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A POLYNL'Ailrl Af̂ i-LYSIS Of 
DIGITAL COI.FUTEFv COUFflLRS

73 pages, by John Anderson

An abstract oi a thesis presented 
in partial fulfillment of the requirements 

for the degree of Master of Science 
Montana State University, 1959

/^proved_

A polynomial representation of a certain type of shift 
register counter has been effected by F.H.Young and this 
representation has been shown to be effective in determining 
properties of this type of counter. In this paper the poly­
nomial representation of shift register counters is further 
developed. In particular, the cycle length for a shift 
register counter is defined; the characteristic polynomial 
of a type of shift register is defined; a complete set of 
initiating states for cycles relative to a polynomial are 
defined; a complete set of initiating states for cycles 
relative to a polynomial are exhibited in terms of the 
initiating states relative to its relatively prime factors; 
the number of cycles of each possible length for a shift 
register counter is determined from the cycle lengths asso­
ciated with its characteristic polynomial.
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I INTRCOUCTION
Abstract

A polynomial representation of a certain type of shift 
register counter has been effected by F .H.Young (1). This 
representation has been shown to be effective in determining 
properties of this type of counter (1)(2). In this paper 
a polynomial representation of shift register counters is 
studied. In particular, the cycle length of shift register 
counters is defined; the characteristic polynomial for a 
type of shift register counter is defined ; some theorems are 
given which show the relation between the cycle lengths and 
the factorization of the characteristic polynomial.
Counters

Definition : A state of a register of n elements is an
ordered sequence of n symbols, each either 0 or 1.

Theorem 1.1 A register of n elements has 2^ states.
Definition* A shift register is a register in which, 

on each clock pulse, the symbols are shifted one place to 
the left and discarded on the left end. The input to the 
first place is unspecified.

Definition; A shift register counter is a shift 
register in which the input to the first place is a single- 
valued logical function of the elements of the register, 
treated as elements of a boolean algebra.

Theorem l.g A state of a shift register counter has a 
unique successor state.

1
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2
Theorem 1.3 Any sufficiently prolonged sequence of 

states in a shift register counter must return to a state 
already in the sequence.

Proof : The number of states is finite.
Definition: A state S which initiates a sequence of

states returning to S is a state of a cycle.
Definition; I is said to be in the same cycle as S 

in case 5 is a state of a cycle and S initiates a sequence 
of states leading to T,

Definition: The number of distinct states in a cycle
is the length of the cycle.

Example ; Consider the shift register counter on the 
elements ^A^A^ in which the input to A^ is the function 
AgA^ defined by the truth table

0 1 0
1 1 0  1 0  1.

The sequence initiated by the state 101 is
si 101

OilS? 110st 100001
S9 DIG100

The states 100, 001 and 010 constitute a cycle of length 
three. The states 101, Oil and 110 are not states of a 
cycle.

An interesting shift register counter is the one in
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3
which the input function is the symmetric difference of two 
particular elements, I.e. the function N A J - N J * + N * J  where 
N and J are the boolean algebra representations of the n^^ 
and register elements. For this type of counter the 
state with all elements zero, called the zero state, 
initiates a cycle of length one, called the zero cycle. It 
is this type of counter which has been studied previously (1) 
and to which a major portion of the present paper is devoted* 
Polynomials

Definition: If D is an integral domain then a is said
to divide b in D in case a and b are contained in D and 
there exists a c contained in 0 such that b = ac in D.

Definition % a is said to be congruent to b modulo c, 
written a s b  mod(c), relative to an integral domain D, in 
case c divides a - b in D.

Theorem 1.4 Congruence mod(c) is an equivalence 
relation.

Theorem 1.5 If p is a prime integer, then the ring of 
integers I with the relation congruence mod(p) is a field 
(denoted 1/ (p)).

Corollary 3/(2) is a field.
Theorem 1.6 The ring of polynomials in a transcen­

dental X over a field F (denoted Ffxl) is an integral domain.
Corollary l/(2)fx'] is an integral domain.
Theorem 1.7 If c(x) is contained in 3/(2)[x], then

c(x) is uniquely expressible as a product of irreducible
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4
factors except for the order of the factors and possible 
repetition of the identity 1.

Definition! If a(x), b(x) and c(x) are contained in 
2/(2) fx*l, then we write a(x)sb(x) modd(2,c(x)) in case 
c(x) divides a(x)-b(x) in 2/ (2) [x] .

