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INTRCDUCTION

This study of algebraic topology is concerned generally
with the decomposition of geometric forms into the simplest
of geometric forms, simplexes, with the peculiar geometric
forms which admit of this decomposition, called polyhedra,
and with the schemes of such decompositions, called complex-
es. Certain objects preserved under topological transforma-
tions known as their topological invariants are associated
with polyhedra. Although the complete system of topclogical
invariants of polyhedra is not yet known, certain inveriants
have been discovered and studied. Of these the homology
groups are the most significant. The homology groups are
abelian, admit of finite systems of generators and are capa-
ble of being determined by their numerical invarients. This
study is particularly concerned, however, with the proof
that the homology groups are truly topological invariants.
To this end simplicial approximation mappings are devised to
replace continuous mappings from one polyhedron to another
which have the adventage of submitting completely to alge-
braic methods of treatment and which indeed provide algebra-
ic relationships between the two polyhedra. The simplicial
approximation mappings may be defined on the simplexes of a
polyhedron or may be defined on smaller simplexes formed by

a finite-order barycentric subdivision of the original sim-

-iv~—-
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plexes. The extent to which the simplicial mappings approx-
imate the continuous mappings depends on the order of the
barycentric subdivision involved. After the homology groups
of a complex are proved to be isomorphic under barycentric
subdivision the proof that the homology groups of two com-

plexes with homeomorphic polyhedra are isomorphic concludes

the worke.
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DEFINITION l: A set R® of elements, referred to as points

(or as vectors), is called a real linear space (or a real

vector space) if it satisfies the following conditions:

a) the set R™ is an additive abelian group,
b) R” is closed under operation on the left
by real ‘numbers in such a manner that if x and y are
elements of Rn and if A and/Ab are real numbers then:
1) Ax+y) = Ax + Ay
2) (A + M)x T NX + MX
3) Afux) = (AM)x

4) 1x = x

DEFINITION 2: A System X;, X5, ..., X, of elements of R"
is a linearly independent system if the relation ‘Alxl -+

Nz, & oo+ A% = 0 tmplies z = 22z ...=)K=o,
where the )}, 7?, ...,‘Ak are all real numbers. A system

is linearly dependent in case it is not linearly indepen-

dent.
DEFINITION 3: A linearly independent set X;, X5, ..., X

is maximal in case every set X, X veey X ¥y is linearly

2° k’
dependent.

LEMMA 1: In a real linear space R" every maximal linearly
independent set has the same cardinality.

DEFINITION 4: The cardinality of a maximal linearly inde-

pendent set of elements in R" is called the dimension of R-.

-1-
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DEFINITION 5: A real linear space R? whose dimension is n

is called an n-dimensional linear space over the field of

real numbers.

DEFINITION 6: A basis of R™ is a maximal system e, eg,

cres € of linearly independent elements of the n-dimen-
sional linear space R".

REMARK: By means of a basis of R® it is possible to intro-
duce co-ordinates. This is done in the following manner:

if x is an element of R® then there must exist a dependence
relation Ax -+ 7\le1+ Azez + eee + 7\nen = 0 because the

system e, e5, ..., €, is maximally linearly independent.

n

Since the basis e e, is linearly independent we

l’ ez’ ...’
. . - o1
must have ) ¥ O. Solving for x we obtain x = x e, +

i
?

xzez-k T xnen where the x i=1, 2, ..., n, are real

numbers and are referred to as the co-ordinates of the vec-

n* We often

write x in terms of its co-ordinates: x = (xl, xz, ooy

Xn)o

tor with respect to the basis €1, €5, ese, ©

DEFINITION 7: A system of points x4, X1, eeo, X Of an

n-dimensional linear space R? is called independent (not to

be confused with linearly independent) if the system of
vectors

(1) (x, - xo), (x5 - xo), seey (X = %)

is linearly independent.

LEMMA 2: 1ITf Xqs X9, e+« X, are independent then k % n.

IEMMA 3: The points x are independent if and

O’ xl’ LA xk
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only if the two relations (2) and (3):

0 1l k =
(2) NEy+ AZj+ oo+ ATX =0
(3) N4+ 3+ ...+ k=0
together imply that
(4) A = = ...=2 k=0

0 1l k

where AN, AN, ..., AN are real numbers.

Proof: a) Granted that x ees, X are indepen-

0o’ *1° K

dent we shall show that the two relations (2) and (3)

together imply (4). Now if Xgs X1, ese, X are independent

then the points

(l) (xl - xo)s (xg - XO), * 0 e, (xk - xo)

are linearly independent by definition of independence.

Also, by (3) we may write (2) in the form -(,21 -+ )2 + e
k 1 2 k — 1 -

-+ 7\2)x0+ ATEy F Axpt Lo+ AFx = 0 or ZT(x; - x()

k -
4+ A (x2 - xo)d- oo A (xk - xo) O. Since system (1)

is linearly independent the last relation: implies that

that XX =z o.

R 7\1{ = 0 and hence in view of (3) we see

b) Conversely, we shall show that if (2) and

(3) together imply (4) then the system Xy, Xy, eee, Xy is
independent. Let us assume that

1 - 2 - k - =
(35) (xy xo)-i— A (xz xo)-f— 2 (xk xo) 0.
If we set 7\0= -{ 7\1 + 7\2 4 eoe =+ ';\k) we may rewrite (5)
in the form:

0 1 -
(2) N+ Ax 4 o+ 2%x = 0
where the numbers 7P, )1, ceey ZF satisfy (3). But by
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assumption (2) and (3) together imply (4), so 7\0=' )\l-"-'
cse ="Ak = 0., That is, the system (1) is linearly inde-
pendent. By definition of independence, then, x,, X, eee,
X, is an independent system.

COROLLARY: The independence of a system of points

Xos Xy, eees X is not affected by the order in which the
points are enumerated.

LEMMA 4: The independence of a system of points implies the
independence of every one of its subsystems.

REMARK: Geometrically the independence of the points

Xq, X35, e+, X, means that the hyperplane of least dimension
which contains them is of dimension k. If the points

Xg» X35 -+ X are dependent, then the hyperplane of least
dimension which contains them has dimension less than k.

DEFINITION 8: The rank of an m x n matrix is the maximum

number of linearly independent rows (or columns) if the rows

(or columns) of the matrix are regarded as vectors in RrR®
(or R®).

LEMMA 5: 1Let x4, x k< n, be a system of points

1’ ..., xk’

of an n-dimensional linear space Rn, and let €13 G5y see,y O

be a basis of this space. Suppose the co-ordinates of the

points are determined by the k + 1 relations

- 1 2 n R
(6) Xi-— Xiel+xiez+ ...+Xien, 1-—0, l, L ko

Introduce formally the numbers xg by letting
(7) xp=21,1=0,1, ..., ke

Denote the matrix

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.
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1 n

xo X0 * s & Xo

0 1 n S -

xl xl o xl - xtj ’ i=20, 1, «ee, k
s o0 1 j=0, l’ oo-,n

0 1 n

xk xk L Xk

- -~

by the expression

N|. = N(X).

k

“ /

This matrix has k % 1 rows and n =+ 1 columns and k=+ 1 £
n+<+ l. The points of the system Xqs Xy, ee-, X, are inde-
pendent if and only if the matrix N(X) is of rank k+ 1.

Proof: We divide the proof into two parts and prove in
each case the contrapositive statement.

a) Assume the rank of N(X) is not k<4 1. We
note that the rank of the matrix N(X) cannot be greater than
k= 1l. Now if the rank of N(X) is less than k- 1 then by
definition of rank the k- i+ row vectors are not linearly
independent. Then there must exist a linear dependence
among the row vectors. That is, there must exist k-+ 1
numbers )\o, 7\1, cos, 7\k, not all equal to zero, for
which the following relation holds:

(8) A3+ a4 Nxl=o, j=0,1, .., n

In other words, we have the relation:
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” ~
k 0 1 n
[’\O’ Al ceo, A] xo Xg seo0 Xo =[0-, O, o ey 0] .
n
Xl Xl s Xl
0 1 n
Xk Xk e s xk

. . i . i
If we multiply relation (6) by ! we obtain A x, =
il iz in S ‘ .
A xiel-i- A xie2 + ceet A xien. umming over i we

obtain: 7\Oxo+ }lxl-l- ceot ﬂkxk:: % Aixi =
K .. : . .
S nxfle, s j;i;_'_( 7\01{3 + 7\1::33’_ -+ .ot hkxi)ej = o.

jsl 1i#0
For j = 0 we see bY‘ {8) that ong-f- hl"i + oee. = zkxﬁ =

Q. But by (7) we know that X?_‘ 1, i=0, 1, ..., k. Hence

)\0+ )\l T oeee T 7ik = 0, Thus we have the situation that

the two relations )\Oxo-i- )\lxl"l“ cest hkxk= 0 and 7\0 -+
7\1-)- coem 7\k = 0 do not together imply that 7\0‘-'-'- Al =
cee = 7\}‘ = 0. But by the contrapositive of the sufficliency
portion of Lemma 3 we know that if (2) and (3} together do

not imply (4) then the system xo, Xis eoey X is not inde-

pendent.

ceey X, are

1? k
not independent. There are always k =+ 1 numbers )‘0, AL,

b) Assume that the points Xy, X

cony ]\k which satisfy (2.) and (3). But if Xns Xy eee, Xy
is not an independent set then there exist 7\0, )\1, ceny
AF which satisfy (2) and (3) but which do not imply (4).
That is, )\O, )\l, oo, /\k are not all equal to zero. By

substitution into (2) the expression for x; given in (6) and
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cas . . 0_0
by rewriting (3) by virtue of (7) in the form A x5 -
)lxg +* ... P ﬂkxg = 0 we obtain

. 1 j K § _ o
(8) 7\018 <+ 7\xj]_ Foeet A xi]{-o, j=0,1, ..., n.
In other words, we have a nonzero vector O,‘~7%, ooy ‘h%
0 1 x| o 1 nl=
such that Ny A s seey, A X x ees X
0 0 0
0 1l n
Xy xl eee X7
0 1 n
Xy Ep oees x%

[0, 0, ...,(ﬂ « Thus the row véﬁtors of N(X) are not
linearly independent. By definition of rank we know that
k + 1 cannot be the rank of N(X).

LEMMA 6: Given an n-dimensional linear space RY and an
integer kK £ n, the set of points

= w— —
(2) U, 0, u, = ey, u, B gy see, U T o,

where e,, €, ..., € constitute a basis of R%, is an inde-
1 2 n
pendent system of points.

Proof: The point uo‘='0 is the zero of the additive

abelian group r® or, equivalently, the origin of co-ordi-

nates of the linear space Rn. The vectors (ul - u0)1= el,

(u2 - uo) =85, ene, (uk - uo) = e, are obviously linearly
1+ ©g5 ++-y & are a subset of the basis

€15 G5, eses €y eee, e - Hence by definition of an inde-

independent since e

pendent system of points we have the result that uo, ul,
esey, U are independent.

k
DEFINITION 9: A linear space R® is a linear Euclidean space

if there exists a function called inner product defined on
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every pair of elements of R® which associates with every two
vectors x, y £ R® a real number x+y, called their inner
product and which satisfies the following three relations
for real numbers 7‘,/44':

a) linearity: (Ax t#y).z= ANl(xez) +
M(ye2) |

b) symmetry: X+y = yeX

¢) nonnegativity: zx°x2 0
and where in the last relation equality occurs if and only
if x= 0.
DEFINITION 1l0: Two vectors x and y are said to be Orthogo-

ngl if x.y & 0. In particular, the zero vector is orthogo-
nal to every vector.
LEMMA 7: It is possible to introduce an inner product into

every real linear space RZ.

Proof: 1IT ©1s G5y see, © is a basis of R®, define the
—— 2 n
inner product for the basis vectors by putting ey°©; = 513,
where gii: 1 and where Si' = 0 for iF j. If x = xlel‘f'

xzez'h..-l-xnen and y = ylel+ y ez “+ oot ynen are any two
vectors of R®, then we define x+y= iyt + x°y% 4 ... +
xBy2. We now prove that the inner product as defined above
satisfies the three relations of linearity, symmetry, and
nonnegativity.

a) Linearity: (A x -l-/v» y)ez = E?\ xlel+
/M,ylel) -+ ( 7\x2e2+/w yzez) + eee =+ %xnen'w ynen)]-
[zle:L -+ z?'ez + eee zne;]—, [( 7\xl +/14. yl)el -+ (ﬂxz -+

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.
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pPle, + vt (Axtin ye T-[i2he + (2Pl L.t
(z8)e_T= (Axt twnyh)zl+e (Axfia y%)2%+ 4 (AP
wyR)z® 2 (A xtzltanytat) £ (Ax222 e 3P0 4+ L+
( AxBzR "’/Wynzn)z ( Axtzl + )\xzzz-i' ceet ) x2z%) +
(/Wylzl-l-/v‘c vzl 4+ ... t M y2z%) = A (x+z) tA(yez).

b) Symmetry: xX*y= xlyl+ x‘?'yz-l- cee+ xPyR=
ylx1+ y2x2 + ...—b‘ynxn: VeXe. |

¢) Nonnegativity: =Xx.x = xt +xBx® .,
x0xI = (xl)z-l- (x2)2 + eee o+ (xn)zz O. In this relation
the equality occurs only if x= (0, 0, «.., O) = O,
DEFINITION 1ll: An orthonormal basis in the linear Euclidean

space R® is a basis consisting of elements €1, €5 ees, €,

such that e -(-:e:j - Sij‘

i
LEMMA 8: It is always possible to introduce an orthonormal

basis into the linear Euclidean space rR™.

Proof: Let Xy, Xy seey X be an arbitrary basis of
R®. Since X5 Ko, eee, X is a basis, then x14= O and hence

» = [ ] “%

Xy xl--%: 0. We may therefore put e; = (x;+X;) ®x; and obtain
the result that eloel= l. Now assume that the system e,
€5, sesy € where ei-ej - gij’ k € n, has been already
constructed with all of its elements expressed linearly in

terms of the vectors x etey X o Because of this, then

1 *2» K
the vector y = - le, <+ 52e,+ Ke i

y xk‘!‘l ( h 1 7\ 2 cce mpr ) k) differs
from zero regardless of the choices for the 7\1, i=1, 2,
..., k. Let us choose the A, i=1, 2, ..., k, such that

y*¢y =0 for i= 1, 2, ..., k. For this it is sufficient to
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set 7\1": X1y Now since y-',é 0 we may put 141 =
(y*y) 2y with the result that ei-ej=: é;ij’ i, J= 1, 2, eee,
k-+ 1. In this manner the system €1y €5y oo+, € DMAY be
constructed in a finite number of steps since n is finite.
Thus the set ©1s 5y see, € is an orthonormal set. To see
that it is a linearly independent set and, indeed, a basis
we merely consider the relation 7\le1+ 7\2924' .. T
7\nen_—: 0. Taking the inner product with e, yields the
relation (7\1)(0) + {ARIO)+ .ot () i)(l)-f' cee
( AR2)(0) = 0. Thus 7é“§ 0, i 1, 2, ..., n. Therefore
the elements e,, 65, ..., e, are linearly independent. But
since there are n of them, the set is maximally linearly
independent in R®. That is, it is a basis.

DEFINITION 1l2: A metric on a space is a function of two

variables associating with every pair of elements x and y of
the space a nonnegative number fD(x,y), called the distance
between x and y which satisfies the following three condi-
tions:

a) @ (z,y)= E(y,x)

b) ‘D(x,y):. O if and only if x<= ¥y

¢) exy) + fy,z) 2 Plx,2).
A nonvacuous set in which a metric has been defined is

called a metric space and its elements are called points.

If a metric be introduced into a linear Euclidean space a

linear Euclidean metric space is obtained. We define the

distance between two sets A and B to be:
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eLA,B):- g.l.b. e(x,y).
x€ A
Y€ B
LEMMA 9: It is always possible to introduce a meiric into a

linear Buclidean space rR".
Proof: Let f(x,y) = +ﬁx - y)e(x - yﬂ%-

a) To prove that (D(y,x) = e(x,y) we notice
that by the axioms defining inner product we have f’(x,y)':
+[(x - y)e(x - y)-]%‘—'- 'i'[(y - x)+(y - X)]%: f (y,x).

b) To prove that P(x,y)= O if and only if
X= ¥y, we note first that if ,f'(x’Y)"" 0 then +£-(x -y)
(x - y)]% = 0. Hence (x - y)*(x - y) & 0. Thus by relation
¢) of the definition of inner product x - y= O and x = y.
Conversely, if x= y then x - y = 0 and (x - y)+*(x - y)= 0,
s0 e(x,y) =0,

¢) To prove that F(x,y) -+ ‘O(y,z) > (x,z),
we rewrite the above relation as follows: (x - y)-
(x - Y)]%’f‘ [(y - z)(y - Z)]%.E[(x - z)(x - Zﬂ%- By
substitution of x - y= u and y - 2= v we obtain (u-u)% -+
(v-v)% 2 [-(u + v)e(u + vﬂ %. Since both sides of this ine-
quality are nonnegative we may square them and obtain u.u -
VeV = ZBuou)(v.vﬂ% 2 u.u -+ 2(uev) + vev, which is equiva-
lent to [(u-u)(v-v)]%_é_ u*v. Now since both sides of this
relation are nonnegative we may square them and obtain
(uneu)(vev) 2 (qu)z. This relation is the Schwartz inequal-
ity and may be proved in general in the following manner:

Consider the identity (u-u) 7;2 -+ 2(u°v)) + (vev) =
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(Au + v)e(Au + v)., Since the right-hand side is an inner

product and is therefore nonnegative, both sides are nonneg-
ative. Thus the discriminant of the polynomial in A on the
left must be nonnegative. That is, [é(u-vi]z -

4(usu){vev) £ 0. Hence (uev)(u.v) £ (u-u)(vev).

LEMMA 10: If the rank of a matrix is k <=1 then the matrix

has a nonvanishing determinant of k= 1 columns.

THEOREM 1: If X4, X3, ., X, k£ n, is a system of points
of an n-dimensional linear space R®, then an arbitrary

neighborhood of each point x, contains a point Yy such that

i

the system Yos Y30 s Yy is independent.
Proof: Let U5, Upy eoey W be a system of points known

to be independent. This is possible by Lemma 6. Let t,
where 0 € t £ 1, be a real parameter. Consider the points

determined by

(9) Zi(t) = tui -+ (l - t)xi, i= O, l, © s 0 g k.
Thus we have: .
¢ Ny _ N ( Ny ' .\
zo(t) = tuo (1 - t)xo =t uo + (1 - t) Xy
t t -

Zl( ) u1 (1 t)xl ul xl
fk(t)‘ fuk (1 - t)xk ukJ. ka.
Therefore: . t S
(100 mze))= U+ (1 - 6N,

Now since by hypothesis the points uo, ul, soey uk are inde-
pendent, it follows from Lemma 5 that the rank of the matrix

N(U) is equal to k+ 1. Hence by Lemma 10 the matrix N(U)
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contains a nonvanishing determinant of k + 1 columns. Let
D(t) be the corresponding determinant of N[Z(t)_] , the nota-
tion emphasizing its dependence on the parameter t. Now by
(10) we see that N[Z(l)]-‘-‘- N(U). Thus D(l)#’ O. Therefore
D(t) does not vanish identically in t. Since D{(t) is a pol-
ynomial in t, there is an arbitrarily small positive number
for which D(.s;)=‘= 0. This means that the matrix N Z(s) is of
rank k 4+ 1, and hence we have the result that the system of
points y5 = zo(s), ¥y, = zl(s), cesy yk= zk(s) form an inde-
pendent system. By (9) the point Y4 is arbitrarily close to
X, for all i= 0, 1, ««., k since s is arbitrarily small.

i

DEFINITION 13: A system of points x x

0r Xq2 e Xm of an
n-dimensional linear space RY is said to be in general
position in case each of its subsystems of k + 1 points:
IO’ Il’ cess ;k’ k €n, is independent.

LEMMA 1l: If m & n, generality of position of the system
xo, xl, ooy xm in the linear space Rn is equivalent to
independence.

LEMMA 12: If m2 n and if every subsystem of exactly n=+ 1
points (k& n) of the system Xy Xis eens xm in the linear
space R® is independent, then the system xo, xl, crey xm is
in general position, and conversely.

THEOREM 2: IT fxo, x eeey X §= S is a system of points
—_— m

19
in general position in the Linear Euclidean metric space Rn
then there exists a positive number & such that (’(xi,yi) <

€,1=0,1, ¢.., m implies that the system of points
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§§O’ Yl, seoe, ymg is also in general position.

proof: Let Ei =x,, 120, 1, ..., k, where k % n,
1

be an arbitrary subsystem S' of the system S. Now since the
system S is in general position then the subsystem S' is an
independent system by Lemma 12 and Lemma 4. Hence the

¢ N

matrix N §0 is of rank k "+ 1 by Lemma 5. Therefore one of

the determinénts, say D, composed of k< 1 columns of this
matrix is different from zero. Now since D is a polynomial
in the co-ordinates of the points of the system S' it is a
continuous function of these co-ordinates. Therefore there
exists a positive number g' such that for every system of

: - - £
points ?i = ypi, i 0, 1, «.., k with (’(Ei,'?i) s é,

the determinant formed for the points e is
o ?o’ 71: < 71:
also different from zero. Hence the matrix N 7% is of

71

7
~ -

rank k + 1, which means that the system 75, 71, ceey 7

k
1s independent. Thus a suitable g' may be assigned to

every subsystem S*' of the system S and the required € of the
theorem may be obtained by choosing the smallest of the

numbers g*'.
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THEOREM 3: If {xo, Xy eees xm'& =35 is any system of points
of the linear Euclidean metric space R© and if € is a posi-
tive number, then there exists a system of points ?yo, yl,
casy yﬁi in general position such that P(xi,yi)<.é , 1=
0, 1, ec., M.
Proof: Let the collection of all subsystems }g, 2i,

“ceny Sk’ k £n , of the system S be denoted by S., S

12 Sgs eees
Sr' Now the system Sl contains at most n<4 1 points and it
can therefore be transformed into an independent system of
not more than nef 1 points by means of an arbitrarily small
displacement by virtue of Theorem 1l. Now assume that by
means of arbitrarily small displacements of the whole system
S, we have already obtained a position for which Qll of the
subsystems S_, S

1 2’

Theorem 1 the system Ss+l can also be transformed into an

independent system by an arbitrarily small displacement, and

sevy 8, 8 < r, are independent. By

this displacement may be therefore chosen so small that the

individual independences of the systems Sl, S esey S

o3
achieved previously will not be disturbed. This is po:sible
by Theorem 2. Since the induction on s is valid and we have
the particular knowledge that s ¥ 1 is a valid special case
then validity is established for s =1, 2, ..., and the
theorem is proved. Thus any finite system of points of R™
can be bréught into general position by an arbitrarily small

displacement.

