py —-éeR/@kek) by #(Lpy + )
= ((qlel> +r, (qzez) TT, eoo, (qmem} + ), If P>+ Ty =4p) * Ty,
then ry -, é(qkek> for 1 £k<m, so (o) + rl) = ¢$({» + r2) and
hence % is well-defined.

Now %6+ 7y) + (@ + )] =4[ +(x) # x,)]
= (<qlel> +(r) +1,), <o, (qme“? +(r; +15)) = ((qlel> + T, vee,
(o, My +7y) + ("D +1p, one, Lgp M) +1p) = KL + 1) + H(4 + 7).
Likewise, }‘[((p) + rl)((p> + rz)] = 4> + ;) Y + T,)s 80 ¢ is
a ring homomorphism. :

Ir ¢+ 1) = Y + r,), then r - r, é(qkek> for
1<k £n and hence ¥} - T, & <{p» by Remark 1.19, since (qiei, qje.'i) ~1
for i #j. But then {p) + 1) = (P + Ty, So ¢ is one-to-one,

We now show that # is onto. Let «; = ((qlel} +0, eoo,

Ly, . lei = 1> 40, g i) 47y, 4y L1 T I 40, oo, <, ™>+0),
and let s; =_Tl_‘qje3'. (si,qiei) ~1, so there are a, b & R such that

J

€ ] ¢
as;, = r; = bql i, We let ry = as Then ‘i(ri )"“i' Now suppose

5
o = (€ 1) +7y, 4G 20 + Ty, eoe, 4g M) 4x) egcﬂ/ (g k). Mote
that dc?_.g 50 Then letting r'sfr; s We have Y(r) = 2“[-&?’)

Pr] ' ket ‘ K=t
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Our first use for this theorem will be in computing B(Z/¢nd),

where n > 1.
‘ lerma 2.9: Let p be a prime integer. Then ¢(pk) = p¥ - pk -1
‘ for k > 1. |
Proof: If (n, pX) ~d ¢ 1, then since dipK, we have d = p®,

where O < m £ k. But then p™in, so pln. Conversely, if pin, then

(n, pk) ), Thus 0 £€n< pk and (n, pk) ]l iff n = qp, where q = 0,
kK -1

1, e, pk -1l 1, and there are p such representations for n.

Theorem 2.10: @(2/¢(nd) = P(n) for n > 1,

Proof: If p € U(Z/¢ny), then there is q € Z/¢n) such that
pa = 1 (mod n), so nlpqg - 1. ‘Thus there is r € Z such that pq = nr = 1.
I1f (p, n) ~ d, then there are a, b € Z such that p = da, n = db, and
hence daq - dbr m d{aq - br) = 1, so d = 1.

On the other hand, if (p, n) ~ 1, then there are a, b € Z sﬁch
that ap +bn = 1,\s0 ap & 1 (mod n) and hence p € U(%/n)). Note that
only values of p for which O € p £ n need to be considered. Thus
#(Z2/¢n») = @(n). |

Corollary 2,11: If n =i'l"pkek, where p,_ is prime for 1 £ k £ m,
then B(%/coy) = T, % - 1(py - 1).

Proofs Z/<nd ¥ 3 0%/4p, k), so (Z/cnd) = T B(Zep, k)
= T gp, k).

[[§-1)

Theorem 2.8 also gives us the well-known fact that @(n) is a
multiplicative function.

Corollary 2,12: If a, b € N, (a, b) ~1, then @(ab) = g(a)g(b).

- TFp, ok . % .
Proof: Suppose a x-‘-ll.pk and b ='ﬂ"pk are factorizations of

kame

a and b into products of powers of primes. We note that p, ¥ py for
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isj,wherel£i<n, 1<3j<n, Now@g(ab) = E(Z/g";;pkek})
= BCE 9%, %) =B e %y = B (o, o), T B g, %))
= BCE 0/ep, TP E 88/ep, Ky) = FEL A, CeDIFE/ F p, %)
= §(2/4a3)B(Z/K0y) = @(a)g(b).
We now suppose that h: R ~+S is a ring homomorphism, where R,
S€Jd, Then if x €U(R) and h is not the zero map, it follows that
n(x) € U(S), as h(l) is the identity for S. The converse, however, is

false, as we shall see in the following example,

Example 2.13: let R wZ, S=2/(g), and let W Z—Z/5) be
the natural map. Then L € U(Z/¢5)y), but L ¢ U(Z). '

On the other hand, the following are cases in which the converse
is true.