Lemma 1 a(x) = 0 modd(2,c(x)) if and only if c(x) 
divides a(x) in l/(2)[x'].

Lemma 2 If c(x) is irreducible in l/(2)rxland if 
a(x)b(x)z 0 modd(2,c(x)), then either c(x) divides a(x) or 
c(x) divides b(x) in 2/(2)[x|.

Definition: If b(x) and c(x) are contained in 3/(2)[x]
and if the degree of b(x) is less than the degree of c(x),
then b(x) is said to be a residue modd(2»c(x)).

Lemma 3 If c(x) is contained in l/(2)fx1 and if c(x) 
is of degree n, then there are 2^ distinct residues and 
2*^-1 distinct non-zero residues modd(2,c(x)). 
Transformations

Definition: S is a single-valued transformation in
case for every a: aS is defined implies aS is unique.

Lemma 4 A shift register counter is acted on by a 
single-valued transformation.

Theorem 1.8 If a single-valued transformation S has 
-1 -1an inverse S , then S is a single-valued transformation.

Definition; If S is a single-valued transformation 
acting on a set A and if a is contained in A, then a is an 
element of a cycle if aS^^x a for some ro greater than zero.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



5
Definition; If a Is an element of a cycle, then the 

length of the cycle containing a is the smallest integer m 
for which aS*”=a.

Theorem 1.9 If S is a single-valued transformation 
acting on a finite set A and S has an inverse, then every 
element of A is an element of a cycle.

Proof ; Let be a member of A. Then /:\Q initiates a 
sequence

Since the number of states is finite we must have \
for some i and j, with 1 and j distinct. Let i be less than j.

-1If i = 0, then we are done. If iVO, then, since o is 
single-valued, 1» where Aĵ _ is v;ell defined.
Thus, Aĵ - Aj implies Aĵ . - Aj _ and for every k less than
or equal to i, A^ _ Let k = i; then = Aj , ̂  for
j - i different from 0.

This shows that the state initiates a sequence 
returning to /\q so that Ag is a state of a cycle. Since Aq 
is arbitrary, every state is a state of a cycle. -<.£.D.
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II REPRESENTATIONS 
Vector Représentation

A State of a register of n elements may be represented 
by a vector = (»n «n-1 **• *2 ®1  ̂ where each a^ Is 
either 0 or 1. The accompanying addition tables show that 
the symmetric difference of the n^^ and the elements 
Is a^+ aj where the addition Is carried out mod(2}«

N
4  mod (2)

f:
1 0 1 0
0 1 1 0  1
1 0  0 1 0

Relative to the logical function N A J  let S be a 
mapping Wilch sends the vector ^aj^ Into the vector of the 
next state. Then

W ^ S = ( « n _ i  a„ _ 2  ... «1 an +*j)
The transformation S can be represented by the nxn matrix

0 0 0 0 1
1 0  0 . . .  0 0  
0 1 0  0 0 > n - j

0 0 
0 1 
0 0

0 0 0 1*0

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



The matrix S ha« 0*8 everywhere except on the diagonal 
below the main diagonal and the and rows of the n^^ 
column. The shift is effected by multiplying the vector by 
the matrix with the matrix on the right and the addition 
carried out mod(2). The register is characterized by its
corresponding matrix. The determinant of the matrix S is 1;

-1therefore, S is nonsingular and S exists. Since the 
transformation represented by S is single-valued^ theorem 1.9 
applies. Thus, for the register with the logical function 
NAJ, every state is a state of a cycle.

If m is the length of the cycle containing the vector 
d) then as"̂  = al where I is the identity matrix. Thus m is 
the smallest integer such that A® =1 where A is a root of 
the polynomial |s-Al|, i.e. a solution of the characteristic 
equation of the matrix S. Expanding the determinant |S - Al| 
by elements of the last column we obtain

1 A 0 
0 1 A 
0 0 1

1 A 
0 1

-t-

A 0

AO'
1 y

 1

I
0 f

1 A 
0 1

A 0 0
1 A 0 
0 1 A

A 0 
1 A

1 A
Q 1

The first determinant has ones on the main diagonal and 
zeros everywhere below the main diagonal^therefore it is 1

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



8
The third determinant has /Vs on the main diagonal and

^n - 1zeros everywhere above; thus it is A . The second can 
be written as the product of two determinants one of which
is X' the other 1* Thus

Is - All = 14 X*' " ̂ 4 X",
and this is the characteristic polynomial for this register.

