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A polynomial representation of a certain type of shift

register counter has LkLeen effected by F.H.Young and this
representation has been shown to ke effective in determining
properties of this type of counter. In this paper the poly=
nomlal representation of shift register counters is further
ceveloped. In particular, the cycle length for a shift
register counter is defined; the characteristic polynomial
of 2 type of shift register is defined; a complete set of
initiating states for cycles relative to a polynomial are
defined; a complete set of initiating states for cycles
relative to @ polynomial are exhibited in terms of the
initiating states relative to its relatively prime factors;
the numbexr of cycles of each possitle length for a shift
register counter is determined from the cycle lengths asso-

ciated with its characteristic polynomial.
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I INTRODUCTION
Abstyact

A polynomial representaetion of a certain type of shift
register counter has been effected by F.H.Young {1). This
representation has been shown to be effective in determining
properties of this type of counter (1)(2). In this paper
a polynomial representation of shift registexr counters is
studied. In particular, the cycle length of shift register
counters is defined; the characteristic polynomial for a
type of shift register counter 1s defined; some theorems are
given which show the relation between the cycle lengths and
the factorization of the characteristic polynomial.
Counters

Defipition: A state of & register of n elements 1s an
oxdered sequence of n symbols, each either O or 1.

Iheorem 1.1 A register of n elements has 2" states.

Defipition: A shift register is a register in which,
on each clock pulse, the symbols are shifted one place to
the left and discarded on the left end. The input to the
first place is unspecified.

Definition: A shift registex counter is a shift
reglster in which the input to the first place is a single-
valued logical function of the elements of the register,
treated as elements of a boolean algebra.

Theorem 1,2 A state of a ghift register countexr has a

unlque successor state.
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2
Theorem 1.3 Any sufficiently prolonged sequence of
states in a shift register counter must return to a state
already in the sequence.
Proof: The number of states 1s finite,
Definition: A state S which initlates a sequence of
states returning to S is a state of a cycle.
nition: T 1s said to be in the same cycle as S
in case S is a state of a cycle and S initiates a sequence
of states leading to T.
Definition: The number of distinct states in a cycle
is the length of the cycle.
Example: Consider the shift register counter on the
elements AqArA; in which the input to A} is the function
AaAé defined by the truth table

0 o2 ‘3
0 1 0

1 1 0

1 0 1.

The sequence initiated by the state 10l is

sy 101

S 110

$ 100

sg 001

Sa 010

S 100

The states 100, 001 and 0l0 constitute a cycle of length
three. The states 101, O0ll and 110 are not states of a
cycle.

An interesting shift register counter is the one in
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3
which the input function is the symmetrlc difference of two
particular elements, i.e. the function NAJ = NJ*+ N'J where
N and J are the boolean algebra representations of the nth
and jth register elements. For this type of counter the
state with all elements zero, called the zero state,
initiates a cycle of length one, called the zero cycle. It
is this type of counter which has been studied previously (1)
and to which & major portion of the present paper is devoted,
Polynomials

Definition: If D is an integral domain then a is said
to divide b in D in case a and b are contained in D and
there exists a ¢ contalned in D such that b=ac in D.

Definition: a is said to be congruent to b modulo c,
written a=b mod(c), relative to an integral domain D, in
case ¢ divides a-b in D.

Theorem 1,4 Congruence mod(c) is an equivalence
relation.

Theorem 1.5 If p is a prime integer, then the ring of
integers I with the relation congruence mod{p) is a field
(denoted I/(p)).

Corpllary I/(2) is a field.

Theorem 1,6 The ring of polynomials in a transcen-
dental x over a fleld F (denoted F[x]) is an integral domain,

Corollary I/(2)[x] is an integral domain.

Theorem 1,7 1If c(x) is contained in I/(2)[x], then

c(x) is uniquely expressible as a product of irreducikble
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4
factors except for the order of the factors and possible
repetition of the identity l.

Defipnition: If a(x), b(x) and c(x) are contained in
I/(2)[x], then we write a(x) =b(x) modd(2,c(x)) in case
c(x) divides a(x)~ b(x) in I/(2)[x].

Lemma 1 a(x)=0 modd(2,c{x)) if and only if c(x)
divides a(x) in I/(2)[x].