DEFINITION 1l4: Let a and b be two distinct points of the
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Euclidean space Rn. The set of all points of R® of the form
X = )a +/Mb where A and A are real numbers satisfying
the conditions

a) 7\+/M-

b) A 20

c) M2 0

will be called the segment [a,b]: Eb,a] with end points a

|
[

and b.
LEMMA 13: If x= Aa + MDb then x & a-i-/u(b ~ a), or
substituting u=b - a, we obtain x = a—i-/u—u.
LEMMA 14: 1If the segments [a,b] and [g,c have a common
point different from a then one of the segments is contained
in the other. 1In particular, if the segments [a,b] and
E,c] coincide then b = ¢, and conversely.

Proof: Let x = a+ Mu, oé/u.s. l. Let y = a-+ tv,
0£ t£ 1. Consider u>b - a and y= ¢ - a to be any two
points of the segments. Now if x_ = yo# a is a point com-

0
mon to the two segments then xo-"-' a +/M'Ou =yy = at tov

0

/“'o = to then u= v and b = ¢ and the two segments coincide.

If /V-o-‘F to we may assume without loss of generality that

for some /M-O=l'-' 0 and some to:f-' 0. Hence/“ou = t.v. Now if

/uo 'S to. We obtain the relation v = (/Ab/to)u and any

point y of the segment [a,e:] is of the form a-+ t(/f‘a/tc)u.
Since /Ma/to < 1 we have y belonging to the segment La,b:l
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for 0£ t &€ 1 and the second segment is a proper subset of
the first.

DEFINITION 15: A set M of points of the linear Buclidean

metric space R® is called convex in case a, b& M iiplies

[é,%](: M.
DEFINITION 16: The point a is called an interior point of

the set § if there exists a positive number € such that
E(a,x) <€ implies x £ Q.
DEFINITION 17: A set Q is an open set if every point of Q

is an interior point.

DEFINITION 18: The set of points y such that f’(x,y)<: 8
is called the spherical ¢ -neighborhood of the point x.

DEFINITION 19: If Q is any set then the complement of Q is

the set of points x such that x does not belong to Q.
DEFINITION 20: If Q is the complement of an open set then Q

is a closed set.

DEFINITION 21: Let Q be a subset of a Euclidean space, If

X, Y& Q implies that (o(x,y) < N for some real N then @ is

a bounded set.

DEFINITION 22: A covering of a set Q is a collection of

sets Pl’ Pz,

such that @ C Pl U P, Jeeo o

essy, Which all have points in common with Q and

DEFINITION 23: A set S is a compact set if from every cov-

ering of S consisting of open sets a finite collection of
sets can be selected which is also a covering of S.

LEMMA 15: If Q is & closed and bounded subset of a Euclide-
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an space then Q is a compact set, and conversely.
LEMMA 16: A closed subset of a compact space is compact.

DEFINITION 24: A convex set W which is compact and which

contains interior points 1s a convex body.

LEMMA 17: The set U of all interior points of a convex body
W forms an open set in R® and hence V=W - U is compact.

DEFINITION 25: The set V is the frontier of the convex body

w.
LEMMA 18: Let W be a convex body with interior U. If
at U, b €W, then every point ¢ of the segment [é,ﬁ] dis-
tinet from b is contained in U.
Proof: Let ¢ = Aa +44b, with the conditions that
A+t =1, A> 0, M 2> 0. We wish to show that a neigh-
borhood of ¢ is contained in W. Now there exists a number
& > 0 such that if F(O,x) = E(a, ad+ x)<8§ then a+ x &
W. This is because a is an interior point of W. Now, with
the above conditions on ) and/u_ we have A(a+ x)+ A b £
W, since a + x eand b are elements of the convex body W. But
Na+x)+ hb= Aat b+ Ax =c+ Ax. Now suppose
that (0,5)< A8 . Then o+ y =c+ A(y/A) and
| P(o,y/z ) <& . Thus o 4y € W.
LEMMA 19: Let W be a convex body with interior U and fron-
tier Vo If af U and b and ¢ are two distinct points of V
then the segments [p,ﬁ] and [ﬁ,c have only one point in
common: &.

Proof: Let a € U and b and ¢ be two distinct points of
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V. Now if we assume that [a,b] and [a,c do have a common
point different from a, then by Lemma 14 either they coin-
cide and b = ¢ (which 1is not possible by the hypothesis) or
one of them forms a proper subset of the other. If we as-
sume that [_-a,c]C [a,b], then ¢ & a,b] with ¢3 b. Hence
by Lemma 18 ¢ £ U, ¢ ¢ V. But ¢ £ V by hypothesis., So we
have a contradiction based on the assumption that [a,‘rz__, and
[a,c] have a common point different from a.

LEMMA 20: Let W be a convex body with interior U and fron-
tier V. If a & U and ¢ is any point of W, then there is a
point b & V such that the segment [a,tg contains c¢.

Proof: a) Let a U and let ¢ be any point of W dis-
tinet from a. We shall determine the segment [a,b_], b€V,
which contains ¢. We set ¢ - a = v, and consider the set of
all points y of Rn of the form y = a4+ tv, t2 0. If t is
sufficiently small, y is evidently in U, since a is an inte-
rior point of We On the other hand, if t is sufficiently
large, y cannot be in W since W 1s compact and hence bound-
ed. Hence the compactness of W implies that there is a
largest positive value t = to for which y &€ W. That is,

tor—" l. u. b. ts It i1s clear that a <4+ t v= b is a fron-
(attv)e W O

tier point of W, for otherwise to would not be maximal.
That is, if a <+ ‘bov = b is not a frontier point of W then
there exists an € > 0 such that the €-neighborhood of

a + tyv contains only points of W. In particular, W will
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contain a point a 4+ tov +€v=a+(t;+ € )v E W. Thus

t = to would not be the largest positive value for which

y= a+ tvE& W. Thus b is a frontier point of W. Now since
¢c= a4+ vE Wit follows that toz 1 for otherwise ¢ = a -
1(v) is a point of [a,c]C W and t. is not maximal. If we

0
set t.v = u then the set of all points of [a,b] can be

0

written in the form x = a 4+ su where 0 £ s £ 1. The point ¢
is of the form a - (l/to)u, 0< 1/%, £ 1, and therefore be-
longs to the segment [a,p]. '

b) If ¢ = a the point ¢ lies on any arbitrary
segment [a,ﬁ], bE V.
REMARK: Since a convex body contains at least one interior
point it contalns an infinite number of interior points.
All of these are on segments of the form [A,é], where b & V.
Therefore V is nonvacuous.

DEFINITION 26: Let a cees @ be a system of independ-

0’ al’
ent points- of the n-dimensional linear Euclidean space Rn,

r£ n. The set of all the points x of the space R® of the

form

(11) x = 7\an <+ ]\lal + e+ }\rar

where 7\0, )\l, +sey, AT are real numbers which satisfy the
conditions

(12) 2°+ Al + ...+ AT=1

(13) At 20, 1=0,1, ..., 2,

is called an r-dimensional simplex or an r-~simplex. We

write AT = (ao, By o0, ar). The ordered set 7}0, 7\1,
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eee,y 7\1' is a set of barycentric co-ordinates of x. The

points a cee, ar of the simplex are called vertices.

o’ al’
LEMMA 21: 1If AT = (ao, 8,
sisting of the points of the form
- C 1 T
(11) x‘7\a0+/\al‘+‘ ceet ATa_,
T

r
then for any x € Ar the numbers 7\0, 21, eesy AN\ are

cee, ar) is a simplex in R® con-

uniquely determined.
Proof: If
(14) x:/b"oa "‘—/u-la + --.+/a‘ra
0 1 :
where

(15) MO+ mly .4 uT=1

then subtraction of (11) from (l4) yields (/J—O - 7\0)ao -+

T

(/u.l - 7\1)al+ see (/“_.1‘. —ﬂ,r)ar= 0. But equations (12)
end (15) imply that (u® - A%+ (w1 - AL + ..+

(/M—r - )\r)= O, and since the points 845 By eee, 8, are

independent then (/u.i - 7\1) =0,31=0,1, .., *« That
. i A
18’/“- = zi, 1 ""O, l, ese, Lo

DEFINITION 27: If u, and u, are two distinct points of R

then x = %(uo -I—ul) is the point equidistant from u, and uy

and is called the midpoint of the segment [:uo,ul] .
LEMMA 21l: Every point x of the simplex Ar, which is not a
vertex, is the midpoint of some segment whose end points
belong to Ar.

Proof: Let x = Aoao-f- 7ilal+ .ot Zrar be any

point of AT but not a vertex of AT. Then at least two of
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its barycentric co-ordinates are greater than zero, because
if only one of the barycentric co-ordinates is greater than
zero then it must be equal to 1, in which case x would be a
vertex. Also, if none of the barycentric co-ordinates is

greater than zero we again have a contradiction because the
sum of the barycentric co-ordinates would be zero and not 1.
Let 7\1 >0 and I > 0. Choose € such that 0 < €< Al

and 0 < € < )J, Let u, L=
é(ai - aj). Thus u_ = 7\0a0+ )slal-f-,..-f' (ﬂi-i-é Jag +

=x+6(a1-aj)and1etu x -
J 0
ceo ()9 - é)aj-l" R 7\rar. The sum of the barycen-

tric co~-ordinates of uo is 1 and yet, since 25>€ s We

know that each barycentric co-ordinate is positive. A simi-

lar situation obtains for ul. Thus uO and ul

AT. Also we have x = %(uo-l— ul).

both belong to

LEMMA 22: A vertex of AT is not the midpoint of any segment
whose end points are in At.
Proof: The proof will be by proof of the contraposi-

tive statement. Suppose some vertex of Ar, say a is the

k’
midpoint of a segment whose end points are in A:,r. Then a8 =

%(uo 4+ u;), where uy and u, are two distinet points of AT

1
= 30 1 T = 50

and u, )loa0+ J\Oal-i» cos + Moe, and u, ﬂlao—f‘

7\%&1..* cee ziar. Then there are two integers i, j, i ¥
J, such that 7\%) 0 and 7\{ > 0. Now by assumption, 8, =

= 3( 79 0 1 1 T

%(110 +u )= (A + 7*1)&0-}' 325 + 7&1)&]:'4' ee o+ E( Ayt
7\{)&1‘, where ( 7\% + ) ';L_) > 0 and 3( 7!8‘)‘)5]_) > 0. But then
although a = O(ao) -+ O(al) + eee =+ l(ak)-!' ces O(ar), we
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also have a = ..o + %(Z%+7ﬁ}_)al+ oot %»:(7\8-# %_{)aj-f'
+veoe » But by-Lemmsa'21 the barycentriIc¢ co-ordinates: sare
uniquely determined. Hence we have a contradiction and the
present lemma is proved.
LEMMA 23: The vertices a5 al, e+, @ are uniquely deter-
mined by the set AT,

Proof: By the preceding two lemmas the vertices are
precisely those points which are not midpoints of segments
in AT.

REMARK: By the definition of simplex, a O-simplex (ao)

consists of the single point aj. A l-simplex (ao, al) is
the segment joining the points ao and al. A 2-simplex

(ao, az) is merely the triangle (including the interior)

a5
whose vertices are ao, a), a,s A 3-simplex (ao,
is the tetrahedron (including interior) whose vertices are

al, az, a3)

a a_ e«

0’ al’ az’ 3
LEMMA 24: AT is a closed set.
T - n
Proof: Suppose A~ = (ao, 815 oo, ar)CZIR » Let Cxl,
CX;, cons Og.be an orthonormal basis in the space spanned
by (8, - aj), (a8, - aj), +oo, (8 =-a). Let O, X, ...,
. n
O(r, 61-4-1’ Er+2, cees En be an orthonormal basis for R .
a) Let x be some point not in the space
spanned by 0\/1, 0<2, coe, O(r' Then x = ;\10‘1-{- 7\20(2 +
ees 7\1'0(1‘_}_/‘&1'-!-1 Ep t ceet MR €_, where some of the
Miq‘:- O. Consider a positive number cS-> 0 such that O <

Lp},. Let NS (x) be a <§-neighborhood of x defined as:
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all y such that f’(x,y)< § . Now we assert that Ng (x)m
AT = ¢. This is true, for if we assume y & AT, so that y =

1
vlo(l-i- vzo(z“i‘...‘f' vro(r-i- ,?r-r €r+l+"'+ ’)Pn €n

. . T . .
where each ?1 = 0, then F(x,y)= [iz;i (v: - 7\1)2+

.;5:‘ (9 —/ui)ﬂ iy N e (/«)]
=T+l i=1 i 4l
i >S e« Thus y is not an element of NS (x). Thérefore
for any point x which is not in the space spanned by the
vertices of AT there is an open set containing x which con-
tains no points of Ar.
b) Let X be a point in the space spanned by

(a -,ao), (az - ao), oo, (ar - ao) but such that x is not

1
contained in AT. Obviously x is in the space spanned by
O(l’ Q(Z’ sooy O<r. Now X may be expressed uniquely in the
form x = 7\0304— 7\131+ o + ]rar provided that 7\0 +

7\1 + cos 7\1' = 1. Then since x is not an element of AT
we must have at least one of the coefficients )10, 7\1, es e,
2' less than zero. Let 7\i be less than zero. Since each

element 845 al, eeey, & _ 1is a vector in R® we may express any

T

one of them 1n the forma Sf__/{,\io(, J= 0, 1, ee., rea
i=1

Then we have the relation x = 7\ i:/a.i A, + /\l ié__]_-.—/h%og_

+ oo + ) i:/wr i"’ t gio(i. This may be written:
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Wl + M+ s 4 MTm;
1 2
ot AmEt i+ 2T

s\l

‘.
(V. v
fAV]

fn

AT+ AT o+ AT U = 4T
We also have the relation /\0.4. 2 14 iout ,jr.:. 1. The
above r«+ 1 relations in r 4+ 1 unknowns (i.e., the unknowns
2L, ..., AT) are soluble in terms of g‘l, ;2’ ceny
}r_ Thus each 7\1, i= 0,1, «s., *, is a linear and

therefore a continuous function of the set )’l, g'z, cee,
31'. Now if y"‘Zi._ '?hO( and if (’(x,y)"‘ Zr: (
h=1l

bY
Ehﬂ?’ < 5, then we also have 42 - §h< & for each h.

If y is expressed in terms of a 815 ses, a, in the form

O’

T
- h - & O 1 +
VT e a. with the restriction that + R

/V‘r = 1, then it is possible to choose S such that if
‘E(x,y) < & then l/u.i - 7\il< I ;\i/, that is, so that

‘Mi < 0. Thus if y is sufficiently close to0 x we have y not
in A¥. Hence for every point x in the complement‘ of AT in

the space spanned by a ar we may find an open set

o) 815 tees
which does not intersect AT.

By the arguments a) and b) above, the comple-
ment of AT is open. Hence AT is closed.

DEFINITION 28: The interior G® of the simplex AT is the set
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of points whose barycentric co-ordinates are positive,
LEMMA 25: The interior G¥ of the simplex AT is an open set
in A",

m
s ese, ar)CR , m > r.

1
ceeyr € be an orthonormal basis for

Proof: Suppose AT = (ao, a

Let € > 0. Let e s €y
Rm. Consider a point x belonging to ct. Suppose that x =

T m i :
2 la,= > ¥e.,. Now by Lemma 24 each A’ is a con-
i=0 1 j=1 J

tinuous function of the set .El, fg, ooy zm. Because

there exists a positive number ’7> 0 such that if /‘,Ui -

Ei

<7Z for i=1, 2, e.., m and if zzt‘[-’le -
i=1 i
T . .
o ‘Vlai then "Vi - 7\1l <€ . DBecause there exists 5>
i=0

0 such that if e(x,y)< 5 and if y=% ?iei, then
|pt - ¥

T .
e(x,y) <S} . Suppose y £ NmAr. Then if y = Z'_;__ lai
1<

<'? for i= 1, 2, ..., m. Let N= 3y such that

we have/ui) O, for 1= 0, 1, eee., T« ‘Thus if F(x,y)(&

we have the relation that y is an element of G¥e Thus GT is
an open set in AT,

DEFINITION 29: 1If G¥ is the interior of an r-simplex G* is
an r-dimensional open simplex (or an open r-simplex).

DEFINITION 30: Let AT - ¢T= P'~1, Then r¥1

is called the

frontier of Ar.
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LEVMMA 26: of = AT,
Proof: a) ¢TC A" and therefore -(;?C F= AT,

b) Let x £ A¥. If x £ 6T then certeinly x &
T since ¢TC 6F. Now suppose that x & AY - GT¥. We wish to
show that within any neighborhood of x there is a point of
G* and that consequently x& G, Let x :‘Z;LO__- 7\iai, with

i |

some nonempty subset of the set of coefficients bearing the

i i i
relation: 7\ 1= 7\ 2=z,..= 7\ K= 0. Now by a suitable

renaming of the a_,'s we may obtain the following relation:

i

T . .
I=Z- ]\Jaj, where }\J?-"-O, for j= 0, 1, «.e, kK -~ 1, and
j=0
. T
where )\3 >0, for =k, k +1, ¢s., T, and = _ 7\j= 1.
=k
Suppose &€ » 0., Now let y= X < (é/k)(ao-_-t- al"f- ces
- é - J[ "o . i
ak-—l) [ /(r +1 k) ak—-}- ak+l+ +—a1] In this
expression for y the sum of the coefficients is 1. If
[é/(r +1 - k_)j is less than the minimum of Zk, ),k"l,
cess 7\1‘ then all of the coefficients of y are positive.
by L i, = i
Therefore y £ G's But y = 3 mra, & 2 ‘e, where e,
120 i 45 ¢ 1
€15 seey € is an orthonormal basis for the space RT. TFor a
given & each '21 depends continuously on the set/“-o,/ﬂ.—l,
--a,/bbro Now since P(x,y) depends continuously on the ’Zl
then (J(X,Y) depends continuously on the set/ﬁo,/&t—l, ceey

/A_r. If € is a small enough number then P(x,y) is arbi-
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trarily small. Thus we may always find a point of ¢Tf arbi-

trarily near to x. Therefore x & Ei" and finally, AT C EF.
¢) Since ATC E}-f and‘c;f C AT, then AT= E?.

LEMMA 27: AT is a compact set.

Proof: af is a closed, bounded subset of EBuclidean

n-space for r £ n.

Fr-—l

LEMMA 28: is closed in AT.

1 is the open set at.

Proof: The complement of F'
LEMMA 29: If T and HY are two open simplexes which coin-
cide then the corresponding closed simplexes AT and BT coin-
cide. That is to say that an open simplex determines 1ts
vertices uniquely.

DEFINITION 31l: A topological space X is a collection of

points such that certain sets of these points are distin-
guished and called open sets with the requirements that:

a) the union of a collection of open sets is
an open set,

b) the intersection of a finite collection of
open sets is an open set,

¢) the empty subset @ and X are open sets.

DEFINITION 32: A (single-valued) function f defined on a

set A to a set B 1s a correspondence which assigns to every
point x of A a (unique) point f(x) of B. If T is a subset
of A then f(T) in B is the set of all f(a) for a in T. If S
is a subset of B, then f-l(s) is the set of all a in A such
that f(a) is in S. We call f"l(s) the inverse image of S.
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We sometimes call a function a mapping.
DEFINITION 33: A mapping f of a topological space X into a

topological space Y is a continuous function (or: continu-

ous mapping) 1f the inverse image of each open set in Y is

an open set in X.

DEFINITION 34: A topological space is a Hausdorff space

(T2-3pace, separated space) if whenever x and y are distinct
points of the space there exist disjoint open sets Ux’ Uy
containing x and y respectively.

DEFINITION 35: A homeomorphism is a continuous one-to-one

mapping £ of a topological space X onto a topological space

Y such that £-1

ls also a continuous mapping.

LEMMA 30: If f is a continuous function which maps the com-
pact topological space X onto the topological space Y then Y
is compact. Furthermore, if Y is é Hausdorff space and if f
is one-to-one then f is a homeomorphism.

Proof: Suppose szis an open covering of Y. Since f
is a continuous mapping then the family of all sets of the
form f_l(A), where A 1s an element ofal, is a collection@
of open sets in X. GB covers X, since otherwise there would
be points x of X which map into points f(x) of Y but such
that f(x) is not in some set ofaz. Thus 6 is an open cov-
ering of X. Since X is a compact set we may select a finite
open covering of X from among the sets of@ « Call this
finite open covering of X: (33'. Consider the family of

images of the type f(B), where B is a set in the collection
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GS'. This collection of images forms a subfamilycxi' of the
family‘UZ. The finite collection O(' covers Y because
otherwise there would be a point y of Y whose inverse f_l(y)
is in some set of the collection QS' but such that y =
fB‘"l(yﬂ is not in some set of the collection Ol'. Hence
Y is compact. Now suppose that Y is a Hausdorff space and f
is a one-to-one mapping. If A is a closed subset of X then
A is compact by Lemma 16. By the first part of the present
lemma f(A) is a compact subset of Y. By Lemma 15 f(A) is
closed. Then (f—l)-l(AJ = f(A) is closed for each closed
set A. Since for any open set BLC X, the set A = (comple-
ment of B) is closed, then (f-l)"l(A) is closed and the
complement of (f'l)'l(A) is equal to (f"l)'l(B) and is open
since the image is one-to-one. Therefore £~1 1s continuous.
By Definition 35 f 1s a homeomorphism.
LEMMA 31: ZHEvery two r-simplexes are homeomorphic.