Consider a polynomial a(x) in 1/(2)[x]. Multiply a(x) 
by X and reduce roodd(2,x”+ x" 4 1). If

a(x) = â x*̂  ' ̂  t an - l%" " ̂ 4 ••• H-agx -tan
then xa(x) = Sn . ix^ ^4 •. • 4 (an _ j 4 a^)x'^  ̂-V • * • 4 aĵ x 4 an

modd(2,x"+ x" “ + 1).
rearrange the order of the terms to obtain

xa(x)-5 »n - j ̂  1*” + ®n + ••• +(®n- j ta^jx'^"^
Associate the coefficients of this last form with the 
elements of a register. The effect of the operation is to 
shift the coefficients one place to the left and write the 
sum mod (2) of the n̂ *̂  and the n - (n - j) r into the first 
place. Note that the constant term of the polynomial is 
associated with the 1 +  1 position of the register.

This shows that multiplication of a(x) by x and 
reduction modd (2,x^ + x ” + 1) corresponds to the operation 
of the shift register counter with the input function NAJ. 
Thus, for this register, if m is the smallest integer such 
that x*”s 1 modd(2,x^+x" ~^+l),i.e., such that x” +.x*̂  ^4 1
divides x"̂ 4 1 in 1/(2) fx] , then m is the length of the
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9
cycle containing the state (0**'010**0) and the residues of 

modd(2, x * ' - i - + 1) for correspond to the
states of the cycle.

k 2Examolet Consider the residues of x modd(2,x +x +1)
These are given by

X s x 
S X +1
5 1
oThe trinomial x + x +1 corresponds to the register on

two elements with the input function (2)A (1). Writing the
coefficients of the polynomials as register states with the
constant term in the jHrl®^ts 2*̂  ̂position we obtain the
cycle of length three

1 - 1 0
x|- 1 1
x^- 1 0.

Generalization
Consider the shift register counter in which the input

to the first place is given by the function 
A  k

j = i 'Jj - "̂ 1 ̂  "̂ 2 ̂  ^  "̂ k*
This function will be called a generalized symmetric
difference and is to be evaluated by inserting sufficient 
parentheses and using the relation F2 = FiFj +F|F2 where 
F^ and Fg are any two logical functions. For exanple 

Jj^AJ2 AJ3 =■ (Jj^AJ2) A J 3 = ( J2) A  J3
= (J^J^ + J P 2)Jj + (JjJi + J p 2  ̂U 3 
^ JlJpJ +JfJ 2 4  +-̂ 1'̂ 2‘̂3

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



10
By the symmetry of the result any alternative grouping will 
give the same value. In general the function A j J j  is 
well defined since it is the sum of all minterms on k 
elements which contain an odd or even number of primes as 
k is even or odd.

This generalized symmetric difference is 1 or 0 as the 
sum ajL̂ -f* 8^2 +* * * is 1 or 0 mod (2) where Jj is the
boolean algebra representation of the vector element aĵ .̂ 
For this register the zero state gives rise to a cycle of 
length one.

The shift of this register can be represented by a 
matrix where

0 0 0 (̂ n
1 0 e # # 0 ‘'n - 1
0 1 0 ^n - 2

0 0 1 c
and Cĵ = 1 if is included in the sum and 0 otherwize.
The determinant of is thus is non-singular if and
only if c^j^Oj i.e. c^ = 1.

The characteristic polynomial of is 
c(x}=: cxx^ _ %x 4-c^.

Consider multiplying a polynomial a(x) by x and reducing 
modd(2»c(x))• The result is

+ ( « n-2 + ‘=2®n)*" ' ^ + ' ”  + <*l + =n-
+  ̂ n®n«
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This operation corresponds to the shift whose matrix is Sg 
where

^1 *̂ 2 Cn -1 cn
1 0 0 0
0 1 0 0

,0 0 1 0  
The characteristic polynomial of is also c(x).