Example 2.lh: Consider z.l"..Z/<pn> = R—?‘R/A, where W and T are

the natural maps, p is a prime integer, and A = {p™ + p). Since ¥ is
not the zero map,\we clearly have W(x) € U(R/p) if x € U(R). If

/ T (x) € U(R/a), then using the ontoness of W, there is ¥ € R such that

/ TE)TG) = W(@A). Thus A+ Xy =W(I) = A+1, soxy - L €A. But

’ then there is a € Z such that {p™ + (xy = 1) = <{p™) + ap, and hence
there is b € Z such that xy - 1 - ap = bp®. Thus plx, so (x, p7) ~1.
Now there are r, s € Z such that rx + sp” = 1, so X.T = I and X € U(R).
Thus we have shown that x € WU(R) iff T(x) € UR/L).

Example 2.15: For R €d4F, we let A be the ideal of nilpotent

elements of R, W: R—»R/y be the natural map. Since W is not the zero
map, x € U(R) implies W(x)€ U(R/p). If W(x) €U(R/y), then there is
T (y) € R/p such that T(x) W(y) -"l'r(l)'. Thus Xy = 1¢ A, so there is

a € A such that xy - 1 =a. Also, there is n G Z such that a® = 0, so
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(xy = 1) = 0. But R€S, so xy = 1 = 0 and hence x € WU(R). Therefore

x €UR) iff w(x) € UR/Y).
Example 2.16: We consider once again ZI'Z/< pty = Ri”R/A,

where A = ((pn> + p) s W and T are the natural maps, and p is a prime
integer. Note that ¥ = 1TO1T \13 a homomorphism of Z onto R/p, where o
is the composition of T and W. If a €ker#, then A = W(W(a))
= T(a) = A+3a, soa €A, Thus there is b € Z such that a - bp € <p™).
But then pla, so a € <p).

Conversely, if a € {p), then a ={p™) + a €A, so W(a)'= A and
hence a € ker¥.

Therefore we have Z/¢py & R/p, so B(R/y) = @(p) m p - 1.

For finite rings R, the next result will give us the relation-
ship between @F(R) and the number of units in a factor ring of R.

Theorem 2.17: If R is finite and A an ideal of R such that

ir(x) € UR/pL) iff x € U(R), where W3 R-—»R/j is the natural homomor-
phism, then B(R) = IAIF(R/A).

Proof: For each T(x)€U(R/A), there are Al elements y € R
such that W(x) = W(y). Hence there are JAl distinct elements of PY(R)
which map onto a given element W(x) € U(R/A), as TI‘[‘U(R)] = U(R/A).

Thus B(R) = JAlB(R/a).
Remark 2.18: In Example 2.16, this result may also be obtained

| by the following argument. Recall that Z(R/A) = p - 1. Also, R = 2/¢p"h),
so P(R) = #(p") = p]n ~p? -l NowAaA=s&pH+p) = {(p"H ps {p™> + 2p,
cesy O + (P77 L« L)p, <PV + P° -p}, so lAl » p® =1, since
e ?‘(p - 1), BR) = 1AF(R/).

We now suppose that F is a finite field with |F| = m and we com-
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pute F(FIX)/(p(xp ), where p(x) € Flxl. If p(x) = 0, then FIxJ/rp(x)
& FlxJand hence B(FIxl/¢p(x)3) = m - 1. Further, if p(x) € UF[x]),
Then FIX1/en(x)) = {0}, so B(FIxl/¢p(x)>) = O. Thus in the following
we shall suppose that p(x) # O and p(x) ¢ U(F[x]).

Lemma 2.19: If p(x) € FIx], then U(FIxl/ep(x)p) = {2x)
€ FIxl/ep(x)p s (g(x), p(x)) ~1}.

Proof: Let S ={g(x) € FIxl/(p(x)y: (e(x), p(x)) ~1}. 1f
£(x) € S, then there are m(x), n(x) € F[x] such that g(x)m(x) + p(x)n(x)
= 1, since F[JC]G,P. Thus g(x)m(x) = I, so gl{x) € U(FII/¢p(x)))-

Conversely, if g(x) € UF [X]/(p(x))) , then there is h(x)

- € FEX]/<p(x)> Such that g(xJh(x) = I, so g(x)h(x) = 1 € {p(x)). But
then there is q(x) € F[x]such that z(x)h(x) + p(x)a(x) = 1, so
(g(x), p(x)) ~1 and hence g(x) € S.