Lemma 2 If c(x) is irreducible in I/(2)[x] and if
a(x)b(x)= 0 modd(2,c(x)), then either c¢{(x) divides a(x) or
¢(x) divides b(x) in I/(2)x].

Definition: If b(x) and ¢(x) are contained in I/(2)[x]
and if the degree of b(x) is less than the degree of c(x),
then b{x) is said to be a residue modd(2,c(x)).

Lemma 3 If c(x) is contained in I/(2)[x] and if c(x)
is of degree n, then thexe are 2" distinct residues and
2"~ 1 distinct non-zero residues modd (2,¢(x) ).
Iransformation

Definition: & 1s a single-valued transformation in
case for every a: aS is defined implies aS is unique.

Lemma 4 A shift register counter is acted on by a

single-valued transformation.

Theorem 1.8 If a single-valued transformation $ has
an inverxse S~l, then S-l is a single-valued transformation.
Definition: If S is a single-valued transformation

acting on a set A and 1f a is contained in A, then a is an

element of a cycle if as" = a for some m greater than zero.
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Definition: If a is an element of a cycle, then the
length of the cycle containing a is the smallest integer m
for which as' = a,

Iheozxem 1,9 If S is a single-valued transformation
acting on a finite set A and S has an inverse, then every
element of A is an element of a cycle.

Proof: Let +y be @ memker of A. Then #; initiates a
seguence

PorbpaPas *t0 LAL, Ut
Since the nunber of states is finite we nust nave Ay = Ay
for some 1 and j, with i and j distinct. Let i ke less than j.
If 1 =0, then we are done., If i¥ 0, then, since :‘»—l is
single«valued, ﬁis—lc SRE where A; o3 1s well defined.
Thus, A= 4y implies Ay . 1435 -1 and for every k less than
or equal to i, Ay _ k”Aj- g+ Let k=1i; then #y=A; 4 for
j-1 cdifferent from O,

This shows thst the state A5 initiates a sequence
returning to 45 so that 4A; is & state of a cycle. Since Ag

is arbitrary, every state 1s a state of a cycle. weE Do
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II REPRESENTAT ICNS
Vector Representation
A state of a reglster of n elements may be represented
by a vector {a;3 =(a, a, ces a, aj) where each a; is
either O or 1. The accompanying addition tables show that

th

the symmetric difference of the n and the Jth elements

is a + ay where the addition is carried out mod(2).

N

(
NaJ|1l o +mod(2)| 1 0
{10 1 1|0 1
J
(ol1 o ol1 o

Relative to the logical function NAJ let S be a
mapping which sends the vector {aj{ into the vector of the
next state. Then

{agis=(a, _3 3, _o ++» 8] 8, t24)

The transformation S can be represented by the nxn matrix

(000 0 1]
100 00
010 00 n-J
00
0 - 0.1
00
s
000 1.0d
6
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The matxix S has O0's everywhere except on the diagonal
below the main diagonal and the nth and jth rows of the nth
column, The shift is effected by multiplying the vector by
the matrix with the matrix on the right and the addition
carried out mod(2). The register is characterized by its
corresponding matrix, The determinant of the matrix S is 1;
therefore, S is nonsingular and Sﬁl exists. Since the
transformation represented by S is single-valued, theorem 1.9
applies. Thus, for the register with the logical function
NAJ, every state is a state of a cycle.

If m is the length of the cycle containing the vector
3; then as" = al where I is the identity matrix. Thus m is
the smallest integer such that X% =1 where A is a root of
the polynomial |S-AI|, i.e. a solution of the characteristic
equation of the matrix S. Expanding the determinant | ~AI|

by elements of the last column we obtain

120 A0 \ 00
01lA 0 1A ' o i1No )
001 ol 01\
. + /1[ + A '
' 1) .
12 - AT A0
0 l 0
01 01 1A
0
o
I o1l

The first determinant has ones on the main diagonal and

zeros everywhere below the main disgonal;therefore it is 1.
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The third determinant has A's on the main diagonal and
zeros everywhexre above; thus it is RP..l. The second can
be written as the product of two determinants one of which
18 "3, the other 1. Thus
s -AZl = 1+ A" " 34 AR,
and this is the characteristic polynomial for this register.
Polynomisl Representation
Consider a polynomial a(x) in I/(2)[x]. Multiply a(x)
by x and reduce modd(2,x"+ x" 'j-kl). If
a(x)-.-anxn-lfan_lx"“2+---+a2::+an
then xa{x)s an_lxn"l-b---+(an_j-i-an)xn-:l-‘r“--t-alx-t-an
modd (2, x"+ x" "3 41y,