+1

Proof: Let RT be the (r -+ l)-dimensional linear

Euclidean vector space. Let e
T+l

0? el, ceey O be an orthonor-

mal system of vectors in R . Let ET = (eg, €1 eoos er)
C R™ ! be the r-simplex with the points €gs €15 ++e ©, @S
vertices. Now every point z of ET is of the form z =
7\°eo+ 7\lel+ cee + 7\rer such that 7\01—7\1 +... F
A= 1, and such that 7\12_ 0, i 0,1, «.., r. Since
eo, €1y eee, er is an orthonormal system, the Euclidean co-

ordinates of the point z relative to this system are the

same as 1ts barycentric co-ordinates in Er. Thus we may
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write z = ( 7\0, 7\1, voo, 7\r)= /\ and y--—(/ﬁ_o,/ﬂ.l, coe
/A.?) ZA . The distance between the two points / and/a of
15 P20 = [(A - 4024 (2t - uh)Pr L
(7\r -,A&r)éj%. This resulting metric defined for the
points of the r-simplex ET is a function of the intrinsic
barycentric co-ordinates of the simplex. For any point x
belonging to an r-simplex AT there is exactly one point.ﬂ
of E'. That is to say, the mapping from AT to ET defined by
the co-ordinates is continuous and one-~-to-one. By Lemma 30
we have then that the correspondence between AT and ET is a
homeomorphism. Hence every two r-simplexes are homeomorphic
and this homeomorphism may be achieved by the mapping which
associates points having identical barycentric co-ordinates
in the two simplexes.

DEFINITION 36: The metric of Lemma 31 induced by the bary-

centric co-ordinates of the set Er is c¢alled its natural

metric.

REMARK: Let AT (ao, a

and let KX = o
k ik

of the vertices of AT. Since the vertices Bys 81y evey 8

10 et ar) be an r-simplex in Rn,
, k=0, 1, ¢e., 8s; O & s £ 1, be a subset

are independent, the vertices G‘O, o v ey t?g are also

l,
independent and hence C° = ( 06, O(l, ¢ooy O(s) 1s a simplex
in RY.

DEFINITION 37: The simplex ¢® defined in the preceding

remark is an s~dimensional face (s-face) of the simplex A?.

LEMMA 32: c°& AT,
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Proof: Let A= (ao, 81y oo ar) be an r-simplex in
R%, and letdk=ai , k=0, 1, ¢«v., 5; 0€ 8€ 1, be a
k

subset of the vertices. Let C°= (C(b, o s emey CX;) be a

face of AT. Let those of the numbers 0, 1, ..., r which are

different from any of the set io, il’ oo, is be denoted by
jl, jz, cos, jr~s'. Then an arbitrary point x £ ¢° is ob-
tained by putting

(16) Jk::o, K =1, 2, eeua, T = 8

in the relation x = 7\0a0 + )\lal + ...+ 7\rar which is
part of the definition of an element of a simplex. Hence
c¢C AT,

LEMMA 33: C° is determined in AT by the system (16).

LEMMA 34: Every system such as (16) determines some face of

Aro
REMARK: Every vertex of a simplex AT is a O-face of AY. 4~
is its own r-face.

DEFINITION 38: A face of dimension less than r of an r-sim-

plex AT is a proper face.

DEFINITION 39: Two simplexes A and B of the linear Euclide-

an vector space RY are said to be properly situated either

if they are nonintersecting or if their intersection 4/)B
is a common face of A and B.

LEMMA 35: If C is a face of the simplex'A, and if D is a
face of the simplex B, with A/)BC C/) D (that is, A()B =

Cf’\D), then the simplexes A and B are properly situated if
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and only if the faces C and D are properly situated sim-
plexes.
LEMMA 36: Two faces of a simplex are always properly situ-
ated.

Proof: If C and D are two faces of the simplex A, then
each of them is determined as the set of all x satisfying

an equation of the form

(17) X = }\_an—i" 7\1al+‘ B 7\rar

with

(18) N+AL ...+ AT =1,

and

(19) AM>0, 1=0,1, ..., T

such that

(20) 7\Jk=0, k=1, 2, ¢ee, ' - 8; s T

for some r - 8 indices jk' The two systems which correspond
to the two faces C and D respectively when combined yield
either another system of the form (16) or they are inconsis-
tent. If they yield another system of the form (16) then
the relations which these two systems have in common define
the dommon face of C and D. They are inconsistent if and
only if the Joint system contains all the relations ,Ai =0,
i=0, 1, «c., T

DEFINITION 40: A finite set K of simplexes of the linear

Euclidean space R® is a geometric complex (or merely: a

complex) if K satisfies the two conditions:
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a) if A is a simplex of K then every face of A
is also in X
b) every two simplexes of X are proPer%y situ-
ated. f
REMARK: The set of O-simplexes of a complex K is thé set of
all vertices of all simplexes contained in K.

DEFINITION 41l: The maximum dimension of the simplexes of K

is the dimension of the complex K. An n-dimensional complex

K may be referred to as an n-complex.

DEFINITION 42: If K is a geometric complex situated in the

linear Euclidean metric space Rn, then the set of all points
contained in the simplexes of the complex K 1s called the

polyhedron 'Kl.

LEMMA 37: |K,(: Rn is a metric space, provided K 1s non-
vacuous.

Proof: 'K' is a subset of R which is a metric space.
All properties of Rp considered as a metric space are hered-
itarily applicable in /K, also.
LEMMA 38: lK’ is a compact space.

Proof: Since K is the set-theoretic union of a finite
number of simplexes each of which is compact by Lemma 27
then the polyhedron-lKl consisting by definition of all the
points contained in these simplexes is compact.

REMARK: If K and L are two complexes and f is a coﬂtinuous

mapping of the polyhedron ,K/ into the polyhedron iL’ then

we shall sometimes refer to f as a mapping of the complex K
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into the complex L.

REMARK: The most elementary type of r-complex 1s the set 7T
of all faces (proper or otherwise) of the simplex AT. The
set Sr-l of all proper faces of the simplex Ar also forms a
complex.

LEMMA 39: \Trl = AT,
,Sr—l, — Fr-l

LEMMA 40:
LEMMA 41: TIn order to determine the complex K in R” it is
sufficient to list all the vertices of XK and then to distin-
gulsh those sets of vertices whose spanning simplexes yield
all the simplexes in K.

Proof: By the definition of geometric complex the ver-
tices of each simplex in XK are also vertices of K.

DEFINITION 43: A finite set 7(01' elements ,;:0, J:l, coey

J:k is called an abstract complex with vertices 2., ,
5:1, coe, d(k in case'a(’satisfies the conditions
a) certain nonempty subsets of the set.z/ are

distinguished and are called abstract simplexes of the

abstract complex:;kﬂ

b) every subset of 7<'consisting of a single
element is a distinguished subset. Thus every vertex of ﬁ(
is also a simplex of‘7<.

) 1t 0L is a simplex of 7(, then every non-
empty subset ofOZ , referred to as a face of the simplex OZ.
is also a simplex of the complex ?(.

The abstract simplex CZF = (070, fZl, os ey
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%0,) with r + 1 vertices is sald to have dimension r. The

maximum of the dimensions of the simplexes contained in the
complex ?( is called the dimension of the complex ﬁ(. If
the dimension of 7{ is n then 7(15 an n-complex.

DEFINITION 44: Let 7{ be an abstract complex with vertices

k
ch’ ":l’ ceo, Xk’ and let E o' ©1°

simplex considered with its natural metric such that EkC

Rk+l. Let ;ij = 42]., j=#0,1, .¢es, r, denote any subset

= (e ...,ek) be a k-

of the vertices ofc}(, and let ei = vj, J =0, 1, eee, T,
J
denote the corresponding subset of the set of elements 0>

+1
el, cee, ek of Rr

of the simplex Ek to the corresponding abstract simplex

Ozr; (490, 49 s eee, 49;) of the ebstract complex ?( The

set N of geometric simplexes thus obtained forms a geometric

. Assign the face AT =V, Vi, eees Vy)

complex, since by Lemma 36 the faces of the simplex Ek are
properly situated. The geometric complex N is called a

geometric realization of the abstract complex 7(. If the

™1
set €y el, cevy € forms a basis of R then the geometric

realization N is called the natural realization of the ab-

stract complex ?(, and the metric of the polyhedron ]Nl in-
k

duced by the metric of E= will be called the natural metric
corresponding to 7\/.

LEMMA 42: The point 7]on + 7\191 +... +/ikek = ( 2°,
7\1, coe, 7\k) = 7\ of the simplex EX 1s contained in the

polyhedron |N, if and only if the relation that all co-ordi-
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i.
nates equal zero except a certain set 7\ J# 0, j= 0,

1, «vsv, T, implies that contains the simplex ( 0

Dy eeer A0

LEMMA 43: Every two geometric realizations of are homeo-
morphic.

Proof: Let K be an arbitrary geometric realization of
the abstract complex 7{ in the Euclidean space R™. Denote
the vertices of X by co, Cis ooy ck, where ci corresponds
to Xi. Assign to each point A = ( '/'\0, AL, .., 71k) of
the polyhedron ‘N, the point Y(A)= 7\000 -+ 7\101 e P o
)kck £ R®. We shall show that the mapping ¥ is a homeo-
morphism of ,Nl onto/ K/.

a) We first note that t// is continuous.
b) We next show that the mapping from ]N' to
IK, is onto. Let AT = (vo, vl, .o, vr) be a simplex of N

and let *aT = (uo, u ooy ur) be the corresponding simplex

l)
of K, where u, = c¢

1 j= 0, 1, «se, T Now if x is any

= 9

1

point of AT then x is of the form x.= 7\0170 + Zlvl + soo -+
T . 0 1

?\vr and k-,u(x) is of the form ‘//(x)f—'- 7\uo+ 2ul+... +

7\rur, which is obviously a uniquely determined element of

*aT _ 0 1

A”. Conversely, any element y = 4 Ug '+/L uy +...+

/u,rur 3 *aT has a unique inverse image in Ar; this unique

i = ‘+—ooo .
nverse image is ({J r(y) /M Vo 4/(4. vl —r'/ﬂ. vr

Since each simplex A" in N has a corresponding simplex in X

and conversely, it follows that SV (,Nl) = IKI and inciden-
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tally that V/—l(lKI) = INI and hence that v/—l is a mapping
from 'K/ onto IN,.

¢) It remains to be seen whether Qu is one-to-
one from 'N, to lK'. To prove that each arbitrary point of

,K’ has an inverse image of exactly one point, we let )\ =

(7\0, 7\1, oee, 7\k) and /tf-(/‘-o,/v‘-l, ...,/IA.K) be two

i J
points of ’N’, and let 7\ 9, g=0, 1, «.., T, and/“‘p,
p=0,1, +.¢, s, be the nonzero coefficients which appear

in the expressions for /\ and/ﬂ- respectively. Let ey =
q

tq, q=0, 1, ¢csy, r, and let ejp-.-.-- wp,

Pp=0, 1, ¢.., 8.
If AT = (to, tl, sy tr) and B® = (wo, Wiy eeey ws) are the
simplexes indicated in N, then obviously A€ AT and et &

BS

, Since 7\ an_d/{/t, satisfy the conditions necessary for el-
ements of the respective simplexes indicated. Indeed, )\ is
an element of the interior of AT and/a.. is an element of the
interior of B®. Therefore by the definition of }U and of
*2T and *BS, we know that 'W( )) and (P(/u-) are interior
points of *AT and *B® respectively. Now *AT and *B° are

properly situated since they are both simplexes in the com-

prlex K. Clearly if two properly situated simplexes have a

common interior point then they coincide. Hence if }b()\)
yl(/u,) then *AT = *B® and hence AT = BS. Now on any simplex
AT = B® we know that (/) is a one-to-one mapping onto the

corresponding simplex *aT = *B® in K. Therefore ¥ () =
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\PW) implies ) =/LL . Hence L// is a one-to-one mapping.
By Lemma 30 then.SU is a homeomorphism. Thus every geomet-
ric realization of the abstract complex ik/is homeomorphic
to the natural realization N of i(, and therefore every two
geometric realizations of are homeomorphic.
THEOREM 4: An abstract n-complex 5k/can always be realized
by a geometric complex K imbedded in the Euclidean space
r?2Hl of qimension 2n-+1. To achieve this realization the
vertices of the complex K may be chosen arbitrarily with the
sole requirement that they be in general position.

Proof: If ’(O’ P J:k are the vertices of the

abstract complex 7(, let ¢ be any system of

0! C1v ***s Oy
points in general position in R?n*l and consider the corre-
spondence between éf; and c;. If o = (025, 29, vy O2.)
is any abstract simplex of ?(, let AT = (ao, By, seey ar) be
the geometric simplex which spans the points 8as 895 eee, 8,
which in turn correspond to the vertices 020, 22 oo, 0?%.

1
Because of condition ¢) of the definition of gbstract com-

plex we know that X fulfills condition a) of the definition
of geometric complex. To show that K is a geometric complex
it 1s only necessary then to show that K satisfies condition
b) of the definition of a geometric complex. To do this let
O1* ana 3° ve two simplexes of 2(. Let AT and B® be the

corresponding geometric simplexes of K, and let do, dl, ooy

dt be the set of all points which are vertices of one or

more of the simplexes Ar and B°. Now r £ n and s £ n be-
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cause the dimension of ?( is n. Therefore t € 2n < 1. Thus

Dt = (do, dl, cee, dt) is a simplex in RZn-l-l. pb may or may

not be in K. Since Ar and BS are faces of Dt they are prop-
erly situated by Lemma 26. Therefore K also satisfies con-
dition b} of the definition of geometric complex. Thus K is
a geometric complex which realizes 7(.
LEMMA 44: If R is a linear Buclidean metric space, A is a
set of points in R, and 6 is a positive number, let H(A,CS')
denote the set of all points of R whose distance from the
set A is less than @ . Let T(A,S ) denote the set of all
points of R whose distance from the set A is less than or
equal to C?. Then
a) H(A,25 ) C H(a, &)
b) H(a,d) is open
c) H(a,&) is closed
d) if A consists of one point a then the diam-
eter of H(a, ) and the diameter of H(a, &) do not exceed
2 d,

DEFINITION 45: Let R be a metric space and let 2% E

Cos
Cis ores ck‘g be g finite system of nonvacuous subsets of R.
The system Z is a covering of R if every point of R is con-
tained in at least one of the sets of the system Z. If the

diameter of each set of the system Z is less than some pos-

itive number € then Z is an e-covering of the space R.

We shall consider open coverings, which consist solely of

open sets, and closed coverings, which consist solely of
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closed sets. A covering is of order n if n is the maximum
number of sets in which any point is contained and if this
maximum is achieved by at least one point.

REMARK: Although the term "covering" has been used previ-
ously in a broader sense, for the present we shall 1limit its
use to designate only finite coverings.

LEVMA 45: If R is a compact metric space and € is a posi-
tive number then R has both an open and a closed & -cover-
ing.

Proof: R= VH(X, €/3). Since R is compact, we may
XER

select a finite number of the sets in this union, say:

H(x,, 6/3), H(xq, €/3), eve, H(xk, &€/3) which will form an
open € -covering of R. And since by Lemma 44 we know that
H(x, , €/3) W ﬁ(xi, €/3), then we may let

ﬁ(xo, €/3), f—I'(xl, E/3), eee, ﬁ(xk, &/3) be a closed covering
of R.

DEFINITION 46: A compact metric space R has finite dimen-

sion r if the following conditions are satisfied:

a) Tor every € 72 0 there exists a closed
E-covering of R of order less than or equal to r + 1.

b) There exists an € 2 0 such that every
closed é-covering of R is of order greater than r. If no
integer r 2.0 exists which satisfies the conditions a) and
b) then we say that R is of infinite dimension.

LEMMA 46: Let R and R' be two compact metric spaces and let
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f be a homeomorphism of R onto R'« Then R and R' are of
equal dimension.

Proof: Since R is compact, £ is uniformly continuous,
because a continuous function from a compact metric space to
a metric space is uniformly continuous. Hence for every
positive number & there exists a number 5 such that when
e(x,y) 45 then e[-f(x),f(y):]<€ . Now if Zz %CO’

Gl,
f(Ci) = C:{, i=o0,1, ..., k, form a closed & -covering F '

ceey ck’g is a closed f—covering of R, then the sets

of R'. Since f is one-to-one, then 3 and =' are of the
same order, and therefore the dimension of R' does not ex-
ceed the dimension of R. And since R and R' may be inter-
changed in this argument, they are of equal dimension.
LEMMA 47: If R is a compact metric space and & = gco,

Gl, seey ckg is a closed 6—covering of R, then there exists
a positive number (S- such that the closed covering Z-S con-
sisting of the sets F = ﬁ(ci,cS), i=0, 1, .., k, is an
e-covering of the same order as the coveringz. This im-
plies that the open covering 2-5 consisting of the sets
G, = H(Cy, d), i=0, 1, ..., k, is an open € -covering of

the same order asz .

Proof: Let Cp = Fi, i=o0,1, ¢¢s, n, be any system
i

Z' of sets whose intersection is empty. Let Fp. = @i,
i
i=0, 1, ¢¢s, n. We shall first show that there is a posi-

tive number 'Z for which the intersection of the sets of the
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sets of the system Z"z - ??0, él’ co e, én} is also emp-
ty. If the contrary were true, that is, if now such number
’? existed then for each positive integer m and for each
’?-— 1/m there would exist a point am which belonged to each
set of the system 27 The sequence?ai?i = 1,2, ...
would have a limit point since R is compact and since any
infinite sequence in a compact space has at least one limit
point. Let one of these limlt points be denoted by a. Ob-
viously a is in each set of the system _Z_' since each set is
a closed set. By the preceding argument we may assign a
sufficiently small number '2) 0 to each subsystem of the
form 2 ' of the system Z, such that the sets of the system
Z"Z have a void intersection. Now -2 has only a finite
number of subsets of the form Z' and we can therefore se-
lect the smallest ’? for our 5 This value for ) will be
sufficiently small to imply that the order of Z‘S is the
same as the order of Z Furthermore, it is possible to
choose the number & small enough to insure that the diame-
ter of each set F4, 1 0, 1, ..., k, will be less than &,
because the diameter of each set C is less than €. Thus
the system 25 is an é-covering.

COROLLARY: If the dimension of the compact metric space R

is equal to r, then for every & > O there exists an open

é-—covering of R whose order does not exceed r + 1.

DEFINITION 47: Let Z‘" 500, Cl, coey Ck}be a system of

sets of the space R, With each set Ci we assoclate the
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letter J:i and we let the set of letters aro, ’tl’ coey Ik
represent the vertices of an abstract complex v Ve

allow the subset of vertices J;i.’ j=0,1, «.., 8, to
J

define a simplex of ?( if and only if the sets Ci » d =0,
J

l; ., s, have a nonempty intersection; The abstract com-
plex 7(13 the nerve of the systemz .

LEMMA 48: 1If the systenm 2 is of order r + 1 then the nerve
of Z is of dimension r. |

DEFINITION 48: A continuous mapping f of a metric space R

into a metric space S is called an é‘—mapping if the com-

plete inverse image f'l(z.) of every point z £ f(R) 1s of
diameter less than € in R.

THEOREM 5: Let R be a compact metric space, f?—'{@o,
Giy =ees Gk Zan open & -covering of R, 7(the nerve of this
covering, and K a geometric realization of ;(in some Eu-
clidean space R™, so that to each set Gi of Z. there corre-

spends a point ¢, of R™ which is a vertex of the geometric

i

nerve 7(01‘ the covering Z. Then there is a continuous

E—mapping f of R into 'Kl for which x € Gp implies that

f(x) is contained in a simplex A* of K with vertex c_.
Proof: We define the real-valued function L/J:.L(X),

x £gR, 1=0, 1, ..., k, to be the distance between the

point x and the closed set R - Gi' The function &Di(x) is a

continuous function of R and is positive if and only if x €

Gi. The function ({Ji(x) =0 if x ER - G_. Since every
i
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point x is contained in at least one of the sets G, of the
systemz, then the sum ‘)U(x) = y‘o(x) <+ Sﬂl(x) + ... +
(/Jk(x) is positive I‘c.ar every x. Let 7\1(::) = Sui(x)/(//(x).
Then the function 7\1(:{) has the properties listed above for
V/i’ and also we have
(21) Nix) + Alx) +...+ 2A¥(x) =1,
Now let N be the natural realization of the abstract complex
7{, and assign to each point x € R the point
(22) Mx) = Xx)e  + Atxle; +...+ 2AFixle,
of the Euclidean space Rk+l. By relation (21) and the
nonnegativeness of )\i(x) we see that 7\ (x) is contained in

the simplex EX C X

. It will be shown that 7\(x) is con-
tained in the polyhedron IN'. Let x € R and denote by

2 = iGi y = 0, 1, 4.., r} the set of all open sets of
J

the system Z which contain s. DBecause the open sets of the

system Zx have a nonvacuous intersection, the simplex O-Z.=

(afio, J:il, ceey J\’ir) is in 7‘(and hence the simplex A =

i,
(e, , eil, ceey € ) is in N. However, 7\ J, =0, 1, ...,
r

T, are those numbers of the sequence 7\0(::), 7\1(3:), ooo,

7\k(x) which are nonzero, and therefore by (22) 7\(1:) -
st i

Z N e; .» This means that Nix) &€ AC N. Furthermore,
J= J

it x £ Gp, then G is a set of the system 2 ana e, is a
o) X
vertex of A. To show that the mapping )\ of the space R
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into the polyhedron 'N, is an & -mapping, let z be a point
of A(R), let 7\-l(z) be its complete inverse image in R,
and let x & 7\-1(2). Some set of 2, say GP, contains x,
and hence )p(x)=h0. IfT v & 7\-1(2) then A(x) = A(y) and
by relation (22) 7\p(y)= 7\p(x) =‘f=0. Then y & Gp. That
is, )\—l(z) CGP; also since the diameter of G is less than
€ ana 7\—1(2) C G_ then the diameter of 7\-1(123) is also
less than €. Let S[/be the natural mapping from N to K.

£ S, = & i
That is, yji=0 Aey g A c,, where ¢ , ¢,
the vertices of K. Define f to be the mapping from R to K
such that f{x) = W[]\(xﬂ . ©Since ‘7“ is a homeomorphism of
N onto K, f satisfies the requirement of the theorem.
Indeed, the mapping of R into \K' is given by the equation
f(x) = 7\0(3:)00 + )\1(x)cl+ oot 7\k(x)ck.
DEFINITION 49: Let R be a metric space. 4 sequence

Za.}. - of points of R is called a Cauchy seqﬁence
iJi= 0, 1, ...

if for every positive number & > 0 there exists a positive
integer N such that P(ap,aq) < € whenever p, @ » N.