Definition 2.20: For p(x) € F[x], p(x) # 0, and p(x) ¢ U(F[x3),
define B(p(x)) = B(FIx)/¢p(x)))-

Theorem 2.21: If p(x) € F[x], p(x) # 0, and p(x)¢ U(F[x]),

then @(p(x)) is the number of elements g(x) € F[x]such that (g(x), p(x))
~s1 and 0 < deg g(x) < deg p(x).
- Proof: If g(x) € F[x]/<p(x)>, then we may assume that 0 £ deg g(x)
< deg p(x). The result is now immediate by Lemma 2.19.
lemma 2.22: If p(x) € F[x] is irreducible and deg p(x) = n,
then g(p(x)) =m" = 1, '
' Proof: There are m™ choices for g(x) € F[x] such that 0 < deg g(x)
< deg p(x) or g(x) = 0, and if (g(x), p(x)) » 1, then g(x) = O.
‘Lemma 2.23: If g(x) € F[x]is irreducible, p(x) = q(x)* for
k € N, and if deg p\(;j}‘ﬁ;then‘ﬂ(p‘(_x)) « i - ok = 1)/k,
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Proof: If (g(x), q(x)¥) ~h(x), where deg h(x) > O, then since
Flx]€ and hence is a U.F.D., h(x) ~a(x)%, 1 $ 5§ k. But then
a(x)lg(x), so there is r(x) € F[x] such that g(x) = q(x)r(x). On the
other hand, if g(x) = q(x)r(x), then (g(x), q(x‘)k) wal,

Now let us consider {g(x) €F[x]: 0 < deg g(x)< n or g(x) = 0,
(g(x), q(x)k) nl-o1}. There are m" choices for g(x) satisfying
0 £ deg g(x) < deg p(x) or g(x) = 0. For g(x) = q(x)r(x), it follows
that either r(x) = O or deg r(x) = deg g(x) - deg q(x) % (n - 1) = n/k
= (kn = k = n)/k. Thus there are ol =k =n)/d +1 _ n(k - 1)/k
choices for r(x), and hence for g(x), such that (g(x), q(x)k) 1. But
then F(p(x)) =m” - anlk - 1)/k,

Corollary 2.2h: If p(x) € FIx], p(x) # 0, p(x)¢€ U(F[x]), then
BER paoy) = Tim ke ) _ e = 1)dee aclx)) - gnore o)

- j’:l:qk(x)ek is the factorization of p(x) into a product of powers of
irreducibles.  \

Proof: Since Ft.vcl/<p(x))f.:.»“z'e'“l oFlx g (x)°) by Theoven 2.8,
we have by Remark 2.7 that B(FD/¢p(x)>) = ﬁ“ E’(le]/%(x)ek». Thus
BEgpxp) = Tpa 0% = T K W) odes glx)(e - /ey,

- i]"l(mekdeg qclx) _ m(ek - l)deg qk(x)).

Remark 2.25: If p(x), a(x) € Flx], p(x) # 0, p(x)§ U(F[x]),
a(x) ¢ 0, and q(x) € U(F[x]), and if (p(x), q(x))~ 1, then by Theorem
2.8 it is clear that @(p(x)a(x)) = #(p(x))F(a(x)).

We now summarize the results about ‘“U(F Da/<p(x)>).

Theorem 2,26: Suppose F is a finite field with |Fl » m, and

suppose p(x) € Flx].’
1) 1f p(ic) = O, then WF[KJ/«)(,;») an- 1,
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2) If deg p(x) =0, then F(FIXl/¢cp(x)y) = 0.
3) Ir deg p(x) > 0, then F(FIxl/¢p(x)p) = il:(mekdeg ay (x)
- m(ek - 1)deg qk(x))’ where p(x) =il;qk(x)ek is the factor-
ization of p(x) into a product of powers of irreducibles.
We conclude this chapter by characterizing the finite fields.
In so doing, we introduce the notion of prime field. Throughout the
discussion, the symbol P is used to de.note the prime field of F. Though
we assume that the reader has a basic understanding of the elements of
Galoils theory, we recall at this time some of the ideas we will be using.
If F is a field and f{x) € F[x], then a..finite extension Eof F is a
splitting field for f(x) over F if f(x) has all its roots in E but in no
proper subfield of E, We state, without proof, the uniqueness theorem
for splitting fields.

ﬁ

(3
Theorem 2,27: If F and F’ are fields such that F £ F/, then T
3

: e
extends to an isomorphism F[x] éF'[x]. If £f(x) € Flx], and if E is the
splitting field of f(x) over F, E’ is the splitting field of T *(£(x))
over F’, then E = E’.

Definition 2.28: A prime field is a field having no proper

subfields. .
It is clear from the definition that a prime field is minimal.
Given a field F, one can ask if F possesses a minimal subfield.