rearrange the order of the terms to obtain

xa(x)= an_j__lx"'j“l+---+an+-~- +(an_3+an)xn“2
Associate the coefficients of this last form with the
elements of a reglister. The effect of the operation is to
shift the coefficlents one place to the left and write the
sum mod(2) of the n*D and the n - (n~3) =35*® into the first
place. Note that the constant term of the polynomial is
associated with the j-+15t position of the register.

This shows that multiplication of a(x) by x and

reduction modd(2,x™+ x" "3

+1) corresponds to the operation
of the shift register counter with the input function NAJ.
Thus, for this register, if m is the smallest integer such
that x™= 1 modd(2,xn+xn"j+1),i.e., such that xn+ xn-j-i- 1l

divides x™+ 1 in 1/(2) [x}, then m is the length of the
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PR
cycle containing the state (0+¢0l0---0) and the residues of

xk modd(2,xn+-xn'-j-+l) for k=0,1,*+**,m correspond to the
states of the cycle.

2

Example; Consider the residues of xk modd{2,x“ +x +1).

These are given by

CONBL e
ma m W

PR K

X +1

X

n

The trinomial x“+ x +1 corresponds to the register on
two elements with the input function (2)A(l). Wwriting the
coefficients of the polynomials as register states with the
constant term in the J-+15t= Qnd position we obtain the

cycle of length three

l -1 g
X,- 0

x%- l1 1
X - l Oo

Generalization
Consider the shift reglster counter in which the input

to the first place is given by the function

ASo135= a8 8.
This function will be called a generalized symmetxic
difference and is to be evaluated by inserting sufficient
parentheses and using the relstion FyA Fp =F)FJ +F{F, where
Fy and F, are any two logical functions. For example
(318632) 833 = (3133 +J1J0) A J3
(3333 +3135)38 +(3334 +3135) '35
= J1J333 +J]3,J8 +3{I8T5 +31T003

Jlﬁu J2 AJS

i
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By the symmetry of the result any alternative grouping will
give the same value. In general the function.lﬁgzzl Jj is
well defined since it 1s the sum of all minterms on k
elements which contain an odd or even number of primes as

k is even or odd.

This generalized symmetric difference is 1 or O as the
sum ail+-a124-*---+aik is 1 or O mod(2) where Jy is the
boolean algebra representation of the vector element aij.
For this register the zero state gives rise to a cycle of
length one.

The shift of this register can be represented by a

matrix Sl vwhere

00 0 ¢p

10 e e Ocn_l
Sl= 01 OCn_2

_OO lcl _

and ¢y =1 if 24 is included in the sum and 0 otherwize.
The ceterminant of S; is ¢, thus $) is non-singular if and
only if ¢#£0; i.e. cp=1.

The characteristic polynomial of S; is

c(x)= x"+ cyx" "1

+*"" tep - 1x +Cp.
Consider multiplying a polynomial a(x) by x and reducing
modd(2,c{x)}). The result is
-1 -
(a, _ 1 -;-clan)xn + (s, _ 2+c2an)xn I +{ay+ec, _ lan)x

+cCpan.
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This operstion corresponds to the shift whose matrix is Sy

where _ -
Cl 62 ¢oe Cn ~1 Cn
1 0 0 0
0 o 1 0 |

The characteristic polynomial of S, is also c{x).

This shows that we can be aided in studying the shift
registercounter whose input function ie a generalized
symmetric difference by looking at finite polynomial rings
modd{2,c(x)). Since the transfor-ation represente& by Sy
is single-valued, theorem 1.9 applies. Thus, if ¢;=1 so that
S‘l exists,then every polynomial is an element of a cycle;
i.e., if p(x) is a residue modd(2,c(x)) and c,=1,then there
exists an m such that x"p(x) = p(x) modd(2,c(x)).