DEFINITION 50: A sequence %_ai.%i =0, 1, ...
the point p if for every & > O there exists a positive

converges to

integer N( &) such that if n > N(&) then €(an,P)< E .
LEMMA 49: A Cauchy sequence cannot converge to more than
one point.

DEFINITION 51l: If every Cauchy sequence in R converges to a

peint in R then R is complete. If some Cauchy sequence in R
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does not converge to a point in R then R is an incomplete

space.

LEMMA 50: A compact metric space is a complete space.

LEMMA 51: A Euclidean space is complete.

LEMMA D52: Suppose R = Gg, Gy, «-e5 Gy,

open sets of a complete metric space, each set of the se-

eee 15 a sequence of

quence being everywhere dense in R. Then the intersection
of all of these open sets is nonvacuous and is itself
everywhere dense in R.

Proof: (To prove this lemma we shall let ay be any
point of Gy= R and we shall let & >0 be any positive
number. We shall show that there is a point a contained in
all of the sets G;, 1= 0, 1, ... such that f’(ao,a) < 60.
Since the point a is any point of the space and a point
auch as a can be exhibited to be an element of the set F =

f \ Gi and to be arbitrarily close to, that 1is,
i=0, l, s o0 '

within € distance of, that point a. of R, then F is a set

0
which is everywhere dense in R.) Suppose that the finite
sequence of points ao,‘al, cres B of the space R and that
also the finite sequence of numbers € , € ceey € have
0 1’ n
been constructed to satisfy the following requirements:
a) O <EO <1, éi <l/i; i=1, 2, «v., n.
b) H(ey, €;) CHle, ;,€, )/ 6, 1=1,

2y ses, Do

We shall extend the sequences ié;& and %?ii.
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is dense in R then there exists a point a
+1 P n+l

which belongs to H(an,én)ﬂ(}n*l; and since the intersec-

tion of two open sets is again an open set then H(e, en)ﬂ

Since G
n

Gn-l-l is an open set. Now if H(an, en)/) G o is an open set

then there exists a positive number En-l-l & 1/(n < 1) such

that H H G « Therefore the se-
° (an+l’ én-i-l) c (an’ én) /) n+1l

quences iaig and iéil are infinite and they satisfy the

condition b). Now if p < q, then a ¢ H(a_, ép). Therefore

q b
?(ap, aq) < ép < 1/p. Hence iai’gi _ is

— O, l, LI m’ [ 3 ]
a Cauchy sequence, and since R is a complete space by hy-

pothesis we know by definition of complete that S’ailconver-

ges to some point a £ R. Obviously the sequence Eaizi = m
: - ’

o alsoc converges to the same point a. And furthermore
] s &8

this last sequence is contained in the closed set H({ a s ém).
Therefore a £ 'ﬁ(am, ém)- and a is an element of each set G_
for m =0, 1, ... .« Moreover, because a € ﬁ(ao, 60) we know

that e(ao,a) < 60. Thus we have found a point a which is

in every set G, and which is arbitrarily close to an arbi-

trarily chosen point a Thus the set /! G. 1s

o° i=1,2, 6o 1
nonvacuous and is indeed dense in R.

LEMMA S53: A continuous real-valued function defined on a
compact space attains its maximum.

13

DEFINITION 52: Let S be a metric space, R a compact metric

space, and @(R,S’) the set of all continuous mappings of R
into S. If f and g are two mappings of @, then P[f(x),

g(x)] is a continuous real-valued function defined on the
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compact space R and by Lemma 53 therefore attains its max-

imum. This maximum, denoted by P(f,g), is the distance

between the two elements f and g in the space of continuous

mappings @.
LEMMA 54: The function e(f,g) as defined above satisfies

all of the axioms of a metric, and él is therefore a metric
space. Furthermore, if S is complete then @ is complete.
Proof: We first prove that § is a metric space.
Clearly, P(f,g) 0 if and only if f = g. Also P (f,g) =
P(g,f) Now let a be a point of R for which PE(X’ h(x)J

attains its maximum. Then e[_i‘ h)] [f(a) h a)]
P[f(a),g(a)]‘i":) [g(a) h(a) ef(f,g]f I_-g, . Thus the

metric axioms are satisfied for is a metric space.
We next show that if S is complete then ? is also complete.
It fo, fl, esey, 18 a Cauchy sequence of é then for every
'pos:.tlve € there exists a positive integer N such that if
m, n PN then P(fm’fn)< & . Hence F[fm(x),fn(x)]<é
for any point x £ R. Therefqre fo(x), fl(x), eee i3 a
Cauchy sequence in the complete space S, and therefore con-
verges to a point of S which we denote by f(x). Thus for

m 2N we have

(23) ?[fm(x),f(x)]éé , for all x.

We now show that f is a continuous mapping of R into S.
Since f is a continuous function at x, there exists a pos-
itive number 5 such that P[f (x),f (y)]<é for P(X,Y)<
5. But since relation (23) holds for the point y as well
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as for x, we have f[f(x),f(y)]é f’g(x),fm(x)] -+
P fm(x),fm(y):] -+ eﬁ'm(y),f(y‘)] & 3E. Therefore f is a
continuous mapping and f & @. Furthermore, since relatiosn
(23) implies that e(fm,f) £€ fornm AN, the sequence
fo, fl’ ..+, converges to f.
REMARK: It may be noted that the last point proved is a
generalization of the theorem that a uniformly convergent
sequence of continuous functions converges to a continuous
function.
LEMMA 55: If f is a continuous function from a compact
metric space R to a metric space S then the complete inverse
image of a point in S is a compact set in R.
LEMMNA 56: Let éEkR,S) be the metric space of all continuous
mappings of a compact metric space R into an arbitrary
metric space S. Let ¢ be the set of all é?—mappings
belonging to? . If T & ?6- , then there exists a positive
number 55 such that x, y € R and ([f(x),f(y)] < 5&'
imply together that F(x,y) £ &,

Proof: We shall prove the contrapositive statement.
If there does not exist such a number d;é , then there is a
sequence of positive numbers é;l’ 613, ceoy ér;, ess, which
converges to zero, and a pair of points x , y Tfor each
positive integer m such that although (Orf(xm),f(ym)J < 5m’
it is nevertheless true also that e(xm,ym) > & . Now since

P

R 1s a cormpact space, a convergent subseguence may be chosen

from each of the two sequences %xiz and Eyig, such that
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these two convergent subsequences converge to points x and y
respectively. Then we have two points x and y such that
e[f(x),f(y)] = 0 and yet p(x_,y) Zé « This situation is
in contradiction to the assumption that £ was an é;-map—
ping.
LEMMA 57: If Q§(R,S) is the metric space of all continuous

mappings of a compact metric space R into an arbitrary
metric space S and @é is the set of all e—mappings which
all elements in é(R,S), then « 1s an open set in

P (r,s).

Proof: Assume that f is an element of 425 . We shall
show that if P(f,g) < 8/2 then g is an €-mapping. This
will be sufficient to show that @e is an open set in ? .
Now suppose that g is an element of @ such that P(f,g) <
‘5/2. If g(x) = g(y) = z then F[f(x),f(y)]f e[f(x),
g(x)]+ P[g(y),f(y)] 4(572 -I-S/z = &§. since r £ @-é
then P(x,y) <€ . Now since the complete inverse image
g-l(z) of the point z &€ g(R) is compact in R by Lemma 55,
and since P(x,y) <E for all x, vy Eg_l(z), then the di-
ameter of g'l(z) must be less than €. So g £ @e and ?é
is an open set in ?.

DEFINITION 53: The diameter of & bounded subset of a metric

space is. l.u.b. P(x,y) .
X,yEA

LEMMA 58: The diameter of a simplex A of R® is equal to the

maximum length of its l1-faces.
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Proof: Let A = (a,, By sees ar) be an r-simplex, and
let x and y be any two points of A. Suppose the barycentric
co-ordinates of x are )\0, )\l, «eey, NY. Now the distance
between x and y in R" is given by the equation P(x,y) =
[(x - y)e(x - yﬂ %. If the vector x is given an increment
¥ othen p(x+} 9= [(x - y)elx - )+ 2(x - y)-§F
f-g:l £, Now if x is not a vertex of A, at least two of its
barycentric co-ordinates are different from zero. We may
assume without loss of generality that these two positive
co-ordinates are N° and 7\1. Let ¥ be a positive number
such that ¥ < A%/2 ana V¥V < Al/z. Let fr é'V(ao - a;)
and € = 4+ 1. Clearly x +§ is a point of A. If € is
chosen so that (x - y)-E Z 0 then for any value of E as
restricted above we have P(x-l—_é’ ,¥) >P(x,y). Therefore
if x is not a vertex of A the function p(x,y) cannot attain
its maximum value. It does, however, attain its maximum
value when x and y are different vertices of the l-face of A
of greatest diameter.
THEQOREM 6: A compact metric space R of dimension r can be
mapped homeomorphically onto some subset of the Euclidean
space R2r+l of dimension 2r + 1.

Proof: Let § be the space of all continuous mappings
21‘4—1. Let @6 be
the set of all € -mappings which belong to the set ? . Cer-

N 57 o5...D

1 1/2
@l/i' Since each

of the space R into the Euclidean space R

tainly the following relations holds: Ef

?l/m:"' .+ Let Y= ,i=l|, o

’ L B ]
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element h ET:LJ is an € -mapping for every €2 0, then h is
a one-to-one continuocus mapping of the space R onto the sub-

+
set h(R) of RZr l. And since R is compact, then h is a

T+l is Hausdorff and since

homeomorphism by Lemma 30 since R2
a subset h(R) of a Hausdorff space is Hausdorff. It is
therefore sufficient to show that‘.t’ is nonvacuous. To show
this we need only prove for any € > 0 that ?6 is every-
where dense in f . To show that §e is dense in@ we shall
show that if g & § , and if € and ? are any two positive
numbers, then there exists an E—mapping f of R into R2r+l
such that eg,f) <? . Now since g is a continuous mapping
from the compact metric space R into the Euclidean metric
space RZr-f-l clearly g is uniformly continuous because a
continuous mapping from a compact metric space to a metric
space 1s uniformly continuous. Since g is uniformly contin-
uous there exists a positive number E<E such that

P(x,y) <8 implies that Q[g(x),g(y)] < 7/6. TNow let
Z=- gGi}i 20, 1, vee, k be an open S—covering of R whose
order does not exceed r+ 1. This is possible since by the
corollary to Lemma 47 if the dimension of the compact space
R is equal to r than for any positive € there exists an
open € -covering of R whose order does not exceed r -+ 1.

Now since cgé & , then Z is also an € -covering. And

since the diameter of each set Gi is less than 5 , the

is less than 27/6. Now
2r+l

diameter of each set g((}i) = Fi

choose points ci, i=0,1, «¢¢, kK, of R so that the
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distance of c; from F, is less than 7/6 and such that ¢y
c eeey, G are in general position. This is possible by

1’ k
Thecorem 3 and since the sets Fi are continuous functions of
the nonvacuous sets Gi and are therefore nonvacuous them-

selves. Let the points ¢ c ess, ¢ Dbe the vertices of

> >
the geometric nerve K of :he :éovering E-, and associate with
each vertex c:,L the element Gi of the covering 2. It will
be shown that the mapping f of the space R into the nerve K,
constructed in Theorem 5 satisfies the requirements of the
present theorem. Now since £ is an open € -covering then
by Theorem 5 £ is an € -mapping. It suffices to show that
P(g,f) < ‘P . To this end we note first that since the
diameter of a simplex is equal to the length of its longest
l-face by Lemma 58, it will suffice to estimate the diame-
ters of the l-simplexes of K in order to estimate the
diameters of the simplexes of the complex X. If (cm, cn) is
any l-simplex of K, then the sets Gm and Gn have a common
point and therefore the sets Fm and Fn have a nonempty in-
tersection. Since the diameter of each of the sets Fm and
F_is less than % /6 and since also the distances from the
points cm and cn to the sets Fm and Fn, respectively, are
also less than % /6, it is apparent that Ple ,eq) < 27%/3.,
Therefore the diameter of every simplex of K 1s less than
2 7/3. Finally, let x be any point of R. There exists an

open set Gm of the system z which contains x. Since g(x) &
<
F_ and e(cm,Fm) £ 7%/6, clearly P&(X),GP] 7/%. But
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the point f(x) € A* of K and e is a vertex of the simplex
A¥, Furthermore, since the diameter of A* is less than
2’?/5, clearly Q [cp,f(x)-]< 2’?/3. Therefore by the tri-
angle inequality we have e[g(x),f(xﬂé ’7 « Since x is an
arbitrary point of R then e (g,f) < "? .
DEFINITION 54: An arbitrary ordering of the set of all ver-

tices of a simplex is a vertex ordering of the simplex. The

simplex AT = (ao, 81, ses, ar) is said to receive an orien-
tation or to be oriented 1f each of the vertex orderings is
assigned the sign 4 or - in such a way that orderings 4if-
fering by an odd permutation receive opposite signs. A sim-
plex clearly has two orientations. We may express this idea
by writing AT = é(ao, a;, ‘..., a,) where € =+1 if a pos-
itive orientation is meant and where €3 -1 if a negative
orientation is meant. If Ar is an oriented simplex then -AT
will denote the oppositely oriented simplex. Although a
O-simplex (ao) - AO may have only one vertex ordering it is
assigned two opposite orientations -+ (ao) and -(ao) for the
sake of consistency in notation.

DEFINITION 55: If AT = (a_, 8y, +++» & ) is an r-simplex

0
any one of its (r - l)-faces may be obtained by the deletion

T m e E }
ol some one vertex from the sequence 85y4 =0, 1, see, T°

The face obtained by deletion of the vertex ay is the face

opposite the vertex a;. With the orientation + AT = € (a,,

al’ eoey ar) of the simplex Ar we assoclate the orientation

Bfl= (-1le(a, &

1 o) 810 cers Byy eees ar) of the (r - 1)-face
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r \
of A opposite the vertex ai, where the notation ai denotes

the deletion of the element ai from the sequence under con-

sideration.

LEMMA 59: The correspondence between the orientations of AT

r-1

and Bi is independent of the vertex ordering a

a . That is, if B?nl
T i

o, al, LR B )

is a face of Ar then —Bi'l is the

corresponding face of -AY and conversely.

r-1

DEFINITION 56: Two simplexes AT ana B are said to be co-

herently oriented if the vertices of B © are a subset of
r-1

the vertices of Ar and if the orientation of B is the

same as the orientation of the (r - 1l)-face of AT with the

same vertices as Br'l.

. Tr r r
DEFINITION 57: Let Al’ Az, ese,y %d(r) be the set of all

arbitrarily oriented r-simplexes of a complex K and let G be

an arbitrary additive abelian group. The linear form x =
AT r r . T T

glAl-t- 8oh, + e go((r)Ao((r) in the simplexes Al’ As,

T . .
ceey, AcX(r) with coefficients 81» Bgs ey in G, 1is

S(r)
an r-dimensional chain (or merely: r-chain) of the complex K

. T T T
over the coefficient group G. If *Al, *Az, coey *Ao<(r) are
the r-simplexes of X and if x = gl*Ai + gz*ﬂz ¥ ees +

8°((r)*Ai((r), and if certain possibly different orienta-
tions of the simplexes be taken such that *Ai - e}Ai, then
the chai i = € T +€ T o
chain x may also be written x lglAl 2g2A2
T . .
~+ ed(r)g o((r)Ao((r)‘ With this convention the chains are

independent of the choice of orientation. Addition of

chains may be defined in the following manner if x =
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(r X(r)

"4 AT ana y =2 h.Af are two r-chains of K over
Al r) T '
G, let x+y = (gi-+-hi)Ai. The set of all r-chains

of X over G is denoted by Lr(K,G) or by LT when this nota-
tion does not lead to misunderstanding.

LEMMA 60: LT is an additive abelian group.

REMARK: The group G used as the coefficient set in the for-~
mation of r-chains of a complex is usually taken to be the

group G, of integers or the group Gm of residues modulo m.

0
For brevity the group Lr(K,Qm) is written L; for m =20, 1,

see o Thé.groups GO and G, are particularly useful. If the

2
coefficient group is GZ then g £ -g for all elements g £ G,,
and there is no need of distinguishing between the simplex
A:’:L' and -A;', i=1, 2, ..., X(r), in the chain x =g,A] +

r : b :
ngz + s e +gd(r)A(X(I‘)'
DEFINITION 58: If AT is an oriented r-simplex of a complex

K it may be regarded as a chain of 'K over GO. The boundary

of the oriented simplex AT is defined as the (f'— 1) -chain

of K over GO given by the relation A(aT) = AaT = Bg'l -+

r-1 r-1 5 r-1 kE
B + ... B where .
1 + r ° By }i~= 0, 1, eee, T

of all (r - 1)-faces of AT oriented coherently:with respect

is the set

to AT, If r =0 we set AAC = 0.
LEMMA 61: A(-aT)= -AaT.
DEFINITION 59: The boundary of an r-chain x of X over G is

an extension of the idea of the boundary of an oriented
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_ A{(r) r
simplex. We let A(x)= Ax < .S'_"_.I—'_' gldAi-
i=

LEMMA 62: A(-x)= -Ax and A(x+y) = Ax+ Ay; that is,
A is a homomorphism on the group of chains.,

LEMMA 63: AAx = 0.

Proof: It is sufficient to prove that AA AT = 0 for

r-1

ceey a_) and let C &
r Y

any AT. Let AT = +(a,, a,

be the oriented simplexes obtained from AT by omitting,

and ¢t~
jole]

respectively, the vertex a and the two vertices a_ and aq,

. -1
p< g. That is, let C; = +(a0, al, ceoey /a;, oo s, ar)
A\ N\
ap, oo, aq, ceey ar). Then
T i~ .
AAT= Z (-l miso AcITh = = (-1)%i®
i=0 1 j=0 Ji

r-2 _
and Cpq P +(ao, al, o0y

) r s -. Y
> (-—l)‘] 1Cr .2. Therefore AAAT = 2: (—l)i+Jc N
=i+l 13 <1 J

tpi-1 g
3 (-nydttigr-2 _ o,
i<j i]

DEFINITION €60: An r-chain x is a cycle if its boundary is

equal to zero., The set of all r-cycles of X over G is de-
noted by z'(X,G), or merely by Z'. We let Z7 denote

- , A

z°(K,G ).

LEMMA 64: Every boundary is a cycle.
iy

LEMMA 65: 2 is a subgroup of )

Proof: This follows from the fact that A is a group

homomorphism of which z¥ is the kernel.

0 0
L .

CORCLLARY: If r» = O then Z
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Proof: A 1is the zero map on LO.

DEFINITION 6l: An r-cycle z of an n-complex K is homologous

to zero if it is the boundary of an (r <4 1l)-chain of K, r =
0, 1, «ee, (n - 1). An n-cycle z of the n-complex X is
homologous to zero only if it is equal to zero. We express
the fact that z is homologous to zero symbolically by z /JO0.
We denote the set of all r-cycles of K over G which are
homologous to zero by Hr(K,G) or by Y. 1In particular, we
let H; denote Hr(K,Gm). Two r-cycles z, and z, are homeclo~
gous and we write z_nJ zz in case their difference is homo-

1
logous to zero. That is, if z, - zer 0.

1
LEMMA 66: H' is a subgroup of the group Z%.
Proof: This lemma follows directly from the fact that
/) is a homomorphism and that HY is the image of zT under

A
DEFINITION 62: Since H® is a subgroup of 2T the factor

group BT = Zr/Hr == Br(K,G) exists. We call BT the r-dimen-

sional Betti group or the r-dimensional homology group of

the complex K over G. We denote Br(K,Gm) by BE. We note
that the elements of the Betti group are classes or cosets
of homologous .cycles..

REMARK: If K is an n-complex and ZS is the boundary opera-
tor in K, then & is a homomorphism of the group L into the
group LT°1, r =1, 2, eee, N. The subgroup Z' is therefore
the kernel of the'homomorphism A in the group 1Y and the
subgroup Hr-lc: 11 is the image of LY under A. The
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groups LY¥/zT anad gr -1

are therefore isomorphic.

LEMMA 67: If x*, y*, z* are elements of the Betti group BT
of a complex X and if x, y, z are cycles of X in the corre-
sponding homology classes x*, y*, z*, then the relations

x*<4 y*= z* and x =+ y/\J z are equivalent.

DEFINITION 63: A subcomplex of a complex K is any complex

all of whose simplexes are contained in K. The set of all
simplexes of a evomplex K, whose dimension does not exceed T,

is called the r-dimensional skeleton (or merely: r-skele-

ton) of the complex K.
LEMMA 68: The r-skeleton of K is a subcomplex of K.

DEFINITION 64: A complex K is connected in case it cannot

be represented as the union of two nonempty subcomplexes L
and M without common simplexes.
l- -

LEMMA 69: A complex is connected if and only if given any
two of its vertices a and e, there exists a sequence of ver-
tices ia,z.

i’1= 1, 2,
such that a

such that a:L = a and aq:—" e and

17 Bq410 i=1,2, «.., {0 - 1) are the vertices
of a l-simplex of K.

Proof: Suppose that the complex K is not connected.
Then K is the union of two disjoint nonvacuous subcomplexes
L and M. Let a be a vertex of L and e be a vertex of M, and
assume that a sequence as in the statement of the lemma
exists for these vertices. Now if ai is the last vertex of
the sequence which is contained in L, then the simplex

(ai, ai+1) which exists according to the condition above
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cannot lie in L nor in M. Therefore if K is not connected
the sequence is lacking for at least one pair of vertices of
K. Therefore if the sequence exists then the complex is
connected. Conversely, let us show that if the complex is
connected then such a sequence exists. We assume that the
complex K is connected. Let a be an arbitrary fixed vertex
of K and *denote by E the set of all vertices of K which can
be joined to a by a sequence as in the statement of the
lemma. Clearly, if a simplex A has at least one vertex in E
then all its vertices are in E. Hence the set of all sim-
plexes of K with vertices in E forms a subcomplex L of K.
The set of all simplexes of K which are not in L also forms
a subcomplex M of K. But M is vacuous because X is connect-
ed. Therefore E contains all the vertices of K, and the
vertex a may be jolned to an arbitrary vertex e by a se-
quence as in the statement of the lemma. Hence any pair of
vertices of K may be joined by a sequence of vertices as
required.