Theorem 2.29: Every field F contains a unique prime field P,

namely P = N{G: G is a subfield of F}. |
" An essential concept in our ‘discussion of fields is that of

characteristic.
Definition 2.3.5:\If*F~-is‘a‘§§_91d, then F is of characteristic
. T
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zero if n € Z, n.lp = O implies n = 0. If for some n & N, n-:l.F = 0,

then F is of finite characteristic. In this case, the characteristic

of F is the least positive integer such that n.lp = 0. We denote the
characteristic of F by X(F).

Remark 2.31l: If X(F) =n, then n.a =0 for every a € F.

Further, <“X(F) is either O or a prime number p.
Lemma 2.32: X(F) = p iff PexrZ/¢py.
Proof: Suppose X(F)=p. G = {n-lF: n € Z} <€ P, and clearly
G is a ring with 1. We define ¥:Z-+G by ¥(n) = nelg, ¥ is an onto
ring homomorphism, and h.lF = 0 iff n €<{p), soAkerV'-mp) and hence
G= z/<p>. Now {p> is a maximal ideal of Z, so G is a field and hence
iy G= P.
/ On the other hand, suppose P Z‘.: Z/<p). 1 E€P, and o (p.l)
/ = p.l =0 =c(0), sop:l=0. If q1 =0 for q € Z, then 0o (q.1)

= qo(1) = q{p>\r 1) =<p> + q = 0, so q € {p» and hence K(F)= p.

Theorem 2.33: If X(F) = p and [F : P] = n, then |Fl = p®.
Proof: Since P22 2/¢py, [F : Z/¢py] = n and so IFl = p™. :
Remark 2.34: X(F) = 0 iff P2 Q.

Proof: If P '.:'Q, n €2, and if n.lp = 0, then n F(1p) = nelq
= O, son =0 and K(F) = O.'

Conversely, if X(F) = 0, then G = {n.lF: n € Z} € P. let us
define o :Z-Gby o (n) = n-lF; o is a ring homomorphism and
ker o =€0>, so G >2/¢oy & Z. Now P contains the multiplicative inverse
of every non-zero e€lement of G, so P contains a subfield G' such that
G’~ Q, But G'€© PEF, s0 G'= P and hence P = Q.

We now turn our attention to the multiplicative structure of F.
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The result we need concerns finite multiplicative subgroups of F, and to
this end we prove some preliminary remarks.

Lemma 2,35: If G is.a finite abelian group, p a prime mmbex,
and if plo(G), then G has an element of order p.

Proof: The proof is by induction on the order of G, If o(G) =1,
the result is vacuously true., Let us suppose the result is true for all
finite abelian groups of order less than o(G). Let x € G, x#1. If
there is m € Z such that o(x) = pm, then o(x¥") = p and we are through.
Now suppose o(x) = t, where (p, t) ~1. Then x is a normal subgroup
of G of order t, so G/¢x) is an abelian group of order o(G)/t <o(G).
Further, since (p, t) ~1 and plo(G), we have plo(G)/t, so there is
Y € G/¢x) such that o(y) = p. Now consider W:G—>G/¢x) , where T is
the natural map. Then ?(y) = yO(Y)&> = {x)>, so plo(y). Thus there is -
k € Z such that o(y) = pk, and hence o(yk) = P.

Remark 2:36: Suppose G is an abelian group, X, ¥ € G are of

finite order, and suppose <> Ny> = {1}. Then o{xy) = l.c.m. {o(x) ,‘
o(y)} (may be extended by induction).

Proof: Let t = l.c.m. {o(x), o(y)}. Then o{x)|{t and o(y)[t, so
Gy)¥ = xbyb 1.1 =1, If (3)%= 1, then xSw 73 € x> 0 (¥, s0
x° = y% 2 1 and hence o(x)l‘s, o(y)]ls. But then tls, so o(xy) = t.
/ Theorem 2.37: Let F be a fiéld, G a finite multiplicative sub-

;/ group of F. Then G is cyclic.

| Proof: we suppose that o(G) = n = plslp232...pksk, where p, is
prime for 1 £ i £ k. Note that for each i, 1 £3i £k, G has an element
of order p. . Choose, for each i, an element a, € G such that o(a.i)

- piti, where *’i is maximal. Note that X1 =~ - 1 has at most piti
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roots in F; in fact, {a;) is the solution set for the polynomial.
If t;, < s;, then pi]o(G/<ai)) = 0(G)/o(4ay>), so there is
b € G/<a‘i)‘\such that o(b) = p;, where b =(ai) +Db,b€G. Nowb ¢ (ai),
as otherwise b = I.. But b1 € <ai> , Since (‘B')pi = 1, so o(bpi)lo((ai))
S r

ts Ps I Pi Py *
i i i - 1yPi
P; riaixdlhence o(lb +) = p; *, where ry £ %;. -Thus. (b*3)