Definition: 1If S is a logic acting in a shift register
counter and S can be represented by a matrix,then the
characteristic polynomial of the matrix is called the
characteristic polynomial of the shift register counter.

Example: Consider the four element counter in which
the symmetric difference of all four elements is the input
to the first place. The characteristic polynomial is
x* 4 x4 x2+ x + 1 which divides xm+l for m=5%5 and for no
smaller integer. Thus the cycle lengths for this register
divide 5. In particular the cycle containing the polynomial

1 1s of length 5.
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III SOME THEOREMS CONCERNING COUNTERS
Detexmipation of the gvcle lengths ip terms of the factors

of the characteristic polynomial
Iheorem 3,1 If c(x) is irreducible in I/(2)[x] and

the constant term of ¢{(x) is l,then all nor-zero cycles
have the same length m and m divides 2"~ 1,

Pxoof; Suppose c(x) is irreducible in I/(2)[x] and m
is the smallest integer such that c¢(x) divides xT41,
Construct the set P; of residues

Py = §x¥{ modd(2,6(x)) k=0,1,°**,m~-1
These constitute m distinct residues for if not, then

xk = x8 modd (2,c(x))
for k different from s and both k and s less than m. We
may assume k less than 8. Then
kK(x®* K41)20 modd(2,c(x))
for O<cs~k=q<m. Thus by lemma 2, c¢(x) divides x%+ 1 for

x

q less than m,contrary to assumption.
I1f P) does not contain all 2"~ 1 nonezero residues
then choose & non-zero residue p(x) not contained in P,
Construct the set of residues P, where
Py = ?kkp(xfz modd{2,¢(x)) k=0,1,***,m-1
P, consists of m distinct residues since 1f
xkp (x) = x®p(x) modd(2,¢(x) ),
we may suppose k is less than s. Then
xk(xs‘k—f-l)p(x)zo modd (2,¢c(x)).
By lemma 2 c(x) divides either xK or x* K41 or p(x).

12
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But c(x) does not divide xk; nor xs-k+ 1l since s-k is
less than m; nor p(x) since p(x) is a non-zero residue
modd (2,c(x)). This contradiction shows that the m residues
contained in P, are all distinct. Since (x™4 1)p(x)=0
implies xmp(x)srp(x) modd (2,¢(x) ), m 1is the smallest
. integer such that xmp(x)zsp(x) modd (2,¢c(x)).

Continuing until all non-zero states are exhausted
we obtain a collection of sets P1,Ppy**+,P, with each Py
containing m elements. Thus ms = 27— 1, G.EWD.

Example: The polynomial x64-x3-+1 is irreducible in
1/(2)[x] and div'des x"+1 for m=9 and for no smaller
integer. Since 26~ 1=7 X 9 the corresponding register has
7 cycles of length 9.

Similarly, the shift register on four elements with
the symmetric difference of all four elements written into
the first place has the irreducible characteristic poly=-
nomial x4+ x3+-x2+-x 4+ 1 which divides x54-l. Since
24- 1l =1%5=3+5 this register has three cycles of length 5.

If f(x) is a polynomial, sets can be constructed with
f(x) as a modulus in a manner similar to that used in the
proof of theorem 3.1l.

Let f(x) be 2 polynomial of degree n with constant
term 1. Then there ar> 2" -1 non-zero residues modd (2,f{x)) .
Construct the set of distinct residues

Rg = {x¥¢ modd (2,£(x)) k=0,4,¢e,my=1

where mo is chosen as the smallest integer such thet x0=1.
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If my does not equal 2"~ 1, then choose a residue pj(x)
not contained in R, and construct the set of distinct
residues

Ry=§x%p; (x)] modd(2,£(x)) k=0,1,+-,m~1
where mj} is the smallest integer such that xmlpl(x)ispl(x).

i1f mg+ m) does not equal 2" -1 then choose & residue
pz(x) not contained in Ry or R; and construct a set Ro.
Continue in this fashion to oktain a collection of poly=-
nomials P=fp1(x)? for 1=0,1,°++,s with pg(x) =1 and
xkpi(x) not congruent to pj(x) for any k unless 1 =j, along
with a collection of integers m;y for which

Mot M+ vee +m = 2"-1
and

x"py (x) =pg (x) modd(2,£(x))
but

xkg‘(x)#pi(x) modd (2, £ (x))
for k less than mj.