This shows that we can be aided in studying the shift 
registercounter whose input function is a generalized 
symmetric difference by looking at finite polynomial rings 
modd(2,c(x)}. Since the transformation represented h/ Sg 
is single-valued, theorem 1.9 applies. Thus, if c^= 1 so that 
S exists,then every polynomial is an element of a cycle; 
i.e., if p(x) is a residue modd(2«c(x)} and Cg^= 1, then there 
exists an m such that x^p(x)sp(x) modd(2,c(x) )•

Definition : If S is a logic acting in a shift register
counter and S can be represented by a matrix^ then the 
characteristic polynomial of the matrix is called the 
characteristic polynomial of the shift register counter.

Example; Consider the four element counter in which 
the symmetric difference of all four elements is the input 
to the first place. The characteristic polynomial Is 
x^+ x^4 x^+ X + 1 which divides x̂ -j-1 for no = 5 and for no 
smaller integer. Thus the cycle lengths for this register 
divide 5. In particular the cycle containing the polynomial 
1 is of length 5.
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Ill SOAE THEOREMS CONCERNING COUNTERS
in i-exms q1 ib& i f ç t m

Theorem 3.1 If c(x) is irreducible in 1/(2)[x] and
the constant term of c(x) is l^then all nor-zero cycles
have the same length m and m divides 2^- 1.

Proof: Suppose c(x) is irreducible in l/{2)lx] and m
is the smallest integer such that c(x) divides x^ + 1.
Construct the set of residues

Pi - modd(2»c(x}) k =0,1  ̂'*',m -1 
These constitute m distinct residues for if not,then 

x*̂ r X* modd(2,c(x)) 
for k different from s and both k and s less than m. We 
may assume k less than s. Then

x*^(x*” *^4l) = 0 modd(2,c(x)) 
for 0< s - k -q <m. Thus by lemma 2, c(x) divides x^-4 1 for 
q less than m,contrary to assumption*

If PjL does not contain all 2*'- 1 non-zero residues 
then choose a non-zero residue p(x) not contained in P^* 
Construct the set of residues Pg where

= ^x^p(x)^ modd(2,c(x)) k =0,1, • *• ,m - 1 
P^ consists of m distinct residues since if 

x*^p(x) = x*p(x) modd(2,c(x) ), 
we may suppose k is less than s. Then 

x*^(x*~ *̂-4 l)p(x) = 0 modd(2,c(x)) •
By lemma 2 c(x) divides either x^ or x*' *^+1 or p(x).

12
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13
k s ~ kBut c(x) does not divide x ; nor x + 1  since s - k is

less than m; nor p(x) since p(x) is a non-zero residue
modd(2,c(x)), This contradiction shows that the m residues
contained in P2 are all distinct. Since (x®-J l)p(x)*0
implies x®p(x) = p(x) modd(2,c(x) ), m is the smallest
integer such that x%(x) = p(x) modd (2,c (x) ).

Continuing until all non-zero states are exhausted
we obtain a collection of sets each
containing ro elements. Thus ms = 2*^-1. Q.E.D,

6 3Example: The polynomial x + x +1 is irreducible in
1/(2) fx^ and di -^des x”̂ +l for m = 9 and for no smaller 
integer. Since 2^- 1 = 7 X 9  the corresponding register has 
7 cycles of length 9.

Similarly, the shift register on four elements with 
the symmetric difference of all four elements written into
the first place has the irreducible characteristic poiy-

4 3 2 5nomial x 4 x + x + x -Vl which divides x 4-1. Since
2 ^ - 1  -15 = 3*5 this register has three cycles of length 5.

If f(x) is a polynomial, sets can be constructed with
f(x) as a modulus in a manner similar to that used in the
proof of theorem 3.1.

Let f(x) be a polynomial of degree n with constant
term 1. Then there ar : 2^"1 non-zero residues n<odd (2,f (x) )
Construct the set of distinct residues

= modd (2,f (x) ) k = 0,1, • • • ,mQ - 1
where mo is chosen as the smallest integer such that x*̂‘̂*^ri.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.
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If ajQ does not equal 2*'-'1, then choose a residue p^(x) 

not contained in Rq and construct the set of distinct 
residues

^x^p^(x)^ modd(2,f (x) ) k = 0,1, "  1
where is the smallest integer such that S p^tx) •