= pFi = 1, and r; is the least such element, so o(b) = p.ri ’ 1-

By the maximality of t;, r; +1 St,, so bpiti = (bFi
= 1, and hence b € (ai) » a contradiction. Therefore t; = s, and hence
o(a;) = pisi, 1 £i<k. Now suppose ¢ € (ai> n(aj), where i # j. Then
o(c)]pisi and o(c) lpjs.'j, so o{c) = 1 and hence ¢ = 1, as (pisi, pjs.‘i)

~ 1. Thus (ai) n (aj) ={1} for i #j. Nowlet d =a,a,°-a . Then by
Remark 2.356, o(d) ail"o(ai) = n, so G =<d).

Corollary 2.38: If {Fl = p?, then F - {0} is cyclic of order

P - 1.

Proof: F- {0} is a finite multiplicative subgroup of F.

A special application of the previous theorem is illustrated by
considering the roots of x* -~ 1.

Theorem 2,39: Suppose F ©E, and let Gp = {a. €E;: a" = 1}.

Then (G, *) is’a cyclic group and o(Gg) = r, where rin,

Proof: Clearly Gj # @ and G, € E, If a), € G_, then since

2
aln -1=20 =a2n~_- 1, alna azn. Now (.'~1.la.2)x,1 -1 alnazn -1
= (aln - 1)(32n+ 1) - aln-o- a2n= 0, so a,a, € Gpe Also, if a € G,
then (a~1)® -1= (@™t -c1=1t-1=20, s0a~l€ Gg. Thus G is a
grdup. |
Now x* = 1 has at most n roots in E and hence in G_, so o(Gg)

< | E
£ n, Thus Gg is a finite multiplicative subgroup of E and hence
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(GE, +) is cyclic. Suppose o(Gg) = r = plslp252...pksk. Recall that
for each i, there exists an element a; € Gg such that o(ai) -pisi. But
8" =1, sop;"iln, 1 €4Sk, Further, (p, %, pjs.']) ~1forigij,

so rln.

The next question which arises concerns the multiplicity of the
roots of x¥* - 1 € F[x). The answer lies in the characteristic of F, as
will be seen in the following lemma and theorem.

Lemma 2.40: Suppose f(x) € F[x]. Then f£(x) has multiple roots
iff there is a € E such that £(a) = £/(a) = 0, where F E.

Proof: If a is a multiple root of f£(x), then there is g(x)
€ E[x] such that f(x) = (x - a)2g(x). Now £'(x) = 2(x -~ a)g(x)

+ (X = a)zg‘(x), and clearly f(a) = £“(a) = O.

Conversely, if f(a) = £’(a) = 0O, then there is g(x) € E[x] such
that £(x) = (x = a)g(x). Then £'(x) = (x - a)g’(x) + g(x), so g(a)= O
and hence (x ~ a)2|f(x).

Theorem 2.41l: Suppose X(F) = p, and let E be the splitting

field of ¥* = 1, Then pfn iff the roots of x® - 1 are distinct.

Proof: 1If x* - 1 has no multiple roots, then by the above lemma
ph.

On the other hand, suppose that ptn and that % = 1 has a double
root. Then there is a € E, a % 0, such that na® ~ 120, Thus n-l= 0,
so pln, a contradiction.

From our experience in group theory, we know that there need
not be any relation between the structures of two groups of the same
order, However, when considering fields, this is not the case. 1In fact,

we show that finite i‘i_elds which have the same number of elenbnts are
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isomorphic. First, however, we need some preliminary results.
n
Lemma 2.42: If JFl = p®, then ¥ - x € F[x] has exactly p"
I}

roots in F, and ¥ - x =‘Ilé(1x -a).

Proof: Note that x¥ « x has at most p® roots in F. But if
a € F - {0}, then aP < 1l, so aP = a and hence xP - x has exactly

n
pP" roots in F. Moreover, xX¥ - x =‘If"_,(x - a).

Corollary 2.h3: Suppose JF| = p", and let P be the prime field
of F. Then F is the splitting field of xpn - X ow}er P.

Proof: It is clear that P _xé P[x] and that xpn - x splits
over F. Further, if xpn - x splits over G, then G contains F, so F is
the splitting field of xpn - X over P.