Definftion: If P is constructed as above then P is
called a complete set of initiating states for cycles
modd (2,£(x)).

Definjtion: If pj(x) is contained in P end my is
defined as above then m; is called the cycle length
associated with py(x) modd(2,f(x)).

Iheorem 3.2 Let F(x)::fl(x)fz(x)\where fl(x) and
f,(x) are relatively prime, each have constant term 1 and

are of degree nj and ng respectively. Let P3={pj,(x)¢
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and P2:=€p2j(xj§ be complete sets of initiating states for
cycles of length my4 modd(Q.fl(x)) and my, modd(z,fz(x))
respectively. Then the polynomials pli(x)fZ(x) and
poj(x)fy(x) are initiating states for distinct cycles cf
length myy and myy respectively modd(2,r(x)).

Proois First, the cycles are distinct; forxr if

x¥py; () E5(x) =x%pyy (x) £y (x)  modd(2,F(x))
then multiply by f,(x) and transpose to obtain

E x‘;pn(x) (f2(x))z+xspzj (x)£4 (x)£,(x)

=x pu(x)(fz(x)) modd (2,F(x) ).

Then, for some (x)

xp13 (x) (£,(x)) 25 W(x)E; ()£, (%) in I/(2)[x].
Thus

x¥p11 (x)Eo(x) = L(x)£1 (x) 1in I/(2)[x].
But xkpli(x) i1s 2 non-zero residue modd(2,f;(x)) so that
f1(x) does not divide xkpli(x); therefore, this last
requires that fl(x) and fz(x) are not relatively prime,
contrary to assumption. This contradiction shows that
these two polynomials cannot be congruent modd(2,F(x))
for any choice of i and j.

Now, 1f

xkpli(x)fz(x) Exsplj (x)f2(x) modd (2,F (x) )
then transpose to obtain

(xkpli(x)-l- xsplj (x))f,(x) =0 modd (2,F (x) ).

This requires that

xkpli(x)+ xspl‘j (x)=0 modd (2,£3 (x)).
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Suppose 8 1s greater than k; then
k
plj(x) modd(2,f1(x)).

From the way in which the pjji(x) were choser, this requires

pli (X) = xs

that 4 =) end that s -k is a multiple of mj;. The smallest
value of s -k for which the congruence can hold is mj,; thus
my; is the smallest value of m for which
pli(x)fz(x)srxmpli(x)fz(x) modd (2,F (x)).
This showe that the polynomial pli(x)fz(x) initiates
a cycle of length my; modd(2,F(x)) distinct from cycles
initiasted by the polynomials plj(x)fz(x) for j different
from 1 and from the cycles initiated by the polynomials
pzj(x)fl(x) modd(2,F(x)). 1In the seme manner, one can show
that the polynomial pzj(x)fl(x) initiates a cycle of length
oY) modd (2,F(x)) distinct from the cycles initiated by the
polynomial in(x)fl(x) for 1 different from j. Q.E.D.
Example: Consider the polynomial

9. .3 2

X7 4+ x +l=h3+x 2

+l)(x6+ x5+ x4+ x“+1)
3

x~+ x24-l is irreducible in I/(2)[x]) and divides x4+ 1 for
m=7 and for no smaller integer. x6+-x51-x44-x2+-1 is

irreducible in I/(2)Ix] and divides x" +1 for m =21 and for
no smaller integer. By theorem 3.1 there are three cycles
of length 21 associated with the 6th degree polynomial, If

pi{x) for & =1,2,3 is a complete set of initiating states

for cycles modd(z,x6

5
+ %X 4 x4 +x2 +1) then pi(x)(x3 Fx2 4 1)
for 1=1,2,3 is a set of initiating states for three cycles

of length 21 modd(2,x9+-x3-+l) and these are distinct from

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



17

each other and from the cycle of length 7 initiated by the

polynomial x6+-x5+-x4+-x2+-1.