DEFINITION 65: Any connected subcomplex L of the complex K,

such that K is the union of two disjoint complexes L and M,

is a component of K.

LEMMA 70: TIf {K.}l 1, 2, is the set of all compo-
= ® ey

nents of K, thean\K ¢,i#—'-3, andK"'UK.

Proof: a) TFirst we prove thath /”\Ki = g, J.HE Jo
Assume Kif\ Kj -‘-f-' #. Then, since K. is & component, X is the
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union of two disjoint subcomplexes Ki..—.-"'—L and M. If we de-
note Kjf\x. by K} and Kjf\ M by K} 1t is olear that K} ana
K'; are disjoint subcomplexes of the complex Kj and that

K; UK’J‘ = Kj' Now since Kj is connected, one of the subcom-
plexes K:_} or K'j must be vacuous. Specifically, K'J' =g
because K"} = Kif'\ Kj which is nonempty by hypothesis.
Therefore KJ.C Ki' Similarly it may be proved that KiC Kj'
Thus Ki = Kj and hence i1 = j.

b) Secondly we prove that K = @ Ki by show-
i=]1

ing that any arbitrary simplex A of K is contzined in one of
the gomponents. Now if K is connected then there is exactly
one component K= Kl and the equality holds. If K is not
connected, then K= LUM, where L and M are disjoint sub-
complexes of K and where one of them, say L, contains A. If
L is connected, then I is a component of K, and the simplex
A is contained in one of the components of K. If L is not
connected then I may be decomposed in the same manner as was
K. This decomposition may be extended until a component
containing A is found.

THEOREM 7: IT Kl’ Kz,
of a complex X, and if BT, Bi are the Betti groups of the

ceny Kp is the set of all components

complexes K and Ki’ respectively, then BY is isomorphic to
the direct sum B%‘_ + Bl + ...+ BIIJ'.
Proof: Let LT be the group of all r-chains of the com-

plex K and let Li be the subgroup of L” consisting of all
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r
chains of L in which the only simplexes appearing with

nonvanishing coefficients are simplexes of the complex Ki.

Clearly
(24) =1+ + ...+ 1T
1 2 P

and Li is the group of all r-chains of the complex Ki.
Further, if we set Hi—l = AL_,IL' then

r-1 r-1
(25) B ~C Ly .
It will be shown that

-1 o -1 r-1 r-1

Now if x €& LT an@ Ax is an element of HY~1 then by (24) we

T
=
have x = x, +x, + ... -I"xp, Xy e Li’ and therefore

(27) Ax=Axl+Ax2+...-+Axp,
where Axi e Hi"l. The uniqueness of the decomposition of

D x follows from relations (24) and (25). Now let Zz be the
kernel of the homomorphism A in the group L';[_L‘. That is, let
Z;‘ consist of the elements of Li which map to zero under the
homomorphism A . That is, Zi is the set of all r-cycles of

L:?L' . We shall show that

T T
(28) 2= 2 A+ T A e+ T
1 2 P
Now if z & 2zZ¥, then the relation z = xl‘f' X, + .. -+ xp
where x, € LT, holds because of (24). Therefore Axl-i-
i

Ax2+ cee Axp = Az = 0. Now by (25) and (26) we see
that Axi = 0, and thus that x, [ Z::,f. The uniqueness of
this decompcsition follows from (24). Finally, relations
(26) and (28) imply that the group zZT/HY is isomorphic to
th I r r r s 0o r r-

e direct sum Zl/Hl -+ Zz/Hz -+ -+ ZP/HP
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DEFINITION 66: Let K be an arbitrary complex and let A:CL),
0
2,
plexes A9 = +(a,) of Ko If x---.-ng -+ng + eee + g 0

i i 171 282 . o A

A co oy Ag( be the set of all positively oriented O-sim-

is any O-chain of K over G, we define the Kronecker index

I(x) of the chain x by setting I(x) = gl-l- g2+ ese = 8ol *
We note that since a unique vertex ordering cannot exist for
simplexes of dimension greater than zero it is possible to
consider a positive orientetion only for O-simplexes. Hence
the notion of index is not extended to chains of dimension
greater than zero. -

LEMMA 71: I(x) + I(y) = I(x4+7¥y).

LEMMA 72: If x AJO, then I(x) = O.

1

Proof: Let A" = <(a, b) be any oriented l-simplex of

K, and let AQ = 4+ (a) and 5O = =+ (b). Then according to the

definition of a boundary, we have A(gAl) = gBO - g&o. Thus

I[A(gAl)] = 0. ZYinelly, I(Ay) = O for any v & 1! because

of Lemma 71.

LEMMA 73: If K is a connected complex then I(x)= 0 is

equivalent to x NJ 0. Further, BO(K,G) is isomorphic to G.
Proof: Let a and e be any two vertices of K, and let

A= 4 (a), EO= +(e). Now since K is a connected complex,

there exists a sequence of vertices al:l a, az, ce oy aq= e
such that Qs 8505 i=1, 2, ¢¢e, (g - 1), are vertices of
a l-simplex of K. If Ai‘ = +(ai, ai—!—l)’ i=1, 2, ooy -
(@ - 1), the boundary of any chain y = gﬁi -t-gA% s U

gAl is clearly Ay = gEO - gAO. Now Ay is a O-cycle

q-1
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because it has boundary zero. Also Ay is homologous to

zero because it is the boundary of a l-chain. Hence gEO -
gAp is homologous to zero and we have gEOKLJgAQ. Therefore
any O-chain x over an arbitrary group G is homologous to a

chain gAO, g £ G. By Lemma 72, since x(UgAO then (x -
gAO)N O and we have I(x - gA®) = 0 and'I(x) - I1(2a°) = o.

Hence I(xX) = g. Therefore if I(x) = O then x /JO, and con-
versely. By Lemma 71 we know that the operator I( ) is a

homomorphic mapping of the group L0 = ZO

into the group G.
If g £€ G there exists a cycle gAO in 20 sueh thst I(gAO) =
g. Therefore I(ZO) = G. Also, the equivalence of the rela-
tions I(x) = O and x,V0 implies that H° is the kernel of
the homomorphisni_"l( ) Therefore ZO/HO is isomorphic to G.
THEOREM 8: The zero-dimensional Betti group of an arbitrary
complex X over G is isomorphic to the direct sum G +G + ...
-+ G, where the number of terms in the direct sum is the
same as the number of components of the complex K.

Proof: This theorem is a direct consequence of Lemma
73 and Theorem 7.
DEFINITION 67: An abelian group A is said to admit

f a

finite system of generators x veoy X, X € A, 1=

l, xz’
1, 2, eve, S, if every x € A is of the form X = 7\lxl+

7\22{2 + .. ]\st, where 7\1, 7\2, coe, 7\5 are integers.
LEMMA 74: Every factor group and every subgroup of a group
with a finite system of generstors also admits of a finite

system of generators.
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The proof of this lemma for a factor group de-
pends on the proposition that every homomorphic image of a
finitely generated group is itself finitely genersted.
(See: Kurosh, The Theory of Groups, Vol. I (Chelsea, 1955)

p. 50) The proof for the subgroup case may be found in

Pontrjagin, Topological Groups (Princeton, 1939), p. 20.

DEFINITION €68: A group A generated by a single element x

1
is called a cyclic group. If the relation 'le = 0, where

A is an integer, implies that A =0, then the generator X,

and the group A itself are called free (or: of order zero).

If there exists a positive integer A such that )\xl = 0 and
/\ is the least positive integer which satisfies the condi-
tion, then the generator xl and the group A itself are said

to be of finite order .ﬂ.

N LEMMA 75: Every abelian group A with a finite system of

generators is a direct sum of cyclic subgroups Al, Az, ooy

AL B, By,

and where each Bj is a c¢yclic group of finite order 2%,

B B oo, Bq, where each A; is a free cyclic group

with 2‘"+l divisible by Z"j. Furthermore, if A has a finite
-

system of linearly independent generators, then the decompo-

sition of A into a direct sum exhibits no summands of finite

order.

DEFINITION 69: The number r in Lemma 75 is called the rank

of the group A. The numbers T, &, ..., T are called

the torsion coefficients of the group A. It may be noted

that r equals zero in case all of the elements of the group
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A are of prime order m. In this case all of the torsion co-
efficients 'Z', 2%, v ey Zﬁhare equal to m and we call q
the rank modulo m of the group A.

LEMMA 76: If the coefficient group G is a cyclic group with

generator gl, then the group Lr admits of a finite system of

generators glAi, glAg, voey 811‘-5«1.), where éAi}i =1

is the set of all arbitrarily oriented r-sim-
2, eee, X{(r)
plexes of the complex X.
LEMMA 77: The subgroups z¥ and HY of the group Lr, and the
factor group Zr/H:== B admit of a finite system of genera-
tors.

Proof: This lemms is a direct consequence of Lemma 74.

DEFINITION 77: Let BY be the r-dimensional Betti group of a

0
complex K over the group of integers GO. The rank of the
group Bg is the r~dimensional Betti number of the complex K

and is denoted by po(r)== p(r). The torsion coefficients

r .
213 22, coey Z}Lof the group B, are called the r-dimep-

sional torsion coefficients of the complex K and are denoted

b roet ... T
yzl’ 2° ’ a{xr)

LEMMA 78: If the group Gm of residues modulo m, m a prime,

is taken as the coefficient group, then every element of the
group L;, as well as every element of the subgroups Z; and

T r r _ T ,.T
H, of Ly and the factor group B = Zm/Hm, is g;so of order

me.

DEFINITION 71: Let Br be the r-dimensional Betti group of a
m

complex K over the group G of residues modulo m, m a prime.
m
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The rank modulo m of the group B; is called the r-dimension-

al Bettl number of the complex K modulo m and is denoted by

T)e.

p (r)

THEOREM 9: The zero-dimensional Betti number pm(O) of an
arbitrary complex K modulo m, m =0 or a prime, is equal to
the number p of components of the complex K. Furthermore,

the zero-dimensional Betti group Bg of the complex K over G

has no torsion coefficients. °
Proof: By Theorem 8 the group Bg is the direct sum of
the groups Cl, Cz, o eay Cp, each of which is isomorphic to
the group qm of residues modulo m. If m = O, then every
group ('::,L is free., That is, if m = 0, then Bg has no torsion
coefficients, and its rank is p., If m is a prime, then
every group Ci is of order m, and the rank modulo m of B; is
Do
DEFINITION 72: If AO is an arbitrary abelian group, a sys-
tem X)s Xgy eve, X of elements of AO is linearly independ-

7\2x2.+ cos +7\sxs- 0,

ent in case the relation }lxl +
where each ﬂi is an integer, implies that each.,ﬂi is equal
to zero. If the group AO admits of a finite maximal system

of linearly independent elements xl, Koy eons ch, then AO

is said to be of finite group dimension 63, denoted by

PO(AO). If the group A. has n linearly independent ele-

o]
ments for every positive integer n then GB(AO)== ®, I1f Am
is a group and consists solely of elements of prime order m

and if qm is the group of residues modulo m then we define
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an operation of multiplication of F\SGh.by x & Am'

Indeed, if @ is any element of the residue class A then
the product @ X clearly is independent of the choice of P
and depends only on the class 7\. We therefore define Ax =
@xu Then a system.xl, X5, s+, X_ of elements of the group

A is linearly independent modulo m in case the relation

m
= 7

7\lxl+ p, 0% + + 7\xs 0, where each s < G »

implies 7\1 = 7\2 Z eee 7\8

maximal system xl, xz, coey xP of linearly independent ele-

W p
W

0 modulo m. IT Am has a

ments modulo m then we define the group dimension modulo m

of A to be f’ and we denote it by (Om(Am). However, if for
every positive integer n there exists in the group Am a sys-
tem of n linearly independent elements modulo m we define
FL(Am) to be infinite.
LEMMA 79: Let A be an abelian group with elements of infi-
nite order or all elements of prime order n and of finite
group dimension. Then the group dimension of A is a group
invariant. That is, any two maximal linearly independent
sets have the same number of elements. In either case, A
admits operators from an integral domain, in the first event
from the integers, in the second from the prime field of n
elements.

Proof: On the strength of the last statement of the
lemma, which is obvious, we will employ in the proof opera-
tors W,/AL,1) chosen from the appropriate integral domain
and will be assured that /\/u# 0if A# 0 and /qqk 0.
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This will enable us to prove both cases simultaneously. 1t
might be remarked that in the case where all elements are of
prime order, the group is a vector space and the usual vec-
tor space proof, somewhat simpler than the following,

applies.

Let al, az, ooy ag,and,bl,,bé,.,..,.bp be two

maximal linearly independent sets. We shall show that p 2 q
by first assuming that p € q and arriving at a contradiction.
Then by virtue of the fact that the choice p < q rather than
q< p was arbitrary, we will have q = p.

Consider the set bl’ 8y 855 eees Bge Since it

q
is linearly dependent there is a nontrivial relation 7\bl+‘

2 q = .
7llal+ p, 8yt oeo A &4 0, and A # 0 since the a, are

independent. Suppose /\J is the nonzero coefficient whose

A
index is least. Consider the set bl’ 815 8g,y *ee; 8

<9 ooy

J
aq, where the symbol "A" indicates omission as usual. We

wish to show that this set is a maximal linearly independent
se1f. Suppose that /&bl* M a /'A— a2+ coe + M a5y 1+
/V'J*laj-\-l + eee + /uqa = 0., We note that /a_=l= O. We have
J J+l
also )\bl+ A aj-l- 7 2541
lier relation. Multiplying the first of these last two re-

4+ e -+ ?\qaq‘-—' O from an ear-

lations by A and the second by -a we may add and obtain

1 2 J=1_ _ J : J+1 _
mp ey et (24 - mA%a 2 0, where MY FO
since aF 0 and Ad 4 0. This is in contradiction to the

independence of the ai. Hence the representation/bvbl -+
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1 2 j=1 j*1
Mo+ M, + .4+ M aj_y M

q —
aj+l + .|o+/“ aq —
O is not possible and hence the set bl, A

al, az, e 00, aj,

ceny aq is linearly independent. We show now that it is
also a maximal linearly independent set. Let x be any ele-
ment of A. Then there exists a nontrivial relation Px +
Ylal -+ V2a2+ R Vjaj + eee+ ‘\)qaq = 0. Clearly PF

O since the a, are independent. Now if -Vj: O then x, bl’

>l""

al, 8oy ooy aj, ey aq is clearly a dependent set. We

shall show that even if ‘VJ#-' O then x, bl, 85 By eoe,

é\., ceey aq is a dependent set. If ’Vj ¥ 0 we can multiply

J . . . s .
by AJ obtaining AJYx + 'AJ‘Vlal + ...+ )J‘V']aj + oot

M = i -+ Ja 4+ 2+t “+ +
A° VY a8y 0. Now since )(bl 7\&j 7) aj+l cee

q, = i, _ _ _ S dtl _ _
A'ag =0, we have A%ajy= 7\bl 2 841 7 vee

+...+

]\qaq. Substituting we obtain A'Px+ A Pla

»I - b - Aty cee - thaq) + ou.+ Zj?qaq = 0.

41
Rearranging terms we obtain A% Vx - 'VJ)bl + A 'Vlal'"

R R i SR E A T O S
'V'j 7\q)aq= 0, where 7\j7=f= 0., Thus x, bl’ 81, 8,5 see,

N\
aj, oo, aq is a linearly independent set and b_, 8y,

1
85, ese, a{;_, coey aq is a maximal linearly independent set.

The process may be applied p times, at each stage adding an

element from the set of bi's and deleting one element
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from the set »of ai's and obtaining a set of elements

b, b eees b

p-17 ceey By , Which must be a

H
1 Q-p

il! a‘izi
maximal linearly independent set and which contains at least

one of the ai, since p < g. But this is a contrediction to

the maximality of bl, cee, bp; hence p 2 q.
LEMMA 80: The rank of a finitely generated abelian group Ag
is the same as the group dimension.

Proof: a) We consider first the case A = A +

0 1
Ay 4 oo +—AT-+ By + B, 4 e + Bq. Let x; be a generator

of the cyclic group Ai and let yj be a generator of the
cyclic group Bj' Suppose that

(29) 7\lxl-i' )xzxz N hrxr:'o.

Now since AO is the direct sum as above, relation (29) im-

plies that ﬂixi-= 0. But since xi is a free generator, we

= 0. = -+ + ...+ -+ -+
have 7\i 0. If x = Ax, 7\2x2 A _x_ Ay,

/Uéy2'+ oo #‘/Uhyé is any element of the group A, we may

multiply x by Zaiand obtain the relation 7 x = 2; 7&xl-+

q
™ Ax T ...+ T 7\rxr+ Z“q/l/‘iyl-f- ?q/wzyz-f-...-r'

qQ 2 2 °}
y = A x X cee X -+~ 0~+0+
?;/Mh q ZA 11 *-ITQ_%B 2-+ -+ Zﬁ 7E r

ese +0. Thus the set x, xl, xz, ce oy xr is linearly de-

pendent and hence the set Xl’ X ooy xr forms a maximal

2’
linearly independent system.
b) The above proof may be easily adapted to
the simple case where AO =B + 824 ese #+ B 3 that is,
1

q
where all of the elements are of prime order. In fact, the
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usual vector space proof applies.
REMARK: By Lemma 80 we may refer to the group dimension as
the rank since the two terms have been shown to be equiva-
lent.
LEMMA 81t Let m be zero or a prime number and let A be a
group with the property that mx = O for all x £.Am. That
is, if m #»O then every element of Am is of order m, and if
m =0 then A 1is an arbitrary group. If Bm is any subgroup

mn

of Am and if Cﬂ1= Am/Em, then

Proof: TFor convenience in notation we denote linear
independence in the ordinary sense by linear independence
modulo 0. We thus need not distinguish between the cases

m =0 and m:lfo. Let

(31) Fio Voo eoes ¥

and

(32) Zos Zga vees Zy

be two systems of elements of Bm and C respectively, let
m

each of the systems be linearly independent modulo m, and
let Xy E Ay be an element of the coset z,. We will first

show that the system

(33) Xys Xgy eees Xy Vo yz, cees Vo
is a linearly independent system modulo m in Am’ To this
end we assume that

34 ~+ A . -+
(34) A\ x, oXp+ eeet _Atxt /V'lyl+ /%23’24- -+

1
MV = 0
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where M., A< € G . Relation (34) corresponds to the rela-
J i m

tion ﬂlzl + Z222-+ ces t ‘Atzt-— O if we consider the fac-

10 Zgr ey 2y is a linearly in-

dependent system modulo m, we have 7\1"" 72 =T A=

t
» h ef i -+
0. Therefore relation (34) may be written /Miyl /“zyzﬁ-

tor group Cm. Then since z

,,.+/u.sys = 0. Hence, since Yi2 Yoo

independent system modulo m, we have /%1-=7/L2 Z see -

cees Vg is a linearly

/Mé = 0. Thérefore relation (34) implies that.Zj é//*i =
O. Hence system (33) is linearly independent. Now if

= OO = = QO
either Pm(Bm) or Pm(cm) OO then /Om(Am) and
the lemma holds for this case. We next show that if both
PnlB,) and f-‘-’m(cm) are finite, and if systems (31) and (32)
are both maximal linesrly independent in their respective
groups then system (33) is also maximal linearly independent
modulo m in A . Suppose that x § A and that z is the coset

m m

1 zz, .oy zt is
maximal linearly independent modulo m it is possible to find
a set P, ‘Vl, -Pz, 'Vt such that 'V,“Pi £ ¢, i=1,
2, ese, t3 7 F 0 and such that

of Cm which contains x. Since the set =z

(35) Yz + 'Y‘lzl-t- ‘\/222+...+ 'Vtzt-‘-"- 0.
Thus -

3 cee =

(36) Y x +"\)lxl + + ‘Vtxt y

where y is clearly some element of Bm' Now since Yq»

Tos sees Y is a maximal linearly independent set modulo m

we have

(37) My "’/V'lyl-f- M, + e +/0-éys =0
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for some set s, M, Mos +ees Mo, Where /“—,/u/l & G »
/V--‘-}'- 0. By relations (36) and (37) we may obtain

(38) /»."Vx -+ /«lel—f—/u,'pzxz + oot /A.‘Vtxt +

Now in this relation, if m = O then A4t and ¥ are each in-
‘tegers different from zero. On the other hand, if m F0 we
have‘/h and ¥ clearly nonzero residues modulo m, for m a
prime. In the first case the product /MfP is obviously non-
zero; in the second case /A‘V? 0 modulo m. In either event
the system x,_xl, xz, oo, xt, Y1 Jos eee, ys is a linearly
dependent set modulo m and hence system (33) is maximal.

THEOREM 10: Let K be an n-dimensional geometric complex,

let Q(r) be the number of r-simplexes of K, let p(r) be the
r-dimensional Betti number of K, and let p,(r) be the r-di-

mensional Bettl number of K modulo m, where m is a prime.

n n
Then X = 7((K)= ZO (-1)5{(r)= %(—l)rp(r)=
b -

— (-1)%p_(r).

r=0 n

Proof: ILet m be zero or a prime, let Gm be the group
of residues modulo m, and let g be a generator of the group

G . Let Al, Ay, ..., be the set of all arbitrarily \

T

A o)

oriented r-simplexes of the complex K. Clearly the elements
r T T

gA ’ gAB! see, ZA 0((1')

the group L; of all r-chains of the complex K over the coef-

\

may be taken to be the generators of

ficient group Gm. The elements gAi, i=1, 2, «o., (1),
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are linearly independent moduloc m. These elements form a
maximal 1inear1y independent set modulo m because they form
a system of generastors. Therefore

39 Iy = .

(39) Foiy) = KAlx)
Now the following relation holds:

T T r,r

40 - = oo
(40) Py = Pulz) +P(Ly/z), r=0,1, ..., n
because of Lemma 81l. Now if r > 0 then the groups L;/Z; and

H:_%re isomorphic by the remark following Definition 62 and

equation (40) may be reduced to

T r r-1 -
(41) pm(Lm) = ‘Gm(zm) + P, lHy )y T =1,2, ..., 0.
However if r = 0, then Zg'=‘Lg, and thus we have

0y = 0
(42) Pully) = £ (20).