Theorem 2.LL: If JFl = ]Kl, then F& K,

Proof: We suppose IFl = p® = JKi. Now pnolF = 0, S0 p-lp= O,
as F is a field, But p is prime, so X(F) = p., Therefore A(F) = A(K)
= D. \

Now F is the splitting field of @ - x over its prime field P,
and K is the splitting field of 2" o x over its prime field Py. By

Lemma 2.32, PFg Py. Now T extends to an isomorphism Pplx] ;‘.'.* P [x],
and T*(xpn -X) = xpn - x. Thus by the uniqueness theorem for splitting
fields, F K.

The final result of the chapter shows the existence of a finite
field of any prime power order. Further, by the last theorem, this
‘field is unique.

Theorem 2.L45: If p is prime, n & N, then there is a unique

(up to iéomorphism) field with p® elements.

Proof: Consider xpn - x € Z/¢py [x]. Since ?((z/<p)) =D,
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n n
(X -x) = ~ 1.1 -1, and hence by Lemma 2.40 the roots of
n
x® - x are distinct.
n
Now let K be the splitting field of x = x, and let F = {a € K:
/ P o n P
aP = a}. Note that F has p" elements. If a, b € F, then (a = b)
v n n n n
= aP. -bp, since X(X) a p. But s = a and b° = b, soca-be&PF,
, n n.n
/ Also, (ab)? = aP bP w ab, so ab € F. Finally, if a € F, a # O, then
n n
(a.'l)p = (&P )..1“ a.'l, soat€F. Thus F is a field, and [Fl = p=.

We conclude this chapter with some examples of finite fields.

Example 2.16: If n &€ N is prime, then 4/¢ny is a field with
n elements.

Example 2.47: Consider F = Z,, the field of integers modulo p,

where p is prime, p g 2.. Notice that (p - n)2 & n° (mod p) for 1 €n

£ p. Thus there is a €ZP such that x° # a (mod p) for each x € Zp.

But then x° = a € Zp[x] is irreducible over Z,, so prﬂ/(,cz - a)is

2

a field with p© elements.
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CHAPTER IV

THE CHINESE REMAINDER THEOREM

‘o AND CONGRUENGES

/ Initially, R is assumed to be a commutative ring with 1. Con-
/ sider the system {Ak, ak}:,.’ where A) 1s an ideal of R-and a € R for
1S$k< n. This system is said to be solvable if there is t € R such
that t & a, (mod A ), that is, t - g € A, for LS k<€ n, and ¢ is
‘called a solution to the system.
. i n
Note that if t is a solution to {Ak, ak}“‘ s then t - a € A

for 1 £ k £ n and hence a; - ay €Ai+Aj for 1§i<n,1<£j%n,
Systems {Ak, ak}:d which meet this latter requirement for solution are

called Chinese Remainder (CR) seguences. Rings in which every CR sequence

is solvable are called solvable arithmetic rings. In the following, con-

ditions are given for rings R to be arithmetical, and further conditions
are given for rings R€& to be arithmetical. Arithmetic domains are
better known as Prufer domains. The first result is especially impqrt.ant,
in that it yields the standard Chinese Remainder Theorem as an easy
corollary. |

Theorem 3.1: Ilet {Ak}:" be a sequence of ideals of R. Then

every CR sequence’ {Ak, ak} is solvable iff x'jl(Ak* AL, 1) = (ﬁ.Ak)

-+ A for each n € N.
n+ l

Proof: We {irst suppose that every CR sequence is solvable, If
. n
n € N, then clearly (‘QAK) +A, 18 ;r.]..“k"' A, +1)' Ifd € .f.’t“k

+ A vthendEAk‘l'An

n + 1) + 1

31

for 1§k £ n. Consider {Ak’ hx}:_’,
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wherebk d for 1 £k =< na.ndb *1_—.0. bk-b‘_j.-.:Oorbn_._1--‘1::j
= d, so b~ b, éAk'l'A forl€j<€n+1,1<sk<n+1l, Thus

{A‘k’ bk} is a CR sequence, so there is t € R such that t = d élAk for
_lékfnandt:t-OéAn*'l. Let x =d - t, ‘I‘henxéAlfor
1€iSn. Butd=x+t, sode(nAk)-rAn,l. Therefore ﬂ(.«Lk

| 01) E(nA.k)-rA » 1> 2nd hence equality follows.