If nîQf cfiĵ does not equal 2*^-1 then choose a residue 
P2(x) not contained in Rq or and construct a set Rg. 
Continue in this fashion to obtain a collection of poly- 
noirdals P = fpi(x)| for i = 0,l,***,s with p q {x ) = 1  and 
x*^Pi(x) not congruent to pj (x) for any k unless i =j, along 
with a collection of integers for which

,n

and

but
x"̂ p̂ĵ (x) = p^(x) modd(2,f(x))

x^a.(x)^Pl(x) modd(2,f(x))
for k less than

DefinitionÎ If P is constructed as above then P is 
called a con^lete set of initiating states for cycles 
modd(2,f(x))•

Definition; If p^(x) is contained in P and is 
defined as above then is called the cycle length 
associated with p^(x) modd(2,f(x}).

ItZ Let P(x) =rf^(x)f^(x\ where f^(x) and 
fg(x) are relatively prime, each have constant term 1 and 
are of degree and n^ respectively. Let fPli

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.
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and complete sets of initiating states for
cycles of length modd (2,f (x) ) and modd (2,fg(x) ) 
respectively. Then the polynomials pj^^(x)f2(x) and 
P2j(x)fi(x) are initiating states for distinct cycles of 
length and ni2j xespectively raodd (2,f (x) ).

Proof : first, the cycles are distinct; for if
x*^Plj^(x)f2(x) sx^pgj (x)fj^(x) modd(2,f (x) )

then multiply by fg(x) and transpose to obtain 
Os x̂ pjL̂ (x) CfgCx))̂ '̂ x̂ pgj (x)f2(x)f2(x)
= x^p^^^(x) (f2(x) modd(2,F(x)).

Then, for some w(x)

Thus
x^Pll(x)(^^(x)v(x)f^(x)f2 (x) in 1/(2)[x]

x*^Pli(x)f2 (x) - w(x)fi(x) in 1/(2)[x]
IcBut X Pĵ jî (x) is a non-zero residue modd (2, f (x) ) so that 

fl(x) does not divide x Pii(x); therefore, this last 
requires that f^(x) and ^2 ^̂  ̂ are not relatively prime, 
contrary to assumption. This contradiction shows that 
these two polynomials cannot be congruent modd(2,f(x)) 
for any choice of i and j.

Now, if
x^pll(x)f2 (x) £ x®pĵ j (x)f2(x) modd(2,F (x) )

then transpose to obtain
(x^Pli(x)4 x®pjj (x))f2(x) =0 modd(2,F (x) ).

This requires that
x^pli(x)+ x®pj^j(x)=0 modd(2,fi(x)).

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



16
Suppose 8 Is greater than k; then

P3̂ l(x) = x® (%) modd(2,fj|̂ (x) ).
From the way in which the Pn(x) were chosen, this requires 
that i = j and that s "k is a multiple of The smallest
value of s - k for which the congruence can hold is thus 

is the smallest value of m for which 
Pl^(x)f^(x) = x“*pj^^(x)f2(x) modd(2,F(x)).
This shows that the polynomial (x)f2 (x) initiates 

a cycle of length modd(2,F (x)) distinct from cycles
initiated by the polynomials P%j(x)f2(x) for j different 
from i and from the cycles initiated by the polynomials 
p2j(x)fi(x) modd(2,F(x)). In the same manner, one can show 
that the polynomial p^j (x)f^^(x) initiates a cycle of length 
mgj modd(2,F (x)) distinct from the cycles Initiated by the 
polynomial p2j^(x)f^(x) for 1 different from j. Q.E.D,

Examplei Consider the polynomial 
x^+ x^ + 1 = (x^+ x^ + 1) (x^+ X^4- x^+ x^+ 1)

x^+ x^+1 is irreducible in 1/(2) [x] and divides x"̂ 4-1 for
6 b 4 2m = 7 and for no smaller integer, x + x f x +-x + 1 is

irreducible in l/(2) M  snd divides x^ +-1 for m =.21 and for
no smaller integer. By theorem 3,1 there are three cycles
of length 21 associated with the 6^^ degree polynomial. If
Pĵ (x) for i -1,2,3 is a complete set of initiating states
for cycles modd (2,x^+x^ x^ + x ^ 1) then pĵ (x) (x^ •hx^+1)
for i^ 1,2,3 is a set of initiating states for three cycles

9 3of length 21 modd(2,x f x + 1) and these are distinct from
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each other and from the cycle of length 7 initiated by the