If we introduce the notation F;JH;}) = 0 for the sake of
uniformity then relations (41l) and (42) may be written in
virtue of (39) as
— iy -1 -
(43) K(r) = P (z7) + P (H ™), r=0,1, ..., n,
-l j— 2 -1 —
where Fh(Hm ) O. Now by virtue of Lemma 81 /;E(Zm)
T P -
FZJHE) + em(zm/ﬂm), r=0, 1, ..., n, and furthermore,
. T p o A r
by virtue of Lemma 78 /Dm(Hm) +/°m(2m/Hm) = Fm(Hm) +
Pm(B;), r=z 0,1, ..., n. Noreover, Pm(BII;l).—.- /om(r), T =
0, 1, e¢s, n, by virtue of Definition 71. Therefore,
T .
Pm(zﬁ)-‘: Fm(Hm) + Pm(r), r=0,1, ..., ne Now by defi-
nition, Hg = §O§ and we thus have
= + r=1y 4+ T =
(44) d(r) = P (r)+ P (EI)+ P (H), PuH) = o,
r=0,1, e, n

by combining relation (43) and the fact that Pm(le;l) =
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PplHD) + Pm(r), r=0, 1, eo., n. Finally, if we multiply

relation (44) by (-1)T and sum over r we obtain the relation

M

-1yt = s (_1)T + S )T r-1
- (1ToEyE o (-DT P 2 ()T F ) +

H

Me

(D7 Pl = 3 (-1)7 o),

r=0 r=0

DEFINITION 73: The number X = A(k) is the Euler charac-
{

teristic of the complex K. It is sometimes referred to as

the Euler-Poincaré characteristic.

DEFINITION 74: Let AT = (8gs 8y +++» @) be an r-dimen-

sional simplex in Rm, let B® = (bo, b cee, bS) be an s-

1
dimensional simplex in Rn, and let f be a mapping, not
necessarily one-to-one, which assigns to each vertex a; some
vertex bj' If x= 7\0a0+ )\lal‘i' . 7\rar is any point
of AT, 1let f(x)= 7|Of(ao)+ )\1f(al)+ oot ATtla ).
This mapping when restricted to any individual vertex of Af
is the same as the mapping defined above on each vertex of

AY. The mapping f is a simplicial mapping of AT into BS.

LEMMA 82: 1If ET and E® are two simplexes whose vertices are
orthonormal vectors in Rr and RS respectively, then a sim-
plicial mapping f from ET to E° is a continuous mapping of
ET into ES.

Proof: a) We may assume without loss of generality
that r 2 s. Otherwise ET would map into a simplex which was

a proper subset EY or S with r 2 Q. Suppose that x =

2
)lel-+ ) 824- eee -t ]rer is any point of EY. Then f(x) =
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'Mlél-q-/‘«zéz-}- ...+/MS€S where each /u.i =

el £

k=1

b) Now there exists a positive number & such
that if ]-Vl —/».114 § fori=o, 1, ..., B (1) then be-
cause of the continuity of the metreci function @, we have
(’[f(x),?oéo-r vlE + ..+ PIE ] E.

c) Let P= max[@(iﬂ. Let the point s & ET
be such that f(x,s)< J/F . Now if s = G'Oeo+ G‘lel"'
oo + G‘rer such that ,G"j - 7\j/< Cg/p for each j then
ecf(s),f(x)] = f[—f(G"oeo-l-CT'lel‘\’ eeot G_'rer),f( Zoeo +
Koyt oot Aey)]=p [V 6o+ YEE T L+ PRE,

i .
/AO EO*’/"I ée +...t /&S és], where ’])i = &) G‘lk and

k=1
i) 1 i il =
/A.i = & 7\ +« But for each 1 we have I‘V -
.?%i) i i E!i) i i gs:.!
qak - ky| & k _ k < S =
k=1 ( 7‘ ) k=1 (r 7‘ k=1 /F

[{3(1)][5/{3] < S , Whenever P[f(s),f(x)]éé by a)e.
S
LEMMA 83: A simplicial mapping £ of A” into B is a contin-

uous mapping of AT into BS.

T s _
Proof: Suppose A~ = (ao, 81y sons ar) and B~ = (b,

bo, eess Bg)e Let ET = (e €15

whose vertices are orthonormal vectors in Rr. Let IilS = (00,

eee, € ) be the simplex
T

Cys oo cs) be the simplex whose vertices are orthonormal

. S . . .
vectors in R« The mapping g which maps Ar onto E® is
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bl-continuous and one-to-one by Lemma 31l. The mapping i
which maps Es onto BS is also continuous and one-to-one by
the same lemma. Let x = -7\0a0 + 7\lal t ...+ ATa, be a
point of AT. Then the function g which maps x into 7\0901‘
7\lel+ cee T 7\rer is bi-continuous and one-to-one by Lemma
3l. Let h be the simplicial mapping which maps 7\%0 +
7\lel+ eee 4+ %rerg E® into 7\0h(e0) + ﬂlh(el) + et
7\rh(er) g e°. This is c¢learly a continuous mapping by
Lemma 82. Therefore f = ihg is a continuous mapping from
AT to B°.
LEMMA 84: 1If x & Ar, and f is a simplicial mapping of e
into B®, then f(x) & BS
Proof: Let x = 7\an + 7|lal‘1‘ I 7)rar. Now since

f may map more than one vertex of AT into a single vertex of
B we may denote f(x) = 7\0f(a )y + 7\lf(a ) + ...+ AT f(a )
by f(x) = /V‘Ob ‘*‘/&b"" ...*‘/Ab ,where/bL is the sum
of all the 7\ for which a, maps into bJ Since the 7\1
satisfy the restrictions on coefficients in the definition
of a point of the simplex spanned by the vertices which
appear with these coefficients we know that the /u.j also
satisfy the restrictions, Therefore f(x) £ BS.
LEMMA 85: The set £(AY) is a face ]:ek cf the simplex BS,
where Dk ‘spans those vertices bj which are of the form
f(ai).

. Proof: Since f(x) =/V~Obo '+/“'1bl+ out /sté where
/u.J is the sum of all the /'\i for which f(ai) = bj then
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r k k
f(A") € D". On the other hand let D = (egs Cls vy Cy) e
Then for each bi we may select di’ a vertex of AT such that
- k 0 1 k
T d — . M = + + ) .

(d,) Te;. Let x €D x 7\00 ATey +7\ck
Then £( 204, + 7\ldl-1— oot 7ikdk) = A% + Mo + ..+
7\kck = x. Therefore D~ C £(AT). Thus Dk = £(AT).

LEMMA 86: If f is a simplicial mapping of ‘the simplex AT
into the simplex B® and if g is a simplicial mapping of the
simplex B® into the simplex Ct1=-(co, Cis sees ct), then gf
is d simplicial mapping of AT into Ct.
Proof: Now if x is a point of AT then g[?(xi]”
0 1 .

A g[f(ao)]-} 7\ g[f(al).] T o 'ng[f(ar)]. Since each
point f(ai) is a vertex of Bs and since gf assigns to each
point a  a unique point in Ct, then gf is a simplicial

i

mapping by definition.
DEFINITION 75: Let K and L be two complexes and let f be a

continuous mapping of the polyhedron \Kl into the polyhedron
‘L‘. If £ is simultaneously a simplicial mapping of the
simplex A into some simplex B of L for every simplex A of K

then f is a simplicial mapping of the complex K into the

complex L.
LEMMA 87: If K, L, M are complexes and if £ is a simplicial

mapping of the complex K into the complex L and if g is a
simplicial mapping of the complex L into the complex M then
gf is a simplicial mapping of the complex K into the complex
M.

Proof: The lemma follows from Lemma 87 immediately.
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LEMMA 88: If a ees, @, are vertices of a simplex of

o’ %1°
the complex K and if f is a simplicial mapping of the com-
plex K into the complex L then f(ao), f(al), v, f(ar) are
vertices of a simplex of the complex L.

Proof: This lemma follows directly from the definition.

DEFINITION 76: A mapping f which assigns to every vertex of

the complex K a vertex of the complex L in such a way as to

satisfy Lemma 88 is called a simplicial vertex mapping of

the complex K into the complex L. It may also be referred

to as a simplicial mapping of the abstract complex jx into

the abstract complex‘gg, where ;{ and ;:are the abstract

complexes corresponding to the geometric complexes K and L.
If two or more distinct vertices of the simplex A are mapped
by £ into a single vertex, then the simplex A is said to be

degenerate under the mapping f (or merely: degenerate).

LEMMA 89: If K and L are two geometric complexes and f is a
simplicial vertex mapping of the complex K into the complex
L, then f can be extended to a unique mapping g of the whole
polyhedron IKI so that g is a simplicial mapping of the
complex K into the complex L.

or Bys a be the vertices of the com-
plex K, let 3% be the abstract complex corresponding to K,

Proof: Let a

and let N be the natural realization of %< in the simplex

k

E =-(90, €1 oo, ek). We may allow a, and e, to corre-

i i
spond to the same vertex of the abstract complex a( without

loss of generality. Now the relation
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(45) x = ey + Aat ...+ Afa
assigns to each point A = 7\030 + )\161_,. eoe Tt )kekﬁ ‘N|
a point x £ IKI. The resulting mapping from A to x of the
polyhedron \Nl into the the polyhedron lK‘ is a one-to-one
and bi-continuous mapping by Lemma 42. The relation
(46) glx) = Xf(ay) + Alr(a) + ...+ mkf(ak)
defines a continuous mapping of A into g(x) of the polyhe-

n

dron IN' into the polyhedron IL,. Therefore relations (495)
and (46) together define a continuous mapping g of ]Kl into
ILI. Clearly g(ai) ==:f(ai) and hence g = f when restricted

to the vertices a; of K. TFurther, if AT ==(aio, ail

) is a simplex of K, then g defines a simplicial mapping
T

83

of AT into a simplex B® of L. Thus g is a simplicial map-
ping of K into L which coincides with f on the vertices of
K. Furthermore, the mapping g is unique becauss if f = g on
all the vertices of some simplex AT it can be extended to
the entire simplex AT so as to be a simplicial mapping on AT
in just one way, that is, by means of the relation g(x) =
ng(a0)+' ﬂ}g(al)-f cee + ;hrg(ar). Since g and f coin-
cide on every simplex of K, they are identical.

REMARK? We recall here that the set of all interior points
of a simplex of a complex K is referred to as an open
simplex of XK.

LEMMA 90: Every point of the polyhedron \Kl is contained in

exactly one open simplex of K. In other words, lKl is the
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set-theoretic union of all of the open simplexes of K.

DEFINITION 77: If a is a vertex of the complex K, the set-

theoretic union of all of the open simplexes of K with a as
a vertex is called the star of the vertex a in K and is
denoted by S{a).
LEMMA 91: Every star S(a) of K is an open set in lK,.
Proof: Clearly S(a)<:.|K|. Let F = ]Kl - S(a). Let
K* consist of all simplexes of K which do not have a as a
vertex. Then lK*"= F. This is because, by construction,
F is the set-theoretic union of all open simplexes of X not
having a as a vertex; but if A is an open simplex which
does not have a as g vertex then none of its faces has a as
a vertex. That is, A F. Therefore F is the set-theoretic
union of all closed simplexes of K which do not have a as a
vertex, and F = IK*I. NOW’{K*I is a subcomplex of K and is
hence compact and therefore closed. Also IK] is closed.
Therefore S(a) is open, since F = IKI - S(a).

DEFINITION 78: Let ¥ be a continuous mapping of a complex

K into a complex L. Then ¥ is said to satisfy the star

condition in case for every star S{(a) of K there is at least

one star S(b) of L such that P[S(a)]C S(b). We sometimes
say that Y9 is a star-related continuous mapping in case it
satisfies the star condition.

DEFINITION 79: Let f’ be a continuous mapping of the com-

plex K into the complex I which satisfies the star condi-

tion. Assign to each vertex a of K any vertex f(a) of L for
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which the following relation is satisried: ¥ [s(a)]C
S[_f(a)]. It will be shown in the following theorem that f
is a simplicial vertex mapping which can be extended by
Lemma 89 to a simplicial mapping of the whole complex K into
the complex L. With these conditions f is called a simpli-

cial approximation to lP or we say that ‘-P admits of a sim-

plicial approximation f.

THEOREM 1ll: Let ‘-P be a continuous mapping of the complex K

intoc the complex L which satisfies the star condition.
Assign to each vertex a of K any vertex f(a) of L for which
the following relation is satisfied: l)"J:S(al):]C' S[f(a)_].
Then f is a simplicial vertex mapping of XK into L and there-~-
fore can be extended by Lemma 89 to a simplicial mapping f
of the whole complex K into the complex L. Then f is a
simplicial approximation to ‘)0 and furthermore if x £ \K‘ ’
D¢ L, and P (x) £ D, then £(x) £ D.

Proof: Let x £ IK, . There is one and only one open
simplex A = (ao, 815 see ar) of X which contains x and
there is one and only one open simplex B of L which contains
the point P(x). Now x £ A CS(ai) for i =0, 1, «uo., T,
since S(ai) is the set-theoretic union of all open simplexes
of X which have a, as a vertex, and A is certainly one of
these open simplexes. Furthermore, YP(x) & kP}_—S(ali):l. Also
LP[S(&i)]c S[f(ai)]. Further, since ¥ (x) £ B, the open
simplex B is contained in the star S[f(ai )] , and therefore

f(ai) is a vertex of B, Now x is any point of IK\ so 4 is
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an arbitrary open simplex of K. Hence f maps the vertices
of a simplex of K into the vertices of a simplex of L. That
is, £ is a simplicial mapping. Now since f is a simplicial
mapping, we have the relation f(A) = C where C is a face of
the closed simplex B. Now if D is a simplex of L which con-
tsins Y (x) and T is the complex consisting of D and all its
proper faces, then B € T since Qﬂ(x) is contained in exactly
one open simplex of 1., namely B. Therefore B is a face of
D. Hence C is g face of D also and f(x) £ f(E)= ¢ C D. It
may be noted that the simpliclal approximation f to the con-
tinuous mapping #7 is not unique since there may be several
stars S{(b) which satisfy the condition P[S(a)] C s(b).
That is, although the star condition is satisfied for 79 it
may not be uniquely satisfied.
LEMMA 92: Let X, L, M be three complexes, and let .,¥ ve
continuous mappings of X into L and L into M respectively.
If £, g are simplicial approximations to QP and ?’ respec-
tively, then gf is a simplicial approximation to L/J?

Proof: If a is a vertex of K, then tp[s(a)].c s[f(a)]_
and therefore (//(i\F[S(a)]kC ‘P { S[f(a)]‘k C S{g[f(a)]} , and
therefore gf 1s a simplicial approximation to the mapping
V.
REMARK: The following ideas are applicable to abstract as
well as geometric complexes and no distinction is made in
the proofs.

DEFINITION 80: Let f be a simplicial mapping of a complex K
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into a complex I, and let AT = €(ay, 8y, «+-, a,) be an
oriented simplex of K. If all the vertices of AT are mapped
into distinct vertices of L (that is, if AT is not degener-
ate under the mapping f) we define

A -
(47) f(aA™)= é(b,bl, cee, b ) =B

0 T

where f(a,) = b,. On the other hand, if AT is in fact de-
generate under the mapping f we define

(48) f(aT) = o.

I I
2t et 8 o)A o(r)

of K over the coefficient group G, we associate with the

Now if x =glA§ -+ g A is any r-chain
A
chain x a chain f(x) of L of the same dimension and over the

same group G by means of the relation:

A A A
(49) f(x) = glf(Ai) + ng(%)"’ R go((r)?(ard(r))'

We say that the simplicial mapping f induces a chain mapping

A
f given by relation (49).
A A\ A
LEMMA 93: f{x + y)= f(x)+ f£(y).
LEMMA 94: ? satisfies the following condition:
A N
(50) Af(x)= £(Ax).
Proof: If the lemma is true for x = AT it will be true
in general for a chain x.

a) Now if Ar is not degenerate, relation (47)

A T : A
implies that £(AT) = © _ E(-1)2(b_, b., eee, D.y oue, b )
i=0 0 1 i T
Moreover, AT = i E(-1) (a., 8., oos, Q, ees, 8_)s Since
i=0 O 1 i r

AT is not degenerate, none of its faces is degenerate and
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A _
f(AAT)= e €-(-1)i(bo, Dyy woey Q, eeey B )T 4 r£(aT).

b) Let AT be degenerste.

1) Let f(Ar) have dimension r - 1. That
is, suppose that exactly two vertices of Ar correspond to a
single vertex of f{(AY) and let all of the other vertices of
AT ve mapped into distinct other vertices. We may assume
without loss of generality that f(ao) and f(al) each equal b
and that all the other vertices f(ai)==tﬁj i=2, 3, eoe,
r, are distinct and unequal to b. Now since aAY is degener-
ate, ?(Ar) = 0 and consequently A ?(Ar) = 0. Therefore it

A
is sufficient to show that £(AAT)= O. This may be

T .
achieved by first considering that AAT = 3 é—(-l)l(ao,
i=0

l; ...; é;; ceey af). Since ao and a, are mapped to b,

any simplex in the summation containing both of these ver-

a

tices is degenerate. Thus there are just two values of i on
the right-hand side of this equation which contribute non-
degenerate simplexes. These values of 1 are O and 1.

Therefore all simplexes other than (a «+e, a,) and

l’ aZ’

(a a e ey ar) which appear in the summation are degen-

O’ 2’
N -
erate. Therefore f(AT) = € (b, bz, cen, br) - é'-(bl,
by, +ees b_) = 0.
2) If £(AT) has dimension less than r -1
then all of its (r -~ 1)~faces are degenerate and relation

A T A
(48) implies f(AA ) = 0 and Af(A~) = 0.
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A A
¢) Thus in any cese A £(AT)= f4 (AT).
LEMMA 95: Let f be a simplicial mapping of a complex K into
Al
a complex L. If z is a cycle of K, then £ (z) is a cycle
of L.
Proof: Let z be a cycle of K. Then by definition of
A A
cycle, Az = 0., Then since Af(z)= f(Az) by the last
N N .
lemma, we have A f(z) = 0 and hence f(z) is a cycle of L.
LEMMA 96: Let f be a simplicial mapping of a complex K into
A
a complex L. Let z, N Z,, be cycles in K. Then f(zl)ru
A
f{(z ).
2

Proof: Since le Z

1l

5 then z. - z_ > 4 x, where x is
1 i A

some chain in K. By Lemma 93 we have f(z, = z_)& f(z,) -

A A A A 1l 2 1

f(zz). Thus f(z_ ) - f(z )=* f(Ax). But by the last lemma

1 2

A A A A - A A

f(A x)= 4 f(x). Thus f(zl) - f(zz) « A f(x), dnd £(z,) nJ

A

£f(z.).

2 A o A T
COROLLARY: £z (K){C 2T(L) and f[HI‘(K)]C H (L).

DEFINITION 8l: Let f be a simplicial mapping of a complex

K into a complex L, let Br(K) and BY(L) be the r-dimensional
Betti groups of K and L over an arbitrary group G. If z* £
BY(X) and if z is any cycle of the homology class z*, set
(1) Tzt = [Z(a)]*,

where Yi\‘(z)]* is the homology class of Br(L) which contains
the cycle ?(z). In the next lemma it will be shown that the
mapping?‘ of BT(K) into BY(L) defined by (51) is unique, and
that it is indeed a homomorphism of Br(K) into BT(L).

~ )
Therefore f is referred to as the induced homomorphism of
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the simplicial mapping f.

LEMMA 97: The mapping ’I\‘l as defined above is unique and is,
moreover, a homomorphism of Br(K) into Br(L) .

Proof: a) Let Zl and z_ be two cycles of z*. Then
z. Nz Hence /f\'(z )y v f(z )« Therefore Z?(Zl)]*

2°
EL’(Z )]* Thus :f' is unigue.

b) Let u*, v* be two homology classes of BT (K)
such that u* + v* = w* and such that u, v are cycles of u¥*,
and v* respectively. Then w<e (u -+ v) £ w*, and ?(w*) =
[?(w)]* = ?(u + v)* =[?(u) + /i\'(v)]*. The last equality
holds because /f\ is a homomorphsim., The last term of this
equation is the homology class containing [g(u) + ?‘(v)}.
Now the class containing a sum is equal to the sum of the
corresponding classes since [f(u)* f(v)]* is a sum in a
factor group. Therefore [f(u) d f(v)] [f(u)] -+
if(v)]*"‘ f{u*) + f(v*). Thus f(w*) f(u*)+ f(v*) and }u
is a homomorphsim.,

LEMMA 98: If K, L, M are three complexes and f and g are
simplicieal mappings of K into L and L into M respectively
then the induced mappings of the simplicial mapping e = gf

satisfy the relations

A AN
(52) e = gf
and

~ ~~
(53) e = gf.

Proof: a) It is sufficient to prove (52) for an ori-

ented simplex AT or K.
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1) If AT is not degenerate under e, then
AT is not degenerate under f and f(Ar) is not degenerste
under g. Then clearly, Q(Ar):r Q[?(A?i]. That is, relation
(52) holds.
2) 1If AT is degenerate under e then either

T is degenerate under f or f(AT) is degenerate under g.

A
A) If AT is degenerate under f then

A T Ala ]

f(A*)= 0 and g|f(A")|= O.

B) If f(AT) is degeneraste under g then
AN T _

A
Thus in either case 1) or 2) e(Ar) = 0 =
b) Relation (52) implies relation (53) because
~ - CA
if z* £ Br(K) and z is a cycle of z¥ then e(z*) = [e(za* =
Al ~ 3 _ ~
2 [Fiz)] * = gé[-f(Z)—]*}-' 'é'[f(Z*)] .

DEFINITION 82: Let R"™ be a Euclidean space, let F be any

set of points in R®, and let X be a point of R'. The point

X is said to be in general position with respect to the set

F if, for any two distinct points x and y of F, the segments
[H,xl and[ ‘J{,y] have just the one point ¥ in common., If
‘7< is in general position with respect to the set F, then

the set of all points belonging to segments r)( ,X], where x

is any point of F, is called the cone with vertex 2‘_ and
base F, and 1s denoted by X(F).

LEMMA 99: If )( is in general position with respect to the
set F and if G ¢ F, then ){(G) NAF =¢G.
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LEMMA 100: If W is a convex body, if U is the set of inte-

rior points of W, if V is the frontier of W, and if }{ is
any point of U, then )( is in general posgsition with respect
to V and W = X(V).