The proof of the converse is by induction. For a CR sequence

{Al, all', we choose t = aq and t is a solution. Now suppose that any CR
sequence of k - 1 ideals is solvable, and let S = {A, a’i}:ﬂ be a CR
sequence. By hypothesis, there is t’ € R such that s - 3 éAi for
1£i<£k -1, andsinceai-akéAi-l-Akforl.si‘.Ek,weha.ve
't‘-jkéAi-rai-c-:F-.-.Aia-Akforlsisk-l. Thust'-k..
€ ;?,,).(‘\.i.""“k)"(;o.“i)*‘k’ sot'-a’kzx-o-y,wherex E,.Q‘Aiand
y €A Let,tst.":.x-ak-a-y. Thent-aist'-ai_-x-éAi-rAi

= AiforlfiSk-landt-aksyGAk. Thus t is a solution to
k [

{Al, az 38y

Corollary 3.2 (Standard Chinese Remainder Theorem) If A

= {Ak}gu is a sequence of ideals of R such that Ay + 'Aj =R i‘or:c o j,
then for any sequence {ak} € R and for any n, the system {Ak, ak}“' is a
solvable CR sequence,

Proof: Since a; - aj €R, 2 - a4 €A * Aj for 1 £k Sn,

n
1<j4%n, [Ak, ak} is a CR sequence. For n € N, we now show that

“.Ak) +An .l s R,
for 1€k Sn,1=a +a alk)  ihere

SlnceleAk"'An*l n + 1’
. (k) 7
! xS-)c-léAn Janda €A,1skSn. Now;ﬁ'm(ak"’ ) ";'L
; wa pwwere Tra &4 anda , €x .. ‘I‘huslé(fllk)
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T A L so(ﬂAk)+A .1

Theorem 3.1, {Ak, ak}“_' is solvable.

n
= R, But 'Q‘(Ak-t A, 1) = R, 80 by

Example 3.3 (Chinese Remainder Theorem for the integers): If

Pys Pys +**s P € Z with (p,, Py ) ~1fori #j and if x, X,, -,
X, € 2, then by Corollary 3.2 there is n € Z such that n 2 X (mod pi)
for 1 £ i< k.

The following corollaries of Theorem 3.1 give elementary formu-
lations of the definition of an arithmetic ring. These results will be
used later in this chapter,

Corollary 3.h: R is arithmetical iff for all ideals A, B, C

of R, (A+C)N((B+C)=(ANB)+ C.

Proof: Suppose R is arithmetical, and let A, B, C be ideals of
R. Since eveiy CR sequence'is solvable, Theorem 3.1 implies that
(A+C)N(B+C)=(ANB) + C.

Conversely, we show by induction that for all n, F)(A + A )
= ( ﬂ Alc) + AJ, where {AK} is a sequence of ideals of R. The result is
clear for n = 1, Suppose n(Ak-i- A ) =( ﬂ )-r A;
= [n(Ak-r A, )] n a, -l-l*A ) o= [( nAk)"’A 10, .+ ;)
-[(nAk)nAa_._]_] A _(nAk)-rA Slncealsarbn.trary,wehave

Then n (Ak+ Aj)

in particular that ﬂ(Ak +A,q)=( flAk) + A .1 50 by Theorenm
3.1, B is arithmetical.

Corollary 3.5: R is arithmetical iff for all ideals A, B, C

of R, (ANNC)+(BNC)=(aA+B)NC.
Proof: Suppose R is arithmetical, and let A, B, G be ideals of
R, For all-ideals X, Y, Zof R, (X+ 2) N (Y +2) = (X+Y) N .

Choosing X = A, ¥ = b;\Z'\i‘B NC, then (A C)+(BNC)&a[a+(BNC)
“‘\_N-- .
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Nic+(BRc)] =(a+B)NMA+C)N[C+B)NC) =(a+B)N (a+0C)
N c=(+B)Nc.
On the other hand, suppose A, B, C are ideals of R and note that
/ for all ideals X, ¥, Z2of R, (X1 2) + (Y NZ)=(X+Y)N2Z. If we
let X =A, Y=C, Z=B+C, then (A+C) N(B+C) =[a n (B+ ¢)]
/' +fcnB+c)] =(uns)+anc)+fcney+cl=(ns)+@nc
j + C = (Af1B)+ C, so Ris arithmetical by Corollary 3.l.
| Next to be considered are some special integral domains, Bézout
domains and Prufer domains, Important relationships will be noted
between these domains and the concept of arithmetical domain.

Definition 3.6: An integral domain D is a Bézout domain if

{a, b? is principal for all a, b € D.
Remark 3.7: If R€&, a, b € R, and if {a, W = {a) =<0),
then a m= a'd, b =« b'd implies (a’, b’ ) ~/1 and a’b = b a € {a> N <b).
Proof: If kla’ and klbv', then there are r, s € R such that
a’' = rk and b = sk, so a = rkd and b = skd. Now there are m, n € R
such that d = ma + nb, so d =(mr + ns)kd. But then kdld, so k1,
Moreover, a‘bd = ab mab’d, so a'b = ab’. Thus clearly a'b = ab’
€ {a) 1 (.