6 5 4 Opolynomial x + x  + x + x + 1.
Jjieorei]a 3.3 Let fj^(x)f2 (x) 1 (x) ; let and

^p2j(x)^ be complete sets of initiating states for cycles
of length and m^j modd (2, f (x) ) and modd (2,f 2(x) ) 
respectively; let the least common multiple of
®li let their greatest common
divisor, so that - r^li»i7‘2jl ̂ ®li*  ̂* then, for each
i and j, and for

r = 0,1, • • • , - 1
the residues of the form

x^Plj^(x)f2(x) + P 2j (x)f^(x) modd (2,f (x) ) 
are initiating states for distinct cycles of length 

Elûûiî Suppose
(1) x^pj^^CxjfgCx)-f x^p2j (x)fjL(x)

£x"*^Plj^(x)f2(x)-+ x%^(x)f^{x) modd (2,F(x) ). 
Then, transposing,
(2) ( x ^ P i i ( x )  + x ^ p 2 { ^ ( x ) ) f ^ ( x )  s  ( x ^ p 2 j  ( x )  + x % 2 h ( ^ )  '  

Multiply both sides of (2) by f2(x). Then
(x*^Pli(x)*f x̂ pĵ ĵ (x)) (f2 (x) 0 modd (2,F (x) ).

Since fĵ (x) and f^(x) are relatively prime
x^Pli(x)4 x^p^^(x)= 0 modd(2,f^(x)),

Suppose r is greater than t . Then
x^ SPii^(x) modd(2,f ĵ (x) ),

From the way in which the p̂ ĵ  (x) were chosen, this requires 
that Pii (x) = Pik(x), i*e, that i - k; and that r - t  is a
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multiple of , the cycle length associated v;ith Pj_j_{̂ ) 
modd (2, f (x) ).

i.’.ultiplying (2) by f(x) instead of f2(x) vve obtain 
that (1) requires (x) = p̂ .̂̂ (x) and assur ing that s is 
greater than u, s - u is a multiple of n-<2j . Thus for fixed 
i and j the residues of the polynomials 

x^p-L^(x)f^(x) 4 x®p2j (x)fĵ  (x) 
for r = 0,1, ••• ,^11" 1 
and s - 0,1, ••• tî2j ” ^
are niĵ im2j distinct residues modd (2,F (x) ) ; and these are 
distinct from all similar forms for each different pair 
of i and j.

To determine the cycle length associated with the 
polynomial x̂ pĵ  ̂(x)f2(x) + P2j (x)f2̂ (x) suppose 
(3) X® (x̂ pĵ ĵ  (x)f^(x)4 P2j )

” "^Pgj (x) modd (2,F (x) )
Then transposing,

x^(x®pj^^ (x) + p^ĵ (x) )fg(x) r (x^p^j (x)4 p^j (x) )f^(x). 
Proceeding as above, we obtain that

x^Pn (x) îpjL^Cx) modd (2,f^(x) )
so that s is a multiple of and

x % 2j = P2j ("Gdd (2,fg(x) )
so that s is a multiple of mpj* Thus the smallest s for 
which the two sides of (3) are congruent is .

Theorem 3.4 The cycles guarenteed by theorem 3*3 are 
distinct from those guarenteed by theorem 3.2.
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Eisûit If
x̂ Pĵ l(x)f2(x) -fx*P2j(x)fĵ (x) 2 x®P2ĵ (x)f2(x)modd(2,F(x))

then
(x^p2^(x) +x®p^^(x))f2 (x) sx^pgj (x)f^(x) fflodd(2,F(x) )

thus
0 2 x^p2j(x) (f^(x))^ ffiodd(2,F(x)

so that
*^^2j = Q ( x ) f 2(x) in l/(2)fx7.

But this is a contradiction and since a similar result holds 
for the polynomial x®p2ic(x)fĵ (x) this verifies the statement.

Theorem 3.5 Theorems 3.2, 3.3 and 3.4 give a complete 
accounting for the cycles of a polynomial with constant 
term 1 in terms of the cycles associated with its relatively 
prime factors; i.e., the initiating states exhibited in 
theorems 3.2 and 3,3 are a complete set of initiating states 
for a polynomial with relatively prime factors and constant 
t erm 1.