Ineorem 3.3 Let £3(x)fo(x)=k(x); let fp3;(x)§ and
{p2j(x)3 be complete sets of initiating states for cycles
of length m;; and m 5 modd(z,fl(x)) and modd(2,f2(x))
respectively; let [mli'm25] be the least common multiple of
my; and m2j and let (mli'm2j) be their greatest common
divisor, so that my §Mpg= [mli'm2j](mli'mlj); then, for each
i and j, and for

r=0,1, - "‘mli'mQj)- 1
the residues of the form

xrpli(x)fz(x)-+p2j(x)fl(x) modd (2,F (x) )
are initiating states for distinct cycles of length[@li,ngL

Exgof: Suppose
(1) xTpyq (x)E,(x) + x5y, (x}£; (x)

u
;sxtplk(x)fz(x)ﬁ-x pzh(x)fl(x) modd (2,F(x) ).
Then, transposing,
T t (.8 u
(2)  {x"pys(x) +x7py (X)), (x) = (x7py, (x) +x7pgy (x)) £ (x).
Multiply both sides of (2) by fz(x). Then
r t .

(x"pys (x)+ x"py (x)) (£,(x)) %= 0 modd (2,F (x)) .

Since f,(x) and f,(x) are relatively prime

xrpli(x)—i-xtplk(x)so modd (2,£, (x) ).
Suppose r is greater than t. Then
xF " Yo (x) =Py (%) modd (2, £, (x)).

From the way in which the pli(x) were cl.osen, this requires

that pys(x)=pyp(x), i.e. that 1 =k; and that r-t is a
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multiple of my;, the cycle length associated with p,; (x)
rodd (2, £7 (x)).

iultiplying (2) by f,(x) instead of £,(x) we obtain
that (1) requires pzj(x)::pzﬂ(x) and assur.nj that s is

greater than u, s-u is a multiple of r,

25 Thus for fixed

i and j the residues of the polynomials
xrpli(x)fz(x)+ xspzj(x)fl(x)
for r=0,1, °*° smpi— 1
and s=0,1, **° Moy~ 1l
are mjymyj; distinct residues modd (2,F(x)); and these are
distinct from all similar forms for each different pair
of 1 and j.
To determine the cycle length assoclated with the
pclynomial xrpli(x)fz(x)-+p2j(x)fl(x) suppose
(3) x®(x"py; (K)E,(x)+ pyy (x)E; (x))
E‘xrpli(x)fz(x)-}pzj(x)fl(x) modd (2,F{x)).
Then transposing,
x¥ (xpyy () # Py (X)), (%) = (x%p ()4 oy, (6D ().
Proceeding as above, we obtain that
xspli (x) zpli(x) modd (2,14 (x))
s0 that s is a multiple of fiyqs and
x"pyy (x) 2 Ppj (x)  modd(2,£,(x))
so that s is a multiple oi g 5 o Thus the smallest s fox
which the two sides of (3) are congruent is [mli’ij]'
Theoxem 3.4 The cycles guarenteed by theoren 3.3 are

distinct from those guarenteed by theorem 3.2.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



19

Proof: 1f

x"py g (x)£5(x) +x pyy (x)£) (x) = x%p (x) £, (x)modd (2, F (x))
then

(x"py 4 (%) +x%p ) (x)) £, (x) 2x"pyy (x)£; (x)  modd(2,F(x)).
thus

OE:ct'p‘,m(m:)(fl(x))2 modd (2, F (x)
so that

x"pyy (x)E, (x) = Q(x), () in 1/(2)[x].

But this is a contradiction and since a similar result holds
for the polynomial xspzk(x)fl(x) this verifies the statement.

Iheorem 3.9 Theorems 3.2, 3.3 and 3.4 give a complete
accounting for the cycles of 8 polynomial with constant
term 1 in terms of the cycles associated with its relatively
prime factors; i.e., the initiating states exhibited in
theorems 3.2 and 3.3 are & complete set of initiating states
for a polynomial with relatively prime factors and constant
term 1. .