Theorem 3.8 Bézout domains are arithmetical.

Proof: Suppose R is a Bézout domain, and suppose A, B, and C
are ideals of R. It is clear that (ANlB)+ C<(A+C)N(B+C). If
x €(A+C)N(B+C), then x =a+cy= b+c,, where a €4, b6 B,
¢,; ¢, € C. Now there is d € R such that <a, b = <&i>, If d = 0, then
axbmO, sox €EC& (AN B)+ C and the proof is finished. We now

suppose that d # O. Then there are a', v’ &€ R such that a = a‘d, b= b'd,
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L
and since (a‘, b’) ~1, there are u, v € R such that a’u+ b'v = 1.
Then x = x-1 = xua’ + xvb’ = (b + c2)ua’ + (a + cl)vb' = (bua’ + avb’)
+ (cyua’ + ¢;vb'). Since ba' = ab’ € AN B, bua’+ avb’€ AN B. Also,
15 C, €C, so czua'-t' clvb' € C. Therefore x € (A1 B) + C, so we
" have (A+C) 1 (B +C) = (ANl B) +C, and hence R is arithmetical.

Corollary 3.9: Every P.I.D. is arithmetical.

Proof: Every P.I.D. is a Bézout domain,

Definition 3,10: A ring R €& is a Prifer domain if for all

a, b € R not both zero there exist u, v € R¥ such that au, bu, av,
bv € R and au + bv = 1.

Theorem 3.11l: Every Prufer domain is arithmetical.

Proof: Suppose R is a Prufer domain, and suppose A, B, and C
are ideals of R, It is clear that (AN B)+ C<(a+C) (B +C), so
suppose x €(A+ C) (1 (B + C). Then there are a € A, b € B, s S €C

suchthatx..a-ixclab+c2. If a =b =0, then x €C S (A1 B) + G,

and the proof is finished. Thus we suppose that not both of a and b are

il

zero. Then there are u, v € R¥ such that au, bu, av, bv € R and au + bv

= 1. Thus X =x.1 = xau + xbv = bau + c,au +abv + ¢ bv = (abv + bau)

2

lbv). Now au, bv € R, so coau + ¢ bv € C. Also, bv, bu € R,

80 abv, bau € A and hence abv + bau € A. Finally, av, au € R, so abv,

-+ (czau +c

bau € B and hence abv + bau € B. Therefore x € (ANB) +C, and so
(A+C) N(B+C) = (A NB)+ C and hence R is arithmetical.

In fact, the converse to Theorem 3.11 is also true. Once this
has been shown, it will follow that the concepts of Prifer domain and
arithmetical damain are equivalent. This result is proved in the next

theoren.
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Theorem 3.12: A ring R€JF is an arithmetical damain iff R is a

Prufer domain.

Proof: The sufficiency has been proved in Theorem 3.1l. We now
show the necessity, Suppose a, b € Randa #0. If a+b =0, then
u=1/a, va0€R' and au + bv = 1. | Further, au, bu, av, bv € R,

Suppose now that a + b # 0. Since a4 b € (&) + <b>) N La + by,
it follows from Corollary 3.5 that a+ b €(&) NN a4+ b))

+ (P> 14a+b)). Thus a+ b =x +y, where x € <a> N1 {a+ b) and

v €4 1 &a+ b). Then there are X5 X5 ¥ys Yo €R such that x s ax;
= (a +b)x2,. y =by; = (a +blyy. Nowl = (a +Db)/(a+ b) =x/(a + b)
+ y/(a+b) = axl/(a + b) -f-byl/(a +b). Letting u =xl/(a +b),

v = y,/(a+ b), it is clear that au +bv= 1, where u, v €R*. Also,
note that au zaxz/a = x, € R, If b =0, then clearly bv &€ R. If b # O,
then bv = byz/b =y, &€R. Ify; =0, thenitis clear that av € R.

Thus we suppose y‘l #£#0. Ifb=0, then a =x <+ y, and av .—.yl(x +y)/(a+ b))
=y, €R. Ifb#0, theny, #0, so avy, = ov(yy - ¥o) 3 ¥,(yy = 7o)
"and hence av = ¥y - yzé R. Also, if x = 0, then bu € R, so we suppose
x_L$ O. If b= 0, then bu & R. Otherwise, since a # 0 we have xzqﬁ C.
But then bux, = au(xy - x) =x2(x1'- %,), So bu = x - 'x2 & R. There-

!

fore R is Prifer.
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