Proof: This proposition follows directly from Lemma
19.
LEMMA 101: If AT = (ao, 8., ose, ar) is an r-simplex of the

1
n-dimensional Euclidean space R then AT is a convex set.

Further, if Gr is the set of interior points of aAY, if pr-1
is the frontier of AY, and if X is any point of GF, then 7‘{
is in general position with respect to the set F'~1, and
ATz X (F).

Proof: Let a = ﬂoao'f' 7\lal-+ coo b Arar and b =
/oLOaO'f' /M.lal-l— cse -{-/Mrar be two distinct points of AY and
let x be any point of the closed segment ):a,b]. Then x =
La+ Bp, d+p = 1,2 o, gz o, end x = ?an-i-
'Vla]_"' cee + Vrar where
(54) »i=y ;\i.;.@/ui, 120, 1, eos, Te

Nowf.’. -yi'—' e(i 7\1 -+ f_/u.i=a<+p = 1. Also
1=0 10 Pi=0

'Vi”o( 7\1 +(3/(,\i >0, because o, 7\1, ﬁ ,/"\i 20, 1= 0,

1, «e., T« Therefore x £ AT by definition of simplex, and
we have the barycentric co-ordinates of the point x of the
closed segment [é,b] expressed in terms of the barycentric
co-ordinates of the points a and b by relation (54). Since

a and b were any two distinct points of the simplex AT and
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since x was any point of the closed segment [a,b], and since
we have shown that therefore x is a point of AT it is clear
by the definition of convex set that AT is a convex set. It
remains to be shown that if 7’{ is any point of the interior
of AT then }( is in general position with respect to the
frontier of AT, and the cone ){(Fr'l) = AT. Consider ATC
R'. AT is a convex body since AT is a convex set which is
compact and which contains by assumption at least one inte-
rior point, namely )-< « Now Gr is the interior of Ar and
FF-1 is the frontier of AT. By Lemma 18 ){(Fr—l) - Frl ¢
¢, hence ){(Fr-l) C e UrT 1= aT. on the other hand, by
Lemma 20 if ¢ is any point of AT and X £ GT, there exists a
T=1 such that c € [a,b]. That is, AT C ){(Fr'l).
Thus AT = }< (Fr'l).

LEMMA 102: If I .—"'"—(ao, al, ceny ar) is a simplex of the

point b £€F

Euclidean space Rn, then a point )-( £ R® is in general posi-
T
tion with respect to the set A if and only if the system
)(, 8yy 8y5 sy ar, is independent., Cleaily if K, 84
L » r+
8., sese, ar is an independent set then B = (),{, 24>

1
81y ooy ar) is a simplex. Further, if the set ).(, a4,

Bys cees ar is independent, then )-{(Ar) = Br+l.

Proof: The proof of this lemma begins with the proof
that if )< is in general position with respect to AT then
){, 84 Bys ooy ., is an independent set and conversely.
Then we show if ){ is in general position with respect to AT

+1
then BT is a simplex by means of the above short proof and
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the definition of simplex. It 1s then shown that the cone
H(A?)== gt by point set identity methods. TFinally we
show that 1if }< is in general position with respect to Ar
then }<(Ar) is a simplex.

a) First we show that if )( is in generasl po-
17 *te a, are inde-
pendent. We achieve thlis by showing that if J(, 849

sition with respect to AT then ){, ao, a

8., soey 8 &are linearly independent then the two segments
[—l-( ,x1] ang f)-{,xzj, for x, end x, distinct points of AT
cannot intersect 1n a point y distinct from)‘{ o That is, )'{
i1s in general position with respect to AT by definition.
This is done by proof of the contrapositive statement. To
this end we assume that AF contains two distinct points X,

X, such that the segments D{ ,x;l and [\( ,xz] intersect in a

2
point y distinet from }<. Let the barycentric co-ordinates
of the points xj, j= 1, 2, be denoted by 7@, h%, seny
7\.1_]'. Then
0 1 r
- “' p. s . + e .
(55) y O(JK J7\Jao+ Fj )\Jal + ?J 1&g

o(j % 1.
Subtracting relation (55) for j= 1 from relation (55) for

J = 2, we obtaln
(56) (dy - X, K +(/92/12 - Pl ‘7‘3)&0"'(?2 7':2L B
Pl?‘%)al + oo +(F27\§" Bidbre, = v -v=o.

Now ( of, - ofy)= Zg;( Al o- Al) =0, and not all the
2 1 =0 22 171

coefficlents of (56) are equal to zero. Hence the set
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K, ao, 81, eee, 8n is a linearly dependent set.

b) We next show that if ;\/ being in general
position with respect to A¥ implies that the points )/, ags
a,, +--, a, are independent then K(&T) = BT*l, e assume
that if )'{ is in general position with respecﬁ to AT, then
the points ){, 8y 8y, -ee, 8, 8&TE Independent. Now if x =
)036+ 7\1al+— con o zrar £ AT then any y & K(x) is of
the form y = o/ A + @’_ﬂoao + @Alal-P ceod Fzrar. If
this is so then y & B¥* by definition of simplex (depending
on the vertices being independent) by the present assumption
provided only that K is in general position with respect
to af.

1) Now let z = M X +/'/L0ao —l'/l&lal‘l' ceot

/U.rar be an arbitrary point of BY Tt. If s = 1, then, and

only then, z = ¥ . Assume z% X . Then #+F 1. Set
(57) A= M B 1l-p, Mz mM/p.
Then z = o K + (3 Na + B Ale, +...+ e ATa.. Then
z § ‘)<(AI'). Hence BTT1 C X(Ar).

2) Now let 2z be any element of }{(Ar).
Then z will be of the form z = o()( + (1 -‘0( }x, where x €
AY. Thus z =« X + (1 -& )( %, + e+ .ee 4 ATa_).
By definition of simplex 2z obviously belongs to pTtl = (X,
85y 815 secy ar) since each coefficient in the expression
for z is a nonnegative number, and the sum is o =+ (1 - of )
(2°4 A1+ ...+ AT)= Ak + (1L - & )(1) = 1. Therefore
Ka¥) ¢ 571,
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3) Since K(AT)C B™ ana BT C i (a7),
then K(Ar)= BI""'l.
¢) PFinally we show that if X 1is indeed in
general position with respect to Ar, then *(, 8as 81y oo,
ar are independent. The proof will be by proof of the con-
trapositive. We assume that the points )(, Bay By see, &,
are dependent. Then by definition of independence and by
the fact that 85) 81, «++ 8, are independent we have:
(58) VX+ YO+ Plag+ .4 YTa.= o0,
TY+v0+ yl4 oo 4T =0,
¥ # o.
System (58) remains true if multiplied by any arbitrary real
number, and hence the coefficients may be assumed to be
. . . by
arbitrarily small. Now if X ﬂ 0 + 7'1 R VAR
is any interior point of Ar, let
- 0 1
o % 1, Pl:{: 1.
Now since all coefficients in relation (59) are positive, we
. - 0 o
may obtain the relation y = (X; +X )+ (B2 + 7 )ay +
1 1 T T :
(Fl7\l—f- Y )al+- I ((51)\1 + -7 )ar with all coeffi
cients positive by adding (58) and (59) provided only that
the coefficients in (58) are small enough. Let CX = OG_+'

Fz‘ 1 - O( 7‘i '(/317\1-}-? /‘32 Then y =
O(ZK 'f_ Pz 7\2 0 4- @2 7‘ +. o--+ @2 7\;31.. Let X.z =
ﬂgao"' 7\2&1 T oo+ 7\5&1‘. If we set x; = X, = x, then

y = 0/l}< -I'-le, y -_-_o{z)(-}- ﬁzx. Then since o/l-‘# oL, =

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



-96 -
0(1+Y , we have two distinct expressions for y £ ()-{,x).
But ( K,x) is a l-simplex and since o and ﬁ are barycen-
tric co-ordinates with respect to it the existence of two
representations for y § (H,x) is not possible. Therefore
x4 4‘ Xse« A contradiction thus results from the assumption
that )<, ao, 8y reos a, are dependent and the lemma 1is

proved.

LEMMA 103: Let K be a complex in the Euclidean space R®

and let }f be a point of R® in general position with respect
to the polyhedron )Kl. R’is in general position with re-
spect to any simplex A of K. Furthermore, K (A) is a sim-
plex in rR".

Proof: ){ is in general position with respect to |K|.
Furthermore )< is in general position with respect to A and
hence by the preceding lemma }<(A) is a simplex in r".

LEMMA 104: Let K be a complex in the Euclidean space R} and

let X be a point of R® in general position with respect to
the polyhedron ,K,. Then the set of all simplexes of the
form.)<(A), A& K, and the set of faces of the simplexes of
this form, form a complex which we may denote by X (K).
Furthermore, I){(K)' = K(IK‘).

Proof: a) We need only show that the simplexes of
){(K) are properly situated to prove that )<(K) is a com-
plex. First we note that if P and Q are two properly situ-
ated simplexes, then their respective boundaries consist of

properly situated simplexes. Therefore it will be
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sufficient to show that any two simplexes of the form M (A)
and ){(B), where A, B £ K, are properly situated. Now if
AN B =g, then X(a)N K(B)= 7\/ and K is their common
vertex. If A/1 B = C, then C is the common face of A and B
and we have )<('A)ﬂ I{(B) = X (C).

b) To prove that |K(K)| = K(]|k|) we let A E
K. Then AC IKI and therefore K(A) C j((lKl). Hence
l){ (K)l ol }/\(\Kl). Now if y ¢ K(|K’), then there exists a
point x € |K| such that y ¢ { X .x) by definition of the
cone )< (|K\). Since x is an element of some simplex A of K
we know that y SJ{(A). Thus K ({K\) C |K(K)\ .

c) since K(lx|) ¢ lK(K)'I and \K(K)\C
K(ik|), then ¥X( [g|) = |)((K)| .

LEMMA 105: Let K be a complex imbedded in the Euclidean

space Rn, and let K be a point in general position with
respect to the polyhedron \Kl. If AT = € (ao, 8y soes ar)
is any oriented simplex we may denote by K(Ar) the oriented
simplex E-()(, 8gs 8By +ee, ar) of the complex 7'{(K). If
xT = glA{ -+ ggAg + ceo gkAII; is any r-chain of X with coef-
ficient group G and if K(xT)= &, K(A{) -+ gzK(Ag) + ...+
&, K(Ai),.then K(xr) is an (r + l)-chain of X (K) over the
coefficlent group G. TFurthermore, the following relations
are satisfiled:

(60) AX(xT) =xT - XKaA(x), >0

(61) AX(x°) = x0 - 1(x°)(K).

Proof: K(xr) is an (r + 1l)-chain of K(K) over the
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coefficient group G by definition of chain. The relations
(60) and (61) are obvious for xT = Ai,
The relations may be extended to an arbitrary chain xT

i=l’ 2’ l.., k.

through multiplication of each term by the appropriate e,

and then summing over i.

1

THEOREM 12: Let AT be an r-simplex, let S° — be the complex

consisting of all of the proper faces of Ar, and let T be
the complex consisting of all of the faces of Ar, including
AT itself. Then every s-cycle z5, s > 0, of TF is homolo-
gous to zero. Furthermore, every s-cycle z5, 0 s ¢
(r - 1) in sT-1 15 homologous to zero, and every (r - 1)-
cycle zr-l, (r = 1) >0, in sT-1 35 of the form zr_l =
g A(AT), where g is an element of the coefficient group
chosen and AY is the oriented sSimplex.

Proof: We may assume without loss of generality that

n
the simplex AT = (a +e., 8 ) is imbedded in R and

O, al’
that a point K exists such that the system K, 8Gs 815 eees

a, is independent. We define a simplicial mapping f of the

complex K(Tr) into the complex TT by letting f( K) = ag,
f(ai)= ai, i=0, l, s sy . NOW if ZS, S>O, iS any

cycle of 7T, set v -'-"'-K (zS) so that Av = z®. This is pos-

sible by relation (60} of Lemma 105. Then z% is homologous

to zero in K(Tr), and ?(zs) = z° by construction. Also,
A A A

since z° = f(z8) = A?(v) = f(Av) = Af(v)= Au for some

chain u of TT, then z°® is homologous to zero in 7 also.

s r-1 S

Now if 2z, is any cycle of S , then z

= A(u) where u is
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some chain of TF. If s < (r - 1), then the chain u is con-
tained in s¥~1 by hypothesis and therefore z° is homologous
to zero in sT-1, However, if s =r - 1, then since TT con-
tains precisely one simplex AT of dimension r, we have u =
gAr, where here AT may denote either of the two possible
orientations of AT. If u = gAr, then zT 1 = g A(aT).
REMARK: Zero-dimensional homologies in the complexes are
considered in light of the ideas contained in the material
commencing with Definition 63 and ending with Theorem 8. Ve
may also note that 'I‘r is always a connected set, and that
sT-1 is a connected set except when r - 1 = 0, in which case

r=1 and s¥-1 consists of two points.

DEFINITION 83: Iet K be & geometric complex imbedded in the

Euclidean space R™®. We define the complex KXK', imbedded also

in R®, to be the barycentric subdivision of XK in the follow-

ing manner : 1if K is a O-complex, let K*'= K. If K is not
a O-complex, assume that K is an (n + 1)-complex, n = O,
l, ... « Assume further that the barycentric subdivision of
an arbitrary n-complex has been defined already satisfying
the following two conditions:

a) || = |p|

b) 1if Q is a subcomplex of P, then Q' is a
subcomplex of Ppr'.

Then to define the barycentric subdivision of
an (n <4 l)~-complex K, we let M be the n-skeleton of X, we
let a3, aZYL, ..., AD* be the set of all
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(n =+ 1)-simplexes of K, we let Si be the set of all proper

A§+l n+1l

faces of » S5 C M, and we let _)(i be the point of Ai

whose barycentric co-ordinates are all equal to 1/(n + 2).
We define ){i_to be the barycenter (or merely: center) of

A§+l. Since Si is an n-complex, by assumption its bary-

centric subdivision Si is already defined. Furthermore,
}<(S£) is a complex by ILemma 10l. Finally we define K' to
be the set of all simplexes contained in the complexes M!'
and }{i(si), i 1, 2, ee., k.

LEMMA 106: K' as defined above 1is a complex. X' satisfies

conditions a) and b) in the definition of barycentric sub-
division.

Proof: o) To prove that K' is a complex we must show
first that K' satisfies the first requirement of a complex,
that is, that if A is a simplex of K', then every face of A
is also in K'. This 1s clear, because K' is the set of all
simplexes contained in the complexes M' and )<i(8i), i=1,
2, sse, K. We recall that Si is the set of all proper faces
of the (n:+*;)—simplexes of X. Secondly, we must show that
every two simplexes of K are properly situated. To this end
we let P and @ be two simplexes of K' and we consider the
following three possible cases:

1) P and § are contained in M'. 1In this
case P and Q are properly situated because M' is a complex

by the inductive hypothesis in the definition of barycentric

subdivision.
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2) PEM', @ € }{i(Si). In this case we
need only consider the case of the form Q £ Z{i(B), where
B CS-{, since all simplexes of ){1(83) are faces of sim-
plexes of the form Ki(B), B ES:!L. Now since P C ‘M'\ = ‘Ml
and since ){i(B) C_A;H-l then clearly P/ Q C \M\ ﬂAl;ﬂ‘ =
\Si\. Also ){i(B) n \Si\'-'- B implies that Pf]QC PﬂB.
Furthermore, P and B are properly situated since they are
simplexes of M'. Therefore, by Lemma 35, P qnd Q are
properly situated.

5) P EK(s]), a £ Ki(sy). Ifi=3
then P and Q are clearly properly situated, since they are
contained in the same complex. If i=#3j, then we assume
that P = l(i(A), A g (s]), = )-(j(B), B £ S' and we have
P CA‘;”I, QcC A’g*l, PNQCaN AIJ}'H'. Now since 1=k j,
we have Alil'i'l/\ A?+1C ’Sil N Sjl' Therefore P () QC lSi\ﬂ
\sj\. Hence P(\Q = P/ ‘silf)qﬂ \sj\. vow P (M\|s, | =
Ki(A) N IS_,L“—'- A and Q n\sj = ){j(B) N Isj’= B, and
hence P ()3 = A()B. Therefore P and Q are properly situ-

ated by Lemma 35 because A and B, being in M', are properly
situated.

b) To prove that K' satisfies conditions a)
and b) of the definition of the barycentric subdivision of
an (n %+ 1)-complex K we note first that

D x| =|u|Uagty gt U0
and that \K"_-: ‘M'lu l}(l(Si)‘u I){z(Sé)l U...U

le(Sl'c) - Now by the inductive hypothesis of the
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definition, \Ml: \ M'\. By Lemma 101, Lemma 103, and
Lemma 104 we know that A?*i.:'l)(i(Si)‘. Therefore IKI'=
‘K'l and XK' satisfies condition a) of the definition.

2) Secondly, we let L be any subcomplex
of X and we let N be the n-skeleton of L. Let Ail"'l,
Ag*i, cs ey Ag+l be the set of all (n- 1l)-simplexes of L.
Now L' consists of all the simplexes contained in the com-
plexes N' and }{5(83)’ j=1, 2, ees, Po Now N' is a sub-
complex of M' because of the facts that N is a subcomplex
of M and that the inductive hypothesis holds. Therefore,
L' is a subcomplex of X' since p € k. Thus finally, X!
satisfies condition b) of the definition.
LEMMA 107: Let K be a complex in R™ and let
(62) Ags Ay, eees Al

be any sequence of simplexes of K in which Ai

is
“+1 is a proper

face of A,, 1= 0, 1, ¢eo, (r - 1). Then

(65) (Q—'O’ G-‘l’ s ey Tr)
is a simplex of K', where Cri is the barycenter of A

i
Conversely, every simplex P of X' can be shown to be a sim-

plex of the form (63) where each GJi is the barycenter of
Ai and where (62) is a sequence of simplexes of K such that

A is a proper face of A i=0,1, ¢ee, (r - 1),

i’
Proof: The proof of this lemma is by induction on the

i+1

dimension of K. We retein the notation in the definition of
barycentric subdivision.

a) If the dimension of AO is less than n + 1
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then all of the simplexes of (62) are contained in M, and
hence (63) is a simplex of M'C K' by the inductive hypothe-
sis in the definition of barycentric subdivision. If the
dimension of Ao is n+4+ 1 then Ao:: A2+l, and G'a = )\/i‘ If
r=0, (0 & }(i(S}L) CK'. If r=E0, then the sequence
(62) is contained in Si by definition of Si.and then A =
(q‘l, G'z, ces, fr) is a simplex of S:!L by the inductive
hypothesis and therefore k&(AJ Z( 0y T, ene, 0‘}) is a
simplex of %(i(Si).

b) Conversely, if P is a simplex in X' then
two cases may occur. Either P £ M' in which cese P is
clearly determined by (62) by the inductive hﬁpothesis, or
the second of the two possible cases will occur and P &
K&(Si). Subordinate to this second possible case there are
the following three subcases:

1) it p ¢ S} then PC M',

2) it P = (){i) then the sequence consist-
ing of the single simplex A?*l determines P,

3) if P = ).(i(.A), where AC S!, then A is
determined by some sequence Al’ Az, csoy Ar of faces of Si
because of the inductive hypothesis, and P is then deter-
mined by the sequence An+i, Al, A

i 2?
DEFINITION 84: Let K be an arbitrary geometric complex, let

LAY | Ar'

K(O) = K, and define K(m) to be the barycentric subdivision

of K(m-l). Then the complex K(m) is the barycentric subdi-

vision of order m of K (or less explicitly: .a subdivision).
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We shall have occasion to discuss subdivisions of complexes
without the necessity of mentioning the order of the subdi-
vision, and in such a case we shall use K with a lower case
Greek superscript to signify the subdivision under consider-
ation. Since in such a situation the superscript will not
indicate a particular integer, if Kl and K are distinct
complexes then their respective subdivisions KO( and Kg‘

need not be of like order,

THEOREM 13: Let K be an r-complex imbedded in R®. If the

diameter of every simpglex of K does not exceed some positive
number ?’, then the diameters of the simplexes of K(m) can
be made arbitrarily small by taking a sufficiently large m.

Proof: By Lemma 58 the diameter of any simplex of

K(l) = K' does not exceed the length of its l-simplex of

maximum length. Let (a”o, G”l) be any l-simplex of K',
where G‘O is the center of a simplex A0'= (ao, al; eedy a),

and G_l is the center of a proper face A. = (a

1 0r 810 *ves
at) of Ao. This is possible by Lemma 1l07. If A = (at+l’
Bi4pr *ts as) and @ 1is the center of A then by Lemma 101,
relation (54), clearly O’O = [(t +1)/(s + l)]d‘l-l‘

[_(s - t)/(s + l)]G"' . Therefore the point G"o divides the
segment [6'1,0“] in the ratio (s - t)/{(t 4+ 1), and hence
(T, q)= [(s - t)/(s + 1)'_]9(0‘1,0"). But @(J7,0)
does not exceed the diameter of A, because Crl and 0 are
contained in Ay, and therefore e(d'o, O"i) < [(s - t)/(s+

1{)12. Thus the diameter of any l-simplex of K' does not
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exceed [r/(r + 1)]12 since 0 € s £rand 0 £t £5s - 1.
Therefore the diameter of any r-simplex of K' does not ex-
ceed |r/(r + 1)]7 by Lemma 58. Now since this argument
holds for the barycentric subdivision of any complex, even a
complex which is a barycentric subdivision itself, the diam-
eter of every simplex of K(m) is less than or equal to

E'/(r + l)]m,? .

DEFINITION 85: Let K be a complex of arbitrary dimension.

Let X' be the barycentric subdivision of XK. If x is a
O-chain of K we define the barycentric subdivision x' of the
chain x to he x* = x. For chains of higher dimension than
zero, we assume that the barycentric subdivision of the
n-chains of K has been defined and we define the barycentric
subdivision of A where A is an oriented (n + 1)-simplex of
K. We let x = A, we let S be the set of all proper faces of
A and we let ').( be the center of A. Thus K(S') CK'. Now
by the hypothesis, the barycentric subdivision (A A)' of the
boundary AA of A has already been defined because (A A)' is
a chain of S'. Now set A' = )(BA A)E] as in Lemma 105 and
let x' = g_A' + ngé + .. gkAl'c whenever x =

11
+ ces + gkAk is an {(n 4+ 1)-chain of K.

g A Tt
82A2
ILEMMA 108: Any chain x of K satisfles the relation

(64) A(x') = (Ax)'.