Prooft Suppose F(x ) = f^(x)f2(x) where fĵ (x) and f2(x) 
are relatively prime, have constant term 1 and are of degree 
n^ and n2 respectively. Let and ^m2j| be a complete
set of cycle lengths for non-zero cycles relative to f^(x) 
and f2 (x) respectively. Then

^ i  ®li ' I and Zj ' 2*̂ -̂ 1
and

2"^^ "2 _ ̂  . (2"^- i) (2"^- 1) -t- (2"^ - 1) + (2"®- 1)

( I  Z = 2j) + ( f  “11> +< I  “2j)
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Theorem 3.2 exhibits initiating states for cycles which 

account for and states. Theorem 3,3 exhibits
initiating states which give for each i and j ,
cycles of length f®xi*®2j^ which accounts for all products 
^ l i % j * Theorem 3.3 also shows that all of these cycles are 
distinct. Theorem 3.4 shows that these latter cycles are 
distinct from the former.

If f^(x) and f2(x) are further reducible the theorems 
may be applied to f^(x) and fg(x). Q.E.D.

Example; Consider the polynomial
X^4 X^ + 1 = (x^+ 4 1) (x^4 %^+ X^ 4X^4 1)

with cycles of length seven and twenty-one. The least comracn
multiple of 7 and 21 is 21 and their greatest common divisor 
is 7, is a complete set of initiating states for
the cycle of length seven modd (2,x 4 x +1). Let (P2X*^22*^2^ 
be a complete set of initiating states for the cycles of 
length twenty-one modd(2,x^-f x^4x^4 x^ + 1). Then the residue
x^4 x^4 x^ + x^-f 1 is an initiating state for a cycle of

9 3 3 2length seven modd(2,x 4 x 4 1). The residues P2^(x + x 4 1)
for i -1,2,3 are initiating states for cycles of length 21.
The residues x^(x^4 x^t x^4 x^4 1) 4 pgj^(x^4 x^ +1) for
i = 1,2,3 and k = 0,l,***,6 are initiating states for 3*7-21
distinct cycles of length 21 and these are distinct from
the previous three. Since

2^- 1 ^(2^- 1)(2^' 1) 4 (2^-1) 4 (2^-1) ^ 21*3*743*2147
this accounts for all cycles for this register.
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Conclusion

The study of shift register counters was originally 
undertaken with a practical motive, the design of digital 
conputer counters. It was found in the course of the study 
that the shift register counter is particularly amenable to 
mathematical analysis. Concomitant to this discovery was a 
shift of the emphasis of the study to the fundamental mathe­
matical questions which arose in regard to the analysis.
In particular, we have been led to the study of the order 
of a certain cyclic operation in a finite polynomial ring.

In this paper, it is shown that certain shift register 
counters can be associated with a "characteristic polynomial" 
and that the cycle lengths for the register are the same as 
the order of the cyclic operation, multiplication of a poly­
nomial by X and reduction with respect to the characteristic 
polynomial as a modulus. It is further shown that the set 
of cycle lengths for a register can be composed from the 
cycle lengths associated with the relatively prime factors 
of the characteristic polynomial. This leaves unanswered 
questions related to the cycle lengths when the character­
istic polynomial has repeated factors.

Other mathematical questions, as yet unanswered, given 
rise to by the study of shift register counters, are: (l)the 
explicit determination of the cycle lengths associated with 
an irreducible polynomial; (2)a practicable irreducibility 
criterion for polynomials contained in V ( 2)fx] ; (3)determi­

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



22
nation oi all counters for which a polynomial analysis Is 
useful; I.e.* If we multiply a polynomial a(x) by a poly­
nomial b(x} and reduce modd(2*c(x))« the coefficients of 
the resulting polynomial are linear combinations of the 
coefficients of the original polynomial a(x). The trans­
formation can be represented by a matrix and therefore* 
the logic for a corresponding register can be written. 
Given a register representable by a matrix * the modulus 
c(x} which goes with b(x) =x can be determined; but* a 
suitable criterion for ascertaining all pairs* b(x) and 
c(x) which have corresponding cyclic properties* is yet 
to be discovered.

These comments show that extensive work remains to be 
done in applying polynomial analysis to digital computer 
counters. Because of the essentially mathematical nature 
of the questions which have arisen in studying counters 
it is believed that further developement* along the lines 
indicated in this paper* should be undertaken.
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