Proof: Suppose F(x)-=f1(x)f2(x) where f,(x) and f,(x)
are relatively prime, have constant term 1 and are of degree
nj and ny respectively. Let fm;,{ and iﬁzjz be a complete
set of cycle lengths for non-zero cycles relative to f,(x)
and fo(x) respectively. Then

23 m11=2nl— 1 and Zj myy = 2"2- 3
and

2" P2y " ) ("2 1) 4 (2™ - 1) +(2"2- 1)

(2 my) (Zmpg) + Smyy) +( § ms)
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Theorem 3.2 exhibits initiating states for cycles which

account forx 21 m 4 and z states. Theorem 3.3 exhibits

m
initiating states which gige ?ir each 1 and j, ("‘11-“’23)
cycles of length [mn.mﬁ] which accounts for 21l products
myy4moj. Theorem 3.3 also shows that all of these cycles are
distinct. Theorem 3.4 shows that these latter cycles are
distinct from the formex.

If fl(x) and fz(x) are further reducible the theorems

may be applied to f,(x) and £,(x). Q.E.D.
Example: Consider the polynomial

2 5, .4, .2

x? 3 +l)(x6+x +x +x°+1)

4+ x"+1l-= (x3+ x
with cycles of length seven and twenty-one. The least commen
multiple of 7 and 21 is 21 and their greatest common divisor
is 7. {pu'§= {13 is a complete sct of initisting stastes for

3, .2
the cycle of length seven modd(2,x + x~ +1). Let {pzl,p22.p2;§

be a complete set of initiating states for the cycles of

2

length twenty-one modd (2,x6+ x> + x4+ x“+1). Then the residue

xé-t xs+ x4+x2+1 is an initiating state for a cycle of

2+ 1)
for 1 =1,2,3 are initlating states for cycles of length 21.

The residues xk(xe’-i- x2+ x4 x% 4 1) + pu(xs-t x2+l) for

1=-1,2,3 and k=0,1,**+,6 are initiating states for 3:7=21

length seven modd (2,x9+ x3+ l). The residues pzi(x3+ X

distinct cycles of length 21 and these are distinct from
the previous three. Since
9 6 3 6 3
2°-1=(2-1)(27~ 1) +(2 -1) (2 ~-1) =21+37+3°21+7

this accounts for all c¢ycles for this register.
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Con n

The study of shift register counters was originally
undertaken with a practical motive, the design of digital
computer counters. It was found in the course of the study
that the shift register counter is particularly amenable to
mathematical analysis. Concomitant to this discovery was a
shift of the emphasis of the study to the fundamental mathe-
matical questions which arose in regard to the analysis.

In particular, we have been led to the study of the oxder
of 2 certain cyclic operation in & finite polynomial ring,

In this paper, it is shown that certaln shift register
counters can be associated with a Ycharacteristic polynomial"
and that the cycle lengths for the register are the same as
the order of the cyclic operation, multiplication of a poly~
nomial by x and reduction with respect to the characteristic
polynomial as & modulus. It is further shown that the set
of cycle lengths for a register can be composed from the
cycle lengths assoclated with the relatively prime factors
of the characteristic polynomial, This leaves unanswered
questions related to the cycle lengths when the charactere
istic polynomlal has repeated factors.

Other mathematical questions, as yet unanswered, given
rise to by the study of shift register counters, are: (l)the
explicit determination of the cycle lengths associated with
an irreducible polynomial; (2)a practicable irreducibility
criterion for polynomials contained in 1/(2)[x]; (3)determi-
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nation of all counters for which a polynomisl analysis 1s
useful; i.e., if we multiply & polynomial a(x) by a poly-
nomial b(x) and reduce modd(2,¢(x)), the coefficients of
the resulting polynomial are linear combinations of the
coefficients of the original polynomial &(x). The trans-
formation can be represented by a matrix and therefore,
the logic for a corresponding register can be written.
Given a register representable by a matrix, the modulus
¢(x) which goes with b(x) =x can be determined; but, a
sultable criterion for ascertaining all pairs, b(x) and
c(x) which have corresponding cyclic properties, is yet
to be discovered.

These comments show that extensive work remaing to be
done in applying polynomial analysis to digital computer
counters. Because of the essentially mathematical nature
of the questions which have arisen in studying counters
it is believed that further developement, along the lines
indicated in this paper, should be underteken.
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