Proof: The lemma is obvious for a O-chalin. Assume

that it is true for an arbitrary n-chain. Clearly

(65) AAY = A;(EAA)':\:- (AA) - )([A(AA)']-
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Now A A is n-dimensional and thus by the assumption A (A A)!
= (DA A)' = 0. Therefore relation (65) is of the same
form as (64). Hence the relation is true for an oriented
(n + 1)-simplex and by extension is true for any (n+ 1)-

chain.

DEFINITION 86: If K'®) is the barycentric subdivision of

order m of K, we define x(m) inductively by letting x(o) x

and x(m*—l) = (m)),. If K"k X

(x denotes K(m) then we let x

denote x(m) .

LEMMA 109: A(xd): (Ax)o( .

Proof: This follows immediately from Lemma 108.

LEMMA 110: If z is a cycle of K then ZO( is a cycle of KD( .

If Zl and 22 are homologous cycles in K then zf( and z; are
homologous cycles in Ko( o

Proof: This lemma is an immediate consequence of
Lemma 109.

THEQREM 14: Let K be any complex, and let KO< be a sub-

division of XK. If Z is any r-dimensional homology class of
K and z is any cycle belonging to z then we denote the

A which contains the cyecle ZO( by z¥. .

homology class of K
Then Z is mapped into Z¥X by a single-valued mapping and an
isomorphism of BT(K) onto BT (K O‘).

Proof: The proof of the theorem is based lon two lemmas
which follow.

LEMMA 1l1: If K is a complex, Ko( a subdivision of K and x

A whose boundary Ax is of the form Ax =z,

a chain of K
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where z is a cycle of K, then there is a chain y of K whose
boundary is z and such that x - yO( is a cycle homologous to
zeéro in KO<.
Proof: The proof of this lemma is based on the follow-
ing lemma.

LEMMA 112: Lemma 111 implies Theorem 1l4.

Proof: 1If \P(z) = zd then ‘10 assigns an element of
BT(KX) to each element of BT(K). It is clear that Y is a
homomorphism of Br(K) into Br(ch ) In order to prove the
lemma it is sufficient to show that “F is an isomorphism of
Br(K) onto Br(K« )e We prove first that ¥ is an isomor-
phism of BT(X) onto a subset (which we shall subsequently
prove not to be proper) of Br(ch). Now if z.°( = 0 then
sz 0 in K*'. That is, a chain x of Ko< exists such that
Ax= zoK. By Lemma 111 then, correlsponding to the chain x
there exists a chain y of K such that Ay = z. That is,
such that z/VO0 in K or z = 0. Thus Y (z) = 0 implies z =
0. Thus "P is an isomorphism. Secondly we prove that “P is

>4

a mapping of Br(K) onto BY(K~'). Suppose that r is an ele-

ment of Br(Kq). That is, r is a class of cosets of homolo-
gous cycles of KO(., Let x be an element of r. If we repre-
sent the trivial cycle of K by O, then 4x = 00( because x

is a cycle of KO(. Thus Lemma 111 is applicable with z = 0.
Therefore there exists a chain y of K such that Ay = 0 and
such that x =~ yO(N O in K . Clearly “P(u) = r where u is

the homology class of K which contains y. Therefore LP maps
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BT (K} onto all of Br(K°<

). Hence Lemma 111 implies Theorem
14.
REMARK: We now prove Lemma 112:

Proof: The proof will be limited to the case of ch =
K' since an obvious induction on the order of the subdivi-
sion will extend the conclusion to any required order. Now
in the case of K‘¥= K' we shall prove the present lemma by
induction on the dimension of the complex K. Clearly if X
is a O-complex the lemma holds. We assume now that the

present lemma holds for every n-complex. By Lemma 113 then

Theorem 14 holds for any n-complex also. Let K be an (n -+

l)-complex, let M be its n-skeleton, and let A?+1,
Ag+l, . eoy A§+1 be the set of all arbitrarily oriented (n+

l)-simplexes of K. Let Si be the set of all proper faces of
A?+l and let }(i be the barycenter of A?+l. Let T, =
){i(Si). By assumption the present lemma and Theorem 14
both hold for Sy since Si is of dimension n. Now therefore
the homology properties of the complex Si are the same as
those of the complex S which have been discussed in

Theorem 12. We now co;sider the homology properties of Ti.
Let x, be an r-chain of T, of the form.){i(zi) where z, is a

i i

chain of S1, with the property that its boundary Axi is

contained in Si. Then the following relations hold:
a) if r £ n then there exists a chain y; in Si

such that xi - yi is a cycle homologous to zero in Ti’
b) if r= n+ 1, then x = gi(A§+l)', where g,
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is an element of the coefficient group over which the chains
are defined.

Before proof of a) and b) we note that the two

following relations are valid:

= = A = -
c) Ifr 1l then Axi Hi(zi) ze

I(Zi)Ki, by Lemma 105. Since Axi is contained in S:!L then
I(z,) L(i:: O. That is, if r =1 then z; is a O-cycle of S:'l.'_
with Kronecker index zero.

d) If r > 1, then Ax; = A)\’i(zi) =z, -
K (Az ). Thus K, (Az ) =0 and Az = 0. That is, if
r 21, then 2y is an (r - 1l)-cycle of Si.

We now prove relation

a) If r £ n then the dimension of 2y is less
than or equal to n - 1. Since we have assumed that the
present lemma holds for every n-complex then Theorem 14 also
holds. Thus the cycle Zi is homologous to zero in Si if
r 7 1 because every cycle of dimension greater than zero and
less than n is homologous to zero in Si by Theorem 12.
However, if r = 1, then by c) we have I(zi) = 0. Now since

n2r=1, then S, is connected, and hence zirv O in this

i
case also by Lemma 73. Therefore there exists a chain yi in
S} whose boundary is z,, end if v, = R&‘yi) we have the
relati = - = - . That is s -
ation Avi yi }{i(Ayi) yi Xy hat is, x4

y.nO0inT,.

i i

We now prove relation

b) If r= n + 1 then the dimension of z, is n.
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If n =0, then I(zi).= 0 and then obviously z  is of the
i
form giA (Ai). Thus b) holds in this case because A (A') =
i

(AAi)'. If n 7 0 then there exists a cycle u in Si such
i

that ZiN u! in S' by Theorem 14. However, the homology is
i i

an equality since Zi has the same dimension as Si and thus

Zi= u:_'L. By Theorem 12 the cycle ui of Si is of the form
giAAi_ELl“'l. Therefore zj = g; (AARM)r. That is, x; =
ey Ky[(aa] )" = gy al™e.

We consider one more relation

e) In a) and b) it was assumed that Xi =
Xi(zi) and therefore that the dimension of xi was at least
one. We shall prove here that if x  is a O-chain of ‘I‘i then

1

there is a O-chain yi of S:!L such that x, - yi(\J 0O in Ti' To

this end let a be a vertex of Si. Theni-l' ( Ki’ a) is a sim-
plex of T, whose boundary is +(a) =~ (){i). That is (){i)/u
(a) in Ti' If we replace = ( )-{i) by =+(a) in Xi the re-
guired chain yi is obtained.

We now apply relations a), b), and e) to the
present lemma. If x is a chain of K' which satisfies the
present lemma then z' is a chain of M' provided only that
Ax = z' since the dimension of A x is less than or equal to
n and hence z is a chain of M. Let xi be the sum of all the
members of the linear form x which contain simplexes with
vertex Ki' Then xi is a chain of Ti. We shall prove that

Axi is a chain of S]!_. Indeed, the chain x - x, does not

contain such simplexes with vertices )-{i and hence the
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boundary A x - Axi does not contain such simplexes. The
chain A x is contained in M' and also contains no simplexes
with vertex ){i. Eence the difference of these chains
Axi-'-‘ Ax - (A x - Axi) contains no simplex with vertex
,l{i. Therefore the chain 4 x, is contained in Si and a),
b), and c¢) are applicsble to 1t. We now consider two cases.
In the first cese we consider the dimension of the chain x
to be less than n+ 1. Then by a) and ¢) there exists a
chain Yy of Si such that Xi - yi!\) 0 in Ti’ If we set x* =

x - (x -yl)-...-(x

1 . K
hence x* - x AJO in K'. The chain x* has no simplex with

—yk) then &A x¥= A x -~ 2' and

vertex ){i, i=1,2, ..., k, and hence x*¥ is contained in
M'. Thus the present lemma applies to x*. That is, there
is a chain y of M such that A y= 2z and x* - y' VO in M'.
Hence X - y'pv O in K', and the lemma holds for chains of
dimension less than n+ 1. In the second case we consider

the dimension of the chain x to be n-+ 1. By b) x_ is of
i

- ‘ ntlyye = o+l n+l e
the -i"-orm x, gi(Al Jr. Ify 81A) + 8 A, T4 -+
gkAi 1 then the chain x - y' clearly contains no simplex

with vertex )(i’ i=1, 2, s¢e, ke Since x - y' is an

(n-+ 1l)-chain it is equal to zero and therefore x = y'. Now
the boundary A (x - y') =(2 - Ay)' = 0 and thus Aoy = 2,
since the barycentric subdivision of a chain is zero only if
the chain is zero. Hence the lemma holds for dimension of x
exactly n+ 1. This completes the proof of the present
lemma, which by Lemma 112 implies the validity of Theorem 14.
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REMARK: If K and L are two complexes, if K and L are
subdivisions of X and L respectively, and if f is a simpli-

X into L(3 , then the mapping f induces a

cial mapping of K
homomorphism? of the group Br(KO( ,G) into the group

Br(L@ ,G)s This consequence is stated in Lemma 97. However
there exists an isomorphism between Br(Kd,G) and BY(K,G)
and also an isomorphism between Br(L@ ,G) and BY(L,qG).

These two similar isomorphisms are in consequence of Theorem
14. Therefore, since isomorphic systems are abstractly
identical, we may consider/\f{ to be a homomorphism of Br(K,G)
into Br(L,G). This idea may be expressed more explicitly in
the following manner: 1let X be any element of the group
BT(K,G) , let x be a cycle belonging to the class X, and let
xO( be the subdivision of x in K°<. Now ?(xo( ) is a cycle
of L@ by Lemma 95. Furthermore, by Theorem 14 there exists
a cycle y of L whose subdivision y(5 is homologous to ?(xa()
in LQ . If N is the homology class of elements of L which
contains y then ?‘J(X) = N.

LEMMA 113: If K and L are two complexes and if Y is a con-

tinuous mapping of the polyhedron ‘Kl into the polyhedron
IL‘ then there exists an integer m 2.0 for which the mapping
‘P of the complex K(m) into L satisfies the star condition.

Procof: We shall first show that there exists a posi-
tive number & such that every subset F of the polyhedron
lL\ of diameter less than & is contained in one of the

stars S(b) of the complex L. To prove that such an €
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exists we assume the contrary; that is, we assume that for
every positive integer t there exists a set Ft of \L\ of di-
ameter less than 1/t which is not contained in any one of
the stars of the complex L. Now since |L| is a compact set
and since the dlameters of the sets Ft approach zero as a
limit, then there exists a point ¢ in 'L' such that any
neighborhood of ¢ contains an infinite number of the sets in
the sequence 2F£}t 1, 2, ees " If we take as a neighbor-
hoof of ¢ any neighborhood containing the star S(b) of X
which contains ¢, then at least one of the sets Ft is con-
tained in S(b). This is & contradiction and hence the re-
guired number € exists. Now since \K‘ is compact, \P is
uniformly continuous, and there is therefore a positive num-
ber é; such that
(66) (‘Eﬁx),‘f(Yﬂ<€
provided only that x, ¥y & \Kl and that e(x,y)< S . Now if
Z’ is the maximum diameter of any simplex of X let m be a
large enough positive integer that |n/(n + l))m7 < 3/2.
Then by Theorem 13 every star S(a) of K(m) has diameter less
than S . But the diameter of 'f[s(a)] is less than € by
relation (66) and thus ‘P[é(aﬂ is contained in et least one
star of L. Therefore “P which maps K(m) into L satisfies

the ster condition.

LEMMA 114: If K' is the barycentric subdivision of an

arbitrary complex X then every star of K' is contained in

some star of XK.
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Proof: Let @ be any vertex of K' and let A be the
simplex of K whose center is @, If B = (q*o, 0 soe,
G’r) is any simplex of the star S(4 ) of K!', then let @ =
Cri. The open simplex B is contained in the open simplex A

0
by Lemma 107. Furthermore, since A, = A is a face of A

)
the star S(¢d ) is contained in the inion S(4) of all op:n
simplexes which have A as a face. If a is a vertex of A
then the star S(a) of K contains S(A), and thus S(G ) C

S(a).

LEMMA 115: Let £ be a simplicial mapping of a complex K into

A
a complex L and let K be a subdivision of K. If KO(=t= K,

then £ is not a simplicial mapping of K"<

into L, but it is

a star-related mapping and hence by Theorem 11 there exists
o4

a simplicial mapping fc( of K into L which approximates f.

Furthermore, if x is a chain of K, we have

(67) o (x™ )= f(x).

In particular, if L = K and if f is the identity mapping of

d(x“):"— Xe

K onto itself we have/%
Proof: We show first that f satisfies the star condi-
tion. Let a be a vertex of K¢ If f(a)= b and if A is any
open simplex of K which has a as a vertex then f(A) is an
open simplex of L with vertex b. This is a consequence of
the definition of simplicial mapping. Thus f{?(ai}(l S(b)
and hence by Lemma 114 we know that the mapping f of K°<
into L is also a star-related mapping. We now prove rela-

tion (67) by means of an induction on the number of
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dimensions of the chain x. The relation is clearly valid
for a O-chain. We assume that relation (67) holds for any
(r - 1)~-chain. Let T be the set of all faces of an oriented
r-simplex A of K. Then f(]Tl):: D where D is a simplex of
L. Now f maps all vertices of To‘ into points of D. Hence
every simplex of Tc‘ is mapped by f either into D or into a
face of D by Theorem 1ll. We consider two cases.,

a) If the dimension of the simplex D is less
than r then all of the r—simplexes of TCK are degenerate
under £ ana we have ?‘d (A )= O which implies ?(A) =

b) If the dimension of the simplex D is r then
f(A) is the simplex D itself oriented in some particular
way. However
(68) /i\‘d(Ad) = xf(a)
for some integer k since every r-simplex of Tc‘ either maps
onto D or is degenerate under the mapping fo(. We need only
show that k= 1 to complete the proof. Now applying the
boundary operator A to relation (68) we obtain
(69) Af (A ) = f (AA ) = f ):(AA)“'_\ kAf(A)-

kf( 4 A).
Replacing A A by x we obtain ?‘o( (x % ) = kf(x) from the
equality of the third and fifth terms in (69). Hence k =1,
since the inductive hypothesis implies that (67) holds for
any (r - 1l)-chain such as x. Therefore
(o) TR )= Ry

for any arbitrary oriented simplex Ai of Ko If we multiply
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(70) by g, and sum over i we obtain (67) for an arbitrary
r-chain.

LEMMA 116: Let f be a simplicial mapping of a complex K

o
into a complex L, let K be a subdivision of K, and let £

Y

be a simplicial mapping of K into L which approximates f.

: o\ i~ T X
The mapping £  induces a homomorphism £ of B (K ') into
r . .
B (L). This induced homomorphism may also be considered to
be a homomorphism of Br(K) into Br(L) by the second remark
following Lemma 112. However £ also induces a homomorphism
A T A A
f of B'(K) into BY¥(L). We shall prove here that f and fq’
are identical. Furthermore, if L =X and f is the identity
~
mapping of K onto itself then the homomorphism fﬂ‘ is the
identity mapping of BY{K) onto itself.
Proof: If x* & BY(K) and if x is a cycle of the homo-
N\
logy class x¥*, then f‘x(xq') is a c¢ycle of L and the homolo-~
| NA (X % s : ol
gy class | £V (x7 ) which contains it is £ ~ (x*) by the
A
second remark following Lemma 112. However , f(x) is a
A

cycle of L and the homology class [f(xi}* which contains it

~; Ao(
is f(x*)., Thus f

~n

PV
f (x*) = f(x¥).

N
(xq)’f(x) by Lemma 115 and hence

THECREM 15: If!Kl, and th‘ are homeomorphic polyhedra,

then their corresponding complexes Kl and Ké have equal

dimensions.
Proof: We prove the contrapositive and assume without
loss of generality that the dimension n of the complex X_ is

1
greater than the dimension of Ké' Let ‘P be a homeomorphism
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of K_ onto K We may choose subdivisions Ko\ and x of K

2 1° 2 S 2
and K.L respectively which are of sufficiently high order to
. . A
insure that simplicial mappings f of K2 into Kl and g of
o =4 -
K, into K, exist and approximate Y ana P 1 respectively.
This 1s true by Theorem 1l and Lemma 115. Then the mapping

4 -
fg of Kl into Kl approximates the identity mapping *f l‘f’
and hence by Lemma 115 we have
ACA o

(71) Fle(x= )= x
holds for every chain x of K.. But we also have the condi-

1
tion that every n-simplex of Kl is degenerate under the

mapping g since K;(

does not contain any simplexes of dimen-
A
sion n. Therefore g{x ) = O whenever x is an n-chain of K.
A
Thus f[é(x“ )-l = 0. But this is a contradiction to relation

(71) because clearly x is a nontrivial n-chain of K This

1.
proves the theorem by reduction to an absurdity. It may be
noted that we are enabled by this theorem to refer to the
dimension of a polyhedron.

THEOREM 16: Let \Fl be a homeomorphism of a complex K, onto

o<’ il
o9 and let Kl and Kz be sub-

divisions of the given complexes for which the mapping “Pl

of K-_]c_>< into qu is a star-related mapping. If the mapping
o o

f°( of K into

1 1 K,

then we have the following three relations:

a complex K., let Nfil = “P

is a simplicial approximation to ‘fl

~d T . T
a) the homomorphism T of B (Kl) into B (KZ)
is independent of the choice of K‘(, Ko( , and fi" and hence

can be denoted by the relation :Fl [Br(Kl)]C Br(Kz),
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b) the homomorphism ‘¥l is an isomorphism of
Br(Kl) onto Br(Kz), "

¢) 1if the isomorphism F; of Br(Ké) onto
Br(Kl) is ind%ifd by T% in the same manner, then the
isomorphisms Vl and ?% are inverse to each other.

Proof: We first introduce two additional subdivisions

Kl@ and K§ of the given complexes for which the mapping 'fg
of X e onto K% satisfies the star condition, and we let f@'
of KQ’ into K6 be a simplicial approximation to LPJ.' We
may assume without loss of generality that‘Kf? is a finer
barycentric subdivision that Kg‘ since they are clearly

subdivisions of the same complex K . We may choose a sub-

division K; of K2 fine enough to insure that the mapping

Y, of K; onto Kf is star-related. Let f: be a simpli-
cial approximation to LFB of KY into Kf( and let fzQ be a
simplicial approximatiocn of KY into KJQ. « Let le be a sub-
division of Kl such that the mapping ‘Pl of KlY into Kz“ is
star-related. Let f;be a simplicial approximation to \701

2
homeomorphisms written above the arrows and with the simpli-

Y X
of Kl into X . The following diagram with the given

cial approximations written below outlines the mappings and

subdivisions mentioned above
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P Yo
Ay K7 e
1 2 P
X 1 Y
K <——K.
2 fI
1{54 P4 e P,
Y Ki<—=
Ty )

These simplicial mappings induce homomorphisms of the
corresponding Bettl groups of the subdivided complexes which

can be outlined as follows:

BU(K ) g7 ()
1
2 T ) RN r,.¥
B (Ké ) < G B (Kl )e
¢ e *
BT(KS ) = Br(Kl )y 1S

¢
fl
The corresponding Betti groups of the original complexes for
which there are also induced homomorphisms (by the second

remark following Lemma 112) may be outlined in the following

manner:
B" (K, }+— B" (K, ) +————B" (K, ) ~——BF (K, ).

\
Now the mapping f? f; of K2 into Ké* is a simplicial

approximation to ‘fl %; by Lemma 92. Thus the homomorphism

My e~

r2 gl

172 ol A~ of

Now the kernel of the homomorphism fl fz contains the ker-
oL ~of A

nel of fz « But since fz f2 is the identity homomorphism

it has kernel zero. Hence

of Br(KZ) onto itself is the identity homomorphism.

~
of
(72) the kernel of the homomorphism fz is zero.
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"’d:v
Since fl ngmaps Br(Ké) identically onto itself then
BY(k,) = 2% FXBT(K,)C ?XBT(K.). Hence
o) = 17 1T B 2 1 17 enc
Nd -
(73) £, BT(Ky) = BF(K,).

Now the mapping f; fz'which maps Kf' into K{* is a simpli-
cial approximation to 4; q& by Lemma 92 and thus

(74) the kernel of the homomorphism fir is zero.
Thus

rrol T
(75) £, B'(K,) = B (K ).

2 ~ck -
Now by (72) and (75) clearly fz is an isomorphism of B (K;)
~

onto Br(Kl) and since fl f;' is the identity mapping then
ot ~ of . .
fl and f2 are inverse l1somorphisms:

N At -
(76) £,? = (f;) L

. ~o Y . .

In a similar manner clearly f2 and fl are inverse isomor-
phisms:

~Y ~ol, -1
Therefore

~ o
(78) f. = ??Y

1 1 ~ ~Y

because of (76) and (77). In a similar manner fl = fl .

since we may replace « by ? and obtain valid relations.

Ne ~ ol
Therefore ﬁl 2 f; by (77) and (78). This proves a).

(o d ~
Since f£x is an isomorphism, ‘Fl is clearly an isomorphism

of Br(Kl) onto Br(Ké). This proves b). Now finally, if we
N

denote the induced homomorphism of Br(Kz) into BY(K;) by ’fz
~

L d

then by relation (76) the isomorphisms ‘fl and V% are
inverses. This proves c¢) and concludes the proof of the

theorem.,
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COROLLARY: If Ky
\Kil and \Ké\ are homeomorphic, then the Bettl groups

and K, are geometric complexes such that

Br(Ki,G) and Br(Ké,G) are isomorphic for any coefficient
group Ge.

Proof: By Theorem 16 a homeomorphism from IKll onto
IKzl defines exactly one isomorphism between Br(Kl) and

Br(Ké).
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